##// END OF EJS Templates
Modificación a kmamisr para ejecutarse en la versión 3, creación de scripts con terminación v3 para difereciarlos, se comentó la linea #720 de JroIO_param.py debido a que reiniciaba la lista de archivos, ocasionando la reescritura del archivo hdf5. Alguna otra modificación aparente es producto de algunas variaciones en espacios al usar la función print()
Modificación a kmamisr para ejecutarse en la versión 3, creación de scripts con terminación v3 para difereciarlos, se comentó la linea #720 de JroIO_param.py debido a que reiniciaba la lista de archivos, ocasionando la reescritura del archivo hdf5. Alguna otra modificación aparente es producto de algunas variaciones en espacios al usar la función print()

File last commit:

r1279:c53fe2a4a291
r1279:c53fe2a4a291
Show More
jroproc_spectra.py
1056 lines | 35.1 KiB | text/x-python | PythonLexer
import itertools
import numpy
from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation
from schainpy.model.data.jrodata import Spectra
from schainpy.model.data.jrodata import hildebrand_sekhon
from schainpy.utils import log
@MPDecorator
class SpectraProc(ProcessingUnit):
def __init__(self):
ProcessingUnit.__init__(self)
self.buffer = None
self.firstdatatime = None
self.profIndex = 0
self.dataOut = Spectra()
self.id_min = None
self.id_max = None
self.setupReq = False #Agregar a todas las unidades de proc
def __updateSpecFromVoltage(self):
self.dataOut.timeZone = self.dataIn.timeZone
self.dataOut.dstFlag = self.dataIn.dstFlag
self.dataOut.errorCount = self.dataIn.errorCount
self.dataOut.useLocalTime = self.dataIn.useLocalTime
try:
self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy()
except:
pass
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
self.dataOut.channelList = self.dataIn.channelList
self.dataOut.heightList = self.dataIn.heightList
self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')])
self.dataOut.nBaud = self.dataIn.nBaud
self.dataOut.nCode = self.dataIn.nCode
self.dataOut.code = self.dataIn.code
self.dataOut.nProfiles = self.dataOut.nFFTPoints
self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
self.dataOut.utctime = self.firstdatatime
# asumo q la data esta decodificada
self.dataOut.flagDecodeData = self.dataIn.flagDecodeData
# asumo q la data esta sin flip
self.dataOut.flagDeflipData = self.dataIn.flagDeflipData
self.dataOut.flagShiftFFT = False
self.dataOut.nCohInt = self.dataIn.nCohInt
self.dataOut.nIncohInt = 1
self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
self.dataOut.frequency = self.dataIn.frequency
self.dataOut.realtime = self.dataIn.realtime
self.dataOut.azimuth = self.dataIn.azimuth
self.dataOut.zenith = self.dataIn.zenith
self.dataOut.beam.codeList = self.dataIn.beam.codeList
self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList
self.dataOut.beam.zenithList = self.dataIn.beam.zenithList
def __getFft(self):
"""
Convierte valores de Voltaje a Spectra
Affected:
self.dataOut.data_spc
self.dataOut.data_cspc
self.dataOut.data_dc
self.dataOut.heightList
self.profIndex
self.buffer
self.dataOut.flagNoData
"""
fft_volt = numpy.fft.fft(
self.buffer, n=self.dataOut.nFFTPoints, axis=1)
fft_volt = fft_volt.astype(numpy.dtype('complex'))
dc = fft_volt[:, 0, :]
# calculo de self-spectra
fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,))
spc = fft_volt * numpy.conjugate(fft_volt)
spc = spc.real
blocksize = 0
blocksize += dc.size
blocksize += spc.size
cspc = None
pairIndex = 0
if self.dataOut.pairsList != None:
# calculo de cross-spectra
cspc = numpy.zeros(
(self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex')
for pair in self.dataOut.pairsList:
if pair[0] not in self.dataOut.channelList:
raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % (
str(pair), str(self.dataOut.channelList)))
if pair[1] not in self.dataOut.channelList:
raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % (
str(pair), str(self.dataOut.channelList)))
cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \
numpy.conjugate(fft_volt[pair[1], :, :])
pairIndex += 1
blocksize += cspc.size
self.dataOut.data_spc = spc
self.dataOut.data_cspc = cspc
self.dataOut.data_dc = dc
self.dataOut.blockSize = blocksize
self.dataOut.flagShiftFFT = True
def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], ippFactor=None, shift_fft=False):
if self.dataIn.type == "Spectra":
self.dataOut.copy(self.dataIn)
if shift_fft:
#desplaza a la derecha en el eje 2 determinadas posiciones
shift = int(self.dataOut.nFFTPoints/2)
self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1)
if self.dataOut.data_cspc is not None:
#desplaza a la derecha en el eje 2 determinadas posiciones
self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1)
return True
if self.dataIn.type == "Voltage":
self.dataOut.flagNoData = True
if nFFTPoints == None:
raise ValueError("This SpectraProc.run() need nFFTPoints input variable")
if nProfiles == None:
nProfiles = nFFTPoints
if ippFactor == None:
ippFactor = 1
self.dataOut.ippFactor = ippFactor
self.dataOut.nFFTPoints = nFFTPoints
self.dataOut.pairsList = pairsList
if self.buffer is None:
self.buffer = numpy.zeros((self.dataIn.nChannels,
nProfiles,
self.dataIn.nHeights),
dtype='complex')
if self.dataIn.flagDataAsBlock:
nVoltProfiles = self.dataIn.data.shape[1]
if nVoltProfiles == nProfiles:
self.buffer = self.dataIn.data.copy()
self.profIndex = nVoltProfiles
elif nVoltProfiles < nProfiles:
if self.profIndex == 0:
self.id_min = 0
self.id_max = nVoltProfiles
self.buffer[:, self.id_min:self.id_max,
:] = self.dataIn.data
self.profIndex += nVoltProfiles
self.id_min += nVoltProfiles
self.id_max += nVoltProfiles
else:
raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % (
self.dataIn.type, self.dataIn.data.shape[1], nProfiles))
self.dataOut.flagNoData = True
return 0
else:
self.buffer[:, self.profIndex, :] = self.dataIn.data.copy()
self.profIndex += 1
if self.firstdatatime == None:
self.firstdatatime = self.dataIn.utctime
if self.profIndex == nProfiles:
self.__updateSpecFromVoltage()
self.__getFft()
self.dataOut.flagNoData = False
self.firstdatatime = None
self.profIndex = 0
return True
raise ValueError("The type of input object '%s' is not valid" % (
self.dataIn.type))
def __selectPairs(self, pairsList):
if not pairsList:
return
pairs = []
pairsIndex = []
for pair in pairsList:
if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList:
continue
pairs.append(pair)
pairsIndex.append(pairs.index(pair))
self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex]
self.dataOut.pairsList = pairs
return
def __selectPairsByChannel(self, channelList=None):
if channelList == None:
return
pairsIndexListSelected = []
for pairIndex in self.dataOut.pairsIndexList:
# First pair
if self.dataOut.pairsList[pairIndex][0] not in channelList:
continue
# Second pair
if self.dataOut.pairsList[pairIndex][1] not in channelList:
continue
pairsIndexListSelected.append(pairIndex)
if not pairsIndexListSelected:
self.dataOut.data_cspc = None
self.dataOut.pairsList = []
return
self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected]
self.dataOut.pairsList = [self.dataOut.pairsList[i]
for i in pairsIndexListSelected]
return
def selectChannels(self, channelList):
channelIndexList = []
for channel in channelList:
if channel not in self.dataOut.channelList:
raise ValueError("Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" % (
channel, str(self.dataOut.channelList)))
index = self.dataOut.channelList.index(channel)
channelIndexList.append(index)
self.selectChannelsByIndex(channelIndexList)
def selectChannelsByIndex(self, channelIndexList):
"""
Selecciona un bloque de datos en base a canales segun el channelIndexList
Input:
channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
Affected:
self.dataOut.data_spc
self.dataOut.channelIndexList
self.dataOut.nChannels
Return:
None
"""
for channelIndex in channelIndexList:
if channelIndex not in self.dataOut.channelIndexList:
raise ValueError("Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " % (
channelIndex, self.dataOut.channelIndexList))
data_spc = self.dataOut.data_spc[channelIndexList, :]
data_dc = self.dataOut.data_dc[channelIndexList, :]
self.dataOut.data_spc = data_spc
self.dataOut.data_dc = data_dc
# self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
self.dataOut.channelList = range(len(channelIndexList))
self.__selectPairsByChannel(channelIndexList)
return 1
def selectFFTs(self, minFFT, maxFFT ):
"""
Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango
minFFT<= FFT <= maxFFT
"""
if (minFFT > maxFFT):
raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT))
if (minFFT < self.dataOut.getFreqRange()[0]):
minFFT = self.dataOut.getFreqRange()[0]
if (maxFFT > self.dataOut.getFreqRange()[-1]):
maxFFT = self.dataOut.getFreqRange()[-1]
minIndex = 0
maxIndex = 0
FFTs = self.dataOut.getFreqRange()
inda = numpy.where(FFTs >= minFFT)
indb = numpy.where(FFTs <= maxFFT)
try:
minIndex = inda[0][0]
except:
minIndex = 0
try:
maxIndex = indb[0][-1]
except:
maxIndex = len(FFTs)
self.selectFFTsByIndex(minIndex, maxIndex)
return 1
def setH0(self, h0, deltaHeight = None):
if not deltaHeight:
deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0]
nHeights = self.dataOut.nHeights
newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight
self.dataOut.heightList = newHeiRange
def selectHeights(self, minHei, maxHei):
"""
Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
minHei <= height <= maxHei
Input:
minHei : valor minimo de altura a considerar
maxHei : valor maximo de altura a considerar
Affected:
Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
Return:
1 si el metodo se ejecuto con exito caso contrario devuelve 0
"""
if (minHei > maxHei):
raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei))
if (minHei < self.dataOut.heightList[0]):
minHei = self.dataOut.heightList[0]
if (maxHei > self.dataOut.heightList[-1]):
maxHei = self.dataOut.heightList[-1]
minIndex = 0
maxIndex = 0
heights = self.dataOut.heightList
inda = numpy.where(heights >= minHei)
indb = numpy.where(heights <= maxHei)
try:
minIndex = inda[0][0]
except:
minIndex = 0
try:
maxIndex = indb[0][-1]
except:
maxIndex = len(heights)
self.selectHeightsByIndex(minIndex, maxIndex)
return 1
def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None):
newheis = numpy.where(
self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex])
if hei_ref != None:
newheis = numpy.where(self.dataOut.heightList > hei_ref)
minIndex = min(newheis[0])
maxIndex = max(newheis[0])
data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1]
heightList = self.dataOut.heightList[minIndex:maxIndex + 1]
# determina indices
nheis = int(self.dataOut.radarControllerHeaderObj.txB /
(self.dataOut.heightList[1] - self.dataOut.heightList[0]))
avg_dB = 10 * \
numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0))
beacon_dB = numpy.sort(avg_dB)[-nheis:]
beacon_heiIndexList = []
for val in avg_dB.tolist():
if val >= beacon_dB[0]:
beacon_heiIndexList.append(avg_dB.tolist().index(val))
#data_spc = data_spc[:,:,beacon_heiIndexList]
data_cspc = None
if self.dataOut.data_cspc is not None:
data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1]
#data_cspc = data_cspc[:,:,beacon_heiIndexList]
data_dc = None
if self.dataOut.data_dc is not None:
data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1]
#data_dc = data_dc[:,beacon_heiIndexList]
self.dataOut.data_spc = data_spc
self.dataOut.data_cspc = data_cspc
self.dataOut.data_dc = data_dc
self.dataOut.heightList = heightList
self.dataOut.beacon_heiIndexList = beacon_heiIndexList
return 1
def selectFFTsByIndex(self, minIndex, maxIndex):
"""
"""
if (minIndex < 0) or (minIndex > maxIndex):
raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex))
if (maxIndex >= self.dataOut.nProfiles):
maxIndex = self.dataOut.nProfiles-1
#Spectra
data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:]
data_cspc = None
if self.dataOut.data_cspc is not None:
data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:]
data_dc = None
if self.dataOut.data_dc is not None:
data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:]
self.dataOut.data_spc = data_spc
self.dataOut.data_cspc = data_cspc
self.dataOut.data_dc = data_dc
self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1])
self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1]
self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1]
return 1
def selectHeightsByIndex(self, minIndex, maxIndex):
"""
Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
minIndex <= index <= maxIndex
Input:
minIndex : valor de indice minimo de altura a considerar
maxIndex : valor de indice maximo de altura a considerar
Affected:
self.dataOut.data_spc
self.dataOut.data_cspc
self.dataOut.data_dc
self.dataOut.heightList
Return:
1 si el metodo se ejecuto con exito caso contrario devuelve 0
"""
if (minIndex < 0) or (minIndex > maxIndex):
raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (
minIndex, maxIndex))
if (maxIndex >= self.dataOut.nHeights):
maxIndex = self.dataOut.nHeights - 1
# Spectra
data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1]
data_cspc = None
if self.dataOut.data_cspc is not None:
data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1]
data_dc = None
if self.dataOut.data_dc is not None:
data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1]
self.dataOut.data_spc = data_spc
self.dataOut.data_cspc = data_cspc
self.dataOut.data_dc = data_dc
self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1]
return 1
def removeDC(self, mode=2):
jspectra = self.dataOut.data_spc
jcspectra = self.dataOut.data_cspc
num_chan = jspectra.shape[0]
num_hei = jspectra.shape[2]
if jcspectra is not None:
jcspectraExist = True
num_pairs = jcspectra.shape[0]
else:
jcspectraExist = False
freq_dc = int(jspectra.shape[1] / 2)
ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc
ind_vel = ind_vel.astype(int)
if ind_vel[0] < 0:
ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof
if mode == 1:
jspectra[:, freq_dc, :] = (
jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION
if jcspectraExist:
jcspectra[:, freq_dc, :] = (
jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2
if mode == 2:
vel = numpy.array([-2, -1, 1, 2])
xx = numpy.zeros([4, 4])
for fil in range(4):
xx[fil, :] = vel[fil]**numpy.asarray(list(range(4)))
xx_inv = numpy.linalg.inv(xx)
xx_aux = xx_inv[0, :]
for ich in range(num_chan):
yy = jspectra[ich, ind_vel, :]
jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy)
junkid = jspectra[ich, freq_dc, :] <= 0
cjunkid = sum(junkid)
if cjunkid.any():
jspectra[ich, freq_dc, junkid.nonzero()] = (
jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2
if jcspectraExist:
for ip in range(num_pairs):
yy = jcspectra[ip, ind_vel, :]
jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy)
self.dataOut.data_spc = jspectra
self.dataOut.data_cspc = jcspectra
return 1
def removeInterference2(self):
cspc = self.dataOut.data_cspc
spc = self.dataOut.data_spc
Heights = numpy.arange(cspc.shape[2])
realCspc = numpy.abs(cspc)
for i in range(cspc.shape[0]):
LinePower= numpy.sum(realCspc[i], axis=0)
Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)]
SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ]
InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 )
InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)]
InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)]
InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) )
#InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax]))
if len(InterferenceRange)<int(cspc.shape[1]*0.3):
cspc[i,InterferenceRange,:] = numpy.NaN
self.dataOut.data_cspc = cspc
def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None):
jspectra = self.dataOut.data_spc
jcspectra = self.dataOut.data_cspc
jnoise = self.dataOut.getNoise()
num_incoh = self.dataOut.nIncohInt
num_channel = jspectra.shape[0]
num_prof = jspectra.shape[1]
num_hei = jspectra.shape[2]
# hei_interf
if hei_interf is None:
count_hei = int(num_hei / 2)
hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei
hei_interf = numpy.asarray(hei_interf)[0]
# nhei_interf
if (nhei_interf == None):
nhei_interf = 5
if (nhei_interf < 1):
nhei_interf = 1
if (nhei_interf > count_hei):
nhei_interf = count_hei
if (offhei_interf == None):
offhei_interf = 0
ind_hei = list(range(num_hei))
# mask_prof = numpy.asarray(range(num_prof - 2)) + 1
# mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1
mask_prof = numpy.asarray(list(range(num_prof)))
num_mask_prof = mask_prof.size
comp_mask_prof = [0, num_prof / 2]
# noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal
if (jnoise.size < num_channel or numpy.isnan(jnoise).any()):
jnoise = numpy.nan
noise_exist = jnoise[0] < numpy.Inf
# Subrutina de Remocion de la Interferencia
for ich in range(num_channel):
# Se ordena los espectros segun su potencia (menor a mayor)
power = jspectra[ich, mask_prof, :]
power = power[:, hei_interf]
power = power.sum(axis=0)
psort = power.ravel().argsort()
# Se estima la interferencia promedio en los Espectros de Potencia empleando
junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range(
offhei_interf, nhei_interf + offhei_interf))]]]
if noise_exist:
# tmp_noise = jnoise[ich] / num_prof
tmp_noise = jnoise[ich]
junkspc_interf = junkspc_interf - tmp_noise
#junkspc_interf[:,comp_mask_prof] = 0
jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf
jspc_interf = jspc_interf.transpose()
# Calculando el espectro de interferencia promedio
noiseid = numpy.where(
jspc_interf <= tmp_noise / numpy.sqrt(num_incoh))
noiseid = noiseid[0]
cnoiseid = noiseid.size
interfid = numpy.where(
jspc_interf > tmp_noise / numpy.sqrt(num_incoh))
interfid = interfid[0]
cinterfid = interfid.size
if (cnoiseid > 0):
jspc_interf[noiseid] = 0
# Expandiendo los perfiles a limpiar
if (cinterfid > 0):
new_interfid = (
numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof
new_interfid = numpy.asarray(new_interfid)
new_interfid = {x for x in new_interfid}
new_interfid = numpy.array(list(new_interfid))
new_cinterfid = new_interfid.size
else:
new_cinterfid = 0
for ip in range(new_cinterfid):
ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort()
jspc_interf[new_interfid[ip]
] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]]
jspectra[ich, :, ind_hei] = jspectra[ich, :,
ind_hei] - jspc_interf # Corregir indices
# Removiendo la interferencia del punto de mayor interferencia
ListAux = jspc_interf[mask_prof].tolist()
maxid = ListAux.index(max(ListAux))
if cinterfid > 0:
for ip in range(cinterfid * (interf == 2) - 1):
ind = (jspectra[ich, interfid[ip], :] < tmp_noise *
(1 + 1 / numpy.sqrt(num_incoh))).nonzero()
cind = len(ind)
if (cind > 0):
jspectra[ich, interfid[ip], ind] = tmp_noise * \
(1 + (numpy.random.uniform(cind) - 0.5) /
numpy.sqrt(num_incoh))
ind = numpy.array([-2, -1, 1, 2])
xx = numpy.zeros([4, 4])
for id1 in range(4):
xx[:, id1] = ind[id1]**numpy.asarray(list(range(4)))
xx_inv = numpy.linalg.inv(xx)
xx = xx_inv[:, 0]
ind = (ind + maxid + num_mask_prof) % num_mask_prof
yy = jspectra[ich, mask_prof[ind], :]
jspectra[ich, mask_prof[maxid], :] = numpy.dot(
yy.transpose(), xx)
indAux = (jspectra[ich, :, :] < tmp_noise *
(1 - 1 / numpy.sqrt(num_incoh))).nonzero()
jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \
(1 - 1 / numpy.sqrt(num_incoh))
# Remocion de Interferencia en el Cross Spectra
if jcspectra is None:
return jspectra, jcspectra
num_pairs = int(jcspectra.size / (num_prof * num_hei))
jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei)
for ip in range(num_pairs):
#-------------------------------------------
cspower = numpy.abs(jcspectra[ip, mask_prof, :])
cspower = cspower[:, hei_interf]
cspower = cspower.sum(axis=0)
cspsort = cspower.ravel().argsort()
junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range(
offhei_interf, nhei_interf + offhei_interf))]]]
junkcspc_interf = junkcspc_interf.transpose()
jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf
ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort()
median_real = int(numpy.median(numpy.real(
junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :])))
median_imag = int(numpy.median(numpy.imag(
junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :])))
comp_mask_prof = [int(e) for e in comp_mask_prof]
junkcspc_interf[comp_mask_prof, :] = numpy.complex(
median_real, median_imag)
for iprof in range(num_prof):
ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort()
jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]]
# Removiendo la Interferencia
jcspectra[ip, :, ind_hei] = jcspectra[ip,
:, ind_hei] - jcspc_interf
ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist()
maxid = ListAux.index(max(ListAux))
ind = numpy.array([-2, -1, 1, 2])
xx = numpy.zeros([4, 4])
for id1 in range(4):
xx[:, id1] = ind[id1]**numpy.asarray(list(range(4)))
xx_inv = numpy.linalg.inv(xx)
xx = xx_inv[:, 0]
ind = (ind + maxid + num_mask_prof) % num_mask_prof
yy = jcspectra[ip, mask_prof[ind], :]
jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx)
# Guardar Resultados
self.dataOut.data_spc = jspectra
self.dataOut.data_cspc = jcspectra
return 1
def setRadarFrequency(self, frequency=None):
if frequency != None:
self.dataOut.frequency = frequency
return 1
def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None):
# validacion de rango
if minHei == None:
minHei = self.dataOut.heightList[0]
if maxHei == None:
maxHei = self.dataOut.heightList[-1]
if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei):
print('minHei: %.2f is out of the heights range' % (minHei))
print('minHei is setting to %.2f' % (self.dataOut.heightList[0]))
minHei = self.dataOut.heightList[0]
if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei):
print('maxHei: %.2f is out of the heights range' % (maxHei))
print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1]))
maxHei = self.dataOut.heightList[-1]
# validacion de velocidades
velrange = self.dataOut.getVelRange(1)
if minVel == None:
minVel = velrange[0]
if maxVel == None:
maxVel = velrange[-1]
if (minVel < velrange[0]) or (minVel > maxVel):
print('minVel: %.2f is out of the velocity range' % (minVel))
print('minVel is setting to %.2f' % (velrange[0]))
minVel = velrange[0]
if (maxVel > velrange[-1]) or (maxVel < minVel):
print('maxVel: %.2f is out of the velocity range' % (maxVel))
print('maxVel is setting to %.2f' % (velrange[-1]))
maxVel = velrange[-1]
# seleccion de indices para rango
minIndex = 0
maxIndex = 0
heights = self.dataOut.heightList
inda = numpy.where(heights >= minHei)
indb = numpy.where(heights <= maxHei)
try:
minIndex = inda[0][0]
except:
minIndex = 0
try:
maxIndex = indb[0][-1]
except:
maxIndex = len(heights)
if (minIndex < 0) or (minIndex > maxIndex):
raise ValueError("some value in (%d,%d) is not valid" % (
minIndex, maxIndex))
if (maxIndex >= self.dataOut.nHeights):
maxIndex = self.dataOut.nHeights - 1
# seleccion de indices para velocidades
indminvel = numpy.where(velrange >= minVel)
indmaxvel = numpy.where(velrange <= maxVel)
try:
minIndexVel = indminvel[0][0]
except:
minIndexVel = 0
try:
maxIndexVel = indmaxvel[0][-1]
except:
maxIndexVel = len(velrange)
# seleccion del espectro
data_spc = self.dataOut.data_spc[:,
minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1]
# estimacion de ruido
noise = numpy.zeros(self.dataOut.nChannels)
for channel in range(self.dataOut.nChannels):
daux = data_spc[channel, :, :]
noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt)
self.dataOut.noise_estimation = noise.copy()
return 1
class IncohInt(Operation):
__profIndex = 0
__withOverapping = False
__byTime = False
__initime = None
__lastdatatime = None
__integrationtime = None
__buffer_spc = None
__buffer_cspc = None
__buffer_dc = None
__dataReady = False
__timeInterval = None
n = None
def __init__(self):
Operation.__init__(self)
def setup(self, n=None, timeInterval=None, overlapping=False):
"""
Set the parameters of the integration class.
Inputs:
n : Number of coherent integrations
timeInterval : Time of integration. If the parameter "n" is selected this one does not work
overlapping :
"""
self.__initime = None
self.__lastdatatime = 0
self.__buffer_spc = 0
self.__buffer_cspc = 0
self.__buffer_dc = 0
self.__profIndex = 0
self.__dataReady = False
self.__byTime = False
if n is None and timeInterval is None:
raise ValueError("n or timeInterval should be specified ...")
if n is not None:
self.n = int(n)
else:
self.__integrationtime = int(timeInterval)
self.n = None
self.__byTime = True
def putData(self, data_spc, data_cspc, data_dc):
"""
Add a profile to the __buffer_spc and increase in one the __profileIndex
"""
self.__buffer_spc += data_spc
if data_cspc is None:
self.__buffer_cspc = None
else:
self.__buffer_cspc += data_cspc
if data_dc is None:
self.__buffer_dc = None
else:
self.__buffer_dc += data_dc
self.__profIndex += 1
return
def pushData(self):
"""
Return the sum of the last profiles and the profiles used in the sum.
Affected:
self.__profileIndex
"""
data_spc = self.__buffer_spc
data_cspc = self.__buffer_cspc
data_dc = self.__buffer_dc
n = self.__profIndex
self.__buffer_spc = 0
self.__buffer_cspc = 0
self.__buffer_dc = 0
self.__profIndex = 0
return data_spc, data_cspc, data_dc, n
def byProfiles(self, *args):
self.__dataReady = False
avgdata_spc = None
avgdata_cspc = None
avgdata_dc = None
self.putData(*args)
if self.__profIndex == self.n:
avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
self.n = n
self.__dataReady = True
return avgdata_spc, avgdata_cspc, avgdata_dc
def byTime(self, datatime, *args):
self.__dataReady = False
avgdata_spc = None
avgdata_cspc = None
avgdata_dc = None
self.putData(*args)
if (datatime - self.__initime) >= self.__integrationtime:
avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
self.n = n
self.__dataReady = True
return avgdata_spc, avgdata_cspc, avgdata_dc
def integrate(self, datatime, *args):
if self.__profIndex == 0:
self.__initime = datatime
if self.__byTime:
avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(
datatime, *args)
else:
avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args)
if not self.__dataReady:
return None, None, None, None
return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc
def run(self, dataOut, n=None, timeInterval=None, overlapping=False):
if n == 1:
return
dataOut.flagNoData = True
if not self.isConfig:
self.setup(n, timeInterval, overlapping)
self.isConfig = True
avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime,
dataOut.data_spc,
dataOut.data_cspc,
dataOut.data_dc)
if self.__dataReady:
dataOut.data_spc = avgdata_spc
dataOut.data_cspc = avgdata_cspc
dataOut.data_dc = avgdata_dc
dataOut.nIncohInt *= self.n
dataOut.utctime = avgdatatime
dataOut.flagNoData = False
return dataOut