Instrumentación Nano-Satelites - Task #482

Milestone # 318 (New): Diseño de prototipo Tx 2.0

Revisión de circuito - RF Generación de señal y control - Tx 2.0

02/22/2016 11:44 AM - Jose Chavez

Status: Start date: Closed 02/22/2016 Due date: **Priority:** Normal 02/29/2016 % Done: Assignee: Jose Chavez 0% Category: **Estimated time:** 0.00 hour Target version: Spent time: Prototipo transmisor 2.0 0.00 hour

Description

Circuito 1: Payload - Generación de señales y control

Herramienta de Diseño de Software

Eagle 5.11

Funcionalidad

La tarjeta forma parte del prototipo de transmisor 2.0, el cual consta de **dos tarjetas** comunicadas entre sí mediante un bus *stackeable*, basado en el estándar PC/104, utilizado ampliamente en *cubesats*. Se consideró además la compatibilidad de las tarjetas con la <u>Motherboard</u> que se adquirirá.

La tarjeta consta de 4 capas distribuidas en la forma Signal, GND, VDD, Signal y ha sido diseñada para que la implementación sea realizada por **SpeedyCircuits** (Taiwán)

La tarjeta se ha dividido en dos etapas: Control y generación de señal.

Control

El circuito también contiene la etapa control del *payload* utilziando el microcontrolador *ATmega128*. Dicha etapa se encarga de las siguientes tareas.

- Comunicación con el aircraft mediante protocolo serial y/o I2C
- Control de PLLs: Llenado de registros, lectura de estados, enable/disable
- Control de VCO: ON/OFF mediante switch analógico ADG701
- Control de VGA: Llenado de registros (a la segunda tarjeta)
- Codificación: Generación de secuencias y data a transimitir (a la segunda tarjeta)

Generación

Esta etapa genera 150MHz y 400MHz a partir de *PLLs* y un circuito que genera una frecuencia común de 10MHz. A su vez, la etapa de generación posee cuatro sub-etapas indentificables, duplicándose a las dos frecuencias de transmisión:

- Señal de sincronismo: Circuito que genera 3 señales de 10MHz y las distribuye a los PLLs y al Microcontrolador
- PLL: Genera la señal que controla el VCO
- Loop filter: Circuito RC que filtra la señal de control del VCO genrada por el PLL.
- VCO: Genera la frecuencia requerida
- Switch: Control de ON/OFF de los VCO
- Filtro: A la salida del VCO se encuentra un filtro pasabajos para la eliminación de armónicos.

Consideraciones adicionales:

- La tarjeta transmite las señales de RF mediante conectores especiales *board to board*. Para mayor información revisar la web de <u>amphenol</u> y la web de <u>digikey</u>. El *bullet* utilizado es <u>ARF2472-ND</u>, calculado para *spacers* de 15mm.
- Para conocer el componente que se está utilizando revisar el atributo DIGIKEY-PART del mismo.
- Las capacidades del fabricante son las siguientes
 - o Ancho mínimo: 1.5 mils
 - Grosor mínimo del dieléctrico: 2 mils

07/04/2025

- o Tamaño mínimo del drill: 3mils mecánico, 2mils láser
- Es preciso mencionar que las pistas de señales se encuentran *matcheadas* a 50 Ohm, bajo la configuración mostrada en la siguiente imagen.

Captura.PNG

Entradas

Entradas CMOS estándar propias de microcontrolador para la programación del mismo. Las entradas a los demás componentes son manipuladas el microcontrolador directamente.

Salidas - RF

	Señal 1	Señal 2
Frecuencia	150MHz	400MHz
Potencia (50 Ohm)	-3dBm a 7dBm	-2dBm a 2dBm
Impedancia	50	50
Nivel DC	0v	0v

Diagrama de bloques

bloques.PNG

Archivo esquemático y board

Esquemático: http://jro-dev.igp.gob.pe/svn/jro_hard/nanosats/TRUNK/HARDWARE/boards/Integrado/Eagle%205.0/integrado.sch
Board: http://jro-dev.igp.gob.pe/svn/jro_hard/nanosats/TRUNK/HARDWARE/boards/Integrado/Eagle%205.0/integrado.brd

History

#1 - 02/25/2016 12:16 PM - Joaquín Verástegui

- Description updated

#2 - 02/25/2016 12:18 PM - Jose Chavez

- Description updated

#3 - 03/08/2016 11:15 AM - Joaquín Verástegui

- Status changed from New to In progress
- Assignee changed from Joaquín Verástegui to Jose Chavez

Observación	Señal o componente asociado	Resultado
Ordenar la posición de los nombres y valores de los componentes para que sean visibles.	-	
Separar tierras para las dos señales de RF, hacer polígonos diferentes unidos por una pequeña pista únicamente.	GND	
Diferenciar las capas con colores.	-	

#4 - 04/25/2016 08:18 AM - Jose Chavez

07/04/2025 2/3

- Status changed from In progress to Closed

07/04/2025 3/3