|
|
SUBROUTINE SGTSL(N,C,D,E,B,INFO)
|
|
|
INTEGER N,INFO
|
|
|
REAL C(1),D(1),E(1),B(1)
|
|
|
C
|
|
|
C SGTSL GIVEN A GENERAL TRIDIAGONAL MATRIX AND A RIGHT HAND
|
|
|
C SIDE WILL FIND THE SOLUTION.
|
|
|
C
|
|
|
C ON ENTRY
|
|
|
C
|
|
|
C N INTEGER
|
|
|
C IS THE ORDER OF THE TRIDIAGONAL MATRIX.
|
|
|
C
|
|
|
C C REAL(N)
|
|
|
C IS THE SUBDIAGONAL OF THE TRIDIAGONAL MATRIX.
|
|
|
C C(2) THROUGH C(N) SHOULD CONTAIN THE SUBDIAGONAL.
|
|
|
C ON OUTPUT C IS DESTROYED.
|
|
|
C
|
|
|
C D REAL(N)
|
|
|
C IS THE DIAGONAL OF THE TRIDIAGONAL MATRIX.
|
|
|
C ON OUTPUT D IS DESTROYED.
|
|
|
C
|
|
|
C E REAL(N)
|
|
|
C IS THE SUPERDIAGONAL OF THE TRIDIAGONAL MATRIX.
|
|
|
C E(1) THROUGH E(N-1) SHOULD CONTAIN THE SUPERDIAGONAL.
|
|
|
C ON OUTPUT E IS DESTROYED.
|
|
|
C
|
|
|
C B REAL(N)
|
|
|
C IS THE RIGHT HAND SIDE VECTOR.
|
|
|
C
|
|
|
C ON RETURN
|
|
|
C
|
|
|
C B IS THE SOLUTION VECTOR.
|
|
|
C
|
|
|
C INFO INTEGER
|
|
|
C = 0 NORMAL VALUE.
|
|
|
C = K IF THE K-TH ELEMENT OF THE DIAGONAL BECOMES
|
|
|
C EXACTLY ZERO. THE SUBROUTINE RETURNS WHEN
|
|
|
C THIS IS DETECTED.
|
|
|
C
|
|
|
C LINPACK. THIS VERSION DATED 08/14/78 .
|
|
|
C JACK DONGARRA, ARGONNE NATIONAL LABORATORY.
|
|
|
C
|
|
|
C NO EXTERNALS
|
|
|
C FORTRAN ABS
|
|
|
C
|
|
|
C INTERNAL VARIABLES
|
|
|
C
|
|
|
INTEGER K,KB,KP1,NM1,NM2
|
|
|
REAL T
|
|
|
C BEGIN BLOCK PERMITTING ...EXITS TO 100
|
|
|
C
|
|
|
INFO = 0
|
|
|
C(1) = D(1)
|
|
|
NM1 = N - 1
|
|
|
IF (NM1 .LT. 1) GO TO 40
|
|
|
D(1) = E(1)
|
|
|
E(1) = 0.0E0
|
|
|
E(N) = 0.0E0
|
|
|
C
|
|
|
DO 30 K = 1, NM1
|
|
|
KP1 = K + 1
|
|
|
C
|
|
|
C FIND THE LARGEST OF THE TWO ROWS
|
|
|
C
|
|
|
IF (ABS(C(KP1)) .LT. ABS(C(K))) GO TO 10
|
|
|
C
|
|
|
C INTERCHANGE ROW
|
|
|
C
|
|
|
T = C(KP1)
|
|
|
C(KP1) = C(K)
|
|
|
C(K) = T
|
|
|
T = D(KP1)
|
|
|
D(KP1) = D(K)
|
|
|
D(K) = T
|
|
|
T = E(KP1)
|
|
|
E(KP1) = E(K)
|
|
|
E(K) = T
|
|
|
T = B(KP1)
|
|
|
B(KP1) = B(K)
|
|
|
B(K) = T
|
|
|
10 CONTINUE
|
|
|
C
|
|
|
C ZERO ELEMENTS
|
|
|
C
|
|
|
IF (C(K) .NE. 0.0E0) GO TO 20
|
|
|
INFO = K
|
|
|
C ............EXIT
|
|
|
GO TO 100
|
|
|
20 CONTINUE
|
|
|
T = -C(KP1)/C(K)
|
|
|
C(KP1) = D(KP1) + T*D(K)
|
|
|
D(KP1) = E(KP1) + T*E(K)
|
|
|
E(KP1) = 0.0E0
|
|
|
B(KP1) = B(KP1) + T*B(K)
|
|
|
30 CONTINUE
|
|
|
40 CONTINUE
|
|
|
IF (C(N) .NE. 0.0E0) GO TO 50
|
|
|
INFO = N
|
|
|
GO TO 90
|
|
|
50 CONTINUE
|
|
|
C
|
|
|
C BACK SOLVE
|
|
|
C
|
|
|
NM2 = N - 2
|
|
|
B(N) = B(N)/C(N)
|
|
|
IF (N .EQ. 1) GO TO 80
|
|
|
B(NM1) = (B(NM1) - D(NM1)*B(N))/C(NM1)
|
|
|
IF (NM2 .LT. 1) GO TO 70
|
|
|
DO 60 KB = 1, NM2
|
|
|
K = NM2 - KB + 1
|
|
|
B(K) = (B(K) - D(K)*B(K+1) - E(K)*B(K+2))/C(K)
|
|
|
60 CONTINUE
|
|
|
70 CONTINUE
|
|
|
80 CONTINUE
|
|
|
90 CONTINUE
|
|
|
100 CONTINUE
|
|
|
C
|
|
|
RETURN
|
|
|
END
|
|
|
|