##// END OF EJS Templates
Add update method to plots to pass data (no more changes in jrodata)
Add update method to plots to pass data (no more changes in jrodata)

File last commit:

r1343:95b6dc6e7058
r1343:95b6dc6e7058
Show More
jroplot_heispectra.py
101 lines | 2.9 KiB | text/x-python | PythonLexer
# Copyright (c) 2012-2020 Jicamarca Radio Observatory
# All rights reserved.
#
# Distributed under the terms of the BSD 3-clause license.
"""Classes to plo Specra Heis data
"""
import numpy
from schainpy.model.graphics.jroplot_base import Plot, plt
class SpectraHeisPlot(Plot):
CODE = 'spc_heis'
def setup(self):
self.nplots = len(self.data.channels)
self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
self.height = 2.6 * self.nrows
self.width = 3.5 * self.ncols
self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.95, 'bottom': 0.08})
self.ylabel = 'Intensity [dB]'
self.xlabel = 'Frequency [KHz]'
self.colorbar = False
def update(self, dataOut):
data = {}
meta = {}
spc = 10*numpy.log10(dataOut.data_spc / dataOut.normFactor)
data['spc_heis'] = spc
return data, meta
def plot(self):
c = 3E8
deltaHeight = self.data.yrange[1] - self.data.yrange[0]
x = numpy.arange(-1*len(self.data.yrange)/2., len(self.data.yrange)/2.)*(c/(2*deltaHeight*len(self.data.yrange)*1000))
self.y = self.data[-1]['spc_heis']
self.titles = []
for n, ax in enumerate(self.axes):
ychannel = self.y[n,:]
if ax.firsttime:
self.xmin = min(x) if self.xmin is None else self.xmin
self.xmax = max(x) if self.xmax is None else self.xmax
ax.plt = ax.plot(x, ychannel, lw=1, color='b')[0]
else:
ax.plt.set_data(x, ychannel)
self.titles.append("Channel {}: {:4.2f}dB".format(n, numpy.max(ychannel)))
class RTIHeisPlot(Plot):
CODE = 'rti_heis'
def setup(self):
self.xaxis = 'time'
self.ncols = 1
self.nrows = 1
self.nplots = 1
self.ylabel = 'Intensity [dB]'
self.xlabel = 'Time'
self.titles = ['RTI']
self.colorbar = False
self.height = 4
self.plots_adjust.update({'right': 0.85 })
def update(self, dataOut):
data = {}
meta = {}
spc = dataOut.data_spc / dataOut.normFactor
spc = 10*numpy.log10(numpy.average(spc, axis=1))
data['rti_heis'] = spc
return data, meta
def plot(self):
x = self.data.times
Y = self.data['rti_heis']
if self.axes[0].firsttime:
self.ymin = numpy.nanmin(Y) - 5 if self.ymin == None else self.ymin
self.ymax = numpy.nanmax(Y) + 5 if self.ymax == None else self.ymax
for ch in self.data.channels:
y = Y[ch]
self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch))
plt.legend(bbox_to_anchor=(1.18, 1.0))
else:
for ch in self.data.channels:
y = Y[ch]
self.axes[0].lines[ch].set_data(x, y)