##// END OF EJS Templates
LAST CHANGE WR
LAST CHANGE WR

File last commit:

r1393:ccbe99dfcead
r1393:ccbe99dfcead
Show More
jroplot_parameters.py
509 lines | 16.7 KiB | text/x-python | PythonLexer
import os
import datetime
import numpy
from schainpy.model.graphics.jroplot_base import Plot, plt
from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
from schainpy.utils import log
# libreria wradlib
import wradlib as wrl
EARTH_RADIUS = 6.3710e3
def ll2xy(lat1, lon1, lat2, lon2):
p = 0.017453292519943295
a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
r = 12742 * numpy.arcsin(numpy.sqrt(a))
theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
* numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
theta = -theta + numpy.pi/2
return r*numpy.cos(theta), r*numpy.sin(theta)
def km2deg(km):
'''
Convert distance in km to degrees
'''
return numpy.rad2deg(km/EARTH_RADIUS)
class SpectralMomentsPlot(SpectraPlot):
'''
Plot for Spectral Moments
'''
CODE = 'spc_moments'
# colormap = 'jet'
# plot_type = 'pcolor'
class DobleGaussianPlot(SpectraPlot):
'''
Plot for Double Gaussian Plot
'''
CODE = 'gaussian_fit'
# colormap = 'jet'
# plot_type = 'pcolor'
class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
'''
Plot SpectraCut with Double Gaussian Fit
'''
CODE = 'cut_gaussian_fit'
class SnrPlot(RTIPlot):
'''
Plot for SNR Data
'''
CODE = 'snr'
colormap = 'jet'
def update(self, dataOut):
data = {
'snr': 10*numpy.log10(dataOut.data_snr)
}
return data, {}
class DopplerPlot(RTIPlot):
'''
Plot for DOPPLER Data (1st moment)
'''
CODE = 'dop'
colormap = 'jet'
def update(self, dataOut):
data = {
'dop': 10*numpy.log10(dataOut.data_dop)
}
return data, {}
class PowerPlot(RTIPlot):
'''
Plot for Power Data (0 moment)
'''
CODE = 'pow'
colormap = 'jet'
def update(self, dataOut):
data = {
'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
}
return data, {}
class SpectralWidthPlot(RTIPlot):
'''
Plot for Spectral Width Data (2nd moment)
'''
CODE = 'width'
colormap = 'jet'
def update(self, dataOut):
data = {
'width': dataOut.data_width
}
return data, {}
class SkyMapPlot(Plot):
'''
Plot for meteors detection data
'''
CODE = 'param'
def setup(self):
self.ncols = 1
self.nrows = 1
self.width = 7.2
self.height = 7.2
self.nplots = 1
self.xlabel = 'Zonal Zenith Angle (deg)'
self.ylabel = 'Meridional Zenith Angle (deg)'
self.polar = True
self.ymin = -180
self.ymax = 180
self.colorbar = False
def plot(self):
arrayParameters = numpy.concatenate(self.data['param'])
error = arrayParameters[:, -1]
indValid = numpy.where(error == 0)[0]
finalMeteor = arrayParameters[indValid, :]
finalAzimuth = finalMeteor[:, 3]
finalZenith = finalMeteor[:, 4]
x = finalAzimuth * numpy.pi / 180
y = finalZenith
ax = self.axes[0]
if ax.firsttime:
ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
else:
ax.plot.set_data(x, y)
dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
dt2,
len(x))
self.titles[0] = title
class GenericRTIPlot(Plot):
'''
Plot for data_xxxx object
'''
CODE = 'param'
colormap = 'viridis'
plot_type = 'pcolorbuffer'
def setup(self):
self.xaxis = 'time'
self.ncols = 1
self.nrows = self.data.shape('param')[0]
self.nplots = self.nrows
self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
if not self.xlabel:
self.xlabel = 'Time'
self.ylabel = 'Range [km]'
if not self.titles:
self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
def update(self, dataOut):
data = {
'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
}
meta = {}
return data, meta
def plot(self):
# self.data.normalize_heights()
self.x = self.data.times
self.y = self.data.yrange
self.z = self.data['param']
self.z = 10*numpy.log10(self.z)
self.z = numpy.ma.masked_invalid(self.z)
if self.decimation is None:
x, y, z = self.fill_gaps(self.x, self.y, self.z)
else:
x, y, z = self.fill_gaps(*self.decimate())
for n, ax in enumerate(self.axes):
self.zmax = self.zmax if self.zmax is not None else numpy.max(
self.z[n])
self.zmin = self.zmin if self.zmin is not None else numpy.min(
self.z[n])
if ax.firsttime:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n]
)
else:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.collections.remove(ax.collections[0])
ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n]
)
class PolarMapPlot(Plot):
'''
Plot for weather radar
'''
CODE = 'param'
colormap = 'seismic'
def setup(self):
self.ncols = 1
self.nrows = 1
self.width = 9
self.height = 8
self.mode = self.data.meta['mode']
if self.channels is not None:
self.nplots = len(self.channels)
self.nrows = len(self.channels)
else:
self.nplots = self.data.shape(self.CODE)[0]
self.nrows = self.nplots
self.channels = list(range(self.nplots))
if self.mode == 'E':
self.xlabel = 'Longitude'
self.ylabel = 'Latitude'
else:
self.xlabel = 'Range (km)'
self.ylabel = 'Height (km)'
self.bgcolor = 'white'
self.cb_labels = self.data.meta['units']
self.lat = self.data.meta['latitude']
self.lon = self.data.meta['longitude']
self.xmin, self.xmax = float(
km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
self.ymin, self.ymax = float(
km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
# self.polar = True
def plot(self):
for n, ax in enumerate(self.axes):
data = self.data['param'][self.channels[n]]
zeniths = numpy.linspace(
0, self.data.meta['max_range'], data.shape[1])
if self.mode == 'E':
azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
r, theta = numpy.meshgrid(zeniths, azimuths)
x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
x = km2deg(x) + self.lon
y = km2deg(y) + self.lat
else:
azimuths = numpy.radians(self.data.yrange)
r, theta = numpy.meshgrid(zeniths, azimuths)
x, y = r*numpy.cos(theta), r*numpy.sin(theta)
self.y = zeniths
if ax.firsttime:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n])
else:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.collections.remove(ax.collections[0])
ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n])
if self.mode == 'A':
continue
# plot district names
f = open('/data/workspace/schain_scripts/distrito.csv')
for line in f:
label, lon, lat = [s.strip() for s in line.split(',') if s]
lat = float(lat)
lon = float(lon)
# ax.plot(lon, lat, '.b', ms=2)
ax.text(lon, lat, label.decode('utf8'), ha='center',
va='bottom', size='8', color='black')
# plot limites
limites = []
tmp = []
for line in open('/data/workspace/schain_scripts/lima.csv'):
if '#' in line:
if tmp:
limites.append(tmp)
tmp = []
continue
values = line.strip().split(',')
tmp.append((float(values[0]), float(values[1])))
for points in limites:
ax.add_patch(
Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
# plot Cuencas
for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
values = [line.strip().split(',') for line in f]
points = [(float(s[0]), float(s[1])) for s in values]
ax.add_patch(Polygon(points, ec='b', fc='none'))
# plot grid
for r in (15, 30, 45, 60):
ax.add_artist(plt.Circle((self.lon, self.lat),
km2deg(r), color='0.6', fill=False, lw=0.2))
ax.text(
self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
'{}km'.format(r),
ha='center', va='bottom', size='8', color='0.6', weight='heavy')
if self.mode == 'E':
title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
label = 'E{:02d}'.format(int(self.data.meta['elevation']))
else:
title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
self.titles = ['{} {}'.format(
self.data.parameters[x], title) for x in self.channels]
class WeatherPlot(Plot):
CODE = 'weather'
plot_name = 'weather'
plot_type = 'ppistyle'
buffering = False
def setup(self):
self.ncols = 1
self.nrows = 1
self.nplots= 1
self.ylabel= 'Range [Km]'
self.titles= ['Weather']
self.colorbar=False
self.width =8
self.height =8
self.ini =0
self.len_azi =0
self.buffer_ini = None
self.buffer_azi = None
self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
self.flag =0
self.indicador= 0
def update(self, dataOut):
data = {}
meta = {}
data['weather'] = 10*numpy.log10(dataOut.data_360[0]/(250.0))
data['azi'] = dataOut.data_azi
return data, meta
def const_ploteo(self,data_weather,data_azi,step,res):
if self.ini==0:
#------- AZIMUTH
n = (360/res)-len(data_azi)
start = data_azi[-1] + res
end = data_azi[0] - res
if start>end:
end = end + 360
azi_vacia = numpy.linspace(start,end,int(n))
azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
data_azi = numpy.hstack((data_azi,azi_vacia))
# RADAR
val_mean = numpy.mean(data_weather[:,0])
data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
data_weather = numpy.vstack((data_weather,data_weather_cmp))
else:
# azimuth
flag=0
start_azi = self.res_azi[0]
start = data_azi[0]
end = data_azi[-1]
print("start",start)
print("end",end)
if start< start_azi:
start = start +360
if end <start_azi:
end = end +360
print("start",start)
print("end",end)
#### AQUI SERA LA MAGIA
pos_ini = int((start-start_azi)/res)
len_azi = len(data_azi)
if (360-pos_ini)<len_azi:
if pos_ini+1==360:
pos_ini=0
else:
flag=1
dif= 360-pos_ini
comp= len_azi-dif
print(pos_ini)
print(len_azi)
print("shape",self.res_azi.shape)
if flag==0:
# AZIMUTH
self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
# RADAR
self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
else:
# AZIMUTH
self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
self.res_azi[0:comp] = data_azi[dif:]
# RADAR
self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
self.res_weather[0:comp,:] = data_weather[dif:,:]
flag=0
data_azi = self.res_azi
data_weather = self.res_weather
return data_weather,data_azi
def plot(self):
print("--------------------------------------",self.ini,"-----------------------------------")
#numpy.set_printoptions(suppress=True)
#print(self.data.times)
thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1])
data = self.data[-1]
# ALTURA altura_tmp_h
altura_h = (data['weather'].shape[1])/10.0
stoprange = float(altura_h*1.5)#stoprange = float(33*1.5) por ahora 400
rangestep = float(0.15)
r = numpy.arange(0, stoprange, rangestep)
self.y = 2*r
# RADAR
#data_weather = data['weather']
# PEDESTAL
#data_azi = data['azi']
res = 1
# STEP
step = (360/(res*data['weather'].shape[0]))
#print("shape wr_data", wr_data.shape)
#print("shape wr_azi",wr_azi.shape)
#print("step",step)
print("Time---->",self.data.times[-1],thisDatetime)
#print("alturas", len(self.y))
self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'],data_azi=data['azi'],step=step,res=res)
#numpy.set_printoptions(suppress=True)
#print("resultado",self.res_azi)
##########################################################
################# PLOTEO ###################
##########################################################
for i,ax in enumerate(self.axes):
if ax.firsttime:
plt.clf()
cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=1, vmax=60)
else:
plt.clf()
cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=0, vmax=60)
caax = cgax.parasites[0]
paax = cgax.parasites[1]
cbar = plt.gcf().colorbar(pm, pad=0.075)
caax.set_xlabel('x_range [km]')
caax.set_ylabel('y_range [km]')
plt.text(1.0, 1.05, 'azimuth '+str(thisDatetime)+"step"+str(self.ini), transform=caax.transAxes, va='bottom',ha='right')
self.ini= self.ini+1