# Copyright (c) 2012-2020 Jicamarca Radio Observatory # All rights reserved. # # Distributed under the terms of the BSD 3-clause license. """Spectra processing Unit and operations Here you will find the processing unit `SpectraProc` and several operations to work with Spectra data type """ import time import itertools import numpy from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation from schainpy.model.data.jrodata import Spectra from schainpy.model.data.jrodata import hildebrand_sekhon from schainpy.utils import log from schainpy.model.data import _HS_algorithm from schainpy.model.proc.jroproc_voltage import CleanCohEchoes from time import time, mktime, strptime, gmtime, ctime class SpectraLagProc(ProcessingUnit): ''' Written by R. Flores ''' def __init__(self): ProcessingUnit.__init__(self) self.buffer = None self.buffer_Lag = None self.firstdatatime = None self.profIndex = 0 self.dataOut = Spectra() self.id_min = None self.id_max = None self.setupReq = False #Agregar a todas las unidades de proc def __updateSpecFromVoltage(self): self.dataOut.timeZone = self.dataIn.timeZone self.dataOut.dstFlag = self.dataIn.dstFlag self.dataOut.errorCount = self.dataIn.errorCount self.dataOut.useLocalTime = self.dataIn.useLocalTime try: self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() except: pass self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() self.dataOut.channelList = self.dataIn.channelList self.dataOut.heightList = self.dataIn.heightList self.dataOut.dtype = numpy.dtype([('real', '0 and self.id_min is not None: self.profIndex -= self.dataIn.data.shape[1] self.id_min -= self.dataIn.data.shape[1] self.id_max -= self.dataIn.data.shape[1] if self.profIndex>0 and self.id_min is not None: self.buffer[:,:self.id_max-self.dataIn.data.shape[1],:]=self.buffer_Lag[:,:self.id_max-self.dataIn.data.shape[1],:,i] self.VoltageType(nFFTPoints,nProfiles,ippFactor,pairsList) if self.id_min is not None: self.buffer_Lag[:,self.id_min-self.dataIn.data.shape[1]:self.id_max-self.dataIn.data.shape[1],:,i]=self.buffer[:,self.id_min-self.dataIn.data.shape[1]:self.id_max-self.dataIn.data.shape[1],:] if not self.dataOut.flagNoData: self.profIndex=nProfiles self.firstdatatime = self.dataOut.utctime if i==self.dataOut.nLags-1: self.profIndex=0 self.firstdatatime = None self.dataOut.dataLag_spc.append(self.dataOut.data_spc) self.dataOut.dataLag_cspc.append(self.dataOut.data_cspc) self.dataOut.dataLag_dc.append(self.dataOut.data_dc) if not self.dataOut.flagNoData: self.dataOut.dataLag_spc=numpy.array(self.dataOut.dataLag_spc) self.dataOut.dataLag_cspc=numpy.array(self.dataOut.dataLag_cspc) self.dataOut.dataLag_dc=numpy.array(self.dataOut.dataLag_dc) self.dataOut.dataLag_spc=self.dataOut.dataLag_spc.transpose(1,2,3,0) self.dataOut.dataLag_cspc=self.dataOut.dataLag_cspc.transpose(1,2,3,0) self.dataOut.dataLag_dc=self.dataOut.dataLag_dc.transpose(1,2,0) self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot] self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot] self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot] self.dataOut.TimeBlockSeconds=self.dataIn.TimeBlockSeconds self.dataOut.flagDataAsBlock=self.dataIn.flagDataAsBlock try: self.dataOut.FlipChannels=self.dataIn.FlipChannels except: pass else: raise ValueError("The type of input object '%s' is not valid".format( self.dataIn.type)) #print("after",self.dataOut.data_spc[0,:,20]) class removeDCLag(Operation): ''' Written by R. Flores ''' def remover(self,mode): jspectra = self.dataOut.data_spc jcspectra = self.dataOut.data_cspc num_chan = jspectra.shape[0] num_hei = jspectra.shape[2] if jcspectra is not None: self.jcspectraExist = jcspectraExist = True num_pairs = jcspectra.shape[0] else: self.jcspectraExist = jcspectraExist = False #print(jcspectraExist) freq_dc = int(jspectra.shape[1] / 2) ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc ind_vel = ind_vel.astype(int) if ind_vel[0] < 0: ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof if mode == 1: jspectra[:, freq_dc, :] = ( jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION if jcspectraExist: jcspectra[:, freq_dc, :] = ( jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 if mode == 2: vel = numpy.array([-2, -1, 1, 2]) xx = numpy.zeros([4, 4]) for fil in range(4): xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) xx_inv = numpy.linalg.inv(xx) xx_aux = xx_inv[0, :] #print("inside") for ich in range(num_chan): yy = jspectra[ich, ind_vel, :] jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) #print(jspectra.shape) junkid = jspectra[ich, freq_dc, :] <= 0 cjunkid = sum(junkid) if cjunkid.any(): jspectra[ich, freq_dc, junkid.nonzero()] = ( jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 #print(jspectra.shape) if jcspectraExist: for ip in range(num_pairs): yy = jcspectra[ip, ind_vel, :] jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) #print(jspectra.shape) if not self.dataOut.ByLags: self.dataOut.data_spc = jspectra self.dataOut.data_cspc = jcspectra else: if jcspectraExist is True: return jspectra,jcspectra else: #print(jspectra.shape) return jspectra def run(self, dataOut, mode=2): self.dataOut = dataOut if not dataOut.ByLags: self.remover(mode) else: for i in range(self.dataOut.nLags): self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,i] if self.dataOut.dataLag_cspc is not None: self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,i] else: self.dataOut.data_cspc = None ##self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,i] Check! #print("HERE") if self.dataOut.dataLag_cspc is not None: self.dataOut.dataLag_spc[:,:,:,i],self.dataOut.dataLag_cspc[:,:,:,i]=self.remover(mode) else: self.dataOut.dataLag_spc[:,:,:,i]=self.remover(mode) #exit() self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot] if self.jcspectraExist is True: self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot] ##self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot] Check! return self.dataOut class removeDCLagFlip(Operation): ''' Written by R. Flores ''' #CHANGES MADE ONLY FOR MODE 2 AND NOT CONSIDERING CSPC def remover(self,mode): jspectra = self.dataOut.data_spc jcspectra = self.dataOut.data_cspc num_chan = jspectra.shape[0] num_hei = jspectra.shape[2] if jcspectra is not None: jcspectraExist = True num_pairs = jcspectra.shape[0] else: jcspectraExist = False freq_dc = int(jspectra.shape[1] / 2) ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc ind_vel = ind_vel.astype(int) if ind_vel[0] < 0: ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof if mode == 1: jspectra[:, freq_dc, :] = ( jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION if jcspectraExist: jcspectra[:, freq_dc, :] = ( jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 if mode == 2: vel = numpy.array([-2, -1, 1, 2]) xx = numpy.zeros([4, 4]) for fil in range(4): xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) xx_inv = numpy.linalg.inv(xx) xx_aux = xx_inv[0, :] for ich in range(num_chan): if ich in self.dataOut.FlipChannels: ind_freq_flip=[-1, -2, 1, 2] yy = jspectra[ich, ind_freq_flip, :] jspectra[ich, 0, :] = numpy.dot(xx_aux, yy) junkid = jspectra[ich, 0, :] <= 0 cjunkid = sum(junkid) if cjunkid.any(): jspectra[ich, 0, junkid.nonzero()] = ( jspectra[ich, ind_freq_flip[1], junkid] + jspectra[ich, ind_freq_flip[2], junkid]) / 2 else: yy = jspectra[ich, ind_vel, :] jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) junkid = jspectra[ich, freq_dc, :] <= 0 cjunkid = sum(junkid) if cjunkid.any(): jspectra[ich, freq_dc, junkid.nonzero()] = ( jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 if jcspectraExist: for ip in range(num_pairs): yy = jcspectra[ip, ind_vel, :] jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) yy = jcspectra[ip, ind_freq_flip, :] jcspectra[ip, 0, :] = numpy.dot(xx_aux, yy) if not self.dataOut.ByLags: self.dataOut.data_spc = jspectra self.dataOut.data_cspc = jcspectra else: return jspectra,jcspectra def run(self, dataOut, mode=2): #print("***********************************Remove DC***********************************") ##print(dataOut.FlipChannels) #exit(1) self.dataOut = dataOut if not dataOut.ByLags: self.remover(mode) else: for i in range(self.dataOut.DPL): self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,i] self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,i] self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,i] self.dataOut.dataLag_spc[:,:,:,i],self.dataOut.dataLag_cspc[:,:,:,i]=self.remover(mode) self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot] self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot] self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot] return self.dataOut class removeHighValuesFreq(Operation): def removeByLag(self,nkill,nChannels,nHeights,data): for i in range(nChannels): for j in range(nHeights): buffer=numpy.copy(data[i,:,j]) sortdata=sorted(buffer) avg=numpy.mean(sortdata[:-nkill]) sortID=buffer.argsort() for k in list(sortID[-nkill:]): buffer[k]=avg data[i,:,j]=numpy.copy(buffer) def run(self,dataOut,nkill=3): for i in range(dataOut.DPL): data=dataOut.dataLag_spc[:,:,:,i] self.removeByLag(nkill,dataOut.nChannels,dataOut.nHeights,data) dataOut.dataLag_spc[:,:,:,i]=data return dataOut class removeDC(Operation): def run(self, dataOut, mode=2): self.dataOut = dataOut jspectra = self.dataOut.data_spc jcspectra = self.dataOut.data_cspc num_chan = jspectra.shape[0] num_hei = jspectra.shape[2] if jcspectra is not None: jcspectraExist = True num_pairs = jcspectra.shape[0] else: jcspectraExist = False freq_dc = int(jspectra.shape[1] / 2) ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc ind_vel = ind_vel.astype(int) if ind_vel[0] < 0: ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof if mode == 1: jspectra[:, freq_dc, :] = ( jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION if jcspectraExist: jcspectra[:, freq_dc, :] = ( jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 if mode == 2: vel = numpy.array([-2, -1, 1, 2]) xx = numpy.zeros([4, 4]) for fil in range(4): xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) xx_inv = numpy.linalg.inv(xx) xx_aux = xx_inv[0, :] for ich in range(num_chan): yy = jspectra[ich, ind_vel, :] jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) junkid = jspectra[ich, freq_dc, :] <= 0 cjunkid = sum(junkid) if cjunkid.any(): jspectra[ich, freq_dc, junkid.nonzero()] = ( jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 if jcspectraExist: for ip in range(num_pairs): yy = jcspectra[ip, ind_vel, :] jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) self.dataOut.data_spc = jspectra self.dataOut.data_cspc = jcspectra return self.dataOut class removeInterferenceLag(Operation): def removeInterference2(self): cspc = self.dataOut.data_cspc spc = self.dataOut.data_spc Heights = numpy.arange(cspc.shape[2]) realCspc = numpy.abs(cspc) for i in range(cspc.shape[0]): LinePower= numpy.sum(realCspc[i], axis=0) Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] #InterferenceSum[0]*=2 #print("sum",InterferenceSum) #print("min",InterferenceThresholdMin) InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) if len(InterferenceRange) count_hei): nhei_interf = count_hei if (offhei_interf == None): offhei_interf = 0 ind_hei = list(range(num_hei)) # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 mask_prof = numpy.asarray(list(range(num_prof))) num_mask_prof = mask_prof.size comp_mask_prof = [0, num_prof / 2] # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): jnoise = numpy.nan noise_exist = jnoise[0] < numpy.Inf # Subrutina de Remocion de la Interferencia for ich in range(num_channel): # Se ordena los espectros segun su potencia (menor a mayor) #print(mask_prof) #exit() power = jspectra[ich, mask_prof, :] power = power[:, hei_interf] power = power.sum(axis=0) psort = power.ravel().argsort() # Se estima la interferencia promedio en los Espectros de Potencia empleando junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( offhei_interf, nhei_interf + offhei_interf))]]] #exit() if noise_exist: # tmp_noise = jnoise[ich] / num_prof tmp_noise = jnoise[ich] junkspc_interf = junkspc_interf - tmp_noise #junkspc_interf[:,comp_mask_prof] = 0 jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf jspc_interf = jspc_interf.transpose() # Calculando el espectro de interferencia promedio noiseid = numpy.where( jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) noiseid = noiseid[0] cnoiseid = noiseid.size interfid = numpy.where( jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) interfid = interfid[0] cinterfid = interfid.size if (cnoiseid > 0): jspc_interf[noiseid] = 0 # Expandiendo los perfiles a limpiar if (cinterfid > 0): new_interfid = ( numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof new_interfid = numpy.asarray(new_interfid) new_interfid = {x for x in new_interfid} new_interfid = numpy.array(list(new_interfid)) new_cinterfid = new_interfid.size else: new_cinterfid = 0 for ip in range(new_cinterfid): ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() jspc_interf[new_interfid[ip] ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] jspectra[ich, :, ind_hei] = jspectra[ich, :, ind_hei] - jspc_interf # Corregir indices # Removiendo la interferencia del punto de mayor interferencia ListAux = jspc_interf[mask_prof].tolist() maxid = ListAux.index(max(ListAux)) if cinterfid > 0: for ip in range(cinterfid * (interf == 2) - 1): ind = (jspectra[ich, interfid[ip], :] < tmp_noise * (1 + 1 / numpy.sqrt(num_incoh))).nonzero() cind = len(ind) if (cind > 0): jspectra[ich, interfid[ip], ind] = tmp_noise * \ (1 + (numpy.random.uniform(cind) - 0.5) / numpy.sqrt(num_incoh)) ind = numpy.array([-2, -1, 1, 2]) xx = numpy.zeros([4, 4]) for id1 in range(4): xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) xx_inv = numpy.linalg.inv(xx) xx = xx_inv[:, 0] ind = (ind + maxid + num_mask_prof) % num_mask_prof yy = jspectra[ich, mask_prof[ind], :] jspectra[ich, mask_prof[maxid], :] = numpy.dot( yy.transpose(), xx) indAux = (jspectra[ich, :, :] < tmp_noise * (1 - 1 / numpy.sqrt(num_incoh))).nonzero() jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ (1 - 1 / numpy.sqrt(num_incoh)) # Remocion de Interferencia en el Cross Spectra if jcspectra is None: return jspectra, jcspectra num_pairs = int(jcspectra.size / (num_prof * num_hei)) jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) for ip in range(num_pairs): #------------------------------------------- cspower = numpy.abs(jcspectra[ip, mask_prof, :]) cspower = cspower[:, hei_interf] cspower = cspower.sum(axis=0) cspsort = cspower.ravel().argsort() junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( offhei_interf, nhei_interf + offhei_interf))]]] junkcspc_interf = junkcspc_interf.transpose() jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() median_real = int(numpy.median(numpy.real( junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) median_imag = int(numpy.median(numpy.imag( junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) comp_mask_prof = [int(e) for e in comp_mask_prof] junkcspc_interf[comp_mask_prof, :] = numpy.complex( median_real, median_imag) for iprof in range(num_prof): ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] # Removiendo la Interferencia jcspectra[ip, :, ind_hei] = jcspectra[ip, :, ind_hei] - jcspc_interf ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() maxid = ListAux.index(max(ListAux)) ind = numpy.array([-2, -1, 1, 2]) xx = numpy.zeros([4, 4]) for id1 in range(4): xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) xx_inv = numpy.linalg.inv(xx) xx = xx_inv[:, 0] ind = (ind + maxid + num_mask_prof) % num_mask_prof yy = jcspectra[ip, mask_prof[ind], :] jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) # Guardar Resultados if not self.dataOut.ByLags: self.dataOut.data_spc = jspectra self.dataOut.data_cspc = jcspectra else: return jspectra,jcspectra return 1 def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): self.dataOut = dataOut if not dataOut.ByLags: if mode == 1: self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) elif mode == 2: self.removeInterference2() else: for i in range(self.dataOut.DPL): #print("BEFORE") self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,i] #print(i) #print(self.dataOut.dataLag_spc[0,0,0,i]) #print("AFTER") self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,i] self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,i] if mode == 1: #print(self.dataOut.dataLag_spc[0,:,22,0]) self.dataOut.dataLag_spc[:,:,:,i],self.dataOut.dataLag_cspc[:,:,:,i]=self.removeInterference(interf, hei_interf, nhei_interf, offhei_interf) #print(self.dataOut.dataLag_spc[0,:,22,0]) #input() elif mode ==2: self.dataOut.dataLag_cspc[:,:,:,i]=self.removeInterference2() self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot] self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot] self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot] return self.dataOut class removeInterference(Operation): def removeInterference2(self): cspc = self.dataOut.data_cspc spc = self.dataOut.data_spc Heights = numpy.arange(cspc.shape[2]) realCspc = numpy.abs(cspc) for i in range(cspc.shape[0]): LinePower= numpy.sum(realCspc[i], axis=0) Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) if len(InterferenceRange) count_hei): nhei_interf = count_hei if (offhei_interf == None): offhei_interf = 0 ind_hei = list(range(num_hei)) # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 mask_prof = numpy.asarray(list(range(num_prof))) num_mask_prof = mask_prof.size comp_mask_prof = [0, num_prof / 2] # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): jnoise = numpy.nan noise_exist = jnoise[0] < numpy.Inf # Subrutina de Remocion de la Interferencia for ich in range(num_channel): # Se ordena los espectros segun su potencia (menor a mayor) power = jspectra[ich, mask_prof, :] power = power[:, hei_interf] power = power.sum(axis=0) psort = power.ravel().argsort() # Se estima la interferencia promedio en los Espectros de Potencia empleando junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( offhei_interf, nhei_interf + offhei_interf))]]] if noise_exist: # tmp_noise = jnoise[ich] / num_prof tmp_noise = jnoise[ich] junkspc_interf = junkspc_interf - tmp_noise #junkspc_interf[:,comp_mask_prof] = 0 jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf jspc_interf = jspc_interf.transpose() # Calculando el espectro de interferencia promedio noiseid = numpy.where( jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) noiseid = noiseid[0] cnoiseid = noiseid.size interfid = numpy.where( jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) interfid = interfid[0] cinterfid = interfid.size if (cnoiseid > 0): jspc_interf[noiseid] = 0 # Expandiendo los perfiles a limpiar if (cinterfid > 0): new_interfid = ( numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof new_interfid = numpy.asarray(new_interfid) new_interfid = {x for x in new_interfid} new_interfid = numpy.array(list(new_interfid)) new_cinterfid = new_interfid.size else: new_cinterfid = 0 for ip in range(new_cinterfid): ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() jspc_interf[new_interfid[ip] ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] jspectra[ich, :, ind_hei] = jspectra[ich, :, ind_hei] - jspc_interf # Corregir indices # Removiendo la interferencia del punto de mayor interferencia ListAux = jspc_interf[mask_prof].tolist() maxid = ListAux.index(max(ListAux)) if cinterfid > 0: for ip in range(cinterfid * (interf == 2) - 1): ind = (jspectra[ich, interfid[ip], :] < tmp_noise * (1 + 1 / numpy.sqrt(num_incoh))).nonzero() cind = len(ind) if (cind > 0): jspectra[ich, interfid[ip], ind] = tmp_noise * \ (1 + (numpy.random.uniform(cind) - 0.5) / numpy.sqrt(num_incoh)) ind = numpy.array([-2, -1, 1, 2]) xx = numpy.zeros([4, 4]) for id1 in range(4): xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) xx_inv = numpy.linalg.inv(xx) xx = xx_inv[:, 0] ind = (ind + maxid + num_mask_prof) % num_mask_prof yy = jspectra[ich, mask_prof[ind], :] jspectra[ich, mask_prof[maxid], :] = numpy.dot( yy.transpose(), xx) indAux = (jspectra[ich, :, :] < tmp_noise * (1 - 1 / numpy.sqrt(num_incoh))).nonzero() jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ (1 - 1 / numpy.sqrt(num_incoh)) # Remocion de Interferencia en el Cross Spectra if jcspectra is None: return jspectra, jcspectra num_pairs = int(jcspectra.size / (num_prof * num_hei)) jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) for ip in range(num_pairs): #------------------------------------------- cspower = numpy.abs(jcspectra[ip, mask_prof, :]) cspower = cspower[:, hei_interf] cspower = cspower.sum(axis=0) cspsort = cspower.ravel().argsort() junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( offhei_interf, nhei_interf + offhei_interf))]]] junkcspc_interf = junkcspc_interf.transpose() jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() median_real = int(numpy.median(numpy.real( junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) median_imag = int(numpy.median(numpy.imag( junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) comp_mask_prof = [int(e) for e in comp_mask_prof] junkcspc_interf[comp_mask_prof, :] = numpy.complex( median_real, median_imag) for iprof in range(num_prof): ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] # Removiendo la Interferencia jcspectra[ip, :, ind_hei] = jcspectra[ip, :, ind_hei] - jcspc_interf ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() maxid = ListAux.index(max(ListAux)) ind = numpy.array([-2, -1, 1, 2]) xx = numpy.zeros([4, 4]) for id1 in range(4): xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) xx_inv = numpy.linalg.inv(xx) xx = xx_inv[:, 0] ind = (ind + maxid + num_mask_prof) % num_mask_prof yy = jcspectra[ip, mask_prof[ind], :] jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) # Guardar Resultados self.dataOut.data_spc = jspectra self.dataOut.data_cspc = jcspectra return 1 def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): self.dataOut = dataOut if mode == 1: self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) elif mode == 2: self.removeInterference2() return self.dataOut class IntegrationFaradaySpectra(Operation): ''' Written by R. Flores ''' __profIndex = 0 __withOverapping = False __byTime = False __initime = None __lastdatatime = None __integrationtime = None __buffer_spc = None __buffer_cspc = None __buffer_dc = None __dataReady = False __timeInterval = None n = None def __init__(self): Operation.__init__(self) def setup(self, n=None, timeInterval=None, overlapping=False): """ Set the parameters of the integration class. Inputs: n : Number of coherent integrations timeInterval : Time of integration. If the parameter "n" is selected this one does not work overlapping : """ self.__initime = None self.__lastdatatime = 0 self.__buffer_spc = [] self.__buffer_cspc = [] self.__buffer_dc = 0 self.__profIndex = 0 self.__dataReady = False self.__byTime = False if n is None and timeInterval is None: raise ValueError("n or timeInterval should be specified ...") if n is not None: self.n = int(n) else: self.__integrationtime = int(timeInterval) self.n = None self.__byTime = True def putData(self, data_spc, data_cspc, data_dc): """ Add a profile to the __buffer_spc and increase in one the __profileIndex """ self.__buffer_spc.append(data_spc) if data_cspc is None: self.__buffer_cspc = None else: self.__buffer_cspc.append(data_cspc) if data_dc is None: self.__buffer_dc = None else: self.__buffer_dc += data_dc self.__profIndex += 1 return def hildebrand_sekhon_Integration(self,data,navg): sortdata = numpy.sort(data, axis=None) sortID=data.argsort() lenOfData = len(sortdata) nums_min = lenOfData*0.75 if nums_min <= 5: nums_min = 5 sump = 0. sumq = 0. j = 0 cont = 1 while((cont == 1)and(j < lenOfData)): sump += sortdata[j] sumq += sortdata[j]**2 if j > nums_min: rtest = float(j)/(j-1) + 1.0/navg if ((sumq*j) > (rtest*sump**2)): j = j - 1 sump = sump - sortdata[j] sumq = sumq - sortdata[j]**2 cont = 0 j += 1 #lnoise = sump / j return j,sortID def pushData(self): """ Return the sum of the last profiles and the profiles used in the sum. Affected: self.__profileIndex """ bufferH=None buffer=None buffer1=None buffer_cspc=None self.__buffer_spc=numpy.array(self.__buffer_spc) self.__buffer_cspc=numpy.array(self.__buffer_cspc) freq_dc = int(self.__buffer_spc.shape[2] / 2) #print("FREQ_DC",freq_dc) #print(self.__buffer_spc[:,1,5,37,0]) #lag_array=[0,2,4,6,8,10,12,14,16,18,20] for l in range(self.DPL):#dataOut.DPL): #breakFlag=False for k in range(7,self.nHeights): buffer_cspc=numpy.copy(self.__buffer_cspc[:,0,:,k,l]) outliers_IDs_cspc=[] cspc_outliers_exist=False #indexmin_cspc=0 for i in range(self.nChannels):#dataOut.nChannels): if i==1 and k >= self.nHeights-2*l: #breakFlag=True continue #pass else: buffer1=numpy.copy(self.__buffer_spc[:,i,:,k,l]) indexes=[] #sortIDs=[] outliers_IDs=[] for j in range(self.nProfiles): if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 continue if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 continue buffer=buffer1[:,j] #index,sortID=self.hildebrand_sekhon_Integration(buffer,1) index=int(_HS_algorithm.HS_algorithm(numpy.sort(buffer, axis=None),1)) sortID = buffer.argsort() ''' if i==1 and l==0 and k==37: print("j",j) print("INDEX",index) print(sortID[index:]) if j==5: aa=numpy.mean(buffer,axis=0) bb=numpy.sort(buffer) print(buffer) print(aa) print(bb[-1]) ''' indexes.append(index) #sortIDs.append(sortID) outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) outliers_IDs=numpy.array(outliers_IDs) outliers_IDs=outliers_IDs.ravel() outliers_IDs=numpy.unique(outliers_IDs) outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) indexes=numpy.array(indexes) indexmin=numpy.min(indexes) if indexmin != buffer1.shape[0]: cspc_outliers_exist=True ###sortdata=numpy.sort(buffer1,axis=0) ###avg2=numpy.mean(sortdata[:indexmin,:],axis=0) lt=outliers_IDs avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) ''' if k==37 and i==1 and l==0: #cc= print("index_min",indexmin) print("outliers_ID",lt) print("AVG",avg[5]) print("AVG_2",avg2[5]) ''' for p in list(outliers_IDs): buffer1[p,:]=avg self.__buffer_spc[:,i,:,k,l]=numpy.copy(buffer1) ###cspc IDs #indexmin_cspc+=indexmin_cspc outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) #if not breakFlag: outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) if cspc_outliers_exist: #sortdata=numpy.sort(buffer_cspc,axis=0) #avg=numpy.mean(sortdata[:indexmin_cpsc,:],axis=0) lt=outliers_IDs_cspc avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) for p in list(outliers_IDs_cspc): buffer_cspc[p,:]=avg self.__buffer_cspc[:,0,:,k,l]=numpy.copy(buffer_cspc) #else: #break buffer=None bufferH=None buffer1=None buffer_cspc=None #print("cpsc",self.__buffer_cspc[:,0,0,0,0]) #print(self.__profIndex) #exit() buffer=None #print(self.__buffer_spc[:,1,3,20,0]) #print(self.__buffer_spc[:,1,5,37,0]) data_spc = numpy.sum(self.__buffer_spc,axis=0) data_cspc = numpy.sum(self.__buffer_cspc,axis=0) #print(numpy.shape(data_spc)) #data_spc[1,4,20,0]=numpy.nan #data_cspc = self.__buffer_cspc data_dc = self.__buffer_dc n = self.__profIndex self.__buffer_spc = [] self.__buffer_cspc = [] self.__buffer_dc = 0 self.__profIndex = 0 return data_spc, data_cspc, data_dc, n def byProfiles(self, *args): self.__dataReady = False avgdata_spc = None avgdata_cspc = None avgdata_dc = None self.putData(*args) if self.__profIndex == self.n: avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() self.n = n self.__dataReady = True return avgdata_spc, avgdata_cspc, avgdata_dc def byTime(self, datatime, *args): self.__dataReady = False avgdata_spc = None avgdata_cspc = None avgdata_dc = None self.putData(*args) if (datatime - self.__initime) >= self.__integrationtime: avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() self.n = n self.__dataReady = True return avgdata_spc, avgdata_cspc, avgdata_dc def integrate(self, datatime, *args): if self.__profIndex == 0: self.__initime = datatime if self.__byTime: avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( datatime, *args) else: avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) if not self.__dataReady: return None, None, None, None return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc def run(self, dataOut, n=None, timeInterval=None, overlapping=False): if n == 1: dataOut.VelRange = dataOut.getVelRange(0) return dataOut #print("holo") dataOut.flagNoData = True if not self.isConfig: self.setup(n, timeInterval, overlapping) self.isConfig = True if not dataOut.ByLags: avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, dataOut.data_spc, dataOut.data_cspc, dataOut.data_dc) else: self.nProfiles=dataOut.nProfiles self.nChannels=dataOut.nChannels self.nHeights=dataOut.nHeights self.DPL=dataOut.DPL avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, dataOut.dataLag_spc, dataOut.dataLag_cspc, dataOut.dataLag_dc) if self.__dataReady: if not dataOut.ByLags: dataOut.data_spc = avgdata_spc dataOut.data_cspc = avgdata_cspc dataOut.data_dc = avgdata_dc else: dataOut.dataLag_spc = avgdata_spc dataOut.dataLag_cspc = avgdata_cspc dataOut.dataLag_dc = avgdata_dc dataOut.data_spc=dataOut.dataLag_spc[:,:,:,dataOut.LagPlot] dataOut.data_cspc=dataOut.dataLag_cspc[:,:,:,dataOut.LagPlot] dataOut.data_dc=dataOut.dataLag_dc[:,:,dataOut.LagPlot] dataOut.VelRange = dataOut.getVelRange(0) dataOut.nIncohInt *= self.n dataOut.utctime = avgdatatime dataOut.flagNoData = False return dataOut class IntegrationFaradaySpectra2(Operation): ''' Written by R. Flores ''' __profIndex = 0 __withOverapping = False __byTime = False __initime = None __lastdatatime = None __integrationtime = None __buffer_spc = None __buffer_cspc = None __buffer_dc = None __dataReady = False __timeInterval = None n = None def __init__(self): Operation.__init__(self) def setup(self, n=None, timeInterval=None, overlapping=False): """ Set the parameters of the integration class. Inputs: n : Number of coherent integrations timeInterval : Time of integration. If the parameter "n" is selected this one does not work overlapping : """ self.__initime = None self.__lastdatatime = 0 self.__buffer_spc = None self.__buffer_cspc = None self.__buffer_dc = 0 self.__profIndex = 0 self.__dataReady = False self.__byTime = False if n is None and timeInterval is None: raise ValueError("n or timeInterval should be specified ...") if n is not None: self.n = int(n) else: self.__integrationtime = int(timeInterval) self.n = None self.__byTime = True def putData(self, data_spc, data_cspc, data_dc): """ Add a profile to the __buffer_spc and increase in one the __profileIndex """ #print(numpy.shape(self.__buffer_spc)) ##print(numpy.shape(data_spc)) #self.__buffer_spc = numpy.insert(self.__buffer_spc,[],data_spc,axis=0) self.__buffer_spc[self.__profIndex,:]=data_spc[:] ##self.__buffer_spc.append(data_spc) #self.__buffer_spc = numpy.array(self.__buffer_spc) #print(numpy.shape(self.__buffer_spc)) #print("bytes",sys.getsizeof(self.__buffer_spc)) #print("bytes",asizeof(self.__buffer_spc)) if data_cspc is None: self.__buffer_cspc = None else: self.__buffer_cspc[self.__profIndex,:]=data_cspc[:] if data_dc is None: self.__buffer_dc = None else: self.__buffer_dc += data_dc self.__profIndex += 1 return def hildebrand_sekhon_Integration(self,data,navg): sortdata = numpy.sort(data, axis=None) sortID=data.argsort() lenOfData = len(sortdata) nums_min = lenOfData*0.75 if nums_min <= 5: nums_min = 5 sump = 0. sumq = 0. j = 0 cont = 1 while((cont == 1)and(j < lenOfData)): sump += sortdata[j] sumq += sortdata[j]**2 if j > nums_min: rtest = float(j)/(j-1) + 1.0/navg if ((sumq*j) > (rtest*sump**2)): j = j - 1 sump = sump - sortdata[j] sumq = sumq - sortdata[j]**2 cont = 0 j += 1 #lnoise = sump / j return j,sortID def pushData_V0(self): """ Return the sum of the last profiles and the profiles used in the sum. Affected: self.__profileIndex """ bufferH=None buffer=None buffer1=None buffer_cspc=None self.__buffer_spc=numpy.array(self.__buffer_spc) if self.__buffer_cspc is not None: self.__buffer_cspc=numpy.array(self.__buffer_cspc) freq_dc = int(self.__buffer_spc.shape[2] / 2) #print("FREQ_DC",freq_dc) #print(self.__buffer_spc[:,1,5,37,0]) #lag_array=[0,2,4,6,8,10,12,14,16,18,20] if self.nLags == 11: h0 = 7 elif self.nLags == 16: h0 = 180 ''' import matplotlib.pyplot as plt plt.plot(self.__buffer_spc[:,0,freq_dc,33,0],marker='*') plt.ylim((0,700000)) plt.show() import time time.sleep(60) exit(1) ''' #''' import matplotlib.pyplot as plt #plt.plot(self.__buffer_spc[:,0,freq_dc-2,33,1],marker='*') plt.plot(sorted(self.__buffer_spc[:,0,freq_dc-2,33,1]),marker='*') plt.ylim((0,1.1*1.e6)) plt.show() import time time.sleep(60) exit(1) #''' print(self.nLags) ''' if self.nLags == 16: self.nLags = 0 #exit(1) ''' for l in range(self.nLags):#dataOut.DPL): #breakFlag=False for k in range(7,self.nHeights): if self.__buffer_cspc is not None: buffer_cspc=numpy.copy(self.__buffer_cspc[:,0,:,k,l]) outliers_IDs_cspc=[] cspc_outliers_exist=False #indexmin_cspc=0 for i in range(2): #for i in range(self.nChannels):#dataOut.nChannels): #if self.TrueLags: #print("HERE") if i==1 and k >= self.nHeights-2*l and self.TrueLags: #breakFlag=True continue #pass else: buffer1=numpy.copy(self.__buffer_spc[:,i,:,k,l]) indexes=[] #sortIDs=[] outliers_IDs=[] for j in range(self.nProfiles): if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 continue if self.FlipChannelsExist: if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 continue else: if i==1 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 continue #buffer=buffer1[:,j] buffer=(buffer1[:,j]).real ''' if self.nLags ==16 and l!=0: print(buffer) exit(1) ''' #index,sortID=self.hildebrand_sekhon_Integration(buffer,1) index=int(_HS_algorithm.HS_algorithm(numpy.sort(buffer, axis=None),1)) sortID = buffer.argsort() indexes.append(index) #sortIDs.append(sortID) outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) outliers_IDs=numpy.array(outliers_IDs) outliers_IDs=outliers_IDs.ravel() outliers_IDs=numpy.unique(outliers_IDs) outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) indexes=numpy.array(indexes) indexmin=numpy.min(indexes) if indexmin != buffer1.shape[0]: cspc_outliers_exist=True ###sortdata=numpy.sort(buffer1,axis=0) ###avg2=numpy.mean(sortdata[:indexmin,:],axis=0) lt=outliers_IDs avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) for p in list(outliers_IDs): buffer1[p,:]=avg self.__buffer_spc[:,i,:,k,l]=numpy.copy(buffer1) ###cspc IDs #indexmin_cspc+=indexmin_cspc if self.__buffer_cspc is not None: outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) #if not breakFlag: #print(outliers_IDs_cspc) if self.__buffer_cspc is not None: outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) if cspc_outliers_exist: #sortdata=numpy.sort(buffer_cspc,axis=0) #avg=numpy.mean(sortdata[:indexmin_cpsc,:],axis=0) lt=outliers_IDs_cspc avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) for p in list(outliers_IDs_cspc): buffer_cspc[p,:]=avg self.__buffer_cspc[:,0,:,k,l]=numpy.copy(buffer_cspc) #else: #break #''' import matplotlib.pyplot as plt plt.plot(self.__buffer_spc[:,0,freq_dc-2,33,1],marker='*') plt.ylim((0,1.1*1.e6)) plt.show() import time time.sleep(60) exit(1) #''' buffer=None bufferH=None buffer1=None buffer_cspc=None #print("cpsc",self.__buffer_cspc[:,0,0,0,0]) #print(self.__profIndex) #exit() ''' if self.nLags == 16: print(self.__buffer_spc[:,0,0,0,2]) exit(1) ''' buffer=None #print(self.__buffer_spc[:,1,3,20,0]) #print(self.__buffer_spc[:,1,5,37,0]) data_spc = numpy.sum(self.__buffer_spc,axis=0) if self.__buffer_cspc is not None: data_cspc = numpy.sum(self.__buffer_cspc,axis=0) else: data_cspc = None #print(numpy.shape(data_spc)) #data_spc[1,4,20,0]=numpy.nan data_dc = self.__buffer_dc n = self.__profIndex self.__buffer_spc = None self.__buffer_cspc = None self.__buffer_dc = 0 self.__profIndex = 0 return data_spc, data_cspc, data_dc, n def pushData(self): """ Return the sum of the last profiles and the profiles used in the sum. Affected: self.__profileIndex """ bufferH=None buffer=None buffer1=None buffer_cspc=None self.__buffer_spc=numpy.array(self.__buffer_spc) if self.__buffer_cspc is not None: self.__buffer_cspc=numpy.array(self.__buffer_cspc) freq_dc = int(self.__buffer_spc.shape[2] / 2) #print("FREQ_DC",freq_dc) #print(self.__buffer_spc[:,1,5,37,0]) #lag_array=[0,2,4,6,8,10,12,14,16,18,20] if self.nLags == 11: h0 = 7 elif self.nLags == 16: h0 = 180 ''' import matplotlib.pyplot as plt #plt.plot(self.__buffer_spc[:,0,freq_dc-2,33,1],marker='*') aux = self.__buffer_spc[:,0,freq_dc-2,66,1] a,b=self.hildebrand_sekhon_Integration(numpy.abs(aux),1) print(a) plt.plot(sorted(aux),marker='*') plt.vlines(x=a,ymin=min(aux),ymax=max(aux)) #plt.ylim((-35000,65000)) plt.show() import time time.sleep(60) exit(1) ''' #print(self.nLags) ''' if self.nLags == 16: self.nLags = 3 #exit(1) ''' #print(self.nHeights) #exit(1) for l in range(self.nLags):#dataOut.DPL): #if DP --> nLags=11, elif HP --> nLags=16 #breakFlag=False for k in range(7,self.nHeights): if self.__buffer_cspc is not None: buffer_cspc=numpy.copy(self.__buffer_cspc[:,0,:,k,l]) outliers_IDs_cspc=[] cspc_outliers_exist=False #indexmin_cspc=0 for i in range(2): #Solo nos interesa los 2 primeros canales que son los canales con señal #for i in range(self.nChannels):#dataOut.nChannels): #if self.TrueLags: #print("HERE") ''' if i==1 and k >= self.nHeights-2*l and self.TrueLags: #breakFlag=True print("here") exit(1) continue ''' #pass #else: buffer1=numpy.copy(self.__buffer_spc[:,i,:,k,l]) indexes=[] #sortIDs=[] outliers_IDs=[] for j in range(self.nProfiles): if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 continue if self.FlipChannelsExist: if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 continue else: if i==1 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 continue #buffer=buffer1[:,j] buffer=(buffer1[:,j]) ''' if self.nLags ==16 and l!=0: print(buffer) exit(1) ''' #index,sortID=self.hildebrand_sekhon_Integration(numpy.abs(buffer),1) index=int(_HS_algorithm.HS_algorithm(numpy.sort(buffer, axis=None),1)) sortID = buffer.argsort() indexes.append(index) #sortIDs.append(sortID) outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) sortdata=numpy.sort(buffer,axis=0) avg=numpy.mean(sortdata[:index],axis=0) #lt=outliers_IDs #avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) if index != buffer.shape[0]: for p in list(sortID[index:]): buffer1[p,j]=avg self.__buffer_spc[:,i,j,k,l]=numpy.copy(buffer1[:,j]) ###cspc IDs #indexmin_cspc+=indexmin_cspc if self.__buffer_cspc is not None: outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) #if not breakFlag: #print(outliers_IDs_cspc) if self.__buffer_cspc is not None: outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) if cspc_outliers_exist: #sortdata=numpy.sort(buffer_cspc,axis=0) #avg=numpy.mean(sortdata[:indexmin_cpsc,:],axis=0) lt=outliers_IDs_cspc avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) for p in list(outliers_IDs_cspc): buffer_cspc[p,:]=avg self.__buffer_cspc[:,0,:,k,l]=numpy.copy(buffer_cspc) #else: #break ''' import matplotlib.pyplot as plt plt.plot(sorted(self.__buffer_spc[:,0,freq_dc-2,66,1]),marker='*') #plt.ylim((0,1.1*1.e6)) plt.ylim((-30000,65000)) plt.show() import time time.sleep(60) exit(1) ''' buffer=None bufferH=None buffer1=None buffer_cspc=None #print("cpsc",self.__buffer_cspc[:,0,0,0,0]) #print(self.__profIndex) #exit() ''' if self.nLags == 16: print(self.__buffer_spc[:,0,0,0,2]) exit(1) ''' buffer=None #print(self.__buffer_spc[:,1,3,20,0]) #print(self.__buffer_spc[:,1,5,37,0]) data_spc = numpy.sum(self.__buffer_spc,axis=0) if self.__buffer_cspc is not None: data_cspc = numpy.sum(self.__buffer_cspc,axis=0) else: data_cspc = None #print(numpy.shape(data_spc)) #data_spc[1,4,20,0]=numpy.nan data_dc = self.__buffer_dc n = self.__profIndex self.__buffer_spc = None self.__buffer_cspc = None self.__buffer_dc = 0 self.__profIndex = 0 return data_spc, data_cspc, data_dc, n def byProfiles(self, data_spc, data_cspc, *args): self.__dataReady = False avgdata_spc = None avgdata_cspc = None avgdata_dc = None self.putData(data_spc, data_cspc, *args) if self.__profIndex == self.n: avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() self.n = n self.__dataReady = True return avgdata_spc, avgdata_cspc, avgdata_dc def byTime(self, datatime, *args): self.__dataReady = False avgdata_spc = None avgdata_cspc = None avgdata_dc = None self.putData(*args) if (datatime - self.__initime) >= self.__integrationtime: avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() self.n = n self.__dataReady = True return avgdata_spc, avgdata_cspc, avgdata_dc def integrate(self, datatime, data_spc, data_cspc, *args): if self.__profIndex == 0: self.__initime = datatime #print(data_cspc.shape) #self.__buffer_spc = numpy.empty_like(data_spc,shape=(self.n,self.nChannels,self.nProfiles,self.nHeights,self.nLags)) self.__buffer_spc = numpy.ones_like(data_spc,shape=(self.n,self.nChannels,self.nProfiles,self.nHeights,self.nLags))*numpy.NAN #print(self.__buffer_spc[0]) #print(self.__buffer_spc.dtype) #print(data_spc.dtype) if data_cspc is not None: nLags = numpy.shape(data_cspc)[-1] nCrossChannels = numpy.shape(data_cspc)[0] #self.__buffer_cspc = numpy.empty_like(data_cspc,shape=(self.n,crossChannels,self.nProfiles,self.nHeights,self.nLags)) self.__buffer_cspc = numpy.ones_like(data_cspc,shape=(self.n,nCrossChannels,self.nProfiles,self.nHeights,nLags))*numpy.NAN else: self.__buffer_cspc = None #print("HEREEEE") #print(self.__buffer_cspc.dtype) #print(data_cspc.dtype) #exit(1) if self.__byTime: avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( datatime, *args) else: avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(data_spc, data_cspc, *args) if not self.__dataReady: return None, None, None, None return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc def run(self, dataOut, n=None, timeInterval=None, overlapping=False,TrueLags=True): if n == 1: return dataOut dataOut.flagNoData = True if not self.isConfig: self.setup(n, timeInterval, overlapping) try: dataOut.FlipChannels self.FlipChannelsExist=1 except: self.FlipChannelsExist=0 self.isConfig = True self.nProfiles=dataOut.nProfiles self.nChannels=dataOut.nChannels self.nHeights=dataOut.nHeights if not dataOut.ByLags: avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, dataOut.data_spc, dataOut.data_cspc, dataOut.data_dc) else: #self.nProfiles=dataOut.nProfiles #self.nChannels=dataOut.nChannels #self.nHeights=dataOut.nHeights self.nLags=dataOut.nLags self.TrueLags=TrueLags avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, dataOut.dataLag_spc, dataOut.dataLag_cspc, dataOut.dataLag_dc) if self.__dataReady: if not dataOut.ByLags: dataOut.data_spc = avgdata_spc dataOut.data_cspc = avgdata_cspc dataOut.data_dc = avgdata_dc else: dataOut.dataLag_spc = avgdata_spc dataOut.dataLag_cspc = avgdata_cspc dataOut.dataLag_dc = avgdata_dc dataOut.data_spc=dataOut.dataLag_spc[:,:,:,dataOut.LagPlot].real if self.__buffer_cspc is not None: dataOut.data_cspc=dataOut.dataLag_cspc[:,:,:,dataOut.LagPlot] dataOut.data_dc=dataOut.dataLag_dc[:,:,dataOut.LagPlot] dataOut.nIncohInt *= self.n dataOut.utctime = avgdatatime dataOut.flagNoData = False return dataOut class IntegrationFaradaySpectra3(Operation): #This class should manage data with no lags as well ''' Written by R. Flores ''' __profIndex = 0 __withOverapping = False __byTime = False __initime = None __lastdatatime = None __integrationtime = None __buffer_spc = None __buffer_cspc = None __buffer_dc = None __dataReady = False __timeInterval = None n = None def __init__(self): Operation.__init__(self) def setup(self, n=None, timeInterval=None, overlapping=False): """ Set the parameters of the integration class. Inputs: n : Number of coherent integrations timeInterval : Time of integration. If the parameter "n" is selected this one does not work overlapping : """ self.__initime = None self.__lastdatatime = 0 self.__buffer_spc = None self.__buffer_cspc = None self.__buffer_dc = 0 self.__profIndex = 0 self.__dataReady = False self.__byTime = False if n is None and timeInterval is None: raise ValueError("n or timeInterval should be specified ...") if n is not None: self.n = int(n) else: self.__integrationtime = int(timeInterval) self.n = None self.__byTime = True def putData(self, data_spc, data_cspc, data_dc): """ Add a profile to the __buffer_spc and increase in one the __profileIndex """ #print(numpy.shape(self.__buffer_spc)) ##print(numpy.shape(data_spc)) #self.__buffer_spc = numpy.insert(self.__buffer_spc,[],data_spc,axis=0) self.__buffer_spc[self.__profIndex,:]=data_spc[:] ##self.__buffer_spc.append(data_spc) #self.__buffer_spc = numpy.array(self.__buffer_spc) #print(numpy.shape(self.__buffer_spc)) #print("bytes",sys.getsizeof(self.__buffer_spc)) #print("bytes",asizeof(self.__buffer_spc)) if self.clean_cspc: if data_cspc is None: self.__buffer_cspc = None else: self.__buffer_cspc[self.__profIndex,:]=data_cspc[:] else: self.__buffer_cspc += data_cspc if data_dc is None: self.__buffer_dc = None else: self.__buffer_dc += data_dc self.__profIndex += 1 return def hildebrand_sekhon_Integration(self,data,navg): sortdata = numpy.sort(data, axis=None) sortID=data.argsort() lenOfData = len(sortdata) nums_min = lenOfData*0.75 if nums_min <= 5: nums_min = 5 sump = 0. sumq = 0. j = 0 cont = 1 while((cont == 1)and(j < lenOfData)): sump += sortdata[j] sumq += sortdata[j]**2 if j > nums_min: rtest = float(j)/(j-1) + 1.0/navg if ((sumq*j) > (rtest*sump**2)): j = j - 1 sump = sump - sortdata[j] sumq = sumq - sortdata[j]**2 cont = 0 j += 1 #lnoise = sump / j return j,sortID def pushData_V0(self): """ Return the sum of the last profiles and the profiles used in the sum. Affected: self.__profileIndex """ bufferH=None buffer=None buffer1=None buffer_cspc=None self.__buffer_spc=numpy.array(self.__buffer_spc) if self.__buffer_cspc is not None: self.__buffer_cspc=numpy.array(self.__buffer_cspc) freq_dc = int(self.__buffer_spc.shape[2] / 2) #print("FREQ_DC",freq_dc) #print(self.__buffer_spc[:,1,5,37,0]) #lag_array=[0,2,4,6,8,10,12,14,16,18,20] if self.nLags == 11: h0 = 7 elif self.nLags == 16: h0 = 180 ''' import matplotlib.pyplot as plt plt.plot(self.__buffer_spc[:,0,freq_dc,33,0],marker='*') plt.ylim((0,700000)) plt.show() import time time.sleep(60) exit(1) ''' #''' import matplotlib.pyplot as plt #plt.plot(self.__buffer_spc[:,0,freq_dc-2,33,1],marker='*') plt.plot(sorted(self.__buffer_spc[:,0,freq_dc-2,33,1]),marker='*') plt.ylim((0,1.1*1.e6)) plt.show() import time time.sleep(60) exit(1) #''' print(self.nLags) ''' if self.nLags == 16: self.nLags = 0 #exit(1) ''' for l in range(self.nLags):#dataOut.DPL): #breakFlag=False for k in range(7,self.nHeights): if self.__buffer_cspc is not None: buffer_cspc=numpy.copy(self.__buffer_cspc[:,0,:,k,l]) outliers_IDs_cspc=[] cspc_outliers_exist=False #indexmin_cspc=0 for i in range(2): #for i in range(self.nChannels):#dataOut.nChannels): #if self.TrueLags: #print("HERE") if i==1 and k >= self.nHeights-2*l and self.TrueLags: #breakFlag=True continue #pass else: buffer1=numpy.copy(self.__buffer_spc[:,i,:,k,l]) indexes=[] #sortIDs=[] outliers_IDs=[] for j in range(self.nProfiles): if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 continue if self.FlipChannelsExist: if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 continue else: if i==1 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 continue #buffer=buffer1[:,j] buffer=(buffer1[:,j]).real ''' if self.nLags ==16 and l!=0: print(buffer) exit(1) ''' #index,sortID=self.hildebrand_sekhon_Integration(buffer,1) index=int(_HS_algorithm.HS_algorithm(numpy.sort(buffer, axis=None),1)) sortID = buffer.argsort() indexes.append(index) #sortIDs.append(sortID) outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) outliers_IDs=numpy.array(outliers_IDs) outliers_IDs=outliers_IDs.ravel() outliers_IDs=numpy.unique(outliers_IDs) outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) indexes=numpy.array(indexes) indexmin=numpy.min(indexes) if indexmin != buffer1.shape[0]: cspc_outliers_exist=True ###sortdata=numpy.sort(buffer1,axis=0) ###avg2=numpy.mean(sortdata[:indexmin,:],axis=0) lt=outliers_IDs avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) for p in list(outliers_IDs): buffer1[p,:]=avg self.__buffer_spc[:,i,:,k,l]=numpy.copy(buffer1) ###cspc IDs #indexmin_cspc+=indexmin_cspc if self.__buffer_cspc is not None: outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) #if not breakFlag: #print(outliers_IDs_cspc) if self.__buffer_cspc is not None: outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) if cspc_outliers_exist: #sortdata=numpy.sort(buffer_cspc,axis=0) #avg=numpy.mean(sortdata[:indexmin_cpsc,:],axis=0) lt=outliers_IDs_cspc avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) for p in list(outliers_IDs_cspc): buffer_cspc[p,:]=avg self.__buffer_cspc[:,0,:,k,l]=numpy.copy(buffer_cspc) #else: #break #''' import matplotlib.pyplot as plt plt.plot(self.__buffer_spc[:,0,freq_dc-2,33,1],marker='*') plt.ylim((0,1.1*1.e6)) plt.show() import time time.sleep(60) exit(1) #''' buffer=None bufferH=None buffer1=None buffer_cspc=None #print("cpsc",self.__buffer_cspc[:,0,0,0,0]) #print(self.__profIndex) #exit() ''' if self.nLags == 16: print(self.__buffer_spc[:,0,0,0,2]) exit(1) ''' buffer=None #print(self.__buffer_spc[:,1,3,20,0]) #print(self.__buffer_spc[:,1,5,37,0]) data_spc = numpy.sum(self.__buffer_spc,axis=0) if self.__buffer_cspc is not None: data_cspc = numpy.sum(self.__buffer_cspc,axis=0) else: data_cspc = None #print(numpy.shape(data_spc)) #data_spc[1,4,20,0]=numpy.nan data_dc = self.__buffer_dc n = self.__profIndex self.__buffer_spc = None self.__buffer_cspc = None self.__buffer_dc = 0 self.__profIndex = 0 return data_spc, data_cspc, data_dc, n def pushData_ByLags(self): """ Return the sum of the last profiles and the profiles used in the sum. Affected: self.__profileIndex """ bufferH=None buffer=None buffer1=None buffer_cspc=None self.__buffer_spc=numpy.array(self.__buffer_spc) if self.__buffer_cspc is not None: self.__buffer_cspc=numpy.array(self.__buffer_cspc) freq_dc = int(self.__buffer_spc.shape[2] / 2) #print("FREQ_DC",freq_dc) #print(self.__buffer_spc[:,1,5,37,0]) #lag_array=[0,2,4,6,8,10,12,14,16,18,20] if self.nLags == 11: h0 = 7 elif self.nLags == 16: h0 = 180 ''' import matplotlib.pyplot as plt #plt.plot(self.__buffer_spc[:,0,freq_dc-2,33,1],marker='*') aux = self.__buffer_spc[:,0,freq_dc-2,66,1] a,b=self.hildebrand_sekhon_Integration(numpy.abs(aux),1) print(a) plt.plot(sorted(aux),marker='*') plt.vlines(x=a,ymin=min(aux),ymax=max(aux)) #plt.ylim((-35000,65000)) plt.show() import time time.sleep(60) exit(1) ''' print(self.nLags) ''' if self.nLags == 16: self.nLags = 3 #exit(1) ''' #print(self.nHeights) #exit(1) for l in range(self.nLags):#dataOut.DPL): #breakFlag=False for k in range(7,self.nHeights): if self.__buffer_cspc is not None: buffer_cspc=numpy.copy(self.__buffer_cspc[:,0,:,k,l]) outliers_IDs_cspc=[] cspc_outliers_exist=False #indexmin_cspc=0 for i in range(2): #for i in range(self.nChannels):#dataOut.nChannels): #if self.TrueLags: #print("HERE") ''' if i==1 and k >= self.nHeights-2*l and self.TrueLags: #breakFlag=True print("here") exit(1) continue ''' #pass #else: buffer1=numpy.copy(self.__buffer_spc[:,i,:,k,l]) indexes=[] #sortIDs=[] outliers_IDs=[] for j in range(self.nProfiles): if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 continue if self.FlipChannelsExist: if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 continue else: if i==1 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 continue #buffer=buffer1[:,j] buffer=(buffer1[:,j]) ''' if self.nLags ==16 and l!=0: print(buffer) exit(1) ''' #index,sortID=self.hildebrand_sekhon_Integration(numpy.abs(buffer),1) index=int(_HS_algorithm.HS_algorithm(numpy.sort(buffer, axis=None),1)) sortID = buffer.argsort() indexes.append(index) #sortIDs.append(sortID) outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) sortdata=numpy.sort(buffer,axis=0) avg=numpy.mean(sortdata[:index],axis=0) #lt=outliers_IDs #avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) if index != buffer.shape[0]: for p in list(sortID[index:]): buffer1[p,j]=avg self.__buffer_spc[:,i,j,k,l]=numpy.copy(buffer1[:,j]) ###cspc IDs #indexmin_cspc+=indexmin_cspc if self.__buffer_cspc is not None: outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) #if not breakFlag: #print(outliers_IDs_cspc) if self.__buffer_cspc is not None: outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) if cspc_outliers_exist: #sortdata=numpy.sort(buffer_cspc,axis=0) #avg=numpy.mean(sortdata[:indexmin_cpsc,:],axis=0) lt=outliers_IDs_cspc avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) for p in list(outliers_IDs_cspc): buffer_cspc[p,:]=avg self.__buffer_cspc[:,0,:,k,l]=numpy.copy(buffer_cspc) #else: #break ''' import matplotlib.pyplot as plt plt.plot(sorted(self.__buffer_spc[:,0,freq_dc-2,66,1]),marker='*') #plt.ylim((0,1.1*1.e6)) plt.ylim((-30000,65000)) plt.show() import time time.sleep(60) exit(1) ''' buffer=None bufferH=None buffer1=None buffer_cspc=None #print("cpsc",self.__buffer_cspc[:,0,0,0,0]) #print(self.__profIndex) #exit() ''' if self.nLags == 16: print(self.__buffer_spc[:,0,0,0,2]) exit(1) ''' buffer=None #print(self.__buffer_spc[:,1,3,20,0]) #print(self.__buffer_spc[:,1,5,37,0]) data_spc = numpy.sum(self.__buffer_spc,axis=0) if self.__buffer_cspc is not None: data_cspc = numpy.sum(self.__buffer_cspc,axis=0) else: data_cspc = None #print(numpy.shape(data_spc)) #data_spc[1,4,20,0]=numpy.nan data_dc = self.__buffer_dc n = self.__profIndex self.__buffer_spc = None self.__buffer_cspc = None self.__buffer_dc = 0 self.__profIndex = 0 return data_spc, data_cspc, data_dc, n def pushData(self): """ Return the sum of the last profiles and the profiles used in the sum. Affected: self.__profileIndex """ bufferH=None buffer=None buffer1=None buffer_cspc=None self.__buffer_spc=numpy.array(self.__buffer_spc) if self.__buffer_cspc is not None and self.clean_cspc: self.__buffer_cspc=numpy.array(self.__buffer_cspc) freq_dc = int(self.__buffer_spc.shape[2] / 2) for k in range(7,self.nHeights): if self.__buffer_cspc is not None and self.clean_cspc: buffer_cspc=numpy.copy(self.__buffer_cspc[:,0,:,k]) outliers_IDs_cspc=[] cspc_outliers_exist=False for i in range(2): #else: buffer1=numpy.copy(self.__buffer_spc[:,i,:,k]) indexes=[] #sortIDs=[] outliers_IDs=[] for j in range(self.nProfiles): if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 continue if self.FlipChannelsExist: if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 continue else: if i==1 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 continue #buffer=buffer1[:,j] buffer=(buffer1[:,j]) #index,sortID=self.hildebrand_sekhon_Integration(numpy.abs(buffer),1) index=int(_HS_algorithm.HS_algorithm(numpy.sort(buffer, axis=None),1)) sortID = buffer.argsort() indexes.append(index) #sortIDs.append(sortID) outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) sortdata=numpy.sort(buffer,axis=0) avg=numpy.mean(sortdata[:index],axis=0) #lt=outliers_IDs #avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) if index != buffer.shape[0]: for p in list(sortID[index:]): buffer1[p,j]=avg self.__buffer_spc[:,i,j,k]=numpy.copy(buffer1[:,j]) ###cspc IDs #indexmin_cspc+=indexmin_cspc if self.__buffer_cspc is not None and self.clean_cspc: outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) #if not breakFlag: #print(outliers_IDs_cspc) if self.__buffer_cspc is not None and self.clean_cspc: outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) if cspc_outliers_exist: #sortdata=numpy.sort(buffer_cspc,axis=0) #avg=numpy.mean(sortdata[:indexmin_cpsc,:],axis=0) lt=outliers_IDs_cspc avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) for p in list(outliers_IDs_cspc): buffer_cspc[p,:]=avg self.__buffer_cspc[:,0,:,k]=numpy.copy(buffer_cspc) buffer=None bufferH=None buffer1=None buffer_cspc=None buffer=None #print(self.__buffer_spc[:,1,3,20,0]) #print(self.__buffer_spc[:,1,5,37,0]) data_spc = numpy.sum(self.__buffer_spc,axis=0) if self.clean_cspc: if self.__buffer_cspc is not None: data_cspc = numpy.sum(self.__buffer_cspc,axis=0) else: data_cspc = None else: data_cspc = self.__buffer_cspc #print(numpy.shape(data_spc)) #data_spc[1,4,20,0]=numpy.nan data_dc = self.__buffer_dc n = self.__profIndex self.__buffer_spc = None if self.clean_cspc: self.__buffer_cspc = None else: self.__buffer_cspc = 0 self.__buffer_dc = 0 self.__profIndex = 0 return data_spc, data_cspc, data_dc, n def byProfiles(self, data_spc, data_cspc, *args): self.__dataReady = False avgdata_spc = None avgdata_cspc = None avgdata_dc = None self.putData(data_spc, data_cspc, *args) if self.__profIndex == self.n: if self.ByLags: avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData_ByLags() else: avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() self.n = n self.__dataReady = True return avgdata_spc, avgdata_cspc, avgdata_dc def byTime(self, datatime, *args): self.__dataReady = False avgdata_spc = None avgdata_cspc = None avgdata_dc = None self.putData(*args) if (datatime - self.__initime) >= self.__integrationtime: avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() self.n = n self.__dataReady = True return avgdata_spc, avgdata_cspc, avgdata_dc def integrate(self, datatime, data_spc, data_cspc, *args): if self.__profIndex == 0: self.__initime = datatime #print(data_cspc.shape) #self.__buffer_spc = numpy.empty_like(data_spc,shape=(self.n,self.nChannels,self.nProfiles,self.nHeights,self.nLags)) if self.ByLags: self.__buffer_spc = numpy.ones_like(data_spc,shape=(self.n,self.nChannels,self.nProfiles,self.nHeights,self.nLags))*numpy.NAN else: self.__buffer_spc = numpy.ones_like(data_spc,shape=(self.n,self.nChannels,self.nProfiles,self.nHeights))*numpy.NAN #print(self.__buffer_spc[0]) #print(self.__buffer_spc.dtype) #print(data_spc.dtype) if data_cspc is not None: nCrossChannels = numpy.shape(data_cspc)[0] if self.ByLags: nLags = numpy.shape(data_cspc)[-1] self.__buffer_cspc = numpy.ones_like(data_cspc,shape=(self.n,nCrossChannels,self.nProfiles,self.nHeights,nLags))*numpy.NAN else: if self.clean_cspc: self.__buffer_cspc = numpy.ones_like(data_cspc,shape=(self.n,nCrossChannels,self.nProfiles,self.nHeights))*numpy.NAN else: self.__buffer_cspc = 0 else: self.__buffer_cspc = None #print("HEREEEE") #print(self.__buffer_cspc.dtype) #print(data_cspc.dtype) #exit(1) if self.__byTime: avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( datatime, *args) else: avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(data_spc, data_cspc, *args) if not self.__dataReady: return None, None, None, None return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc def run(self, dataOut, n=None, timeInterval=None, overlapping=False,TrueLags=True,clean_cspc=True): if n == 1: return dataOut dataOut.flagNoData = True self.clean_cspc = clean_cspc if not self.isConfig: self.setup(n, timeInterval, overlapping) try: dataOut.FlipChannels self.FlipChannelsExist=1 except: self.FlipChannelsExist=0 self.isConfig = True self.nProfiles=dataOut.nProfiles self.nChannels=dataOut.nChannels self.nHeights=dataOut.nHeights self.ByLags = dataOut.ByLags if not dataOut.ByLags: avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, dataOut.data_spc, dataOut.data_cspc, dataOut.data_dc) else: #self.nProfiles=dataOut.nProfiles #self.nChannels=dataOut.nChannels #self.nHeights=dataOut.nHeights self.nLags=dataOut.nLags self.TrueLags=TrueLags avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, dataOut.dataLag_spc, dataOut.dataLag_cspc, dataOut.dataLag_dc) if self.__dataReady: if not dataOut.ByLags: dataOut.data_spc = avgdata_spc dataOut.data_cspc = avgdata_cspc dataOut.data_dc = avgdata_dc else: dataOut.dataLag_spc = avgdata_spc dataOut.dataLag_cspc = avgdata_cspc dataOut.dataLag_dc = avgdata_dc dataOut.data_spc=dataOut.dataLag_spc[:,:,:,dataOut.LagPlot].real if self.__buffer_cspc is not None: dataOut.data_cspc=dataOut.dataLag_cspc[:,:,:,dataOut.LagPlot] dataOut.data_dc=dataOut.dataLag_dc[:,:,dataOut.LagPlot] dataOut.nIncohInt *= self.n dataOut.utctime = avgdatatime dataOut.flagNoData = False return dataOut class IntegrationFaradaySpectraNoLags(Operation): ''' Written by R. Flores ''' __profIndex = 0 __withOverapping = False __byTime = False __initime = None __lastdatatime = None __integrationtime = None __buffer_spc = None __buffer_cspc = None __buffer_dc = None __dataReady = False __timeInterval = None n = None def __init__(self): Operation.__init__(self) def setup(self, dataOut,n=None, timeInterval=None, overlapping=False, DPL=None): """ Set the parameters of the integration class. Inputs: n : Number of coherent integrations timeInterval : Time of integration. If the parameter "n" is selected this one does not work overlapping : """ self.__initime = None self.__lastdatatime = 0 self.__buffer_spc = [] self.__buffer_cspc = [] #self.__buffer_cspc = None self.__buffer_dc = 0 self.__profIndex = 0 self.__dataReady = False self.__byTime = False #self.ByLags = dataOut.ByLags ###REDEFINIR self.ByLags = False if DPL != None: self.DPL=DPL else: #self.DPL=dataOut.DPL ###REDEFINIR self.DPL=0 if n is None and timeInterval is None: raise ValueError("n or timeInterval should be specified ...") if n is not None: self.n = int(n) else: self.__integrationtime = int(timeInterval) self.n = None self.__byTime = True def putData(self, data_spc, data_cspc, data_dc): """ Add a profile to the __buffer_spc and increase in one the __profileIndex """ self.__buffer_spc.append(data_spc) if data_cspc is None: self.__buffer_cspc = None else: self.__buffer_cspc.append(data_cspc) if data_dc is None: self.__buffer_dc = None else: self.__buffer_dc += data_dc self.__profIndex += 1 return #''' def hildebrand_sekhon_Integration(self,data,navg): sortdata = numpy.sort(data, axis=None) sortID=data.argsort() lenOfData = len(sortdata) nums_min = lenOfData*0.75 if nums_min <= 5: nums_min = 5 sump = 0. sumq = 0. j = 0 cont = 1 while((cont == 1)and(j < lenOfData)): sump += sortdata[j] sumq += sortdata[j]**2 if j > nums_min: rtest = float(j)/(j-1) + 1.0/navg #print(rtest) #print(sump) if ((sumq*j) > (rtest*sump**2)): j = j - 1 sump = sump - sortdata[j] sumq = sumq - sortdata[j]**2 cont = 0 j += 1 #lnoise = sump / j return j,sortID #''' def pushData_original_09_11_22(self): """ Return the sum of the last profiles and the profiles used in the sum. Affected: self.__profileIndex """ bufferH=None buffer=None buffer1=None buffer_cspc=None self.__buffer_spc=numpy.array(self.__buffer_spc) #self.__buffer_cspc=numpy.array(self.__buffer_cspc) if self.__buffer_cspc is not None: self.__buffer_cspc=numpy.array(self.__buffer_cspc) freq_dc = int(self.__buffer_spc.shape[2] / 2) #print("FREQ_DC",freq_dc,self.__buffer_spc.shape,self.nHeights) for k in range(7,self.nHeights): if self.__buffer_cspc is not None: buffer_cspc=numpy.copy(self.__buffer_cspc[:,:,:,k]) outliers_IDs_cspc=[] cspc_outliers_exist=False #for i in range(self.nChannels):#dataOut.nChannels): for i in range(2):#dataOut.nChannels): buffer1=numpy.copy(self.__buffer_spc[:,i,:,k]) indexes=[] #sortIDs=[] outliers_IDs=[] for j in range(self.nProfiles): if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 continue if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 continue buffer=buffer1[:,j] #if k != 100: #index=int(_HS_algorithm.HS_algorithm(numpy.sort(buffer, axis=None),1)) index,sortID=self.hildebrand_sekhon_Integration(buffer,1) #sortID = buffer.argsort() #else: #index,sortID=self.hildebrand_sekhon_Integration(buffer,1) #if k == 100: # print(k,index,sortID) # exit(1) indexes.append(index) #sortIDs.append(sortID) outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) #if k == 100: # exit(1) outliers_IDs=numpy.array(outliers_IDs) outliers_IDs=outliers_IDs.ravel() outliers_IDs=numpy.unique(outliers_IDs) outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) indexes=numpy.array(indexes) indexmin=numpy.min(indexes) if indexmin != buffer1.shape[0]: cspc_outliers_exist=True ###sortdata=numpy.sort(buffer1,axis=0) ###avg2=numpy.mean(sortdata[:indexmin,:],axis=0) lt=outliers_IDs #print("buffer1: ", numpy.sum(buffer1)) #print("outliers: ", buffer1[lt]) #print("outliers_IDs: ", outliers_IDs) avg=numpy.nanmean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) #print("avg: ", avg) for p in list(outliers_IDs): buffer1[p,:]=avg self.__buffer_spc[:,i,:,k]=numpy.copy(buffer1) ###cspc IDs #indexmin_cspc+=indexmin_cspc if self.__buffer_cspc is not None: outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) #if not breakFlag: if self.__buffer_cspc is not None: outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) if cspc_outliers_exist: #sortdata=numpy.sort(buffer_cspc,axis=0) #avg=numpy.mean(sortdata[:indexmin_cpsc,:],axis=0) lt=outliers_IDs_cspc avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) for p in list(outliers_IDs_cspc): buffer_cspc[p,:]=avg self.__buffer_cspc[:,:,:,k]=numpy.copy(buffer_cspc) #else: #break buffer=None bufferH=None buffer1=None buffer_cspc=None #print("cpsc",self.__buffer_cspc[:,0,0,0,0]) #print(self.__profIndex) #exit() buffer=None #print(self.__buffer_spc[:,1,3,20,0]) #print(self.__buffer_spc[:,1,5,37,0]) data_spc = numpy.sum(self.__buffer_spc,axis=0) print("data_spc: ", data_spc[0,:,0]) print("data_spc: ", data_spc[0,:,7]) print("shape: ", numpy.shape(data_spc)) #exit(1) #data_cspc = numpy.sum(self.__buffer_cspc,axis=0) if self.__buffer_cspc is not None: data_cspc = numpy.sum(self.__buffer_cspc,axis=0) else: data_cspc = None #print(numpy.shape(data_spc)) #data_spc[1,4,20,0]=numpy.nan #data_cspc = self.__buffer_cspc data_dc = self.__buffer_dc n = self.__profIndex self.__buffer_spc = [] #self.__buffer_cspc = [] self.__buffer_cspc = None self.__buffer_dc = 0 self.__profIndex = 0 return data_spc, data_cspc, data_dc, n def pushData(self): """ Return the sum of the last profiles and the profiles used in the sum. Affected: self.__profileIndex """ bufferH=None buffer=None buffer1=None buffer_cspc=None self.__buffer_spc=numpy.array(self.__buffer_spc) #self.__buffer_cspc=numpy.array(self.__buffer_cspc) if self.__buffer_cspc is not None: self.__buffer_cspc=numpy.array(self.__buffer_cspc) freq_dc = int(self.__buffer_spc.shape[2] / 2) #print("FREQ_DC",freq_dc,self.__buffer_spc.shape,self.nHeights) for k in range(7,self.nHeights): if self.__buffer_cspc is not None: buffer_cspc=numpy.copy(self.__buffer_cspc[:,:,:,k]) outliers_IDs_cspc=[] cspc_outliers_exist=False #for i in range(self.nChannels):#dataOut.nChannels): for i in range(2):#dataOut.nChannels): buffer1=numpy.copy(self.__buffer_spc[:,i,:,k]) indexes=[] #sortIDs=[] outliers_IDs=[] for j in range(self.nProfiles): if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0 continue if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1 continue buffer=buffer1[:,j] #if k != 100: index=int(_HS_algorithm.HS_algorithm(numpy.sort(buffer, axis=None),1)) #index,sortID=self.hildebrand_sekhon_Integration(buffer,1) sortID = buffer.argsort() #else: #index,sortID=self.hildebrand_sekhon_Integration(buffer,1) #if k == 100: # print(k,index,sortID) # exit(1) #print("index: ", index) indexes.append(index) out_IDs = sortID[index:] avg=numpy.nanmean(buffer1[[t for t in range(buffer1.shape[0]) if t not in out_IDs],:],axis=0) #print("avg: ", avg) for p in list(out_IDs): buffer1[p]=avg #sortIDs.append(sortID) outliers_IDs=numpy.append(outliers_IDs,sortID[index:]) #if k == 100: # exit(1) outliers_IDs=numpy.array(outliers_IDs) outliers_IDs=outliers_IDs.ravel() outliers_IDs=numpy.unique(outliers_IDs) outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) indexes=numpy.array(indexes) indexmin=numpy.min(indexes) ''' if indexmin != buffer1.shape[0]: cspc_outliers_exist=True ###sortdata=numpy.sort(buffer1,axis=0) ###avg2=numpy.mean(sortdata[:indexmin,:],axis=0) lt=outliers_IDs #print("buffer1: ", numpy.sum(buffer1)) #print("outliers: ", buffer1[lt]) #print("outliers_IDs: ", outliers_IDs) avg=numpy.nanmean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0) #print("avg: ", avg) for p in list(outliers_IDs): buffer1[p,:]=avg ''' self.__buffer_spc[:,i,:,k]=numpy.copy(buffer1) ###cspc IDs #indexmin_cspc+=indexmin_cspc if self.__buffer_cspc is not None: outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs) #if not breakFlag: if self.__buffer_cspc is not None: outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64')) if cspc_outliers_exist: #sortdata=numpy.sort(buffer_cspc,axis=0) #avg=numpy.mean(sortdata[:indexmin_cpsc,:],axis=0) lt=outliers_IDs_cspc avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0) for p in list(outliers_IDs_cspc): buffer_cspc[p,:]=avg self.__buffer_cspc[:,:,:,k]=numpy.copy(buffer_cspc) #else: #break buffer=None bufferH=None buffer1=None buffer_cspc=None #print("cpsc",self.__buffer_cspc[:,0,0,0,0]) #print(self.__profIndex) #exit() buffer=None #print(self.__buffer_spc[:,1,3,20,0]) #print(self.__buffer_spc[:,1,5,37,0]) data_spc = numpy.sum(self.__buffer_spc,axis=0) #print("data_spc: ", data_spc[0,:,0]) #print("data_spc: ", data_spc[0,:,7]) #print("shape: ", numpy.shape(data_spc)) #exit(1) #data_cspc = numpy.sum(self.__buffer_cspc,axis=0) if self.__buffer_cspc is not None: data_cspc = numpy.sum(self.__buffer_cspc,axis=0) else: data_cspc = None #print(numpy.shape(data_spc)) #data_spc[1,4,20,0]=numpy.nan #data_cspc = self.__buffer_cspc data_dc = self.__buffer_dc n = self.__profIndex self.__buffer_spc = [] self.__buffer_cspc = [] #self.__buffer_cspc = None self.__buffer_dc = 0 self.__profIndex = 0 return data_spc, data_cspc, data_dc, n def byProfiles(self, *args): self.__dataReady = False avgdata_spc = None avgdata_cspc = None avgdata_dc = None self.putData(*args) if self.__profIndex == self.n: avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() self.n = n self.__dataReady = True return avgdata_spc, avgdata_cspc, avgdata_dc def byTime(self, datatime, *args): self.__dataReady = False avgdata_spc = None avgdata_cspc = None avgdata_dc = None self.putData(*args) if (datatime - self.__initime) >= self.__integrationtime: avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() self.n = n self.__dataReady = True return avgdata_spc, avgdata_cspc, avgdata_dc def integrate(self, datatime, *args): if self.__profIndex == 0: self.__initime = datatime if self.__byTime: avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( datatime, *args) else: avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) if not self.__dataReady: return None, None, None, None return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc def run(self, dataOut, n=None, DPL = None,timeInterval=None, overlapping=False): if n == 1: return dataOut dataOut.flagNoData = True #print(numpy.shape(dataOut.data_spc)) #print(numpy.shape(dataOut.data_cspc)) #exit(1) #dataOut.data_cspc = None if not self.isConfig: self.setup(dataOut, n, timeInterval, overlapping,DPL ) self.isConfig = True if not self.ByLags: #print("dataOut.data_cspc: ", dataOut.data_cspc) self.nProfiles=dataOut.nProfiles self.nChannels=dataOut.nChannels self.nHeights=dataOut.nHeights avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, dataOut.data_spc, dataOut.data_cspc, dataOut.data_dc) else: self.nProfiles=dataOut.nProfiles self.nChannels=dataOut.nChannels self.nHeights=dataOut.nHeights avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, dataOut.dataLag_spc, dataOut.dataLag_cspc, dataOut.dataLag_dc) if self.__dataReady: if not self.ByLags: dataOut.data_spc = numpy.squeeze(avgdata_spc) dataOut.data_cspc = numpy.squeeze(avgdata_cspc) dataOut.data_cspc = numpy.expand_dims(dataOut.data_cspc, axis=0) dataOut.data_dc = avgdata_dc else: dataOut.dataLag_spc = avgdata_spc dataOut.dataLag_cspc = avgdata_cspc dataOut.dataLag_dc = avgdata_dc dataOut.data_spc=dataOut.dataLag_spc[:,:,:,dataOut.LagPlot] dataOut.data_cspc=dataOut.dataLag_cspc[:,:,:,dataOut.LagPlot] dataOut.data_dc=dataOut.dataLag_dc[:,:,dataOut.LagPlot] dataOut.nIncohInt *= self.n dataOut.utctime = avgdatatime dataOut.flagNoData = False return dataOut class HybridSelectSpectra(Operation): ''' Written by R. Flores ''' """Operation to rearange and use selected channels of spectra data and pairs of cross-spectra data for Hybrid Experiment. Parameters: ----------- spc_channs : list Selected channels. Example -------- op = proc_unit.addOperation(name='SelectSpectra', optype='other') """ def __init__(self, **kwargs): Operation.__init__(self, **kwargs) self.dataLag_spc=None self.dataLag_cspc=None self.dataLag_dc=None def select_spc(self,spc,spc_channs): buffer = spc[spc_channs] return buffer def run(self,dataOut,spc_channs=None,cspc_pairs=None): #print("HERE") if spc_channs != None: channelIndexList = [] for channel in spc_channs: if channel not in dataOut.channelList: raise ValueError("Channel %d is not in %s" %(channel, str(dataOut.channelList))) index = dataOut.channelList.index(channel) channelIndexList.append(index) #print(dataOut.dataLag_spc.shape) dataOut.dataLag_spc = self.select_spc(dataOut.dataLag_spc,channelIndexList) aux = dataOut.nChannels dataOut.channelList = range(dataOut.nLags) dataOut.nLags = aux #dataOut.nLags = len(spc_channs) dataOut.dataLag_spc = numpy.transpose(dataOut.dataLag_spc,(3,1,2,0)) #print(dataOut.dataLag_spc.shape) #exit(1) dataOut.dataLag_cspc = numpy.transpose(dataOut.dataLag_cspc,(3,1,2,0)) dataOut.dataLag_spc = numpy.concatenate((dataOut.dataLag_spc,dataOut.dataLag_cspc),axis=-1) dataOut.dataLag_cspc = None dataOut.data_spc = dataOut.dataLag_spc[0].real #print(dataOut.getNoise()) #print(dataOut.data_spc) #exit(1) dataOut.data_cspc = None return dataOut class IncohIntLag(Operation): ''' Written by R. Flores ''' __profIndex = 0 __withOverapping = False __byTime = False __initime = None __lastdatatime = None __integrationtime = None __buffer_spc = None __buffer_cspc = None __buffer_dc = None __dataReady = False __timeInterval = None n = None def __init__(self): Operation.__init__(self) def setup(self, n=None, timeInterval=None, overlapping=False): """ Set the parameters of the integration class. Inputs: n : Number of coherent integrations timeInterval : Time of integration. If the parameter "n" is selected this one does not work overlapping : """ self.__initime = None self.__lastdatatime = 0 self.__buffer_spc = 0 self.__buffer_cspc = 0 self.__buffer_dc = 0 self.__profIndex = 0 self.__dataReady = False self.__byTime = False if n is None and timeInterval is None: raise ValueError("n or timeInterval should be specified ...") if n is not None: self.n = int(n) else: self.__integrationtime = int(timeInterval) self.n = None self.__byTime = True def putData(self, data_spc, data_cspc, data_dc): """ Add a profile to the __buffer_spc and increase in one the __profileIndex """ self.__buffer_spc += data_spc if data_cspc is None: self.__buffer_cspc = None else: self.__buffer_cspc += data_cspc if data_dc is None: self.__buffer_dc = None else: self.__buffer_dc += data_dc self.__profIndex += 1 return def pushData(self): """ Return the sum of the last profiles and the profiles used in the sum. Affected: self.__profileIndex """ data_spc = self.__buffer_spc data_cspc = self.__buffer_cspc data_dc = self.__buffer_dc n = self.__profIndex self.__buffer_spc = 0 self.__buffer_cspc = 0 self.__buffer_dc = 0 self.__profIndex = 0 return data_spc, data_cspc, data_dc, n def byProfiles(self, *args): self.__dataReady = False avgdata_spc = None avgdata_cspc = None avgdata_dc = None self.putData(*args) if self.__profIndex == self.n: avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() self.n = n self.__dataReady = True return avgdata_spc, avgdata_cspc, avgdata_dc def byTime(self, datatime, *args): self.__dataReady = False avgdata_spc = None avgdata_cspc = None avgdata_dc = None self.putData(*args) if (datatime - self.__initime) >= self.__integrationtime: avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() self.n = n self.__dataReady = True return avgdata_spc, avgdata_cspc, avgdata_dc def integrate(self, datatime, *args): if self.__profIndex == 0: self.__initime = datatime if self.__byTime: avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( datatime, *args) else: avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) if not self.__dataReady: return None, None, None, None return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc def run(self, dataOut, n=None, timeInterval=None, overlapping=False): if n == 1: return dataOut dataOut.flagNoData = True #print("incohint") #print("IncohInt",dataOut.data_spc.shape) #print("IncohInt",dataOut.data_cspc.shape) if not self.isConfig: self.setup(n, timeInterval, overlapping) self.isConfig = True if not dataOut.ByLags: avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, dataOut.data_spc, dataOut.data_cspc, dataOut.data_dc) else: ''' print(numpy.sum(dataOut.dataLag_cspc[0,:,20,0].real)/32) print(numpy.sum(dataOut.dataLag_cspc[0,:,20,0].imag)/32) exit(1) ''' avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, dataOut.dataLag_spc, dataOut.dataLag_cspc, dataOut.dataLag_dc) #print("Incoh Int: ",self.__profIndex,n) if self.__dataReady: if not dataOut.ByLags: dataOut.data_spc = avgdata_spc dataOut.data_cspc = avgdata_cspc dataOut.data_dc = avgdata_dc else: dataOut.dataLag_spc = avgdata_spc dataOut.dataLag_cspc = avgdata_cspc dataOut.dataLag_dc = avgdata_dc #print(dataOut.LagPlot) #print(dataOut.dataLag_spc[1,:,100,2]) #print(numpy.sum(dataOut.dataLag_spc[1,:,100,2])) #exit(1) #print("INCOH INT DONE") #exit(1) ''' print(numpy.sum(dataOut.dataLag_spc[0,:,20,10])/32) print(numpy.sum(dataOut.dataLag_spc[1,:,20,10])/32) #exit(1) ''' ''' print(numpy.sum(dataOut.dataLag_cspc[0,:,20,0].real)/32) print(numpy.sum(dataOut.dataLag_cspc[0,:,20,0].imag)/32) exit(1) ''' dataOut.data_spc=dataOut.dataLag_spc[:,:,:,dataOut.LagPlot].real#*numpy.NaN #print("done") #print(dataOut.dataLag_spc[0,0,0,2]) if dataOut.dataLag_cspc is not None: dataOut.data_cspc=dataOut.dataLag_cspc[:,:,:,dataOut.LagPlot] dataOut.data_dc=dataOut.dataLag_dc[:,:,dataOut.LagPlot] dataOut.nIncohInt *= self.n dataOut.utctime = avgdatatime dataOut.flagNoData = False #print("done") #print(dataOut.data_spc[0,0,0]) #print("ut",dataOut.ut) return dataOut class IncohInt(Operation): __profIndex = 0 __withOverapping = False __byTime = False __initime = None __lastdatatime = None __integrationtime = None __buffer_spc = None __buffer_cspc = None __buffer_dc = None __dataReady = False __timeInterval = None n = None def __init__(self): Operation.__init__(self) def setup(self, n=None, timeInterval=None, overlapping=False): """ Set the parameters of the integration class. Inputs: n : Number of coherent integrations timeInterval : Time of integration. If the parameter "n" is selected this one does not work overlapping : """ self.__initime = None self.__lastdatatime = 0 self.__buffer_spc = 0 self.__buffer_cspc = 0 self.__buffer_dc = 0 self.__profIndex = 0 self.__dataReady = False self.__byTime = False if n is None and timeInterval is None: raise ValueError("n or timeInterval should be specified ...") if n is not None: self.n = int(n) else: self.__integrationtime = int(timeInterval) self.n = None self.__byTime = True def putData(self, data_spc, data_cspc, data_dc): """ Add a profile to the __buffer_spc and increase in one the __profileIndex """ #import sys# #from pympler.asizeof import asizeof self.__buffer_spc += data_spc #print(numpy.shape(self.__buffer_spc)) #print("bytes",sys.getsizeof(self.__buffer_spc)) #print("bytes",asizeof(self.__buffer_spc)) if data_cspc is None: self.__buffer_cspc = None else: self.__buffer_cspc += data_cspc if data_dc is None: self.__buffer_dc = None else: self.__buffer_dc += data_dc self.__profIndex += 1 return def pushData(self): """ Return the sum of the last profiles and the profiles used in the sum. Affected: self.__profileIndex """ data_spc = self.__buffer_spc data_cspc = self.__buffer_cspc data_dc = self.__buffer_dc n = self.__profIndex self.__buffer_spc = 0 self.__buffer_cspc = 0 self.__buffer_dc = 0 self.__profIndex = 0 return data_spc, data_cspc, data_dc, n def byProfiles(self, *args): self.__dataReady = False avgdata_spc = None avgdata_cspc = None avgdata_dc = None self.putData(*args) if self.__profIndex == self.n: avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() self.n = n self.__dataReady = True return avgdata_spc, avgdata_cspc, avgdata_dc def byTime(self, datatime, *args): self.__dataReady = False avgdata_spc = None avgdata_cspc = None avgdata_dc = None self.putData(*args) if (datatime - self.__initime) >= self.__integrationtime: avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() self.n = n self.__dataReady = True return avgdata_spc, avgdata_cspc, avgdata_dc def integrate(self, datatime, *args): if self.__profIndex == 0: self.__initime = datatime if self.__byTime: avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( datatime, *args) else: avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) if not self.__dataReady: return None, None, None, None return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc def run(self, dataOut, n=None, timeInterval=None, overlapping=False): #print(dataOut.getFreqRange(1)/1000.) #exit(1) if n == 1: dataOut.VelRange = dataOut.getVelRange(0) return dataOut dataOut.flagNoData = True if not self.isConfig: self.setup(n, timeInterval, overlapping) self.isConfig = True avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, dataOut.data_spc, dataOut.data_cspc, dataOut.data_dc) if self.__dataReady: #print(numpy.sum(avgdata_spc)) dataOut.data_spc = avgdata_spc dataOut.data_cspc = avgdata_cspc dataOut.data_dc = avgdata_dc dataOut.nIncohInt *= self.n dataOut.utctime = avgdatatime dataOut.flagNoData = False dataOut.VelRange = dataOut.getVelRange(0) dataOut.FreqRange = dataOut.getFreqRange(0)/1000. #kHz #print("VelRange: ", dataOut.VelRange) #exit(1) #print("Power",numpy.sum(dataOut.data_spc[0,:,20:30],axis=0)) #print("Power",numpy.sum(dataOut.data_spc[0,100:110,:],axis=1)) #exit(1) #print(numpy.sum(dataOut.data_spc[0,:,53]*numpy.conjugate(dataOut.data_spc[0,:,53]))) #print(numpy.sum(dataOut.data_spc[1,:,53]*numpy.conjugate(dataOut.data_spc[1,:,53]))) #print(numpy.sum(dataOut.data_spc[0,:,53])) #print(numpy.sum(dataOut.data_spc[1,:,53])) #import matplotlib.pyplot as plt #plt.plot(numpy.log10(dataOut.data_spc[1,:,53]/dataOut.normFactor)) #plt.show() #exit(1) #print(dataOut.data_spc.shape) #print(dataOut.data_spc[0,0,0]) #exit(1) ''' maxHei = 1800 indb = numpy.where(dataOut.heightList <= maxHei) hei = indb[0][-1] #print(hei) #exit(1) hei=0 #hei = 1 factor = dataOut.normFactor #print(factor) z = dataOut.data_spc[:,:,hei] / factor ''' #print(z[0,:]) ##exit(1) #print(numpy.shape(dataOut.DcHae)) #print(numpy.mean(dataOut.DcHae,axis=1)/500) #exit(1) #print(dataOut.DcHae/500) ''' buffer = dataOut.DcHae.real print(numpy.mean(buffer)) print(numpy.mean(dataOut.DcHae.imag)) import matplotlib.pyplot as plt fig, axes = plt.subplots(figsize=(14, 10)) x = numpy.linspace(0,20,numpy.shape(buffer)[0]) x = numpy.fft.fftfreq(numpy.shape(buffer)[0],0.00005) x = numpy.fft.fftshift(x) plt.plot(x,buffer) plt.plot(x,numpy.ones(buffer.shape[0])*numpy.mean(buffer),'g') plt.show() import time time.sleep(40) ''' #exit(1) #print("Incoh", dataOut.flagNoData) return dataOut class SnrFaraday(Operation): ''' Written by R. Flores ''' """Operation to use get SNR in Faraday processing. Parameters: ----------- Example -------- op = proc_unit.addOperation(name='SnrFaraday', optype='other') """ def __init__(self, **kwargs): Operation.__init__(self, **kwargs) def run(self,dataOut): noise = dataOut.getNoise() maxdB = 16 #dataOut.data_snr = (dataOut.data_spc.sum(axis=1)-noise[:,None])/(noise[:,None]*dataOut.normFactor) print("normFactor: ",dataOut.normFactor) print("nFFTPoints: ",dataOut.nFFTPoints) normFactor = 24 print("Power: ",dataOut.data_spc.sum(axis=1)/dataOut.nFFTPoints) print("Noise: ",noise) print("Power dB: ",10*numpy.log10(dataOut.data_spc.sum(axis=1)/dataOut.nFFTPoints)) print("Noise dB: ",10*numpy.log10(noise)) #dataOut.data_snr = (dataOut.data_spc.sum(axis=1))/(noise[:,None]*dataOut.normFactor) dataOut.data_snr = (dataOut.data_spc.sum(axis=1))/(noise[:,None]*dataOut.nFFTPoints) snr_dB = 10*numpy.log10(dataOut.data_snr) print("Snr: ",snr_dB) ''' for nch in range(dataOut.data_snr.shape[0]): for i in range(dataOut.data_snr.shape[1]): if snr_dB[nch,i] > maxdB: dataOut.data_spc[nch,:,i] = numpy.nan dataOut.data_snr[nch,i] = numpy.nan ''' return dataOut class SpectraDataToFaraday(Operation): #ISR MODE ''' Written by R. Flores ''' """Operation to use spectra data in Faraday processing. Parameters: ----------- nint : int Number of integrations. Example -------- op = proc_unit.addOperation(name='SpectraDataToFaraday', optype='other') """ def __init__(self, **kwargs): Operation.__init__(self, **kwargs) self.dataLag_spc=None self.dataLag_cspc=None self.dataLag_dc=None def ConvertData(self,dataOut): dataOut.TimeBlockSeconds_for_dp_power=dataOut.utctime dataOut.bd_time=gmtime(dataOut.TimeBlockSeconds_for_dp_power) dataOut.year=dataOut.bd_time.tm_year+(dataOut.bd_time.tm_yday-1)/364.0 dataOut.ut_Faraday=dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min/60.0+dataOut.bd_time.tm_sec/3600.0 ''' tmpx=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32') tmpx_a2=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32') tmpx_b2=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32') tmpx_abr=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32') tmpx_abi=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32') ''' #print("DPL",dataOut.DPL) #print("NDP",dataOut.NDP) tmpx=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') tmpx_a2=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') tmpx_b2=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') tmpx_abr=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') tmpx_abi=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32') dataOut.kabxys_integrated=[tmpx,tmpx,tmpx,tmpx,tmpx_a2,tmpx,tmpx_b2,tmpx,tmpx_abr,tmpx,tmpx_abi,tmpx,tmpx,tmpx] ''' dataOut.rnint2=numpy.zeros(dataOut.DPL,'float32') for l in range(dataOut.DPL): if(l==0 or (l>=3 and l <=6)): dataOut.rnint2[l]=1.0/(dataOut.nIncohInt*dataOut.nProfiles) else: dataOut.rnint2[l]=2*(1.0/(dataOut.nIncohInt*dataOut.nProfiles)) ''' #for l in range(dataOut.DPL): #dataOut.rnint2[l]=1.0/(dataOut.nIncohInt*dataOut.nProfiles)#*dataOut.nProfiles self.dataLag_spc=(dataOut.dataLag_spc.sum(axis=1))*(dataOut.rnint2[0]/dataOut.nProfiles) self.dataLag_cspc=(dataOut.dataLag_cspc.sum(axis=1))*(dataOut.rnint2[0]/dataOut.nProfiles) ''' self.dataLag_spc=(dataOut.dataLag_spc.sum(axis=1))*(dataOut.rnint2[0]/dataOut.nProfiles) self.dataLag_cspc=(dataOut.dataLag_cspc.sum(axis=1))*(dataOut.rnint2[0]/dataOut.nProfiles) #self.dataLag_dc=dataOut.dataLag_dc.sum(axis=1)/dataOut.rnint2[0] ''' dataOut.kabxys_integrated[4][:,:,0]=self.dataLag_spc[0,:,:].real #dataOut.kabxys_integrated[5][:,:,0]+=self.dataLag_spc[0,:,:].imag dataOut.kabxys_integrated[6][:,:,0]=self.dataLag_spc[1,:,:].real #dataOut.kabxys_integrated[7][:,:,0]+=self.dataLag_spc[1,:,:].imag dataOut.kabxys_integrated[8][:,:,0]=self.dataLag_cspc[0,:,:].real dataOut.kabxys_integrated[10][:,:,0]=self.dataLag_cspc[0,:,:].imag ''' print(dataOut.kabxys_integrated[4][:,0,0]) print(dataOut.kabxys_integrated[6][:,0,0]) print("times 12") print(dataOut.kabxys_integrated[4][:,0,0]*dataOut.nProfiles) print(dataOut.kabxys_integrated[6][:,0,0]*dataOut.nProfiles) print(dataOut.rnint2[0]) input() ''' def normFactor(self,dataOut): dataOut.rnint2=numpy.zeros(dataOut.DPL,'float32') for l in range(dataOut.DPL): dataOut.rnint2[l]=1.0/(dataOut.nIncohInt*dataOut.nProfiles) def noise(self,dataOut): dataOut.noise_lag = numpy.zeros((dataOut.nChannels,dataOut.DPL),'float32') #print("Lags") ''' for lag in range(dataOut.DPL): #print(lag) dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag] dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=46) #dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=33,ymax_index=46) ''' #print(dataOut.NDP) #exit(1) #Channel B for lag in range(dataOut.DPL): #print(lag) dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag] max_hei_id = dataOut.NDP - 2*lag #if lag < 6: dataOut.noise_lag[1,lag] = dataOut.getNoise(ymin_index=53,ymax_index=max_hei_id)[1] #else: #dataOut.noise_lag[1,lag] = numpy.mean(dataOut.noise_lag[1,:6]) #dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=33,ymax_index=46) #Channel A for lag in range(dataOut.DPL): #print(lag) dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag] dataOut.noise_lag[0,lag] = dataOut.getNoise(ymin_index=53)[0] nanindex = numpy.argwhere(numpy.isnan(numpy.log10(dataOut.noise_lag[1,:]))) i1 = nanindex[0][0] dataOut.noise_lag[1,i1:] = numpy.mean(dataOut.noise_lag[1,:i1]) #El ruido de lags contaminados se #determina a partir del promedio del #ruido de los lags limpios ''' dataOut.noise_lag[1,:] = dataOut.noise_lag[1,0] #El ruido de los lags diferentes de cero para #el canal B es contaminado por el Tx y EEJ #del siguiente perfil, por ello se asigna el ruido #del lag 0 a todos los lags ''' #print("Noise lag: ", 10*numpy.log10(dataOut.noise_lag/dataOut.normFactor)) #exit(1) ''' dataOut.tnoise = dataOut.getNoise(ymin_index=46) dataOut.tnoise /= float(dataOut.nProfiles*dataOut.nIncohInt) dataOut.pan = dataOut.tnoise[0] dataOut.pbn = dataOut.tnoise[1] ''' dataOut.tnoise = dataOut.noise_lag/float(dataOut.nProfiles*dataOut.nIncohInt) #dataOut.tnoise /= float(dataOut.nProfiles*dataOut.nIncohInt) dataOut.pan = dataOut.tnoise[0] dataOut.pbn = dataOut.tnoise[1] def get_eej_index_V0(self,data_to_remov_eej,dataOut): dataOut.data_spc = data_to_remov_eej #print(dataOut.data_spc) data_eej = dataOut.getPower()[1] print("data_eej: ", data_eej) #exit(1) index_eej = CleanCohEchoes.mad_based_outlier(self,data_eej[:20]) aux_eej = numpy.array(index_eej.nonzero()).ravel() index2 = CleanCohEchoes.mad_based_outlier(self,data_eej[aux_eej[-1]+1:aux_eej[-1]+1+20]) aux2 = numpy.array(index2.nonzero()).ravel() if aux2.size > 0: #print(aux2) #print(aux2[-1]) #print(arr[aux[-1]+aux2[-1]+1]) dataOut.min_id_eej = aux_eej[-1]+aux2[-1]+1 else: dataOut.min_id_eej = aux_eej[-1] print(dataOut.min_id_eej) exit(1) def get_eej_index_V1(self,data_to_remov_eej,dataOut): dataOut.data_spc = data_to_remov_eej outliers_IDs = [] #print(dataOut.data_spc) for ich in range(dataOut.nChannels): data_eej = dataOut.getPower()[ich] #print("data_eej: ", data_eej) #exit(1) index_eej = CleanCohEchoes.mad_based_outlier(self,data_eej[:20]) aux_eej = numpy.array(index_eej.nonzero()).ravel() #index2 = CleanCohEchoes.mad_based_outlier(self,data_eej[aux_eej[-1]+1:aux_eej[-1]+1+20]) index2 = CleanCohEchoes.mad_based_outlier(self,data_eej[aux_eej[-1]+1:aux_eej[-1]+1+10],thresh=1.) aux2 = numpy.array(index2.nonzero()).ravel() if aux2.size > 0: #min_id_eej = aux_eej[-1]+aux2[-1]+1 ids = numpy.concatenate((aux_eej,aux2+aux_eej[-1]+1)) else: ids = aux_eej outliers_IDs=numpy.append(outliers_IDs,ids) outliers_IDs=numpy.array(outliers_IDs) outliers_IDs=outliers_IDs.astype(numpy.dtype('int64')) (uniq, freq) = (numpy.unique(outliers_IDs, return_counts=True)) aux_arr = numpy.column_stack((uniq,freq)) final_index = [] for i in range(aux_arr.shape[0]): if aux_arr[i,1] == 2: final_index.append(aux_arr[i,0]) if final_index != []: dataOut.min_id_eej = final_index[-1] else: print("CHECKKKKK!!!!!!!!!!!!!!!") print(dataOut.min_id_eej) exit(1) def get_eej_index(self,data_to_remov_eej,dataOut): dataOut.data_spc = data_to_remov_eej data_eej = dataOut.getPower()[0] #print(data_eej) index_eej = CleanCohEchoes.mad_based_outlier(self,data_eej[:17]) aux_eej = numpy.array(index_eej.nonzero()).ravel() print("aux_eej: ", aux_eej) if aux_eej != []: dataOut.min_id_eej = aux_eej[-1] else: dataOut.min_id_eej = 12 #print("min_id_eej: ", dataOut.min_id_eej) #exit(1) def run(self,dataOut): #print(dataOut.nIncohInt) #exit(1) dataOut.paramInterval=dataOut.nIncohInt*2*2#nIncohInt*numero de fft/nprofiles*segundos de cada muestra dataOut.lat=-11.95 dataOut.lon=-76.87 data_to_remov_eej = dataOut.dataLag_spc[:,:,:,0] self.normFactor(dataOut) #print(dataOut.NDP) dataOut.NDP=dataOut.nHeights dataOut.NR=len(dataOut.channelList) dataOut.DH=dataOut.heightList[1]-dataOut.heightList[0] dataOut.H0=int(dataOut.heightList[0]) self.ConvertData(dataOut) #print(dataOut.NDP) #exit(1) dataOut.NAVG=16#dataOut.rnint2[0] #CHECK THIS! if hasattr(dataOut, 'NRANGE'): dataOut.MAXNRANGENDT = max(dataOut.NRANGE,dataOut.NDT) else: dataOut.MAXNRANGENDT = dataOut.NDP #if hasattr(dataOut, 'HP'): #pass #else: self.noise(dataOut) ''' if not hasattr(dataOut, 'tnoise'): print("noise") self.noise(dataOut) else: delattr(dataOut, 'tnoise') ''' #dataOut.pan = numpy.mean(dataOut.pan) #dataOut.pbn = numpy.mean(dataOut.pbn) #print(dataOut.pan) #print(dataOut.pbn) #exit(1) #print("Noise: ",dataOut.tnoise) #print("Noise dB: ",10*numpy.log10(dataOut.tnoise)) #exit(1) #dataOut.pan=dataOut.tnoise[0]/float(dataOut.nProfiles_LP*dataOut.nIncohInt) if gmtime(dataOut.utctime).tm_hour >= 21. or gmtime(dataOut.utctime).tm_hour < 13.: self.get_eej_index(data_to_remov_eej,dataOut) print("done") #exit(1) return dataOut class SpectraDataToFaraday_MST(Operation): #MST MODE """Operation to use spectra data in Faraday processing. Parameters: ----------- nint : int Number of integrations. Example -------- op = proc_unit.addOperation(name='SpectraDataToFaraday', optype='other') """ def __init__(self, **kwargs): Operation.__init__(self, **kwargs) self.dataLag_spc=None self.dataLag_cspc=None self.dataLag_dc=None def noise_original(self,dataOut): dataOut.noise_lag = numpy.zeros((dataOut.nChannels,dataOut.DPL),'float32') #print("Lags") ''' for lag in range(dataOut.DPL): #print(lag) dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag] dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=46) #dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=33,ymax_index=46) ''' #print(dataOut.NDP) #exit(1) #Channel B for lag in range(dataOut.DPL): #print(lag) dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag] max_hei_id = dataOut.NDP - 2*lag #if lag < 6: dataOut.noise_lag[1,lag] = dataOut.getNoise(ymin_index=53,ymax_index=max_hei_id)[1] #else: #dataOut.noise_lag[1,lag] = numpy.mean(dataOut.noise_lag[1,:6]) #dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=33,ymax_index=46) #Channel A for lag in range(dataOut.DPL): #print(lag) dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag] dataOut.noise_lag[0,lag] = dataOut.getNoise(ymin_index=53)[0] nanindex = numpy.argwhere(numpy.isnan(numpy.log10(dataOut.noise_lag[1,:]))) i1 = nanindex[0][0] dataOut.noise_lag[1,i1:] = numpy.mean(dataOut.noise_lag[1,:i1]) #El ruido de lags contaminados se #determina a partir del promedio del #ruido de los lags limpios ''' dataOut.noise_lag[1,:] = dataOut.noise_lag[1,0] #El ruido de los lags diferentes de cero para #el canal B es contaminado por el Tx y EEJ #del siguiente perfil, por ello se asigna el ruido #del lag 0 a todos los lags ''' #print("Noise lag: ", 10*numpy.log10(dataOut.noise_lag/dataOut.normFactor)) #exit(1) ''' dataOut.tnoise = dataOut.getNoise(ymin_index=46) dataOut.tnoise /= float(dataOut.nProfiles*dataOut.nIncohInt) dataOut.pan = dataOut.tnoise[0] dataOut.pbn = dataOut.tnoise[1] ''' dataOut.tnoise = dataOut.noise_lag/float(dataOut.nProfiles*dataOut.nIncohInt) #dataOut.tnoise /= float(dataOut.nProfiles*dataOut.nIncohInt) dataOut.pan = dataOut.tnoise[0] dataOut.pbn = dataOut.tnoise[1] def noise(self,dataOut,minIndex,maxIndex): dataOut.noise_lag = numpy.zeros((dataOut.nChannels),'float32') #print("Lags") ''' for lag in range(dataOut.DPL): #print(lag) dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag] dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=46) #dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=33,ymax_index=46) ''' #print(dataOut.NDP) #exit(1) #Channel B #print(lag) dataOut.data_spc = dataOut.dataLag_spc[:,:,:,0] max_hei_id = dataOut.NDP - 2*0 #if lag < 6: #dataOut.noise_lag[1] = dataOut.getNoise(ymin_index=80,ymax_index=106)[1] if dataOut.flagDecodeData: #dataOut.noise_lag[1] = dataOut.getNoise(ymin_index=150,ymax_index=200)[1] dataOut.noise_lag[1] = dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[1] else: dataOut.noise_lag[1] = dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[1] #else: #dataOut.noise_lag[1,lag] = numpy.mean(dataOut.noise_lag[1,:6]) #dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=33,ymax_index=46) #Channel A #print(lag) dataOut.data_spc = dataOut.dataLag_spc[:,:,:,0] if dataOut.flagDecodeData: #dataOut.noise_lag[0] = dataOut.getNoise(ymin_index=150,ymax_index=200)[0] dataOut.noise_lag[0] = dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[0] else: dataOut.noise_lag[0] = dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[0] dataOut.tnoise = dataOut.noise_lag/float(dataOut.nProfiles*dataOut.nIncohInt) #dataOut.tnoise /= float(dataOut.nProfiles*dataOut.nIncohInt) dataOut.pan = dataOut.tnoise[0]#*.98 dataOut.pbn = dataOut.tnoise[1]#*.98 def ConvertData(self,dataOut): dataOut.TimeBlockSeconds_for_dp_power=dataOut.utctime dataOut.bd_time=gmtime(dataOut.TimeBlockSeconds_for_dp_power) dataOut.year=dataOut.bd_time.tm_year+(dataOut.bd_time.tm_yday-1)/364.0 dataOut.ut_Faraday=dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min/60.0+dataOut.bd_time.tm_sec/3600.0 tmpx=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32') tmpx_a2=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32') tmpx_b2=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32') tmpx_abr=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32') tmpx_abi=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32') dataOut.kabxys_integrated=[tmpx,tmpx,tmpx,tmpx,tmpx_a2,tmpx,tmpx_b2,tmpx,tmpx_abr,tmpx,tmpx_abi,tmpx,tmpx,tmpx] dataOut.rnint2=numpy.zeros(dataOut.DPL,'float32') for l in range(dataOut.DPL): dataOut.rnint2[l]=1.0/(dataOut.nIncohInt*dataOut.nProfiles)#*dataOut.nProfiles #try: #dataOut.rint2 /= dataOut.nCohInt*dataOut.windowOfFilter #except: pass ''' if hasattr(dataOut,'flagDecodeData'): if dataOut.flagDecodeData: print("decode",numpy.sum(dataOut.code[0]**2)) dataOut.rnint2 /= numpy.sum(dataOut.code[0]**2) else: print("widnow") dataOut.rnint2 /= dataOut.windowOfFilter else: print("widnow") dataOut.rint2 = dataOut.windowOfFilter ''' self.dataLag_spc=(dataOut.dataLag_spc.sum(axis=1))*(dataOut.rnint2[0]/dataOut.nProfiles) self.dataLag_cspc=(dataOut.dataLag_cspc.sum(axis=1))*(dataOut.rnint2[0]/dataOut.nProfiles) #self.dataLag_dc=dataOut.dataLag_dc.sum(axis=1)/dataOut.rnint2[0] dataOut.kabxys_integrated[4][:,:,0]=self.dataLag_spc[0,:,:].real #dataOut.kabxys_integrated[5][:,:,0]+=self.dataLag_spc[0,:,:].imag dataOut.kabxys_integrated[6][:,:,0]=self.dataLag_spc[1,:,:].real #dataOut.kabxys_integrated[7][:,:,0]+=self.dataLag_spc[1,:,:].imag dataOut.kabxys_integrated[8][:,:,0]=self.dataLag_cspc[0,:,:].real dataOut.kabxys_integrated[10][:,:,0]=self.dataLag_cspc[0,:,:].imag #print("power: ", numpy.sum(dataOut.kabxys_integrated[4][:16,0,0])) #print("power: ", numpy.sum(dataOut.kabxys_integrated[4][16:32,0,0])) #exit(1) ''' print(dataOut.kabxys_integrated[4][:,0,0]) print(dataOut.kabxys_integrated[6][:,0,0]) print("times 12") print(dataOut.kabxys_integrated[4][:,0,0]*dataOut.nProfiles) print(dataOut.kabxys_integrated[6][:,0,0]*dataOut.nProfiles) print(dataOut.rnint2[0]) input() ''' def run(self,dataOut,ymin_noise = None,ymax_noise = None): dataOut.paramInterval=0#int(dataOut.nint*dataOut.header[7][0]*2 ) dataOut.lat=-11.95 dataOut.lon=-76.87 dataOut.NDP=dataOut.nHeights dataOut.NR=len(dataOut.channelList) dataOut.DH=dataOut.heightList[1]-dataOut.heightList[0] dataOut.H0=int(dataOut.heightList[0]) ''' if dataOut.flagDecodeData: print("flagDecodeData") dataOut.data_spc /= numpy.sum(dataOut.code[0]**2) dataOut.data_cspc /= numpy.sum(dataOut.code[0]**2) dataOut.data_spc /= numpy.sum(dataOut.code[0]**2) dataOut.data_cspc /= numpy.sum(dataOut.code[0]**2) else: print("windowOfFilter") dataOut.data_spc /= dataOut.windowOfFilter dataOut.data_cspc /= dataOut.windowOfFilter dataOut.data_spc /= dataOut.windowOfFilter dataOut.data_cspc /= dataOut.windowOfFilter ''' #print("dataOut.data_spc.shape: ", dataOut.data_spc.shape) #print("dataOut.data_cspc.shape: ", dataOut.data_cspc.shape) #print("*****************Sum: ", numpy.sum(dataOut.data_spc[0])) #print("*******************normFactor: *******************", dataOut.normFactor) dataOut.dataLag_spc = numpy.stack((dataOut.data_spc, dataOut.data_spc), axis=-1) dataOut.dataLag_cspc = numpy.stack((dataOut.data_cspc, dataOut.data_cspc), axis=-1) #print(dataOut.dataLag_spc.shape) dataOut.DPL = numpy.shape(dataOut.dataLag_spc)[-1] #exit(1) self.ConvertData(dataOut) inda = numpy.where(dataOut.heightList >= ymin_noise) indb = numpy.where(dataOut.heightList <= ymax_noise) minIndex = inda[0][0] maxIndex = indb[0][-1] #print("ymin_noise: ", dataOut.heightList[minIndex]) #print("ymax_noise: ", dataOut.heightList[maxIndex]) self.noise(dataOut,minIndex,maxIndex) dataOut.NAVG=16#dataOut.rnint2[0] #CHECK THIS! dataOut.MAXNRANGENDT=dataOut.NDP #''' if 0: #print(dataOut.kabxys_integrated[4][:,0,0]) #print("dataOut.heightList: ", dataOut.heightList) #print("dataOut.pbn: ", dataOut.pbn) print("INSIDE") import matplotlib.pyplot as plt #print("dataOut.getPower(): ", dataOut.getPower()) plt.plot(10*numpy.log10(dataOut.kabxys_integrated[4][:,0,0]),dataOut.heightList) #plt.plot(10**((dataOut.getPower()[1])/10),dataOut.heightList) #plt.plot(dataOut.getPower()[0],dataOut.heightList) #plt.plot(dataOut.dataLag_spc[:,:,:,0],dataOut.heightList) plt.axvline(10*numpy.log10(dataOut.pan)) #print(dataOut.nProfiles) #plt.axvline(10*numpy.log10(1*dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[0]/dataOut.normFactor)) #print("10*numpy.log10(dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[1]/dataOut.normFactor): ", 10*numpy.log10(dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[1]/dataOut.normFactor)) #plt.xlim(1,25000) #plt.xlim(15,20) #plt.ylim(30,90) plt.grid() plt.show() #''' dataOut.DPL = 1 return dataOut class SpectraDataToHybrid(SpectraDataToFaraday): ''' Written by R. Flores ''' """Operation to use spectra data in Faraday processing. Parameters: ----------- nint : int Number of integrations. Example -------- op = proc_unit.addOperation(name='SpectraDataToFaraday', optype='other') """ def __init__(self, **kwargs): Operation.__init__(self, **kwargs) self.dataLag_spc=None self.dataLag_cspc=None self.dataLag_dc=None self.dataLag_spc_LP=None self.dataLag_cspc_LP=None self.dataLag_dc_LP=None def noise(self,dataOut): ''' for i in range(dataOut.NR): dataOut.pnoise[i]=0.0 for k in range(dataOut.DPL): dataOut.pnoise[i]+= dataOut.getNoise() ''' #print(dataOut.dataLag_spc_LP[:,:,:,0]) dataOut.data_spc = dataOut.dataLag_spc_LP[:,:,:,0].real dataOut.tnoise = dataOut.getNoise() #print(dataOut.tnoise) #exit(1) dataOut.tnoise[0]*=0.995#0.976 dataOut.tnoise[1]*=0.995 #print(dataOut.nProfiles) dataOut.pan=dataOut.tnoise[0]/float(dataOut.nProfiles_LP*dataOut.nIncohInt) dataOut.pbn=dataOut.tnoise[1]/float(dataOut.nProfiles_LP*dataOut.nIncohInt) #print("pan: ",dataOut.pan) #print("pbn: ",dataOut.pbn) #print(numpy.shape(dataOut.pnoise)) #exit(1) def ConvertDataLP_V0(self,dataOut): #print(dataOut.dataLag_spc[:,:,:,1]/dataOut.data_spc) #exit(1) normfactor=1.0/(dataOut.nIncohInt_LP*dataOut.nProfiles_LP)#*dataOut.nProfiles buffer = self.dataLag_spc_LP=(dataOut.dataLag_spc_LP.sum(axis=1))*(1./dataOut.nProfiles_LP) ##self.dataLag_cspc_LP=(dataOut.dataLag_cspc_LP.sum(axis=1))*(1./dataOut.nProfiles_LP) #self.dataLag_dc=dataOut.dataLag_dc.sum(axis=1)/dataOut.rnint2[0] #aux=numpy.expand_dims(self.dataLag_spc_LP, axis=2) #print(aux.shape) ##buffer = numpy.concatenate((numpy.expand_dims(self.dataLag_spc_LP, axis=2),self.dataLag_cspc_LP),axis=2) dataOut.output_LP_integrated = numpy.transpose(buffer,(2,1,0)) #print("lP",numpy.shape(dataOut.output_LP_integrated)) #exit(1) #print(numpy.shape(dataOut.output_LP_integrated)) #exit(1) def ConvertDataLP(self,dataOut): #print(dataOut.dataLag_spc[:,:,:,1]/dataOut.data_spc) #exit(1) normfactor=1.0/(dataOut.nIncohInt_LP*dataOut.nProfiles_LP)#*dataOut.nProfiles buffer = self.dataLag_spc_LP=dataOut.dataLag_spc_LP ##self.dataLag_cspc_LP=(dataOut.dataLag_cspc_LP.sum(axis=1))*(1./dataOut.nProfiles_LP) #self.dataLag_dc=dataOut.dataLag_dc.sum(axis=1)/dataOut.rnint2[0] #aux=numpy.expand_dims(self.dataLag_spc_LP, axis=2) #print(aux.shape) ##buffer = numpy.concatenate((numpy.expand_dims(self.dataLag_spc_LP, axis=2),self.dataLag_cspc_LP),axis=2) dataOut.output_LP_integrated = numpy.transpose(buffer,(1,2,0)) def normFactor(self,dataOut): dataOut.rnint2=numpy.zeros(dataOut.DPL,'float32') for l in range(dataOut.DPL): if(l==0 or (l>=3 and l <=6)): dataOut.rnint2[l]=1.0/(dataOut.nIncohInt*dataOut.nProfiles) else: dataOut.rnint2[l]=2*(1.0/(dataOut.nIncohInt*dataOut.nProfiles)) def run(self,dataOut): dataOut.paramInterval=0#int(dataOut.nint*dataOut.header[7][0]*2 ) dataOut.lat=-11.95 dataOut.lon=-76.87 dataOut.NDP=dataOut.nHeights dataOut.NR=len(dataOut.channelList) dataOut.DH=dataOut.heightList[1]-dataOut.heightList[0] dataOut.H0=int(dataOut.heightList[0]) #print(numpy.shape(dataOut.dataLag_spc)) #print("a",numpy.sum(dataOut.dataLag_spc[0,:,20,10])) #print(numpy.sum(dataOut.dataLag_spc[1,:,20,10])) self.normFactor(dataOut) self.ConvertDataLP(dataOut) dataOut.output_LP_integrated[:,:,3] *= float(dataOut.NSCAN/22)#(dataOut.nNoiseProfiles) #Corrects the zero padding dataOut.nis=dataOut.NSCAN*dataOut.nIncohInt_LP*10 #print(dataOut.output_LP_integrated[0,30,1]) #exit(1) self.ConvertData(dataOut) dataOut.kabxys_integrated[4][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding dataOut.kabxys_integrated[6][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding dataOut.kabxys_integrated[8][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding dataOut.kabxys_integrated[10][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding hei = 2 ''' for hei in range(67): print("hei",hei) print(dataOut.kabxys_integrated[8][hei,:,0])#+dataOut.kabxys_integrated[11][53,6,0]) print(dataOut.kabxys_integrated[10][hei,:,0])#+dataOut.kabxys_integrated[11][53,9,0]) exit(1) ''' #print(dataOut.dataLag_spc_LP.shape) #exit(1) #[:,:,:,0] self.noise(dataOut) hei = 53 lag = 0 ''' print("b",dataOut.kabxys_integrated[4][hei,lag,0]) print(dataOut.kabxys_integrated[6][hei,lag,0]) print("c",dataOut.kabxys_integrated[8][hei,lag,0]) print(dataOut.kabxys_integrated[10][hei,lag,0]) exit(1) ''' #''' #print(dataOut.tnoise) #print(dataOut.pbn) #exit(1) #''' #''' #print(dataOut.pan) #print(dataOut.pbn) #print(dataOut.tnoise[0]) #dataOut.pan = 143.91122436523438 #dataOut.pbn = 249.5623575846354 #dataOut.tnoise[0] = 8.8419056e+05 #''' dataOut.NAVG=1#dataOut.rnint2[0] #CHECK THIS! dataOut.nint=dataOut.nIncohInt dataOut.MAXNRANGENDT=dataOut.NRANGE #exit(1) return dataOut class SpectraDataToHybrid_V2(SpectraDataToFaraday): ''' Written by R. Flores ''' """Operation to use spectra data in Faraday processing. Parameters: ----------- nint : int Number of integrations. Example -------- op = proc_unit.addOperation(name='SpectraDataToFaraday', optype='other') """ def __init__(self, **kwargs): Operation.__init__(self, **kwargs) self.dataLag_spc=None self.dataLag_cspc=None self.dataLag_dc=None self.dataLag_spc_LP=None self.dataLag_cspc_LP=None self.dataLag_dc_LP=None def noise_v0(self,dataOut): dataOut.data_spc = dataOut.dataLag_spc_LP.real #print(dataOut.dataLag_spc.shape) #exit(1) #dataOut.data_spc = dataOut.dataLag_spc[:,:,:,0].real #print("spc noise shape: ",dataOut.data_spc.shape) dataOut.tnoise = dataOut.getNoise(ymin_index=100,ymax_index=166) #print("Noise LP: ",10*numpy.log10(dataOut.tnoise)) #exit(1) #dataOut.tnoise[0]*=0.995#0.976 #dataOut.tnoise[1]*=0.995 #print(dataOut.nProfiles) #dataOut.pan=dataOut.tnoise[0]/float(dataOut.nProfiles_LP*dataOut.nIncohInt) #dataOut.pbn=dataOut.tnoise[1]/float(dataOut.nProfiles_LP*dataOut.nIncohInt) dataOut.pan=dataOut.tnoise[0]/float(dataOut.nProfiles_LP*dataOut.nIncohInt_LP) dataOut.pbn=dataOut.tnoise[1]/float(dataOut.nProfiles_LP*dataOut.nIncohInt_LP) ##dataOut.pan=dataOut.tnoise[0]*float(self.normfactor_LP) ##dataOut.pbn=dataOut.tnoise[1]*float(self.normfactor_LP) #print("pan: ",10*numpy.log10(dataOut.pan)) #print("pbn: ",dataOut.pbn) #print(numpy.shape(dataOut.pnoise)) #exit(1) #print("pan: ",dataOut.pan) #print("pbn: ",dataOut.pbn) #exit(1) def noise_v0_aux(self,dataOut): dataOut.data_spc = dataOut.dataLag_spc #print(dataOut.dataLag_spc.shape) #exit(1) #dataOut.data_spc = dataOut.dataLag_spc[:,:,:,0].real #print("spc noise shape: ",dataOut.data_spc.shape) tnoise = dataOut.getNoise(ymin_index=100,ymax_index=166) #print("Noise LP: ",10*numpy.log10(dataOut.tnoise)) #exit(1) #dataOut.tnoise[0]*=0.995#0.976 #dataOut.tnoise[1]*=0.995 #print(dataOut.nProfiles) #dataOut.pan=dataOut.tnoise[0]/float(dataOut.nProfiles_LP*dataOut.nIncohInt) #dataOut.pbn=dataOut.tnoise[1]/float(dataOut.nProfiles_LP*dataOut.nIncohInt) dataOut.pan=tnoise[0]/float(dataOut.nProfiles*dataOut.nIncohInt) dataOut.pbn=tnoise[1]/float(dataOut.nProfiles*dataOut.nIncohInt) def noise(self,dataOut): dataOut.noise_lag = numpy.zeros((dataOut.nChannels,dataOut.DPL),'float32') #print("Lags") ''' for lag in range(dataOut.DPL): #print(lag) dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag] dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=46) #dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=33,ymax_index=46) ''' #print(dataOut.NDP) #exit(1) #Channel B for lag in range(dataOut.DPL): #print(lag) dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag] max_hei_id = dataOut.NDP - 2*lag #if lag < 6: dataOut.noise_lag[1,lag] = dataOut.getNoise(ymin_index=53,ymax_index=max_hei_id)[1] #else: #dataOut.noise_lag[1,lag] = numpy.mean(dataOut.noise_lag[1,:6]) #dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=33,ymax_index=46) #Channel A for lag in range(dataOut.DPL): #print(lag) dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag] dataOut.noise_lag[0,lag] = dataOut.getNoise(ymin_index=53)[0] nanindex = numpy.argwhere(numpy.isnan(numpy.log10(dataOut.noise_lag[1,:]))) i1 = nanindex[0][0] dataOut.noise_lag[1,(1,2,7,8,9,10)] *= 2 #Correction LP dataOut.noise_lag[1,i1:] = numpy.mean(dataOut.noise_lag[1,:i1]) #El ruido de lags contaminados se #determina a partir del promedio del #ruido de los lags limpios ''' dataOut.noise_lag[1,:] = dataOut.noise_lag[1,0] #El ruido de los lags diferentes de cero para #el canal B es contaminado por el Tx y EEJ #del siguiente perfil, por ello se asigna el ruido #del lag 0 a todos los lags ''' #print("Noise lag: ", 10*numpy.log10(dataOut.noise_lag/dataOut.normFactor)) #exit(1) ''' dataOut.tnoise = dataOut.getNoise(ymin_index=46) dataOut.tnoise /= float(dataOut.nProfiles*dataOut.nIncohInt) dataOut.pan = dataOut.tnoise[0] dataOut.pbn = dataOut.tnoise[1] ''' #print("i1: ", i1) #exit(1) tnoise = dataOut.noise_lag/float(dataOut.nProfiles*dataOut.nIncohInt) #dataOut.tnoise /= float(dataOut.nProfiles*dataOut.nIncohInt) dataOut.pan = tnoise[0] dataOut.pbn = tnoise[1] def noise_LP(self,dataOut): dataOut.data_spc = dataOut.dataLag_spc_LP.real #print(dataOut.dataLag_spc.shape) #exit(1) #dataOut.data_spc = dataOut.dataLag_spc[:,:,:,0].real #print("spc noise shape: ",dataOut.data_spc.shape) dataOut.tnoise = dataOut.getNoise(ymin_index=100,ymax_index=166) #print("Noise LP: ",10*numpy.log10(dataOut.tnoise)) #exit(1) #dataOut.tnoise[0]*=0.995#0.976 #dataOut.tnoise[1]*=0.995 #print(dataOut.nProfiles) #dataOut.pan=dataOut.tnoise[0]/float(dataOut.nProfiles_LP*dataOut.nIncohInt) #dataOut.pbn=dataOut.tnoise[1]/float(dataOut.nProfiles_LP*dataOut.nIncohInt) ######dataOut.pan=dataOut.tnoise[0]/float(dataOut.nProfiles_LP*dataOut.nIncohInt_LP) ######dataOut.pbn=dataOut.tnoise[1]/float(dataOut.nProfiles_LP*dataOut.nIncohInt_LP) dataOut.pan_LP=dataOut.tnoise[0]/float(dataOut.nProfiles_LP*dataOut.nIncohInt_LP) dataOut.pbn_LP=dataOut.tnoise[1]/float(dataOut.nProfiles_LP*dataOut.nIncohInt_LP) def ConvertDataLP(self,dataOut): #print(numpy.shape(dataOut.data_acf)) #print(dataOut.dataLag_spc[:,:,:,1]/dataOut.data_spc) #exit(1) self.normfactor_LP=1.0/(dataOut.nIncohInt_LP*dataOut.nProfiles_LP)#*dataOut.nProfiles #print("acf: ",dataOut.data_acf[0,0,100]) #print("Power: ",numpy.mean(dataOut.dataLag_spc_LP[0,:,100])) #buffer = dataOut.data_acf*(1./(normfactor*dataOut.nProfiles_LP)) #buffer = dataOut.data_acf*(1./(normfactor)) buffer = dataOut.data_acf#*(self.normfactor_LP) #nChannels x nProfiles (nLags) x nHeights #print("acf: ",numpy.sum(buffer)) dataOut.output_LP_integrated = numpy.transpose(buffer,(1,2,0)) #nProfiles (nLags) x nHeights x nChannels def normFactor(self,dataOut): dataOut.rnint2=numpy.zeros(dataOut.DPL,'float32') for l in range(dataOut.DPL): if(l==0 or (l>=3 and l <=6)): dataOut.rnint2[l]=1.0/(dataOut.nIncohInt*dataOut.nProfiles) else: dataOut.rnint2[l]=2*(1.0/(dataOut.nIncohInt*dataOut.nProfiles)) def run(self,dataOut): dataOut.paramInterval=0#int(dataOut.nint*dataOut.header[7][0]*2 ) dataOut.lat=-11.95 dataOut.lon=-76.87 dataOut.NDP=dataOut.nHeights dataOut.NR=len(dataOut.channelList) dataOut.DH=dataOut.heightList[1]-dataOut.heightList[0] dataOut.H0=int(dataOut.heightList[0]) self.normFactor(dataOut) #Probar sin comentar lo siguiente y comentando #dataOut.data_acf *= 16 #Corrects the zero padding #dataOut.dataLag_spc_LP *= 16 #Corrects the zero padding self.ConvertDataLP(dataOut) #dataOut.dataLag_spc_LP *= 2 #dataOut.output_LP_integrated[:,:,3] *= float(dataOut.NSCAN/22)#(dataOut.nNoiseProfiles) #Corrects the zero padding dataOut.nis=dataOut.NSCAN*dataOut.nIncohInt_LP*10 #print("nis/10: ", dataOut.NSCAN,dataOut.nIncohInt_LP,dataOut.nProfiles_LP) dataOut.nis=dataOut.NSCAN*dataOut.nIncohInt_LP*dataOut.nProfiles_LP*10 dataOut.nis=dataOut.nIncohInt_LP*dataOut.nProfiles_LP*10 #Removemos NSCAN debido a que está incluido en nProfiles_LP self.ConvertData(dataOut) dataOut.kabxys_integrated[4][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding dataOut.kabxys_integrated[6][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding dataOut.kabxys_integrated[8][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding dataOut.kabxys_integrated[10][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding hei = 2 self.noise(dataOut) #Noise for DP Profiles dataOut.pan[[1,2,7,8,9,10]] *= 2 #Corrects the zero padding #dataOut.pbn[[1,2,7,8,9,10]] *= 2 #Corrects the zero padding #Chequear debido a que se están mezclando lags en self.noise() self.noise_LP(dataOut) #Noise for LP Profiles print("pan: , pan_LP: ",dataOut.pan,dataOut.pan_LP) print("pbn: , pbn_LP: ",dataOut.pbn,dataOut.pbn_LP) dataOut.NAVG=1#dataOut.rnint2[0] #CHECK THIS! dataOut.nint=dataOut.nIncohInt dataOut.MAXNRANGENDT=dataOut.output_LP_integrated.shape[1] ''' range_aux=numpy.zeros(dataOut.MAXNRANGENDT,order='F',dtype='float32') range_aux_dp=numpy.zeros(dataOut.NDT,order='F',dtype='float32') for i in range(dataOut.MAXNRANGENDT): range_aux[i]=dataOut.H0 + i*dataOut.DH for i in range(dataOut.NDT): range_aux_dp[i]=dataOut.H0 + i*dataOut.DH import matplotlib.pyplot as plt #plt.plot(10*numpy.log10(dataOut.output_LP_integrated.real[0,:,0]),range_aux) plt.plot(10*numpy.log10(dataOut.output_LP_integrated.real[0,:,0]),range_aux_dp) #plt.plot(10*numpy.log10(dataOut.output_LP_integrated.real[0,:,0]/dataOut.nProfiles_LP),dataOut.range1) plt.axvline(10*numpy.log10(dataOut.tnoise[0]),color='k',linestyle='dashed') plt.grid() plt.xlim(20,100) plt.show() exit(1) ''' return dataOut class SpcVoltageDataToHybrid(SpectraDataToFaraday): ''' Written by R. Flores ''' """Operation to use spectra data in Faraday processing. Parameters: ----------- nint : int Number of integrations. Example -------- op = proc_unit.addOperation(name='SpcVoltageDataToHybrid', optype='other') """ def __init__(self, **kwargs): Operation.__init__(self, **kwargs) self.dataLag_spc=None self.dataLag_cspc=None self.dataLag_dc=None def normFactor(self,dataOut): dataOut.rnint2=numpy.zeros(dataOut.DPL,'float32') #print(dataOut.nIncohInt,dataOut.nProfiles) for l in range(dataOut.DPL): if(l==0 or (l>=3 and l <=6)): dataOut.rnint2[l]=1.0/(dataOut.nIncohInt*dataOut.nProfiles) else: dataOut.rnint2[l]=2*(1.0/(dataOut.nIncohInt*dataOut.nProfiles)) def run(self,dataOut): dataOut.paramInterval=0#int(dataOut.nint*dataOut.header[7][0]*2 ) dataOut.lat=-11.95 dataOut.lon=-76.87 #print(numpy.shape(dataOut.dataLag_spc)) #exit(1) data_to_remov_eej = dataOut.dataLag_spc[:,:,:,0] #dataOut.NDP=dataOut.nHeights #dataOut.NR=len(dataOut.channelList) #dataOut.DH=dataOut.heightList[1]-dataOut.heightList[0] #dataOut.H0=int(dataOut.heightList[0]) self.normFactor(dataOut) #dataOut.nis=dataOut.NSCAN*dataOut.NAVG*dataOut.nint*10 #print(dataOut.nHeights) #exit(1) #dataOut.NDP=dataOut.nHeights self.ConvertData(dataOut) dataOut.kabxys_integrated[4][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding dataOut.kabxys_integrated[6][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding dataOut.kabxys_integrated[8][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding dataOut.kabxys_integrated[10][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding #print(numpy.sum(dataOut.kabxys_integrated[4][:,1,0])) if hasattr(dataOut, 'NRANGE'): dataOut.MAXNRANGENDT = max(dataOut.NRANGE,dataOut.NDT) else: dataOut.MAXNRANGENDT = dataOut.NDP #dataOut.MAXNRANGENDT = max(dataOut.NRANGE,dataOut.NDP) #print(dataOut.rnint2) dataOut.DH=dataOut.heightList[1]-dataOut.heightList[0] dataOut.H0=int(dataOut.heightList[0]) #print(dataOut.nis) #exit(1) #self.noise(dataOut) if gmtime(dataOut.utctime).tm_hour >= 22. or gmtime(dataOut.utctime).tm_hour < 12.: self.get_eej_index(data_to_remov_eej,dataOut) return dataOut