##// END OF EJS Templates
Now there are two receiver units one for data and one for plots
Now there are two receiver units one for data and one for plots

File last commit:

r940:3b577291ba9a merge
r957:d3acc9060c1d
Show More
jroplot_data.py
775 lines | 27.3 KiB | text/x-python | PythonLexer
import os
import zmq
import time
import numpy
import datetime
import numpy as np
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
from matplotlib.ticker import FuncFormatter, LinearLocator
from multiprocessing import Process
from schainpy.model.proc.jroproc_base import Operation
plt.ion()
func = lambda x, pos: ('%s') %(datetime.datetime.fromtimestamp(x).strftime('%H:%M'))
d1970 = datetime.datetime(1970,1,1)
class PlotData(Operation, Process):
CODE = 'Figure'
colormap = 'jro'
CONFLATE = False
__MAXNUMX = 80
__missing = 1E30
def __init__(self, **kwargs):
Operation.__init__(self, plot=True, **kwargs)
Process.__init__(self)
self.kwargs['code'] = self.CODE
self.mp = False
self.dataOut = None
self.isConfig = False
self.figure = None
self.axes = []
self.localtime = kwargs.pop('localtime', True)
self.show = kwargs.get('show', True)
self.save = kwargs.get('save', False)
self.colormap = kwargs.get('colormap', self.colormap)
self.colormap_coh = kwargs.get('colormap_coh', 'jet')
self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r')
self.showprofile = kwargs.get('showprofile', True)
self.title = kwargs.get('wintitle', '')
self.xaxis = kwargs.get('xaxis', 'frequency')
self.zmin = kwargs.get('zmin', None)
self.zmax = kwargs.get('zmax', None)
self.xmin = kwargs.get('xmin', None)
self.xmax = kwargs.get('xmax', None)
self.xrange = kwargs.get('xrange', 24)
self.ymin = kwargs.get('ymin', None)
self.ymax = kwargs.get('ymax', None)
self.__MAXNUMY = kwargs.get('decimation', 80)
self.throttle_value = 5
self.times = []
#self.interactive = self.kwargs['parent']
def fill_gaps(self, x_buffer, y_buffer, z_buffer):
if x_buffer.shape[0] < 2:
return x_buffer, y_buffer, z_buffer
deltas = x_buffer[1:] - x_buffer[0:-1]
x_median = np.median(deltas)
index = np.where(deltas > 5*x_median)
if len(index[0]) != 0:
z_buffer[::, index[0], ::] = self.__missing
z_buffer = np.ma.masked_inside(z_buffer,
0.99*self.__missing,
1.01*self.__missing)
return x_buffer, y_buffer, z_buffer
def decimate(self):
# dx = int(len(self.x)/self.__MAXNUMX) + 1
dy = int(len(self.y)/self.__MAXNUMY) + 1
# x = self.x[::dx]
x = self.x
y = self.y[::dy]
z = self.z[::, ::, ::dy]
return x, y, z
def __plot(self):
print 'plotting...{}'.format(self.CODE)
if self.show:
self.figure.show()
self.plot()
plt.tight_layout()
self.figure.canvas.manager.set_window_title('{} {} - {}'.format(self.title, self.CODE.upper(),
datetime.datetime.fromtimestamp(self.max_time).strftime('%Y/%m/%d')))
if self.save:
figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE,
datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S')))
print 'Saving figure: {}'.format(figname)
self.figure.savefig(figname)
self.figure.canvas.draw()
def plot(self):
print 'plotting...{}'.format(self.CODE.upper())
return
def run(self):
print '[Starting] {}'.format(self.name)
context = zmq.Context()
receiver = context.socket(zmq.SUB)
receiver.setsockopt(zmq.SUBSCRIBE, '')
receiver.setsockopt(zmq.CONFLATE, self.CONFLATE)
if 'server' in self.kwargs['parent']:
receiver.connect('ipc:///tmp/{}.plots'.format(self.kwargs['parent']['server']))
else:
receiver.connect("ipc:///tmp/zmq.plots")
seconds_passed = 0
while True:
try:
self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK)#flags=zmq.NOBLOCK
self.started = self.data['STARTED']
self.dataOut = self.data['dataOut']
if (len(self.times) < len(self.data['times']) and not self.started and self.data['ENDED']):
continue
self.times = self.data['times']
self.times.sort()
self.throttle_value = self.data['throttle']
self.min_time = self.times[0]
self.max_time = self.times[-1]
if self.isConfig is False:
print 'setting up'
self.setup()
self.isConfig = True
self.__plot()
if self.data['ENDED'] is True:
print '********GRAPHIC ENDED********'
self.ended = True
self.isConfig = False
self.__plot()
elif seconds_passed >= self.data['throttle']:
print 'passed', seconds_passed
self.__plot()
seconds_passed = 0
except zmq.Again as e:
print 'Waiting for data...'
plt.pause(2)
seconds_passed += 2
def close(self):
if self.dataOut:
self.__plot()
class PlotSpectraData(PlotData):
CODE = 'spc'
colormap = 'jro'
CONFLATE = False
def setup(self):
ncolspan = 1
colspan = 1
self.ncols = int(numpy.sqrt(self.dataOut.nChannels)+0.9)
self.nrows = int(self.dataOut.nChannels*1./self.ncols + 0.9)
self.width = 3.6*self.ncols
self.height = 3.2*self.nrows
if self.showprofile:
ncolspan = 3
colspan = 2
self.width += 1.2*self.ncols
self.ylabel = 'Range [Km]'
self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList]
if self.figure is None:
self.figure = plt.figure(figsize=(self.width, self.height),
edgecolor='k',
facecolor='w')
else:
self.figure.clf()
n = 0
for y in range(self.nrows):
for x in range(self.ncols):
if n >= self.dataOut.nChannels:
break
ax = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan), 1, colspan)
if self.showprofile:
ax.ax_profile = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan+colspan), 1, 1)
ax.firsttime = True
self.axes.append(ax)
n += 1
def plot(self):
if self.xaxis == "frequency":
x = self.dataOut.getFreqRange(1)/1000.
xlabel = "Frequency (kHz)"
elif self.xaxis == "time":
x = self.dataOut.getAcfRange(1)
xlabel = "Time (ms)"
else:
x = self.dataOut.getVelRange(1)
xlabel = "Velocity (m/s)"
y = self.dataOut.getHeiRange()
z = self.data[self.CODE]
for n, ax in enumerate(self.axes):
if ax.firsttime:
self.xmax = self.xmax if self.xmax else np.nanmax(x)
self.xmin = self.xmin if self.xmin else -self.xmax
self.ymin = self.ymin if self.ymin else np.nanmin(y)
self.ymax = self.ymax if self.ymax else np.nanmax(y)
self.zmin = self.zmin if self.zmin else np.nanmin(z)
self.zmax = self.zmax if self.zmax else np.nanmax(z)
ax.plot = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
divider = make_axes_locatable(ax)
cax = divider.new_horizontal(size='3%', pad=0.05)
self.figure.add_axes(cax)
plt.colorbar(ax.plot, cax)
ax.set_xlim(self.xmin, self.xmax)
ax.set_ylim(self.ymin, self.ymax)
ax.set_ylabel(self.ylabel)
ax.set_xlabel(xlabel)
ax.firsttime = False
if self.showprofile:
ax.plot_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0]
ax.ax_profile.set_xlim(self.zmin, self.zmax)
ax.ax_profile.set_ylim(self.ymin, self.ymax)
ax.ax_profile.set_xlabel('dB')
ax.ax_profile.grid(b=True, axis='x')
ax.plot_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y,
color="k", linestyle="dashed", lw=2)[0]
[tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()]
else:
ax.plot.set_array(z[n].T.ravel())
if self.showprofile:
ax.plot_profile.set_data(self.data['rti'][self.max_time][n], y)
ax.plot_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y)
ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]),
size=8)
self.saveTime = self.max_time
class PlotCrossSpectraData(PlotData):
CODE = 'cspc'
zmin_coh = None
zmax_coh = None
zmin_phase = None
zmax_phase = None
CONFLATE = False
def setup(self):
ncolspan = 1
colspan = 1
self.ncols = 2
self.nrows = self.dataOut.nPairs
self.width = 3.6*self.ncols
self.height = 3.2*self.nrows
self.ylabel = 'Range [Km]'
self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList]
if self.figure is None:
self.figure = plt.figure(figsize=(self.width, self.height),
edgecolor='k',
facecolor='w')
else:
self.figure.clf()
for y in range(self.nrows):
for x in range(self.ncols):
ax = plt.subplot2grid((self.nrows, self.ncols), (y, x), 1, 1)
ax.firsttime = True
self.axes.append(ax)
def plot(self):
if self.xaxis == "frequency":
x = self.dataOut.getFreqRange(1)/1000.
xlabel = "Frequency (kHz)"
elif self.xaxis == "time":
x = self.dataOut.getAcfRange(1)
xlabel = "Time (ms)"
else:
x = self.dataOut.getVelRange(1)
xlabel = "Velocity (m/s)"
y = self.dataOut.getHeiRange()
z_coh = self.data['cspc_coh']
z_phase = self.data['cspc_phase']
for n in range(self.nrows):
ax = self.axes[2*n]
ax1 = self.axes[2*n+1]
if ax.firsttime:
self.xmax = self.xmax if self.xmax else np.nanmax(x)
self.xmin = self.xmin if self.xmin else -self.xmax
self.ymin = self.ymin if self.ymin else np.nanmin(y)
self.ymax = self.ymax if self.ymax else np.nanmax(y)
self.zmin_coh = self.zmin_coh if self.zmin_coh else 0.0
self.zmax_coh = self.zmax_coh if self.zmax_coh else 1.0
self.zmin_phase = self.zmin_phase if self.zmin_phase else -180
self.zmax_phase = self.zmax_phase if self.zmax_phase else 180
ax.plot = ax.pcolormesh(x, y, z_coh[n].T,
vmin=self.zmin_coh,
vmax=self.zmax_coh,
cmap=plt.get_cmap(self.colormap_coh)
)
divider = make_axes_locatable(ax)
cax = divider.new_horizontal(size='3%', pad=0.05)
self.figure.add_axes(cax)
plt.colorbar(ax.plot, cax)
ax.set_xlim(self.xmin, self.xmax)
ax.set_ylim(self.ymin, self.ymax)
ax.set_ylabel(self.ylabel)
ax.set_xlabel(xlabel)
ax.firsttime = False
ax1.plot = ax1.pcolormesh(x, y, z_phase[n].T,
vmin=self.zmin_phase,
vmax=self.zmax_phase,
cmap=plt.get_cmap(self.colormap_phase)
)
divider = make_axes_locatable(ax1)
cax = divider.new_horizontal(size='3%', pad=0.05)
self.figure.add_axes(cax)
plt.colorbar(ax1.plot, cax)
ax1.set_xlim(self.xmin, self.xmax)
ax1.set_ylim(self.ymin, self.ymax)
ax1.set_ylabel(self.ylabel)
ax1.set_xlabel(xlabel)
ax1.firsttime = False
else:
ax.plot.set_array(z_coh[n].T.ravel())
ax1.plot.set_array(z_phase[n].T.ravel())
ax.set_title('Coherence Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8)
ax1.set_title('Phase Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8)
self.saveTime = self.max_time
class PlotSpectraMeanData(PlotSpectraData):
CODE = 'spc_mean'
colormap = 'jet'
def plot(self):
if self.xaxis == "frequency":
x = self.dataOut.getFreqRange(1)/1000.
xlabel = "Frequency (kHz)"
elif self.xaxis == "time":
x = self.dataOut.getAcfRange(1)
xlabel = "Time (ms)"
else:
x = self.dataOut.getVelRange(1)
xlabel = "Velocity (m/s)"
y = self.dataOut.getHeiRange()
z = self.data['spc']
mean = self.data['mean'][self.max_time]
for n, ax in enumerate(self.axes):
if ax.firsttime:
self.xmax = self.xmax if self.xmax else np.nanmax(x)
self.xmin = self.xmin if self.xmin else -self.xmax
self.ymin = self.ymin if self.ymin else np.nanmin(y)
self.ymax = self.ymax if self.ymax else np.nanmax(y)
self.zmin = self.zmin if self.zmin else np.nanmin(z)
self.zmax = self.zmax if self.zmax else np.nanmax(z)
ax.plt = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
ax.plt_dop = ax.plot(mean[n], y,
color='k')[0]
divider = make_axes_locatable(ax)
cax = divider.new_horizontal(size='3%', pad=0.05)
self.figure.add_axes(cax)
plt.colorbar(ax.plt, cax)
ax.set_xlim(self.xmin, self.xmax)
ax.set_ylim(self.ymin, self.ymax)
ax.set_ylabel(self.ylabel)
ax.set_xlabel(xlabel)
ax.firsttime = False
if self.showprofile:
ax.plt_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0]
ax.ax_profile.set_xlim(self.zmin, self.zmax)
ax.ax_profile.set_ylim(self.ymin, self.ymax)
ax.ax_profile.set_xlabel('dB')
ax.ax_profile.grid(b=True, axis='x')
ax.plt_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y,
color="k", linestyle="dashed", lw=2)[0]
[tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()]
else:
ax.plt.set_array(z[n].T.ravel())
ax.plt_dop.set_data(mean[n], y)
if self.showprofile:
ax.plt_profile.set_data(self.data['rti'][self.max_time][n], y)
ax.plt_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y)
ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]),
size=8)
self.saveTime = self.max_time
class PlotRTIData(PlotData):
CODE = 'rti'
colormap = 'jro'
def setup(self):
self.ncols = 1
self.nrows = self.dataOut.nChannels
self.width = 10
self.height = 2.2*self.nrows if self.nrows<6 else 12
if self.nrows==1:
self.height += 1
self.ylabel = 'Range [Km]'
self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList]
if self.figure is None:
self.figure = plt.figure(figsize=(self.width, self.height),
edgecolor='k',
facecolor='w')
else:
self.figure.clf()
self.axes = []
for n in range(self.nrows):
ax = self.figure.add_subplot(self.nrows, self.ncols, n+1)
ax.firsttime = True
self.axes.append(ax)
def plot(self):
self.x = np.array(self.times)
self.y = self.dataOut.getHeiRange()
self.z = []
for ch in range(self.nrows):
self.z.append([self.data[self.CODE][t][ch] for t in self.times])
self.z = np.array(self.z)
for n, ax in enumerate(self.axes):
x, y, z = self.fill_gaps(*self.decimate())
xmin = self.min_time
xmax = xmin+self.xrange*60*60
self.zmin = self.zmin if self.zmin else np.min(self.z)
self.zmax = self.zmax if self.zmax else np.max(self.z)
if ax.firsttime:
self.ymin = self.ymin if self.ymin else np.nanmin(self.y)
self.ymax = self.ymax if self.ymax else np.nanmax(self.y)
plot = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
divider = make_axes_locatable(ax)
cax = divider.new_horizontal(size='2%', pad=0.05)
self.figure.add_axes(cax)
plt.colorbar(plot, cax)
ax.set_ylim(self.ymin, self.ymax)
ax.xaxis.set_major_formatter(FuncFormatter(func))
ax.xaxis.set_major_locator(LinearLocator(6))
ax.set_ylabel(self.ylabel)
# if self.xmin is None:
# xmin = self.min_time
# else:
# xmin = (datetime.datetime.combine(self.dataOut.datatime.date(),
# datetime.time(self.xmin, 0, 0))-d1970).total_seconds()
ax.set_xlim(xmin, xmax)
ax.firsttime = False
else:
ax.collections.remove(ax.collections[0])
ax.set_xlim(xmin, xmax)
plot = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
ax.set_title('{} {}'.format(self.titles[n],
datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')),
size=8)
self.saveTime = self.min_time
class PlotCOHData(PlotRTIData):
CODE = 'coh'
def setup(self):
self.ncols = 1
self.nrows = self.dataOut.nPairs
self.width = 10
self.height = 2.2*self.nrows if self.nrows<6 else 12
if self.nrows==1:
self.height += 1
self.ylabel = 'Range [Km]'
self.titles = ['{} Ch{} * Ch{}'.format(self.CODE.upper(), x[0], x[1]) for x in self.dataOut.pairsList]
if self.figure is None:
self.figure = plt.figure(figsize=(self.width, self.height),
edgecolor='k',
facecolor='w')
else:
self.figure.clf()
self.axes = []
for n in range(self.nrows):
ax = self.figure.add_subplot(self.nrows, self.ncols, n+1)
ax.firsttime = True
self.axes.append(ax)
class PlotNoiseData(PlotData):
CODE = 'noise'
def setup(self):
self.ncols = 1
self.nrows = 1
self.width = 10
self.height = 3.2
self.ylabel = 'Intensity [dB]'
self.titles = ['Noise']
if self.figure is None:
self.figure = plt.figure(figsize=(self.width, self.height),
edgecolor='k',
facecolor='w')
else:
self.figure.clf()
self.axes = []
self.ax = self.figure.add_subplot(self.nrows, self.ncols, 1)
self.ax.firsttime = True
def plot(self):
x = self.times
xmin = self.min_time
xmax = xmin+self.xrange*60*60
if self.ax.firsttime:
for ch in self.dataOut.channelList:
y = [self.data[self.CODE][t][ch] for t in self.times]
self.ax.plot(x, y, lw=1, label='Ch{}'.format(ch))
self.ax.firsttime = False
self.ax.xaxis.set_major_formatter(FuncFormatter(func))
self.ax.xaxis.set_major_locator(LinearLocator(6))
self.ax.set_ylabel(self.ylabel)
plt.legend()
else:
for ch in self.dataOut.channelList:
y = [self.data[self.CODE][t][ch] for t in self.times]
self.ax.lines[ch].set_data(x, y)
self.ax.set_xlim(xmin, xmax)
self.ax.set_ylim(min(y)-5, max(y)+5)
self.saveTime = self.min_time
class PlotWindProfilerData(PlotRTIData):
CODE = 'wind'
colormap = 'seismic'
def setup(self):
self.ncols = 1
self.nrows = self.dataOut.data_output.shape[0]
self.width = 10
self.height = 2.2*self.nrows
self.ylabel = 'Height [Km]'
self.titles = ['Zonal Wind' ,'Meridional Wind', 'Vertical Wind']
self.clabels = ['Velocity (m/s)','Velocity (m/s)','Velocity (cm/s)']
self.windFactor = [1, 1, 100]
if self.figure is None:
self.figure = plt.figure(figsize=(self.width, self.height),
edgecolor='k',
facecolor='w')
else:
self.figure.clf()
self.axes = []
for n in range(self.nrows):
ax = self.figure.add_subplot(self.nrows, self.ncols, n+1)
ax.firsttime = True
self.axes.append(ax)
def plot(self):
self.x = np.array(self.times)
self.y = self.dataOut.heightList
self.z = []
for ch in range(self.nrows):
self.z.append([self.data['output'][t][ch] for t in self.times])
self.z = np.array(self.z)
self.z = numpy.ma.masked_invalid(self.z)
cmap=plt.get_cmap(self.colormap)
cmap.set_bad('black', 1.)
for n, ax in enumerate(self.axes):
x, y, z = self.fill_gaps(*self.decimate())
xmin = self.min_time
xmax = xmin+self.xrange*60*60
if ax.firsttime:
self.ymin = self.ymin if self.ymin else np.nanmin(self.y)
self.ymax = self.ymax if self.ymax else np.nanmax(self.y)
self.zmax = self.zmax if self.zmax else numpy.nanmax(abs(self.z[:-1, :]))
self.zmin = self.zmin if self.zmin else -self.zmax
plot = ax.pcolormesh(x, y, z[n].T*self.windFactor[n],
vmin=self.zmin,
vmax=self.zmax,
cmap=cmap
)
divider = make_axes_locatable(ax)
cax = divider.new_horizontal(size='2%', pad=0.05)
self.figure.add_axes(cax)
cb = plt.colorbar(plot, cax)
cb.set_label(self.clabels[n])
ax.set_ylim(self.ymin, self.ymax)
ax.xaxis.set_major_formatter(FuncFormatter(func))
ax.xaxis.set_major_locator(LinearLocator(6))
ax.set_ylabel(self.ylabel)
ax.set_xlim(xmin, xmax)
ax.firsttime = False
else:
ax.collections.remove(ax.collections[0])
ax.set_xlim(xmin, xmax)
plot = ax.pcolormesh(x, y, z[n].T*self.windFactor[n],
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
ax.set_title('{} {}'.format(self.titles[n],
datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')),
size=8)
self.saveTime = self.min_time
class PlotSNRData(PlotRTIData):
CODE = 'snr'
colormap = 'jet'
class PlotDOPData(PlotRTIData):
CODE = 'dop'
colormap = 'jet'
class PlotPHASEData(PlotCOHData):
CODE = 'phase'
colormap = 'seismic'
class PlotSkyMapData(PlotData):
CODE = 'met'
def setup(self):
self.ncols = 1
self.nrows = 1
self.width = 7.2
self.height = 7.2
self.xlabel = 'Zonal Zenith Angle (deg)'
self.ylabel = 'Meridional Zenith Angle (deg)'
if self.figure is None:
self.figure = plt.figure(figsize=(self.width, self.height),
edgecolor='k',
facecolor='w')
else:
self.figure.clf()
self.ax = plt.subplot2grid((self.nrows, self.ncols), (0, 0), 1, 1, polar=True)
self.ax.firsttime = True
def plot(self):
arrayParameters = np.concatenate([self.data['param'][t] for t in self.times])
error = arrayParameters[:,-1]
indValid = numpy.where(error == 0)[0]
finalMeteor = arrayParameters[indValid,:]
finalAzimuth = finalMeteor[:,3]
finalZenith = finalMeteor[:,4]
x = finalAzimuth*numpy.pi/180
y = finalZenith
if self.ax.firsttime:
self.ax.plot = self.ax.plot(x, y, 'bo', markersize=5)[0]
self.ax.set_ylim(0,90)
self.ax.set_yticks(numpy.arange(0,90,20))
self.ax.set_xlabel(self.xlabel)
self.ax.set_ylabel(self.ylabel)
self.ax.yaxis.labelpad = 40
self.ax.firsttime = False
else:
self.ax.plot.set_data(x, y)
dt1 = datetime.datetime.fromtimestamp(self.min_time).strftime('%y/%m/%d %H:%M:%S')
dt2 = datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')
title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
dt2,
len(x))
self.ax.set_title(title, size=8)
self.saveTime = self.max_time