import os import datetime import numpy from schainpy.model.graphics.jroplot_base import Plot, plt from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot from schainpy.utils import log # libreria wradlib import wradlib as wrl EARTH_RADIUS = 6.3710e3 def ll2xy(lat1, lon1, lat2, lon2): p = 0.017453292519943295 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 r = 12742 * numpy.arcsin(numpy.sqrt(a)) theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) theta = -theta + numpy.pi/2 return r*numpy.cos(theta), r*numpy.sin(theta) def km2deg(km): ''' Convert distance in km to degrees ''' return numpy.rad2deg(km/EARTH_RADIUS) class SpectralMomentsPlot(SpectraPlot): ''' Plot for Spectral Moments ''' CODE = 'spc_moments' # colormap = 'jet' # plot_type = 'pcolor' class DobleGaussianPlot(SpectraPlot): ''' Plot for Double Gaussian Plot ''' CODE = 'gaussian_fit' # colormap = 'jet' # plot_type = 'pcolor' class DoubleGaussianSpectraCutPlot(SpectraCutPlot): ''' Plot SpectraCut with Double Gaussian Fit ''' CODE = 'cut_gaussian_fit' class SnrPlot(RTIPlot): ''' Plot for SNR Data ''' CODE = 'snr' colormap = 'jet' def update(self, dataOut): data = { 'snr': 10*numpy.log10(dataOut.data_snr) } return data, {} class DopplerPlot(RTIPlot): ''' Plot for DOPPLER Data (1st moment) ''' CODE = 'dop' colormap = 'jet' def update(self, dataOut): data = { 'dop': 10*numpy.log10(dataOut.data_dop) } return data, {} class PowerPlot(RTIPlot): ''' Plot for Power Data (0 moment) ''' CODE = 'pow' colormap = 'jet' def update(self, dataOut): data = { 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) } return data, {} class SpectralWidthPlot(RTIPlot): ''' Plot for Spectral Width Data (2nd moment) ''' CODE = 'width' colormap = 'jet' def update(self, dataOut): data = { 'width': dataOut.data_width } return data, {} class SkyMapPlot(Plot): ''' Plot for meteors detection data ''' CODE = 'param' def setup(self): self.ncols = 1 self.nrows = 1 self.width = 7.2 self.height = 7.2 self.nplots = 1 self.xlabel = 'Zonal Zenith Angle (deg)' self.ylabel = 'Meridional Zenith Angle (deg)' self.polar = True self.ymin = -180 self.ymax = 180 self.colorbar = False def plot(self): arrayParameters = numpy.concatenate(self.data['param']) error = arrayParameters[:, -1] indValid = numpy.where(error == 0)[0] finalMeteor = arrayParameters[indValid, :] finalAzimuth = finalMeteor[:, 3] finalZenith = finalMeteor[:, 4] x = finalAzimuth * numpy.pi / 180 y = finalZenith ax = self.axes[0] if ax.firsttime: ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] else: ax.plot.set_data(x, y) dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, dt2, len(x)) self.titles[0] = title class GenericRTIPlot(Plot): ''' Plot for data_xxxx object ''' CODE = 'param' colormap = 'viridis' plot_type = 'pcolorbuffer' def setup(self): self.xaxis = 'time' self.ncols = 1 self.nrows = self.data.shape('param')[0] self.nplots = self.nrows self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) if not self.xlabel: self.xlabel = 'Time' self.ylabel = 'Range [km]' if not self.titles: self.titles = ['Param {}'.format(x) for x in range(self.nrows)] def update(self, dataOut): data = { 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) } meta = {} return data, meta def plot(self): # self.data.normalize_heights() self.x = self.data.times self.y = self.data.yrange self.z = self.data['param'] self.z = 10*numpy.log10(self.z) self.z = numpy.ma.masked_invalid(self.z) if self.decimation is None: x, y, z = self.fill_gaps(self.x, self.y, self.z) else: x, y, z = self.fill_gaps(*self.decimate()) for n, ax in enumerate(self.axes): self.zmax = self.zmax if self.zmax is not None else numpy.max( self.z[n]) self.zmin = self.zmin if self.zmin is not None else numpy.min( self.z[n]) if ax.firsttime: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n] ) else: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.collections.remove(ax.collections[0]) ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n] ) class PolarMapPlot(Plot): ''' Plot for weather radar ''' CODE = 'param' colormap = 'seismic' def setup(self): self.ncols = 1 self.nrows = 1 self.width = 9 self.height = 8 self.mode = self.data.meta['mode'] if self.channels is not None: self.nplots = len(self.channels) self.nrows = len(self.channels) else: self.nplots = self.data.shape(self.CODE)[0] self.nrows = self.nplots self.channels = list(range(self.nplots)) if self.mode == 'E': self.xlabel = 'Longitude' self.ylabel = 'Latitude' else: self.xlabel = 'Range (km)' self.ylabel = 'Height (km)' self.bgcolor = 'white' self.cb_labels = self.data.meta['units'] self.lat = self.data.meta['latitude'] self.lon = self.data.meta['longitude'] self.xmin, self.xmax = float( km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) self.ymin, self.ymax = float( km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) # self.polar = True def plot(self): for n, ax in enumerate(self.axes): data = self.data['param'][self.channels[n]] zeniths = numpy.linspace( 0, self.data.meta['max_range'], data.shape[1]) if self.mode == 'E': azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 r, theta = numpy.meshgrid(zeniths, azimuths) x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) x = km2deg(x) + self.lon y = km2deg(y) + self.lat else: azimuths = numpy.radians(self.data.yrange) r, theta = numpy.meshgrid(zeniths, azimuths) x, y = r*numpy.cos(theta), r*numpy.sin(theta) self.y = zeniths if ax.firsttime: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), x, y, numpy.ma.array(data, mask=numpy.isnan(data)), vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n]) else: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.collections.remove(ax.collections[0]) ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), x, y, numpy.ma.array(data, mask=numpy.isnan(data)), vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n]) if self.mode == 'A': continue # plot district names f = open('/data/workspace/schain_scripts/distrito.csv') for line in f: label, lon, lat = [s.strip() for s in line.split(',') if s] lat = float(lat) lon = float(lon) # ax.plot(lon, lat, '.b', ms=2) ax.text(lon, lat, label.decode('utf8'), ha='center', va='bottom', size='8', color='black') # plot limites limites = [] tmp = [] for line in open('/data/workspace/schain_scripts/lima.csv'): if '#' in line: if tmp: limites.append(tmp) tmp = [] continue values = line.strip().split(',') tmp.append((float(values[0]), float(values[1]))) for points in limites: ax.add_patch( Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) # plot Cuencas for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) values = [line.strip().split(',') for line in f] points = [(float(s[0]), float(s[1])) for s in values] ax.add_patch(Polygon(points, ec='b', fc='none')) # plot grid for r in (15, 30, 45, 60): ax.add_artist(plt.Circle((self.lon, self.lat), km2deg(r), color='0.6', fill=False, lw=0.2)) ax.text( self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), '{}km'.format(r), ha='center', va='bottom', size='8', color='0.6', weight='heavy') if self.mode == 'E': title = 'El={}$^\circ$'.format(self.data.meta['elevation']) label = 'E{:02d}'.format(int(self.data.meta['elevation'])) else: title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] self.titles = ['{} {}'.format( self.data.parameters[x], title) for x in self.channels] class WeatherPlot(Plot): CODE = 'weather' plot_name = 'weather' plot_type = 'ppistyle' buffering = False def setup(self): self.ncols = 1 self.nrows = 1 self.nplots= 1 self.ylabel= 'Range [Km]' self.titles= ['Weather'] self.colorbar=False self.width =8 self.height =8 self.ini =0 self.len_azi =0 self.buffer_ini = None self.buffer_azi = None self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) self.flag =0 self.indicador= 0 self.last_data_azi = None self.val_mean = None def update(self, dataOut): data = {} meta = {} if hasattr(dataOut, 'dataPP_POWER'): factor = 1 if hasattr(dataOut, 'nFFTPoints'): factor = dataOut.normFactor ####print("factor",factor) data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) ####print("weather",data['weather']) data['azi'] = dataOut.data_azi return data, meta def get2List(self,angulos): list1=[] list2=[] for i in reversed(range(len(angulos))): diff_ = angulos[i]-angulos[i-1] if diff_ >1.5: list1.append(i-1) list2.append(diff_) return list(reversed(list1)),list(reversed(list2)) def fixData360(self,list_,ang_): if list_[0]==-1: vec = numpy.where(ang_=360) angulos[vec]=angulos[vec]-360 return angulos def search_pos(self,pos,list_): for i in range(len(list_)): if pos == list_[i]: return True,i i=None return False,i def fixDataComp(self,ang_,list1_,list2_): size = len(ang_) size2 = 0 for i in range(len(list2_)): size2=size2+list2_[i]-1 new_size= size+size2 ang_new = numpy.zeros(new_size) ang_new2 = numpy.zeros(new_size) tmp = 0 c = 0 for i in range(len(ang_)): ang_new[tmp +c] = ang_[i] ang_new2[tmp+c] = ang_[i] condition , value = self.search_pos(i,list1_) if condition: pos = tmp + c + 1 for k in range(list2_[value]-1): ang_new[pos+k] = ang_new[pos+k-1]+1 ang_new2[pos+k] = numpy.nan tmp = pos +k c = 0 c=c+1 return ang_new,ang_new2 def globalCheckPED(self,angulos): l1,l2 = self.get2List(angulos) if len(l1)>0: angulos2 = self.fixData360(list_=l1,ang_=angulos) l1,l2 = self.get2List(angulos2) ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2) ang1_ = self.fixData360HL(ang1_) ang2_ = self.fixData360HL(ang2_) else: ang1_= angulos ang2_= angulos return ang1_,ang2_ def analizeDATA(self,data_azi): list1 = [] list2 = [] dat = data_azi for i in reversed(range(1,len(dat))): if dat[i]>dat[i-1]: diff = int(dat[i])-int(dat[i-1]) else: diff = 360+int(dat[i])-int(dat[i-1]) if diff > 1: list1.append(i-1) list2.append(diff-1) return list1,list2 def fixDATANEW(self,data_azi,data_weather): list1,list2 = self.analizeDATA(data_azi) if len(list1)== 0: return data_azi,data_weather else: resize = 0 for i in range(len(list2)): resize= resize + list2[i] new_data_azi = numpy.resize(data_azi,resize) new_data_weather= numpy.resize(date_weather,resize) for i in range(len(list2)): j=0 position=list1[i]+1 for j in range(list2[i]): new_data_azi[position+j]=new_data_azi[position+j-1]+1 return new_data_azi def fixDATA(self,data_azi): data=data_azi for i in range(len(data)): if numpy.isnan(data[i]): data[i]=data[i-1]+1 return data def replaceNAN(self,data_weather,data_azi,val): ####print("----------------activeNEWFUNCTION") data= data_azi data_T= data_weather ####print("data_azi",data_azi) ####print("VAL:",val) ####print("SHAPE",data_T.shape) for i in range(len(data)): if numpy.isnan(data[i]): ####print("NAN") data_T[i,:]=numpy.ones(data_T.shape[1])*val #data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan return data_T def const_ploteo(self,data_weather,data_azi,step,res): if self.ini==0: #------- AZIMUTH n = (360/res)-len(data_azi) #--------------------- new ------------------------- ####data_azi_old = data_azi data_azi_new ,data_azi_old= self.globalCheckPED(data_azi) #------------------------ ####data_azi_new = self.fixDATA(data_azi) #ata_azi_new = self.fixDATANEW(data_azi) start = data_azi_new[-1] + res end = data_azi_new[0] - res ##### new self.last_data_azi = end if start>end: end = end + 360 azi_vacia = numpy.linspace(start,end,int(n)) azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia) data_azi = numpy.hstack((data_azi_new,azi_vacia)) # RADAR val_mean = numpy.mean(data_weather[:,-1]) self.val_mean = val_mean data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) data_weather = numpy.vstack((data_weather,data_weather_cmp)) else: # azimuth flag=0 start_azi = self.res_azi[0] #-----------new------------ data_azi ,data_azi_old= self.globalCheckPED(data_azi) data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) #-------------------------- ####data_azi_old = data_azi ### weather ### ####data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) ####if numpy.isnan(data_azi[0]): #### data_azi[0]=self.last_data_azi+1 ####data_azi = self.fixDATA(data_azi) start = data_azi[0] end = data_azi[-1] self.last_data_azi= end ####print("start",start) ####print("end",end) if start< start_azi: start = start +360 if end =0)[0] r = numpy.arange(len(r_mask))*delta_height #print("2",r) self.y = 2*r ######self.y = self.data.yrange # RADAR #data_weather = data['weather'] # PEDESTAL #data_azi = data['azi'] res = 1 # STEP step = (360/(res*data['weather'].shape[0])) #print("shape wr_data", wr_data.shape) #print("shape wr_azi",wr_azi.shape) #print("step",step) ####print("Time---->",self.data.times[-1],thisDatetime) #print("alturas", len(self.y))numpy.where(r>=0) self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res) #numpy.set_printoptions(suppress=True) #print("resultado",self.res_azi) ###########################/DATA_RM/10_tmp/ch0############################### ################# PLOTEO ################### ########################################################## for i,ax in enumerate(self.axes): if ax.firsttime: plt.clf() cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=8, vmax=35) else: plt.clf() cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=8, vmax=35) caax = cgax.parasites[0] paax = cgax.parasites[1] cbar = plt.gcf().colorbar(pm, pad=0.075) caax.set_xlabel('x_range [km]') caax.set_ylabel('y_range [km]') plt.text(1.0, 1.05, 'azimuth '+str(thisDatetime)+" step "+str(self.ini), transform=caax.transAxes, va='bottom',ha='right') self.ini= self.ini+1