##// END OF EJS Templates
merge with amisr tmp
merge with amisr tmp

File last commit:

r1738:e8767bd42c24
r1738:e8767bd42c24
Show More
jroplot_voltage.py
403 lines | 13.2 KiB | text/x-python | PythonLexer
'''
Created on Jul 9, 2014
@author: roj-idl71
'''
import os
import datetime
import numpy
from schainpy.model.graphics.jroplot_base import Plot, plt
class ScopePlot(Plot):
'''
Plot for Scope
'''
CODE = 'scope'
plot_type = 'scatter'
def setup(self):
self.xaxis = 'Range (Km)'
self.nplots = len(self.data.channels)
self.nrows = int(numpy.ceil(self.nplots/2))
self.ncols = int(numpy.ceil(self.nplots/self.nrows))
self.ylabel = 'Intensity [dB]'
self.titles = ['Channel '+str(self.data.channels[i])+" " for i in self.data.channels]
self.colorbar = False
self.width = 6
self.height = 4
def update(self, dataOut):
data = {}
meta = {
'nProfiles': dataOut.nProfiles,
'flagDataAsBlock': dataOut.flagDataAsBlock,
'profileIndex': dataOut.profileIndex,
}
if self.CODE == 'scope':
data[self.CODE] = dataOut.data
elif self.CODE == 'pp_power':
data[self.CODE] = dataOut.dataPP_POWER
elif self.CODE == 'pp_signal':
data[self.CODE] = dataOut.dataPP_POW
elif self.CODE == 'pp_velocity':
data[self.CODE] = dataOut.dataPP_DOP
elif self.CODE == 'pp_specwidth':
data[self.CODE] = dataOut.dataPP_WIDTH
return data, meta
def plot_iq(self, x, y, channelIndexList, thisDatetime, wintitle):
yreal = y[channelIndexList,:].real
yimag = y[channelIndexList,:].imag
Maintitle = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y"))
self.xlabel = "Range (Km)"
self.ylabel = "Intensity - IQ"
self.y = yreal
self.x = x
self.titles[0] = title
for i,ax in enumerate(self.axes):
title = "Channel %d" %(i)
if ax.firsttime:
self.xmin = min(x)
self.xmax = max(x)
ax.plt_r = ax.plot(x, yreal[i,:], color='b')[0]
ax.plt_i = ax.plot(x, yimag[i,:], color='r')[0]
else:
ax.plt_r.set_data(x, yreal[i,:])
ax.plt_i.set_data(x, yimag[i,:])
plt.suptitle(Maintitle)
def plot_power(self, x, y, channelIndexList, thisDatetime, wintitle):
y = y[channelIndexList,:] * numpy.conjugate(y[channelIndexList,:])
yreal = y.real
yreal = 10*numpy.log10(yreal)
self.y = yreal
title = wintitle + " Power: %s" %(thisDatetime.strftime("%d-%b-%Y"))
self.xlabel = "Range (Km)"
self.ylabel = "Intensity [dB]"
self.titles[0] = title
for i,ax in enumerate(self.axes):
title = "Channel %d" %(i)
ychannel = yreal[i,:]
if ax.firsttime:
self.xmin = min(x)
self.xmax = max(x)
ax.plt_r = ax.plot(x, ychannel)[0]
else:
ax.plt_r.set_data(x, ychannel)
def plot_weatherpower(self, x, y, channelIndexList, thisDatetime, wintitle):
y = y[channelIndexList,:]
yreal = y.real
yreal = 10*numpy.log10(yreal)
self.y = yreal
title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
self.xlabel = "Range (Km)"
self.ylabel = "Intensity"
self.xmin = min(x)
self.xmax = max(x)
self.titles[0] =title
for i,ax in enumerate(self.axes):
title = "Channel %d" %(i)
ychannel = yreal[i,:]
if ax.firsttime:
ax.plt_r = ax.plot(x, ychannel)[0]
else:
#pass
ax.plt_r.set_data(x, ychannel)
def plot_weathervelocity(self, x, y, channelIndexList, thisDatetime, wintitle):
x = x[channelIndexList,:]
yreal = y
self.y = yreal
title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
self.xlabel = "Velocity (m/s)"
self.ylabel = "Range (Km)"
self.xmin = numpy.min(x)
self.xmax = numpy.max(x)
self.titles[0] =title
for i,ax in enumerate(self.axes):
title = "Channel %d" %(i)
xchannel = x[i,:]
if ax.firsttime:
ax.plt_r = ax.plot(xchannel, yreal)[0]
else:
#pass
ax.plt_r.set_data(xchannel, yreal)
def plot_weatherspecwidth(self, x, y, channelIndexList, thisDatetime, wintitle):
x = x[channelIndexList,:]
yreal = y
self.y = yreal
title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
self.xlabel = "width "
self.ylabel = "Range (Km)"
self.xmin = numpy.min(x)
self.xmax = numpy.max(x)
self.titles[0] =title
for i,ax in enumerate(self.axes):
title = "Channel %d" %(i)
xchannel = x[i,:]
if ax.firsttime:
ax.plt_r = ax.plot(xchannel, yreal)[0]
else:
#pass
ax.plt_r.set_data(xchannel, yreal)
def plot(self):
if self.channels:
channels = self.channels
else:
channels = self.data.channels
thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1])
scope = self.data[-1][self.CODE]
if self.data.flagDataAsBlock:
for i in range(self.data.nProfiles):
wintitle1 = " [Profile = %d] " %i
if self.CODE =="scope":
if self.type == "power":
self.plot_power(self.data.yrange,
scope[:,i,:],
channels,
thisDatetime,
wintitle1
)
if self.type == "iq":
self.plot_iq(self.data.yrange,
scope[:,i,:],
channels,
thisDatetime,
wintitle1
)
if self.CODE=="pp_power":
self.plot_weatherpower(self.data.yrange,
scope[:,i,:],
channels,
thisDatetime,
wintitle
)
if self.CODE=="pp_signal":
self.plot_weatherpower(self.data.yrange,
scope[:,i,:],
channels,
thisDatetime,
wintitle
)
if self.CODE=="pp_velocity":
self.plot_weathervelocity(scope[:,i,:],
self.data.yrange,
channels,
thisDatetime,
wintitle
)
if self.CODE=="pp_spcwidth":
self.plot_weatherspecwidth(scope[:,i,:],
self.data.yrange,
channels,
thisDatetime,
wintitle
)
else:
wintitle = " [Profile = %d] " %self.data.profileIndex
if self.CODE== "scope":
if self.type == "power":
self.plot_power(self.data.yrange,
scope,
channels,
thisDatetime,
wintitle
)
if self.type == "iq":
self.plot_iq(self.data.yrange,
scope,
channels,
thisDatetime,
wintitle
)
if self.CODE=="pp_power":
self.plot_weatherpower(self.data.yrange,
scope,
channels,
thisDatetime,
wintitle
)
if self.CODE=="pp_signal":
self.plot_weatherpower(self.data.yrange,
scope,
channels,
thisDatetime,
wintitle
)
if self.CODE=="pp_velocity":
self.plot_weathervelocity(scope,
self.data.yrange,
channels,
thisDatetime,
wintitle
)
if self.CODE=="pp_specwidth":
self.plot_weatherspecwidth(scope,
self.data.yrange,
channels,
thisDatetime,
wintitle
)
class PulsepairPowerPlot(ScopePlot):
'''
Plot for P= S+N
'''
CODE = 'pp_power'
plot_type = 'scatter'
class PulsepairVelocityPlot(ScopePlot):
'''
Plot for VELOCITY
'''
CODE = 'pp_velocity'
plot_type = 'scatter'
class PulsepairSpecwidthPlot(ScopePlot):
'''
Plot for WIDTH
'''
CODE = 'pp_specwidth'
plot_type = 'scatter'
class PulsepairSignalPlot(ScopePlot):
'''
Plot for S
'''
CODE = 'pp_signal'
plot_type = 'scatter'
class Spectra2DPlot(Plot):
'''
Plot for 2D Spectra data
Necessary data as Block
you could use profiles2Block Operation
Example:
# opObj11 = volts_proc.addOperation(name='profiles2Block', optype='other')
# # opObj11.addParameter(name='n', value=10, format='int')
# opObj11.addParameter(name='timeInterval', value='2', format='int')
# opObj12 = volts_proc.addOperation(name='Spectra2DPlot', optype='external')
'''
CODE = 'spc'
colormap = 'jet'
plot_type = 'pcolor'
buffering = False
channelList = []
elevationList = []
azimuthList = []
def setup(self):
self.nplots = len(self.data.channels)
self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
self.height = 3.4 * self.nrows
self.cb_label = 'dB'
if self.showprofile:
self.width = 5.2 * self.ncols
else:
self.width = 4.2* self.ncols
self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.12})
self.ylabel = 'Range [km]'
def update_list(self,dataOut):
if len(self.channelList) == 0:
self.channelList = dataOut.channelList
if len(self.elevationList) == 0:
self.elevationList = dataOut.elevationList
if len(self.azimuthList) == 0:
self.azimuthList = dataOut.azimuthList
def update(self, dataOut):
self.update_list(dataOut)
data = {}
meta = {}
spectrum = numpy.fft.fftshift(numpy.fft.fft2(dataOut.data, axes=(1,2)))
z = numpy.abs(spectrum)
phase = numpy.angle(spectrum)
z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
spc = 10*numpy.log10(z)
dt1 = dataOut.ippSeconds
dt2 = dataOut.radarControllerHeaderObj.heightResolution/150000
data['spc'] = spc
data['phase'] = phase
f1 = numpy.fft.fftshift(numpy.fft.fftfreq(spectrum.shape[1],d=dt1)/1000)
f2 = numpy.fft.fftshift(numpy.fft.fftfreq(spectrum.shape[2],d=dt2)/1000)
meta['range'] = (f1, f2)
return data, meta
def plot(self):
x = self.data.range[0]
y = self.data.range[1]
self.xlabel = "Frequency (kHz)"
self.ylabel = "Frequency (kHz)"
self.titles = []
self.y = y
data = self.data[-1]
z = data['spc']
for n, ax in enumerate(self.axes):
if ax.firsttime:
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
self.xmin = self.xmin if self.xmin else -self.xmax
self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
ax.plt = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
else:
ax.plt.set_array(z[n].T.ravel())
if len(self.azimuthList) > 0 and len(self.elevationList) > 0:
self.titles.append('CH {}: {:2.1f}elv {:2.1f} az '.format(self.channelList[n], self.elevationList[n], self.azimuthList[n]))
else:
self.titles.append('CH {}: '.format(self.channelList[n]))