##// END OF EJS Templates
LAST CHANGE WR
LAST CHANGE WR

File last commit:

r1384:2acdbd5998b4
r1393:ccbe99dfcead
Show More
jroplot_parameters_original.py
628 lines | 22.9 KiB | text/x-python | PythonLexer
/ schainpy / model / graphics / jroplot_parameters_original.py
import os
import datetime
import numpy
from schainpy.model.graphics.jroplot_base import Plot, plt
from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
from schainpy.utils import log
# libreria wradlib
import wradlib as wrl
EARTH_RADIUS = 6.3710e3
def ll2xy(lat1, lon1, lat2, lon2):
p = 0.017453292519943295
a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
r = 12742 * numpy.arcsin(numpy.sqrt(a))
theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
* numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
theta = -theta + numpy.pi/2
return r*numpy.cos(theta), r*numpy.sin(theta)
def km2deg(km):
'''
Convert distance in km to degrees
'''
return numpy.rad2deg(km/EARTH_RADIUS)
class SpectralMomentsPlot(SpectraPlot):
'''
Plot for Spectral Moments
'''
CODE = 'spc_moments'
# colormap = 'jet'
# plot_type = 'pcolor'
class DobleGaussianPlot(SpectraPlot):
'''
Plot for Double Gaussian Plot
'''
CODE = 'gaussian_fit'
# colormap = 'jet'
# plot_type = 'pcolor'
class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
'''
Plot SpectraCut with Double Gaussian Fit
'''
CODE = 'cut_gaussian_fit'
class SnrPlot(RTIPlot):
'''
Plot for SNR Data
'''
CODE = 'snr'
colormap = 'jet'
def update(self, dataOut):
data = {
'snr': 10*numpy.log10(dataOut.data_snr)
}
return data, {}
class DopplerPlot(RTIPlot):
'''
Plot for DOPPLER Data (1st moment)
'''
CODE = 'dop'
colormap = 'jet'
def update(self, dataOut):
data = {
'dop': 10*numpy.log10(dataOut.data_dop)
}
return data, {}
class PowerPlot(RTIPlot):
'''
Plot for Power Data (0 moment)
'''
CODE = 'pow'
colormap = 'jet'
def update(self, dataOut):
data = {
'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
}
return data, {}
class SpectralWidthPlot(RTIPlot):
'''
Plot for Spectral Width Data (2nd moment)
'''
CODE = 'width'
colormap = 'jet'
def update(self, dataOut):
data = {
'width': dataOut.data_width
}
return data, {}
class SkyMapPlot(Plot):
'''
Plot for meteors detection data
'''
CODE = 'param'
def setup(self):
self.ncols = 1
self.nrows = 1
self.width = 7.2
self.height = 7.2
self.nplots = 1
self.xlabel = 'Zonal Zenith Angle (deg)'
self.ylabel = 'Meridional Zenith Angle (deg)'
self.polar = True
self.ymin = -180
self.ymax = 180
self.colorbar = False
def plot(self):
arrayParameters = numpy.concatenate(self.data['param'])
error = arrayParameters[:, -1]
indValid = numpy.where(error == 0)[0]
finalMeteor = arrayParameters[indValid, :]
finalAzimuth = finalMeteor[:, 3]
finalZenith = finalMeteor[:, 4]
x = finalAzimuth * numpy.pi / 180
y = finalZenith
ax = self.axes[0]
if ax.firsttime:
ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
else:
ax.plot.set_data(x, y)
dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
dt2,
len(x))
self.titles[0] = title
class GenericRTIPlot(Plot):
'''
Plot for data_xxxx object
'''
CODE = 'param'
colormap = 'viridis'
plot_type = 'pcolorbuffer'
def setup(self):
self.xaxis = 'time'
self.ncols = 1
self.nrows = self.data.shape('param')[0]
self.nplots = self.nrows
self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
if not self.xlabel:
self.xlabel = 'Time'
self.ylabel = 'Range [km]'
if not self.titles:
self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
def update(self, dataOut):
data = {
'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
}
meta = {}
return data, meta
def plot(self):
# self.data.normalize_heights()
self.x = self.data.times
self.y = self.data.yrange
self.z = self.data['param']
self.z = 10*numpy.log10(self.z)
self.z = numpy.ma.masked_invalid(self.z)
if self.decimation is None:
x, y, z = self.fill_gaps(self.x, self.y, self.z)
else:
x, y, z = self.fill_gaps(*self.decimate())
for n, ax in enumerate(self.axes):
self.zmax = self.zmax if self.zmax is not None else numpy.max(
self.z[n])
self.zmin = self.zmin if self.zmin is not None else numpy.min(
self.z[n])
if ax.firsttime:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n]
)
else:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.collections.remove(ax.collections[0])
ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n]
)
class PolarMapPlot(Plot):
'''
Plot for weather radar
'''
CODE = 'param'
colormap = 'seismic'
def setup(self):
self.ncols = 1
self.nrows = 1
self.width = 9
self.height = 8
self.mode = self.data.meta['mode']
if self.channels is not None:
self.nplots = len(self.channels)
self.nrows = len(self.channels)
else:
self.nplots = self.data.shape(self.CODE)[0]
self.nrows = self.nplots
self.channels = list(range(self.nplots))
if self.mode == 'E':
self.xlabel = 'Longitude'
self.ylabel = 'Latitude'
else:
self.xlabel = 'Range (km)'
self.ylabel = 'Height (km)'
self.bgcolor = 'white'
self.cb_labels = self.data.meta['units']
self.lat = self.data.meta['latitude']
self.lon = self.data.meta['longitude']
self.xmin, self.xmax = float(
km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
self.ymin, self.ymax = float(
km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
# self.polar = True
def plot(self):
for n, ax in enumerate(self.axes):
data = self.data['param'][self.channels[n]]
zeniths = numpy.linspace(
0, self.data.meta['max_range'], data.shape[1])
if self.mode == 'E':
azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
r, theta = numpy.meshgrid(zeniths, azimuths)
x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
x = km2deg(x) + self.lon
y = km2deg(y) + self.lat
else:
azimuths = numpy.radians(self.data.yrange)
r, theta = numpy.meshgrid(zeniths, azimuths)
x, y = r*numpy.cos(theta), r*numpy.sin(theta)
self.y = zeniths
if ax.firsttime:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n])
else:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.collections.remove(ax.collections[0])
ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n])
if self.mode == 'A':
continue
# plot district names
f = open('/data/workspace/schain_scripts/distrito.csv')
for line in f:
label, lon, lat = [s.strip() for s in line.split(',') if s]
lat = float(lat)
lon = float(lon)
# ax.plot(lon, lat, '.b', ms=2)
ax.text(lon, lat, label.decode('utf8'), ha='center',
va='bottom', size='8', color='black')
# plot limites
limites = []
tmp = []
for line in open('/data/workspace/schain_scripts/lima.csv'):
if '#' in line:
if tmp:
limites.append(tmp)
tmp = []
continue
values = line.strip().split(',')
tmp.append((float(values[0]), float(values[1])))
for points in limites:
ax.add_patch(
Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
# plot Cuencas
for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
values = [line.strip().split(',') for line in f]
points = [(float(s[0]), float(s[1])) for s in values]
ax.add_patch(Polygon(points, ec='b', fc='none'))
# plot grid
for r in (15, 30, 45, 60):
ax.add_artist(plt.Circle((self.lon, self.lat),
km2deg(r), color='0.6', fill=False, lw=0.2))
ax.text(
self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
'{}km'.format(r),
ha='center', va='bottom', size='8', color='0.6', weight='heavy')
if self.mode == 'E':
title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
label = 'E{:02d}'.format(int(self.data.meta['elevation']))
else:
title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
self.titles = ['{} {}'.format(
self.data.parameters[x], title) for x in self.channels]
class WeatherPlot(Plot):
CODE = 'weather'
plot_name = 'weather'
plot_type = 'ppistyle'
buffering = False
def setup(self):
self.ncols = 1
self.nrows = 1
self.nplots= 1
self.ylabel= 'Range [Km]'
self.titles= ['Weather']
self.colorbar=False
self.width =8
self.height =8
self.ini =0
self.len_azi =0
self.buffer_ini = None
self.buffer_azi = None
self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
self.flag =0
self.indicador= 0
def update(self, dataOut):
data = {}
meta = {}
data['weather'] = 10*numpy.log10(dataOut.data_360[0]/(250**2))
data['azi'] = dataOut.data_azi
return data, meta
def plot(self):
thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1])
print("--------------------------------------",self.ini,"-----------------------------------")
print("time",self.data.times[-1])
data = self.data[-1]
#print("debug_0", data)
tmp_h = (data['weather'].shape[1])/10.0
#print("debug_1",tmp_h)
stoprange = float(tmp_h*1.5)#stoprange = float(33*1.5) por ahora 400
rangestep = float(0.15)
r = numpy.arange(0, stoprange, rangestep)
self.y = 2*r
print("---------------")
tmp_v = data['weather']
#print("tmp_v",tmp_v.shape)
tmp_z = data['azi']
print("tmp_z-------------->",tmp_z)
##if self.ini==0:
## tmp_z= [0,1,2,3,4,5,6,7,8,9]
#print("tmp_z",tmp_z.shape)
res = 1
step = (360/(res*tmp_v.shape[0]))
#print("step",step)
mode = 1
if mode==0:
#print("self.ini",self.ini)
val = numpy.mean(tmp_v[:,0])
self.len_azi = len(tmp_z)
ones = numpy.ones([(360-tmp_v.shape[0]),tmp_v.shape[1]])*val
self.buffer_ini = numpy.vstack((tmp_v,ones))
n = ((360/res)-len(tmp_z))
start = tmp_z[-1]+res
end = tmp_z[0]-res
if start>end:
end = end+360
azi_zeros = numpy.linspace(start,end,int(n))
azi_zeros = numpy.where(azi_zeros>360,azi_zeros-360,azi_zeros)
self.buffer_ini_azi = numpy.hstack((tmp_z,azi_zeros))
self.ini = self.ini+1
if mode==1:
#print("################")
#print("################")
#print("mode",self.ini)
#print("self.ini",self.ini)
if self.ini==0:
res = 1
step = (360/(res*tmp_v.shape[0]))
val = numpy.mean(tmp_v[:,0])
self.len_azi = len(tmp_z)
self.buf_tmp = tmp_v
ones = numpy.ones([(360-tmp_v.shape[0]),tmp_v.shape[1]])*val
self.buffer_ini = numpy.vstack((tmp_v,ones))
n = ((360/res)-len(tmp_z))
start = tmp_z[-1]+res
end = tmp_z[0]-res
if start>end:
end =end+360
azi_zeros = numpy.linspace(start,end,int(n))
azi_zeros = numpy.where(azi_zeros>360,azi_zeros-360,azi_zeros)
self.buf_azi = tmp_z
self.buffer_ini_azi = numpy.hstack((tmp_z,azi_zeros))
self.ini = self.ini+1
elif 0<self.ini<step:
'''
if self.ini>31:
start= tmp_z[0]
end =tmp_z[-1]
print("start","end",start,end)
if self.ini==32:
tmp_v=tmp_v+20
if self.ini==33:
tmp_v=tmp_v+10
if self.ini==34:
tmp_v=tmp_v+20
if self.ini==35:
tmp_v=tmp_v+20
'''
self.buf_tmp= numpy.vstack((self.buf_tmp,tmp_v))
print("ERROR_INMINENTE",self.buf_tmp.shape)
if self.buf_tmp.shape[0]==360:
print("entre aqui en 360 grados")
self.buffer_ini=self.buf_tmp
else:
# nuevo#########
self.buffer_ini[0:self.buf_tmp.shape[0],:]=self.buf_tmp
################
#val=30.0
#ones = numpy.ones([(360-self.buf_tmp.shape[0]),self.buf_tmp.shape[1]])*val
#self.buffer_ini = numpy.vstack((self.buf_tmp,ones))
self.buf_azi = numpy.hstack((self.buf_azi,tmp_z))
n = ((360/res)-len(self.buf_azi))
print("n----->",n)
if n==0:
self.buffer_ini_azi = self.buf_azi
else:
start = self.buf_azi[-1]+res
end = self.buf_azi[0]-res
print("start",start)
print("end",end)
if start>end:
end =end+360
azi_zeros = numpy.linspace(start,end,int(n))
azi_zeros = numpy.where(azi_zeros>360,azi_zeros-360,azi_zeros)
print("self.buf_azi",self.buf_azi[0])
print("tmp_Z 0 ",tmp_z[0])
print("tmp_Z -1",tmp_z[-1])
if tmp_z[0]<self.buf_azi[0] <tmp_z[-1]:
print("activando indicador")
self.indicador=1
if self.indicador==1:
azi_zeros = numpy.ones(360-len(self.buf_azi))*(tmp_z[-1]+res)
###start = tmp_z[-1]+res
###end = tmp_z[0]-res
###if start>end:
### end =end+360
###azi_zeros = numpy.linspace(start,end,int(n))
###azi_zeros = numpy.where(azi_zeros>360,azi_zeros-360,azi_zeros)
#print("azi_zeros",azi_zeros)
######self.buffer_ini_azi = numpy.hstack((self.buf_azi,azi_zeros))
#self.buffer_ini[0:tmv.shape[0],:]=tmp_v
##self.indicador=0
# self.indicador = True
#if self.indicador==True:
# azi_zeros = numpy.ones(360-len(self.buf_azi))*(tmp_z[-1]+res)
#self.buf_azi = tmp_z
self.buffer_ini_azi = numpy.hstack((self.buf_azi,azi_zeros))
if self.ini==step-1:
start= tmp_z[0]
end = tmp_z[-1]
#print("start","end",start,end)
###print(self.buffer_ini_azi[:80])
self.ini = self.ini+1
else:
step = (360/(res*tmp_v.shape[0]))
# aqui estaba realizando el debug de simulacion
# tmp_v=tmp_v +5 en cada step sumaba 5
# y el mismo valor despues de la primera vuelta
#tmp_v=tmp_v+5+(self.ini-step)*1### aqui yo habia sumado 5 por las puras
start= tmp_z[0]
end = tmp_z[-1]
#print("start","end",start,end)
###print(self.buffer_ini_azi[:120])
if step>=2:
if self.flag<step-1:
limit_i=self.buf_azi[len(tmp_z)*(self.flag+1)]
limit_s=self.buf_azi[len(tmp_z)*(self.flag+2)-1]
print("flag",self.flag,limit_i,limit_s)
if limit_i< tmp_z[-1]< limit_s:
index_i=int(numpy.where(tmp_z<=self.buf_azi[len(tmp_z)*(self.flag+1)])[0][-1])
tmp_r =int(numpy.where(self.buf_azi[(self.flag+1)*len(tmp_z):(self.flag+2)*len(tmp_z)]>=tmp_z[-1])[0][0])
print("tmp_r",tmp_r)
index_f=(self.flag+1)*len(tmp_z)+tmp_r
if len(tmp_z[index_i:])>len(self.buf_azi[len(tmp_z)*(self.flag+1):index_f]):
final = len(self.buf_azi[len(tmp_z)*(self.flag+1):index_f])
else:
final= len(tmp_z[index_i:])
self.buf_azi[len(tmp_z)*(self.flag+1):index_f]=tmp_z[index_i:index_i+final]
self.buf_tmp[len(tmp_z)*(self.flag+1):index_f,:]=tmp_v[index_i:index_i+final,:]
if limit_i<tmp_z[0]<limit_s:
index_f =int(numpy.where(self.buf_azi>=tmp_z[-1])[0][0])
n_p =index_f-len(tmp_z)*(self.flag+1)
if n_p>0:
self.buf_azi[len(tmp_z)*(self.flag+1):index_f]=tmp_z[-1]*numpy.ones(n_p)
self.buf_tmp[len(tmp_z)*(self.flag+1):index_f,:]=tmp_v[-1,:]*numpy.ones([n_p,tmp_v.shape[1]])
'''
if self.buf_azi[len(tmp_z)]<tmp_z[-1]<self.buf_azi[2*len(tmp_z)-1]:
index_i= int(numpy.where(tmp_z <= self.buf_azi[len(tmp_z)])[0][-1])
index_f= int(numpy.where(self.buf_azi>=tmp_z[-1])[0][0])
#print("index",index_i,index_f)
if len(tmp_z[index_i:])>len(self.buf_azi[len(tmp_z):index_f]):
final = len(self.buf_azi[len(tmp_z):index_f])
else:
final = len(tmp_z[index_i:])
self.buf_azi[len(tmp_z):index_f]=tmp_z[index_i:index_i+final]
self.buf_tmp[len(tmp_z):index_f,:]=tmp_v[index_i:index_i+final,:]
'''
self.buf_tmp[len(tmp_z)*(self.flag):len(tmp_z)*(self.flag+1),:]=tmp_v
self.buf_azi[len(tmp_z)*(self.flag):len(tmp_z)*(self.flag+1)] = tmp_z
self.buffer_ini=self.buf_tmp
self.buffer_ini_azi = self.buf_azi
##print("--------salida------------")
start= tmp_z[0]
end = tmp_z[-1]
##print("start","end",start,end)
##print(self.buffer_ini_azi[:120])
self.ini= self.ini+1
self.flag = self.flag +1
if self.flag==step:
self.flag=0
numpy.set_printoptions(suppress=True)
print("buffer_ini_azi")
print(self.buffer_ini_azi[:20])
print(self.buffer_ini_azi[-40:])
for i,ax in enumerate(self.axes):
if ax.firsttime:
plt.clf()
cgax, pm = wrl.vis.plot_ppi(self.buffer_ini,r=r,az=self.buffer_ini_azi,fig=self.figures[0], proj='cg', vmin=1, vmax=60)
else:
plt.clf()
cgax, pm = wrl.vis.plot_ppi(self.buffer_ini,r=r,az=self.buffer_ini_azi,fig=self.figures[0], proj='cg', vmin=1, vmax=60)
caax = cgax.parasites[0]
paax = cgax.parasites[1]
cbar = plt.gcf().colorbar(pm, pad=0.075)
caax.set_xlabel('x_range [km]')
caax.set_ylabel('y_range [km]')
plt.text(1.0, 1.05, 'azimuth '+str(thisDatetime)+"step"+str(self.ini), transform=caax.transAxes, va='bottom',ha='right')
#import time
#time.sleep(0.5)