##// END OF EJS Templates
Se realizar la lectura en modo online llamando al metodo digitalRFReader(self.path) en reemplazo del metodo reload(), grabando previamente el path de lectura o directorio superior donde se almacena la data. Adicionalmente, se ha definido un tiempo de espera de 3 segundos para dar tiempo suficiente al programa de adquisicion de generar archivos. ...
Se realizar la lectura en modo online llamando al metodo digitalRFReader(self.path) en reemplazo del metodo reload(), grabando previamente el path de lectura o directorio superior donde se almacena la data. Adicionalmente, se ha definido un tiempo de espera de 3 segundos para dar tiempo suficiente al programa de adquisicion de generar archivos. El archivo jroIO_digitalRF.py utiliza la libreria digital_rf cuya version actual es la 2.62( 2017 ) ,esta libreria no tiene definido el metodo o clase reload, este metodo existe en la version 2.0(2014), si uno revisa el archivo jroIO_usrp.py, esta unidad de lectura trabaja con la version 2.0 llamada digital_rf_hdf5, para hacer uso de esta unidad de lectura se instalan los programas correspondiente pero el formato y la informacion difiere un poco de la version actual. Se infiere entonces que al desarrollar del archivo jroIO_digitalRF.py, esperaba que la libreria aun tenga incluido el metodo reload con el update de las versiones pero este ya no es parte del desarrollo, Se realizo la consulta al desarrollador actual de digitalRF Ryan Voltz si se iba a incluir a futuro pero indico que no era necesario.

File last commit:

r1040:0bd48c063731
r1234:b6a76136b1f3
Show More
jroproc_heispectra.py
344 lines | 10.1 KiB | text/x-python | PythonLexer
import numpy
from jroproc_base import ProcessingUnit, Operation
from schainpy.model.data.jrodata import SpectraHeis
class SpectraHeisProc(ProcessingUnit):
def __init__(self, **kwargs):
ProcessingUnit.__init__(self, **kwargs)
# self.buffer = None
# self.firstdatatime = None
# self.profIndex = 0
self.dataOut = SpectraHeis()
def __updateObjFromVoltage(self):
self.dataOut.timeZone = self.dataIn.timeZone
self.dataOut.dstFlag = self.dataIn.dstFlag
self.dataOut.errorCount = self.dataIn.errorCount
self.dataOut.useLocalTime = self.dataIn.useLocalTime
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()#
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()#
self.dataOut.channelList = self.dataIn.channelList
self.dataOut.heightList = self.dataIn.heightList
# self.dataOut.dtype = self.dataIn.dtype
self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
# self.dataOut.nHeights = self.dataIn.nHeights
# self.dataOut.nChannels = self.dataIn.nChannels
self.dataOut.nBaud = self.dataIn.nBaud
self.dataOut.nCode = self.dataIn.nCode
self.dataOut.code = self.dataIn.code
# self.dataOut.nProfiles = 1
self.dataOut.ippFactor = 1
self.dataOut.noise_estimation = None
# self.dataOut.nProfiles = self.dataOut.nFFTPoints
self.dataOut.nFFTPoints = self.dataIn.nHeights
# self.dataOut.channelIndexList = self.dataIn.channelIndexList
# self.dataOut.flagNoData = self.dataIn.flagNoData
self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
self.dataOut.utctime = self.dataIn.utctime
# self.dataOut.utctime = self.firstdatatime
self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
# self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT
self.dataOut.nCohInt = self.dataIn.nCohInt
self.dataOut.nIncohInt = 1
# self.dataOut.ippSeconds= self.dataIn.ippSeconds
self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
# self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nIncohInt
# self.dataOut.set=self.dataIn.set
# self.dataOut.deltaHeight=self.dataIn.deltaHeight
def __updateObjFromFits(self):
self.dataOut.utctime = self.dataIn.utctime
# self.dataOut.channelIndexList = self.dataIn.channelIndexList
self.dataOut.channelList = self.dataIn.channelList
self.dataOut.heightList = self.dataIn.heightList
self.dataOut.data_spc = self.dataIn.data
self.dataOut.ippSeconds = self.dataIn.ippSeconds
self.dataOut.nCohInt = self.dataIn.nCohInt
self.dataOut.nIncohInt = self.dataIn.nIncohInt
# self.dataOut.timeInterval = self.dataIn.timeInterval
self.dataOut.timeZone = self.dataIn.timeZone
self.dataOut.useLocalTime = True
# self.dataOut.
# self.dataOut.
def __getFft(self):
fft_volt = numpy.fft.fft(self.dataIn.data, axis=1)
fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,))
spc = numpy.abs(fft_volt * numpy.conjugate(fft_volt))/(self.dataOut.nFFTPoints)
self.dataOut.data_spc = spc
def run(self):
self.dataOut.flagNoData = True
if self.dataIn.type == "Fits":
self.__updateObjFromFits()
self.dataOut.flagNoData = False
return
if self.dataIn.type == "SpectraHeis":
self.dataOut.copy(self.dataIn)
return
if self.dataIn.type == "Voltage":
self.__updateObjFromVoltage()
self.__getFft()
self.dataOut.flagNoData = False
return
raise ValueError, "The type object %s is not valid"%(self.dataIn.type)
def selectChannels(self, channelList):
channelIndexList = []
for channel in channelList:
index = self.dataOut.channelList.index(channel)
channelIndexList.append(index)
self.selectChannelsByIndex(channelIndexList)
def selectChannelsByIndex(self, channelIndexList):
"""
Selecciona un bloque de datos en base a canales segun el channelIndexList
Input:
channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
Affected:
self.dataOut.data
self.dataOut.channelIndexList
self.dataOut.nChannels
self.dataOut.m_ProcessingHeader.totalSpectra
self.dataOut.systemHeaderObj.numChannels
self.dataOut.m_ProcessingHeader.blockSize
Return:
None
"""
for channelIndex in channelIndexList:
if channelIndex not in self.dataOut.channelIndexList:
print channelIndexList
raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex
# nChannels = len(channelIndexList)
data_spc = self.dataOut.data_spc[channelIndexList,:]
self.dataOut.data_spc = data_spc
self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
return 1
class IncohInt4SpectraHeis(Operation):
isConfig = False
__profIndex = 0
__withOverapping = False
__byTime = False
__initime = None
__lastdatatime = None
__integrationtime = None
__buffer = None
__dataReady = False
n = None
def __init__(self, **kwargs):
Operation.__init__(self, **kwargs)
# self.isConfig = False
def setup(self, n=None, timeInterval=None, overlapping=False):
"""
Set the parameters of the integration class.
Inputs:
n : Number of coherent integrations
timeInterval : Time of integration. If the parameter "n" is selected this one does not work
overlapping :
"""
self.__initime = None
self.__lastdatatime = 0
self.__buffer = None
self.__dataReady = False
if n == None and timeInterval == None:
raise ValueError, "n or timeInterval should be specified ..."
if n != None:
self.n = n
self.__byTime = False
else:
self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line
self.n = 9999
self.__byTime = True
if overlapping:
self.__withOverapping = True
self.__buffer = None
else:
self.__withOverapping = False
self.__buffer = 0
self.__profIndex = 0
def putData(self, data):
"""
Add a profile to the __buffer and increase in one the __profileIndex
"""
if not self.__withOverapping:
self.__buffer += data.copy()
self.__profIndex += 1
return
#Overlapping data
nChannels, nHeis = data.shape
data = numpy.reshape(data, (1, nChannels, nHeis))
#If the buffer is empty then it takes the data value
if self.__buffer is None:
self.__buffer = data
self.__profIndex += 1
return
#If the buffer length is lower than n then stakcing the data value
if self.__profIndex < self.n:
self.__buffer = numpy.vstack((self.__buffer, data))
self.__profIndex += 1
return
#If the buffer length is equal to n then replacing the last buffer value with the data value
self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
self.__buffer[self.n-1] = data
self.__profIndex = self.n
return
def pushData(self):
"""
Return the sum of the last profiles and the profiles used in the sum.
Affected:
self.__profileIndex
"""
if not self.__withOverapping:
data = self.__buffer
n = self.__profIndex
self.__buffer = 0
self.__profIndex = 0
return data, n
#Integration with Overlapping
data = numpy.sum(self.__buffer, axis=0)
n = self.__profIndex
return data, n
def byProfiles(self, data):
self.__dataReady = False
avgdata = None
# n = None
self.putData(data)
if self.__profIndex == self.n:
avgdata, n = self.pushData()
self.__dataReady = True
return avgdata
def byTime(self, data, datatime):
self.__dataReady = False
avgdata = None
n = None
self.putData(data)
if (datatime - self.__initime) >= self.__integrationtime:
avgdata, n = self.pushData()
self.n = n
self.__dataReady = True
return avgdata
def integrate(self, data, datatime=None):
if self.__initime == None:
self.__initime = datatime
if self.__byTime:
avgdata = self.byTime(data, datatime)
else:
avgdata = self.byProfiles(data)
self.__lastdatatime = datatime
if avgdata is None:
return None, None
avgdatatime = self.__initime
deltatime = datatime -self.__lastdatatime
if not self.__withOverapping:
self.__initime = datatime
else:
self.__initime += deltatime
return avgdata, avgdatatime
def run(self, dataOut, n=None, timeInterval=None, overlapping=False, **kwargs):
if not self.isConfig:
self.setup(n=n, timeInterval=timeInterval, overlapping=overlapping)
self.isConfig = True
avgdata, avgdatatime = self.integrate(dataOut.data_spc, dataOut.utctime)
# dataOut.timeInterval *= n
dataOut.flagNoData = True
if self.__dataReady:
dataOut.data_spc = avgdata
dataOut.nIncohInt *= self.n
# dataOut.nCohInt *= self.n
dataOut.utctime = avgdatatime
# dataOut.timeInterval = dataOut.ippSeconds * dataOut.nIncohInt
# dataOut.timeInterval = self.__timeInterval*self.n
dataOut.flagNoData = False