import os import datetime import numpy from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter from schainpy.model.graphics.jroplot_base import Plot, plt from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot from schainpy.utils import log # libreria wradlib import wradlib as wrl EARTH_RADIUS = 6.3710e3 def ll2xy(lat1, lon1, lat2, lon2): p = 0.017453292519943295 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 r = 12742 * numpy.arcsin(numpy.sqrt(a)) theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) theta = -theta + numpy.pi/2 return r*numpy.cos(theta), r*numpy.sin(theta) def km2deg(km): ''' Convert distance in km to degrees ''' return numpy.rad2deg(km/EARTH_RADIUS) class SpectralMomentsPlot(SpectraPlot): ''' Plot for Spectral Moments ''' CODE = 'spc_moments' # colormap = 'jet' # plot_type = 'pcolor' class DobleGaussianPlot(SpectraPlot): ''' Plot for Double Gaussian Plot ''' CODE = 'gaussian_fit' # colormap = 'jet' # plot_type = 'pcolor' class DoubleGaussianSpectraCutPlot(SpectraCutPlot): ''' Plot SpectraCut with Double Gaussian Fit ''' CODE = 'cut_gaussian_fit' class SnrPlot(RTIPlot): ''' Plot for SNR Data ''' CODE = 'snr' colormap = 'jet' def update(self, dataOut): data = { 'snr': 10*numpy.log10(dataOut.data_snr) } return data, {} class DopplerPlot(RTIPlot): ''' Plot for DOPPLER Data (1st moment) ''' CODE = 'dop' colormap = 'jet' def update(self, dataOut): data = { 'dop': 10*numpy.log10(dataOut.data_dop) } return data, {} class PowerPlot(RTIPlot): ''' Plot for Power Data (0 moment) ''' CODE = 'pow' colormap = 'jet' def update(self, dataOut): data = { 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) } return data, {} class SpectralWidthPlot(RTIPlot): ''' Plot for Spectral Width Data (2nd moment) ''' CODE = 'width' colormap = 'jet' def update(self, dataOut): data = { 'width': dataOut.data_width } return data, {} class SkyMapPlot(Plot): ''' Plot for meteors detection data ''' CODE = 'param' def setup(self): self.ncols = 1 self.nrows = 1 self.width = 7.2 self.height = 7.2 self.nplots = 1 self.xlabel = 'Zonal Zenith Angle (deg)' self.ylabel = 'Meridional Zenith Angle (deg)' self.polar = True self.ymin = -180 self.ymax = 180 self.colorbar = False def plot(self): arrayParameters = numpy.concatenate(self.data['param']) error = arrayParameters[:, -1] indValid = numpy.where(error == 0)[0] finalMeteor = arrayParameters[indValid, :] finalAzimuth = finalMeteor[:, 3] finalZenith = finalMeteor[:, 4] x = finalAzimuth * numpy.pi / 180 y = finalZenith ax = self.axes[0] if ax.firsttime: ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] else: ax.plot.set_data(x, y) dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, dt2, len(x)) self.titles[0] = title class GenericRTIPlot(Plot): ''' Plot for data_xxxx object ''' CODE = 'param' colormap = 'viridis' plot_type = 'pcolorbuffer' def setup(self): self.xaxis = 'time' self.ncols = 1 self.nrows = self.data.shape('param')[0] self.nplots = self.nrows self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) if not self.xlabel: self.xlabel = 'Time' self.ylabel = 'Range [km]' if not self.titles: self.titles = ['Param {}'.format(x) for x in range(self.nrows)] def update(self, dataOut): data = { 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) } meta = {} return data, meta def plot(self): # self.data.normalize_heights() self.x = self.data.times self.y = self.data.yrange self.z = self.data['param'] self.z = 10*numpy.log10(self.z) self.z = numpy.ma.masked_invalid(self.z) if self.decimation is None: x, y, z = self.fill_gaps(self.x, self.y, self.z) else: x, y, z = self.fill_gaps(*self.decimate()) for n, ax in enumerate(self.axes): self.zmax = self.zmax if self.zmax is not None else numpy.max( self.z[n]) self.zmin = self.zmin if self.zmin is not None else numpy.min( self.z[n]) if ax.firsttime: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n] ) else: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.collections.remove(ax.collections[0]) ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n] ) class PolarMapPlot(Plot): ''' Plot for weather radar ''' CODE = 'param' colormap = 'seismic' def setup(self): self.ncols = 1 self.nrows = 1 self.width = 9 self.height = 8 self.mode = self.data.meta['mode'] if self.channels is not None: self.nplots = len(self.channels) self.nrows = len(self.channels) else: self.nplots = self.data.shape(self.CODE)[0] self.nrows = self.nplots self.channels = list(range(self.nplots)) if self.mode == 'E': self.xlabel = 'Longitude' self.ylabel = 'Latitude' else: self.xlabel = 'Range (km)' self.ylabel = 'Height (km)' self.bgcolor = 'white' self.cb_labels = self.data.meta['units'] self.lat = self.data.meta['latitude'] self.lon = self.data.meta['longitude'] self.xmin, self.xmax = float( km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) self.ymin, self.ymax = float( km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) # self.polar = True def plot(self): for n, ax in enumerate(self.axes): data = self.data['param'][self.channels[n]] zeniths = numpy.linspace( 0, self.data.meta['max_range'], data.shape[1]) if self.mode == 'E': azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 r, theta = numpy.meshgrid(zeniths, azimuths) x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) x = km2deg(x) + self.lon y = km2deg(y) + self.lat else: azimuths = numpy.radians(self.data.yrange) r, theta = numpy.meshgrid(zeniths, azimuths) x, y = r*numpy.cos(theta), r*numpy.sin(theta) self.y = zeniths if ax.firsttime: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), x, y, numpy.ma.array(data, mask=numpy.isnan(data)), vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n]) else: if self.zlimits is not None: self.zmin, self.zmax = self.zlimits[n] ax.collections.remove(ax.collections[0]) ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), x, y, numpy.ma.array(data, mask=numpy.isnan(data)), vmin=self.zmin, vmax=self.zmax, cmap=self.cmaps[n]) if self.mode == 'A': continue # plot district names f = open('/data/workspace/schain_scripts/distrito.csv') for line in f: label, lon, lat = [s.strip() for s in line.split(',') if s] lat = float(lat) lon = float(lon) # ax.plot(lon, lat, '.b', ms=2) ax.text(lon, lat, label.decode('utf8'), ha='center', va='bottom', size='8', color='black') # plot limites limites = [] tmp = [] for line in open('/data/workspace/schain_scripts/lima.csv'): if '#' in line: if tmp: limites.append(tmp) tmp = [] continue values = line.strip().split(',') tmp.append((float(values[0]), float(values[1]))) for points in limites: ax.add_patch( Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) # plot Cuencas for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) values = [line.strip().split(',') for line in f] points = [(float(s[0]), float(s[1])) for s in values] ax.add_patch(Polygon(points, ec='b', fc='none')) # plot grid for r in (15, 30, 45, 60): ax.add_artist(plt.Circle((self.lon, self.lat), km2deg(r), color='0.6', fill=False, lw=0.2)) ax.text( self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), '{}km'.format(r), ha='center', va='bottom', size='8', color='0.6', weight='heavy') if self.mode == 'E': title = 'El={}$^\circ$'.format(self.data.meta['elevation']) label = 'E{:02d}'.format(int(self.data.meta['elevation'])) else: title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] self.titles = ['{} {}'.format( self.data.parameters[x], title) for x in self.channels] class WeatherPlot(Plot): CODE = 'weather' plot_name = 'weather' plot_type = 'ppistyle' buffering = False def setup(self): self.ncols = 1 self.nrows = 1 self.width =8 self.height =8 self.nplots= 1 self.ylabel= 'Range [Km]' self.titles= ['Weather'] self.colorbar=False self.ini =0 self.len_azi =0 self.buffer_ini = None self.buffer_azi = None self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) self.flag =0 self.indicador= 0 self.last_data_azi = None self.val_mean = None def update(self, dataOut): data = {} meta = {} if hasattr(dataOut, 'dataPP_POWER'): factor = 1 if hasattr(dataOut, 'nFFTPoints'): factor = dataOut.normFactor #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape) data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) data['azi'] = dataOut.data_azi data['ele'] = dataOut.data_ele return data, meta def get2List(self,angulos): list1=[] list2=[] for i in reversed(range(len(angulos))): diff_ = angulos[i]-angulos[i-1] if diff_ >1.5: list1.append(i-1) list2.append(diff_) return list(reversed(list1)),list(reversed(list2)) def fixData360(self,list_,ang_): if list_[0]==-1: vec = numpy.where(ang_=360) angulos[vec]=angulos[vec]-360 return angulos def search_pos(self,pos,list_): for i in range(len(list_)): if pos == list_[i]: return True,i i=None return False,i def fixDataComp(self,ang_,list1_,list2_): size = len(ang_) size2 = 0 for i in range(len(list2_)): size2=size2+round(list2_[i])-1 new_size= size+size2 ang_new = numpy.zeros(new_size) ang_new2 = numpy.zeros(new_size) tmp = 0 c = 0 for i in range(len(ang_)): ang_new[tmp +c] = ang_[i] ang_new2[tmp+c] = ang_[i] condition , value = self.search_pos(i,list1_) if condition: pos = tmp + c + 1 for k in range(round(list2_[value])-1): ang_new[pos+k] = ang_new[pos+k-1]+1 ang_new2[pos+k] = numpy.nan tmp = pos +k c = 0 c=c+1 return ang_new,ang_new2 def globalCheckPED(self,angulos): l1,l2 = self.get2List(angulos) if len(l1)>0: angulos2 = self.fixData360(list_=l1,ang_=angulos) l1,l2 = self.get2List(angulos2) ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2) ang1_ = self.fixData360HL(ang1_) ang2_ = self.fixData360HL(ang2_) else: ang1_= angulos ang2_= angulos return ang1_,ang2_ def analizeDATA(self,data_azi): list1 = [] list2 = [] dat = data_azi for i in reversed(range(1,len(dat))): if dat[i]>dat[i-1]: diff = int(dat[i])-int(dat[i-1]) else: diff = 360+int(dat[i])-int(dat[i-1]) if diff > 1: list1.append(i-1) list2.append(diff-1) return list1,list2 def fixDATANEW(self,data_azi,data_weather): list1,list2 = self.analizeDATA(data_azi) if len(list1)== 0: return data_azi,data_weather else: resize = 0 for i in range(len(list2)): resize= resize + list2[i] new_data_azi = numpy.resize(data_azi,resize) new_data_weather= numpy.resize(date_weather,resize) for i in range(len(list2)): j=0 position=list1[i]+1 for j in range(list2[i]): new_data_azi[position+j]=new_data_azi[position+j-1]+1 return new_data_azi def fixDATA(self,data_azi): data=data_azi for i in range(len(data)): if numpy.isnan(data[i]): data[i]=data[i-1]+1 return data def replaceNAN(self,data_weather,data_azi,val): data= data_azi data_T= data_weather if data.shape[0]> data_T.shape[0]: data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) c = 0 for i in range(len(data)): if numpy.isnan(data[i]): data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan else: data_N[i,:]=data_T[c,:] c=c+1 return data_N else: for i in range(len(data)): if numpy.isnan(data[i]): data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan return data_T def const_ploteo(self,data_weather,data_azi,step,res): if self.ini==0: #------- n = (360/res)-len(data_azi) #--------------------- new ------------------------- data_azi_new ,data_azi_old= self.globalCheckPED(data_azi) #------------------------ start = data_azi_new[-1] + res end = data_azi_new[0] - res #------ new self.last_data_azi = end if start>end: end = end + 360 azi_vacia = numpy.linspace(start,end,int(n)) azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia) data_azi = numpy.hstack((data_azi_new,azi_vacia)) # RADAR val_mean = numpy.mean(data_weather[:,-1]) self.val_mean = val_mean data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) data_weather = numpy.vstack((data_weather,data_weather_cmp)) else: # azimuth flag=0 start_azi = self.res_azi[0] #-----------new------------ data_azi ,data_azi_old= self.globalCheckPED(data_azi) data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) #-------------------------- start = data_azi[0] end = data_azi[-1] self.last_data_azi= end if start< start_azi: start = start +360 if end =0)[0] r = numpy.arange(len(r_mask))*delta_height self.y = 2*r # RADAR #data_weather = data['weather'] # PEDESTAL #data_azi = data['azi'] res = 1 # STEP step = (360/(res*data['weather'].shape[0])) self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res) self.res_ele = numpy.mean(data['ele']) ################# PLOTEO ################### for i,ax in enumerate(self.axes): if ax.firsttime: plt.clf() cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80) else: plt.clf() cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80) caax = cgax.parasites[0] paax = cgax.parasites[1] cbar = plt.gcf().colorbar(pm, pad=0.075) caax.set_xlabel('x_range [km]') caax.set_ylabel('y_range [km]') plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right') self.ini= self.ini+1 class WeatherRHIPlot(Plot): CODE = 'weather' plot_name = 'weather' plot_type = 'rhistyle' buffering = False data_ele_tmp = None def setup(self): print("********************") print("********************") print("********************") print("SETUP WEATHER PLOT") self.ncols = 1 self.nrows = 1 self.nplots= 1 self.ylabel= 'Range [Km]' self.titles= ['Weather'] if self.channels is not None: self.nplots = len(self.channels) self.nrows = len(self.channels) else: self.nplots = self.data.shape(self.CODE)[0] self.nrows = self.nplots self.channels = list(range(self.nplots)) print("channels",self.channels) print("que saldra", self.data.shape(self.CODE)[0]) self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] print("self.titles",self.titles) self.colorbar=False self.width =8 self.height =8 self.ini =0 self.len_azi =0 self.buffer_ini = None self.buffer_ele = None self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) self.flag =0 self.indicador= 0 self.last_data_ele = None self.val_mean = None def update(self, dataOut): data = {} meta = {} if hasattr(dataOut, 'dataPP_POWER'): factor = 1 if hasattr(dataOut, 'nFFTPoints'): factor = dataOut.normFactor print("dataOut",dataOut.data_360.shape) # data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) # #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) data['azi'] = dataOut.data_azi data['ele'] = dataOut.data_ele #print("UPDATE") #print("data[weather]",data['weather'].shape) #print("data[azi]",data['azi']) return data, meta def get2List(self,angulos): list1=[] list2=[] for i in reversed(range(len(angulos))): if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante diff_ = angulos[i]-angulos[i-1] if abs(diff_) >1.5: list1.append(i-1) list2.append(diff_) return list(reversed(list1)),list(reversed(list2)) def fixData90(self,list_,ang_): if list_[0]==-1: vec = numpy.where(ang_=90) angulos[vec]=angulos[vec]-90 return angulos def search_pos(self,pos,list_): for i in range(len(list_)): if pos == list_[i]: return True,i i=None return False,i def fixDataComp(self,ang_,list1_,list2_,tipo_case): size = len(ang_) size2 = 0 for i in range(len(list2_)): size2=size2+round(abs(list2_[i]))-1 new_size= size+size2 ang_new = numpy.zeros(new_size) ang_new2 = numpy.zeros(new_size) tmp = 0 c = 0 for i in range(len(ang_)): ang_new[tmp +c] = ang_[i] ang_new2[tmp+c] = ang_[i] condition , value = self.search_pos(i,list1_) if condition: pos = tmp + c + 1 for k in range(round(abs(list2_[value]))-1): if tipo_case==0 or tipo_case==3:#subida ang_new[pos+k] = ang_new[pos+k-1]+1 ang_new2[pos+k] = numpy.nan elif tipo_case==1 or tipo_case==2:#bajada ang_new[pos+k] = ang_new[pos+k-1]-1 ang_new2[pos+k] = numpy.nan tmp = pos +k c = 0 c=c+1 return ang_new,ang_new2 def globalCheckPED(self,angulos,tipo_case): l1,l2 = self.get2List(angulos) ##print("l1",l1) ##print("l2",l2) if len(l1)>0: #angulos2 = self.fixData90(list_=l1,ang_=angulos) #l1,l2 = self.get2List(angulos2) ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) #ang1_ = self.fixData90HL(ang1_) #ang2_ = self.fixData90HL(ang2_) else: ang1_= angulos ang2_= angulos return ang1_,ang2_ def replaceNAN(self,data_weather,data_ele,val): data= data_ele data_T= data_weather if data.shape[0]> data_T.shape[0]: data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) c = 0 for i in range(len(data)): if numpy.isnan(data[i]): data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan else: data_N[i,:]=data_T[c,:] c=c+1 return data_N else: for i in range(len(data)): if numpy.isnan(data[i]): data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan return data_T def check_case(self,data_ele,ang_max,ang_min): start = data_ele[0] end = data_ele[-1] number = (end-start) len_ang=len(data_ele) print("start",start) print("end",end) print("number",number) print("len_ang",len_ang) #exit(1) if start=len_ang or (numpy.argmin(data_ele)==0)):#caso subida return 0 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada # return 1 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada return 1 elif round(abs(number)+1)data_ele[-1]:# caso BAJADA CAMBIO ANG MAX return 2 elif round(abs(number)+1)0: ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) ele1_nan= numpy.ones(n1)*numpy.nan data_ele = numpy.hstack((ele1,data_ele_new)) print("ele1_nan",ele1_nan.shape) print("data_ele_old",data_ele_old.shape) data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) if n2>0: ele2= numpy.linspace(self.end_data_ele+1,end,n2) ele2_nan= numpy.ones(n2)*numpy.nan data_ele = numpy.hstack((data_ele,ele2)) print("ele2_nan",ele2_nan.shape) print("data_ele_old",data_ele_old.shape) data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) if tipo_case==1 or tipo_case==2: # BAJADA data_ele_new = data_ele_new[::-1] # reversa data_ele_old = data_ele_old[::-1]# reversa data_weather = data_weather[::-1,:]# reversa vec= numpy.where(data_ele_new0: ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) ele1_nan= numpy.ones(n1)*numpy.nan data_ele = numpy.hstack((ele1,data_ele_new)) data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) if n2>0: ele2= numpy.linspace(self.end_data_ele+1,end,n2) ele2_nan= numpy.ones(n2)*numpy.nan data_ele = numpy.hstack((data_ele,ele2)) data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) # RADAR # NOTA data_ele y data_weather es la variable que retorna val_mean = numpy.mean(data_weather[:,-1]) self.val_mean = val_mean data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) self.data_ele_tmp[val_ch]= data_ele_old else: #print("**********************************************") #print("****************VARIABLE**********************") #-------------------------CAMBIOS RHI--------------------------------- #--------------------------------------------------------------------- ##print("INPUT data_ele",data_ele) flag=0 start_ele = self.res_ele[0] tipo_case = self.check_case(data_ele,ang_max,ang_min) #print("TIPO DE DATA",tipo_case) #-----------new------------ data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) #-------------------------------NEW RHI ITERATIVO------------------------- if tipo_case==0 : # SUBIDA vec = numpy.where(data_ele=ang_max-1: self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather data_ele = self.res_ele data_weather = self.res_weather[val_ch] elif tipo_case==2: #bajada vec = numpy.where(data_ele0: ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) ele1_nan= numpy.ones(n1)*numpy.nan data_ele = numpy.hstack((ele1,data_ele_new)) data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) if n2>0: ele2= numpy.linspace(new_f_ele+1,ang_max,n2) ele2_nan= numpy.ones(n2)*numpy.nan data_ele = numpy.hstack((data_ele,ele2)) data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) self.data_ele_tmp[val_ch] = data_ele_old self.res_ele = data_ele self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) data_ele = self.res_ele data_weather = self.res_weather[val_ch] elif tipo_case==3:#subida vec = numpy.where(00: len_vec= len(data_ele) vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) #print(vec3) data_ele= data_ele[vec3] data_ele_new = data_ele data_ele_old= data_ele_old[vec3] data_weather= data_weather[vec3] new_i_ele = int(data_ele_new[0]) new_f_ele = int(data_ele_new[-1]) n1= new_i_ele- ang_min n2= ang_max - new_f_ele-1 if n1>0: ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) ele1_nan= numpy.ones(n1)*numpy.nan data_ele = numpy.hstack((ele1,data_ele_new)) data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) if n2>0: ele2= numpy.linspace(new_f_ele+1,ang_max,n2) ele2_nan= numpy.ones(n2)*numpy.nan data_ele = numpy.hstack((data_ele,ele2)) data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) self.data_ele_tmp[val_ch] = data_ele_old self.res_ele = data_ele self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) data_ele = self.res_ele data_weather = self.res_weather[val_ch] #print("self.data_ele_tmp",self.data_ele_tmp) return data_weather,data_ele def plot(self): thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') data = self.data[-1] r = self.data.yrange delta_height = r[1]-r[0] r_mask = numpy.where(r>=0)[0] ##print("delta_height",delta_height) #print("r_mask",r_mask,len(r_mask)) r = numpy.arange(len(r_mask))*delta_height self.y = 2*r res = 1 ###print("data['weather'].shape[0]",data['weather'].shape[0]) ang_max = self.ang_max ang_min = self.ang_min var_ang =ang_max - ang_min step = (int(var_ang)/(res*data['weather'].shape[0])) ###print("step",step) #-------------------------------------------------------- ##print('weather',data['weather'].shape) ##print('ele',data['ele'].shape) ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) ###self.res_azi = numpy.mean(data['azi']) ###print("self.res_ele",self.res_ele) plt.clf() subplots = [121, 122] if self.ini==0: self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan print("SHAPE",self.data_ele_tmp.shape) for i,ax in enumerate(self.axes): self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) self.res_azi = numpy.mean(data['azi']) if i==0: print("*****************************************************************************to plot**************************",self.res_weather[i].shape) if ax.firsttime: #plt.clf() cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) #fig=self.figures[0] else: #plt.clf() if i==0: print(self.res_weather[i]) print(self.res_ele) cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) caax = cgax.parasites[0] paax = cgax.parasites[1] cbar = plt.gcf().colorbar(pm, pad=0.075) caax.set_xlabel('x_range [km]') caax.set_ylabel('y_range [km]') plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') print("***************************self.ini****************************",self.ini) self.ini= self.ini+1 class WeatherRHI_vRF2_Plot(Plot): CODE = 'weather' plot_name = 'weather' plot_type = 'rhistyle' buffering = False data_ele_tmp = None def setup(self): print("********************") print("********************") print("********************") print("SETUP WEATHER PLOT") self.ncols = 1 self.nrows = 1 self.nplots= 1 self.ylabel= 'Range [Km]' self.titles= ['Weather'] if self.channels is not None: self.nplots = len(self.channels) self.nrows = len(self.channels) else: self.nplots = self.data.shape(self.CODE)[0] self.nrows = self.nplots self.channels = list(range(self.nplots)) print("channels",self.channels) print("que saldra", self.data.shape(self.CODE)[0]) self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] print("self.titles",self.titles) self.colorbar=False self.width =8 self.height =8 self.ini =0 self.len_azi =0 self.buffer_ini = None self.buffer_ele = None self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) self.flag =0 self.indicador= 0 self.last_data_ele = None self.val_mean = None def update(self, dataOut): data = {} meta = {} if hasattr(dataOut, 'dataPP_POWER'): factor = 1 if hasattr(dataOut, 'nFFTPoints'): factor = dataOut.normFactor print("dataOut",dataOut.data_360.shape) # data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) # #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) data['azi'] = dataOut.data_azi data['ele'] = dataOut.data_ele data['case_flag'] = dataOut.case_flag #print("UPDATE") #print("data[weather]",data['weather'].shape) #print("data[azi]",data['azi']) return data, meta def get2List(self,angulos): list1=[] list2=[] for i in reversed(range(len(angulos))): if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante diff_ = angulos[i]-angulos[i-1] if abs(diff_) >1.5: list1.append(i-1) list2.append(diff_) return list(reversed(list1)),list(reversed(list2)) def fixData90(self,list_,ang_): if list_[0]==-1: vec = numpy.where(ang_=90) angulos[vec]=angulos[vec]-90 return angulos def search_pos(self,pos,list_): for i in range(len(list_)): if pos == list_[i]: return True,i i=None return False,i def fixDataComp(self,ang_,list1_,list2_,tipo_case): size = len(ang_) size2 = 0 for i in range(len(list2_)): size2=size2+round(abs(list2_[i]))-1 new_size= size+size2 ang_new = numpy.zeros(new_size) ang_new2 = numpy.zeros(new_size) tmp = 0 c = 0 for i in range(len(ang_)): ang_new[tmp +c] = ang_[i] ang_new2[tmp+c] = ang_[i] condition , value = self.search_pos(i,list1_) if condition: pos = tmp + c + 1 for k in range(round(abs(list2_[value]))-1): if tipo_case==0 or tipo_case==3:#subida ang_new[pos+k] = ang_new[pos+k-1]+1 ang_new2[pos+k] = numpy.nan elif tipo_case==1 or tipo_case==2:#bajada ang_new[pos+k] = ang_new[pos+k-1]-1 ang_new2[pos+k] = numpy.nan tmp = pos +k c = 0 c=c+1 return ang_new,ang_new2 def globalCheckPED(self,angulos,tipo_case): l1,l2 = self.get2List(angulos) ##print("l1",l1) ##print("l2",l2) if len(l1)>0: #angulos2 = self.fixData90(list_=l1,ang_=angulos) #l1,l2 = self.get2List(angulos2) ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) #ang1_ = self.fixData90HL(ang1_) #ang2_ = self.fixData90HL(ang2_) else: ang1_= angulos ang2_= angulos return ang1_,ang2_ def replaceNAN(self,data_weather,data_ele,val): data= data_ele data_T= data_weather if data.shape[0]> data_T.shape[0]: data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) c = 0 for i in range(len(data)): if numpy.isnan(data[i]): data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan else: data_N[i,:]=data_T[c,:] c=c+1 return data_N else: for i in range(len(data)): if numpy.isnan(data[i]): data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan return data_T def check_case(self,data_ele,ang_max,ang_min): start = data_ele[0] end = data_ele[-1] number = (end-start) len_ang=len(data_ele) print("start",start) print("end",end) print("number",number) print("len_ang",len_ang) #exit(1) if start=len_ang or (numpy.argmin(data_ele)==0)):#caso subida return 0 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada # return 1 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada return 1 elif round(abs(number)+1)data_ele[-1]:# caso BAJADA CAMBIO ANG MAX return 2 elif round(abs(number)+1)0: ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) ele1_nan= numpy.ones(n1)*numpy.nan data_ele = numpy.hstack((ele1,data_ele_new)) print("ele1_nan",ele1_nan.shape) print("data_ele_old",data_ele_old.shape) data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) if n2>0: ele2= numpy.linspace(self.end_data_ele+1,end,n2) ele2_nan= numpy.ones(n2)*numpy.nan data_ele = numpy.hstack((data_ele,ele2)) print("ele2_nan",ele2_nan.shape) print("data_ele_old",data_ele_old.shape) data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) if tipo_case==1 or tipo_case==2: # BAJADA data_ele_new = data_ele_new[::-1] # reversa data_ele_old = data_ele_old[::-1]# reversa data_weather = data_weather[::-1,:]# reversa vec= numpy.where(data_ele_new0: ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) ele1_nan= numpy.ones(n1)*numpy.nan data_ele = numpy.hstack((ele1,data_ele_new)) data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) if n2>0: ele2= numpy.linspace(self.end_data_ele+1,end,n2) ele2_nan= numpy.ones(n2)*numpy.nan data_ele = numpy.hstack((data_ele,ele2)) data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) # RADAR # NOTA data_ele y data_weather es la variable que retorna val_mean = numpy.mean(data_weather[:,-1]) self.val_mean = val_mean data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) print("eleold",data_ele_old) print(self.data_ele_tmp[val_ch]) print(data_ele_old.shape[0]) print(self.data_ele_tmp[val_ch].shape[0]) if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91): import sys print("EXIT",self.ini) sys.exit(1) self.data_ele_tmp[val_ch]= data_ele_old else: #print("**********************************************") #print("****************VARIABLE**********************") #-------------------------CAMBIOS RHI--------------------------------- #--------------------------------------------------------------------- ##print("INPUT data_ele",data_ele) flag=0 start_ele = self.res_ele[0] #tipo_case = self.check_case(data_ele,ang_max,ang_min) tipo_case = case_flag[-1] #print("TIPO DE DATA",tipo_case) #-----------new------------ data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) #-------------------------------NEW RHI ITERATIVO------------------------- if tipo_case==0 : # SUBIDA vec = numpy.where(data_ele=ang_max-1: self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather data_ele = self.res_ele data_weather = self.res_weather[val_ch] elif tipo_case==2: #bajada vec = numpy.where(data_ele0: ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) ele1_nan= numpy.ones(n1)*numpy.nan data_ele = numpy.hstack((ele1,data_ele_new)) data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) if n2>0: ele2= numpy.linspace(new_f_ele+1,ang_max,n2) ele2_nan= numpy.ones(n2)*numpy.nan data_ele = numpy.hstack((data_ele,ele2)) data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) self.data_ele_tmp[val_ch] = data_ele_old self.res_ele = data_ele self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) data_ele = self.res_ele data_weather = self.res_weather[val_ch] elif tipo_case==3:#subida vec = numpy.where(00: len_vec= len(data_ele) vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) #print(vec3) data_ele= data_ele[vec3] data_ele_new = data_ele data_ele_old= data_ele_old[vec3] data_weather= data_weather[vec3] new_i_ele = int(data_ele_new[0]) new_f_ele = int(data_ele_new[-1]) n1= new_i_ele- ang_min n2= ang_max - new_f_ele-1 if n1>0: ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) ele1_nan= numpy.ones(n1)*numpy.nan data_ele = numpy.hstack((ele1,data_ele_new)) data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) if n2>0: ele2= numpy.linspace(new_f_ele+1,ang_max,n2) ele2_nan= numpy.ones(n2)*numpy.nan data_ele = numpy.hstack((data_ele,ele2)) data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) self.data_ele_tmp[val_ch] = data_ele_old self.res_ele = data_ele self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) data_ele = self.res_ele data_weather = self.res_weather[val_ch] #print("self.data_ele_tmp",self.data_ele_tmp) return data_weather,data_ele def plot(self): thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') data = self.data[-1] r = self.data.yrange delta_height = r[1]-r[0] r_mask = numpy.where(r>=0)[0] ##print("delta_height",delta_height) #print("r_mask",r_mask,len(r_mask)) r = numpy.arange(len(r_mask))*delta_height self.y = 2*r res = 1 ###print("data['weather'].shape[0]",data['weather'].shape[0]) ang_max = self.ang_max ang_min = self.ang_min var_ang =ang_max - ang_min step = (int(var_ang)/(res*data['weather'].shape[0])) ###print("step",step) #-------------------------------------------------------- ##print('weather',data['weather'].shape) ##print('ele',data['ele'].shape) ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) ###self.res_azi = numpy.mean(data['azi']) ###print("self.res_ele",self.res_ele) plt.clf() subplots = [121, 122] try: if self.data[-2]['ele'].max()1.5: list1.append(i-1) list2.append(diff_) return list(reversed(list1)),list(reversed(list2)) def fixData90(self,list_,ang_): if list_[0]==-1: vec = numpy.where(ang_=90) angulos[vec]=angulos[vec]-90 return angulos def search_pos(self,pos,list_): for i in range(len(list_)): if pos == list_[i]: return True,i i=None return False,i def fixDataComp(self,ang_,list1_,list2_,tipo_case): size = len(ang_) size2 = 0 for i in range(len(list2_)): size2=size2+round(abs(list2_[i]))-1 new_size= size+size2 ang_new = numpy.zeros(new_size) ang_new2 = numpy.zeros(new_size) tmp = 0 c = 0 for i in range(len(ang_)): ang_new[tmp +c] = ang_[i] ang_new2[tmp+c] = ang_[i] condition , value = self.search_pos(i,list1_) if condition: pos = tmp + c + 1 for k in range(round(abs(list2_[value]))-1): if tipo_case==0 or tipo_case==3:#subida ang_new[pos+k] = ang_new[pos+k-1]+1 ang_new2[pos+k] = numpy.nan elif tipo_case==1 or tipo_case==2:#bajada ang_new[pos+k] = ang_new[pos+k-1]-1 ang_new2[pos+k] = numpy.nan tmp = pos +k c = 0 c=c+1 return ang_new,ang_new2 def globalCheckPED(self,angulos,tipo_case): l1,l2 = self.get2List(angulos) print("l1",l1) print("l2",l2) if len(l1)>0: #angulos2 = self.fixData90(list_=l1,ang_=angulos) #l1,l2 = self.get2List(angulos2) ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) #ang1_ = self.fixData90HL(ang1_) #ang2_ = self.fixData90HL(ang2_) else: ang1_= angulos ang2_= angulos return ang1_,ang2_ def replaceNAN(self,data_weather,data_ele,val): data= data_ele data_T= data_weather #print(data.shape[0]) #print(data_T.shape[0]) #exit(1) if data.shape[0]> data_T.shape[0]: data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) c = 0 for i in range(len(data)): if numpy.isnan(data[i]): data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan else: data_N[i,:]=data_T[c,:] c=c+1 return data_N else: for i in range(len(data)): if numpy.isnan(data[i]): data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan return data_T def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): ang_max= ang_max ang_min= ang_min data_weather=data_weather val_ch=val_ch ##print("*********************DATA WEATHER**************************************") ##print(data_weather) ''' print("**********************************************") print("**********************************************") print("***************ini**************") print("**********************************************") print("**********************************************") ''' #print("data_ele",data_ele) #---------------------------------------------------------- #exit(1) tipo_case = case_flag[-1] print("tipo_case",tipo_case) #--------------------- new ------------------------- data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) #-------------------------CAMBIOS RHI--------------------------------- vec = numpy.where(data_ele0: ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) ele1_nan= numpy.ones(n1)*numpy.nan data_ele = numpy.hstack((ele1,data_ele_new)) data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) if n2>0: ele2= numpy.linspace(new_f_ele+1,ang_max,n2) ele2_nan= numpy.ones(n2)*numpy.nan data_ele = numpy.hstack((data_ele,ele2)) data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) print("ele shape",data_ele.shape) print(data_ele) #print("self.data_ele_tmp",self.data_ele_tmp) val_mean = numpy.mean(data_weather[:,-1]) self.val_mean = val_mean data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) self.data_ele_tmp[val_ch]= data_ele_old print("data_weather shape",data_weather.shape) print(data_weather) #exit(1) return data_weather,data_ele def plot(self): thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') data = self.data[-1] r = self.data.yrange delta_height = r[1]-r[0] r_mask = numpy.where(r>=0)[0] ##print("delta_height",delta_height) #print("r_mask",r_mask,len(r_mask)) r = numpy.arange(len(r_mask))*delta_height self.y = 2*r res = 1 ###print("data['weather'].shape[0]",data['weather'].shape[0]) ang_max = self.ang_max ang_min = self.ang_min var_ang =ang_max - ang_min step = (int(var_ang)/(res*data['weather'].shape[0])) ###print("step",step) #-------------------------------------------------------- ##print('weather',data['weather'].shape) ##print('ele',data['ele'].shape) ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) ###self.res_azi = numpy.mean(data['azi']) ###print("self.res_ele",self.res_ele) plt.clf() subplots = [121, 122] if self.ini==0: self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan print("SHAPE",self.data_ele_tmp.shape) for i,ax in enumerate(self.axes): self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag']) self.res_azi = numpy.mean(data['azi']) print(self.res_ele) #exit(1) if ax.firsttime: #plt.clf() cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) #fig=self.figures[0] else: #plt.clf() cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) caax = cgax.parasites[0] paax = cgax.parasites[1] cbar = plt.gcf().colorbar(pm, pad=0.075) caax.set_xlabel('x_range [km]') caax.set_ylabel('y_range [km]') plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') print("***************************self.ini****************************",self.ini) self.ini= self.ini+1 class WeatherRHI_vRF3_Plot(Plot): CODE = 'weather' plot_name = 'weather' plot_type = 'rhistyle' buffering = False data_ele_tmp = None def setup(self): print("********************") print("********************") print("********************") print("SETUP WEATHER PLOT") self.ncols = 1 self.nrows = 1 self.nplots= 1 self.ylabel= 'Range [Km]' self.titles= ['Weather'] if self.channels is not None: self.nplots = len(self.channels) self.nrows = len(self.channels) else: self.nplots = self.data.shape(self.CODE)[0] self.nrows = self.nplots self.channels = list(range(self.nplots)) print("channels",self.channels) print("que saldra", self.data.shape(self.CODE)[0]) self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] print("self.titles",self.titles) self.colorbar=False self.width =8 self.height =8 self.ini =0 self.len_azi =0 self.buffer_ini = None self.buffer_ele = None self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) self.flag =0 self.indicador= 0 self.last_data_ele = None self.val_mean = None def update(self, dataOut): data = {} meta = {} if hasattr(dataOut, 'dataPP_POWER'): factor = 1 if hasattr(dataOut, 'nFFTPoints'): factor = dataOut.normFactor print("dataOut",dataOut.data_360.shape) # data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) # #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) data['azi'] = dataOut.data_azi data['ele'] = dataOut.data_ele #data['case_flag'] = dataOut.case_flag #print("UPDATE") #print("data[weather]",data['weather'].shape) #print("data[azi]",data['azi']) return data, meta def get2List(self,angulos): list1=[] list2=[] for i in reversed(range(len(angulos))): if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante diff_ = angulos[i]-angulos[i-1] if abs(diff_) >1.5: list1.append(i-1) list2.append(diff_) return list(reversed(list1)),list(reversed(list2)) def fixData90(self,list_,ang_): if list_[0]==-1: vec = numpy.where(ang_=90) angulos[vec]=angulos[vec]-90 return angulos def search_pos(self,pos,list_): for i in range(len(list_)): if pos == list_[i]: return True,i i=None return False,i def fixDataComp(self,ang_,list1_,list2_,tipo_case): size = len(ang_) size2 = 0 for i in range(len(list2_)): size2=size2+round(abs(list2_[i]))-1 new_size= size+size2 ang_new = numpy.zeros(new_size) ang_new2 = numpy.zeros(new_size) tmp = 0 c = 0 for i in range(len(ang_)): ang_new[tmp +c] = ang_[i] ang_new2[tmp+c] = ang_[i] condition , value = self.search_pos(i,list1_) if condition: pos = tmp + c + 1 for k in range(round(abs(list2_[value]))-1): if tipo_case==0 or tipo_case==3:#subida ang_new[pos+k] = ang_new[pos+k-1]+1 ang_new2[pos+k] = numpy.nan elif tipo_case==1 or tipo_case==2:#bajada ang_new[pos+k] = ang_new[pos+k-1]-1 ang_new2[pos+k] = numpy.nan tmp = pos +k c = 0 c=c+1 return ang_new,ang_new2 def globalCheckPED(self,angulos,tipo_case): l1,l2 = self.get2List(angulos) ##print("l1",l1) ##print("l2",l2) if len(l1)>0: #angulos2 = self.fixData90(list_=l1,ang_=angulos) #l1,l2 = self.get2List(angulos2) ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) #ang1_ = self.fixData90HL(ang1_) #ang2_ = self.fixData90HL(ang2_) else: ang1_= angulos ang2_= angulos return ang1_,ang2_ def replaceNAN(self,data_weather,data_ele,val): data= data_ele data_T= data_weather if data.shape[0]> data_T.shape[0]: print("IF") data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) c = 0 for i in range(len(data)): if numpy.isnan(data[i]): data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan else: data_N[i,:]=data_T[c,:] c=c+1 return data_N else: print("else") for i in range(len(data)): if numpy.isnan(data[i]): data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan return data_T def check_case(self,data_ele,ang_max,ang_min): start = data_ele[0] end = data_ele[-1] number = (end-start) len_ang=len(data_ele) print("start",start) print("end",end) print("number",number) print("len_ang",len_ang) #exit(1) if start=len_ang or (numpy.argmin(data_ele)==0)):#caso subida return 0 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada # return 1 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada return 1 elif round(abs(number)+1)data_ele[-1]:# caso BAJADA CAMBIO ANG MAX return 2 elif round(abs(number)+1)0: ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) ele1_nan= numpy.ones(n1)*numpy.nan data_ele = numpy.hstack((ele1,data_ele_new)) print("ele1_nan",ele1_nan.shape) print("data_ele_old",data_ele_old.shape) data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) if n2>0: ele2= numpy.linspace(self.end_data_ele+1,end,n2) ele2_nan= numpy.ones(n2)*numpy.nan data_ele = numpy.hstack((data_ele,ele2)) print("ele2_nan",ele2_nan.shape) print("data_ele_old",data_ele_old.shape) data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) if tipo_case==1 or tipo_case==2: # BAJADA data_ele_new = data_ele_new[::-1] # reversa data_ele_old = data_ele_old[::-1]# reversa data_weather = data_weather[::-1,:]# reversa vec= numpy.where(data_ele_new0: ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) ele1_nan= numpy.ones(n1)*numpy.nan data_ele = numpy.hstack((ele1,data_ele_new)) data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) if n2>0: ele2= numpy.linspace(self.end_data_ele+1,end,n2) ele2_nan= numpy.ones(n2)*numpy.nan data_ele = numpy.hstack((data_ele,ele2)) data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) # RADAR # NOTA data_ele y data_weather es la variable que retorna val_mean = numpy.mean(data_weather[:,-1]) self.val_mean = val_mean data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) print("eleold",data_ele_old) print(self.data_ele_tmp[val_ch]) print(data_ele_old.shape[0]) print(self.data_ele_tmp[val_ch].shape[0]) if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91): import sys print("EXIT",self.ini) sys.exit(1) self.data_ele_tmp[val_ch]= data_ele_old else: #print("**********************************************") #print("****************VARIABLE**********************") #-------------------------CAMBIOS RHI--------------------------------- #--------------------------------------------------------------------- ##print("INPUT data_ele",data_ele) flag=0 start_ele = self.res_ele[0] #tipo_case = self.check_case(data_ele,ang_max,ang_min) tipo_case = case_flag[-1] #print("TIPO DE DATA",tipo_case) #-----------new------------ data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) #-------------------------------NEW RHI ITERATIVO------------------------- if tipo_case==0 : # SUBIDA vec = numpy.where(data_ele=ang_max-1: self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather data_ele = self.res_ele data_weather = self.res_weather[val_ch] elif tipo_case==2: #bajada vec = numpy.where(data_ele0: ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) ele1_nan= numpy.ones(n1)*numpy.nan data_ele = numpy.hstack((ele1,data_ele_new)) data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) if n2>0: ele2= numpy.linspace(new_f_ele+1,ang_max,n2) ele2_nan= numpy.ones(n2)*numpy.nan data_ele = numpy.hstack((data_ele,ele2)) data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) self.data_ele_tmp[val_ch] = data_ele_old self.res_ele = data_ele self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) data_ele = self.res_ele data_weather = self.res_weather[val_ch] elif tipo_case==3:#subida vec = numpy.where(00: len_vec= len(data_ele) vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) #print(vec3) data_ele= data_ele[vec3] data_ele_new = data_ele data_ele_old= data_ele_old[vec3] data_weather= data_weather[vec3] new_i_ele = int(data_ele_new[0]) new_f_ele = int(data_ele_new[-1]) n1= new_i_ele- ang_min n2= ang_max - new_f_ele-1 if n1>0: ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) ele1_nan= numpy.ones(n1)*numpy.nan data_ele = numpy.hstack((ele1,data_ele_new)) data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) if n2>0: ele2= numpy.linspace(new_f_ele+1,ang_max,n2) ele2_nan= numpy.ones(n2)*numpy.nan data_ele = numpy.hstack((data_ele,ele2)) data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) self.data_ele_tmp[val_ch] = data_ele_old self.res_ele = data_ele self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) data_ele = self.res_ele data_weather = self.res_weather[val_ch] #print("self.data_ele_tmp",self.data_ele_tmp) return data_weather,data_ele def const_ploteo_vRF(self,val_ch,data_weather,data_ele,res,ang_max,ang_min): data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,1) data_ele = data_ele_old.copy() diff_1 = ang_max - data_ele[0] angles_1_nan = numpy.linspace(ang_max,data_ele[0]+1,int(diff_1)-1)#*numpy.nan diff_2 = data_ele[-1]-ang_min angles_2_nan = numpy.linspace(data_ele[-1]-1,ang_min,int(diff_2)-1)#*numpy.nan angles_filled = numpy.concatenate((angles_1_nan,data_ele,angles_2_nan)) print(angles_filled) data_1_nan = numpy.ones([angles_1_nan.shape[0],len(self.r_mask)])*numpy.nan data_2_nan = numpy.ones([angles_2_nan.shape[0],len(self.r_mask)])*numpy.nan data_filled = numpy.concatenate((data_1_nan,data_weather,data_2_nan),axis=0) #val_mean = numpy.mean(data_weather[:,-1]) #self.val_mean = val_mean print(data_filled) data_filled = self.replaceNAN(data_weather=data_filled,data_ele=angles_filled,val=numpy.nan) print(data_filled) print(data_filled.shape) print(angles_filled.shape) return data_filled,angles_filled def plot(self): thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') data = self.data[-1] r = self.data.yrange delta_height = r[1]-r[0] r_mask = numpy.where(r>=0)[0] self.r_mask =r_mask ##print("delta_height",delta_height) #print("r_mask",r_mask,len(r_mask)) r = numpy.arange(len(r_mask))*delta_height self.y = 2*r res = 1 ###print("data['weather'].shape[0]",data['weather'].shape[0]) ang_max = self.ang_max ang_min = self.ang_min var_ang =ang_max - ang_min step = (int(var_ang)/(res*data['weather'].shape[0])) ###print("step",step) #-------------------------------------------------------- ##print('weather',data['weather'].shape) ##print('ele',data['ele'].shape) ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) ###self.res_azi = numpy.mean(data['azi']) ###print("self.res_ele",self.res_ele) plt.clf() subplots = [121, 122] #if self.ini==0: #self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan #print("SHAPE",self.data_ele_tmp.shape) for i,ax in enumerate(self.axes): res_weather, self.res_ele = self.const_ploteo_vRF(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],res=res,ang_max=ang_max,ang_min=ang_min) self.res_azi = numpy.mean(data['azi']) if ax.firsttime: #plt.clf() print("Frist Plot") print(data['weather'][i][:,r_mask].shape) print(data['ele'].shape) cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80) gh = cgax.get_grid_helper() locs = numpy.linspace(ang_min,ang_max,var_ang+1) gh.grid_finder.grid_locator1 = FixedLocator(locs) gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs])) #fig=self.figures[0] else: #plt.clf() print("ELSE PLOT") cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80) gh = cgax.get_grid_helper() locs = numpy.linspace(ang_min,ang_max,var_ang+1) gh.grid_finder.grid_locator1 = FixedLocator(locs) gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs])) caax = cgax.parasites[0] paax = cgax.parasites[1] cbar = plt.gcf().colorbar(pm, pad=0.075) caax.set_xlabel('x_range [km]') caax.set_ylabel('y_range [km]') plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') print("***************************self.ini****************************",self.ini) self.ini= self.ini+1