##// END OF EJS Templates
Change merge in weatherparam
Change merge in weatherparam

File last commit:

r1724:c765803841ff
r1726:cbbe5ce190d6
Show More
jroplot_parameters.py
769 lines | 27.0 KiB | text/x-python | PythonLexer
import os
import datetime
import warnings
import numpy
from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter
from matplotlib.patches import Circle
from cartopy.feature import ShapelyFeature
import cartopy.io.shapereader as shpreader
from schainpy.model.graphics.jroplot_base import Plot, plt, ccrs
from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
from schainpy.utils import log
from schainpy.model.graphics.plotting_codes import cb_tables
EARTH_RADIUS = 6.3710e3
def antenna_to_cartesian(ranges, azimuths, elevations):
"""
Return Cartesian coordinates from antenna coordinates.
Parameters
----------
ranges : array
Distances to the center of the radar gates (bins) in kilometers.
azimuths : array
Azimuth angle of the radar in degrees.
elevations : array
Elevation angle of the radar in degrees.
Returns
-------
x, y, z : array
Cartesian coordinates in meters from the radar.
Notes
-----
The calculation for Cartesian coordinate is adapted from equations
2.28(b) and 2.28(c) of Doviak and Zrnic [1]_ assuming a
standard atmosphere (4/3 Earth's radius model).
.. math::
z = \\sqrt{r^2+R^2+2*r*R*sin(\\theta_e)} - R
s = R * arcsin(\\frac{r*cos(\\theta_e)}{R+z})
x = s * sin(\\theta_a)
y = s * cos(\\theta_a)
Where r is the distance from the radar to the center of the gate,
:math:`\\theta_a` is the azimuth angle, :math:`\\theta_e` is the
elevation angle, s is the arc length, and R is the effective radius
of the earth, taken to be 4/3 the mean radius of earth (6371 km).
References
----------
.. [1] Doviak and Zrnic, Doppler Radar and Weather Observations, Second
Edition, 1993, p. 21.
"""
theta_e = numpy.deg2rad(elevations) # elevation angle in radians.
theta_a = numpy.deg2rad(azimuths) # azimuth angle in radians.
R = 6371.0 * 1000.0 * 4.0 / 3.0 # effective radius of earth in meters.
r = ranges * 1000.0 # distances to gates in meters.
z = (r ** 2 + R ** 2 + 2.0 * r * R * numpy.sin(theta_e)) ** 0.5 - R
s = R * numpy.arcsin(r * numpy.cos(theta_e) / (R + z)) # arc length in m.
x = s * numpy.sin(theta_a)
y = s * numpy.cos(theta_a)
return x, y, z
def cartesian_to_geographic_aeqd(x, y, lon_0, lat_0, R=EARTH_RADIUS):
"""
Azimuthal equidistant Cartesian to geographic coordinate transform.
Transform a set of Cartesian/Cartographic coordinates (x, y) to
geographic coordinate system (lat, lon) using a azimuthal equidistant
map projection [1]_.
.. math::
lat = \\arcsin(\\cos(c) * \\sin(lat_0) +
(y * \\sin(c) * \\cos(lat_0) / \\rho))
lon = lon_0 + \\arctan2(
x * \\sin(c),
\\rho * \\cos(lat_0) * \\cos(c) - y * \\sin(lat_0) * \\sin(c))
\\rho = \\sqrt(x^2 + y^2)
c = \\rho / R
Where x, y are the Cartesian position from the center of projection;
lat, lon the corresponding latitude and longitude; lat_0, lon_0 are the
latitude and longitude of the center of the projection; R is the radius of
the earth (defaults to ~6371 km). lon is adjusted to be between -180 and
180.
Parameters
----------
x, y : array-like
Cartesian coordinates in the same units as R, typically meters.
lon_0, lat_0 : float
Longitude and latitude, in degrees, of the center of the projection.
R : float, optional
Earth radius in the same units as x and y. The default value is in
units of meters.
Returns
-------
lon, lat : array
Longitude and latitude of Cartesian coordinates in degrees.
References
----------
.. [1] Snyder, J. P. Map Projections--A Working Manual. U. S. Geological
Survey Professional Paper 1395, 1987, pp. 191-202.
"""
x = numpy.atleast_1d(numpy.asarray(x))
y = numpy.atleast_1d(numpy.asarray(y))
lat_0_rad = numpy.deg2rad(lat_0)
lon_0_rad = numpy.deg2rad(lon_0)
rho = numpy.sqrt(x*x + y*y)
c = rho / R
with warnings.catch_warnings():
# division by zero may occur here but is properly addressed below so
# the warnings can be ignored
warnings.simplefilter("ignore", RuntimeWarning)
lat_rad = numpy.arcsin(numpy.cos(c) * numpy.sin(lat_0_rad) +
y * numpy.sin(c) * numpy.cos(lat_0_rad) / rho)
lat_deg = numpy.rad2deg(lat_rad)
# fix cases where the distance from the center of the projection is zero
lat_deg[rho == 0] = lat_0
x1 = x * numpy.sin(c)
x2 = rho*numpy.cos(lat_0_rad)*numpy.cos(c) - y*numpy.sin(lat_0_rad)*numpy.sin(c)
lon_rad = lon_0_rad + numpy.arctan2(x1, x2)
lon_deg = numpy.rad2deg(lon_rad)
# Longitudes should be from -180 to 180 degrees
lon_deg[lon_deg > 180] -= 360.
lon_deg[lon_deg < -180] += 360.
return lon_deg, lat_deg
def antenna_to_geographic(ranges, azimuths, elevations, site):
x, y, z = antenna_to_cartesian(numpy.array(ranges), numpy.array(azimuths), numpy.array(elevations))
lon, lat = cartesian_to_geographic_aeqd(x, y, site[0], site[1], R=6370997.)
return lon, lat
def ll2xy(lat1, lon1, lat2, lon2):
p = 0.017453292519943295
a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
r = 12742 * numpy.arcsin(numpy.sqrt(a))
theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
* numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
theta = -theta + numpy.pi/2
return r*numpy.cos(theta), r*numpy.sin(theta)
def km2deg(km):
'''
Convert distance in km to degrees
'''
return numpy.rad2deg(km/EARTH_RADIUS)
class SpectralMomentsPlot(SpectraPlot):
'''
Plot for Spectral Moments
'''
CODE = 'spc_moments'
# colormap = 'jet'
# plot_type = 'pcolor'
class DobleGaussianPlot(SpectraPlot):
'''
Plot for Double Gaussian Plot
'''
CODE = 'gaussian_fit'
# colormap = 'jet'
# plot_type = 'pcolor'
class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
'''
Plot SpectraCut with Double Gaussian Fit
'''
CODE = 'cut_gaussian_fit'
class SnrPlot(RTIPlot):
'''
Plot for SNR Data
'''
CODE = 'snr'
colormap = 'jet'
def update(self, dataOut):
data = {
'snr': 10*numpy.log10(dataOut.data_snr)
}
return data, {}
class DopplerPlot(RTIPlot):
'''
Plot for DOPPLER Data (1st moment)
'''
CODE = 'dop'
colormap = 'jet'
def update(self, dataOut):
data = {
'dop': 10*numpy.log10(dataOut.data_dop)
}
return data, {}
class PowerPlot(RTIPlot):
'''
Plot for Power Data (0 moment)
'''
CODE = 'pow'
colormap = 'jet'
def update(self, dataOut):
data = {
'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
}
return data, {}
class SpectralWidthPlot(RTIPlot):
'''
Plot for Spectral Width Data (2nd moment)
'''
CODE = 'width'
colormap = 'jet'
def update(self, dataOut):
data = {
'width': dataOut.data_width
}
return data, {}
class SkyMapPlot(Plot):
'''
Plot for meteors detection data
'''
CODE = 'param'
def setup(self):
self.ncols = 1
self.nrows = 1
self.width = 7.2
self.height = 7.2
self.nplots = 1
self.xlabel = 'Zonal Zenith Angle (deg)'
self.ylabel = 'Meridional Zenith Angle (deg)'
self.polar = True
self.ymin = -180
self.ymax = 180
self.colorbar = False
def plot(self):
arrayParameters = numpy.concatenate(self.data['param'])
error = arrayParameters[:, -1]
indValid = numpy.where(error == 0)[0]
finalMeteor = arrayParameters[indValid, :]
finalAzimuth = finalMeteor[:, 3]
finalZenith = finalMeteor[:, 4]
x = finalAzimuth * numpy.pi / 180
y = finalZenith
ax = self.axes[0]
if ax.firsttime:
ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
else:
ax.plot.set_data(x, y)
dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
dt2,
len(x))
self.titles[0] = title
class GenericRTIPlot(Plot):
'''
Plot for data_xxxx object
'''
CODE = 'param'
colormap = 'viridis'
plot_type = 'pcolorbuffer'
def setup(self):
self.xaxis = 'time'
self.ncols = 1
self.nrows = self.data.shape('param')[0]
self.nplots = self.nrows
self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
if not self.xlabel:
self.xlabel = 'Time'
self.ylabel = 'Range [km]'
if not self.titles:
self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
def update(self, dataOut):
data = {
'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
}
meta = {}
return data, meta
def plot(self):
# self.data.normalize_heights()
self.x = self.data.times
self.y = self.data.yrange
self.z = self.data['param']
self.z = 10*numpy.log10(self.z)
self.z = numpy.ma.masked_invalid(self.z)
if self.decimation is None:
x, y, z = self.fill_gaps(self.x, self.y, self.z)
else:
x, y, z = self.fill_gaps(*self.decimate())
for n, ax in enumerate(self.axes):
self.zmax = self.zmax if self.zmax is not None else numpy.max(
self.z[n])
self.zmin = self.zmin if self.zmin is not None else numpy.min(
self.z[n])
if ax.firsttime:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n]
)
else:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.collections.remove(ax.collections[0])
ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n]
)
class PolarMapPlot(Plot):
'''
Plot for weather radar
'''
CODE = 'param'
colormap = 'seismic'
def setup(self):
self.ncols = 1
self.nrows = 1
self.width = 9
self.height = 8
self.mode = self.data.meta['mode']
if self.channels is not None:
self.nplots = len(self.channels)
self.nrows = len(self.channels)
else:
self.nplots = self.data.shape(self.CODE)[0]
self.nrows = self.nplots
self.channels = list(range(self.nplots))
if self.mode == 'E':
self.xlabel = 'Longitude'
self.ylabel = 'Latitude'
else:
self.xlabel = 'Range (km)'
self.ylabel = 'Height (km)'
self.bgcolor = 'white'
self.cb_labels = self.data.meta['units']
self.lat = self.data.meta['latitude']
self.lon = self.data.meta['longitude']
self.xmin, self.xmax = float(
km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
self.ymin, self.ymax = float(
km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
# self.polar = True
def plot(self):
for n, ax in enumerate(self.axes):
data = self.data['param'][self.channels[n]]
zeniths = numpy.linspace(
0, self.data.meta['max_range'], data.shape[1])
if self.mode == 'E':
azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
r, theta = numpy.meshgrid(zeniths, azimuths)
x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
x = km2deg(x) + self.lon
y = km2deg(y) + self.lat
else:
azimuths = numpy.radians(self.data.yrange)
r, theta = numpy.meshgrid(zeniths, azimuths)
x, y = r*numpy.cos(theta), r*numpy.sin(theta)
self.y = zeniths
if ax.firsttime:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n])
else:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.collections.remove(ax.collections[0])
ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n])
if self.mode == 'A':
continue
# plot district names
f = open('/data/workspace/schain_scripts/distrito.csv')
for line in f:
label, lon, lat = [s.strip() for s in line.split(',') if s]
lat = float(lat)
lon = float(lon)
# ax.plot(lon, lat, '.b', ms=2)
ax.text(lon, lat, label.decode('utf8'), ha='center',
va='bottom', size='8', color='black')
# plot limites
limites = []
tmp = []
for line in open('/data/workspace/schain_scripts/lima.csv'):
if '#' in line:
if tmp:
limites.append(tmp)
tmp = []
continue
values = line.strip().split(',')
tmp.append((float(values[0]), float(values[1])))
for points in limites:
ax.add_patch(
Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
# plot Cuencas
for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
values = [line.strip().split(',') for line in f]
points = [(float(s[0]), float(s[1])) for s in values]
ax.add_patch(Polygon(points, ec='b', fc='none'))
# plot grid
for r in (15, 30, 45, 60):
ax.add_artist(plt.Circle((self.lon, self.lat),
km2deg(r), color='0.6', fill=False, lw=0.2))
ax.text(
self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
'{}km'.format(r),
ha='center', va='bottom', size='8', color='0.6', weight='heavy')
if self.mode == 'E':
title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
label = 'E{:02d}'.format(int(self.data.meta['elevation']))
else:
title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
self.titles = ['{} {}'.format(
self.data.parameters[x], title) for x in self.channels]
class WeatherParamsPlot(Plot):
plot_type = 'scattermap'
buffering = False
def setup(self):
self.ncols = 1
self.nrows = 1
self.nplots= 1
if self.channels is not None:
self.nplots = len(self.channels)
self.ncols = len(self.channels)
else:
self.nplots = self.data.shape(self.CODE)[0]
self.ncols = self.nplots
self.channels = list(range(self.nplots))
self.colorbar=True
if len(self.channels)>1:
self.width = 12
else:
self.width =8
self.height =7
self.ini =0
self.len_azi =0
self.buffer_ini = None
self.buffer_ele = None
self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.1})
self.flag =0
self.indicador= 0
self.last_data_ele = None
self.val_mean = None
def update(self, dataOut):
vars = {
'S' : 0,
'V' : 1,
'W' : 2,
'SNR' : 3,
'Z' : 4,
'D' : 5,
'P' : 6,
'R' : 7,
}
data = {}
meta = {}
if hasattr(dataOut, 'nFFTPoints'):
factor = dataOut.normFactor
else:
factor = 1
if hasattr(dataOut, 'dparam'):
tmp = getattr(dataOut, 'data_param')
else:
#print("-------------------self.attr_data[0]",self.attr_data[0])
if 'S' in self.attr_data[0]:
if self.attr_data[0]=='S':
tmp = 10*numpy.log10(10.0*getattr(dataOut, 'data_param')[:,0,:]/(factor))
if self.attr_data[0]=='SNR':
tmp = 10*numpy.log10(getattr(dataOut, 'data_param')[:,3,:])
else:
tmp = getattr(dataOut, 'data_param')[:,vars[self.attr_data[0]],:]
if self.mask:
mask = dataOut.data_param[:,3,:] < self.mask
tmp[mask] = numpy.nan
mask = numpy.nansum((tmp, numpy.roll(tmp, 1),numpy.roll(tmp, -1)), axis=0) == tmp
tmp[mask] = numpy.nan
r = dataOut.heightList
delta_height = r[1]-r[0]
valid = numpy.where(r>=0)[0]
data['r'] = numpy.arange(len(valid))*delta_height
data['data'] = [0, 0]
try:
data['data'][0] = tmp[0][:,valid]
data['data'][1] = tmp[1][:,valid]
except:
data['data'][0] = tmp[0][:,valid]
data['data'][1] = tmp[0][:,valid]
if dataOut.mode_op == 'PPI':
self.CODE = 'PPI'
self.title = self.CODE
elif dataOut.mode_op == 'RHI':
self.CODE = 'RHI'
self.title = self.CODE
data['azi'] = dataOut.data_azi
data['ele'] = dataOut.data_ele
if isinstance(dataOut.mode_op, bytes):
try:
dataOut.mode_op = dataOut.mode_op.decode()
except:
dataOut.mode_op = str(dataOut.mode_op, 'utf-8')
data['mode_op'] = dataOut.mode_op
self.mode = dataOut.mode_op
return data, meta
def plot(self):
data = self.data[-1]
z = data['data']
r = data['r']
self.titles = []
self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
self.zmin = self.zmin if self.zmin is not None else numpy.nanmin(z)
if isinstance(data['mode_op'], bytes):
data['mode_op'] = data['mode_op'].decode()
if data['mode_op'] == 'RHI':
r, theta = numpy.meshgrid(r, numpy.radians(data['ele']))
len_aux = int(data['azi'].shape[0]/4)
mean = numpy.mean(data['azi'][len_aux:-len_aux])
x, y = r*numpy.cos(theta), r*numpy.sin(theta)
if self.yrange:
self.ylabel= 'Height [km]'
self.xlabel= 'Distance from radar [km]'
self.ymax = self.yrange
self.ymin = 0
self.xmax = self.xrange if self.xrange else numpy.nanmax(r)
self.xmin = -self.xrange if self.xrange else -numpy.nanmax(r)
self.setrhilimits = False
else:
self.ymin = 0
self.ymax = numpy.nanmax(r)
self.xmin = -numpy.nanmax(r)
self.xmax = numpy.nanmax(r)
elif data['mode_op'] == 'PPI':
r, theta = numpy.meshgrid(r, -numpy.radians(data['azi'])+numpy.pi/2)
len_aux = int(data['ele'].shape[0]/4)
mean = numpy.mean(data['ele'][len_aux:-len_aux])
x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(mean)), r*numpy.sin(
theta)*numpy.cos(numpy.radians(mean))
x = km2deg(x) + self.longitude
y = km2deg(y) + self.latitude
if self.xrange:
self.ylabel= 'Latitude'
self.xlabel= 'Longitude'
self.xmin = km2deg(-self.xrange) + self.longitude
self.xmax = km2deg(self.xrange) + self.longitude
self.ymin = km2deg(-self.xrange) + self.latitude
self.ymax = km2deg(self.xrange) + self.latitude
else:
self.xmin = km2deg(-numpy.nanmax(r)) + self.longitude
self.xmax = km2deg(numpy.nanmax(r)) + self.longitude
self.ymin = km2deg(-numpy.nanmax(r)) + self.latitude
self.ymax = km2deg(numpy.nanmax(r)) + self.latitude
self.clear_figures()
if data['mode_op'] == 'PPI':
axes = self.axes['PPI']
else:
axes = self.axes['RHI']
if self.colormap in cb_tables:
norm = cb_tables[self.colormap]['norm']
else:
norm = None
for i, ax in enumerate(axes):
if norm is None:
ax.plt = ax.pcolormesh(x, y, z[i], cmap=self.colormap, vmin=self.zmin, vmax=self.zmax)
else:
ax.plt = ax.pcolormesh(x, y, z[i], cmap=self.colormap, norm=norm)
if data['mode_op'] == 'RHI':
len_aux = int(data['azi'].shape[0]/4)
mean = numpy.mean(data['azi'][len_aux:-len_aux])
if len(self.channels) !=1:
self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in self.channels]
else:
self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])]
elif data['mode_op'] == 'PPI':
len_aux = int(data['ele'].shape[0]/4)
mean = numpy.mean(data['ele'][len_aux:-len_aux])
if len(self.channels) !=1:
self.titles = ['PPI {} at EL: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in self.channels]
else:
self.titles = ['PPI {} at EL: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])]
self.mode_value = round(mean,1)
if data['mode_op'] == 'PPI':
if self.map:
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True,
linewidth=1, color='gray', alpha=0.5, linestyle='--')
gl.xlabel_style = {'size': 8}
gl.ylabel_style = {'size': 8}
gl.xlabels_top = False
gl.ylabels_right = False
shape_d = os.path.join(self.shapes,'Distritos/PER_adm3.shp')
shape_p = os.path.join(self.shapes,'PER_ADM2/PER_ADM2.shp')
capitales = os.path.join(self.shapes,'CAPITALES/cap_distrito.shp')
vias = os.path.join(self.shapes,'Carreteras/VIAS_NACIONAL_250000.shp')
reader_d = shpreader.BasicReader(shape_d, encoding='latin1')
reader_p = shpreader.BasicReader(shape_p, encoding='latin1')
reader_c = shpreader.BasicReader(capitales, encoding='latin1')
reader_v = shpreader.BasicReader(vias, encoding='latin1')
caps = [x for x in reader_c.records() if x.attributes['DEPARTA']=='PIURA' and x.attributes['CATEGORIA']=='CIUDAD']
districts = [x for x in reader_d.records() if x.attributes['NAME_1']=='Piura']
provs = [x for x in reader_p.records()]
vias = [x for x in reader_v.records()]
# Display limits and streets
shape_feature = ShapelyFeature([x.geometry for x in districts], ccrs.PlateCarree(), facecolor="none", edgecolor='grey', lw=0.5)
ax.add_feature(shape_feature)
shape_feature = ShapelyFeature([x.geometry for x in provs], ccrs.PlateCarree(), facecolor="none", edgecolor='white', lw=1)
ax.add_feature(shape_feature)
shape_feature = ShapelyFeature([x.geometry for x in vias], ccrs.PlateCarree(), facecolor="none", edgecolor='yellow', lw=1)
ax.add_feature(shape_feature)
for cap in caps:
if cap.attributes['NOMBRE'] in ('PIURA', 'SULLANA', 'PAITA', 'SECHURA', 'TALARA'):
ax.text(cap.attributes['X'], cap.attributes['Y'], cap.attributes['NOMBRE'], size=8, color='white', weight='bold')
elif cap.attributes['NOMBRE'] in ('NEGRITOS', 'SAN LUCAS', 'QUERECOTILLO', 'TAMBO GRANDE', 'CHULUCANAS', 'CATACAOS', 'LA UNION'):
ax.text(cap.attributes['X'], cap.attributes['Y'], cap.attributes['NOMBRE'].title(), size=7, color='white')
else:
ax.grid(color='grey', alpha=0.5, linestyle='--', linewidth=1)
if self.xrange<=10:
ranges = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
elif self.xrange<=30:
ranges = [5, 10, 15, 20, 25, 30, 35]
elif self.xrange<=60:
ranges = [10, 20, 30, 40, 50, 60]
elif self.xrange<=100:
ranges = [15, 30, 45, 60, 75, 90]
for R in ranges:
if R <= self.xrange:
circle = Circle((self.longitude, self.latitude), km2deg(R), facecolor='none',
edgecolor='skyblue', linewidth=1, alpha=0.5)
ax.add_patch(circle)
ax.text(km2deg(R)*numpy.cos(numpy.radians(45))+self.longitude,
km2deg(R)*numpy.sin(numpy.radians(45))+self.latitude,
'{}km'.format(R), color='skyblue', size=7)
elif data['mode_op'] == 'RHI':
ax.grid(color='grey', alpha=0.5, linestyle='--', linewidth=1)