import numpy as np import matplotlib.pyplot as pl import warnings #export WRADLIB_DATA=/path/to/wradlib-data warnings.filterwarnings('ignore') from wradlib.io import read_generic_netcdf from wradlib.util import get_wradlib_data_file import os # A little helper function for repeated tasks def read_and_overview(filename): """Read NetCDF using read_generic_netcdf and print upper level dictionary keys """ test = read_generic_netcdf(filename) print("\nPrint keys for file %s" % os.path.basename(filename)) for key in test.keys(): print("\t%s" % key) return test filename = '/home/soporte/Downloads/PX1000/PX-20180220-174014-E0.0-Z.nc' filename = get_wradlib_data_file(filename) test= read_and_overview(filename) print("Height",test['Height']) print("Azimuth",test['Azimuth']) print("Elevation",test['Elevation']) print("CalibH-value",test['CalibH-value']) print("attributes",test['attributes']) print("-------------------------------------------------------------------------------------") for key in test.keys(): print(key,test[str(key)]) ''' try: get_ipython().magic('matplotlib inline') except: pl.ion() img, meta = wradlib.io.read_dx(filename) print("Shape of polar array: %r\n" % (img.shape,)) print("Some meta data of the DX file:") #print("\tdatetime: %r" % (meta["datetime"],)) #print("\tRadar ID: %s" % (meta["radarid"],)) img[200:250,:]= np.ones([50,img.shape[1]])*np.nan img[300:360,:]= np.ones([60,img.shape[1]])*np.nan cgax, pm= wradlib.vis.plot_ppi(img) txt = pl.title('Simple PPI') print("coordenada angular",img[:,0],len(img[:,0])) print("COORDENADA 0",img[0],len(img[0])) cbar = pl.gcf().colorbar(pm, pad=0.075) #r = np.arange(40, 80) #az = np.arange(200, 250) #ax, pm = wradlib.vis.plot_ppi(img[200:250, 40:80], r, az, autoext=False) #ax, pm = wradlib.vis.plot_ppi(img[200:250, 40:80], r, az) #txt = pl.title('Sector PPI') pl.show() '''