''' $Author: dsuarez $ $Id: Processor.py 1 2012-11-12 18:56:07Z dsuarez $ ''' import os import numpy import datetime import time import math from jrodata import * from jrodataIO import * from jroplot import * try: import cfunctions except: pass class ProcessingUnit: """ Esta es la clase base para el procesamiento de datos. Contiene el metodo "call" para llamar operaciones. Las operaciones pueden ser: - Metodos internos (callMethod) - Objetos del tipo Operation (callObject). Antes de ser llamados, estos objetos tienen que ser agreagados con el metodo "add". """ # objeto de datos de entrada (Voltage, Spectra o Correlation) dataIn = None # objeto de datos de entrada (Voltage, Spectra o Correlation) dataOut = None objectDict = None def __init__(self): self.objectDict = {} def init(self): raise ValueError, "Not implemented" def addOperation(self, object, objId): """ Agrega el objeto "object" a la lista de objetos "self.objectList" y retorna el identificador asociado a este objeto. Input: object : objeto de la clase "Operation" Return: objId : identificador del objeto, necesario para ejecutar la operacion """ self.objectDict[objId] = object return objId def operation(self, **kwargs): """ Operacion directa sobre la data (dataOut.data). Es necesario actualizar los valores de los atributos del objeto dataOut Input: **kwargs : Diccionario de argumentos de la funcion a ejecutar """ raise ValueError, "ImplementedError" def callMethod(self, name, **kwargs): """ Ejecuta el metodo con el nombre "name" y con argumentos **kwargs de la propia clase. Input: name : nombre del metodo a ejecutar **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. """ if name != 'run': if name == 'init' and self.dataIn.isEmpty(): self.dataOut.flagNoData = True return False if name != 'init' and self.dataOut.isEmpty(): return False methodToCall = getattr(self, name) methodToCall(**kwargs) if name != 'run': return True if self.dataOut.isEmpty(): return False return True def callObject(self, objId, **kwargs): """ Ejecuta la operacion asociada al identificador del objeto "objId" Input: objId : identificador del objeto a ejecutar **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. Return: None """ if self.dataOut.isEmpty(): return False object = self.objectDict[objId] object.run(self.dataOut, **kwargs) return True def call(self, operationConf, **kwargs): """ Return True si ejecuta la operacion "operationConf.name" con los argumentos "**kwargs". False si la operacion no se ha ejecutado. La operacion puede ser de dos tipos: 1. Un metodo propio de esta clase: operation.type = "self" 2. El metodo "run" de un objeto del tipo Operation o de un derivado de ella: operation.type = "other". Este objeto de tipo Operation debe de haber sido agregado antes con el metodo: "addOperation" e identificado con el operation.id con el id de la operacion. Input: Operation : Objeto del tipo operacion con los atributos: name, type y id. """ if operationConf.type == 'self': sts = self.callMethod(operationConf.name, **kwargs) if operationConf.type == 'other': sts = self.callObject(operationConf.id, **kwargs) return sts def setInput(self, dataIn): self.dataIn = dataIn def getOutput(self): return self.dataOut class Operation(): """ Clase base para definir las operaciones adicionales que se pueden agregar a la clase ProcessingUnit y necesiten acumular informacion previa de los datos a procesar. De preferencia usar un buffer de acumulacion dentro de esta clase Ejemplo: Integraciones coherentes, necesita la informacion previa de los n perfiles anteriores (bufffer) """ __buffer = None __isConfig = False def __init__(self): pass def run(self, dataIn, **kwargs): """ Realiza las operaciones necesarias sobre la dataIn.data y actualiza los atributos del objeto dataIn. Input: dataIn : objeto del tipo JROData Return: None Affected: __buffer : buffer de recepcion de datos. """ raise ValueError, "ImplementedError" class VoltageProc(ProcessingUnit): def __init__(self): self.objectDict = {} self.dataOut = Voltage() self.flip = 1 def __updateObjFromAmisrInput(self): self.dataOut.timeZone = self.dataIn.timeZone self.dataOut.dstFlag = self.dataIn.dstFlag self.dataOut.errorCount = self.dataIn.errorCount self.dataOut.useLocalTime = self.dataIn.useLocalTime self.dataOut.flagNoData = self.dataIn.flagNoData self.dataOut.data = self.dataIn.data self.dataOut.utctime = self.dataIn.utctime self.dataOut.channelList = self.dataIn.channelList self.dataOut.timeInterval = self.dataIn.timeInterval self.dataOut.heightList = self.dataIn.heightList self.dataOut.nProfiles = self.dataIn.nProfiles pass def init(self): if self.dataIn.type == 'AMISR': self.__updateObjFromAmisrInput() if self.dataIn.type == 'Voltage': self.dataOut.copy(self.dataIn) # No necesita copiar en cada init() los atributos de dataIn # la copia deberia hacerse por cada nuevo bloque de datos def selectChannels(self, channelList): channelIndexList = [] for channel in channelList: index = self.dataOut.channelList.index(channel) channelIndexList.append(index) self.selectChannelsByIndex(channelIndexList) def selectChannelsByIndex(self, channelIndexList): """ Selecciona un bloque de datos en base a canales segun el channelIndexList Input: channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] Affected: self.dataOut.data self.dataOut.channelIndexList self.dataOut.nChannels self.dataOut.m_ProcessingHeader.totalSpectra self.dataOut.systemHeaderObj.numChannels self.dataOut.m_ProcessingHeader.blockSize Return: None """ for channelIndex in channelIndexList: if channelIndex not in self.dataOut.channelIndexList: print channelIndexList raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex nChannels = len(channelIndexList) data = self.dataOut.data[channelIndexList,:] self.dataOut.data = data self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] # self.dataOut.nChannels = nChannels return 1 def selectHeights(self, minHei=None, maxHei=None): """ Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango minHei <= height <= maxHei Input: minHei : valor minimo de altura a considerar maxHei : valor maximo de altura a considerar Affected: Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex Return: 1 si el metodo se ejecuto con exito caso contrario devuelve 0 """ if minHei == None: minHei = self.dataOut.heightList[0] if maxHei == None: maxHei = self.dataOut.heightList[-1] if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) if (maxHei > self.dataOut.heightList[-1]): maxHei = self.dataOut.heightList[-1] # raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) minIndex = 0 maxIndex = 0 heights = self.dataOut.heightList inda = numpy.where(heights >= minHei) indb = numpy.where(heights <= maxHei) try: minIndex = inda[0][0] except: minIndex = 0 try: maxIndex = indb[0][-1] except: maxIndex = len(heights) self.selectHeightsByIndex(minIndex, maxIndex) return 1 def selectHeightsByIndex(self, minIndex, maxIndex): """ Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango minIndex <= index <= maxIndex Input: minIndex : valor de indice minimo de altura a considerar maxIndex : valor de indice maximo de altura a considerar Affected: self.dataOut.data self.dataOut.heightList Return: 1 si el metodo se ejecuto con exito caso contrario devuelve 0 """ if (minIndex < 0) or (minIndex > maxIndex): raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) if (maxIndex >= self.dataOut.nHeights): maxIndex = self.dataOut.nHeights-1 # raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) nHeights = maxIndex - minIndex + 1 #voltage data = self.dataOut.data[:,minIndex:maxIndex+1] firstHeight = self.dataOut.heightList[minIndex] self.dataOut.data = data self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] return 1 def filterByHeights(self, window): deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] if window == None: window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight newdelta = deltaHeight * window r = self.dataOut.data.shape[1] % window buffer = self.dataOut.data[:,0:self.dataOut.data.shape[1]-r] buffer = buffer.reshape(self.dataOut.data.shape[0],self.dataOut.data.shape[1]/window,window) buffer = numpy.sum(buffer,2) self.dataOut.data = buffer self.dataOut.heightList = numpy.arange(self.dataOut.heightList[0],newdelta*(self.dataOut.nHeights-r)/window,newdelta) self.dataOut.windowOfFilter = window def deFlip(self): self.dataOut.data *= self.flip self.flip *= -1. def setRadarFrequency(self, frequency=None): if frequency != None: self.dataOut.frequency = frequency return 1 class CohInt(Operation): __isConfig = False __profIndex = 0 __withOverapping = False __byTime = False __initime = None __lastdatatime = None __integrationtime = None __buffer = None __dataReady = False n = None def __init__(self): self.__isConfig = False def setup(self, n=None, timeInterval=None, overlapping=False): """ Set the parameters of the integration class. Inputs: n : Number of coherent integrations timeInterval : Time of integration. If the parameter "n" is selected this one does not work overlapping : """ self.__initime = None self.__lastdatatime = 0 self.__buffer = None self.__dataReady = False if n == None and timeInterval == None: raise ValueError, "n or timeInterval should be specified ..." if n != None: self.n = n self.__byTime = False else: self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line self.n = 9999 self.__byTime = True if overlapping: self.__withOverapping = True self.__buffer = None else: self.__withOverapping = False self.__buffer = 0 self.__profIndex = 0 def putData(self, data): """ Add a profile to the __buffer and increase in one the __profileIndex """ if not self.__withOverapping: self.__buffer += data.copy() self.__profIndex += 1 return #Overlapping data nChannels, nHeis = data.shape data = numpy.reshape(data, (1, nChannels, nHeis)) #If the buffer is empty then it takes the data value if self.__buffer == None: self.__buffer = data self.__profIndex += 1 return #If the buffer length is lower than n then stakcing the data value if self.__profIndex < self.n: self.__buffer = numpy.vstack((self.__buffer, data)) self.__profIndex += 1 return #If the buffer length is equal to n then replacing the last buffer value with the data value self.__buffer = numpy.roll(self.__buffer, -1, axis=0) self.__buffer[self.n-1] = data self.__profIndex = self.n return def pushData(self): """ Return the sum of the last profiles and the profiles used in the sum. Affected: self.__profileIndex """ if not self.__withOverapping: data = self.__buffer n = self.__profIndex self.__buffer = 0 self.__profIndex = 0 return data, n #Integration with Overlapping data = numpy.sum(self.__buffer, axis=0) n = self.__profIndex return data, n def byProfiles(self, data): self.__dataReady = False avgdata = None n = None self.putData(data) if self.__profIndex == self.n: avgdata, n = self.pushData() self.__dataReady = True return avgdata def byTime(self, data, datatime): self.__dataReady = False avgdata = None n = None self.putData(data) if (datatime - self.__initime) >= self.__integrationtime: avgdata, n = self.pushData() self.n = n self.__dataReady = True return avgdata def integrate(self, data, datatime=None): if self.__initime == None: self.__initime = datatime if self.__byTime: avgdata = self.byTime(data, datatime) else: avgdata = self.byProfiles(data) self.__lastdatatime = datatime if avgdata == None: return None, None avgdatatime = self.__initime deltatime = datatime -self.__lastdatatime if not self.__withOverapping: self.__initime = datatime else: self.__initime += deltatime return avgdata, avgdatatime def run(self, dataOut, **kwargs): if not self.__isConfig: self.setup(**kwargs) self.__isConfig = True avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) # dataOut.timeInterval *= n dataOut.flagNoData = True if self.__dataReady: dataOut.data = avgdata dataOut.nCohInt *= self.n dataOut.utctime = avgdatatime dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt dataOut.flagNoData = False class Decoder(Operation): __isConfig = False __profIndex = 0 code = None nCode = None nBaud = None def __init__(self): self.__isConfig = False def setup(self, code, shape): self.__profIndex = 0 self.code = code self.nCode = len(code) self.nBaud = len(code[0]) self.__nChannels, self.__nHeis = shape __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) __codeBuffer[:,0:self.nBaud] = self.code self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) self.ndatadec = self.__nHeis - self.nBaud + 1 self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) def convolutionInFreq(self, data): fft_code = self.fft_code[self.__profIndex].reshape(1,-1) fft_data = numpy.fft.fft(data, axis=1) conv = fft_data*fft_code data = numpy.fft.ifft(conv,axis=1) datadec = data[:,:-self.nBaud+1] return datadec def convolutionInFreqOpt(self, data): fft_code = self.fft_code[self.__profIndex].reshape(1,-1) data = cfunctions.decoder(fft_code, data) datadec = data[:,:-self.nBaud+1] return datadec def convolutionInTime(self, data): code = self.code[self.__profIndex] for i in range(self.__nChannels): self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='valid') return self.datadecTime def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0): if code == None: code = dataOut.code else: code = numpy.array(code).reshape(nCode,nBaud) dataOut.code = code dataOut.nCode = nCode dataOut.nBaud = nBaud dataOut.radarControllerHeaderObj.code = code dataOut.radarControllerHeaderObj.nCode = nCode dataOut.radarControllerHeaderObj.nBaud = nBaud if not self.__isConfig: self.setup(code, dataOut.data.shape) self.__isConfig = True if mode == 0: datadec = self.convolutionInTime(dataOut.data) if mode == 1: datadec = self.convolutionInFreq(dataOut.data) if mode == 2: datadec = self.convolutionInFreqOpt(dataOut.data) dataOut.data = datadec dataOut.heightList = dataOut.heightList[0:self.ndatadec] dataOut.flagDecodeData = True #asumo q la data no esta decodificada if self.__profIndex == self.nCode-1: self.__profIndex = 0 return 1 self.__profIndex += 1 return 1 # dataOut.flagDeflipData = True #asumo q la data no esta sin flip class SpectraProc(ProcessingUnit): def __init__(self): self.objectDict = {} self.buffer = None self.firstdatatime = None self.profIndex = 0 self.dataOut = Spectra() def __updateObjFromInput(self): self.dataOut.timeZone = self.dataIn.timeZone self.dataOut.dstFlag = self.dataIn.dstFlag self.dataOut.errorCount = self.dataIn.errorCount self.dataOut.useLocalTime = self.dataIn.useLocalTime self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() self.dataOut.channelList = self.dataIn.channelList self.dataOut.heightList = self.dataIn.heightList self.dataOut.dtype = numpy.dtype([('real',' maxHei): raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) if (maxHei > self.dataOut.heightList[-1]): maxHei = self.dataOut.heightList[-1] # raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) minIndex = 0 maxIndex = 0 heights = self.dataOut.heightList inda = numpy.where(heights >= minHei) indb = numpy.where(heights <= maxHei) try: minIndex = inda[0][0] except: minIndex = 0 try: maxIndex = indb[0][-1] except: maxIndex = len(heights) self.selectHeightsByIndex(minIndex, maxIndex) return 1 def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None): newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) if hei_ref != None: newheis = numpy.where(self.dataOut.heightList>hei_ref) minIndex = min(newheis[0]) maxIndex = max(newheis[0]) data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] heightList = self.dataOut.heightList[minIndex:maxIndex+1] # determina indices nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0])) avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0)) beacon_dB = numpy.sort(avg_dB)[-nheis:] beacon_heiIndexList = [] for val in avg_dB.tolist(): if val >= beacon_dB[0]: beacon_heiIndexList.append(avg_dB.tolist().index(val)) #data_spc = data_spc[:,:,beacon_heiIndexList] data_cspc = None if self.dataOut.data_cspc != None: data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] #data_cspc = data_cspc[:,:,beacon_heiIndexList] data_dc = None if self.dataOut.data_dc != None: data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] #data_dc = data_dc[:,beacon_heiIndexList] self.dataOut.data_spc = data_spc self.dataOut.data_cspc = data_cspc self.dataOut.data_dc = data_dc self.dataOut.heightList = heightList self.dataOut.beacon_heiIndexList = beacon_heiIndexList return 1 def selectHeightsByIndex(self, minIndex, maxIndex): """ Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango minIndex <= index <= maxIndex Input: minIndex : valor de indice minimo de altura a considerar maxIndex : valor de indice maximo de altura a considerar Affected: self.dataOut.data_spc self.dataOut.data_cspc self.dataOut.data_dc self.dataOut.heightList Return: 1 si el metodo se ejecuto con exito caso contrario devuelve 0 """ if (minIndex < 0) or (minIndex > maxIndex): raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) if (maxIndex >= self.dataOut.nHeights): maxIndex = self.dataOut.nHeights-1 # raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) nHeights = maxIndex - minIndex + 1 #Spectra data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] data_cspc = None if self.dataOut.data_cspc != None: data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] data_dc = None if self.dataOut.data_dc != None: data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] self.dataOut.data_spc = data_spc self.dataOut.data_cspc = data_cspc self.dataOut.data_dc = data_dc self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] return 1 def removeDC(self, mode = 2): jspectra = self.dataOut.data_spc jcspectra = self.dataOut.data_cspc num_chan = jspectra.shape[0] num_hei = jspectra.shape[2] if jcspectra != None: jcspectraExist = True num_pairs = jcspectra.shape[0] else: jcspectraExist = False freq_dc = jspectra.shape[1]/2 ind_vel = numpy.array([-2,-1,1,2]) + freq_dc if ind_vel[0]<0: ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof if mode == 1: jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION if jcspectraExist: jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2 if mode == 2: vel = numpy.array([-2,-1,1,2]) xx = numpy.zeros([4,4]) for fil in range(4): xx[fil,:] = vel[fil]**numpy.asarray(range(4)) xx_inv = numpy.linalg.inv(xx) xx_aux = xx_inv[0,:] for ich in range(num_chan): yy = jspectra[ich,ind_vel,:] jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) junkid = jspectra[ich,freq_dc,:]<=0 cjunkid = sum(junkid) if cjunkid.any(): jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 if jcspectraExist: for ip in range(num_pairs): yy = jcspectra[ip,ind_vel,:] jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy) self.dataOut.data_spc = jspectra self.dataOut.data_cspc = jcspectra return 1 def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): jspectra = self.dataOut.data_spc jcspectra = self.dataOut.data_cspc jnoise = self.dataOut.getNoise() num_incoh = self.dataOut.nIncohInt num_channel = jspectra.shape[0] num_prof = jspectra.shape[1] num_hei = jspectra.shape[2] #hei_interf if hei_interf == None: count_hei = num_hei/2 #Como es entero no importa hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei hei_interf = numpy.asarray(hei_interf)[0] #nhei_interf if (nhei_interf == None): nhei_interf = 5 if (nhei_interf < 1): nhei_interf = 1 if (nhei_interf > count_hei): nhei_interf = count_hei if (offhei_interf == None): offhei_interf = 0 ind_hei = range(num_hei) # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 mask_prof = numpy.asarray(range(num_prof)) num_mask_prof = mask_prof.size comp_mask_prof = [0, num_prof/2] #noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): jnoise = numpy.nan noise_exist = jnoise[0] < numpy.Inf #Subrutina de Remocion de la Interferencia for ich in range(num_channel): #Se ordena los espectros segun su potencia (menor a mayor) power = jspectra[ich,mask_prof,:] power = power[:,hei_interf] power = power.sum(axis = 0) psort = power.ravel().argsort() #Se estima la interferencia promedio en los Espectros de Potencia empleando junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]] if noise_exist: # tmp_noise = jnoise[ich] / num_prof tmp_noise = jnoise[ich] junkspc_interf = junkspc_interf - tmp_noise #junkspc_interf[:,comp_mask_prof] = 0 jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf jspc_interf = jspc_interf.transpose() #Calculando el espectro de interferencia promedio noiseid = numpy.where(jspc_interf <= tmp_noise/ math.sqrt(num_incoh)) noiseid = noiseid[0] cnoiseid = noiseid.size interfid = numpy.where(jspc_interf > tmp_noise/ math.sqrt(num_incoh)) interfid = interfid[0] cinterfid = interfid.size if (cnoiseid > 0): jspc_interf[noiseid] = 0 #Expandiendo los perfiles a limpiar if (cinterfid > 0): new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof new_interfid = numpy.asarray(new_interfid) new_interfid = {x for x in new_interfid} new_interfid = numpy.array(list(new_interfid)) new_cinterfid = new_interfid.size else: new_cinterfid = 0 for ip in range(new_cinterfid): ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort() jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]] jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices #Removiendo la interferencia del punto de mayor interferencia ListAux = jspc_interf[mask_prof].tolist() maxid = ListAux.index(max(ListAux)) if cinterfid > 0: for ip in range(cinterfid*(interf == 2) - 1): ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/math.sqrt(num_incoh))).nonzero() cind = len(ind) if (cind > 0): jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/math.sqrt(num_incoh)) ind = numpy.array([-2,-1,1,2]) xx = numpy.zeros([4,4]) for id1 in range(4): xx[:,id1] = ind[id1]**numpy.asarray(range(4)) xx_inv = numpy.linalg.inv(xx) xx = xx_inv[:,0] ind = (ind + maxid + num_mask_prof)%num_mask_prof yy = jspectra[ich,mask_prof[ind],:] jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/math.sqrt(num_incoh))).nonzero() jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/math.sqrt(num_incoh)) #Remocion de Interferencia en el Cross Spectra if jcspectra == None: return jspectra, jcspectra num_pairs = jcspectra.size/(num_prof*num_hei) jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) for ip in range(num_pairs): #------------------------------------------- cspower = numpy.abs(jcspectra[ip,mask_prof,:]) cspower = cspower[:,hei_interf] cspower = cspower.sum(axis = 0) cspsort = cspower.ravel().argsort() junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]] junkcspc_interf = junkcspc_interf.transpose() jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag) for iprof in range(num_prof): ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort() jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]] #Removiendo la Interferencia jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() maxid = ListAux.index(max(ListAux)) ind = numpy.array([-2,-1,1,2]) xx = numpy.zeros([4,4]) for id1 in range(4): xx[:,id1] = ind[id1]**numpy.asarray(range(4)) xx_inv = numpy.linalg.inv(xx) xx = xx_inv[:,0] ind = (ind + maxid + num_mask_prof)%num_mask_prof yy = jcspectra[ip,mask_prof[ind],:] jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) #Guardar Resultados self.dataOut.data_spc = jspectra self.dataOut.data_cspc = jcspectra return 1 def setRadarFrequency(self, frequency=None): if frequency != None: self.dataOut.frequency = frequency return 1 def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): #validacion de rango if minHei == None: minHei = self.dataOut.heightList[0] if maxHei == None: maxHei = self.dataOut.heightList[-1] if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): print 'minHei: %.2f is out of the heights range'%(minHei) print 'minHei is setting to %.2f'%(self.dataOut.heightList[0]) minHei = self.dataOut.heightList[0] if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): print 'maxHei: %.2f is out of the heights range'%(maxHei) print 'maxHei is setting to %.2f'%(self.dataOut.heightList[-1]) maxHei = self.dataOut.heightList[-1] # validacion de velocidades velrange = self.dataOut.getVelRange(1) if minVel == None: minVel = velrange[0] if maxVel == None: maxVel = velrange[-1] if (minVel < velrange[0]) or (minVel > maxVel): print 'minVel: %.2f is out of the velocity range'%(minVel) print 'minVel is setting to %.2f'%(velrange[0]) minVel = velrange[0] if (maxVel > velrange[-1]) or (maxVel < minVel): print 'maxVel: %.2f is out of the velocity range'%(maxVel) print 'maxVel is setting to %.2f'%(velrange[-1]) maxVel = velrange[-1] # seleccion de indices para rango minIndex = 0 maxIndex = 0 heights = self.dataOut.heightList inda = numpy.where(heights >= minHei) indb = numpy.where(heights <= maxHei) try: minIndex = inda[0][0] except: minIndex = 0 try: maxIndex = indb[0][-1] except: maxIndex = len(heights) if (minIndex < 0) or (minIndex > maxIndex): raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) if (maxIndex >= self.dataOut.nHeights): maxIndex = self.dataOut.nHeights-1 # seleccion de indices para velocidades indminvel = numpy.where(velrange >= minVel) indmaxvel = numpy.where(velrange <= maxVel) try: minIndexVel = indminvel[0][0] except: minIndexVel = 0 try: maxIndexVel = indmaxvel[0][-1] except: maxIndexVel = len(velrange) #seleccion del espectro data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1] #estimacion de ruido noise = numpy.zeros(self.dataOut.nChannels) for channel in range(self.dataOut.nChannels): daux = data_spc[channel,:,:] noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) self.dataOut.noise = noise.copy() return 1 class IncohInt(Operation): __profIndex = 0 __withOverapping = False __byTime = False __initime = None __lastdatatime = None __integrationtime = None __buffer_spc = None __buffer_cspc = None __buffer_dc = None __dataReady = False __timeInterval = None n = None def __init__(self): self.__isConfig = False def setup(self, n=None, timeInterval=None, overlapping=False): """ Set the parameters of the integration class. Inputs: n : Number of coherent integrations timeInterval : Time of integration. If the parameter "n" is selected this one does not work overlapping : """ self.__initime = None self.__lastdatatime = 0 self.__buffer_spc = None self.__buffer_cspc = None self.__buffer_dc = None self.__dataReady = False if n == None and timeInterval == None: raise ValueError, "n or timeInterval should be specified ..." if n != None: self.n = n self.__byTime = False else: self.__integrationtime = timeInterval #if (type(timeInterval)!=integer) -> change this line self.n = 9999 self.__byTime = True if overlapping: self.__withOverapping = True else: self.__withOverapping = False self.__buffer_spc = 0 self.__buffer_cspc = 0 self.__buffer_dc = 0 self.__profIndex = 0 def putData(self, data_spc, data_cspc, data_dc): """ Add a profile to the __buffer_spc and increase in one the __profileIndex """ if not self.__withOverapping: self.__buffer_spc += data_spc if data_cspc == None: self.__buffer_cspc = None else: self.__buffer_cspc += data_cspc if data_dc == None: self.__buffer_dc = None else: self.__buffer_dc += data_dc self.__profIndex += 1 return #Overlapping data nChannels, nFFTPoints, nHeis = data_spc.shape data_spc = numpy.reshape(data_spc, (1, nChannels, nFFTPoints, nHeis)) if data_cspc != None: data_cspc = numpy.reshape(data_cspc, (1, -1, nFFTPoints, nHeis)) if data_dc != None: data_dc = numpy.reshape(data_dc, (1, -1, nHeis)) #If the buffer is empty then it takes the data value if self.__buffer_spc == None: self.__buffer_spc = data_spc if data_cspc == None: self.__buffer_cspc = None else: self.__buffer_cspc += data_cspc if data_dc == None: self.__buffer_dc = None else: self.__buffer_dc += data_dc self.__profIndex += 1 return #If the buffer length is lower than n then stakcing the data value if self.__profIndex < self.n: self.__buffer_spc = numpy.vstack((self.__buffer_spc, data_spc)) if data_cspc != None: self.__buffer_cspc = numpy.vstack((self.__buffer_cspc, data_cspc)) if data_dc != None: self.__buffer_dc = numpy.vstack((self.__buffer_dc, data_dc)) self.__profIndex += 1 return #If the buffer length is equal to n then replacing the last buffer value with the data value self.__buffer_spc = numpy.roll(self.__buffer_spc, -1, axis=0) self.__buffer_spc[self.n-1] = data_spc if data_cspc != None: self.__buffer_cspc = numpy.roll(self.__buffer_cspc, -1, axis=0) self.__buffer_cspc[self.n-1] = data_cspc if data_dc != None: self.__buffer_dc = numpy.roll(self.__buffer_dc, -1, axis=0) self.__buffer_dc[self.n-1] = data_dc self.__profIndex = self.n return def pushData(self): """ Return the sum of the last profiles and the profiles used in the sum. Affected: self.__profileIndex """ data_spc = None data_cspc = None data_dc = None if not self.__withOverapping: data_spc = self.__buffer_spc data_cspc = self.__buffer_cspc data_dc = self.__buffer_dc n = self.__profIndex self.__buffer_spc = 0 self.__buffer_cspc = 0 self.__buffer_dc = 0 self.__profIndex = 0 return data_spc, data_cspc, data_dc, n #Integration with Overlapping data_spc = numpy.sum(self.__buffer_spc, axis=0) if self.__buffer_cspc != None: data_cspc = numpy.sum(self.__buffer_cspc, axis=0) if self.__buffer_dc != None: data_dc = numpy.sum(self.__buffer_dc, axis=0) n = self.__profIndex return data_spc, data_cspc, data_dc, n def byProfiles(self, *args): self.__dataReady = False avgdata_spc = None avgdata_cspc = None avgdata_dc = None n = None self.putData(*args) if self.__profIndex == self.n: avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() self.__dataReady = True return avgdata_spc, avgdata_cspc, avgdata_dc def byTime(self, datatime, *args): self.__dataReady = False avgdata_spc = None avgdata_cspc = None avgdata_dc = None n = None self.putData(*args) if (datatime - self.__initime) >= self.__integrationtime: avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() self.n = n self.__dataReady = True return avgdata_spc, avgdata_cspc, avgdata_dc def integrate(self, datatime, *args): if self.__initime == None: self.__initime = datatime if self.__byTime: avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args) else: avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) self.__lastdatatime = datatime if avgdata_spc == None: return None, None, None, None avgdatatime = self.__initime try: self.__timeInterval = (self.__lastdatatime - self.__initime)/(self.n - 1) except: self.__timeInterval = self.__lastdatatime - self.__initime deltatime = datatime -self.__lastdatatime if not self.__withOverapping: self.__initime = datatime else: self.__initime += deltatime return avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc def run(self, dataOut, n=None, timeInterval=None, overlapping=False): if n==1: dataOut.flagNoData = False return if not self.__isConfig: self.setup(n, timeInterval, overlapping) self.__isConfig = True avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, dataOut.data_spc, dataOut.data_cspc, dataOut.data_dc) # dataOut.timeInterval *= n dataOut.flagNoData = True if self.__dataReady: dataOut.data_spc = avgdata_spc dataOut.data_cspc = avgdata_cspc dataOut.data_dc = avgdata_dc dataOut.nIncohInt *= self.n dataOut.utctime = avgdatatime #dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt * dataOut.nIncohInt * dataOut.nFFTPoints dataOut.timeInterval = self.__timeInterval*self.n dataOut.flagNoData = False class ProfileConcat(Operation): __isConfig = False buffer = None def __init__(self): self.profileIndex = 0 def reset(self): self.buffer = numpy.zeros_like(self.buffer) self.start_index = 0 self.times = 1 def setup(self, data, m, n=1): self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) self.profiles = data.shape[1] self.start_index = 0 self.times = 1 def concat(self, data): self.buffer[:,self.start_index:self.profiles*self.times] = data.copy() self.start_index = self.start_index + self.profiles def run(self, dataOut, m): dataOut.flagNoData = True if not self.__isConfig: self.setup(dataOut.data, m, 1) self.__isConfig = True self.concat(dataOut.data) self.times += 1 if self.times > m: dataOut.data = self.buffer self.reset() dataOut.flagNoData = False # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * 5 dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) class ProfileSelector(Operation): profileIndex = None # Tamanho total de los perfiles nProfiles = None def __init__(self): self.profileIndex = 0 def incIndex(self): self.profileIndex += 1 if self.profileIndex >= self.nProfiles: self.profileIndex = 0 def isProfileInRange(self, minIndex, maxIndex): if self.profileIndex < minIndex: return False if self.profileIndex > maxIndex: return False return True def isProfileInList(self, profileList): if self.profileIndex not in profileList: return False return True def run(self, dataOut, profileList=None, profileRangeList=None): dataOut.flagNoData = True self.nProfiles = dataOut.nProfiles if profileList != None: if self.isProfileInList(profileList): dataOut.flagNoData = False self.incIndex() return 1 elif profileRangeList != None: minIndex = profileRangeList[0] maxIndex = profileRangeList[1] if self.isProfileInRange(minIndex, maxIndex): dataOut.flagNoData = False self.incIndex() return 1 else: raise ValueError, "ProfileSelector needs profileList or profileRangeList" return 0 class SpectraHeisProc(ProcessingUnit): def __init__(self): self.objectDict = {} # self.buffer = None # self.firstdatatime = None # self.profIndex = 0 self.dataOut = SpectraHeis() def __updateObjFromInput(self): self.dataOut.timeZone = self.dataIn.timeZone self.dataOut.dstFlag = self.dataIn.dstFlag self.dataOut.errorCount = self.dataIn.errorCount self.dataOut.useLocalTime = self.dataIn.useLocalTime self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()# self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()# self.dataOut.channelList = self.dataIn.channelList self.dataOut.heightList = self.dataIn.heightList # self.dataOut.dtype = self.dataIn.dtype self.dataOut.dtype = numpy.dtype([('real',' change this line self.n = 9999 self.__byTime = True if overlapping: self.__withOverapping = True self.__buffer = None else: self.__withOverapping = False self.__buffer = 0 self.__profIndex = 0 def putData(self, data): """ Add a profile to the __buffer and increase in one the __profileIndex """ if not self.__withOverapping: self.__buffer += data.copy() self.__profIndex += 1 return #Overlapping data nChannels, nHeis = data.shape data = numpy.reshape(data, (1, nChannels, nHeis)) #If the buffer is empty then it takes the data value if self.__buffer == None: self.__buffer = data self.__profIndex += 1 return #If the buffer length is lower than n then stakcing the data value if self.__profIndex < self.n: self.__buffer = numpy.vstack((self.__buffer, data)) self.__profIndex += 1 return #If the buffer length is equal to n then replacing the last buffer value with the data value self.__buffer = numpy.roll(self.__buffer, -1, axis=0) self.__buffer[self.n-1] = data self.__profIndex = self.n return def pushData(self): """ Return the sum of the last profiles and the profiles used in the sum. Affected: self.__profileIndex """ if not self.__withOverapping: data = self.__buffer n = self.__profIndex self.__buffer = 0 self.__profIndex = 0 return data, n #Integration with Overlapping data = numpy.sum(self.__buffer, axis=0) n = self.__profIndex return data, n def byProfiles(self, data): self.__dataReady = False avgdata = None n = None self.putData(data) if self.__profIndex == self.n: avgdata, n = self.pushData() self.__dataReady = True return avgdata def byTime(self, data, datatime): self.__dataReady = False avgdata = None n = None self.putData(data) if (datatime - self.__initime) >= self.__integrationtime: avgdata, n = self.pushData() self.n = n self.__dataReady = True return avgdata def integrate(self, data, datatime=None): if self.__initime == None: self.__initime = datatime if self.__byTime: avgdata = self.byTime(data, datatime) else: avgdata = self.byProfiles(data) self.__lastdatatime = datatime if avgdata == None: return None, None avgdatatime = self.__initime deltatime = datatime -self.__lastdatatime if not self.__withOverapping: self.__initime = datatime else: self.__initime += deltatime return avgdata, avgdatatime def run(self, dataOut, **kwargs): if not self.__isConfig: self.setup(**kwargs) self.__isConfig = True avgdata, avgdatatime = self.integrate(dataOut.data_spc, dataOut.utctime) # dataOut.timeInterval *= n dataOut.flagNoData = True if self.__dataReady: dataOut.data_spc = avgdata dataOut.nIncohInt *= self.n # dataOut.nCohInt *= self.n dataOut.utctime = avgdatatime dataOut.timeInterval = dataOut.ippSeconds * dataOut.nIncohInt # dataOut.timeInterval = self.__timeInterval*self.n dataOut.flagNoData = False