# Copyright (c) 2012-2020 Jicamarca Radio Observatory # All rights reserved. # # Distributed under the terms of the BSD 3-clause license. """Classes to plot Spectra data """ import os import numpy from schainpy.model.graphics.jroplot_base import Plot, plt, log class SpectraPlot(Plot): ''' Plot for Spectra data ''' CODE = 'spc' colormap = 'jet' plot_type = 'pcolor' buffering = False channelList = None def setup(self): self.nplots = len(self.data.channels) self.ncols = int(numpy.sqrt(self.nplots) + 0.9) self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) self.height = 2.6 * self.nrows self.cb_label = 'dB' if self.showprofile: self.width = 4 * self.ncols else: self.width = 3.5 * self.ncols self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) self.ylabel = 'Range [km]' def update(self, dataOut): if self.channelList == None: self.channelList = dataOut.channelList data = {} meta = {} spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) data['spc'] = spc data['rti'] = dataOut.getPower() data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) if self.CODE == 'spc_moments': data['moments'] = dataOut.moments return data, meta def plot(self): if self.xaxis == "frequency": x = self.data.xrange[0] self.xlabel = "Frequency (kHz)" elif self.xaxis == "time": x = self.data.xrange[1] self.xlabel = "Time (ms)" else: x = self.data.xrange[2] self.xlabel = "Velocity (m/s)" if self.CODE == 'spc_moments': x = self.data.xrange[2] self.xlabel = "Velocity (m/s)" self.titles = [] y = self.data.yrange self.y = y data = self.data[-1] z = data['spc'] for n, ax in enumerate(self.axes): noise = data['noise'][n] if self.CODE == 'spc_moments': mean = data['moments'][n, 1] if ax.firsttime: self.xmax = self.xmax if self.xmax else numpy.nanmax(x) self.xmin = self.xmin if self.xmin else -self.xmax self.zmin = self.zmin if self.zmin else numpy.nanmin(z) self.zmax = self.zmax if self.zmax else numpy.nanmax(z) ax.plt = ax.pcolormesh(x, y, z[n].T, vmin=self.zmin, vmax=self.zmax, cmap=plt.get_cmap(self.colormap) ) if self.showprofile: ax.plt_profile = self.pf_axes[n].plot( data['rti'][n], y)[0] ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, color="k", linestyle="dashed", lw=1)[0] if self.CODE == 'spc_moments': ax.plt_mean = ax.plot(mean, y, color='k')[0] else: ax.plt.set_array(z[n].T.ravel()) if self.showprofile: ax.plt_profile.set_data(data['rti'][n], y) ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) if self.CODE == 'spc_moments': ax.plt_mean.set_data(mean, y) self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) class CrossSpectraPlot(Plot): CODE = 'cspc' colormap = 'jet' plot_type = 'pcolor' zmin_coh = None zmax_coh = None zmin_phase = None zmax_phase = None def setup(self): self.ncols = 4 self.nplots = len(self.data.pairs) * 2 self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) self.width = 3.1 * self.ncols self.height = 2.6 * self.nrows self.ylabel = 'Range [km]' self.showprofile = False self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) def update(self, dataOut): data = {} meta = {} spc = dataOut.data_spc cspc = dataOut.data_cspc meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) meta['pairs'] = dataOut.pairsList tmp = [] for n, pair in enumerate(meta['pairs']): out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) coh = numpy.abs(out) phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi tmp.append(coh) tmp.append(phase) data['cspc'] = numpy.array(tmp) return data, meta def plot(self): if self.xaxis == "frequency": x = self.data.xrange[0] self.xlabel = "Frequency (kHz)" elif self.xaxis == "time": x = self.data.xrange[1] self.xlabel = "Time (ms)" else: x = self.data.xrange[2] self.xlabel = "Velocity (m/s)" self.titles = [] y = self.data.yrange self.y = y data = self.data[-1] cspc = data['cspc'] for n in range(len(self.data.pairs)): pair = self.data.pairs[n] coh = cspc[n*2] phase = cspc[n*2+1] ax = self.axes[2 * n] if ax.firsttime: ax.plt = ax.pcolormesh(x, y, coh.T, vmin=0, vmax=1, cmap=plt.get_cmap(self.colormap_coh) ) else: ax.plt.set_array(coh.T.ravel()) self.titles.append( 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) ax = self.axes[2 * n + 1] if ax.firsttime: ax.plt = ax.pcolormesh(x, y, phase.T, vmin=-180, vmax=180, cmap=plt.get_cmap(self.colormap_phase) ) else: ax.plt.set_array(phase.T.ravel()) self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) class RTIPlot(Plot): ''' Plot for RTI data ''' CODE = 'rti' colormap = 'jet' plot_type = 'pcolorbuffer' titles = None channelList = None def setup(self): self.xaxis = 'time' self.ncols = 1 self.nrows = len(self.data.channels) self.nplots = len(self.data.channels) self.ylabel = 'Range [km]' self.xlabel = 'Time' self.cb_label = 'dB' self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) self.titles = ['{} Channel {}'.format( self.CODE.upper(), x) for x in range(self.nplots)] def update(self, dataOut): if self.channelList == None: self.channelList = dataOut.channelList data = {} meta = {} data['rti'] = dataOut.getPower() data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) return data, meta def plot(self): self.x = self.data.times self.y = self.data.yrange self.z = self.data[self.CODE] self.z = numpy.ma.masked_invalid(self.z) if self.channelList != None: self.titles = ['{} Channel {}'.format( self.CODE.upper(), x) for x in self.channelList] if self.decimation is None: x, y, z = self.fill_gaps(self.x, self.y, self.z) else: x, y, z = self.fill_gaps(*self.decimate()) for n, ax in enumerate(self.axes): self.zmin = self.zmin if self.zmin else numpy.min(self.z) self.zmax = self.zmax if self.zmax else numpy.max(self.z) data = self.data[-1] if ax.firsttime: ax.plt = ax.pcolormesh(x, y, z[n].T, vmin=self.zmin, vmax=self.zmax, cmap=plt.get_cmap(self.colormap) ) if self.showprofile: ax.plot_profile = self.pf_axes[n].plot( data['rti'][n], self.y)[0] ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, color="k", linestyle="dashed", lw=1)[0] else: ax.collections.remove(ax.collections[0]) ax.plt = ax.pcolormesh(x, y, z[n].T, vmin=self.zmin, vmax=self.zmax, cmap=plt.get_cmap(self.colormap) ) if self.showprofile: ax.plot_profile.set_data(data['rti'][n], self.y) ax.plot_noise.set_data(numpy.repeat( data['noise'][n], len(self.y)), self.y) class CoherencePlot(RTIPlot): ''' Plot for Coherence data ''' CODE = 'coh' def setup(self): self.xaxis = 'time' self.ncols = 1 self.nrows = len(self.data.pairs) self.nplots = len(self.data.pairs) self.ylabel = 'Range [km]' self.xlabel = 'Time' self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) if self.CODE == 'coh': self.cb_label = '' self.titles = [ 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] else: self.cb_label = 'Degrees' self.titles = [ 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] def update(self, dataOut): data = {} meta = {} data['coh'] = dataOut.getCoherence() meta['pairs'] = dataOut.pairsList return data, meta class PhasePlot(CoherencePlot): ''' Plot for Phase map data ''' CODE = 'phase' colormap = 'seismic' def update(self, dataOut): data = {} meta = {} data['phase'] = dataOut.getCoherence(phase=True) meta['pairs'] = dataOut.pairsList return data, meta class NoisePlot(Plot): ''' Plot for noise ''' CODE = 'noise' plot_type = 'scatterbuffer' def setup(self): self.xaxis = 'time' self.ncols = 1 self.nrows = 1 self.nplots = 1 self.ylabel = 'Intensity [dB]' self.xlabel = 'Time' self.titles = ['Noise'] self.colorbar = False self.plots_adjust.update({'right': 0.85 }) def update(self, dataOut): data = {} meta = {} data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) meta['yrange'] = numpy.array([]) return data, meta def plot(self): x = self.data.times xmin = self.data.min_time xmax = xmin + self.xrange * 60 * 60 Y = self.data['noise'] if self.axes[0].firsttime: self.ymin = numpy.nanmin(Y) - 5 self.ymax = numpy.nanmax(Y) + 5 for ch in self.data.channels: y = Y[ch] self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) plt.legend(bbox_to_anchor=(1.18, 1.0)) else: for ch in self.data.channels: y = Y[ch] self.axes[0].lines[ch].set_data(x, y) class PowerProfilePlot(Plot): CODE = 'pow_profile' plot_type = 'scatter' def setup(self): self.ncols = 1 self.nrows = 1 self.nplots = 1 self.height = 4 self.width = 3 self.ylabel = 'Range [km]' self.xlabel = 'Intensity [dB]' self.titles = ['Power Profile'] self.colorbar = False def update(self, dataOut): data = {} meta = {} data[self.CODE] = dataOut.getPower() return data, meta def plot(self): y = self.data.yrange self.y = y x = self.data[-1][self.CODE] if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 if self.axes[0].firsttime: for ch in self.data.channels: self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) plt.legend() else: for ch in self.data.channels: self.axes[0].lines[ch].set_data(x[ch], y) class SpectraCutPlot(Plot): CODE = 'spc_cut' plot_type = 'scatter' buffering = False def setup(self): self.nplots = len(self.data.channels) self.ncols = int(numpy.sqrt(self.nplots) + 0.9) self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) self.width = 3.4 * self.ncols + 1.5 self.height = 3 * self.nrows self.ylabel = 'Power [dB]' self.colorbar = False self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) def update(self, dataOut): data = {} meta = {} spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) data['spc'] = spc meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) return data, meta def plot(self): if self.xaxis == "frequency": x = self.data.xrange[0][1:] self.xlabel = "Frequency (kHz)" elif self.xaxis == "time": x = self.data.xrange[1] self.xlabel = "Time (ms)" else: x = self.data.xrange[2] self.xlabel = "Velocity (m/s)" self.titles = [] y = self.data.yrange z = self.data[-1]['spc'] if self.height_index: index = numpy.array(self.height_index) else: index = numpy.arange(0, len(y), int((len(y))/9)) for n, ax in enumerate(self.axes): if ax.firsttime: self.xmax = self.xmax if self.xmax else numpy.nanmax(x) self.xmin = self.xmin if self.xmin else -self.xmax self.ymin = self.ymin if self.ymin else numpy.nanmin(z) self.ymax = self.ymax if self.ymax else numpy.nanmax(z) ax.plt = ax.plot(x, z[n, :, index].T) labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] self.figures[0].legend(ax.plt, labels, loc='center right') else: for i, line in enumerate(ax.plt): line.set_data(x, z[n, :, index[i]]) self.titles.append('CH {}'.format(n)) class BeaconPhase(Plot): __isConfig = None __nsubplots = None PREFIX = 'beacon_phase' def __init__(self): Plot.__init__(self) self.timerange = 24*60*60 self.isConfig = False self.__nsubplots = 1 self.counter_imagwr = 0 self.WIDTH = 800 self.HEIGHT = 400 self.WIDTHPROF = 120 self.HEIGHTPROF = 0 self.xdata = None self.ydata = None self.PLOT_CODE = BEACON_CODE self.FTP_WEI = None self.EXP_CODE = None self.SUB_EXP_CODE = None self.PLOT_POS = None self.filename_phase = None self.figfile = None self.xmin = None self.xmax = None def getSubplots(self): ncol = 1 nrow = 1 return nrow, ncol def setup(self, id, nplots, wintitle, showprofile=True, show=True): self.__showprofile = showprofile self.nplots = nplots ncolspan = 7 colspan = 6 self.__nsubplots = 2 self.createFigure(id = id, wintitle = wintitle, widthplot = self.WIDTH+self.WIDTHPROF, heightplot = self.HEIGHT+self.HEIGHTPROF, show=show) nrow, ncol = self.getSubplots() self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) def save_phase(self, filename_phase): f = open(filename_phase,'w+') f.write('\n\n') f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) f.close() def save_data(self, filename_phase, data, data_datetime): f=open(filename_phase,'a') timetuple_data = data_datetime.timetuple() day = str(timetuple_data.tm_mday) month = str(timetuple_data.tm_mon) year = str(timetuple_data.tm_year) hour = str(timetuple_data.tm_hour) minute = str(timetuple_data.tm_min) second = str(timetuple_data.tm_sec) f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') f.close() def plot(self): log.warning('TODO: Not yet implemented...') def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, timerange=None, save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, server=None, folder=None, username=None, password=None, ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): if dataOut.flagNoData: return dataOut if not isTimeInHourRange(dataOut.datatime, xmin, xmax): return if pairsList == None: pairsIndexList = dataOut.pairsIndexList[:10] else: pairsIndexList = [] for pair in pairsList: if pair not in dataOut.pairsList: raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) pairsIndexList.append(dataOut.pairsList.index(pair)) if pairsIndexList == []: return # if len(pairsIndexList) > 4: # pairsIndexList = pairsIndexList[0:4] hmin_index = None hmax_index = None if hmin != None and hmax != None: indexes = numpy.arange(dataOut.nHeights) hmin_list = indexes[dataOut.heightList >= hmin] hmax_list = indexes[dataOut.heightList <= hmax] if hmin_list.any(): hmin_index = hmin_list[0] if hmax_list.any(): hmax_index = hmax_list[-1]+1 x = dataOut.getTimeRange() thisDatetime = dataOut.datatime title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) xlabel = "Local Time" ylabel = "Phase (degrees)" update_figfile = False nplots = len(pairsIndexList) #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) phase_beacon = numpy.zeros(len(pairsIndexList)) for i in range(nplots): pair = dataOut.pairsList[pairsIndexList[i]] ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi if dataOut.beacon_heiIndexList: phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) else: phase_beacon[i] = numpy.average(phase) if not self.isConfig: nplots = len(pairsIndexList) self.setup(id=id, nplots=nplots, wintitle=wintitle, showprofile=showprofile, show=show) if timerange != None: self.timerange = timerange self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) if ymin == None: ymin = 0 if ymax == None: ymax = 360 self.FTP_WEI = ftp_wei self.EXP_CODE = exp_code self.SUB_EXP_CODE = sub_exp_code self.PLOT_POS = plot_pos self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") self.isConfig = True self.figfile = figfile self.xdata = numpy.array([]) self.ydata = numpy.array([]) update_figfile = True #open file beacon phase path = '%s%03d' %(self.PREFIX, self.id) beacon_file = os.path.join(path,'%s.txt'%self.name) self.filename_phase = os.path.join(figpath,beacon_file) #self.save_phase(self.filename_phase) #store data beacon phase #self.save_data(self.filename_phase, phase_beacon, thisDatetime) self.setWinTitle(title) title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] axes = self.axesList[0] self.xdata = numpy.hstack((self.xdata, x[0:1])) if len(self.ydata)==0: self.ydata = phase_beacon.reshape(-1,1) else: self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) axes.pmultilineyaxis(x=self.xdata, y=self.ydata, xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", XAxisAsTime=True, grid='both' ) self.draw() if dataOut.ltctime >= self.xmax: self.counter_imagwr = wr_period self.isConfig = False update_figfile = True self.save(figpath=figpath, figfile=figfile, save=save, ftp=ftp, wr_period=wr_period, thisDatetime=thisDatetime, update_figfile=update_figfile) return dataOut