##// END OF EJS Templates
Modificación a kmamisr para ejecutarse en la versión 3, creación de scripts con terminación v3 para difereciarlos, se comentó la linea #720 de JroIO_param.py debido a que reiniciaba la lista de archivos, ocasionando la reescritura del archivo hdf5. Alguna otra modificación aparente es producto de algunas variaciones en espacios al usar la función print()
Modificación a kmamisr para ejecutarse en la versión 3, creación de scripts con terminación v3 para difereciarlos, se comentó la linea #720 de JroIO_param.py debido a que reiniciaba la lista de archivos, ocasionando la reescritura del archivo hdf5. Alguna otra modificación aparente es producto de algunas variaciones en espacios al usar la función print()

File last commit:

r1191:f1f11d1fc586
r1279:c53fe2a4a291
Show More
jroproc_heispectra.py
349 lines | 10.2 KiB | text/x-python | PythonLexer
import numpy
from .jroproc_base import ProcessingUnit, Operation, MPDecorator
from schainpy.model.data.jrodata import SpectraHeis
from schainpy.utils import log
@MPDecorator
class SpectraHeisProc(ProcessingUnit):
def __init__(self):#, **kwargs):
ProcessingUnit.__init__(self)#, **kwargs)
# self.buffer = None
# self.firstdatatime = None
# self.profIndex = 0
self.dataOut = SpectraHeis()
def __updateObjFromVoltage(self):
self.dataOut.timeZone = self.dataIn.timeZone
self.dataOut.dstFlag = self.dataIn.dstFlag
self.dataOut.errorCount = self.dataIn.errorCount
self.dataOut.useLocalTime = self.dataIn.useLocalTime
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()#
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()#
self.dataOut.channelList = self.dataIn.channelList
self.dataOut.heightList = self.dataIn.heightList
# self.dataOut.dtype = self.dataIn.dtype
self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
# self.dataOut.nHeights = self.dataIn.nHeights
# self.dataOut.nChannels = self.dataIn.nChannels
self.dataOut.nBaud = self.dataIn.nBaud
self.dataOut.nCode = self.dataIn.nCode
self.dataOut.code = self.dataIn.code
# self.dataOut.nProfiles = 1
self.dataOut.ippFactor = 1
self.dataOut.noise_estimation = None
# self.dataOut.nProfiles = self.dataOut.nFFTPoints
self.dataOut.nFFTPoints = self.dataIn.nHeights
# self.dataOut.channelIndexList = self.dataIn.channelIndexList
# self.dataOut.flagNoData = self.dataIn.flagNoData
self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
self.dataOut.utctime = self.dataIn.utctime
# self.dataOut.utctime = self.firstdatatime
self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
# self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT
self.dataOut.nCohInt = self.dataIn.nCohInt
self.dataOut.nIncohInt = 1
# self.dataOut.ippSeconds= self.dataIn.ippSeconds
self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
# self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nIncohInt
# self.dataOut.set=self.dataIn.set
# self.dataOut.deltaHeight=self.dataIn.deltaHeight
def __updateObjFromFits(self):
self.dataOut.utctime = self.dataIn.utctime
# self.dataOut.channelIndexList = self.dataIn.channelIndexList
self.dataOut.channelList = self.dataIn.channelList
self.dataOut.heightList = self.dataIn.heightList
self.dataOut.data_spc = self.dataIn.data
self.dataOut.ippSeconds = self.dataIn.ippSeconds
self.dataOut.nCohInt = self.dataIn.nCohInt
self.dataOut.nIncohInt = self.dataIn.nIncohInt
# self.dataOut.timeInterval = self.dataIn.timeInterval
self.dataOut.timeZone = self.dataIn.timeZone
self.dataOut.useLocalTime = True
# self.dataOut.
# self.dataOut.
def __getFft(self):
fft_volt = numpy.fft.fft(self.dataIn.data, axis=1)
fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,))
spc = numpy.abs(fft_volt * numpy.conjugate(fft_volt))/(self.dataOut.nFFTPoints)
self.dataOut.data_spc = spc
def run(self):
self.dataOut.flagNoData = True
if self.dataIn.type == "Fits":
self.__updateObjFromFits()
self.dataOut.flagNoData = False
return
if self.dataIn.type == "SpectraHeis":
self.dataOut.copy(self.dataIn)
return
if self.dataIn.type == "Voltage":
self.__updateObjFromVoltage()
self.__getFft()
self.dataOut.flagNoData = False
return
raise ValueError("The type object %s is not valid"%(self.dataIn.type))
def selectChannels(self, channelList):
channelIndexList = []
for channel in channelList:
index = self.dataOut.channelList.index(channel)
channelIndexList.append(index)
self.selectChannelsByIndex(channelIndexList)
def selectChannelsByIndex(self, channelIndexList):
"""
Selecciona un bloque de datos en base a canales segun el channelIndexList
Input:
channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
Affected:
self.dataOut.data
self.dataOut.channelIndexList
self.dataOut.nChannels
self.dataOut.m_ProcessingHeader.totalSpectra
self.dataOut.systemHeaderObj.numChannels
self.dataOut.m_ProcessingHeader.blockSize
Return:
None
"""
for channelIndex in channelIndexList:
if channelIndex not in self.dataOut.channelIndexList:
print(channelIndexList)
raise ValueError("The value %d in channelIndexList is not valid" %channelIndex)
# nChannels = len(channelIndexList)
data_spc = self.dataOut.data_spc[channelIndexList,:]
self.dataOut.data_spc = data_spc
self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
return 1
class IncohInt4SpectraHeis(Operation):
isConfig = False
__profIndex = 0
__withOverapping = False
__byTime = False
__initime = None
__lastdatatime = None
__integrationtime = None
__buffer = None
__dataReady = False
n = None
def __init__(self):#, **kwargs):
Operation.__init__(self)#, **kwargs)
# self.isConfig = False
def setup(self, n=None, timeInterval=None, overlapping=False):
"""
Set the parameters of the integration class.
Inputs:
n : Number of coherent integrations
timeInterval : Time of integration. If the parameter "n" is selected this one does not work
overlapping :
"""
self.__initime = None
self.__lastdatatime = 0
self.__buffer = None
self.__dataReady = False
if n == None and timeInterval == None:
raise ValueError("n or timeInterval should be specified ...")
if n != None:
self.n = n
self.__byTime = False
else:
self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line
self.n = 9999
self.__byTime = True
if overlapping:
self.__withOverapping = True
self.__buffer = None
else:
self.__withOverapping = False
self.__buffer = 0
self.__profIndex = 0
def putData(self, data):
"""
Add a profile to the __buffer and increase in one the __profileIndex
"""
if not self.__withOverapping:
self.__buffer += data.copy()
self.__profIndex += 1
return
#Overlapping data
nChannels, nHeis = data.shape
data = numpy.reshape(data, (1, nChannels, nHeis))
#If the buffer is empty then it takes the data value
if self.__buffer is None:
self.__buffer = data
self.__profIndex += 1
return
#If the buffer length is lower than n then stakcing the data value
if self.__profIndex < self.n:
self.__buffer = numpy.vstack((self.__buffer, data))
self.__profIndex += 1
return
#If the buffer length is equal to n then replacing the last buffer value with the data value
self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
self.__buffer[self.n-1] = data
self.__profIndex = self.n
return
def pushData(self):
"""
Return the sum of the last profiles and the profiles used in the sum.
Affected:
self.__profileIndex
"""
if not self.__withOverapping:
data = self.__buffer
n = self.__profIndex
self.__buffer = 0
self.__profIndex = 0
return data, n
#Integration with Overlapping
data = numpy.sum(self.__buffer, axis=0)
n = self.__profIndex
return data, n
def byProfiles(self, data):
self.__dataReady = False
avgdata = None
# n = None
self.putData(data)
if self.__profIndex == self.n:
avgdata, n = self.pushData()
self.__dataReady = True
return avgdata
def byTime(self, data, datatime):
self.__dataReady = False
avgdata = None
n = None
self.putData(data)
if (datatime - self.__initime) >= self.__integrationtime:
avgdata, n = self.pushData()
self.n = n
self.__dataReady = True
return avgdata
def integrate(self, data, datatime=None):
if self.__initime == None:
self.__initime = datatime
if self.__byTime:
avgdata = self.byTime(data, datatime)
else:
avgdata = self.byProfiles(data)
self.__lastdatatime = datatime
if avgdata is None:
return None, None
avgdatatime = self.__initime
deltatime = datatime -self.__lastdatatime
if not self.__withOverapping:
self.__initime = datatime
else:
self.__initime += deltatime
return avgdata, avgdatatime
def run(self, dataOut, n=None, timeInterval=None, overlapping=False, **kwargs):
if not self.isConfig:
self.setup(n=n, timeInterval=timeInterval, overlapping=overlapping)
self.isConfig = True
avgdata, avgdatatime = self.integrate(dataOut.data_spc, dataOut.utctime)
# dataOut.timeInterval *= n
dataOut.flagNoData = True
if self.__dataReady:
dataOut.data_spc = avgdata
dataOut.nIncohInt *= self.n
# dataOut.nCohInt *= self.n
dataOut.utctime = avgdatatime
# dataOut.timeInterval = dataOut.ippSeconds * dataOut.nIncohInt
# dataOut.timeInterval = self.__timeInterval*self.n
dataOut.flagNoData = False
return dataOut