##// END OF EJS Templates
fix line 461 y 665
fix line 461 y 665

File last commit:

r1601:3b2826fe0d97
r1791:e4984c469c9f isr
Show More
sppdi.f
128 lines | 3.3 KiB | text/x-fortran | FortranFixedLexer
subroutine sppdi(ap,n,det,job)
integer n,job
real ap(1)
real det(2)
c
c sppdi computes the determinant and inverse
c of a real symmetric positive definite matrix
c using the factors computed by sppco or sppfa .
c
c on entry
c
c ap real (n*(n+1)/2)
c the output from sppco or sppfa.
c
c n integer
c the order of the matrix a .
c
c job integer
c = 11 both determinant and inverse.
c = 01 inverse only.
c = 10 determinant only.
c
c on return
c
c ap the upper triangular half of the inverse .
c the strict lower triangle is unaltered.
c
c det real(2)
c determinant of original matrix if requested.
c otherwise not referenced.
c determinant = det(1) * 10.0**det(2)
c with 1.0 .le. det(1) .lt. 10.0
c or det(1) .eq. 0.0 .
c
c error condition
c
c a division by zero will occur if the input factor contains
c a zero on the diagonal and the inverse is requested.
c it will not occur if the subroutines are called correctly
c and if spoco or spofa has set info .eq. 0 .
c
c linpack. this version dated 08/14/78 .
c cleve moler, university of new mexico, argonne national lab.
c
c subroutines and functions
c
c blas saxpy,sscal
c fortran mod
c
c internal variables
c
real t
real s
integer i,ii,j,jj,jm1,j1,k,kj,kk,kp1,k1
c
c compute determinant
c
if (job/10 .eq. 0) go to 70
det(1) = 1.0e0
det(2) = 0.0e0
s = 10.0e0
ii = 0
do 50 i = 1, n
ii = ii + i
det(1) = ap(ii)**2*det(1)
c ...exit
if (det(1) .eq. 0.0e0) go to 60
10 if (det(1) .ge. 1.0e0) go to 20
det(1) = s*det(1)
det(2) = det(2) - 1.0e0
go to 10
20 continue
30 if (det(1) .lt. s) go to 40
det(1) = det(1)/s
det(2) = det(2) + 1.0e0
go to 30
40 continue
50 continue
60 continue
70 continue
c
c compute inverse(r)
c
if (mod(job,10) .eq. 0) go to 140
kk = 0
do 100 k = 1, n
k1 = kk + 1
kk = kk + k
ap(kk) = 1.0e0/ap(kk)
t = -ap(kk)
call sscal(k-1,t,ap(k1),1)
kp1 = k + 1
j1 = kk + 1
kj = kk + k
if (n .lt. kp1) go to 90
do 80 j = kp1, n
t = ap(kj)
ap(kj) = 0.0e0
call saxpy(k,t,ap(k1),1,ap(j1),1)
j1 = j1 + j
kj = kj + j
80 continue
90 continue
100 continue
c
c form inverse(r) * trans(inverse(r))
c
jj = 0
do 130 j = 1, n
j1 = jj + 1
jj = jj + j
jm1 = j - 1
k1 = 1
kj = j1
if (jm1 .lt. 1) go to 120
do 110 k = 1, jm1
t = ap(kj)
call saxpy(k,t,ap(j1),1,ap(k1),1)
k1 = k1 + k
kj = kj + 1
110 continue
120 continue
t = ap(jj)
call sscal(j,t,ap(j1),1)
130 continue
140 continue
return
end