import os import datetime import numpy from schainpy.model.graphics.jroplot_base import Plot, plt from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot from schainpy.utils import log # libreria wradlib import wradlib as wrl EARTH_RADIUS = 6.3710e3 def ll2xy(lat1, lon1, lat2, lon2): p = 0.017453292519943295 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 r = 12742 * numpy.arcsin(numpy.sqrt(a)) theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) theta = -theta + numpy.pi/2 return r*numpy.cos(theta), r*numpy.sin(theta) def km2deg(km): ''' Convert distance in km to degrees ''' return numpy.rad2deg(km/EARTH_RADIUS) class SpectralMomentsPlot(SpectraPlot): ''' Plot for Spectral Moments ''' CODE = 'spc_moments' # colormap = 'jet' # plot_type = 'pcolor' class DobleGaussianPlot(SpectraPlot): ''' Plot for Double Gaussian Plot ''' CODE = 'gaussian_fit' # colormap = 'jet' # plot_type = 'pcolor' class DoubleGaussianSpectraCutPlot(SpectraCutPlot): ''' Plot SpectraCut with Double Gaussian Fit ''' CODE = 'cut_gaussian_fit' class SnrPlot(RTIPlot): ''' Plot for SNR Data ''' CODE = 'snr' colormap = 'jet' def update(self, dataOut): data = { 'snr': 10*numpy.log10(dataOut.data_snr) } return data, {} class DopplerPlot(RTIPlot): ''' Plot for DOPPLER Data (1st moment) ''' CODE = 'dop' colormap = 'jet' def update(self, dataOut): data = { 'dop': 10*numpy.log10(dataOut.data_dop) } return data, {} class PowerPlot(RTIPlot): ''' Plot for Power Data (0 moment) ''' CODE = 'pow' colormap = 'jet' def update(self, dataOut): data = { 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) } return data, {} class SpectralWidthPlot(RTIPlot): ''' Plot for Spectral Width Data (2nd moment) ''' CODE = 'width' colormap = 'jet' def update(self, dataOut): data = { 'width': dataOut.data_width } return data, {} class SkyMapPlot(Plot): ''' Plot for meteors detection data ''' CODE = 'param' def setup(self): self.ncols = 1 self.nrows = 1 self.width = 7.2 self.height = 7.2 self.nplots = 1 self.xlabel = 'Zonal Zenith Angle (deg)' self.ylabel = 'Meridional Zenith Angle (deg)' self.polar = True self.ymin = -180 self.ymax = 180 self.colorbar = False def plot(self): arrayParameters = numpy.concatenate(self.data['param']) error = arrayParameters[:, -1] indValid = numpy.where(error == 0)[0] finalMeteor = arrayParameters[indValid, :] finalAzimuth = finalMeteor[:, 3] finalZenith = finalMeteor[:, 4] x = finalAzimuth * numpy.pi / 180 y = finalZenith ax = self.axes[0] if ax.firsttime: ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] else: ax.plot.set_data(x, y) dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, dt2, len(x)) self.titles[0] = title class GenericRTIPlot(Plot): ''' Plot for data_xxxx object ''' CODE = 'param' colormap = 'viridis' plot_type = 'pcolorbuffer' def setup(self): self.xaxis = 'time' self.ncols = 1 self.nrows = self.data.shape('param')[0] self.nplots = self.nrows self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) if not self.xlabel: self.xlabel = 'Time' self.ylabel = 'Range [km]' if not self.titles: self.titles = ['Param {}'.format(x) for x in range(self.nrows)] def update(self, dataOut): data = { 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) } meta = {} return data, meta def plot(self): # self.data.normalize_heights() self.x = self.data.times self.y = self.data.yrange self.z = self.data['param'] self.z = 10*numpy.log10(self.z) self.z = numpy.ma.masked_invalid(self.z) if self.decimation is None: x, y, z = self.fill_gaps(self.x, self.y, self.z) else: x, y, z = self.fill_gaps(*self.decimate()) for n, ax in enumerate(self.axes): self.zmax = self.zmax if self.zmax is not None else numpy.max( self.z[n]) self.zmin = self.zmin if self.zmin is not None else numpy.min( self.z[n]) if ax.firsttime: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n] ) else: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.collections.remove(ax.collections[0]) ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n] ) class PolarMapPlot(Plot): ''' Plot for weather radar ''' CODE = 'param' colormap = 'seismic' def setup(self): self.ncols = 1 self.nrows = 1 self.width = 9 self.height = 8 self.mode = self.data.meta['mode'] if self.channels is not None: self.nplots = len(self.channels) self.nrows = len(self.channels) else: self.nplots = self.data.shape(self.CODE)[0] self.nrows = self.nplots self.channels = list(range(self.nplots)) if self.mode == 'E': self.xlabel = 'Longitude' self.ylabel = 'Latitude' else: self.xlabel = 'Range (km)' self.ylabel = 'Height (km)' self.bgcolor = 'white' self.cb_labels = self.data.meta['units'] self.lat = self.data.meta['latitude'] self.lon = self.data.meta['longitude'] self.xmin, self.xmax = float( km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) self.ymin, self.ymax = float( km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) # self.polar = True def plot(self): for n, ax in enumerate(self.axes): data = self.data['param'][self.channels[n]] zeniths = numpy.linspace( 0, self.data.meta['max_range'], data.shape[1]) if self.mode == 'E': azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 r, theta = numpy.meshgrid(zeniths, azimuths) x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) x = km2deg(x) + self.lon y = km2deg(y) + self.lat else: azimuths = numpy.radians(self.data.yrange) r, theta = numpy.meshgrid(zeniths, azimuths) x, y = r*numpy.cos(theta), r*numpy.sin(theta) self.y = zeniths if ax.firsttime: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), x, y, numpy.ma.array(data, mask=numpy.isnan(data)), vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n]) else: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.collections.remove(ax.collections[0]) ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), x, y, numpy.ma.array(data, mask=numpy.isnan(data)), vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n]) if self.mode == 'A': continue # plot district names f = open('/data/workspace/schain_scripts/distrito.csv') for line in f: label, lon, lat = [s.strip() for s in line.split(',') if s] lat = float(lat) lon = float(lon) # ax.plot(lon, lat, '.b', ms=2) ax.text(lon, lat, label.decode('utf8'), ha='center', va='bottom', size='8', color='black') # plot limites limites = [] tmp = [] for line in open('/data/workspace/schain_scripts/lima.csv'): if '#' in line: if tmp: limites.append(tmp) tmp = [] continue values = line.strip().split(',') tmp.append((float(values[0]), float(values[1]))) for points in limites: ax.add_patch( Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) # plot Cuencas for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) values = [line.strip().split(',') for line in f] points = [(float(s[0]), float(s[1])) for s in values] ax.add_patch(Polygon(points, ec='b', fc='none')) # plot grid for r in (15, 30, 45, 60): ax.add_artist(plt.Circle((self.lon, self.lat), km2deg(r), color='0.6', fill=False, lw=0.2)) ax.text( self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), '{}km'.format(r), ha='center', va='bottom', size='8', color='0.6', weight='heavy') if self.mode == 'E': title = 'El={}$^\circ$'.format(self.data.meta['elevation']) label = 'E{:02d}'.format(int(self.data.meta['elevation'])) else: title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] self.titles = ['{} {}'.format( self.data.parameters[x], title) for x in self.channels] class WeatherPlot(Plot): CODE = 'weather' plot_name = 'weather' plot_type = 'ppistyle' buffering = False def setup(self): self.ncols = 1 self.nrows = 1 self.nplots= 1 self.ylabel= 'Range [Km]' self.titles= ['Weather'] self.colorbar=False self.width =8 self.height =8 self.ini =0 self.len_azi =0 self.buffer_ini = None self.buffer_azi = None self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) self.flag =0 self.indicador= 0 def update(self, dataOut): data = {} meta = {} data['weather'] = 10*numpy.log10(dataOut.data_360[0]/(250**2)) data['azi'] = dataOut.data_azi return data, meta def plot(self): thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]) print("--------------------------------------",self.ini,"-----------------------------------") print("time",self.data.times[-1]) data = self.data[-1] #print("debug_0", data) tmp_h = (data['weather'].shape[1])/10.0 #print("debug_1",tmp_h) stoprange = float(tmp_h*1.5)#stoprange = float(33*1.5) por ahora 400 rangestep = float(0.15) r = numpy.arange(0, stoprange, rangestep) self.y = 2*r print("---------------") tmp_v = data['weather'] #print("tmp_v",tmp_v.shape) tmp_z = data['azi'] print("tmp_z-------------->",tmp_z) ##if self.ini==0: ## tmp_z= [0,1,2,3,4,5,6,7,8,9] #print("tmp_z",tmp_z.shape) res = 1 step = (360/(res*tmp_v.shape[0])) #print("step",step) mode = 1 if mode==0: #print("self.ini",self.ini) val = numpy.mean(tmp_v[:,0]) self.len_azi = len(tmp_z) ones = numpy.ones([(360-tmp_v.shape[0]),tmp_v.shape[1]])*val self.buffer_ini = numpy.vstack((tmp_v,ones)) n = ((360/res)-len(tmp_z)) start = tmp_z[-1]+res end = tmp_z[0]-res if start>end: end = end+360 azi_zeros = numpy.linspace(start,end,int(n)) azi_zeros = numpy.where(azi_zeros>360,azi_zeros-360,azi_zeros) self.buffer_ini_azi = numpy.hstack((tmp_z,azi_zeros)) self.ini = self.ini+1 if mode==1: #print("################") #print("################") #print("mode",self.ini) #print("self.ini",self.ini) if self.ini==0: res = 1 step = (360/(res*tmp_v.shape[0])) val = numpy.mean(tmp_v[:,0]) self.len_azi = len(tmp_z) self.buf_tmp = tmp_v ones = numpy.ones([(360-tmp_v.shape[0]),tmp_v.shape[1]])*val self.buffer_ini = numpy.vstack((tmp_v,ones)) n = ((360/res)-len(tmp_z)) start = tmp_z[-1]+res end = tmp_z[0]-res if start>end: end =end+360 azi_zeros = numpy.linspace(start,end,int(n)) azi_zeros = numpy.where(azi_zeros>360,azi_zeros-360,azi_zeros) self.buf_azi = tmp_z self.buffer_ini_azi = numpy.hstack((tmp_z,azi_zeros)) self.ini = self.ini+1 elif 031: start= tmp_z[0] end =tmp_z[-1] print("start","end",start,end) if self.ini==32: tmp_v=tmp_v+20 if self.ini==33: tmp_v=tmp_v+10 if self.ini==34: tmp_v=tmp_v+20 if self.ini==35: tmp_v=tmp_v+20 ''' self.buf_tmp= numpy.vstack((self.buf_tmp,tmp_v)) print("ERROR_INMINENTE",self.buf_tmp.shape) if self.buf_tmp.shape[0]==360: print("entre aqui en 360 grados") self.buffer_ini=self.buf_tmp else: # nuevo######### self.buffer_ini[0:self.buf_tmp.shape[0],:]=self.buf_tmp ################ #val=30.0 #ones = numpy.ones([(360-self.buf_tmp.shape[0]),self.buf_tmp.shape[1]])*val #self.buffer_ini = numpy.vstack((self.buf_tmp,ones)) self.buf_azi = numpy.hstack((self.buf_azi,tmp_z)) n = ((360/res)-len(self.buf_azi)) print("n----->",n) if n==0: self.buffer_ini_azi = self.buf_azi else: start = self.buf_azi[-1]+res end = self.buf_azi[0]-res print("start",start) print("end",end) if start>end: end =end+360 azi_zeros = numpy.linspace(start,end,int(n)) azi_zeros = numpy.where(azi_zeros>360,azi_zeros-360,azi_zeros) print("self.buf_azi",self.buf_azi[0]) print("tmp_Z 0 ",tmp_z[0]) print("tmp_Z -1",tmp_z[-1]) if tmp_z[0]end: ### end =end+360 ###azi_zeros = numpy.linspace(start,end,int(n)) ###azi_zeros = numpy.where(azi_zeros>360,azi_zeros-360,azi_zeros) #print("azi_zeros",azi_zeros) ######self.buffer_ini_azi = numpy.hstack((self.buf_azi,azi_zeros)) #self.buffer_ini[0:tmv.shape[0],:]=tmp_v ##self.indicador=0 # self.indicador = True #if self.indicador==True: # azi_zeros = numpy.ones(360-len(self.buf_azi))*(tmp_z[-1]+res) #self.buf_azi = tmp_z self.buffer_ini_azi = numpy.hstack((self.buf_azi,azi_zeros)) if self.ini==step-1: start= tmp_z[0] end = tmp_z[-1] #print("start","end",start,end) ###print(self.buffer_ini_azi[:80]) self.ini = self.ini+1 else: step = (360/(res*tmp_v.shape[0])) # aqui estaba realizando el debug de simulacion # tmp_v=tmp_v +5 en cada step sumaba 5 # y el mismo valor despues de la primera vuelta #tmp_v=tmp_v+5+(self.ini-step)*1### aqui yo habia sumado 5 por las puras start= tmp_z[0] end = tmp_z[-1] #print("start","end",start,end) ###print(self.buffer_ini_azi[:120]) if step>=2: if self.flag=tmp_z[-1])[0][0]) print("tmp_r",tmp_r) index_f=(self.flag+1)*len(tmp_z)+tmp_r if len(tmp_z[index_i:])>len(self.buf_azi[len(tmp_z)*(self.flag+1):index_f]): final = len(self.buf_azi[len(tmp_z)*(self.flag+1):index_f]) else: final= len(tmp_z[index_i:]) self.buf_azi[len(tmp_z)*(self.flag+1):index_f]=tmp_z[index_i:index_i+final] self.buf_tmp[len(tmp_z)*(self.flag+1):index_f,:]=tmp_v[index_i:index_i+final,:] if limit_i=tmp_z[-1])[0][0]) n_p =index_f-len(tmp_z)*(self.flag+1) if n_p>0: self.buf_azi[len(tmp_z)*(self.flag+1):index_f]=tmp_z[-1]*numpy.ones(n_p) self.buf_tmp[len(tmp_z)*(self.flag+1):index_f,:]=tmp_v[-1,:]*numpy.ones([n_p,tmp_v.shape[1]]) ''' if self.buf_azi[len(tmp_z)]=tmp_z[-1])[0][0]) #print("index",index_i,index_f) if len(tmp_z[index_i:])>len(self.buf_azi[len(tmp_z):index_f]): final = len(self.buf_azi[len(tmp_z):index_f]) else: final = len(tmp_z[index_i:]) self.buf_azi[len(tmp_z):index_f]=tmp_z[index_i:index_i+final] self.buf_tmp[len(tmp_z):index_f,:]=tmp_v[index_i:index_i+final,:] ''' self.buf_tmp[len(tmp_z)*(self.flag):len(tmp_z)*(self.flag+1),:]=tmp_v self.buf_azi[len(tmp_z)*(self.flag):len(tmp_z)*(self.flag+1)] = tmp_z self.buffer_ini=self.buf_tmp self.buffer_ini_azi = self.buf_azi ##print("--------salida------------") start= tmp_z[0] end = tmp_z[-1] ##print("start","end",start,end) ##print(self.buffer_ini_azi[:120]) self.ini= self.ini+1 self.flag = self.flag +1 if self.flag==step: self.flag=0 numpy.set_printoptions(suppress=True) print("buffer_ini_azi") print(self.buffer_ini_azi[:20]) print(self.buffer_ini_azi[-40:]) for i,ax in enumerate(self.axes): if ax.firsttime: plt.clf() cgax, pm = wrl.vis.plot_ppi(self.buffer_ini,r=r,az=self.buffer_ini_azi,fig=self.figures[0], proj='cg', vmin=1, vmax=60) else: plt.clf() cgax, pm = wrl.vis.plot_ppi(self.buffer_ini,r=r,az=self.buffer_ini_azi,fig=self.figures[0], proj='cg', vmin=1, vmax=60) caax = cgax.parasites[0] paax = cgax.parasites[1] cbar = plt.gcf().colorbar(pm, pad=0.075) caax.set_xlabel('x_range [km]') caax.set_ylabel('y_range [km]') plt.text(1.0, 1.05, 'azimuth '+str(thisDatetime)+"step"+str(self.ini), transform=caax.transAxes, va='bottom',ha='right') #import time #time.sleep(0.5)