|
|
import os
|
|
|
import datetime
|
|
|
import numpy
|
|
|
|
|
|
from schainpy.model.graphics.jroplot_base import Plot, plt
|
|
|
from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
|
|
|
from schainpy.utils import log
|
|
|
# libreria wradlib
|
|
|
import wradlib as wrl
|
|
|
|
|
|
EARTH_RADIUS = 6.3710e3
|
|
|
|
|
|
|
|
|
def ll2xy(lat1, lon1, lat2, lon2):
|
|
|
|
|
|
p = 0.017453292519943295
|
|
|
a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
|
|
|
numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
|
|
|
r = 12742 * numpy.arcsin(numpy.sqrt(a))
|
|
|
theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
|
|
|
* numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
|
|
|
theta = -theta + numpy.pi/2
|
|
|
return r*numpy.cos(theta), r*numpy.sin(theta)
|
|
|
|
|
|
|
|
|
def km2deg(km):
|
|
|
'''
|
|
|
Convert distance in km to degrees
|
|
|
'''
|
|
|
|
|
|
return numpy.rad2deg(km/EARTH_RADIUS)
|
|
|
|
|
|
|
|
|
|
|
|
class SpectralMomentsPlot(SpectraPlot):
|
|
|
'''
|
|
|
Plot for Spectral Moments
|
|
|
'''
|
|
|
CODE = 'spc_moments'
|
|
|
# colormap = 'jet'
|
|
|
# plot_type = 'pcolor'
|
|
|
|
|
|
class DobleGaussianPlot(SpectraPlot):
|
|
|
'''
|
|
|
Plot for Double Gaussian Plot
|
|
|
'''
|
|
|
CODE = 'gaussian_fit'
|
|
|
# colormap = 'jet'
|
|
|
# plot_type = 'pcolor'
|
|
|
|
|
|
class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
|
|
|
'''
|
|
|
Plot SpectraCut with Double Gaussian Fit
|
|
|
'''
|
|
|
CODE = 'cut_gaussian_fit'
|
|
|
|
|
|
class SnrPlot(RTIPlot):
|
|
|
'''
|
|
|
Plot for SNR Data
|
|
|
'''
|
|
|
|
|
|
CODE = 'snr'
|
|
|
colormap = 'jet'
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {
|
|
|
'snr': 10*numpy.log10(dataOut.data_snr)
|
|
|
}
|
|
|
|
|
|
return data, {}
|
|
|
|
|
|
class DopplerPlot(RTIPlot):
|
|
|
'''
|
|
|
Plot for DOPPLER Data (1st moment)
|
|
|
'''
|
|
|
|
|
|
CODE = 'dop'
|
|
|
colormap = 'jet'
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {
|
|
|
'dop': 10*numpy.log10(dataOut.data_dop)
|
|
|
}
|
|
|
|
|
|
return data, {}
|
|
|
|
|
|
class PowerPlot(RTIPlot):
|
|
|
'''
|
|
|
Plot for Power Data (0 moment)
|
|
|
'''
|
|
|
|
|
|
CODE = 'pow'
|
|
|
colormap = 'jet'
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {
|
|
|
'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
|
|
|
}
|
|
|
|
|
|
return data, {}
|
|
|
|
|
|
class SpectralWidthPlot(RTIPlot):
|
|
|
'''
|
|
|
Plot for Spectral Width Data (2nd moment)
|
|
|
'''
|
|
|
|
|
|
CODE = 'width'
|
|
|
colormap = 'jet'
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {
|
|
|
'width': dataOut.data_width
|
|
|
}
|
|
|
|
|
|
return data, {}
|
|
|
|
|
|
class SkyMapPlot(Plot):
|
|
|
'''
|
|
|
Plot for meteors detection data
|
|
|
'''
|
|
|
|
|
|
CODE = 'param'
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
self.ncols = 1
|
|
|
self.nrows = 1
|
|
|
self.width = 7.2
|
|
|
self.height = 7.2
|
|
|
self.nplots = 1
|
|
|
self.xlabel = 'Zonal Zenith Angle (deg)'
|
|
|
self.ylabel = 'Meridional Zenith Angle (deg)'
|
|
|
self.polar = True
|
|
|
self.ymin = -180
|
|
|
self.ymax = 180
|
|
|
self.colorbar = False
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
arrayParameters = numpy.concatenate(self.data['param'])
|
|
|
error = arrayParameters[:, -1]
|
|
|
indValid = numpy.where(error == 0)[0]
|
|
|
finalMeteor = arrayParameters[indValid, :]
|
|
|
finalAzimuth = finalMeteor[:, 3]
|
|
|
finalZenith = finalMeteor[:, 4]
|
|
|
|
|
|
x = finalAzimuth * numpy.pi / 180
|
|
|
y = finalZenith
|
|
|
|
|
|
ax = self.axes[0]
|
|
|
|
|
|
if ax.firsttime:
|
|
|
ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
|
|
|
else:
|
|
|
ax.plot.set_data(x, y)
|
|
|
|
|
|
dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
|
|
|
dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
|
|
|
title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
|
|
|
dt2,
|
|
|
len(x))
|
|
|
self.titles[0] = title
|
|
|
|
|
|
|
|
|
class GenericRTIPlot(Plot):
|
|
|
'''
|
|
|
Plot for data_xxxx object
|
|
|
'''
|
|
|
|
|
|
CODE = 'param'
|
|
|
colormap = 'viridis'
|
|
|
plot_type = 'pcolorbuffer'
|
|
|
|
|
|
def setup(self):
|
|
|
self.xaxis = 'time'
|
|
|
self.ncols = 1
|
|
|
self.nrows = self.data.shape('param')[0]
|
|
|
self.nplots = self.nrows
|
|
|
self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
|
|
|
|
|
|
if not self.xlabel:
|
|
|
self.xlabel = 'Time'
|
|
|
|
|
|
self.ylabel = 'Range [km]'
|
|
|
if not self.titles:
|
|
|
self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {
|
|
|
'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
|
|
|
}
|
|
|
|
|
|
meta = {}
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
# self.data.normalize_heights()
|
|
|
self.x = self.data.times
|
|
|
self.y = self.data.yrange
|
|
|
self.z = self.data['param']
|
|
|
|
|
|
self.z = 10*numpy.log10(self.z)
|
|
|
|
|
|
self.z = numpy.ma.masked_invalid(self.z)
|
|
|
|
|
|
if self.decimation is None:
|
|
|
x, y, z = self.fill_gaps(self.x, self.y, self.z)
|
|
|
else:
|
|
|
x, y, z = self.fill_gaps(*self.decimate())
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
|
|
|
self.zmax = self.zmax if self.zmax is not None else numpy.max(
|
|
|
self.z[n])
|
|
|
self.zmin = self.zmin if self.zmin is not None else numpy.min(
|
|
|
self.z[n])
|
|
|
|
|
|
if ax.firsttime:
|
|
|
if self.zlimits is not None:
|
|
|
self.zmin, self.zmax = self.zlimits[n]
|
|
|
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=self.cmaps[n]
|
|
|
)
|
|
|
else:
|
|
|
if self.zlimits is not None:
|
|
|
self.zmin, self.zmax = self.zlimits[n]
|
|
|
ax.collections.remove(ax.collections[0])
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=self.cmaps[n]
|
|
|
)
|
|
|
|
|
|
|
|
|
class PolarMapPlot(Plot):
|
|
|
'''
|
|
|
Plot for weather radar
|
|
|
'''
|
|
|
|
|
|
CODE = 'param'
|
|
|
colormap = 'seismic'
|
|
|
|
|
|
def setup(self):
|
|
|
self.ncols = 1
|
|
|
self.nrows = 1
|
|
|
self.width = 9
|
|
|
self.height = 8
|
|
|
self.mode = self.data.meta['mode']
|
|
|
if self.channels is not None:
|
|
|
self.nplots = len(self.channels)
|
|
|
self.nrows = len(self.channels)
|
|
|
else:
|
|
|
self.nplots = self.data.shape(self.CODE)[0]
|
|
|
self.nrows = self.nplots
|
|
|
self.channels = list(range(self.nplots))
|
|
|
if self.mode == 'E':
|
|
|
self.xlabel = 'Longitude'
|
|
|
self.ylabel = 'Latitude'
|
|
|
else:
|
|
|
self.xlabel = 'Range (km)'
|
|
|
self.ylabel = 'Height (km)'
|
|
|
self.bgcolor = 'white'
|
|
|
self.cb_labels = self.data.meta['units']
|
|
|
self.lat = self.data.meta['latitude']
|
|
|
self.lon = self.data.meta['longitude']
|
|
|
self.xmin, self.xmax = float(
|
|
|
km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
|
|
|
self.ymin, self.ymax = float(
|
|
|
km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
|
|
|
# self.polar = True
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
data = self.data['param'][self.channels[n]]
|
|
|
|
|
|
zeniths = numpy.linspace(
|
|
|
0, self.data.meta['max_range'], data.shape[1])
|
|
|
if self.mode == 'E':
|
|
|
azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
|
|
|
r, theta = numpy.meshgrid(zeniths, azimuths)
|
|
|
x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
|
|
|
theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
|
|
|
x = km2deg(x) + self.lon
|
|
|
y = km2deg(y) + self.lat
|
|
|
else:
|
|
|
azimuths = numpy.radians(self.data.yrange)
|
|
|
r, theta = numpy.meshgrid(zeniths, azimuths)
|
|
|
x, y = r*numpy.cos(theta), r*numpy.sin(theta)
|
|
|
self.y = zeniths
|
|
|
|
|
|
if ax.firsttime:
|
|
|
if self.zlimits is not None:
|
|
|
self.zmin, self.zmax = self.zlimits[n]
|
|
|
ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
|
|
|
x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=self.cmaps[n])
|
|
|
else:
|
|
|
if self.zlimits is not None:
|
|
|
self.zmin, self.zmax = self.zlimits[n]
|
|
|
ax.collections.remove(ax.collections[0])
|
|
|
ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
|
|
|
x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=self.cmaps[n])
|
|
|
|
|
|
if self.mode == 'A':
|
|
|
continue
|
|
|
|
|
|
# plot district names
|
|
|
f = open('/data/workspace/schain_scripts/distrito.csv')
|
|
|
for line in f:
|
|
|
label, lon, lat = [s.strip() for s in line.split(',') if s]
|
|
|
lat = float(lat)
|
|
|
lon = float(lon)
|
|
|
# ax.plot(lon, lat, '.b', ms=2)
|
|
|
ax.text(lon, lat, label.decode('utf8'), ha='center',
|
|
|
va='bottom', size='8', color='black')
|
|
|
|
|
|
# plot limites
|
|
|
limites = []
|
|
|
tmp = []
|
|
|
for line in open('/data/workspace/schain_scripts/lima.csv'):
|
|
|
if '#' in line:
|
|
|
if tmp:
|
|
|
limites.append(tmp)
|
|
|
tmp = []
|
|
|
continue
|
|
|
values = line.strip().split(',')
|
|
|
tmp.append((float(values[0]), float(values[1])))
|
|
|
for points in limites:
|
|
|
ax.add_patch(
|
|
|
Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
|
|
|
|
|
|
# plot Cuencas
|
|
|
for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
|
|
|
f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
|
|
|
values = [line.strip().split(',') for line in f]
|
|
|
points = [(float(s[0]), float(s[1])) for s in values]
|
|
|
ax.add_patch(Polygon(points, ec='b', fc='none'))
|
|
|
|
|
|
# plot grid
|
|
|
for r in (15, 30, 45, 60):
|
|
|
ax.add_artist(plt.Circle((self.lon, self.lat),
|
|
|
km2deg(r), color='0.6', fill=False, lw=0.2))
|
|
|
ax.text(
|
|
|
self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
|
|
|
self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
|
|
|
'{}km'.format(r),
|
|
|
ha='center', va='bottom', size='8', color='0.6', weight='heavy')
|
|
|
|
|
|
if self.mode == 'E':
|
|
|
title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
|
|
|
label = 'E{:02d}'.format(int(self.data.meta['elevation']))
|
|
|
else:
|
|
|
title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
|
|
|
label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
|
|
|
|
|
|
self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
|
|
|
self.titles = ['{} {}'.format(
|
|
|
self.data.parameters[x], title) for x in self.channels]
|
|
|
|
|
|
class WeatherPlot(Plot):
|
|
|
CODE = 'weather'
|
|
|
plot_name = 'weather'
|
|
|
plot_type = 'ppistyle'
|
|
|
buffering = False
|
|
|
|
|
|
def setup(self):
|
|
|
self.ncols = 1
|
|
|
self.nrows = 1
|
|
|
self.nplots= 1
|
|
|
self.ylabel= 'Range [Km]'
|
|
|
self.titles= ['Weather']
|
|
|
self.colorbar=False
|
|
|
self.width =8
|
|
|
self.height =8
|
|
|
self.ini =0
|
|
|
self.len_azi =0
|
|
|
self.buffer_ini = None
|
|
|
self.buffer_azi = None
|
|
|
self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
|
|
|
self.flag =0
|
|
|
self.indicador= 0
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
data['weather'] = 10*numpy.log10(dataOut.data_360[0]/(250**2))
|
|
|
data['azi'] = dataOut.data_azi
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1])
|
|
|
print("--------------------------------------",self.ini,"-----------------------------------")
|
|
|
print("time",self.data.times[-1])
|
|
|
data = self.data[-1]
|
|
|
#print("debug_0", data)
|
|
|
tmp_h = (data['weather'].shape[1])/10.0
|
|
|
#print("debug_1",tmp_h)
|
|
|
stoprange = float(tmp_h*1.5)#stoprange = float(33*1.5) por ahora 400
|
|
|
rangestep = float(0.15)
|
|
|
r = numpy.arange(0, stoprange, rangestep)
|
|
|
self.y = 2*r
|
|
|
print("---------------")
|
|
|
tmp_v = data['weather']
|
|
|
#print("tmp_v",tmp_v.shape)
|
|
|
tmp_z = data['azi']
|
|
|
print("tmp_z-------------->",tmp_z)
|
|
|
##if self.ini==0:
|
|
|
## tmp_z= [0,1,2,3,4,5,6,7,8,9]
|
|
|
|
|
|
#print("tmp_z",tmp_z.shape)
|
|
|
res = 1
|
|
|
step = (360/(res*tmp_v.shape[0]))
|
|
|
#print("step",step)
|
|
|
mode = 1
|
|
|
if mode==0:
|
|
|
#print("self.ini",self.ini)
|
|
|
val = numpy.mean(tmp_v[:,0])
|
|
|
self.len_azi = len(tmp_z)
|
|
|
ones = numpy.ones([(360-tmp_v.shape[0]),tmp_v.shape[1]])*val
|
|
|
self.buffer_ini = numpy.vstack((tmp_v,ones))
|
|
|
|
|
|
n = ((360/res)-len(tmp_z))
|
|
|
start = tmp_z[-1]+res
|
|
|
end = tmp_z[0]-res
|
|
|
if start>end:
|
|
|
end = end+360
|
|
|
azi_zeros = numpy.linspace(start,end,int(n))
|
|
|
azi_zeros = numpy.where(azi_zeros>360,azi_zeros-360,azi_zeros)
|
|
|
self.buffer_ini_azi = numpy.hstack((tmp_z,azi_zeros))
|
|
|
self.ini = self.ini+1
|
|
|
|
|
|
if mode==1:
|
|
|
#print("################")
|
|
|
#print("################")
|
|
|
#print("mode",self.ini)
|
|
|
#print("self.ini",self.ini)
|
|
|
if self.ini==0:
|
|
|
res = 1
|
|
|
step = (360/(res*tmp_v.shape[0]))
|
|
|
val = numpy.mean(tmp_v[:,0])
|
|
|
self.len_azi = len(tmp_z)
|
|
|
self.buf_tmp = tmp_v
|
|
|
ones = numpy.ones([(360-tmp_v.shape[0]),tmp_v.shape[1]])*val
|
|
|
self.buffer_ini = numpy.vstack((tmp_v,ones))
|
|
|
|
|
|
n = ((360/res)-len(tmp_z))
|
|
|
start = tmp_z[-1]+res
|
|
|
end = tmp_z[0]-res
|
|
|
if start>end:
|
|
|
end =end+360
|
|
|
azi_zeros = numpy.linspace(start,end,int(n))
|
|
|
azi_zeros = numpy.where(azi_zeros>360,azi_zeros-360,azi_zeros)
|
|
|
self.buf_azi = tmp_z
|
|
|
self.buffer_ini_azi = numpy.hstack((tmp_z,azi_zeros))
|
|
|
self.ini = self.ini+1
|
|
|
elif 0<self.ini<step:
|
|
|
'''
|
|
|
if self.ini>31:
|
|
|
start= tmp_z[0]
|
|
|
end =tmp_z[-1]
|
|
|
print("start","end",start,end)
|
|
|
if self.ini==32:
|
|
|
tmp_v=tmp_v+20
|
|
|
if self.ini==33:
|
|
|
tmp_v=tmp_v+10
|
|
|
if self.ini==34:
|
|
|
tmp_v=tmp_v+20
|
|
|
if self.ini==35:
|
|
|
tmp_v=tmp_v+20
|
|
|
'''
|
|
|
self.buf_tmp= numpy.vstack((self.buf_tmp,tmp_v))
|
|
|
print("ERROR_INMINENTE",self.buf_tmp.shape)
|
|
|
if self.buf_tmp.shape[0]==360:
|
|
|
print("entre aqui en 360 grados")
|
|
|
self.buffer_ini=self.buf_tmp
|
|
|
else:
|
|
|
# nuevo#########
|
|
|
self.buffer_ini[0:self.buf_tmp.shape[0],:]=self.buf_tmp
|
|
|
################
|
|
|
#val=30.0
|
|
|
#ones = numpy.ones([(360-self.buf_tmp.shape[0]),self.buf_tmp.shape[1]])*val
|
|
|
#self.buffer_ini = numpy.vstack((self.buf_tmp,ones))
|
|
|
|
|
|
self.buf_azi = numpy.hstack((self.buf_azi,tmp_z))
|
|
|
n = ((360/res)-len(self.buf_azi))
|
|
|
print("n----->",n)
|
|
|
if n==0:
|
|
|
self.buffer_ini_azi = self.buf_azi
|
|
|
else:
|
|
|
start = self.buf_azi[-1]+res
|
|
|
end = self.buf_azi[0]-res
|
|
|
print("start",start)
|
|
|
print("end",end)
|
|
|
if start>end:
|
|
|
end =end+360
|
|
|
azi_zeros = numpy.linspace(start,end,int(n))
|
|
|
azi_zeros = numpy.where(azi_zeros>360,azi_zeros-360,azi_zeros)
|
|
|
print("self.buf_azi",self.buf_azi[0])
|
|
|
print("tmp_Z 0 ",tmp_z[0])
|
|
|
print("tmp_Z -1",tmp_z[-1])
|
|
|
if tmp_z[0]<self.buf_azi[0] <tmp_z[-1]:
|
|
|
print("activando indicador")
|
|
|
self.indicador=1
|
|
|
if self.indicador==1:
|
|
|
azi_zeros = numpy.ones(360-len(self.buf_azi))*(tmp_z[-1]+res)
|
|
|
###start = tmp_z[-1]+res
|
|
|
###end = tmp_z[0]-res
|
|
|
###if start>end:
|
|
|
### end =end+360
|
|
|
###azi_zeros = numpy.linspace(start,end,int(n))
|
|
|
###azi_zeros = numpy.where(azi_zeros>360,azi_zeros-360,azi_zeros)
|
|
|
#print("azi_zeros",azi_zeros)
|
|
|
|
|
|
######self.buffer_ini_azi = numpy.hstack((self.buf_azi,azi_zeros))
|
|
|
#self.buffer_ini[0:tmv.shape[0],:]=tmp_v
|
|
|
##self.indicador=0
|
|
|
|
|
|
# self.indicador = True
|
|
|
#if self.indicador==True:
|
|
|
# azi_zeros = numpy.ones(360-len(self.buf_azi))*(tmp_z[-1]+res)
|
|
|
|
|
|
#self.buf_azi = tmp_z
|
|
|
self.buffer_ini_azi = numpy.hstack((self.buf_azi,azi_zeros))
|
|
|
|
|
|
if self.ini==step-1:
|
|
|
start= tmp_z[0]
|
|
|
end = tmp_z[-1]
|
|
|
#print("start","end",start,end)
|
|
|
###print(self.buffer_ini_azi[:80])
|
|
|
self.ini = self.ini+1
|
|
|
|
|
|
else:
|
|
|
step = (360/(res*tmp_v.shape[0]))
|
|
|
# aqui estaba realizando el debug de simulacion
|
|
|
# tmp_v=tmp_v +5 en cada step sumaba 5
|
|
|
# y el mismo valor despues de la primera vuelta
|
|
|
#tmp_v=tmp_v+5+(self.ini-step)*1### aqui yo habia sumado 5 por las puras
|
|
|
|
|
|
start= tmp_z[0]
|
|
|
end = tmp_z[-1]
|
|
|
#print("start","end",start,end)
|
|
|
###print(self.buffer_ini_azi[:120])
|
|
|
|
|
|
if step>=2:
|
|
|
if self.flag<step-1:
|
|
|
limit_i=self.buf_azi[len(tmp_z)*(self.flag+1)]
|
|
|
limit_s=self.buf_azi[len(tmp_z)*(self.flag+2)-1]
|
|
|
print("flag",self.flag,limit_i,limit_s)
|
|
|
if limit_i< tmp_z[-1]< limit_s:
|
|
|
index_i=int(numpy.where(tmp_z<=self.buf_azi[len(tmp_z)*(self.flag+1)])[0][-1])
|
|
|
tmp_r =int(numpy.where(self.buf_azi[(self.flag+1)*len(tmp_z):(self.flag+2)*len(tmp_z)]>=tmp_z[-1])[0][0])
|
|
|
print("tmp_r",tmp_r)
|
|
|
index_f=(self.flag+1)*len(tmp_z)+tmp_r
|
|
|
|
|
|
if len(tmp_z[index_i:])>len(self.buf_azi[len(tmp_z)*(self.flag+1):index_f]):
|
|
|
final = len(self.buf_azi[len(tmp_z)*(self.flag+1):index_f])
|
|
|
else:
|
|
|
final= len(tmp_z[index_i:])
|
|
|
self.buf_azi[len(tmp_z)*(self.flag+1):index_f]=tmp_z[index_i:index_i+final]
|
|
|
self.buf_tmp[len(tmp_z)*(self.flag+1):index_f,:]=tmp_v[index_i:index_i+final,:]
|
|
|
if limit_i<tmp_z[0]<limit_s:
|
|
|
index_f =int(numpy.where(self.buf_azi>=tmp_z[-1])[0][0])
|
|
|
n_p =index_f-len(tmp_z)*(self.flag+1)
|
|
|
if n_p>0:
|
|
|
self.buf_azi[len(tmp_z)*(self.flag+1):index_f]=tmp_z[-1]*numpy.ones(n_p)
|
|
|
self.buf_tmp[len(tmp_z)*(self.flag+1):index_f,:]=tmp_v[-1,:]*numpy.ones([n_p,tmp_v.shape[1]])
|
|
|
|
|
|
'''
|
|
|
if self.buf_azi[len(tmp_z)]<tmp_z[-1]<self.buf_azi[2*len(tmp_z)-1]:
|
|
|
index_i= int(numpy.where(tmp_z <= self.buf_azi[len(tmp_z)])[0][-1])
|
|
|
index_f= int(numpy.where(self.buf_azi>=tmp_z[-1])[0][0])
|
|
|
#print("index",index_i,index_f)
|
|
|
if len(tmp_z[index_i:])>len(self.buf_azi[len(tmp_z):index_f]):
|
|
|
final = len(self.buf_azi[len(tmp_z):index_f])
|
|
|
else:
|
|
|
final = len(tmp_z[index_i:])
|
|
|
self.buf_azi[len(tmp_z):index_f]=tmp_z[index_i:index_i+final]
|
|
|
self.buf_tmp[len(tmp_z):index_f,:]=tmp_v[index_i:index_i+final,:]
|
|
|
'''
|
|
|
self.buf_tmp[len(tmp_z)*(self.flag):len(tmp_z)*(self.flag+1),:]=tmp_v
|
|
|
self.buf_azi[len(tmp_z)*(self.flag):len(tmp_z)*(self.flag+1)] = tmp_z
|
|
|
self.buffer_ini=self.buf_tmp
|
|
|
self.buffer_ini_azi = self.buf_azi
|
|
|
##print("--------salida------------")
|
|
|
start= tmp_z[0]
|
|
|
end = tmp_z[-1]
|
|
|
##print("start","end",start,end)
|
|
|
##print(self.buffer_ini_azi[:120])
|
|
|
self.ini= self.ini+1
|
|
|
self.flag = self.flag +1
|
|
|
if self.flag==step:
|
|
|
self.flag=0
|
|
|
numpy.set_printoptions(suppress=True)
|
|
|
print("buffer_ini_azi")
|
|
|
print(self.buffer_ini_azi[:20])
|
|
|
print(self.buffer_ini_azi[-40:])
|
|
|
for i,ax in enumerate(self.axes):
|
|
|
if ax.firsttime:
|
|
|
plt.clf()
|
|
|
cgax, pm = wrl.vis.plot_ppi(self.buffer_ini,r=r,az=self.buffer_ini_azi,fig=self.figures[0], proj='cg', vmin=1, vmax=60)
|
|
|
else:
|
|
|
plt.clf()
|
|
|
cgax, pm = wrl.vis.plot_ppi(self.buffer_ini,r=r,az=self.buffer_ini_azi,fig=self.figures[0], proj='cg', vmin=1, vmax=60)
|
|
|
caax = cgax.parasites[0]
|
|
|
paax = cgax.parasites[1]
|
|
|
cbar = plt.gcf().colorbar(pm, pad=0.075)
|
|
|
caax.set_xlabel('x_range [km]')
|
|
|
caax.set_ylabel('y_range [km]')
|
|
|
plt.text(1.0, 1.05, 'azimuth '+str(thisDatetime)+"step"+str(self.ini), transform=caax.transAxes, va='bottom',ha='right')
|
|
|
#import time
|
|
|
#time.sleep(0.5)
|
|
|
|