##// END OF EJS Templates
Modificación a kmamisr para ejecutarse en la versión 3, creación de scripts con terminación v3 para difereciarlos, se comentó la linea #720 de JroIO_param.py debido a que reiniciaba la lista de archivos, ocasionando la reescritura del archivo hdf5. Alguna otra modificación aparente es producto de algunas variaciones en espacios al usar la función print()
Modificación a kmamisr para ejecutarse en la versión 3, creación de scripts con terminación v3 para difereciarlos, se comentó la linea #720 de JroIO_param.py debido a que reiniciaba la lista de archivos, ocasionando la reescritura del archivo hdf5. Alguna otra modificación aparente es producto de algunas variaciones en espacios al usar la función print()

File last commit:

r1229:42740733db03
r1279:c53fe2a4a291
Show More
jroplot_data.py
779 lines | 24.9 KiB | text/x-python | PythonLexer
'''
New Plots Operations
@author: juan.espinoza@jro.igp.gob.pe
'''
import time
import datetime
import numpy
from schainpy.model.graphics.jroplot_base import Plot, plt
from schainpy.utils import log
EARTH_RADIUS = 6.3710e3
def ll2xy(lat1, lon1, lat2, lon2):
p = 0.017453292519943295
a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
r = 12742 * numpy.arcsin(numpy.sqrt(a))
theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
* numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
theta = -theta + numpy.pi/2
return r*numpy.cos(theta), r*numpy.sin(theta)
def km2deg(km):
'''
Convert distance in km to degrees
'''
return numpy.rad2deg(km/EARTH_RADIUS)
class SpectraPlot(Plot):
'''
Plot for Spectra data
'''
CODE = 'spc'
colormap = 'jro'
plot_name = 'Spectra'
plot_type = 'pcolor'
def setup(self):
self.nplots = len(self.data.channels)
self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
self.width = 3.4 * self.ncols
self.height = 3 * self.nrows
self.cb_label = 'dB'
if self.showprofile:
self.width += 0.8 * self.ncols
self.ylabel = 'Range [km]'
def plot(self):
if self.xaxis == "frequency":
x = self.data.xrange[0]
self.xlabel = "Frequency (kHz)"
elif self.xaxis == "time":
x = self.data.xrange[1]
self.xlabel = "Time (ms)"
else:
x = self.data.xrange[2]
self.xlabel = "Velocity (m/s)"
if self.CODE == 'spc_moments':
x = self.data.xrange[2]
self.xlabel = "Velocity (m/s)"
self.titles = []
y = self.data.heights
self.y = y
z = self.data['spc']
for n, ax in enumerate(self.axes):
noise = self.data['noise'][n][-1]
if self.CODE == 'spc_moments':
mean = self.data['moments'][n, :, 1, :][-1]
if ax.firsttime:
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
self.xmin = self.xmin if self.xmin else -self.xmax
self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
ax.plt = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
if self.showprofile:
ax.plt_profile = self.pf_axes[n].plot(
self.data['rti'][n][-1], y)[0]
ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y,
color="k", linestyle="dashed", lw=1)[0]
if self.CODE == 'spc_moments':
ax.plt_mean = ax.plot(mean, y, color='k')[0]
else:
ax.plt.set_array(z[n].T.ravel())
if self.showprofile:
ax.plt_profile.set_data(self.data['rti'][n][-1], y)
ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y)
if self.CODE == 'spc_moments':
ax.plt_mean.set_data(mean, y)
self.titles.append('CH {}: {:3.2f}dB'.format(n, noise))
class CrossSpectraPlot(Plot):
CODE = 'cspc'
colormap = 'jet'
plot_name = 'CrossSpectra'
plot_type = 'pcolor'
zmin_coh = None
zmax_coh = None
zmin_phase = None
zmax_phase = None
def setup(self):
self.ncols = 4
self.nrows = len(self.data.pairs)
self.nplots = self.nrows * 4
self.width = 3.4 * self.ncols
self.height = 3 * self.nrows
self.ylabel = 'Range [km]'
self.showprofile = False
def plot(self):
if self.xaxis == "frequency":
x = self.data.xrange[0]
self.xlabel = "Frequency (kHz)"
elif self.xaxis == "time":
x = self.data.xrange[1]
self.xlabel = "Time (ms)"
else:
x = self.data.xrange[2]
self.xlabel = "Velocity (m/s)"
self.titles = []
y = self.data.heights
self.y = y
spc = self.data['spc']
cspc = self.data['cspc']
for n in range(self.nrows):
noise = self.data['noise'][n][-1]
pair = self.data.pairs[n]
ax = self.axes[4 * n]
spc0 = 10.*numpy.log10(spc[pair[0]]/self.data.factor)
if ax.firsttime:
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
self.xmin = self.xmin if self.xmin else -self.xmax
self.zmin = self.zmin if self.zmin else numpy.nanmin(spc)
self.zmax = self.zmax if self.zmax else numpy.nanmax(spc)
ax.plt = ax.pcolormesh(x , y , spc0.T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
else:
ax.plt.set_array(spc0.T.ravel())
self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise))
ax = self.axes[4 * n + 1]
spc1 = 10.*numpy.log10(spc[pair[1]]/self.data.factor)
if ax.firsttime:
ax.plt = ax.pcolormesh(x , y, spc1.T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
else:
ax.plt.set_array(spc1.T.ravel())
self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise))
out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]])
coh = numpy.abs(out)
phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi
ax = self.axes[4 * n + 2]
if ax.firsttime:
ax.plt = ax.pcolormesh(x, y, coh.T,
vmin=0,
vmax=1,
cmap=plt.get_cmap(self.colormap_coh)
)
else:
ax.plt.set_array(coh.T.ravel())
self.titles.append(
'Coherence Ch{} * Ch{}'.format(pair[0], pair[1]))
ax = self.axes[4 * n + 3]
if ax.firsttime:
ax.plt = ax.pcolormesh(x, y, phase.T,
vmin=-180,
vmax=180,
cmap=plt.get_cmap(self.colormap_phase)
)
else:
ax.plt.set_array(phase.T.ravel())
self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1]))
class SpectralMomentsPlot(SpectraPlot):
'''
Plot for Spectral Moments
'''
CODE = 'spc_moments'
colormap = 'jro'
plot_name = 'SpectralMoments'
plot_type = 'pcolor'
class RTIPlot(Plot):
'''
Plot for RTI data
'''
CODE = 'rti'
colormap = 'jro'
plot_name = 'RTI'
plot_type = 'pcolorbuffer'
def setup(self):
self.xaxis = 'time'
self.ncols = 1
self.nrows = len(self.data.channels)
self.nplots = len(self.data.channels)
self.ylabel = 'Range [km]'
self.cb_label = 'dB'
self.titles = ['{} Channel {}'.format(
self.CODE.upper(), x) for x in range(self.nrows)]
def plot(self):
self.x = self.data.times
self.y = self.data.heights
self.z = self.data[self.CODE]
self.z = numpy.ma.masked_invalid(self.z)
if self.decimation is None:
x, y, z = self.fill_gaps(self.x, self.y, self.z)
else:
x, y, z = self.fill_gaps(*self.decimate())
for n, ax in enumerate(self.axes):
self.zmin = self.zmin if self.zmin else numpy.min(self.z)
self.zmax = self.zmax if self.zmax else numpy.max(self.z)
if ax.firsttime:
ax.plt = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
if self.showprofile:
ax.plot_profile = self.pf_axes[n].plot(
self.data['rti'][n][-1], self.y)[0]
ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y,
color="k", linestyle="dashed", lw=1)[0]
else:
ax.collections.remove(ax.collections[0])
ax.plt = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
if self.showprofile:
ax.plot_profile.set_data(self.data['rti'][n][-1], self.y)
ax.plot_noise.set_data(numpy.repeat(
self.data['noise'][n][-1], len(self.y)), self.y)
class CoherencePlot(RTIPlot):
'''
Plot for Coherence data
'''
CODE = 'coh'
plot_name = 'Coherence'
def setup(self):
self.xaxis = 'time'
self.ncols = 1
self.nrows = len(self.data.pairs)
self.nplots = len(self.data.pairs)
self.ylabel = 'Range [km]'
if self.CODE == 'coh':
self.cb_label = ''
self.titles = [
'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs]
else:
self.cb_label = 'Degrees'
self.titles = [
'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs]
class PhasePlot(CoherencePlot):
'''
Plot for Phase map data
'''
CODE = 'phase'
colormap = 'seismic'
plot_name = 'Phase'
class NoisePlot(Plot):
'''
Plot for noise
'''
CODE = 'noise'
plot_name = 'Noise'
plot_type = 'scatterbuffer'
def setup(self):
self.xaxis = 'time'
self.ncols = 1
self.nrows = 1
self.nplots = 1
self.ylabel = 'Intensity [dB]'
self.titles = ['Noise']
self.colorbar = False
def plot(self):
x = self.data.times
xmin = self.data.min_time
xmax = xmin + self.xrange * 60 * 60
Y = self.data[self.CODE]
if self.axes[0].firsttime:
for ch in self.data.channels:
y = Y[ch]
self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch))
plt.legend()
else:
for ch in self.data.channels:
y = Y[ch]
self.axes[0].lines[ch].set_data(x, y)
self.ymin = numpy.nanmin(Y) - 5
self.ymax = numpy.nanmax(Y) + 5
class SnrPlot(RTIPlot):
'''
Plot for SNR Data
'''
CODE = 'snr'
colormap = 'jet'
plot_name = 'SNR'
class DopplerPlot(RTIPlot):
'''
Plot for DOPPLER Data (1st moment)
'''
CODE = 'dop'
colormap = 'jet'
plot_name = 'DopplerShift'
class PowerPlot(RTIPlot):
'''
Plot for Power Data (0 moment)
'''
CODE = 'pow'
colormap = 'jet'
plot_name = 'TotalPower'
class SpectralWidthPlot(RTIPlot):
'''
Plot for Spectral Width Data (2nd moment)
'''
CODE = 'width'
colormap = 'jet'
plot_name = 'SpectralWidth'
class SkyMapPlot(Plot):
'''
Plot for meteors detection data
'''
CODE = 'param'
def setup(self):
self.ncols = 1
self.nrows = 1
self.width = 7.2
self.height = 7.2
self.nplots = 1
self.xlabel = 'Zonal Zenith Angle (deg)'
self.ylabel = 'Meridional Zenith Angle (deg)'
self.polar = True
self.ymin = -180
self.ymax = 180
self.colorbar = False
def plot(self):
arrayParameters = numpy.concatenate(self.data['param'])
error = arrayParameters[:, -1]
indValid = numpy.where(error == 0)[0]
finalMeteor = arrayParameters[indValid, :]
finalAzimuth = finalMeteor[:, 3]
finalZenith = finalMeteor[:, 4]
x = finalAzimuth * numpy.pi / 180
y = finalZenith
ax = self.axes[0]
if ax.firsttime:
ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
else:
ax.plot.set_data(x, y)
dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
dt2,
len(x))
self.titles[0] = title
class ParametersPlot(RTIPlot):
'''
Plot for data_param object
'''
CODE = 'param'
colormap = 'seismic'
plot_name = 'Parameters'
def setup(self):
self.xaxis = 'time'
self.ncols = 1
self.nrows = self.data.shape(self.CODE)[0]
self.nplots = self.nrows
if self.showSNR:
self.nrows += 1
self.nplots += 1
self.ylabel = 'Height [km]'
if not self.titles:
self.titles = self.data.parameters \
if self.data.parameters else ['Param {}'.format(x) for x in range(self.nrows)]
if self.showSNR:
self.titles.append('SNR')
def plot(self):
self.data.normalize_heights()
self.x = self.data.times
self.y = self.data.heights
if self.showSNR:
self.z = numpy.concatenate(
(self.data[self.CODE], self.data['snr'])
)
else:
self.z = self.data[self.CODE]
self.z = numpy.ma.masked_invalid(self.z)
if self.decimation is None:
x, y, z = self.fill_gaps(self.x, self.y, self.z)
else:
x, y, z = self.fill_gaps(*self.decimate())
for n, ax in enumerate(self.axes):
self.zmax = self.zmax if self.zmax is not None else numpy.max(
self.z[n])
self.zmin = self.zmin if self.zmin is not None else numpy.min(
self.z[n])
if ax.firsttime:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n]
)
else:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.collections.remove(ax.collections[0])
ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n]
)
class OutputPlot(ParametersPlot):
'''
Plot data_output object
'''
CODE = 'output'
colormap = 'seismic'
plot_name = 'Output'
class PolarMapPlot(Plot):
'''
Plot for weather radar
'''
CODE = 'param'
colormap = 'seismic'
def setup(self):
self.ncols = 1
self.nrows = 1
self.width = 9
self.height = 8
self.mode = self.data.meta['mode']
if self.channels is not None:
self.nplots = len(self.channels)
self.nrows = len(self.channels)
else:
self.nplots = self.data.shape(self.CODE)[0]
self.nrows = self.nplots
self.channels = list(range(self.nplots))
if self.mode == 'E':
self.xlabel = 'Longitude'
self.ylabel = 'Latitude'
else:
self.xlabel = 'Range (km)'
self.ylabel = 'Height (km)'
self.bgcolor = 'white'
self.cb_labels = self.data.meta['units']
self.lat = self.data.meta['latitude']
self.lon = self.data.meta['longitude']
self.xmin, self.xmax = float(
km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
self.ymin, self.ymax = float(
km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
# self.polar = True
def plot(self):
for n, ax in enumerate(self.axes):
data = self.data['param'][self.channels[n]]
zeniths = numpy.linspace(
0, self.data.meta['max_range'], data.shape[1])
if self.mode == 'E':
azimuths = -numpy.radians(self.data.heights)+numpy.pi/2
r, theta = numpy.meshgrid(zeniths, azimuths)
x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
x = km2deg(x) + self.lon
y = km2deg(y) + self.lat
else:
azimuths = numpy.radians(self.data.heights)
r, theta = numpy.meshgrid(zeniths, azimuths)
x, y = r*numpy.cos(theta), r*numpy.sin(theta)
self.y = zeniths
if ax.firsttime:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n])
else:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.collections.remove(ax.collections[0])
ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n])
if self.mode == 'A':
continue
# plot district names
f = open('/data/workspace/schain_scripts/distrito.csv')
for line in f:
label, lon, lat = [s.strip() for s in line.split(',') if s]
lat = float(lat)
lon = float(lon)
# ax.plot(lon, lat, '.b', ms=2)
ax.text(lon, lat, label.decode('utf8'), ha='center',
va='bottom', size='8', color='black')
# plot limites
limites = []
tmp = []
for line in open('/data/workspace/schain_scripts/lima.csv'):
if '#' in line:
if tmp:
limites.append(tmp)
tmp = []
continue
values = line.strip().split(',')
tmp.append((float(values[0]), float(values[1])))
for points in limites:
ax.add_patch(
Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
# plot Cuencas
for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
values = [line.strip().split(',') for line in f]
points = [(float(s[0]), float(s[1])) for s in values]
ax.add_patch(Polygon(points, ec='b', fc='none'))
# plot grid
for r in (15, 30, 45, 60):
ax.add_artist(plt.Circle((self.lon, self.lat),
km2deg(r), color='0.6', fill=False, lw=0.2))
ax.text(
self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
'{}km'.format(r),
ha='center', va='bottom', size='8', color='0.6', weight='heavy')
if self.mode == 'E':
title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
label = 'E{:02d}'.format(int(self.data.meta['elevation']))
else:
title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
self.titles = ['{} {}'.format(
self.data.parameters[x], title) for x in self.channels]
class ScopePlot(Plot):
'''
Plot for Scope
'''
CODE = 'scope'
plot_name = 'Scope'
plot_type = 'scatter'
def setup(self):
self.xaxis = 'Range (Km)'
self.ncols = 1
self.nrows = 1
self.nplots = 1
self.ylabel = 'Intensity [dB]'
self.titles = ['Scope']
self.colorbar = False
colspan = 3
rowspan = 1
def plot_iq(self, x, y, channelIndexList, thisDatetime, wintitle):
yreal = y[channelIndexList,:].real
yimag = y[channelIndexList,:].imag
title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y"))
self.xlabel = "Range (Km)"
self.ylabel = "Intensity - IQ"
self.y = yreal
self.x = x
self.xmin = min(x)
self.xmax = max(x)
self.titles[0] = title
for i,ax in enumerate(self.axes):
title = "Channel %d" %(i)
if ax.firsttime:
ax.plt_r = ax.plot(x, yreal[i,:], color='b')[0]
ax.plt_i = ax.plot(x, yimag[i,:], color='r')[0]
else:
#pass
ax.plt_r.set_data(x, yreal[i,:])
ax.plt_i.set_data(x, yimag[i,:])
def plot_power(self, x, y, channelIndexList, thisDatetime, wintitle):
y = y[channelIndexList,:] * numpy.conjugate(y[channelIndexList,:])
yreal = y.real
self.y = yreal
title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y"))
self.xlabel = "Range (Km)"
self.ylabel = "Intensity"
self.xmin = min(x)
self.xmax = max(x)
self.titles[0] = title
for i,ax in enumerate(self.axes):
title = "Channel %d" %(i)
ychannel = yreal[i,:]
if ax.firsttime:
ax.plt_r = ax.plot(x, ychannel)[0]
else:
#pass
ax.plt_r.set_data(x, ychannel)
def plot(self):
if self.channels:
channels = self.channels
else:
channels = self.data.channels
thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1])
scope = self.data['scope']
if self.data.flagDataAsBlock:
for i in range(self.data.nProfiles):
wintitle1 = " [Profile = %d] " %i
if self.type == "power":
self.plot_power(self.data.heights,
scope[:,i,:],
channels,
thisDatetime,
wintitle1
)
if self.type == "iq":
self.plot_iq(self.data.heights,
scope[:,i,:],
channels,
thisDatetime,
wintitle1
)
else:
wintitle = " [Profile = %d] " %self.data.profileIndex
if self.type == "power":
self.plot_power(self.data.heights,
scope,
channels,
thisDatetime,
wintitle
)
if self.type == "iq":
self.plot_iq(self.data.heights,
scope,
channels,
thisDatetime,
wintitle
)