##// END OF EJS Templates
fix line 461 y 665
fix line 461 y 665

File last commit:

r1601:3b2826fe0d97
r1791:e4984c469c9f isr
Show More
tred1.f
135 lines | 3.6 KiB | text/x-fortran | FortranFixedLexer
subroutine tred1(nm,n,a,d,e,e2)
c
integer i,j,k,l,n,ii,nm,jp1
real a(nm,n),d(n),e(n),e2(n)
real f,g,h,scale
c
c this subroutine is a translation of the algol procedure tred1,
c num. math. 11, 181-195(1968) by martin, reinsch, and wilkinson.
c handbook for auto. comp., vol.ii-linear algebra, 212-226(1971).
c
c this subroutine reduces a real symmetric matrix
c to a symmetric tridiagonal matrix using
c orthogonal similarity transformations.
c
c on input
c
c nm must be set to the row dimension of two-dimensional
c array parameters as declared in the calling program
c dimension statement.
c
c n is the order of the matrix.
c
c a contains the real symmetric input matrix. only the
c lower triangle of the matrix need be supplied.
c
c on output
c
c a contains information about the orthogonal trans-
c formations used in the reduction in its strict lower
c triangle. the full upper triangle of a is unaltered.
c
c d contains the diagonal elements of the tridiagonal matrix.
c
c e contains the subdiagonal elements of the tridiagonal
c matrix in its last n-1 positions. e(1) is set to zero.
c
c e2 contains the squares of the corresponding elements of e.
c e2 may coincide with e if the squares are not needed.
c
c questions and comments should be directed to burton s. garbow,
c mathematics and computer science div, argonne national laboratory
c
c this version dated august 1983.
c
c ------------------------------------------------------------------
c
do 100 i = 1, n
d(i) = a(n,i)
a(n,i) = a(i,i)
100 continue
c .......... for i=n step -1 until 1 do -- ..........
do 300 ii = 1, n
i = n + 1 - ii
l = i - 1
h = 0.0e0
scale = 0.0e0
if (l .lt. 1) go to 130
c .......... scale row (algol tol then not needed) ..........
do 120 k = 1, l
120 scale = scale + abs(d(k))
c
if (scale .ne. 0.0e0) go to 140
c
do 125 j = 1, l
d(j) = a(l,j)
a(l,j) = a(i,j)
a(i,j) = 0.0e0
125 continue
c
130 e(i) = 0.0e0
e2(i) = 0.0e0
go to 300
c
140 do 150 k = 1, l
d(k) = d(k) / scale
h = h + d(k) * d(k)
150 continue
c
e2(i) = scale * scale * h
f = d(l)
g = -sign(sqrt(h),f)
e(i) = scale * g
h = h - f * g
d(l) = f - g
if (l .eq. 1) go to 285
c .......... form a*u ..........
do 170 j = 1, l
170 e(j) = 0.0e0
c
do 240 j = 1, l
f = d(j)
g = e(j) + a(j,j) * f
jp1 = j + 1
if (l .lt. jp1) go to 220
c
do 200 k = jp1, l
g = g + a(k,j) * d(k)
e(k) = e(k) + a(k,j) * f
200 continue
c
220 e(j) = g
240 continue
c .......... form p ..........
f = 0.0e0
c
do 245 j = 1, l
e(j) = e(j) / h
f = f + e(j) * d(j)
245 continue
c
h = f / (h + h)
c .......... form q ..........
do 250 j = 1, l
250 e(j) = e(j) - h * d(j)
c .......... form reduced a ..........
do 280 j = 1, l
f = d(j)
g = e(j)
c
do 260 k = j, l
260 a(k,j) = a(k,j) - f * e(k) - g * d(k)
c
280 continue
c
285 do 290 j = 1, l
f = d(j)
d(j) = a(l,j)
a(l,j) = a(i,j)
a(i,j) = f * scale
290 continue
c
300 continue
c
return
end