|
|
import numpy as np
|
|
|
import matplotlib.pyplot as pl
|
|
|
import warnings
|
|
|
#export WRADLIB_DATA=/path/to/wradlib-data
|
|
|
warnings.filterwarnings('ignore')
|
|
|
|
|
|
from wradlib.io import read_generic_netcdf
|
|
|
from wradlib.util import get_wradlib_data_file
|
|
|
import os
|
|
|
|
|
|
|
|
|
|
|
|
# A little helper function for repeated tasks
|
|
|
def read_and_overview(filename):
|
|
|
"""Read NetCDF using read_generic_netcdf and print upper level dictionary keys
|
|
|
"""
|
|
|
test = read_generic_netcdf(filename)
|
|
|
print("\nPrint keys for file %s" % os.path.basename(filename))
|
|
|
for key in test.keys():
|
|
|
print("\t%s" % key)
|
|
|
return test
|
|
|
|
|
|
|
|
|
filename = '/home/soporte/Downloads/PX1000/PX-20180220-174014-E0.0-Z.nc'
|
|
|
filename = get_wradlib_data_file(filename)
|
|
|
test= read_and_overview(filename)
|
|
|
print("Height",test['Height'])
|
|
|
print("Azimuth",test['Azimuth'])
|
|
|
print("Elevation",test['Elevation'])
|
|
|
print("CalibH-value",test['CalibH-value'])
|
|
|
print("attributes",test['attributes'])
|
|
|
print("-------------------------------------------------------------------------------------")
|
|
|
for key in test.keys():
|
|
|
print(key,test[str(key)])
|
|
|
|
|
|
'''
|
|
|
try:
|
|
|
get_ipython().magic('matplotlib inline')
|
|
|
except:
|
|
|
pl.ion()
|
|
|
img, meta = wradlib.io.read_dx(filename)
|
|
|
print("Shape of polar array: %r\n" % (img.shape,))
|
|
|
print("Some meta data of the DX file:")
|
|
|
#print("\tdatetime: %r" % (meta["datetime"],))
|
|
|
#print("\tRadar ID: %s" % (meta["radarid"],))
|
|
|
|
|
|
img[200:250,:]= np.ones([50,img.shape[1]])*np.nan
|
|
|
|
|
|
img[300:360,:]= np.ones([60,img.shape[1]])*np.nan
|
|
|
|
|
|
cgax, pm= wradlib.vis.plot_ppi(img)
|
|
|
txt = pl.title('Simple PPI')
|
|
|
print("coordenada angular",img[:,0],len(img[:,0]))
|
|
|
print("COORDENADA 0",img[0],len(img[0]))
|
|
|
cbar = pl.gcf().colorbar(pm, pad=0.075)
|
|
|
|
|
|
#r = np.arange(40, 80)
|
|
|
#az = np.arange(200, 250)
|
|
|
#ax, pm = wradlib.vis.plot_ppi(img[200:250, 40:80], r, az, autoext=False)
|
|
|
#ax, pm = wradlib.vis.plot_ppi(img[200:250, 40:80], r, az)
|
|
|
|
|
|
#txt = pl.title('Sector PPI')
|
|
|
pl.show()
|
|
|
'''
|
|
|
|