|
|
# Copyright (c) 2012-2020 Jicamarca Radio Observatory
|
|
|
# All rights reserved.
|
|
|
#
|
|
|
# Distributed under the terms of the BSD 3-clause license.
|
|
|
"""Spectra Lag processing Unit and operations
|
|
|
|
|
|
Here you will find the processing unit `SpectraLagProc` and several operations
|
|
|
to work with Spectra data type with lags
|
|
|
"""
|
|
|
|
|
|
import time
|
|
|
import itertools
|
|
|
|
|
|
import numpy
|
|
|
|
|
|
from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation
|
|
|
from schainpy.model.data.jrodata import Spectra
|
|
|
from schainpy.model.data.jrodata import hildebrand_sekhon
|
|
|
from schainpy.utils import log
|
|
|
from schainpy.model.data import _HS_algorithm
|
|
|
|
|
|
from schainpy.model.proc.jroproc_voltage import CleanCohEchoes
|
|
|
|
|
|
from time import time, mktime, strptime, gmtime, ctime
|
|
|
|
|
|
|
|
|
class SpectraLagProc(ProcessingUnit):
|
|
|
'''
|
|
|
Written by R. Flores
|
|
|
'''
|
|
|
def __init__(self):
|
|
|
|
|
|
ProcessingUnit.__init__(self)
|
|
|
|
|
|
self.buffer = None
|
|
|
self.buffer_Lag = None
|
|
|
self.firstdatatime = None
|
|
|
self.profIndex = 0
|
|
|
self.dataOut = Spectra()
|
|
|
self.id_min = None
|
|
|
self.id_max = None
|
|
|
self.setupReq = False #Agregar a todas las unidades de proc
|
|
|
|
|
|
def __updateSpecFromVoltage(self):
|
|
|
|
|
|
self.dataOut.timeZone = self.dataIn.timeZone
|
|
|
self.dataOut.dstFlag = self.dataIn.dstFlag
|
|
|
self.dataOut.errorCount = self.dataIn.errorCount
|
|
|
self.dataOut.useLocalTime = self.dataIn.useLocalTime
|
|
|
try:
|
|
|
self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy()
|
|
|
except:
|
|
|
pass
|
|
|
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
|
|
|
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
|
|
|
self.dataOut.channelList = self.dataIn.channelList
|
|
|
self.dataOut.heightList = self.dataIn.heightList
|
|
|
self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')])
|
|
|
self.dataOut.nProfiles = self.dataOut.nFFTPoints
|
|
|
self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
|
|
|
self.dataOut.utctime = self.firstdatatime
|
|
|
self.dataOut.flagDecodeData = self.dataIn.flagDecodeData
|
|
|
self.dataOut.flagDeflipData = self.dataIn.flagDeflipData
|
|
|
self.dataOut.flagShiftFFT = False
|
|
|
self.dataOut.nCohInt = self.dataIn.nCohInt
|
|
|
self.dataOut.nIncohInt = 1
|
|
|
self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
|
|
|
self.dataOut.frequency = self.dataIn.frequency
|
|
|
self.dataOut.realtime = self.dataIn.realtime
|
|
|
self.dataOut.azimuth = self.dataIn.azimuth
|
|
|
self.dataOut.zenith = self.dataIn.zenith
|
|
|
self.dataOut.beam.codeList = self.dataIn.beam.codeList
|
|
|
self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList
|
|
|
self.dataOut.beam.zenithList = self.dataIn.beam.zenithList
|
|
|
self.dataOut.runNextUnit = self.dataIn.runNextUnit
|
|
|
try:
|
|
|
self.dataOut.final_noise = self.dataIn.final_noise
|
|
|
except:
|
|
|
self.dataOut.final_noise = None
|
|
|
|
|
|
def __getFft(self):
|
|
|
"""
|
|
|
Convierte valores de Voltaje a Spectra
|
|
|
|
|
|
Affected:
|
|
|
self.dataOut.data_spc
|
|
|
self.dataOut.data_cspc
|
|
|
self.dataOut.data_dc
|
|
|
self.dataOut.heightList
|
|
|
self.profIndex
|
|
|
self.buffer
|
|
|
self.dataOut.flagNoData
|
|
|
"""
|
|
|
#print(self.buffer[1,:,0])
|
|
|
#exit(1)
|
|
|
#print("buffer shape",self.buffer.shape)
|
|
|
fft_volt = numpy.fft.fft(
|
|
|
self.buffer, n=self.dataOut.nFFTPoints, axis=1)
|
|
|
fft_volt = fft_volt.astype(numpy.dtype('complex'))
|
|
|
dc = fft_volt[:, 0, :]
|
|
|
|
|
|
# calculo de self-spectra
|
|
|
fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,))
|
|
|
spc = fft_volt * numpy.conjugate(fft_volt)
|
|
|
spc = spc.real
|
|
|
|
|
|
blocksize = 0
|
|
|
blocksize += dc.size
|
|
|
blocksize += spc.size
|
|
|
|
|
|
cspc = None
|
|
|
pairIndex = 0
|
|
|
if self.dataOut.pairsList != None:
|
|
|
# calculo de cross-spectra
|
|
|
#print("HERE")
|
|
|
cspc = numpy.zeros(
|
|
|
(self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex')
|
|
|
for pair in self.dataOut.pairsList:
|
|
|
if pair[0] not in self.dataOut.channelList:
|
|
|
raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % (
|
|
|
str(pair), str(self.dataOut.channelList)))
|
|
|
if pair[1] not in self.dataOut.channelList:
|
|
|
raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % (
|
|
|
str(pair), str(self.dataOut.channelList)))
|
|
|
|
|
|
cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \
|
|
|
numpy.conjugate(fft_volt[pair[1], :, :])
|
|
|
pairIndex += 1
|
|
|
blocksize += cspc.size
|
|
|
|
|
|
self.dataOut.data_spc = spc
|
|
|
self.dataOut.data_cspc = cspc
|
|
|
self.dataOut.data_dc = dc
|
|
|
self.dataOut.blockSize = blocksize
|
|
|
self.dataOut.flagShiftFFT = False
|
|
|
|
|
|
#return spc,cspc,dc
|
|
|
|
|
|
|
|
|
def VoltageType(self,nFFTPoints,nProfiles,ippFactor,pairsList):
|
|
|
self.dataOut.flagNoData = True
|
|
|
|
|
|
if nFFTPoints == None:
|
|
|
raise ValueError("This SpectraProc.run() need nFFTPoints input variable")
|
|
|
|
|
|
if nProfiles == None:
|
|
|
nProfiles = nFFTPoints
|
|
|
|
|
|
if ippFactor == None:
|
|
|
self.dataOut.ippFactor = 1
|
|
|
|
|
|
self.dataOut.nFFTPoints = nFFTPoints
|
|
|
|
|
|
if self.buffer is None:
|
|
|
self.buffer = numpy.zeros((self.dataIn.nChannels,
|
|
|
nProfiles,
|
|
|
self.dataIn.nHeights),
|
|
|
dtype='complex')
|
|
|
|
|
|
if self.dataIn.flagDataAsBlock:
|
|
|
nVoltProfiles = self.dataIn.data.shape[1]
|
|
|
|
|
|
if nVoltProfiles == nProfiles:
|
|
|
self.buffer = self.dataIn.data.copy()
|
|
|
self.profIndex = nVoltProfiles
|
|
|
|
|
|
elif nVoltProfiles < nProfiles:
|
|
|
|
|
|
if self.profIndex == 0:
|
|
|
self.id_min = 0
|
|
|
self.id_max = nVoltProfiles
|
|
|
|
|
|
self.buffer[:, self.id_min:self.id_max,
|
|
|
:] = self.dataIn.data
|
|
|
|
|
|
self.profIndex += nVoltProfiles
|
|
|
self.id_min += nVoltProfiles
|
|
|
self.id_max += nVoltProfiles
|
|
|
else:
|
|
|
raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % (
|
|
|
self.dataIn.type, self.dataIn.data.shape[1], nProfiles))
|
|
|
self.dataOut.flagNoData = True
|
|
|
else:
|
|
|
self.buffer[:, self.profIndex, :] = self.dataIn.data.copy()
|
|
|
self.profIndex += 1
|
|
|
|
|
|
if self.firstdatatime == None:
|
|
|
self.firstdatatime = self.dataIn.utctime
|
|
|
|
|
|
if self.profIndex == nProfiles:
|
|
|
self.__updateSpecFromVoltage()
|
|
|
if pairsList == None:
|
|
|
self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)]
|
|
|
else:
|
|
|
self.dataOut.pairsList = pairsList
|
|
|
#print(self.dataOut.pairsList)
|
|
|
self.__getFft()
|
|
|
self.dataOut.flagNoData = False
|
|
|
self.firstdatatime = None
|
|
|
#print(self.profIndex)
|
|
|
self.profIndex = 0
|
|
|
#input()
|
|
|
|
|
|
'''
|
|
|
if not self.dataOut.ByLags:
|
|
|
pass
|
|
|
else:
|
|
|
return self.dataOut.data_spc,self.dataOut.data_cspc,self.dataOut.data_dc
|
|
|
'''
|
|
|
|
|
|
|
|
|
def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False, ByLags=False, LagPlot=0, nLags = None, runNextUnit = 0):
|
|
|
|
|
|
self.dataIn.runNextUnit = runNextUnit
|
|
|
self.dataOut.ByLags=ByLags
|
|
|
self.dataOut.LagPlot=LagPlot
|
|
|
|
|
|
#print(self.dataIn.data.shape)
|
|
|
#exit(1)
|
|
|
'''
|
|
|
try:
|
|
|
print(self.dataIn.data.shape)
|
|
|
except:
|
|
|
print("datalags",self.dataIn.datalags.shape)
|
|
|
try:
|
|
|
print("datalags",self.dataIn.datalags.shape)
|
|
|
except:
|
|
|
pass
|
|
|
'''
|
|
|
if self.dataIn.type == "Spectra":
|
|
|
self.dataOut.copy(self.dataIn)
|
|
|
if shift_fft:
|
|
|
#desplaza a la derecha en el eje 2 determinadas posiciones
|
|
|
shift = int(self.dataOut.nFFTPoints/2)
|
|
|
self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1)
|
|
|
|
|
|
if self.dataOut.data_cspc is not None:
|
|
|
#desplaza a la derecha en el eje 2 determinadas posiciones
|
|
|
self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1)
|
|
|
if pairsList:
|
|
|
self.__selectPairs(pairsList)
|
|
|
|
|
|
elif self.dataIn.type == "Voltage":
|
|
|
|
|
|
if not self.dataOut.ByLags:
|
|
|
#self.dataOut.data = self.dataIn.data
|
|
|
try:
|
|
|
self.dataOut.FlipChannels=self.dataIn.FlipChannels
|
|
|
except: pass
|
|
|
self.dataOut.TimeBlockSeconds=self.dataIn.TimeBlockSeconds
|
|
|
self.VoltageType(nFFTPoints,nProfiles,ippFactor,pairsList)
|
|
|
else:
|
|
|
self.dataOut.nLags = nLags
|
|
|
self.dataOut.DPL=self.dataIn.DPL
|
|
|
#self.dataOut.NDP=self.dataIn.NDP
|
|
|
self.dataOut.datalags=self.dataIn.datalags
|
|
|
self.dataOut.dataLag_spc=[]
|
|
|
self.dataOut.dataLag_cspc=[]
|
|
|
self.dataOut.dataLag_dc=[]
|
|
|
if self.buffer_Lag is None:
|
|
|
self.buffer_Lag = numpy.zeros((self.dataIn.nChannels,
|
|
|
nProfiles,
|
|
|
self.dataIn.nHeights,self.dataOut.nLags),
|
|
|
dtype='complex')
|
|
|
|
|
|
for i in range(self.dataOut.nLags):
|
|
|
self.dataOut.data=self.dataIn.data=self.dataIn.datalags[:,:,:,i]
|
|
|
|
|
|
|
|
|
if i>0 and self.id_min is not None:
|
|
|
|
|
|
self.profIndex -= self.dataIn.data.shape[1]
|
|
|
self.id_min -= self.dataIn.data.shape[1]
|
|
|
self.id_max -= self.dataIn.data.shape[1]
|
|
|
|
|
|
if self.profIndex>0 and self.id_min is not None:
|
|
|
|
|
|
self.buffer[:,:self.id_max-self.dataIn.data.shape[1],:]=self.buffer_Lag[:,:self.id_max-self.dataIn.data.shape[1],:,i]
|
|
|
|
|
|
self.VoltageType(nFFTPoints,nProfiles,ippFactor,pairsList)
|
|
|
|
|
|
|
|
|
if self.id_min is not None:
|
|
|
|
|
|
self.buffer_Lag[:,self.id_min-self.dataIn.data.shape[1]:self.id_max-self.dataIn.data.shape[1],:,i]=self.buffer[:,self.id_min-self.dataIn.data.shape[1]:self.id_max-self.dataIn.data.shape[1],:]
|
|
|
|
|
|
if not self.dataOut.flagNoData:
|
|
|
self.profIndex=nProfiles
|
|
|
self.firstdatatime = self.dataOut.utctime
|
|
|
if i==self.dataOut.nLags-1:
|
|
|
self.profIndex=0
|
|
|
self.firstdatatime = None
|
|
|
self.dataOut.dataLag_spc.append(self.dataOut.data_spc)
|
|
|
self.dataOut.dataLag_cspc.append(self.dataOut.data_cspc)
|
|
|
self.dataOut.dataLag_dc.append(self.dataOut.data_dc)
|
|
|
|
|
|
|
|
|
if not self.dataOut.flagNoData:
|
|
|
self.dataOut.dataLag_spc=numpy.array(self.dataOut.dataLag_spc)
|
|
|
self.dataOut.dataLag_cspc=numpy.array(self.dataOut.dataLag_cspc)
|
|
|
self.dataOut.dataLag_dc=numpy.array(self.dataOut.dataLag_dc)
|
|
|
self.dataOut.dataLag_spc=self.dataOut.dataLag_spc.transpose(1,2,3,0)
|
|
|
self.dataOut.dataLag_cspc=self.dataOut.dataLag_cspc.transpose(1,2,3,0)
|
|
|
self.dataOut.dataLag_dc=self.dataOut.dataLag_dc.transpose(1,2,0)
|
|
|
|
|
|
self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot]
|
|
|
self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot]
|
|
|
self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot]
|
|
|
|
|
|
self.dataOut.TimeBlockSeconds=self.dataIn.TimeBlockSeconds
|
|
|
self.dataOut.flagDataAsBlock=self.dataIn.flagDataAsBlock
|
|
|
try:
|
|
|
self.dataOut.FlipChannels=self.dataIn.FlipChannels
|
|
|
except: pass
|
|
|
else:
|
|
|
raise ValueError("The type of input object '%s' is not valid".format(
|
|
|
self.dataIn.type))
|
|
|
|
|
|
#print("after",self.dataOut.data_spc[0,:,20])
|
|
|
|
|
|
class removeDCLag(Operation):
|
|
|
'''
|
|
|
Written by R. Flores
|
|
|
'''
|
|
|
def remover(self,mode):
|
|
|
jspectra = self.dataOut.data_spc
|
|
|
jcspectra = self.dataOut.data_cspc
|
|
|
|
|
|
num_chan = jspectra.shape[0]
|
|
|
num_hei = jspectra.shape[2]
|
|
|
|
|
|
|
|
|
if jcspectra is not None:
|
|
|
self.jcspectraExist = jcspectraExist = True
|
|
|
num_pairs = jcspectra.shape[0]
|
|
|
else:
|
|
|
self.jcspectraExist = jcspectraExist = False
|
|
|
#print(jcspectraExist)
|
|
|
|
|
|
freq_dc = int(jspectra.shape[1] / 2)
|
|
|
ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc
|
|
|
ind_vel = ind_vel.astype(int)
|
|
|
|
|
|
if ind_vel[0] < 0:
|
|
|
ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof
|
|
|
|
|
|
if mode == 1:
|
|
|
jspectra[:, freq_dc, :] = (
|
|
|
jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION
|
|
|
|
|
|
if jcspectraExist:
|
|
|
jcspectra[:, freq_dc, :] = (
|
|
|
jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2
|
|
|
|
|
|
if mode == 2:
|
|
|
|
|
|
vel = numpy.array([-2, -1, 1, 2])
|
|
|
xx = numpy.zeros([4, 4])
|
|
|
|
|
|
for fil in range(4):
|
|
|
xx[fil, :] = vel[fil]**numpy.asarray(list(range(4)))
|
|
|
|
|
|
xx_inv = numpy.linalg.inv(xx)
|
|
|
xx_aux = xx_inv[0, :]
|
|
|
#print("inside")
|
|
|
|
|
|
|
|
|
for ich in range(num_chan):
|
|
|
yy = jspectra[ich, ind_vel, :]
|
|
|
jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy)
|
|
|
#print(jspectra.shape)
|
|
|
|
|
|
junkid = jspectra[ich, freq_dc, :] <= 0
|
|
|
cjunkid = sum(junkid)
|
|
|
|
|
|
if cjunkid.any():
|
|
|
jspectra[ich, freq_dc, junkid.nonzero()] = (
|
|
|
jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2
|
|
|
#print(jspectra.shape)
|
|
|
if jcspectraExist:
|
|
|
for ip in range(num_pairs):
|
|
|
yy = jcspectra[ip, ind_vel, :]
|
|
|
jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy)
|
|
|
#print(jspectra.shape)
|
|
|
if not self.dataOut.ByLags:
|
|
|
self.dataOut.data_spc = jspectra
|
|
|
self.dataOut.data_cspc = jcspectra
|
|
|
else:
|
|
|
if jcspectraExist is True:
|
|
|
return jspectra,jcspectra
|
|
|
else:
|
|
|
#print(jspectra.shape)
|
|
|
return jspectra
|
|
|
|
|
|
|
|
|
def run(self, dataOut, mode=2):
|
|
|
|
|
|
self.dataOut = dataOut
|
|
|
if not dataOut.ByLags:
|
|
|
self.remover(mode)
|
|
|
|
|
|
else:
|
|
|
for i in range(self.dataOut.nLags):
|
|
|
self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,i]
|
|
|
if self.dataOut.dataLag_cspc is not None:
|
|
|
self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,i]
|
|
|
else:
|
|
|
self.dataOut.data_cspc = None
|
|
|
##self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,i] Check!
|
|
|
#print("HERE")
|
|
|
if self.dataOut.dataLag_cspc is not None:
|
|
|
self.dataOut.dataLag_spc[:,:,:,i],self.dataOut.dataLag_cspc[:,:,:,i]=self.remover(mode)
|
|
|
else:
|
|
|
self.dataOut.dataLag_spc[:,:,:,i]=self.remover(mode)
|
|
|
|
|
|
#exit()
|
|
|
self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot]
|
|
|
if self.jcspectraExist is True:
|
|
|
self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot]
|
|
|
##self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot] Check!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return self.dataOut
|
|
|
|
|
|
class removeDCLagFlip(Operation):
|
|
|
'''
|
|
|
Written by R. Flores
|
|
|
'''
|
|
|
#CHANGES MADE ONLY FOR MODE 2 AND NOT CONSIDERING CSPC
|
|
|
|
|
|
def remover(self,mode):
|
|
|
jspectra = self.dataOut.data_spc
|
|
|
jcspectra = self.dataOut.data_cspc
|
|
|
|
|
|
num_chan = jspectra.shape[0]
|
|
|
num_hei = jspectra.shape[2]
|
|
|
|
|
|
if jcspectra is not None:
|
|
|
jcspectraExist = True
|
|
|
num_pairs = jcspectra.shape[0]
|
|
|
else:
|
|
|
jcspectraExist = False
|
|
|
|
|
|
freq_dc = int(jspectra.shape[1] / 2)
|
|
|
ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc
|
|
|
ind_vel = ind_vel.astype(int)
|
|
|
|
|
|
if ind_vel[0] < 0:
|
|
|
ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof
|
|
|
|
|
|
if mode == 1:
|
|
|
jspectra[:, freq_dc, :] = (
|
|
|
jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION
|
|
|
|
|
|
if jcspectraExist:
|
|
|
jcspectra[:, freq_dc, :] = (
|
|
|
jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2
|
|
|
|
|
|
if mode == 2:
|
|
|
|
|
|
vel = numpy.array([-2, -1, 1, 2])
|
|
|
xx = numpy.zeros([4, 4])
|
|
|
|
|
|
for fil in range(4):
|
|
|
xx[fil, :] = vel[fil]**numpy.asarray(list(range(4)))
|
|
|
|
|
|
xx_inv = numpy.linalg.inv(xx)
|
|
|
xx_aux = xx_inv[0, :]
|
|
|
|
|
|
for ich in range(num_chan):
|
|
|
if ich in self.dataOut.FlipChannels:
|
|
|
|
|
|
|
|
|
ind_freq_flip=[-1, -2, 1, 2]
|
|
|
|
|
|
yy = jspectra[ich, ind_freq_flip, :]
|
|
|
|
|
|
jspectra[ich, 0, :] = numpy.dot(xx_aux, yy)
|
|
|
|
|
|
junkid = jspectra[ich, 0, :] <= 0
|
|
|
cjunkid = sum(junkid)
|
|
|
|
|
|
if cjunkid.any():
|
|
|
jspectra[ich, 0, junkid.nonzero()] = (
|
|
|
jspectra[ich, ind_freq_flip[1], junkid] + jspectra[ich, ind_freq_flip[2], junkid]) / 2
|
|
|
|
|
|
|
|
|
else:
|
|
|
yy = jspectra[ich, ind_vel, :]
|
|
|
jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy)
|
|
|
|
|
|
junkid = jspectra[ich, freq_dc, :] <= 0
|
|
|
cjunkid = sum(junkid)
|
|
|
|
|
|
if cjunkid.any():
|
|
|
jspectra[ich, freq_dc, junkid.nonzero()] = (
|
|
|
jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2
|
|
|
|
|
|
if jcspectraExist:
|
|
|
for ip in range(num_pairs):
|
|
|
yy = jcspectra[ip, ind_vel, :]
|
|
|
jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy)
|
|
|
|
|
|
yy = jcspectra[ip, ind_freq_flip, :]
|
|
|
jcspectra[ip, 0, :] = numpy.dot(xx_aux, yy)
|
|
|
|
|
|
if not self.dataOut.ByLags:
|
|
|
self.dataOut.data_spc = jspectra
|
|
|
self.dataOut.data_cspc = jcspectra
|
|
|
else:
|
|
|
return jspectra,jcspectra
|
|
|
|
|
|
|
|
|
def run(self, dataOut, mode=2):
|
|
|
#print("***********************************Remove DC***********************************")
|
|
|
##print(dataOut.FlipChannels)
|
|
|
#exit(1)
|
|
|
self.dataOut = dataOut
|
|
|
if not dataOut.ByLags:
|
|
|
self.remover(mode)
|
|
|
else:
|
|
|
for i in range(self.dataOut.DPL):
|
|
|
self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,i]
|
|
|
self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,i]
|
|
|
self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,i]
|
|
|
self.dataOut.dataLag_spc[:,:,:,i],self.dataOut.dataLag_cspc[:,:,:,i]=self.remover(mode)
|
|
|
|
|
|
self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot]
|
|
|
self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot]
|
|
|
self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot]
|
|
|
|
|
|
return self.dataOut
|
|
|
|
|
|
class removeHighValuesFreq(Operation):
|
|
|
|
|
|
def removeByLag(self,nkill,nChannels,nHeights,data):
|
|
|
|
|
|
for i in range(nChannels):
|
|
|
for j in range(nHeights):
|
|
|
buffer=numpy.copy(data[i,:,j])
|
|
|
sortdata=sorted(buffer)
|
|
|
avg=numpy.mean(sortdata[:-nkill])
|
|
|
sortID=buffer.argsort()
|
|
|
for k in list(sortID[-nkill:]):
|
|
|
buffer[k]=avg
|
|
|
data[i,:,j]=numpy.copy(buffer)
|
|
|
|
|
|
def run(self,dataOut,nkill=3):
|
|
|
|
|
|
for i in range(dataOut.DPL):
|
|
|
data=dataOut.dataLag_spc[:,:,:,i]
|
|
|
|
|
|
self.removeByLag(nkill,dataOut.nChannels,dataOut.nHeights,data)
|
|
|
dataOut.dataLag_spc[:,:,:,i]=data
|
|
|
|
|
|
|
|
|
return dataOut
|
|
|
|
|
|
class removeInterferenceLag(Operation):
|
|
|
|
|
|
def removeInterference2(self):
|
|
|
|
|
|
cspc = self.dataOut.data_cspc
|
|
|
spc = self.dataOut.data_spc
|
|
|
Heights = numpy.arange(cspc.shape[2])
|
|
|
realCspc = numpy.abs(cspc)
|
|
|
|
|
|
for i in range(cspc.shape[0]):
|
|
|
LinePower= numpy.sum(realCspc[i], axis=0)
|
|
|
Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)]
|
|
|
SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ]
|
|
|
InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 )
|
|
|
InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)]
|
|
|
InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)]
|
|
|
|
|
|
#InterferenceSum[0]*=2
|
|
|
#print("sum",InterferenceSum)
|
|
|
#print("min",InterferenceThresholdMin)
|
|
|
|
|
|
|
|
|
InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) )
|
|
|
#InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax]))
|
|
|
if len(InterferenceRange)<int(cspc.shape[1]*0.3):
|
|
|
#print("profile",InterferenceRange)
|
|
|
#print(cspc[i,InterferenceRange,:])
|
|
|
cspc[i,InterferenceRange,:] = numpy.NaN
|
|
|
#print(cspc[i,InterferenceRange,:])
|
|
|
#print("profile",InterferenceRange)
|
|
|
#exit()
|
|
|
|
|
|
if not self.dataOut.ByLags:
|
|
|
self.dataOut.data_cspc = cspc
|
|
|
else:
|
|
|
return cspc
|
|
|
|
|
|
def removeInterference(self, interf, hei_interf, nhei_interf, offhei_interf):
|
|
|
|
|
|
jspectra = self.dataOut.data_spc
|
|
|
jcspectra = self.dataOut.data_cspc
|
|
|
jnoise = self.dataOut.getNoise()
|
|
|
num_incoh = self.dataOut.nIncohInt
|
|
|
|
|
|
num_channel = jspectra.shape[0]
|
|
|
num_prof = jspectra.shape[1]
|
|
|
num_hei = jspectra.shape[2]
|
|
|
|
|
|
# hei_interf
|
|
|
if hei_interf is None:
|
|
|
count_hei = int(num_hei / 2)
|
|
|
hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei
|
|
|
hei_interf = numpy.asarray(hei_interf)[0]
|
|
|
# nhei_interf
|
|
|
|
|
|
if (nhei_interf == None):
|
|
|
nhei_interf = 5
|
|
|
if (nhei_interf < 1):
|
|
|
nhei_interf = 1
|
|
|
if (nhei_interf > count_hei):
|
|
|
nhei_interf = count_hei
|
|
|
if (offhei_interf == None):
|
|
|
offhei_interf = 0
|
|
|
|
|
|
|
|
|
ind_hei = list(range(num_hei))
|
|
|
# mask_prof = numpy.asarray(range(num_prof - 2)) + 1
|
|
|
# mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1
|
|
|
mask_prof = numpy.asarray(list(range(num_prof)))
|
|
|
num_mask_prof = mask_prof.size
|
|
|
comp_mask_prof = [0, num_prof / 2]
|
|
|
|
|
|
# noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal
|
|
|
if (jnoise.size < num_channel or numpy.isnan(jnoise).any()):
|
|
|
jnoise = numpy.nan
|
|
|
noise_exist = jnoise[0] < numpy.Inf
|
|
|
|
|
|
# Subrutina de Remocion de la Interferencia
|
|
|
for ich in range(num_channel):
|
|
|
# Se ordena los espectros segun su potencia (menor a mayor)
|
|
|
#print(mask_prof)
|
|
|
#exit()
|
|
|
|
|
|
power = jspectra[ich, mask_prof, :]
|
|
|
power = power[:, hei_interf]
|
|
|
power = power.sum(axis=0)
|
|
|
psort = power.ravel().argsort()
|
|
|
|
|
|
|
|
|
# Se estima la interferencia promedio en los Espectros de Potencia empleando
|
|
|
junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range(
|
|
|
offhei_interf, nhei_interf + offhei_interf))]]]
|
|
|
|
|
|
|
|
|
#exit()
|
|
|
|
|
|
if noise_exist:
|
|
|
# tmp_noise = jnoise[ich] / num_prof
|
|
|
tmp_noise = jnoise[ich]
|
|
|
junkspc_interf = junkspc_interf - tmp_noise
|
|
|
#junkspc_interf[:,comp_mask_prof] = 0
|
|
|
|
|
|
jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf
|
|
|
jspc_interf = jspc_interf.transpose()
|
|
|
# Calculando el espectro de interferencia promedio
|
|
|
noiseid = numpy.where(
|
|
|
jspc_interf <= tmp_noise / numpy.sqrt(num_incoh))
|
|
|
noiseid = noiseid[0]
|
|
|
cnoiseid = noiseid.size
|
|
|
interfid = numpy.where(
|
|
|
jspc_interf > tmp_noise / numpy.sqrt(num_incoh))
|
|
|
interfid = interfid[0]
|
|
|
cinterfid = interfid.size
|
|
|
|
|
|
if (cnoiseid > 0):
|
|
|
jspc_interf[noiseid] = 0
|
|
|
|
|
|
# Expandiendo los perfiles a limpiar
|
|
|
if (cinterfid > 0):
|
|
|
new_interfid = (
|
|
|
numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof
|
|
|
new_interfid = numpy.asarray(new_interfid)
|
|
|
new_interfid = {x for x in new_interfid}
|
|
|
new_interfid = numpy.array(list(new_interfid))
|
|
|
new_cinterfid = new_interfid.size
|
|
|
else:
|
|
|
new_cinterfid = 0
|
|
|
|
|
|
for ip in range(new_cinterfid):
|
|
|
ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort()
|
|
|
jspc_interf[new_interfid[ip]
|
|
|
] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]]
|
|
|
|
|
|
jspectra[ich, :, ind_hei] = jspectra[ich, :,
|
|
|
ind_hei] - jspc_interf # Corregir indices
|
|
|
|
|
|
# Removiendo la interferencia del punto de mayor interferencia
|
|
|
ListAux = jspc_interf[mask_prof].tolist()
|
|
|
maxid = ListAux.index(max(ListAux))
|
|
|
|
|
|
if cinterfid > 0:
|
|
|
for ip in range(cinterfid * (interf == 2) - 1):
|
|
|
ind = (jspectra[ich, interfid[ip], :] < tmp_noise *
|
|
|
(1 + 1 / numpy.sqrt(num_incoh))).nonzero()
|
|
|
cind = len(ind)
|
|
|
|
|
|
if (cind > 0):
|
|
|
jspectra[ich, interfid[ip], ind] = tmp_noise * \
|
|
|
(1 + (numpy.random.uniform(cind) - 0.5) /
|
|
|
numpy.sqrt(num_incoh))
|
|
|
|
|
|
ind = numpy.array([-2, -1, 1, 2])
|
|
|
xx = numpy.zeros([4, 4])
|
|
|
|
|
|
for id1 in range(4):
|
|
|
xx[:, id1] = ind[id1]**numpy.asarray(list(range(4)))
|
|
|
|
|
|
xx_inv = numpy.linalg.inv(xx)
|
|
|
xx = xx_inv[:, 0]
|
|
|
ind = (ind + maxid + num_mask_prof) % num_mask_prof
|
|
|
yy = jspectra[ich, mask_prof[ind], :]
|
|
|
jspectra[ich, mask_prof[maxid], :] = numpy.dot(
|
|
|
yy.transpose(), xx)
|
|
|
|
|
|
indAux = (jspectra[ich, :, :] < tmp_noise *
|
|
|
(1 - 1 / numpy.sqrt(num_incoh))).nonzero()
|
|
|
jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \
|
|
|
(1 - 1 / numpy.sqrt(num_incoh))
|
|
|
|
|
|
# Remocion de Interferencia en el Cross Spectra
|
|
|
if jcspectra is None:
|
|
|
return jspectra, jcspectra
|
|
|
num_pairs = int(jcspectra.size / (num_prof * num_hei))
|
|
|
jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei)
|
|
|
|
|
|
for ip in range(num_pairs):
|
|
|
|
|
|
#-------------------------------------------
|
|
|
|
|
|
cspower = numpy.abs(jcspectra[ip, mask_prof, :])
|
|
|
cspower = cspower[:, hei_interf]
|
|
|
cspower = cspower.sum(axis=0)
|
|
|
|
|
|
cspsort = cspower.ravel().argsort()
|
|
|
junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range(
|
|
|
offhei_interf, nhei_interf + offhei_interf))]]]
|
|
|
junkcspc_interf = junkcspc_interf.transpose()
|
|
|
jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf
|
|
|
|
|
|
ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort()
|
|
|
|
|
|
median_real = int(numpy.median(numpy.real(
|
|
|
junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :])))
|
|
|
median_imag = int(numpy.median(numpy.imag(
|
|
|
junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :])))
|
|
|
comp_mask_prof = [int(e) for e in comp_mask_prof]
|
|
|
junkcspc_interf[comp_mask_prof, :] = numpy.complex(
|
|
|
median_real, median_imag)
|
|
|
|
|
|
for iprof in range(num_prof):
|
|
|
ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort()
|
|
|
jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]]
|
|
|
|
|
|
# Removiendo la Interferencia
|
|
|
jcspectra[ip, :, ind_hei] = jcspectra[ip,
|
|
|
:, ind_hei] - jcspc_interf
|
|
|
|
|
|
ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist()
|
|
|
maxid = ListAux.index(max(ListAux))
|
|
|
|
|
|
ind = numpy.array([-2, -1, 1, 2])
|
|
|
xx = numpy.zeros([4, 4])
|
|
|
|
|
|
for id1 in range(4):
|
|
|
xx[:, id1] = ind[id1]**numpy.asarray(list(range(4)))
|
|
|
|
|
|
xx_inv = numpy.linalg.inv(xx)
|
|
|
xx = xx_inv[:, 0]
|
|
|
|
|
|
ind = (ind + maxid + num_mask_prof) % num_mask_prof
|
|
|
yy = jcspectra[ip, mask_prof[ind], :]
|
|
|
jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx)
|
|
|
|
|
|
# Guardar Resultados
|
|
|
if not self.dataOut.ByLags:
|
|
|
self.dataOut.data_spc = jspectra
|
|
|
self.dataOut.data_cspc = jcspectra
|
|
|
else:
|
|
|
return jspectra,jcspectra
|
|
|
|
|
|
return 1
|
|
|
|
|
|
def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1):
|
|
|
|
|
|
self.dataOut = dataOut
|
|
|
if not dataOut.ByLags:
|
|
|
if mode == 1:
|
|
|
self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None)
|
|
|
elif mode == 2:
|
|
|
self.removeInterference2()
|
|
|
else:
|
|
|
for i in range(self.dataOut.DPL):
|
|
|
#print("BEFORE")
|
|
|
self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,i]
|
|
|
#print(i)
|
|
|
#print(self.dataOut.dataLag_spc[0,0,0,i])
|
|
|
#print("AFTER")
|
|
|
self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,i]
|
|
|
self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,i]
|
|
|
if mode == 1:
|
|
|
#print(self.dataOut.dataLag_spc[0,:,22,0])
|
|
|
self.dataOut.dataLag_spc[:,:,:,i],self.dataOut.dataLag_cspc[:,:,:,i]=self.removeInterference(interf, hei_interf, nhei_interf, offhei_interf)
|
|
|
#print(self.dataOut.dataLag_spc[0,:,22,0])
|
|
|
#input()
|
|
|
elif mode ==2:
|
|
|
self.dataOut.dataLag_cspc[:,:,:,i]=self.removeInterference2()
|
|
|
|
|
|
self.dataOut.data_spc=self.dataOut.dataLag_spc[:,:,:,self.dataOut.LagPlot]
|
|
|
self.dataOut.data_cspc=self.dataOut.dataLag_cspc[:,:,:,self.dataOut.LagPlot]
|
|
|
self.dataOut.data_dc=self.dataOut.dataLag_dc[:,:,self.dataOut.LagPlot]
|
|
|
|
|
|
return self.dataOut
|
|
|
|
|
|
class IntegrationFaradaySpectra(Operation):
|
|
|
'''
|
|
|
Written by R. Flores
|
|
|
'''
|
|
|
__profIndex = 0
|
|
|
__withOverapping = False
|
|
|
|
|
|
__byTime = False
|
|
|
__initime = None
|
|
|
__lastdatatime = None
|
|
|
__integrationtime = None
|
|
|
|
|
|
__buffer_spc = None
|
|
|
__buffer_cspc = None
|
|
|
__buffer_dc = None
|
|
|
|
|
|
__dataReady = False
|
|
|
|
|
|
__timeInterval = None
|
|
|
|
|
|
n = None
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
|
Operation.__init__(self)
|
|
|
|
|
|
def setup(self, n=None, timeInterval=None, overlapping=False):
|
|
|
"""
|
|
|
Set the parameters of the integration class.
|
|
|
|
|
|
Inputs:
|
|
|
|
|
|
n : Number of coherent integrations
|
|
|
timeInterval : Time of integration. If the parameter "n" is selected this one does not work
|
|
|
overlapping :
|
|
|
|
|
|
"""
|
|
|
|
|
|
self.__initime = None
|
|
|
self.__lastdatatime = 0
|
|
|
|
|
|
self.__buffer_spc = []
|
|
|
self.__buffer_cspc = []
|
|
|
self.__buffer_dc = 0
|
|
|
|
|
|
self.__profIndex = 0
|
|
|
self.__dataReady = False
|
|
|
self.__byTime = False
|
|
|
|
|
|
if n is None and timeInterval is None:
|
|
|
raise ValueError("n or timeInterval should be specified ...")
|
|
|
|
|
|
if n is not None:
|
|
|
self.n = int(n)
|
|
|
else:
|
|
|
|
|
|
self.__integrationtime = int(timeInterval)
|
|
|
self.n = None
|
|
|
self.__byTime = True
|
|
|
|
|
|
def putData(self, data_spc, data_cspc, data_dc):
|
|
|
"""
|
|
|
Add a profile to the __buffer_spc and increase in one the __profileIndex
|
|
|
|
|
|
"""
|
|
|
|
|
|
self.__buffer_spc.append(data_spc)
|
|
|
|
|
|
if data_cspc is None:
|
|
|
self.__buffer_cspc = None
|
|
|
else:
|
|
|
self.__buffer_cspc.append(data_cspc)
|
|
|
|
|
|
if data_dc is None:
|
|
|
self.__buffer_dc = None
|
|
|
else:
|
|
|
self.__buffer_dc += data_dc
|
|
|
|
|
|
self.__profIndex += 1
|
|
|
|
|
|
return
|
|
|
|
|
|
def hildebrand_sekhon_Integration(self,data,navg):
|
|
|
|
|
|
sortdata = numpy.sort(data, axis=None)
|
|
|
sortID=data.argsort()
|
|
|
lenOfData = len(sortdata)
|
|
|
nums_min = lenOfData*0.75
|
|
|
if nums_min <= 5:
|
|
|
nums_min = 5
|
|
|
sump = 0.
|
|
|
sumq = 0.
|
|
|
j = 0
|
|
|
cont = 1
|
|
|
while((cont == 1)and(j < lenOfData)):
|
|
|
sump += sortdata[j]
|
|
|
sumq += sortdata[j]**2
|
|
|
if j > nums_min:
|
|
|
rtest = float(j)/(j-1) + 1.0/navg
|
|
|
if ((sumq*j) > (rtest*sump**2)):
|
|
|
j = j - 1
|
|
|
sump = sump - sortdata[j]
|
|
|
sumq = sumq - sortdata[j]**2
|
|
|
cont = 0
|
|
|
j += 1
|
|
|
#lnoise = sump / j
|
|
|
|
|
|
return j,sortID
|
|
|
|
|
|
def pushData(self):
|
|
|
"""
|
|
|
Return the sum of the last profiles and the profiles used in the sum.
|
|
|
|
|
|
Affected:
|
|
|
|
|
|
self.__profileIndex
|
|
|
|
|
|
"""
|
|
|
bufferH=None
|
|
|
buffer=None
|
|
|
buffer1=None
|
|
|
buffer_cspc=None
|
|
|
self.__buffer_spc=numpy.array(self.__buffer_spc)
|
|
|
self.__buffer_cspc=numpy.array(self.__buffer_cspc)
|
|
|
freq_dc = int(self.__buffer_spc.shape[2] / 2)
|
|
|
#print("FREQ_DC",freq_dc)
|
|
|
#print(self.__buffer_spc[:,1,5,37,0])
|
|
|
#lag_array=[0,2,4,6,8,10,12,14,16,18,20]
|
|
|
for l in range(self.DPL):#dataOut.DPL):
|
|
|
#breakFlag=False
|
|
|
for k in range(7,self.nHeights):
|
|
|
buffer_cspc=numpy.copy(self.__buffer_cspc[:,0,:,k,l])
|
|
|
outliers_IDs_cspc=[]
|
|
|
cspc_outliers_exist=False
|
|
|
#indexmin_cspc=0
|
|
|
for i in range(self.nChannels):#dataOut.nChannels):
|
|
|
if i==1 and k >= self.nHeights-2*l:
|
|
|
#breakFlag=True
|
|
|
continue
|
|
|
#pass
|
|
|
else:
|
|
|
buffer1=numpy.copy(self.__buffer_spc[:,i,:,k,l])
|
|
|
indexes=[]
|
|
|
#sortIDs=[]
|
|
|
outliers_IDs=[]
|
|
|
for j in range(self.nProfiles):
|
|
|
if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0
|
|
|
continue
|
|
|
if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1
|
|
|
continue
|
|
|
buffer=buffer1[:,j]
|
|
|
#index,sortID=self.hildebrand_sekhon_Integration(buffer,1)
|
|
|
index=int(_HS_algorithm.HS_algorithm(numpy.sort(buffer, axis=None),1))
|
|
|
sortID = buffer.argsort()
|
|
|
'''
|
|
|
if i==1 and l==0 and k==37:
|
|
|
print("j",j)
|
|
|
print("INDEX",index)
|
|
|
print(sortID[index:])
|
|
|
if j==5:
|
|
|
aa=numpy.mean(buffer,axis=0)
|
|
|
bb=numpy.sort(buffer)
|
|
|
print(buffer)
|
|
|
print(aa)
|
|
|
print(bb[-1])
|
|
|
'''
|
|
|
indexes.append(index)
|
|
|
#sortIDs.append(sortID)
|
|
|
outliers_IDs=numpy.append(outliers_IDs,sortID[index:])
|
|
|
|
|
|
outliers_IDs=numpy.array(outliers_IDs)
|
|
|
outliers_IDs=outliers_IDs.ravel()
|
|
|
outliers_IDs=numpy.unique(outliers_IDs)
|
|
|
outliers_IDs=outliers_IDs.astype(numpy.dtype('int64'))
|
|
|
indexes=numpy.array(indexes)
|
|
|
indexmin=numpy.min(indexes)
|
|
|
|
|
|
if indexmin != buffer1.shape[0]:
|
|
|
cspc_outliers_exist=True
|
|
|
###sortdata=numpy.sort(buffer1,axis=0)
|
|
|
###avg2=numpy.mean(sortdata[:indexmin,:],axis=0)
|
|
|
lt=outliers_IDs
|
|
|
avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0)
|
|
|
'''
|
|
|
if k==37 and i==1 and l==0:
|
|
|
#cc=
|
|
|
print("index_min",indexmin)
|
|
|
print("outliers_ID",lt)
|
|
|
print("AVG",avg[5])
|
|
|
print("AVG_2",avg2[5])
|
|
|
'''
|
|
|
|
|
|
for p in list(outliers_IDs):
|
|
|
buffer1[p,:]=avg
|
|
|
|
|
|
self.__buffer_spc[:,i,:,k,l]=numpy.copy(buffer1)
|
|
|
###cspc IDs
|
|
|
#indexmin_cspc+=indexmin_cspc
|
|
|
outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs)
|
|
|
|
|
|
#if not breakFlag:
|
|
|
outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64'))
|
|
|
if cspc_outliers_exist:
|
|
|
#sortdata=numpy.sort(buffer_cspc,axis=0)
|
|
|
#avg=numpy.mean(sortdata[:indexmin_cpsc,:],axis=0)
|
|
|
lt=outliers_IDs_cspc
|
|
|
|
|
|
avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0)
|
|
|
for p in list(outliers_IDs_cspc):
|
|
|
buffer_cspc[p,:]=avg
|
|
|
|
|
|
self.__buffer_cspc[:,0,:,k,l]=numpy.copy(buffer_cspc)
|
|
|
#else:
|
|
|
#break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
buffer=None
|
|
|
bufferH=None
|
|
|
buffer1=None
|
|
|
buffer_cspc=None
|
|
|
|
|
|
#print("cpsc",self.__buffer_cspc[:,0,0,0,0])
|
|
|
#print(self.__profIndex)
|
|
|
#exit()
|
|
|
|
|
|
buffer=None
|
|
|
#print(self.__buffer_spc[:,1,3,20,0])
|
|
|
#print(self.__buffer_spc[:,1,5,37,0])
|
|
|
data_spc = numpy.sum(self.__buffer_spc,axis=0)
|
|
|
data_cspc = numpy.sum(self.__buffer_cspc,axis=0)
|
|
|
|
|
|
#print(numpy.shape(data_spc))
|
|
|
#data_spc[1,4,20,0]=numpy.nan
|
|
|
|
|
|
#data_cspc = self.__buffer_cspc
|
|
|
data_dc = self.__buffer_dc
|
|
|
n = self.__profIndex
|
|
|
|
|
|
self.__buffer_spc = []
|
|
|
self.__buffer_cspc = []
|
|
|
self.__buffer_dc = 0
|
|
|
self.__profIndex = 0
|
|
|
|
|
|
return data_spc, data_cspc, data_dc, n
|
|
|
|
|
|
def byProfiles(self, *args):
|
|
|
|
|
|
self.__dataReady = False
|
|
|
avgdata_spc = None
|
|
|
avgdata_cspc = None
|
|
|
avgdata_dc = None
|
|
|
|
|
|
self.putData(*args)
|
|
|
|
|
|
if self.__profIndex == self.n:
|
|
|
|
|
|
avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
|
|
|
self.n = n
|
|
|
self.__dataReady = True
|
|
|
|
|
|
return avgdata_spc, avgdata_cspc, avgdata_dc
|
|
|
|
|
|
def byTime(self, datatime, *args):
|
|
|
|
|
|
self.__dataReady = False
|
|
|
avgdata_spc = None
|
|
|
avgdata_cspc = None
|
|
|
avgdata_dc = None
|
|
|
|
|
|
self.putData(*args)
|
|
|
|
|
|
if (datatime - self.__initime) >= self.__integrationtime:
|
|
|
avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
|
|
|
self.n = n
|
|
|
self.__dataReady = True
|
|
|
|
|
|
return avgdata_spc, avgdata_cspc, avgdata_dc
|
|
|
|
|
|
def integrate(self, datatime, *args):
|
|
|
|
|
|
if self.__profIndex == 0:
|
|
|
self.__initime = datatime
|
|
|
|
|
|
if self.__byTime:
|
|
|
avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(
|
|
|
datatime, *args)
|
|
|
else:
|
|
|
avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args)
|
|
|
|
|
|
if not self.__dataReady:
|
|
|
return None, None, None, None
|
|
|
|
|
|
return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc
|
|
|
|
|
|
def run(self, dataOut, n=None, timeInterval=None, overlapping=False):
|
|
|
if n == 1:
|
|
|
dataOut.VelRange = dataOut.getVelRange(0)
|
|
|
return dataOut
|
|
|
#print("holo")
|
|
|
dataOut.flagNoData = True
|
|
|
|
|
|
if not self.isConfig:
|
|
|
self.setup(n, timeInterval, overlapping)
|
|
|
self.isConfig = True
|
|
|
|
|
|
if not dataOut.ByLags:
|
|
|
avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime,
|
|
|
dataOut.data_spc,
|
|
|
dataOut.data_cspc,
|
|
|
dataOut.data_dc)
|
|
|
else:
|
|
|
self.nProfiles=dataOut.nProfiles
|
|
|
self.nChannels=dataOut.nChannels
|
|
|
self.nHeights=dataOut.nHeights
|
|
|
self.DPL=dataOut.DPL
|
|
|
avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime,
|
|
|
dataOut.dataLag_spc,
|
|
|
dataOut.dataLag_cspc,
|
|
|
dataOut.dataLag_dc)
|
|
|
|
|
|
if self.__dataReady:
|
|
|
|
|
|
if not dataOut.ByLags:
|
|
|
dataOut.data_spc = avgdata_spc
|
|
|
dataOut.data_cspc = avgdata_cspc
|
|
|
dataOut.data_dc = avgdata_dc
|
|
|
else:
|
|
|
dataOut.dataLag_spc = avgdata_spc
|
|
|
dataOut.dataLag_cspc = avgdata_cspc
|
|
|
dataOut.dataLag_dc = avgdata_dc
|
|
|
|
|
|
dataOut.data_spc=dataOut.dataLag_spc[:,:,:,dataOut.LagPlot]
|
|
|
dataOut.data_cspc=dataOut.dataLag_cspc[:,:,:,dataOut.LagPlot]
|
|
|
dataOut.data_dc=dataOut.dataLag_dc[:,:,dataOut.LagPlot]
|
|
|
|
|
|
dataOut.VelRange = dataOut.getVelRange(0)
|
|
|
dataOut.nIncohInt *= self.n
|
|
|
dataOut.utctime = avgdatatime
|
|
|
dataOut.flagNoData = False
|
|
|
|
|
|
return dataOut
|
|
|
|
|
|
class IntegrationFaradaySpectra2(Operation):
|
|
|
'''
|
|
|
Written by R. Flores
|
|
|
'''
|
|
|
__profIndex = 0
|
|
|
__withOverapping = False
|
|
|
|
|
|
__byTime = False
|
|
|
__initime = None
|
|
|
__lastdatatime = None
|
|
|
__integrationtime = None
|
|
|
|
|
|
__buffer_spc = None
|
|
|
__buffer_cspc = None
|
|
|
__buffer_dc = None
|
|
|
|
|
|
__dataReady = False
|
|
|
|
|
|
__timeInterval = None
|
|
|
|
|
|
n = None
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
|
Operation.__init__(self)
|
|
|
|
|
|
def setup(self, n=None, timeInterval=None, overlapping=False):
|
|
|
"""
|
|
|
Set the parameters of the integration class.
|
|
|
|
|
|
Inputs:
|
|
|
|
|
|
n : Number of coherent integrations
|
|
|
timeInterval : Time of integration. If the parameter "n" is selected this one does not work
|
|
|
overlapping :
|
|
|
|
|
|
"""
|
|
|
|
|
|
self.__initime = None
|
|
|
self.__lastdatatime = 0
|
|
|
|
|
|
self.__buffer_spc = None
|
|
|
self.__buffer_cspc = None
|
|
|
self.__buffer_dc = 0
|
|
|
|
|
|
self.__profIndex = 0
|
|
|
self.__dataReady = False
|
|
|
self.__byTime = False
|
|
|
|
|
|
if n is None and timeInterval is None:
|
|
|
raise ValueError("n or timeInterval should be specified ...")
|
|
|
|
|
|
if n is not None:
|
|
|
self.n = int(n)
|
|
|
else:
|
|
|
|
|
|
self.__integrationtime = int(timeInterval)
|
|
|
self.n = None
|
|
|
self.__byTime = True
|
|
|
|
|
|
def putData(self, data_spc, data_cspc, data_dc):
|
|
|
"""
|
|
|
Add a profile to the __buffer_spc and increase in one the __profileIndex
|
|
|
|
|
|
"""
|
|
|
|
|
|
#print(numpy.shape(self.__buffer_spc))
|
|
|
##print(numpy.shape(data_spc))
|
|
|
|
|
|
#self.__buffer_spc = numpy.insert(self.__buffer_spc,[],data_spc,axis=0)
|
|
|
self.__buffer_spc[self.__profIndex,:]=data_spc[:]
|
|
|
##self.__buffer_spc.append(data_spc)
|
|
|
#self.__buffer_spc = numpy.array(self.__buffer_spc)
|
|
|
#print(numpy.shape(self.__buffer_spc))
|
|
|
#print("bytes",sys.getsizeof(self.__buffer_spc))
|
|
|
#print("bytes",asizeof(self.__buffer_spc))
|
|
|
if data_cspc is None:
|
|
|
self.__buffer_cspc = None
|
|
|
|
|
|
else:
|
|
|
self.__buffer_cspc[self.__profIndex,:]=data_cspc[:]
|
|
|
|
|
|
if data_dc is None:
|
|
|
self.__buffer_dc = None
|
|
|
else:
|
|
|
self.__buffer_dc += data_dc
|
|
|
|
|
|
self.__profIndex += 1
|
|
|
|
|
|
return
|
|
|
|
|
|
def hildebrand_sekhon_Integration(self,data,navg):
|
|
|
|
|
|
sortdata = numpy.sort(data, axis=None)
|
|
|
sortID=data.argsort()
|
|
|
lenOfData = len(sortdata)
|
|
|
nums_min = lenOfData*0.75
|
|
|
if nums_min <= 5:
|
|
|
nums_min = 5
|
|
|
sump = 0.
|
|
|
sumq = 0.
|
|
|
j = 0
|
|
|
cont = 1
|
|
|
while((cont == 1)and(j < lenOfData)):
|
|
|
sump += sortdata[j]
|
|
|
sumq += sortdata[j]**2
|
|
|
if j > nums_min:
|
|
|
rtest = float(j)/(j-1) + 1.0/navg
|
|
|
if ((sumq*j) > (rtest*sump**2)):
|
|
|
j = j - 1
|
|
|
sump = sump - sortdata[j]
|
|
|
sumq = sumq - sortdata[j]**2
|
|
|
cont = 0
|
|
|
j += 1
|
|
|
#lnoise = sump / j
|
|
|
|
|
|
return j,sortID
|
|
|
|
|
|
def pushData_V0(self):
|
|
|
"""
|
|
|
Return the sum of the last profiles and the profiles used in the sum.
|
|
|
|
|
|
Affected:
|
|
|
|
|
|
self.__profileIndex
|
|
|
|
|
|
"""
|
|
|
bufferH=None
|
|
|
buffer=None
|
|
|
buffer1=None
|
|
|
buffer_cspc=None
|
|
|
self.__buffer_spc=numpy.array(self.__buffer_spc)
|
|
|
if self.__buffer_cspc is not None:
|
|
|
self.__buffer_cspc=numpy.array(self.__buffer_cspc)
|
|
|
freq_dc = int(self.__buffer_spc.shape[2] / 2)
|
|
|
#print("FREQ_DC",freq_dc)
|
|
|
#print(self.__buffer_spc[:,1,5,37,0])
|
|
|
#lag_array=[0,2,4,6,8,10,12,14,16,18,20]
|
|
|
|
|
|
if self.nLags == 11:
|
|
|
h0 = 7
|
|
|
elif self.nLags == 16:
|
|
|
h0 = 180
|
|
|
|
|
|
|
|
|
'''
|
|
|
import matplotlib.pyplot as plt
|
|
|
plt.plot(self.__buffer_spc[:,0,freq_dc,33,0],marker='*')
|
|
|
plt.ylim((0,700000))
|
|
|
plt.show()
|
|
|
import time
|
|
|
time.sleep(60)
|
|
|
exit(1)
|
|
|
'''
|
|
|
#'''
|
|
|
import matplotlib.pyplot as plt
|
|
|
#plt.plot(self.__buffer_spc[:,0,freq_dc-2,33,1],marker='*')
|
|
|
plt.plot(sorted(self.__buffer_spc[:,0,freq_dc-2,33,1]),marker='*')
|
|
|
plt.ylim((0,1.1*1.e6))
|
|
|
plt.show()
|
|
|
import time
|
|
|
time.sleep(60)
|
|
|
exit(1)
|
|
|
#'''
|
|
|
|
|
|
print(self.nLags)
|
|
|
'''
|
|
|
if self.nLags == 16:
|
|
|
self.nLags = 0
|
|
|
#exit(1)
|
|
|
'''
|
|
|
|
|
|
for l in range(self.nLags):#dataOut.DPL):
|
|
|
#breakFlag=False
|
|
|
for k in range(7,self.nHeights):
|
|
|
if self.__buffer_cspc is not None:
|
|
|
buffer_cspc=numpy.copy(self.__buffer_cspc[:,0,:,k,l])
|
|
|
outliers_IDs_cspc=[]
|
|
|
cspc_outliers_exist=False
|
|
|
#indexmin_cspc=0
|
|
|
for i in range(2):
|
|
|
#for i in range(self.nChannels):#dataOut.nChannels):
|
|
|
#if self.TrueLags:
|
|
|
#print("HERE")
|
|
|
if i==1 and k >= self.nHeights-2*l and self.TrueLags:
|
|
|
#breakFlag=True
|
|
|
continue
|
|
|
|
|
|
#pass
|
|
|
else:
|
|
|
buffer1=numpy.copy(self.__buffer_spc[:,i,:,k,l])
|
|
|
indexes=[]
|
|
|
#sortIDs=[]
|
|
|
outliers_IDs=[]
|
|
|
for j in range(self.nProfiles):
|
|
|
if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0
|
|
|
continue
|
|
|
if self.FlipChannelsExist:
|
|
|
if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1
|
|
|
continue
|
|
|
else:
|
|
|
if i==1 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 1
|
|
|
continue
|
|
|
#buffer=buffer1[:,j]
|
|
|
buffer=(buffer1[:,j]).real
|
|
|
'''
|
|
|
if self.nLags ==16 and l!=0:
|
|
|
print(buffer)
|
|
|
exit(1)
|
|
|
'''
|
|
|
#index,sortID=self.hildebrand_sekhon_Integration(buffer,1)
|
|
|
index=int(_HS_algorithm.HS_algorithm(numpy.sort(buffer, axis=None),1))
|
|
|
sortID = buffer.argsort()
|
|
|
|
|
|
indexes.append(index)
|
|
|
#sortIDs.append(sortID)
|
|
|
outliers_IDs=numpy.append(outliers_IDs,sortID[index:])
|
|
|
|
|
|
outliers_IDs=numpy.array(outliers_IDs)
|
|
|
outliers_IDs=outliers_IDs.ravel()
|
|
|
outliers_IDs=numpy.unique(outliers_IDs)
|
|
|
outliers_IDs=outliers_IDs.astype(numpy.dtype('int64'))
|
|
|
indexes=numpy.array(indexes)
|
|
|
indexmin=numpy.min(indexes)
|
|
|
|
|
|
if indexmin != buffer1.shape[0]:
|
|
|
cspc_outliers_exist=True
|
|
|
###sortdata=numpy.sort(buffer1,axis=0)
|
|
|
###avg2=numpy.mean(sortdata[:indexmin,:],axis=0)
|
|
|
lt=outliers_IDs
|
|
|
avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0)
|
|
|
|
|
|
|
|
|
for p in list(outliers_IDs):
|
|
|
buffer1[p,:]=avg
|
|
|
|
|
|
self.__buffer_spc[:,i,:,k,l]=numpy.copy(buffer1)
|
|
|
###cspc IDs
|
|
|
#indexmin_cspc+=indexmin_cspc
|
|
|
if self.__buffer_cspc is not None:
|
|
|
outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs)
|
|
|
|
|
|
#if not breakFlag:
|
|
|
#print(outliers_IDs_cspc)
|
|
|
if self.__buffer_cspc is not None:
|
|
|
outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64'))
|
|
|
if cspc_outliers_exist:
|
|
|
#sortdata=numpy.sort(buffer_cspc,axis=0)
|
|
|
#avg=numpy.mean(sortdata[:indexmin_cpsc,:],axis=0)
|
|
|
lt=outliers_IDs_cspc
|
|
|
|
|
|
avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0)
|
|
|
for p in list(outliers_IDs_cspc):
|
|
|
buffer_cspc[p,:]=avg
|
|
|
|
|
|
self.__buffer_cspc[:,0,:,k,l]=numpy.copy(buffer_cspc)
|
|
|
|
|
|
#else:
|
|
|
#break
|
|
|
#'''
|
|
|
import matplotlib.pyplot as plt
|
|
|
plt.plot(self.__buffer_spc[:,0,freq_dc-2,33,1],marker='*')
|
|
|
plt.ylim((0,1.1*1.e6))
|
|
|
plt.show()
|
|
|
import time
|
|
|
time.sleep(60)
|
|
|
exit(1)
|
|
|
#'''
|
|
|
|
|
|
buffer=None
|
|
|
bufferH=None
|
|
|
buffer1=None
|
|
|
buffer_cspc=None
|
|
|
|
|
|
#print("cpsc",self.__buffer_cspc[:,0,0,0,0])
|
|
|
#print(self.__profIndex)
|
|
|
#exit()
|
|
|
'''
|
|
|
if self.nLags == 16:
|
|
|
print(self.__buffer_spc[:,0,0,0,2])
|
|
|
exit(1)
|
|
|
'''
|
|
|
|
|
|
buffer=None
|
|
|
#print(self.__buffer_spc[:,1,3,20,0])
|
|
|
#print(self.__buffer_spc[:,1,5,37,0])
|
|
|
data_spc = numpy.sum(self.__buffer_spc,axis=0)
|
|
|
|
|
|
if self.__buffer_cspc is not None:
|
|
|
data_cspc = numpy.sum(self.__buffer_cspc,axis=0)
|
|
|
else:
|
|
|
data_cspc = None
|
|
|
|
|
|
#print(numpy.shape(data_spc))
|
|
|
#data_spc[1,4,20,0]=numpy.nan
|
|
|
|
|
|
|
|
|
data_dc = self.__buffer_dc
|
|
|
|
|
|
n = self.__profIndex
|
|
|
|
|
|
self.__buffer_spc = None
|
|
|
self.__buffer_cspc = None
|
|
|
self.__buffer_dc = 0
|
|
|
self.__profIndex = 0
|
|
|
|
|
|
return data_spc, data_cspc, data_dc, n
|
|
|
|
|
|
def pushData(self):
|
|
|
"""
|
|
|
Return the sum of the last profiles and the profiles used in the sum.
|
|
|
|
|
|
Affected:
|
|
|
|
|
|
self.__profileIndex
|
|
|
|
|
|
"""
|
|
|
bufferH=None
|
|
|
buffer=None
|
|
|
buffer1=None
|
|
|
buffer_cspc=None
|
|
|
self.__buffer_spc=numpy.array(self.__buffer_spc)
|
|
|
if self.__buffer_cspc is not None:
|
|
|
self.__buffer_cspc=numpy.array(self.__buffer_cspc)
|
|
|
freq_dc = int(self.__buffer_spc.shape[2] / 2)
|
|
|
#print("FREQ_DC",freq_dc)
|
|
|
#print(self.__buffer_spc[:,1,5,37,0])
|
|
|
#lag_array=[0,2,4,6,8,10,12,14,16,18,20]
|
|
|
|
|
|
if self.nLags == 11:
|
|
|
h0 = 7
|
|
|
elif self.nLags == 16:
|
|
|
h0 = 180
|
|
|
|
|
|
|
|
|
|
|
|
'''
|
|
|
import matplotlib.pyplot as plt
|
|
|
#plt.plot(self.__buffer_spc[:,0,freq_dc-2,33,1],marker='*')
|
|
|
aux = self.__buffer_spc[:,0,freq_dc-2,66,1]
|
|
|
a,b=self.hildebrand_sekhon_Integration(numpy.abs(aux),1)
|
|
|
print(a)
|
|
|
plt.plot(sorted(aux),marker='*')
|
|
|
plt.vlines(x=a,ymin=min(aux),ymax=max(aux))
|
|
|
#plt.ylim((-35000,65000))
|
|
|
plt.show()
|
|
|
import time
|
|
|
time.sleep(60)
|
|
|
exit(1)
|
|
|
'''
|
|
|
|
|
|
#print(self.nLags)
|
|
|
'''
|
|
|
if self.nLags == 16:
|
|
|
self.nLags = 3
|
|
|
#exit(1)
|
|
|
'''
|
|
|
#print(self.nHeights)
|
|
|
#exit(1)
|
|
|
for l in range(self.nLags):#dataOut.DPL): #if DP --> nLags=11, elif HP --> nLags=16
|
|
|
#breakFlag=False
|
|
|
for k in range(7,self.nHeights):
|
|
|
if self.__buffer_cspc is not None:
|
|
|
buffer_cspc=numpy.copy(self.__buffer_cspc[:,0,:,k,l])
|
|
|
outliers_IDs_cspc=[]
|
|
|
cspc_outliers_exist=False
|
|
|
#indexmin_cspc=0
|
|
|
for i in range(2): #Solo nos interesa los 2 primeros canales que son los canales con señal
|
|
|
#for i in range(self.nChannels):#dataOut.nChannels):
|
|
|
#if self.TrueLags:
|
|
|
#print("HERE")
|
|
|
'''
|
|
|
if i==1 and k >= self.nHeights-2*l and self.TrueLags:
|
|
|
#breakFlag=True
|
|
|
print("here")
|
|
|
exit(1)
|
|
|
continue
|
|
|
'''
|
|
|
|
|
|
#pass
|
|
|
#else:
|
|
|
buffer1=numpy.copy(self.__buffer_spc[:,i,:,k,l])
|
|
|
indexes=[]
|
|
|
#sortIDs=[]
|
|
|
outliers_IDs=[]
|
|
|
for j in range(self.nProfiles):
|
|
|
if i==0 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 0
|
|
|
continue
|
|
|
if self.FlipChannelsExist:
|
|
|
if i==1 and j==0: #NOT CONSIDERING DC PROFILE AT CHANNEL 1
|
|
|
continue
|
|
|
else:
|
|
|
if i==1 and j==freq_dc: #NOT CONSIDERING DC PROFILE AT CHANNEL 1
|
|
|
continue
|
|
|
#buffer=buffer1[:,j]
|
|
|
buffer=(buffer1[:,j])
|
|
|
'''
|
|
|
if self.nLags ==16 and l!=0:
|
|
|
print(buffer)
|
|
|
exit(1)
|
|
|
'''
|
|
|
#index,sortID=self.hildebrand_sekhon_Integration(numpy.abs(buffer),1)
|
|
|
index=int(_HS_algorithm.HS_algorithm(numpy.sort(buffer, axis=None),1))
|
|
|
sortID = buffer.argsort()
|
|
|
|
|
|
indexes.append(index)
|
|
|
#sortIDs.append(sortID)
|
|
|
outliers_IDs=numpy.append(outliers_IDs,sortID[index:])
|
|
|
|
|
|
sortdata=numpy.sort(buffer,axis=0)
|
|
|
avg=numpy.mean(sortdata[:index],axis=0)
|
|
|
#lt=outliers_IDs
|
|
|
#avg=numpy.mean(buffer1[[t for t in range(buffer1.shape[0]) if t not in lt],:],axis=0)
|
|
|
|
|
|
if index != buffer.shape[0]:
|
|
|
for p in list(sortID[index:]):
|
|
|
buffer1[p,j]=avg
|
|
|
|
|
|
|
|
|
self.__buffer_spc[:,i,j,k,l]=numpy.copy(buffer1[:,j])
|
|
|
###cspc IDs
|
|
|
#indexmin_cspc+=indexmin_cspc
|
|
|
if self.__buffer_cspc is not None:
|
|
|
outliers_IDs_cspc=numpy.append(outliers_IDs_cspc,outliers_IDs)
|
|
|
|
|
|
#if not breakFlag:
|
|
|
#print(outliers_IDs_cspc)
|
|
|
if self.__buffer_cspc is not None:
|
|
|
outliers_IDs_cspc=outliers_IDs_cspc.astype(numpy.dtype('int64'))
|
|
|
if cspc_outliers_exist:
|
|
|
#sortdata=numpy.sort(buffer_cspc,axis=0)
|
|
|
#avg=numpy.mean(sortdata[:indexmin_cpsc,:],axis=0)
|
|
|
lt=outliers_IDs_cspc
|
|
|
|
|
|
avg=numpy.mean(buffer_cspc[[t for t in range(buffer_cspc.shape[0]) if t not in lt],:],axis=0)
|
|
|
for p in list(outliers_IDs_cspc):
|
|
|
buffer_cspc[p,:]=avg
|
|
|
|
|
|
self.__buffer_cspc[:,0,:,k,l]=numpy.copy(buffer_cspc)
|
|
|
|
|
|
#else:
|
|
|
#break
|
|
|
'''
|
|
|
import matplotlib.pyplot as plt
|
|
|
plt.plot(sorted(self.__buffer_spc[:,0,freq_dc-2,66,1]),marker='*')
|
|
|
#plt.ylim((0,1.1*1.e6))
|
|
|
plt.ylim((-30000,65000))
|
|
|
plt.show()
|
|
|
import time
|
|
|
time.sleep(60)
|
|
|
exit(1)
|
|
|
'''
|
|
|
|
|
|
buffer=None
|
|
|
bufferH=None
|
|
|
buffer1=None
|
|
|
buffer_cspc=None
|
|
|
|
|
|
#print("cpsc",self.__buffer_cspc[:,0,0,0,0])
|
|
|
#print(self.__profIndex)
|
|
|
#exit()
|
|
|
'''
|
|
|
if self.nLags == 16:
|
|
|
print(self.__buffer_spc[:,0,0,0,2])
|
|
|
exit(1)
|
|
|
'''
|
|
|
|
|
|
buffer=None
|
|
|
#print(self.__buffer_spc[:,1,3,20,0])
|
|
|
#print(self.__buffer_spc[:,1,5,37,0])
|
|
|
data_spc = numpy.sum(self.__buffer_spc,axis=0)
|
|
|
|
|
|
if self.__buffer_cspc is not None:
|
|
|
data_cspc = numpy.sum(self.__buffer_cspc,axis=0)
|
|
|
else:
|
|
|
data_cspc = None
|
|
|
|
|
|
#print(numpy.shape(data_spc))
|
|
|
#data_spc[1,4,20,0]=numpy.nan
|
|
|
|
|
|
|
|
|
data_dc = self.__buffer_dc
|
|
|
|
|
|
n = self.__profIndex
|
|
|
|
|
|
self.__buffer_spc = None
|
|
|
self.__buffer_cspc = None
|
|
|
self.__buffer_dc = 0
|
|
|
self.__profIndex = 0
|
|
|
|
|
|
return data_spc, data_cspc, data_dc, n
|
|
|
|
|
|
def byProfiles(self, data_spc, data_cspc, *args):
|
|
|
|
|
|
self.__dataReady = False
|
|
|
avgdata_spc = None
|
|
|
avgdata_cspc = None
|
|
|
avgdata_dc = None
|
|
|
|
|
|
self.putData(data_spc, data_cspc, *args)
|
|
|
|
|
|
if self.__profIndex == self.n:
|
|
|
|
|
|
avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
|
|
|
self.n = n
|
|
|
self.__dataReady = True
|
|
|
|
|
|
return avgdata_spc, avgdata_cspc, avgdata_dc
|
|
|
|
|
|
def byTime(self, datatime, *args):
|
|
|
|
|
|
self.__dataReady = False
|
|
|
avgdata_spc = None
|
|
|
avgdata_cspc = None
|
|
|
avgdata_dc = None
|
|
|
|
|
|
self.putData(*args)
|
|
|
|
|
|
if (datatime - self.__initime) >= self.__integrationtime:
|
|
|
avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
|
|
|
self.n = n
|
|
|
self.__dataReady = True
|
|
|
|
|
|
return avgdata_spc, avgdata_cspc, avgdata_dc
|
|
|
|
|
|
def integrate(self, datatime, data_spc, data_cspc, *args):
|
|
|
|
|
|
if self.__profIndex == 0:
|
|
|
self.__initime = datatime
|
|
|
#print(data_cspc.shape)
|
|
|
|
|
|
#self.__buffer_spc = numpy.empty_like(data_spc,shape=(self.n,self.nChannels,self.nProfiles,self.nHeights,self.nLags))
|
|
|
self.__buffer_spc = numpy.ones_like(data_spc,shape=(self.n,self.nChannels,self.nProfiles,self.nHeights,self.nLags))*numpy.NAN
|
|
|
|
|
|
#print(self.__buffer_spc[0])
|
|
|
#print(self.__buffer_spc.dtype)
|
|
|
#print(data_spc.dtype)
|
|
|
|
|
|
if data_cspc is not None:
|
|
|
nLags = numpy.shape(data_cspc)[-1]
|
|
|
nCrossChannels = numpy.shape(data_cspc)[0]
|
|
|
|
|
|
#self.__buffer_cspc = numpy.empty_like(data_cspc,shape=(self.n,crossChannels,self.nProfiles,self.nHeights,self.nLags))
|
|
|
self.__buffer_cspc = numpy.ones_like(data_cspc,shape=(self.n,nCrossChannels,self.nProfiles,self.nHeights,nLags))*numpy.NAN
|
|
|
else:
|
|
|
self.__buffer_cspc = None
|
|
|
#print("HEREEEE")
|
|
|
#print(self.__buffer_cspc.dtype)
|
|
|
#print(data_cspc.dtype)
|
|
|
#exit(1)
|
|
|
if self.__byTime:
|
|
|
avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(
|
|
|
datatime, *args)
|
|
|
else:
|
|
|
avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(data_spc, data_cspc, *args)
|
|
|
|
|
|
if not self.__dataReady:
|
|
|
return None, None, None, None
|
|
|
|
|
|
return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc
|
|
|
|
|
|
def run(self, dataOut, n=None, timeInterval=None, overlapping=False,TrueLags=True):
|
|
|
if n == 1:
|
|
|
return dataOut
|
|
|
|
|
|
dataOut.flagNoData = True
|
|
|
|
|
|
if not self.isConfig:
|
|
|
self.setup(n, timeInterval, overlapping)
|
|
|
try:
|
|
|
dataOut.FlipChannels
|
|
|
self.FlipChannelsExist=1
|
|
|
except:
|
|
|
self.FlipChannelsExist=0
|
|
|
self.isConfig = True
|
|
|
|
|
|
self.nProfiles=dataOut.nProfiles
|
|
|
self.nChannels=dataOut.nChannels
|
|
|
self.nHeights=dataOut.nHeights
|
|
|
if not dataOut.ByLags:
|
|
|
avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime,
|
|
|
dataOut.data_spc,
|
|
|
dataOut.data_cspc,
|
|
|
dataOut.data_dc)
|
|
|
else:
|
|
|
#self.nProfiles=dataOut.nProfiles
|
|
|
#self.nChannels=dataOut.nChannels
|
|
|
#self.nHeights=dataOut.nHeights
|
|
|
self.nLags=dataOut.nLags
|
|
|
self.TrueLags=TrueLags
|
|
|
|
|
|
|
|
|
|
|
|
avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime,
|
|
|
dataOut.dataLag_spc,
|
|
|
dataOut.dataLag_cspc,
|
|
|
dataOut.dataLag_dc)
|
|
|
|
|
|
if self.__dataReady:
|
|
|
|
|
|
if not dataOut.ByLags:
|
|
|
dataOut.data_spc = avgdata_spc
|
|
|
dataOut.data_cspc = avgdata_cspc
|
|
|
dataOut.data_dc = avgdata_dc
|
|
|
else:
|
|
|
dataOut.dataLag_spc = avgdata_spc
|
|
|
dataOut.dataLag_cspc = avgdata_cspc
|
|
|
dataOut.dataLag_dc = avgdata_dc
|
|
|
|
|
|
dataOut.data_spc=dataOut.dataLag_spc[:,:,:,dataOut.LagPlot].real
|
|
|
|
|
|
if self.__buffer_cspc is not None:
|
|
|
dataOut.data_cspc=dataOut.dataLag_cspc[:,:,:,dataOut.LagPlot]
|
|
|
dataOut.data_dc=dataOut.dataLag_dc[:,:,dataOut.LagPlot]
|
|
|
|
|
|
|
|
|
dataOut.nIncohInt *= self.n
|
|
|
dataOut.utctime = avgdatatime
|
|
|
dataOut.flagNoData = False
|
|
|
|
|
|
return dataOut
|
|
|
|
|
|
class HybridSelectSpectra(Operation):
|
|
|
'''
|
|
|
Written by R. Flores
|
|
|
'''
|
|
|
"""Operation to rearange and use selected channels of spectra data and pairs of cross-spectra data for Hybrid Experiment.
|
|
|
|
|
|
Parameters:
|
|
|
-----------
|
|
|
spc_channs : list
|
|
|
Selected channels.
|
|
|
|
|
|
Example
|
|
|
--------
|
|
|
|
|
|
op = proc_unit.addOperation(name='SelectSpectra', optype='other')
|
|
|
|
|
|
"""
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
|
Operation.__init__(self, **kwargs)
|
|
|
|
|
|
self.dataLag_spc=None
|
|
|
self.dataLag_cspc=None
|
|
|
self.dataLag_dc=None
|
|
|
|
|
|
def select_spc(self,spc,spc_channs):
|
|
|
|
|
|
buffer = spc[spc_channs]
|
|
|
|
|
|
return buffer
|
|
|
|
|
|
|
|
|
def run(self,dataOut,spc_channs=None,cspc_pairs=None):
|
|
|
#print("HERE")
|
|
|
if spc_channs != None:
|
|
|
channelIndexList = []
|
|
|
for channel in spc_channs:
|
|
|
if channel not in dataOut.channelList:
|
|
|
raise ValueError("Channel %d is not in %s" %(channel, str(dataOut.channelList)))
|
|
|
|
|
|
index = dataOut.channelList.index(channel)
|
|
|
channelIndexList.append(index)
|
|
|
#print(dataOut.dataLag_spc.shape)
|
|
|
dataOut.dataLag_spc = self.select_spc(dataOut.dataLag_spc,channelIndexList)
|
|
|
aux = dataOut.nChannels
|
|
|
dataOut.channelList = range(dataOut.nLags)
|
|
|
dataOut.nLags = aux
|
|
|
#dataOut.nLags = len(spc_channs)
|
|
|
dataOut.dataLag_spc = numpy.transpose(dataOut.dataLag_spc,(3,1,2,0))
|
|
|
#print(dataOut.dataLag_spc.shape)
|
|
|
#exit(1)
|
|
|
dataOut.dataLag_cspc = numpy.transpose(dataOut.dataLag_cspc,(3,1,2,0))
|
|
|
|
|
|
dataOut.dataLag_spc = numpy.concatenate((dataOut.dataLag_spc,dataOut.dataLag_cspc),axis=-1)
|
|
|
dataOut.dataLag_cspc = None
|
|
|
|
|
|
dataOut.data_spc = dataOut.dataLag_spc[0].real
|
|
|
#print(dataOut.getNoise())
|
|
|
#print(dataOut.data_spc)
|
|
|
#exit(1)
|
|
|
dataOut.data_cspc = None
|
|
|
|
|
|
return dataOut
|
|
|
|
|
|
class IncohIntLag(Operation):
|
|
|
'''
|
|
|
Written by R. Flores
|
|
|
'''
|
|
|
__profIndex = 0
|
|
|
__withOverapping = False
|
|
|
|
|
|
__byTime = False
|
|
|
__initime = None
|
|
|
__lastdatatime = None
|
|
|
__integrationtime = None
|
|
|
|
|
|
__buffer_spc = None
|
|
|
__buffer_cspc = None
|
|
|
__buffer_dc = None
|
|
|
|
|
|
__dataReady = False
|
|
|
|
|
|
__timeInterval = None
|
|
|
|
|
|
n = None
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
|
Operation.__init__(self)
|
|
|
|
|
|
def setup(self, n=None, timeInterval=None, overlapping=False):
|
|
|
"""
|
|
|
Set the parameters of the integration class.
|
|
|
|
|
|
Inputs:
|
|
|
|
|
|
n : Number of coherent integrations
|
|
|
timeInterval : Time of integration. If the parameter "n" is selected this one does not work
|
|
|
overlapping :
|
|
|
|
|
|
"""
|
|
|
|
|
|
self.__initime = None
|
|
|
self.__lastdatatime = 0
|
|
|
|
|
|
self.__buffer_spc = 0
|
|
|
self.__buffer_cspc = 0
|
|
|
self.__buffer_dc = 0
|
|
|
|
|
|
self.__profIndex = 0
|
|
|
self.__dataReady = False
|
|
|
self.__byTime = False
|
|
|
|
|
|
if n is None and timeInterval is None:
|
|
|
raise ValueError("n or timeInterval should be specified ...")
|
|
|
|
|
|
if n is not None:
|
|
|
self.n = int(n)
|
|
|
else:
|
|
|
|
|
|
self.__integrationtime = int(timeInterval)
|
|
|
self.n = None
|
|
|
self.__byTime = True
|
|
|
|
|
|
def putData(self, data_spc, data_cspc, data_dc):
|
|
|
"""
|
|
|
Add a profile to the __buffer_spc and increase in one the __profileIndex
|
|
|
|
|
|
"""
|
|
|
|
|
|
self.__buffer_spc += data_spc
|
|
|
|
|
|
if data_cspc is None:
|
|
|
self.__buffer_cspc = None
|
|
|
else:
|
|
|
self.__buffer_cspc += data_cspc
|
|
|
|
|
|
if data_dc is None:
|
|
|
self.__buffer_dc = None
|
|
|
else:
|
|
|
self.__buffer_dc += data_dc
|
|
|
|
|
|
self.__profIndex += 1
|
|
|
|
|
|
return
|
|
|
|
|
|
def pushData(self):
|
|
|
"""
|
|
|
Return the sum of the last profiles and the profiles used in the sum.
|
|
|
|
|
|
Affected:
|
|
|
|
|
|
self.__profileIndex
|
|
|
|
|
|
"""
|
|
|
|
|
|
data_spc = self.__buffer_spc
|
|
|
data_cspc = self.__buffer_cspc
|
|
|
data_dc = self.__buffer_dc
|
|
|
n = self.__profIndex
|
|
|
|
|
|
self.__buffer_spc = 0
|
|
|
self.__buffer_cspc = 0
|
|
|
self.__buffer_dc = 0
|
|
|
self.__profIndex = 0
|
|
|
|
|
|
return data_spc, data_cspc, data_dc, n
|
|
|
|
|
|
def byProfiles(self, *args):
|
|
|
|
|
|
self.__dataReady = False
|
|
|
avgdata_spc = None
|
|
|
avgdata_cspc = None
|
|
|
avgdata_dc = None
|
|
|
|
|
|
self.putData(*args)
|
|
|
|
|
|
if self.__profIndex == self.n:
|
|
|
|
|
|
avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
|
|
|
self.n = n
|
|
|
self.__dataReady = True
|
|
|
|
|
|
return avgdata_spc, avgdata_cspc, avgdata_dc
|
|
|
|
|
|
def byTime(self, datatime, *args):
|
|
|
|
|
|
self.__dataReady = False
|
|
|
avgdata_spc = None
|
|
|
avgdata_cspc = None
|
|
|
avgdata_dc = None
|
|
|
|
|
|
self.putData(*args)
|
|
|
|
|
|
if (datatime - self.__initime) >= self.__integrationtime:
|
|
|
avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
|
|
|
self.n = n
|
|
|
self.__dataReady = True
|
|
|
|
|
|
return avgdata_spc, avgdata_cspc, avgdata_dc
|
|
|
|
|
|
def integrate(self, datatime, *args):
|
|
|
|
|
|
if self.__profIndex == 0:
|
|
|
self.__initime = datatime
|
|
|
|
|
|
if self.__byTime:
|
|
|
avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(
|
|
|
datatime, *args)
|
|
|
else:
|
|
|
avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args)
|
|
|
|
|
|
if not self.__dataReady:
|
|
|
return None, None, None, None
|
|
|
|
|
|
return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc
|
|
|
|
|
|
def run(self, dataOut, n=None, timeInterval=None, overlapping=False):
|
|
|
if n == 1:
|
|
|
return dataOut
|
|
|
|
|
|
dataOut.flagNoData = True
|
|
|
#print("incohint")
|
|
|
#print("IncohInt",dataOut.data_spc.shape)
|
|
|
#print("IncohInt",dataOut.data_cspc.shape)
|
|
|
if not self.isConfig:
|
|
|
self.setup(n, timeInterval, overlapping)
|
|
|
self.isConfig = True
|
|
|
|
|
|
if not dataOut.ByLags:
|
|
|
avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime,
|
|
|
dataOut.data_spc,
|
|
|
dataOut.data_cspc,
|
|
|
dataOut.data_dc)
|
|
|
else:
|
|
|
'''
|
|
|
print(numpy.sum(dataOut.dataLag_cspc[0,:,20,0].real)/32)
|
|
|
print(numpy.sum(dataOut.dataLag_cspc[0,:,20,0].imag)/32)
|
|
|
exit(1)
|
|
|
'''
|
|
|
avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime,
|
|
|
dataOut.dataLag_spc,
|
|
|
dataOut.dataLag_cspc,
|
|
|
dataOut.dataLag_dc)
|
|
|
#print("Incoh Int: ",self.__profIndex,n)
|
|
|
if self.__dataReady:
|
|
|
|
|
|
if not dataOut.ByLags:
|
|
|
dataOut.data_spc = avgdata_spc
|
|
|
dataOut.data_cspc = avgdata_cspc
|
|
|
dataOut.data_dc = avgdata_dc
|
|
|
else:
|
|
|
dataOut.dataLag_spc = avgdata_spc
|
|
|
dataOut.dataLag_cspc = avgdata_cspc
|
|
|
dataOut.dataLag_dc = avgdata_dc
|
|
|
|
|
|
#print(dataOut.LagPlot)
|
|
|
#print(dataOut.dataLag_spc[1,:,100,2])
|
|
|
#print(numpy.sum(dataOut.dataLag_spc[1,:,100,2]))
|
|
|
#exit(1)
|
|
|
|
|
|
#print("INCOH INT DONE")
|
|
|
#exit(1)
|
|
|
'''
|
|
|
print(numpy.sum(dataOut.dataLag_spc[0,:,20,10])/32)
|
|
|
print(numpy.sum(dataOut.dataLag_spc[1,:,20,10])/32)
|
|
|
#exit(1)
|
|
|
'''
|
|
|
'''
|
|
|
print(numpy.sum(dataOut.dataLag_cspc[0,:,20,0].real)/32)
|
|
|
print(numpy.sum(dataOut.dataLag_cspc[0,:,20,0].imag)/32)
|
|
|
exit(1)
|
|
|
'''
|
|
|
dataOut.data_spc=dataOut.dataLag_spc[:,:,:,dataOut.LagPlot].real#*numpy.NaN
|
|
|
|
|
|
#print("done")
|
|
|
#print(dataOut.dataLag_spc[0,0,0,2])
|
|
|
if dataOut.dataLag_cspc is not None:
|
|
|
dataOut.data_cspc=dataOut.dataLag_cspc[:,:,:,dataOut.LagPlot]
|
|
|
dataOut.data_dc=dataOut.dataLag_dc[:,:,dataOut.LagPlot]
|
|
|
|
|
|
|
|
|
dataOut.nIncohInt *= self.n
|
|
|
dataOut.utctime = avgdatatime
|
|
|
dataOut.flagNoData = False
|
|
|
|
|
|
|
|
|
#print("done")
|
|
|
#print(dataOut.data_spc[0,0,0])
|
|
|
#print("ut",dataOut.ut)
|
|
|
return dataOut
|
|
|
|
|
|
class SnrFaraday(Operation):
|
|
|
'''
|
|
|
Written by R. Flores
|
|
|
'''
|
|
|
"""Operation to use get SNR in Faraday processing.
|
|
|
|
|
|
Parameters:
|
|
|
-----------
|
|
|
|
|
|
Example
|
|
|
--------
|
|
|
|
|
|
op = proc_unit.addOperation(name='SnrFaraday', optype='other')
|
|
|
|
|
|
"""
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
|
Operation.__init__(self, **kwargs)
|
|
|
|
|
|
def run(self,dataOut):
|
|
|
|
|
|
noise = dataOut.getNoise()
|
|
|
maxdB = 16
|
|
|
|
|
|
#dataOut.data_snr = (dataOut.data_spc.sum(axis=1)-noise[:,None])/(noise[:,None]*dataOut.normFactor)
|
|
|
print("normFactor: ",dataOut.normFactor)
|
|
|
print("nFFTPoints: ",dataOut.nFFTPoints)
|
|
|
normFactor = 24
|
|
|
print("Power: ",dataOut.data_spc.sum(axis=1)/dataOut.nFFTPoints)
|
|
|
print("Noise: ",noise)
|
|
|
print("Power dB: ",10*numpy.log10(dataOut.data_spc.sum(axis=1)/dataOut.nFFTPoints))
|
|
|
print("Noise dB: ",10*numpy.log10(noise))
|
|
|
#dataOut.data_snr = (dataOut.data_spc.sum(axis=1))/(noise[:,None]*dataOut.normFactor)
|
|
|
dataOut.data_snr = (dataOut.data_spc.sum(axis=1))/(noise[:,None]*dataOut.nFFTPoints)
|
|
|
snr_dB = 10*numpy.log10(dataOut.data_snr)
|
|
|
print("Snr: ",snr_dB)
|
|
|
'''
|
|
|
for nch in range(dataOut.data_snr.shape[0]):
|
|
|
for i in range(dataOut.data_snr.shape[1]):
|
|
|
if snr_dB[nch,i] > maxdB:
|
|
|
dataOut.data_spc[nch,:,i] = numpy.nan
|
|
|
dataOut.data_snr[nch,i] = numpy.nan
|
|
|
'''
|
|
|
|
|
|
return dataOut
|
|
|
|
|
|
class SpectraDataToFaraday(Operation): #ISR MODE
|
|
|
'''
|
|
|
Written by R. Flores
|
|
|
'''
|
|
|
"""Operation to use spectra data in Faraday processing.
|
|
|
|
|
|
Parameters:
|
|
|
-----------
|
|
|
nint : int
|
|
|
Number of integrations.
|
|
|
|
|
|
Example
|
|
|
--------
|
|
|
|
|
|
op = proc_unit.addOperation(name='SpectraDataToFaraday', optype='other')
|
|
|
|
|
|
"""
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
|
Operation.__init__(self, **kwargs)
|
|
|
|
|
|
self.dataLag_spc=None
|
|
|
self.dataLag_cspc=None
|
|
|
self.dataLag_dc=None
|
|
|
|
|
|
|
|
|
|
|
|
def ConvertData(self,dataOut):
|
|
|
|
|
|
dataOut.TimeBlockSeconds_for_dp_power=dataOut.utctime
|
|
|
dataOut.bd_time=gmtime(dataOut.TimeBlockSeconds_for_dp_power)
|
|
|
dataOut.year=dataOut.bd_time.tm_year+(dataOut.bd_time.tm_yday-1)/364.0
|
|
|
dataOut.ut_Faraday=dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min/60.0+dataOut.bd_time.tm_sec/3600.0
|
|
|
|
|
|
'''
|
|
|
tmpx=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32')
|
|
|
tmpx_a2=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32')
|
|
|
tmpx_b2=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32')
|
|
|
tmpx_abr=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32')
|
|
|
tmpx_abi=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32')
|
|
|
'''
|
|
|
#print("DPL",dataOut.DPL)
|
|
|
#print("NDP",dataOut.NDP)
|
|
|
tmpx=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
|
|
|
tmpx_a2=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
|
|
|
tmpx_b2=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
|
|
|
tmpx_abr=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
|
|
|
tmpx_abi=numpy.zeros((dataOut.NDP,dataOut.DPL,2),'float32')
|
|
|
dataOut.kabxys_integrated=[tmpx,tmpx,tmpx,tmpx,tmpx_a2,tmpx,tmpx_b2,tmpx,tmpx_abr,tmpx,tmpx_abi,tmpx,tmpx,tmpx]
|
|
|
'''
|
|
|
dataOut.rnint2=numpy.zeros(dataOut.DPL,'float32')
|
|
|
for l in range(dataOut.DPL):
|
|
|
if(l==0 or (l>=3 and l <=6)):
|
|
|
dataOut.rnint2[l]=1.0/(dataOut.nIncohInt*dataOut.nProfiles)
|
|
|
else:
|
|
|
dataOut.rnint2[l]=2*(1.0/(dataOut.nIncohInt*dataOut.nProfiles))
|
|
|
'''
|
|
|
#for l in range(dataOut.DPL):
|
|
|
#dataOut.rnint2[l]=1.0/(dataOut.nIncohInt*dataOut.nProfiles)#*dataOut.nProfiles
|
|
|
|
|
|
|
|
|
self.dataLag_spc=(dataOut.dataLag_spc.sum(axis=1))*(dataOut.rnint2[0]/dataOut.nProfiles)
|
|
|
self.dataLag_cspc=(dataOut.dataLag_cspc.sum(axis=1))*(dataOut.rnint2[0]/dataOut.nProfiles)
|
|
|
|
|
|
|
|
|
'''
|
|
|
self.dataLag_spc=(dataOut.dataLag_spc.sum(axis=1))*(dataOut.rnint2[0]/dataOut.nProfiles)
|
|
|
self.dataLag_cspc=(dataOut.dataLag_cspc.sum(axis=1))*(dataOut.rnint2[0]/dataOut.nProfiles)
|
|
|
#self.dataLag_dc=dataOut.dataLag_dc.sum(axis=1)/dataOut.rnint2[0]
|
|
|
'''
|
|
|
|
|
|
dataOut.kabxys_integrated[4][:,:,0]=self.dataLag_spc[0,:,:].real
|
|
|
#dataOut.kabxys_integrated[5][:,:,0]+=self.dataLag_spc[0,:,:].imag
|
|
|
dataOut.kabxys_integrated[6][:,:,0]=self.dataLag_spc[1,:,:].real
|
|
|
#dataOut.kabxys_integrated[7][:,:,0]+=self.dataLag_spc[1,:,:].imag
|
|
|
|
|
|
dataOut.kabxys_integrated[8][:,:,0]=self.dataLag_cspc[0,:,:].real
|
|
|
dataOut.kabxys_integrated[10][:,:,0]=self.dataLag_cspc[0,:,:].imag
|
|
|
|
|
|
'''
|
|
|
print(dataOut.kabxys_integrated[4][:,0,0])
|
|
|
print(dataOut.kabxys_integrated[6][:,0,0])
|
|
|
print("times 12")
|
|
|
print(dataOut.kabxys_integrated[4][:,0,0]*dataOut.nProfiles)
|
|
|
print(dataOut.kabxys_integrated[6][:,0,0]*dataOut.nProfiles)
|
|
|
print(dataOut.rnint2[0])
|
|
|
input()
|
|
|
'''
|
|
|
|
|
|
def normFactor(self,dataOut):
|
|
|
dataOut.rnint2=numpy.zeros(dataOut.DPL,'float32')
|
|
|
for l in range(dataOut.DPL):
|
|
|
dataOut.rnint2[l]=1.0/(dataOut.nIncohInt*dataOut.nProfiles)
|
|
|
|
|
|
def noise(self,dataOut):
|
|
|
|
|
|
dataOut.noise_lag = numpy.zeros((dataOut.nChannels,dataOut.DPL),'float32')
|
|
|
#print("Lags")
|
|
|
'''
|
|
|
for lag in range(dataOut.DPL):
|
|
|
#print(lag)
|
|
|
dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag]
|
|
|
dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=46)
|
|
|
#dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=33,ymax_index=46)
|
|
|
'''
|
|
|
#print(dataOut.NDP)
|
|
|
#exit(1)
|
|
|
#Channel B
|
|
|
for lag in range(dataOut.DPL):
|
|
|
#print(lag)
|
|
|
dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag]
|
|
|
max_hei_id = dataOut.NDP - 2*lag
|
|
|
#if lag < 6:
|
|
|
dataOut.noise_lag[1,lag] = dataOut.getNoise(ymin_index=53,ymax_index=max_hei_id)[1]
|
|
|
#else:
|
|
|
#dataOut.noise_lag[1,lag] = numpy.mean(dataOut.noise_lag[1,:6])
|
|
|
#dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=33,ymax_index=46)
|
|
|
#Channel A
|
|
|
for lag in range(dataOut.DPL):
|
|
|
#print(lag)
|
|
|
dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag]
|
|
|
dataOut.noise_lag[0,lag] = dataOut.getNoise(ymin_index=53)[0]
|
|
|
|
|
|
nanindex = numpy.argwhere(numpy.isnan(numpy.log10(dataOut.noise_lag[1,:])))
|
|
|
i1 = nanindex[0][0]
|
|
|
dataOut.noise_lag[1,i1:] = numpy.mean(dataOut.noise_lag[1,:i1]) #El ruido de lags contaminados se
|
|
|
#determina a partir del promedio del
|
|
|
#ruido de los lags limpios
|
|
|
'''
|
|
|
dataOut.noise_lag[1,:] = dataOut.noise_lag[1,0] #El ruido de los lags diferentes de cero para
|
|
|
#el canal B es contaminado por el Tx y EEJ
|
|
|
#del siguiente perfil, por ello se asigna el ruido
|
|
|
#del lag 0 a todos los lags
|
|
|
'''
|
|
|
#print("Noise lag: ", 10*numpy.log10(dataOut.noise_lag/dataOut.normFactor))
|
|
|
#exit(1)
|
|
|
'''
|
|
|
dataOut.tnoise = dataOut.getNoise(ymin_index=46)
|
|
|
dataOut.tnoise /= float(dataOut.nProfiles*dataOut.nIncohInt)
|
|
|
dataOut.pan = dataOut.tnoise[0]
|
|
|
dataOut.pbn = dataOut.tnoise[1]
|
|
|
'''
|
|
|
|
|
|
dataOut.tnoise = dataOut.noise_lag/float(dataOut.nProfiles*dataOut.nIncohInt)
|
|
|
#dataOut.tnoise /= float(dataOut.nProfiles*dataOut.nIncohInt)
|
|
|
dataOut.pan = dataOut.tnoise[0]
|
|
|
dataOut.pbn = dataOut.tnoise[1]
|
|
|
|
|
|
def get_eej_index_V0(self,data_to_remov_eej,dataOut):
|
|
|
|
|
|
dataOut.data_spc = data_to_remov_eej
|
|
|
#print(dataOut.data_spc)
|
|
|
data_eej = dataOut.getPower()[1]
|
|
|
print("data_eej: ", data_eej)
|
|
|
#exit(1)
|
|
|
index_eej = CleanCohEchoes.mad_based_outlier(self,data_eej[:20])
|
|
|
aux_eej = numpy.array(index_eej.nonzero()).ravel()
|
|
|
|
|
|
index2 = CleanCohEchoes.mad_based_outlier(self,data_eej[aux_eej[-1]+1:aux_eej[-1]+1+20])
|
|
|
aux2 = numpy.array(index2.nonzero()).ravel()
|
|
|
if aux2.size > 0:
|
|
|
#print(aux2)
|
|
|
#print(aux2[-1])
|
|
|
#print(arr[aux[-1]+aux2[-1]+1])
|
|
|
dataOut.min_id_eej = aux_eej[-1]+aux2[-1]+1
|
|
|
else:
|
|
|
dataOut.min_id_eej = aux_eej[-1]
|
|
|
|
|
|
|
|
|
print(dataOut.min_id_eej)
|
|
|
exit(1)
|
|
|
|
|
|
def get_eej_index_V1(self,data_to_remov_eej,dataOut):
|
|
|
|
|
|
dataOut.data_spc = data_to_remov_eej
|
|
|
outliers_IDs = []
|
|
|
#print(dataOut.data_spc)
|
|
|
for ich in range(dataOut.nChannels):
|
|
|
|
|
|
data_eej = dataOut.getPower()[ich]
|
|
|
#print("data_eej: ", data_eej)
|
|
|
#exit(1)
|
|
|
index_eej = CleanCohEchoes.mad_based_outlier(self,data_eej[:20])
|
|
|
aux_eej = numpy.array(index_eej.nonzero()).ravel()
|
|
|
|
|
|
#index2 = CleanCohEchoes.mad_based_outlier(self,data_eej[aux_eej[-1]+1:aux_eej[-1]+1+20])
|
|
|
index2 = CleanCohEchoes.mad_based_outlier(self,data_eej[aux_eej[-1]+1:aux_eej[-1]+1+10],thresh=1.)
|
|
|
aux2 = numpy.array(index2.nonzero()).ravel()
|
|
|
if aux2.size > 0:
|
|
|
#min_id_eej = aux_eej[-1]+aux2[-1]+1
|
|
|
ids = numpy.concatenate((aux_eej,aux2+aux_eej[-1]+1))
|
|
|
else:
|
|
|
ids = aux_eej
|
|
|
|
|
|
outliers_IDs=numpy.append(outliers_IDs,ids)
|
|
|
|
|
|
outliers_IDs=numpy.array(outliers_IDs)
|
|
|
outliers_IDs=outliers_IDs.astype(numpy.dtype('int64'))
|
|
|
|
|
|
(uniq, freq) = (numpy.unique(outliers_IDs, return_counts=True))
|
|
|
aux_arr = numpy.column_stack((uniq,freq))
|
|
|
|
|
|
final_index = []
|
|
|
for i in range(aux_arr.shape[0]):
|
|
|
if aux_arr[i,1] == 2:
|
|
|
final_index.append(aux_arr[i,0])
|
|
|
|
|
|
if final_index != []:
|
|
|
dataOut.min_id_eej = final_index[-1]
|
|
|
else:
|
|
|
print("CHECKKKKK!!!!!!!!!!!!!!!")
|
|
|
|
|
|
print(dataOut.min_id_eej)
|
|
|
exit(1)
|
|
|
|
|
|
def get_eej_index(self,data_to_remov_eej,dataOut):
|
|
|
|
|
|
dataOut.data_spc = data_to_remov_eej
|
|
|
|
|
|
data_eej = dataOut.getPower()[0]
|
|
|
#print(data_eej)
|
|
|
index_eej = CleanCohEchoes.mad_based_outlier(self,data_eej[:17])
|
|
|
aux_eej = numpy.array(index_eej.nonzero()).ravel()
|
|
|
print("aux_eej: ", aux_eej)
|
|
|
if aux_eej != []:
|
|
|
dataOut.min_id_eej = aux_eej[-1]
|
|
|
else:
|
|
|
dataOut.min_id_eej = 12
|
|
|
|
|
|
|
|
|
#print("min_id_eej: ", dataOut.min_id_eej)
|
|
|
#exit(1)
|
|
|
|
|
|
def run(self,dataOut):
|
|
|
#print(dataOut.nIncohInt)
|
|
|
#exit(1)
|
|
|
dataOut.paramInterval=dataOut.nIncohInt*2*2#nIncohInt*numero de fft/nprofiles*segundos de cada muestra
|
|
|
dataOut.lat=-11.95
|
|
|
dataOut.lon=-76.87
|
|
|
|
|
|
data_to_remov_eej = dataOut.dataLag_spc[:,:,:,0]
|
|
|
|
|
|
self.normFactor(dataOut)
|
|
|
#print(dataOut.NDP)
|
|
|
dataOut.NDP=dataOut.nHeights
|
|
|
dataOut.NR=len(dataOut.channelList)
|
|
|
dataOut.DH=dataOut.heightList[1]-dataOut.heightList[0]
|
|
|
dataOut.H0=int(dataOut.heightList[0])
|
|
|
|
|
|
self.ConvertData(dataOut)
|
|
|
#print(dataOut.NDP)
|
|
|
#exit(1)
|
|
|
dataOut.NAVG=16#dataOut.rnint2[0] #CHECK THIS!
|
|
|
if hasattr(dataOut, 'NRANGE'):
|
|
|
dataOut.MAXNRANGENDT = max(dataOut.NRANGE,dataOut.NDT)
|
|
|
else:
|
|
|
dataOut.MAXNRANGENDT = dataOut.NDP
|
|
|
|
|
|
|
|
|
#if hasattr(dataOut, 'HP'):
|
|
|
#pass
|
|
|
#else:
|
|
|
self.noise(dataOut)
|
|
|
|
|
|
'''
|
|
|
if not hasattr(dataOut, 'tnoise'):
|
|
|
print("noise")
|
|
|
self.noise(dataOut)
|
|
|
else:
|
|
|
delattr(dataOut, 'tnoise')
|
|
|
'''
|
|
|
#dataOut.pan = numpy.mean(dataOut.pan)
|
|
|
#dataOut.pbn = numpy.mean(dataOut.pbn)
|
|
|
#print(dataOut.pan)
|
|
|
#print(dataOut.pbn)
|
|
|
#exit(1)
|
|
|
|
|
|
#print("Noise: ",dataOut.tnoise)
|
|
|
#print("Noise dB: ",10*numpy.log10(dataOut.tnoise))
|
|
|
#exit(1)
|
|
|
#dataOut.pan=dataOut.tnoise[0]/float(dataOut.nProfiles_LP*dataOut.nIncohInt)
|
|
|
if gmtime(dataOut.utctime).tm_hour >= 21. or gmtime(dataOut.utctime).tm_hour < 13.:
|
|
|
self.get_eej_index(data_to_remov_eej,dataOut)
|
|
|
print("done")
|
|
|
#exit(1)
|
|
|
return dataOut
|
|
|
|
|
|
class SpectraDataToFaraday_MST(Operation): #MST MODE
|
|
|
"""Operation to use spectra data in Faraday processing.
|
|
|
|
|
|
Parameters:
|
|
|
-----------
|
|
|
nint : int
|
|
|
Number of integrations.
|
|
|
|
|
|
Example
|
|
|
--------
|
|
|
|
|
|
op = proc_unit.addOperation(name='SpectraDataToFaraday', optype='other')
|
|
|
|
|
|
"""
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
|
Operation.__init__(self, **kwargs)
|
|
|
|
|
|
self.dataLag_spc=None
|
|
|
self.dataLag_cspc=None
|
|
|
self.dataLag_dc=None
|
|
|
|
|
|
def noise_original(self,dataOut):
|
|
|
|
|
|
dataOut.noise_lag = numpy.zeros((dataOut.nChannels,dataOut.DPL),'float32')
|
|
|
#print("Lags")
|
|
|
'''
|
|
|
for lag in range(dataOut.DPL):
|
|
|
#print(lag)
|
|
|
dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag]
|
|
|
dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=46)
|
|
|
#dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=33,ymax_index=46)
|
|
|
'''
|
|
|
#print(dataOut.NDP)
|
|
|
#exit(1)
|
|
|
#Channel B
|
|
|
for lag in range(dataOut.DPL):
|
|
|
#print(lag)
|
|
|
dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag]
|
|
|
max_hei_id = dataOut.NDP - 2*lag
|
|
|
#if lag < 6:
|
|
|
dataOut.noise_lag[1,lag] = dataOut.getNoise(ymin_index=53,ymax_index=max_hei_id)[1]
|
|
|
#else:
|
|
|
#dataOut.noise_lag[1,lag] = numpy.mean(dataOut.noise_lag[1,:6])
|
|
|
#dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=33,ymax_index=46)
|
|
|
#Channel A
|
|
|
for lag in range(dataOut.DPL):
|
|
|
#print(lag)
|
|
|
dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag]
|
|
|
dataOut.noise_lag[0,lag] = dataOut.getNoise(ymin_index=53)[0]
|
|
|
|
|
|
nanindex = numpy.argwhere(numpy.isnan(numpy.log10(dataOut.noise_lag[1,:])))
|
|
|
i1 = nanindex[0][0]
|
|
|
dataOut.noise_lag[1,i1:] = numpy.mean(dataOut.noise_lag[1,:i1]) #El ruido de lags contaminados se
|
|
|
#determina a partir del promedio del
|
|
|
#ruido de los lags limpios
|
|
|
'''
|
|
|
dataOut.noise_lag[1,:] = dataOut.noise_lag[1,0] #El ruido de los lags diferentes de cero para
|
|
|
#el canal B es contaminado por el Tx y EEJ
|
|
|
#del siguiente perfil, por ello se asigna el ruido
|
|
|
#del lag 0 a todos los lags
|
|
|
'''
|
|
|
#print("Noise lag: ", 10*numpy.log10(dataOut.noise_lag/dataOut.normFactor))
|
|
|
#exit(1)
|
|
|
'''
|
|
|
dataOut.tnoise = dataOut.getNoise(ymin_index=46)
|
|
|
dataOut.tnoise /= float(dataOut.nProfiles*dataOut.nIncohInt)
|
|
|
dataOut.pan = dataOut.tnoise[0]
|
|
|
dataOut.pbn = dataOut.tnoise[1]
|
|
|
'''
|
|
|
|
|
|
dataOut.tnoise = dataOut.noise_lag/float(dataOut.nProfiles*dataOut.nIncohInt)
|
|
|
#dataOut.tnoise /= float(dataOut.nProfiles*dataOut.nIncohInt)
|
|
|
dataOut.pan = dataOut.tnoise[0]
|
|
|
dataOut.pbn = dataOut.tnoise[1]
|
|
|
|
|
|
def noise(self,dataOut,minIndex,maxIndex):
|
|
|
|
|
|
dataOut.noise_lag = numpy.zeros((dataOut.nChannels),'float32')
|
|
|
#print("Lags")
|
|
|
'''
|
|
|
for lag in range(dataOut.DPL):
|
|
|
#print(lag)
|
|
|
dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag]
|
|
|
dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=46)
|
|
|
#dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=33,ymax_index=46)
|
|
|
'''
|
|
|
#print(dataOut.NDP)
|
|
|
#exit(1)
|
|
|
#Channel B
|
|
|
|
|
|
#print(lag)
|
|
|
dataOut.data_spc = dataOut.dataLag_spc[:,:,:,0]
|
|
|
max_hei_id = dataOut.NDP - 2*0
|
|
|
#if lag < 6:
|
|
|
#dataOut.noise_lag[1] = dataOut.getNoise(ymin_index=80,ymax_index=106)[1]
|
|
|
if dataOut.flagDecodeData:
|
|
|
#dataOut.noise_lag[1] = dataOut.getNoise(ymin_index=150,ymax_index=200)[1]
|
|
|
dataOut.noise_lag[1] = dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[1]
|
|
|
else:
|
|
|
dataOut.noise_lag[1] = dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[1]
|
|
|
#else:
|
|
|
#dataOut.noise_lag[1,lag] = numpy.mean(dataOut.noise_lag[1,:6])
|
|
|
#dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=33,ymax_index=46)
|
|
|
#Channel A
|
|
|
|
|
|
#print(lag)
|
|
|
dataOut.data_spc = dataOut.dataLag_spc[:,:,:,0]
|
|
|
if dataOut.flagDecodeData:
|
|
|
#dataOut.noise_lag[0] = dataOut.getNoise(ymin_index=150,ymax_index=200)[0]
|
|
|
dataOut.noise_lag[0] = dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[0]
|
|
|
else:
|
|
|
dataOut.noise_lag[0] = dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[0]
|
|
|
|
|
|
dataOut.tnoise = dataOut.noise_lag/float(dataOut.nProfiles*dataOut.nIncohInt)
|
|
|
#dataOut.tnoise /= float(dataOut.nProfiles*dataOut.nIncohInt)
|
|
|
dataOut.pan = dataOut.tnoise[0]#*.98
|
|
|
dataOut.pbn = dataOut.tnoise[1]#*.98
|
|
|
|
|
|
def ConvertData(self,dataOut):
|
|
|
|
|
|
dataOut.TimeBlockSeconds_for_dp_power=dataOut.utctime
|
|
|
dataOut.bd_time=gmtime(dataOut.TimeBlockSeconds_for_dp_power)
|
|
|
dataOut.year=dataOut.bd_time.tm_year+(dataOut.bd_time.tm_yday-1)/364.0
|
|
|
dataOut.ut_Faraday=dataOut.bd_time.tm_hour+dataOut.bd_time.tm_min/60.0+dataOut.bd_time.tm_sec/3600.0
|
|
|
|
|
|
|
|
|
tmpx=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32')
|
|
|
tmpx_a2=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32')
|
|
|
tmpx_b2=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32')
|
|
|
tmpx_abr=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32')
|
|
|
tmpx_abi=numpy.zeros((dataOut.nHeights,dataOut.DPL,2),'float32')
|
|
|
dataOut.kabxys_integrated=[tmpx,tmpx,tmpx,tmpx,tmpx_a2,tmpx,tmpx_b2,tmpx,tmpx_abr,tmpx,tmpx_abi,tmpx,tmpx,tmpx]
|
|
|
|
|
|
dataOut.rnint2=numpy.zeros(dataOut.DPL,'float32')
|
|
|
for l in range(dataOut.DPL):
|
|
|
dataOut.rnint2[l]=1.0/(dataOut.nIncohInt*dataOut.nProfiles)#*dataOut.nProfiles
|
|
|
|
|
|
#try:
|
|
|
#dataOut.rint2 /= dataOut.nCohInt*dataOut.windowOfFilter
|
|
|
#except: pass
|
|
|
'''
|
|
|
if hasattr(dataOut,'flagDecodeData'):
|
|
|
if dataOut.flagDecodeData:
|
|
|
print("decode",numpy.sum(dataOut.code[0]**2))
|
|
|
dataOut.rnint2 /= numpy.sum(dataOut.code[0]**2)
|
|
|
else:
|
|
|
print("widnow")
|
|
|
dataOut.rnint2 /= dataOut.windowOfFilter
|
|
|
else:
|
|
|
print("widnow")
|
|
|
dataOut.rint2 = dataOut.windowOfFilter
|
|
|
'''
|
|
|
self.dataLag_spc=(dataOut.dataLag_spc.sum(axis=1))*(dataOut.rnint2[0]/dataOut.nProfiles)
|
|
|
self.dataLag_cspc=(dataOut.dataLag_cspc.sum(axis=1))*(dataOut.rnint2[0]/dataOut.nProfiles)
|
|
|
#self.dataLag_dc=dataOut.dataLag_dc.sum(axis=1)/dataOut.rnint2[0]
|
|
|
|
|
|
dataOut.kabxys_integrated[4][:,:,0]=self.dataLag_spc[0,:,:].real
|
|
|
#dataOut.kabxys_integrated[5][:,:,0]+=self.dataLag_spc[0,:,:].imag
|
|
|
dataOut.kabxys_integrated[6][:,:,0]=self.dataLag_spc[1,:,:].real
|
|
|
#dataOut.kabxys_integrated[7][:,:,0]+=self.dataLag_spc[1,:,:].imag
|
|
|
|
|
|
dataOut.kabxys_integrated[8][:,:,0]=self.dataLag_cspc[0,:,:].real
|
|
|
dataOut.kabxys_integrated[10][:,:,0]=self.dataLag_cspc[0,:,:].imag
|
|
|
|
|
|
#print("power: ", numpy.sum(dataOut.kabxys_integrated[4][:16,0,0]))
|
|
|
#print("power: ", numpy.sum(dataOut.kabxys_integrated[4][16:32,0,0]))
|
|
|
#exit(1)
|
|
|
'''
|
|
|
print(dataOut.kabxys_integrated[4][:,0,0])
|
|
|
print(dataOut.kabxys_integrated[6][:,0,0])
|
|
|
print("times 12")
|
|
|
print(dataOut.kabxys_integrated[4][:,0,0]*dataOut.nProfiles)
|
|
|
print(dataOut.kabxys_integrated[6][:,0,0]*dataOut.nProfiles)
|
|
|
print(dataOut.rnint2[0])
|
|
|
input()
|
|
|
'''
|
|
|
|
|
|
def run(self,dataOut,ymin_noise = None,ymax_noise = None):
|
|
|
|
|
|
dataOut.paramInterval=0#int(dataOut.nint*dataOut.header[7][0]*2 )
|
|
|
dataOut.lat=-11.95
|
|
|
dataOut.lon=-76.87
|
|
|
|
|
|
dataOut.NDP=dataOut.nHeights
|
|
|
dataOut.NR=len(dataOut.channelList)
|
|
|
dataOut.DH=dataOut.heightList[1]-dataOut.heightList[0]
|
|
|
dataOut.H0=int(dataOut.heightList[0])
|
|
|
'''
|
|
|
if dataOut.flagDecodeData:
|
|
|
print("flagDecodeData")
|
|
|
dataOut.data_spc /= numpy.sum(dataOut.code[0]**2)
|
|
|
dataOut.data_cspc /= numpy.sum(dataOut.code[0]**2)
|
|
|
dataOut.data_spc /= numpy.sum(dataOut.code[0]**2)
|
|
|
dataOut.data_cspc /= numpy.sum(dataOut.code[0]**2)
|
|
|
else:
|
|
|
print("windowOfFilter")
|
|
|
dataOut.data_spc /= dataOut.windowOfFilter
|
|
|
dataOut.data_cspc /= dataOut.windowOfFilter
|
|
|
dataOut.data_spc /= dataOut.windowOfFilter
|
|
|
dataOut.data_cspc /= dataOut.windowOfFilter
|
|
|
'''
|
|
|
#print("dataOut.data_spc.shape: ", dataOut.data_spc.shape)
|
|
|
#print("dataOut.data_cspc.shape: ", dataOut.data_cspc.shape)
|
|
|
#print("*****************Sum: ", numpy.sum(dataOut.data_spc[0]))
|
|
|
#print("*******************normFactor: *******************", dataOut.normFactor)
|
|
|
dataOut.dataLag_spc = numpy.stack((dataOut.data_spc, dataOut.data_spc), axis=-1)
|
|
|
dataOut.dataLag_cspc = numpy.stack((dataOut.data_cspc, dataOut.data_cspc), axis=-1)
|
|
|
#print(dataOut.dataLag_spc.shape)
|
|
|
dataOut.DPL = numpy.shape(dataOut.dataLag_spc)[-1]
|
|
|
|
|
|
#exit(1)
|
|
|
self.ConvertData(dataOut)
|
|
|
|
|
|
inda = numpy.where(dataOut.heightList >= ymin_noise)
|
|
|
indb = numpy.where(dataOut.heightList <= ymax_noise)
|
|
|
|
|
|
minIndex = inda[0][0]
|
|
|
maxIndex = indb[0][-1]
|
|
|
|
|
|
#print("ymin_noise: ", dataOut.heightList[minIndex])
|
|
|
#print("ymax_noise: ", dataOut.heightList[maxIndex])
|
|
|
|
|
|
self.noise(dataOut,minIndex,maxIndex)
|
|
|
dataOut.NAVG=16#dataOut.rnint2[0] #CHECK THIS!
|
|
|
dataOut.MAXNRANGENDT=dataOut.NDP
|
|
|
#'''
|
|
|
if 0:
|
|
|
#print(dataOut.kabxys_integrated[4][:,0,0])
|
|
|
#print("dataOut.heightList: ", dataOut.heightList)
|
|
|
#print("dataOut.pbn: ", dataOut.pbn)
|
|
|
print("INSIDE")
|
|
|
import matplotlib.pyplot as plt
|
|
|
#print("dataOut.getPower(): ", dataOut.getPower())
|
|
|
plt.plot(10*numpy.log10(dataOut.kabxys_integrated[4][:,0,0]),dataOut.heightList)
|
|
|
#plt.plot(10**((dataOut.getPower()[1])/10),dataOut.heightList)
|
|
|
#plt.plot(dataOut.getPower()[0],dataOut.heightList)
|
|
|
#plt.plot(dataOut.dataLag_spc[:,:,:,0],dataOut.heightList)
|
|
|
plt.axvline(10*numpy.log10(dataOut.pan))
|
|
|
#print(dataOut.nProfiles)
|
|
|
#plt.axvline(10*numpy.log10(1*dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[0]/dataOut.normFactor))
|
|
|
#print("10*numpy.log10(dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[1]/dataOut.normFactor): ", 10*numpy.log10(dataOut.getNoise(ymin_index=minIndex,ymax_index=maxIndex)[1]/dataOut.normFactor))
|
|
|
#plt.xlim(1,25000)
|
|
|
#plt.xlim(15,20)
|
|
|
#plt.ylim(30,90)
|
|
|
plt.grid()
|
|
|
plt.show()
|
|
|
#'''
|
|
|
dataOut.DPL = 1
|
|
|
return dataOut
|
|
|
|
|
|
class SpectraDataToHybrid(SpectraDataToFaraday):
|
|
|
'''
|
|
|
Written by R. Flores
|
|
|
'''
|
|
|
"""Operation to use spectra data in Faraday processing.
|
|
|
|
|
|
Parameters:
|
|
|
-----------
|
|
|
nint : int
|
|
|
Number of integrations.
|
|
|
|
|
|
Example
|
|
|
--------
|
|
|
|
|
|
op = proc_unit.addOperation(name='SpectraDataToFaraday', optype='other')
|
|
|
|
|
|
"""
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
|
Operation.__init__(self, **kwargs)
|
|
|
|
|
|
self.dataLag_spc=None
|
|
|
self.dataLag_cspc=None
|
|
|
self.dataLag_dc=None
|
|
|
self.dataLag_spc_LP=None
|
|
|
self.dataLag_cspc_LP=None
|
|
|
self.dataLag_dc_LP=None
|
|
|
|
|
|
def noise(self,dataOut):
|
|
|
'''
|
|
|
for i in range(dataOut.NR):
|
|
|
dataOut.pnoise[i]=0.0
|
|
|
for k in range(dataOut.DPL):
|
|
|
dataOut.pnoise[i]+= dataOut.getNoise()
|
|
|
'''
|
|
|
#print(dataOut.dataLag_spc_LP[:,:,:,0])
|
|
|
dataOut.data_spc = dataOut.dataLag_spc_LP[:,:,:,0].real
|
|
|
dataOut.tnoise = dataOut.getNoise()
|
|
|
#print(dataOut.tnoise)
|
|
|
#exit(1)
|
|
|
dataOut.tnoise[0]*=0.995#0.976
|
|
|
dataOut.tnoise[1]*=0.995
|
|
|
#print(dataOut.nProfiles)
|
|
|
dataOut.pan=dataOut.tnoise[0]/float(dataOut.nProfiles_LP*dataOut.nIncohInt)
|
|
|
dataOut.pbn=dataOut.tnoise[1]/float(dataOut.nProfiles_LP*dataOut.nIncohInt)
|
|
|
#print("pan: ",dataOut.pan)
|
|
|
#print("pbn: ",dataOut.pbn)
|
|
|
#print(numpy.shape(dataOut.pnoise))
|
|
|
#exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
def ConvertDataLP_V0(self,dataOut):
|
|
|
|
|
|
#print(dataOut.dataLag_spc[:,:,:,1]/dataOut.data_spc)
|
|
|
#exit(1)
|
|
|
normfactor=1.0/(dataOut.nIncohInt_LP*dataOut.nProfiles_LP)#*dataOut.nProfiles
|
|
|
|
|
|
buffer = self.dataLag_spc_LP=(dataOut.dataLag_spc_LP.sum(axis=1))*(1./dataOut.nProfiles_LP)
|
|
|
##self.dataLag_cspc_LP=(dataOut.dataLag_cspc_LP.sum(axis=1))*(1./dataOut.nProfiles_LP)
|
|
|
#self.dataLag_dc=dataOut.dataLag_dc.sum(axis=1)/dataOut.rnint2[0]
|
|
|
#aux=numpy.expand_dims(self.dataLag_spc_LP, axis=2)
|
|
|
#print(aux.shape)
|
|
|
##buffer = numpy.concatenate((numpy.expand_dims(self.dataLag_spc_LP, axis=2),self.dataLag_cspc_LP),axis=2)
|
|
|
dataOut.output_LP_integrated = numpy.transpose(buffer,(2,1,0))
|
|
|
#print("lP",numpy.shape(dataOut.output_LP_integrated))
|
|
|
#exit(1)
|
|
|
#print(numpy.shape(dataOut.output_LP_integrated))
|
|
|
|
|
|
#exit(1)
|
|
|
|
|
|
def ConvertDataLP(self,dataOut):
|
|
|
|
|
|
#print(dataOut.dataLag_spc[:,:,:,1]/dataOut.data_spc)
|
|
|
#exit(1)
|
|
|
normfactor=1.0/(dataOut.nIncohInt_LP*dataOut.nProfiles_LP)#*dataOut.nProfiles
|
|
|
|
|
|
buffer = self.dataLag_spc_LP=dataOut.dataLag_spc_LP
|
|
|
##self.dataLag_cspc_LP=(dataOut.dataLag_cspc_LP.sum(axis=1))*(1./dataOut.nProfiles_LP)
|
|
|
#self.dataLag_dc=dataOut.dataLag_dc.sum(axis=1)/dataOut.rnint2[0]
|
|
|
#aux=numpy.expand_dims(self.dataLag_spc_LP, axis=2)
|
|
|
#print(aux.shape)
|
|
|
##buffer = numpy.concatenate((numpy.expand_dims(self.dataLag_spc_LP, axis=2),self.dataLag_cspc_LP),axis=2)
|
|
|
dataOut.output_LP_integrated = numpy.transpose(buffer,(1,2,0))
|
|
|
|
|
|
def normFactor(self,dataOut):
|
|
|
dataOut.rnint2=numpy.zeros(dataOut.DPL,'float32')
|
|
|
for l in range(dataOut.DPL):
|
|
|
if(l==0 or (l>=3 and l <=6)):
|
|
|
dataOut.rnint2[l]=1.0/(dataOut.nIncohInt*dataOut.nProfiles)
|
|
|
else:
|
|
|
dataOut.rnint2[l]=2*(1.0/(dataOut.nIncohInt*dataOut.nProfiles))
|
|
|
|
|
|
def run(self,dataOut):
|
|
|
|
|
|
dataOut.paramInterval=0#int(dataOut.nint*dataOut.header[7][0]*2 )
|
|
|
dataOut.lat=-11.95
|
|
|
dataOut.lon=-76.87
|
|
|
|
|
|
dataOut.NDP=dataOut.nHeights
|
|
|
dataOut.NR=len(dataOut.channelList)
|
|
|
dataOut.DH=dataOut.heightList[1]-dataOut.heightList[0]
|
|
|
dataOut.H0=int(dataOut.heightList[0])
|
|
|
#print(numpy.shape(dataOut.dataLag_spc))
|
|
|
#print("a",numpy.sum(dataOut.dataLag_spc[0,:,20,10]))
|
|
|
#print(numpy.sum(dataOut.dataLag_spc[1,:,20,10]))
|
|
|
self.normFactor(dataOut)
|
|
|
|
|
|
self.ConvertDataLP(dataOut)
|
|
|
|
|
|
dataOut.output_LP_integrated[:,:,3] *= float(dataOut.NSCAN/22)#(dataOut.nNoiseProfiles) #Corrects the zero padding
|
|
|
|
|
|
dataOut.nis=dataOut.NSCAN*dataOut.nIncohInt_LP*10
|
|
|
|
|
|
#print(dataOut.output_LP_integrated[0,30,1])
|
|
|
#exit(1)
|
|
|
|
|
|
self.ConvertData(dataOut)
|
|
|
|
|
|
dataOut.kabxys_integrated[4][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding
|
|
|
dataOut.kabxys_integrated[6][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding
|
|
|
dataOut.kabxys_integrated[8][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding
|
|
|
dataOut.kabxys_integrated[10][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding
|
|
|
hei = 2
|
|
|
'''
|
|
|
for hei in range(67):
|
|
|
print("hei",hei)
|
|
|
print(dataOut.kabxys_integrated[8][hei,:,0])#+dataOut.kabxys_integrated[11][53,6,0])
|
|
|
print(dataOut.kabxys_integrated[10][hei,:,0])#+dataOut.kabxys_integrated[11][53,9,0])
|
|
|
|
|
|
exit(1)
|
|
|
'''
|
|
|
#print(dataOut.dataLag_spc_LP.shape)
|
|
|
#exit(1)
|
|
|
#[:,:,:,0]
|
|
|
|
|
|
self.noise(dataOut)
|
|
|
|
|
|
|
|
|
hei = 53
|
|
|
lag = 0
|
|
|
'''
|
|
|
print("b",dataOut.kabxys_integrated[4][hei,lag,0])
|
|
|
print(dataOut.kabxys_integrated[6][hei,lag,0])
|
|
|
|
|
|
print("c",dataOut.kabxys_integrated[8][hei,lag,0])
|
|
|
print(dataOut.kabxys_integrated[10][hei,lag,0])
|
|
|
exit(1)
|
|
|
'''
|
|
|
#'''
|
|
|
#print(dataOut.tnoise)
|
|
|
#print(dataOut.pbn)
|
|
|
#exit(1)
|
|
|
#'''
|
|
|
#'''
|
|
|
|
|
|
#print(dataOut.pan)
|
|
|
#print(dataOut.pbn)
|
|
|
#print(dataOut.tnoise[0])
|
|
|
#dataOut.pan = 143.91122436523438
|
|
|
#dataOut.pbn = 249.5623575846354
|
|
|
|
|
|
#dataOut.tnoise[0] = 8.8419056e+05
|
|
|
|
|
|
|
|
|
#'''
|
|
|
|
|
|
dataOut.NAVG=1#dataOut.rnint2[0] #CHECK THIS!
|
|
|
dataOut.nint=dataOut.nIncohInt
|
|
|
dataOut.MAXNRANGENDT=dataOut.NRANGE
|
|
|
|
|
|
#exit(1)
|
|
|
|
|
|
return dataOut
|
|
|
|
|
|
class SpectraDataToHybrid_V2(SpectraDataToFaraday):
|
|
|
'''
|
|
|
Written by R. Flores
|
|
|
'''
|
|
|
"""Operation to use spectra data in Faraday processing.
|
|
|
|
|
|
Parameters:
|
|
|
-----------
|
|
|
nint : int
|
|
|
Number of integrations.
|
|
|
|
|
|
Example
|
|
|
--------
|
|
|
|
|
|
op = proc_unit.addOperation(name='SpectraDataToFaraday', optype='other')
|
|
|
|
|
|
"""
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
|
Operation.__init__(self, **kwargs)
|
|
|
|
|
|
self.dataLag_spc=None
|
|
|
self.dataLag_cspc=None
|
|
|
self.dataLag_dc=None
|
|
|
self.dataLag_spc_LP=None
|
|
|
self.dataLag_cspc_LP=None
|
|
|
self.dataLag_dc_LP=None
|
|
|
|
|
|
def noise_v0(self,dataOut):
|
|
|
|
|
|
dataOut.data_spc = dataOut.dataLag_spc_LP.real
|
|
|
#print(dataOut.dataLag_spc.shape)
|
|
|
#exit(1)
|
|
|
#dataOut.data_spc = dataOut.dataLag_spc[:,:,:,0].real
|
|
|
#print("spc noise shape: ",dataOut.data_spc.shape)
|
|
|
dataOut.tnoise = dataOut.getNoise(ymin_index=100,ymax_index=166)
|
|
|
#print("Noise LP: ",10*numpy.log10(dataOut.tnoise))
|
|
|
#exit(1)
|
|
|
#dataOut.tnoise[0]*=0.995#0.976
|
|
|
#dataOut.tnoise[1]*=0.995
|
|
|
#print(dataOut.nProfiles)
|
|
|
#dataOut.pan=dataOut.tnoise[0]/float(dataOut.nProfiles_LP*dataOut.nIncohInt)
|
|
|
#dataOut.pbn=dataOut.tnoise[1]/float(dataOut.nProfiles_LP*dataOut.nIncohInt)
|
|
|
dataOut.pan=dataOut.tnoise[0]/float(dataOut.nProfiles_LP*dataOut.nIncohInt_LP)
|
|
|
dataOut.pbn=dataOut.tnoise[1]/float(dataOut.nProfiles_LP*dataOut.nIncohInt_LP)
|
|
|
##dataOut.pan=dataOut.tnoise[0]*float(self.normfactor_LP)
|
|
|
##dataOut.pbn=dataOut.tnoise[1]*float(self.normfactor_LP)
|
|
|
#print("pan: ",10*numpy.log10(dataOut.pan))
|
|
|
#print("pbn: ",dataOut.pbn)
|
|
|
#print(numpy.shape(dataOut.pnoise))
|
|
|
#exit(1)
|
|
|
#print("pan: ",dataOut.pan)
|
|
|
#print("pbn: ",dataOut.pbn)
|
|
|
#exit(1)
|
|
|
|
|
|
def noise_v0_aux(self,dataOut):
|
|
|
|
|
|
dataOut.data_spc = dataOut.dataLag_spc
|
|
|
#print(dataOut.dataLag_spc.shape)
|
|
|
#exit(1)
|
|
|
#dataOut.data_spc = dataOut.dataLag_spc[:,:,:,0].real
|
|
|
#print("spc noise shape: ",dataOut.data_spc.shape)
|
|
|
tnoise = dataOut.getNoise(ymin_index=100,ymax_index=166)
|
|
|
#print("Noise LP: ",10*numpy.log10(dataOut.tnoise))
|
|
|
#exit(1)
|
|
|
#dataOut.tnoise[0]*=0.995#0.976
|
|
|
#dataOut.tnoise[1]*=0.995
|
|
|
#print(dataOut.nProfiles)
|
|
|
#dataOut.pan=dataOut.tnoise[0]/float(dataOut.nProfiles_LP*dataOut.nIncohInt)
|
|
|
#dataOut.pbn=dataOut.tnoise[1]/float(dataOut.nProfiles_LP*dataOut.nIncohInt)
|
|
|
dataOut.pan=tnoise[0]/float(dataOut.nProfiles*dataOut.nIncohInt)
|
|
|
dataOut.pbn=tnoise[1]/float(dataOut.nProfiles*dataOut.nIncohInt)
|
|
|
|
|
|
def noise(self,dataOut):
|
|
|
|
|
|
dataOut.noise_lag = numpy.zeros((dataOut.nChannels,dataOut.DPL),'float32')
|
|
|
#print("Lags")
|
|
|
'''
|
|
|
for lag in range(dataOut.DPL):
|
|
|
#print(lag)
|
|
|
dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag]
|
|
|
dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=46)
|
|
|
#dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=33,ymax_index=46)
|
|
|
'''
|
|
|
#print(dataOut.NDP)
|
|
|
#exit(1)
|
|
|
#Channel B
|
|
|
for lag in range(dataOut.DPL):
|
|
|
#print(lag)
|
|
|
dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag]
|
|
|
max_hei_id = dataOut.NDP - 2*lag
|
|
|
#if lag < 6:
|
|
|
dataOut.noise_lag[1,lag] = dataOut.getNoise(ymin_index=53,ymax_index=max_hei_id)[1]
|
|
|
#else:
|
|
|
#dataOut.noise_lag[1,lag] = numpy.mean(dataOut.noise_lag[1,:6])
|
|
|
#dataOut.noise_lag[:,lag] = dataOut.getNoise(ymin_index=33,ymax_index=46)
|
|
|
#Channel A
|
|
|
for lag in range(dataOut.DPL):
|
|
|
#print(lag)
|
|
|
dataOut.data_spc = dataOut.dataLag_spc[:,:,:,lag]
|
|
|
dataOut.noise_lag[0,lag] = dataOut.getNoise(ymin_index=53)[0]
|
|
|
|
|
|
nanindex = numpy.argwhere(numpy.isnan(numpy.log10(dataOut.noise_lag[1,:])))
|
|
|
i1 = nanindex[0][0]
|
|
|
dataOut.noise_lag[1,(1,2,7,8,9,10)] *= 2 #Correction LP
|
|
|
dataOut.noise_lag[1,i1:] = numpy.mean(dataOut.noise_lag[1,:i1]) #El ruido de lags contaminados se
|
|
|
#determina a partir del promedio del
|
|
|
#ruido de los lags limpios
|
|
|
'''
|
|
|
dataOut.noise_lag[1,:] = dataOut.noise_lag[1,0] #El ruido de los lags diferentes de cero para
|
|
|
#el canal B es contaminado por el Tx y EEJ
|
|
|
#del siguiente perfil, por ello se asigna el ruido
|
|
|
#del lag 0 a todos los lags
|
|
|
'''
|
|
|
#print("Noise lag: ", 10*numpy.log10(dataOut.noise_lag/dataOut.normFactor))
|
|
|
#exit(1)
|
|
|
'''
|
|
|
dataOut.tnoise = dataOut.getNoise(ymin_index=46)
|
|
|
dataOut.tnoise /= float(dataOut.nProfiles*dataOut.nIncohInt)
|
|
|
dataOut.pan = dataOut.tnoise[0]
|
|
|
dataOut.pbn = dataOut.tnoise[1]
|
|
|
'''
|
|
|
#print("i1: ", i1)
|
|
|
#exit(1)
|
|
|
tnoise = dataOut.noise_lag/float(dataOut.nProfiles*dataOut.nIncohInt)
|
|
|
#dataOut.tnoise /= float(dataOut.nProfiles*dataOut.nIncohInt)
|
|
|
dataOut.pan = tnoise[0]
|
|
|
dataOut.pbn = tnoise[1]
|
|
|
|
|
|
def noise_LP(self,dataOut):
|
|
|
|
|
|
dataOut.data_spc = dataOut.dataLag_spc_LP.real
|
|
|
#print(dataOut.dataLag_spc.shape)
|
|
|
#exit(1)
|
|
|
#dataOut.data_spc = dataOut.dataLag_spc[:,:,:,0].real
|
|
|
#print("spc noise shape: ",dataOut.data_spc.shape)
|
|
|
dataOut.tnoise = dataOut.getNoise(ymin_index=100,ymax_index=166)
|
|
|
#print("Noise LP: ",10*numpy.log10(dataOut.tnoise))
|
|
|
#exit(1)
|
|
|
#dataOut.tnoise[0]*=0.995#0.976
|
|
|
#dataOut.tnoise[1]*=0.995
|
|
|
#print(dataOut.nProfiles)
|
|
|
#dataOut.pan=dataOut.tnoise[0]/float(dataOut.nProfiles_LP*dataOut.nIncohInt)
|
|
|
#dataOut.pbn=dataOut.tnoise[1]/float(dataOut.nProfiles_LP*dataOut.nIncohInt)
|
|
|
######dataOut.pan=dataOut.tnoise[0]/float(dataOut.nProfiles_LP*dataOut.nIncohInt_LP)
|
|
|
######dataOut.pbn=dataOut.tnoise[1]/float(dataOut.nProfiles_LP*dataOut.nIncohInt_LP)
|
|
|
dataOut.pan_LP=dataOut.tnoise[0]/float(dataOut.nProfiles_LP*dataOut.nIncohInt_LP)
|
|
|
dataOut.pbn_LP=dataOut.tnoise[1]/float(dataOut.nProfiles_LP*dataOut.nIncohInt_LP)
|
|
|
|
|
|
def ConvertDataLP(self,dataOut):
|
|
|
#print(numpy.shape(dataOut.data_acf))
|
|
|
#print(dataOut.dataLag_spc[:,:,:,1]/dataOut.data_spc)
|
|
|
#exit(1)
|
|
|
self.normfactor_LP=1.0/(dataOut.nIncohInt_LP*dataOut.nProfiles_LP)#*dataOut.nProfiles
|
|
|
#print("acf: ",dataOut.data_acf[0,0,100])
|
|
|
#print("Power: ",numpy.mean(dataOut.dataLag_spc_LP[0,:,100]))
|
|
|
#buffer = dataOut.data_acf*(1./(normfactor*dataOut.nProfiles_LP))
|
|
|
#buffer = dataOut.data_acf*(1./(normfactor))
|
|
|
buffer = dataOut.data_acf#*(self.normfactor_LP) #nChannels x nProfiles (nLags) x nHeights
|
|
|
#print("acf: ",numpy.sum(buffer))
|
|
|
|
|
|
dataOut.output_LP_integrated = numpy.transpose(buffer,(1,2,0)) #nProfiles (nLags) x nHeights x nChannels
|
|
|
|
|
|
def normFactor(self,dataOut):
|
|
|
dataOut.rnint2=numpy.zeros(dataOut.DPL,'float32')
|
|
|
for l in range(dataOut.DPL):
|
|
|
if(l==0 or (l>=3 and l <=6)):
|
|
|
dataOut.rnint2[l]=1.0/(dataOut.nIncohInt*dataOut.nProfiles)
|
|
|
else:
|
|
|
dataOut.rnint2[l]=2*(1.0/(dataOut.nIncohInt*dataOut.nProfiles))
|
|
|
|
|
|
def run(self,dataOut):
|
|
|
|
|
|
dataOut.paramInterval=0#int(dataOut.nint*dataOut.header[7][0]*2 )
|
|
|
dataOut.lat=-11.95
|
|
|
dataOut.lon=-76.87
|
|
|
|
|
|
dataOut.NDP=dataOut.nHeights
|
|
|
dataOut.NR=len(dataOut.channelList)
|
|
|
dataOut.DH=dataOut.heightList[1]-dataOut.heightList[0]
|
|
|
dataOut.H0=int(dataOut.heightList[0])
|
|
|
|
|
|
self.normFactor(dataOut)
|
|
|
|
|
|
#Probar sin comentar lo siguiente y comentando
|
|
|
#dataOut.data_acf *= 16 #Corrects the zero padding
|
|
|
#dataOut.dataLag_spc_LP *= 16 #Corrects the zero padding
|
|
|
self.ConvertDataLP(dataOut)
|
|
|
#dataOut.dataLag_spc_LP *= 2
|
|
|
#dataOut.output_LP_integrated[:,:,3] *= float(dataOut.NSCAN/22)#(dataOut.nNoiseProfiles) #Corrects the zero padding
|
|
|
|
|
|
dataOut.nis=dataOut.NSCAN*dataOut.nIncohInt_LP*10
|
|
|
#print("nis/10: ", dataOut.NSCAN,dataOut.nIncohInt_LP,dataOut.nProfiles_LP)
|
|
|
dataOut.nis=dataOut.NSCAN*dataOut.nIncohInt_LP*dataOut.nProfiles_LP*10
|
|
|
dataOut.nis=dataOut.nIncohInt_LP*dataOut.nProfiles_LP*10 #Removemos NSCAN debido a que está incluido en nProfiles_LP
|
|
|
|
|
|
self.ConvertData(dataOut)
|
|
|
|
|
|
dataOut.kabxys_integrated[4][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding
|
|
|
dataOut.kabxys_integrated[6][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding
|
|
|
dataOut.kabxys_integrated[8][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding
|
|
|
dataOut.kabxys_integrated[10][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding
|
|
|
hei = 2
|
|
|
|
|
|
self.noise(dataOut) #Noise for DP Profiles
|
|
|
dataOut.pan[[1,2,7,8,9,10]] *= 2 #Corrects the zero padding
|
|
|
#dataOut.pbn[[1,2,7,8,9,10]] *= 2 #Corrects the zero padding #Chequear debido a que se están mezclando lags en self.noise()
|
|
|
self.noise_LP(dataOut) #Noise for LP Profiles
|
|
|
|
|
|
print("pan: , pan_LP: ",dataOut.pan,dataOut.pan_LP)
|
|
|
print("pbn: , pbn_LP: ",dataOut.pbn,dataOut.pbn_LP)
|
|
|
|
|
|
|
|
|
|
|
|
dataOut.NAVG=1#dataOut.rnint2[0] #CHECK THIS!
|
|
|
dataOut.nint=dataOut.nIncohInt
|
|
|
dataOut.MAXNRANGENDT=dataOut.output_LP_integrated.shape[1]
|
|
|
|
|
|
'''
|
|
|
range_aux=numpy.zeros(dataOut.MAXNRANGENDT,order='F',dtype='float32')
|
|
|
range_aux_dp=numpy.zeros(dataOut.NDT,order='F',dtype='float32')
|
|
|
for i in range(dataOut.MAXNRANGENDT):
|
|
|
range_aux[i]=dataOut.H0 + i*dataOut.DH
|
|
|
for i in range(dataOut.NDT):
|
|
|
range_aux_dp[i]=dataOut.H0 + i*dataOut.DH
|
|
|
import matplotlib.pyplot as plt
|
|
|
#plt.plot(10*numpy.log10(dataOut.output_LP_integrated.real[0,:,0]),range_aux)
|
|
|
plt.plot(10*numpy.log10(dataOut.output_LP_integrated.real[0,:,0]),range_aux_dp)
|
|
|
#plt.plot(10*numpy.log10(dataOut.output_LP_integrated.real[0,:,0]/dataOut.nProfiles_LP),dataOut.range1)
|
|
|
plt.axvline(10*numpy.log10(dataOut.tnoise[0]),color='k',linestyle='dashed')
|
|
|
plt.grid()
|
|
|
plt.xlim(20,100)
|
|
|
plt.show()
|
|
|
exit(1)
|
|
|
'''
|
|
|
return dataOut
|
|
|
|
|
|
class SpcVoltageDataToHybrid(SpectraDataToFaraday):
|
|
|
'''
|
|
|
Written by R. Flores
|
|
|
'''
|
|
|
"""Operation to use spectra data in Faraday processing.
|
|
|
|
|
|
Parameters:
|
|
|
-----------
|
|
|
nint : int
|
|
|
Number of integrations.
|
|
|
|
|
|
Example
|
|
|
--------
|
|
|
|
|
|
op = proc_unit.addOperation(name='SpcVoltageDataToHybrid', optype='other')
|
|
|
|
|
|
"""
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
|
Operation.__init__(self, **kwargs)
|
|
|
|
|
|
self.dataLag_spc=None
|
|
|
self.dataLag_cspc=None
|
|
|
self.dataLag_dc=None
|
|
|
|
|
|
def normFactor(self,dataOut):
|
|
|
dataOut.rnint2=numpy.zeros(dataOut.DPL,'float32')
|
|
|
#print(dataOut.nIncohInt,dataOut.nProfiles)
|
|
|
for l in range(dataOut.DPL):
|
|
|
if(l==0 or (l>=3 and l <=6)):
|
|
|
dataOut.rnint2[l]=1.0/(dataOut.nIncohInt*dataOut.nProfiles)
|
|
|
else:
|
|
|
dataOut.rnint2[l]=2*(1.0/(dataOut.nIncohInt*dataOut.nProfiles))
|
|
|
|
|
|
def run(self,dataOut):
|
|
|
|
|
|
dataOut.paramInterval=0#int(dataOut.nint*dataOut.header[7][0]*2 )
|
|
|
dataOut.lat=-11.95
|
|
|
dataOut.lon=-76.87
|
|
|
#print(numpy.shape(dataOut.dataLag_spc))
|
|
|
#exit(1)
|
|
|
data_to_remov_eej = dataOut.dataLag_spc[:,:,:,0]
|
|
|
#dataOut.NDP=dataOut.nHeights
|
|
|
#dataOut.NR=len(dataOut.channelList)
|
|
|
#dataOut.DH=dataOut.heightList[1]-dataOut.heightList[0]
|
|
|
#dataOut.H0=int(dataOut.heightList[0])
|
|
|
|
|
|
self.normFactor(dataOut)
|
|
|
|
|
|
#dataOut.nis=dataOut.NSCAN*dataOut.NAVG*dataOut.nint*10
|
|
|
#print(dataOut.nHeights)
|
|
|
#exit(1)
|
|
|
#dataOut.NDP=dataOut.nHeights
|
|
|
self.ConvertData(dataOut)
|
|
|
|
|
|
dataOut.kabxys_integrated[4][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding
|
|
|
dataOut.kabxys_integrated[6][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding
|
|
|
dataOut.kabxys_integrated[8][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding
|
|
|
dataOut.kabxys_integrated[10][:,(1,2,7,8,9,10),0] *= 2 #Corrects the zero padding
|
|
|
#print(numpy.sum(dataOut.kabxys_integrated[4][:,1,0]))
|
|
|
|
|
|
if hasattr(dataOut, 'NRANGE'):
|
|
|
dataOut.MAXNRANGENDT = max(dataOut.NRANGE,dataOut.NDT)
|
|
|
else:
|
|
|
dataOut.MAXNRANGENDT = dataOut.NDP
|
|
|
|
|
|
#dataOut.MAXNRANGENDT = max(dataOut.NRANGE,dataOut.NDP)
|
|
|
#print(dataOut.rnint2)
|
|
|
dataOut.DH=dataOut.heightList[1]-dataOut.heightList[0]
|
|
|
dataOut.H0=int(dataOut.heightList[0])
|
|
|
#print(dataOut.nis)
|
|
|
#exit(1)
|
|
|
#self.noise(dataOut)
|
|
|
|
|
|
if gmtime(dataOut.utctime).tm_hour >= 22. or gmtime(dataOut.utctime).tm_hour < 12.:
|
|
|
self.get_eej_index(data_to_remov_eej,dataOut)
|
|
|
|
|
|
return dataOut
|
|
|
|