SUBROUTINE QK15W(F,W,P1,P2,P3,P4,KP,A,B,RESULT,ABSERR, * RESABS,RESASC) C***BEGIN PROLOGUE QK15W C***DATE WRITTEN 810101 (YYMMDD) C***REVISION DATE 830518 (MMDDYY) C***CATEGORY NO. H2A2A2 C***KEYWORDS 15-POINT GAUSS-KRONROD RULES C***AUTHOR PIESSENS,ROBERT,APPL. MATH. & PROGR. DIV. - K.U.LEUVEN C DE DONCKER,ELISE,APPL. MATH. & PROGR. DIV. - K.U.LEUVEN C***PURPOSE TO COMPUTE I = INTEGRAL OF F*W OVER (A,B), WITH ERROR C ESTIMATE C J = INTEGRAL OF ABS(F*W) OVER (A,B) C***DESCRIPTION C C INTEGRATION RULES C STANDARD FORTRAN SUBROUTINE C REAL VERSION C C PARAMETERS C ON ENTRY C F - REAL C FUNCTION SUBPROGRAM DEFINING THE INTEGRAND C FUNCTION F(X). THE ACTUAL NAME FOR F NEEDS TO BE C DECLARED E X T E R N A L IN THE DRIVER PROGRAM. C C W - REAL C FUNCTION SUBPROGRAM DEFINING THE INTEGRAND C WEIGHT FUNCTION W(X). THE ACTUAL NAME FOR W C NEEDS TO BE DECLARED E X T E R N A L IN THE C CALLING PROGRAM. C C P1, P2, P3, P4 - REAL C PARAMETERS IN THE WEIGHT FUNCTION C C KP - INTEGER C KEY FOR INDICATING THE TYPE OF WEIGHT FUNCTION C C A - REAL C LOWER LIMIT OF INTEGRATION C C B - REAL C UPPER LIMIT OF INTEGRATION C C ON RETURN C RESULT - REAL C APPROXIMATION TO THE INTEGRAL I C RESULT IS COMPUTED BY APPLYING THE 15-POINT C KRONROD RULE (RESK) OBTAINED BY OPTIMAL ADDITION C OF ABSCISSAE TO THE 7-POINT GAUSS RULE (RESG). C C ABSERR - REAL C ESTIMATE OF THE MODULUS OF THE ABSOLUTE ERROR, C WHICH SHOULD EQUAL OR EXCEED ABS(I-RESULT) C C RESABS - REAL C APPROXIMATION TO THE INTEGRAL OF ABS(F) C C RESASC - REAL C APPROXIMATION TO THE INTEGRAL OF ABS(F-I/(B-A)) C C***REFERENCES (NONE) C***ROUTINES CALLED R1MACH C***END PROLOGUE QK15W C REAL A,ABSC,ABSC1,ABSC2,ABSERR,B,CENTR,DHLGTH, * R1MACH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,FV1,FV2, * HLGTH,P1,P2,P3,P4,RESABS,RESASC,RESG,RESK,RESKH,RESULT,UFLOW, * W,WG,WGK,XGK INTEGER J,JTW,JTWM1,KP EXTERNAL F,W C DIMENSION FV1(7),FV2(7),XGK(8),WGK(8),WG(4) C C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1). C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR C CORRESPONDING WEIGHTS ARE GIVEN. C C XGK - ABSCISSAE OF THE 15-POINT GAUSS-KRONROD RULE C XGK(2), XGK(4), ... ABSCISSAE OF THE 7-POINT C GAUSS RULE C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY C ADDED TO THE 7-POINT GAUSS RULE C C WGK - WEIGHTS OF THE 15-POINT GAUSS-KRONROD RULE C C WG - WEIGHTS OF THE 7-POINT GAUSS RULE C DATA XGK(1),XGK(2),XGK(3),XGK(4),XGK(5),XGK(6),XGK(7), * XGK(8)/ * 0.9914553711208126E+00, 0.9491079123427585E+00, * 0.8648644233597691E+00, 0.7415311855993944E+00, * 0.5860872354676911E+00, 0.4058451513773972E+00, * 0.2077849550078985E+00, 0.0000000000000000E+00/ C DATA WGK(1),WGK(2),WGK(3),WGK(4),WGK(5),WGK(6),WGK(7), * WGK(8)/ * 0.2293532201052922E-01, 0.6309209262997855E-01, * 0.1047900103222502E+00, 0.1406532597155259E+00, * 0.1690047266392679E+00, 0.1903505780647854E+00, * 0.2044329400752989E+00, 0.2094821410847278E+00/ C DATA WG(1),WG(2),WG(3),WG(4)/ * 0.1294849661688697E+00, 0.2797053914892767E+00, * 0.3818300505051889E+00, 0.4179591836734694E+00/ C C C LIST OF MAJOR VARIABLES C ----------------------- C C CENTR - MID POINT OF THE INTERVAL C HLGTH - HALF-LENGTH OF THE INTERVAL C ABSC* - ABSCISSA C FVAL* - FUNCTION VALUE C RESG - RESULT OF THE 7-POINT GAUSS FORMULA C RESK - RESULT OF THE 15-POINT KRONROD FORMULA C RESKH - APPROXIMATION TO THE MEAN VALUE OF F*W OVER (A,B), C I.E. TO I/(B-A) C C MACHINE DEPENDENT CONSTANTS C --------------------------- C C EPMACH IS THE LARGEST RELATIVE SPACING. C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE. C C***FIRST EXECUTABLE STATEMENT QK15W EPMACH = R1MACH(4) UFLOW = R1MACH(1) C CENTR = 0.5E+00*(A+B) HLGTH = 0.5E+00*(B-A) DHLGTH = ABS(HLGTH) C C COMPUTE THE 15-POINT KRONROD APPROXIMATION TO THE C INTEGRAL, AND ESTIMATE THE ERROR. C FC = F(CENTR)*W(CENTR,P1,P2,P3,P4,KP) RESG = WG(4)*FC RESK = WGK(8)*FC RESABS = ABS(RESK) DO 10 J=1,3 JTW = J*2 ABSC = HLGTH*XGK(JTW) ABSC1 = CENTR-ABSC ABSC2 = CENTR+ABSC FVAL1 = F(ABSC1)*W(ABSC1,P1,P2,P3,P4,KP) FVAL2 = F(ABSC2)*W(ABSC2,P1,P2,P3,P4,KP) FV1(JTW) = FVAL1 FV2(JTW) = FVAL2 FSUM = FVAL1+FVAL2 RESG = RESG+WG(J)*FSUM RESK = RESK+WGK(JTW)*FSUM RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2)) 10 CONTINUE DO 15 J=1,4 JTWM1 = J*2-1 ABSC = HLGTH*XGK(JTWM1) ABSC1 = CENTR-ABSC ABSC2 = CENTR+ABSC FVAL1 = F(ABSC1)*W(ABSC1,P1,P2,P3,P4,KP) FVAL2 = F(ABSC2)*W(ABSC2,P1,P2,P3,P4,KP) FV1(JTWM1) = FVAL1 FV2(JTWM1) = FVAL2 FSUM = FVAL1+FVAL2 RESK = RESK+WGK(JTWM1)*FSUM RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2)) 15 CONTINUE RESKH = RESK*0.5E+00 RESASC = WGK(8)*ABS(FC-RESKH) DO 20 J=1,7 RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH)) 20 CONTINUE RESULT = RESK*HLGTH RESABS = RESABS*DHLGTH RESASC = RESASC*DHLGTH ABSERR = ABS((RESK-RESG)*HLGTH) IF(RESASC.NE.0.0E+00.AND.ABSERR.NE.0.0E+00) * ABSERR = RESASC*AMIN1(0.1E+01, * (0.2E+03*ABSERR/RESASC)**1.5E+00) IF(RESABS.GT.UFLOW/(0.5E+02*EPMACH)) ABSERR = AMAX1((EPMACH* * 0.5E+02)*RESABS,ABSERR) RETURN END