|
|
# Copyright (c) 2012-2020 Jicamarca Radio Observatory
|
|
|
# All rights reserved.
|
|
|
#
|
|
|
# Distributed under the terms of the BSD 3-clause license.
|
|
|
"""Classes to plot Spectra data
|
|
|
|
|
|
"""
|
|
|
|
|
|
import os
|
|
|
import numpy
|
|
|
|
|
|
from schainpy.model.graphics.jroplot_base import Plot, plt, log
|
|
|
|
|
|
|
|
|
class SpectraPlot(Plot):
|
|
|
'''
|
|
|
Plot for Spectra data
|
|
|
'''
|
|
|
|
|
|
CODE = 'spc'
|
|
|
colormap = 'jet'
|
|
|
plot_type = 'pcolor'
|
|
|
buffering = False
|
|
|
|
|
|
def setup(self):
|
|
|
self.nplots = len(self.data.channels)
|
|
|
self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
|
|
|
self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
|
|
|
self.height = 2.6 * self.nrows
|
|
|
self.cb_label = 'dB'
|
|
|
if self.showprofile:
|
|
|
self.width = 4 * self.ncols
|
|
|
else:
|
|
|
self.width = 3.5 * self.ncols
|
|
|
self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
|
|
|
self.ylabel = 'Range [km]'
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor)
|
|
|
data['spc'] = spc
|
|
|
data['rti'] = dataOut.getPower()
|
|
|
data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor)
|
|
|
meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1))
|
|
|
if self.CODE == 'spc_moments':
|
|
|
data['moments'] = dataOut.moments
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
if self.xaxis == "frequency":
|
|
|
x = self.data.xrange[0]
|
|
|
self.xlabel = "Frequency (kHz)"
|
|
|
elif self.xaxis == "time":
|
|
|
x = self.data.xrange[1]
|
|
|
self.xlabel = "Time (ms)"
|
|
|
else:
|
|
|
x = self.data.xrange[2]
|
|
|
self.xlabel = "Velocity (m/s)"
|
|
|
|
|
|
if self.CODE == 'spc_moments':
|
|
|
x = self.data.xrange[2]
|
|
|
self.xlabel = "Velocity (m/s)"
|
|
|
|
|
|
self.titles = []
|
|
|
|
|
|
y = self.data.yrange
|
|
|
self.y = y
|
|
|
|
|
|
data = self.data[-1]
|
|
|
z = data['spc']
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
noise = data['noise'][n]
|
|
|
if self.CODE == 'spc_moments':
|
|
|
mean = data['moments'][n, 1]
|
|
|
if ax.firsttime:
|
|
|
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
|
|
|
self.xmin = self.xmin if self.xmin else -self.xmax
|
|
|
self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
|
|
|
self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
|
|
|
if self.showprofile:
|
|
|
ax.plt_profile = self.pf_axes[n].plot(
|
|
|
data['rti'][n], y)[0]
|
|
|
ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y,
|
|
|
color="k", linestyle="dashed", lw=1)[0]
|
|
|
if self.CODE == 'spc_moments':
|
|
|
ax.plt_mean = ax.plot(mean, y, color='k')[0]
|
|
|
else:
|
|
|
ax.plt.set_array(z[n].T.ravel())
|
|
|
if self.showprofile:
|
|
|
ax.plt_profile.set_data(data['rti'][n], y)
|
|
|
ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y)
|
|
|
if self.CODE == 'spc_moments':
|
|
|
ax.plt_mean.set_data(mean, y)
|
|
|
self.titles.append('CH {}: {:3.2f}dB'.format(n, noise))
|
|
|
|
|
|
|
|
|
class CrossSpectraPlot(Plot):
|
|
|
|
|
|
CODE = 'cspc'
|
|
|
colormap = 'jet'
|
|
|
plot_type = 'pcolor'
|
|
|
zmin_coh = None
|
|
|
zmax_coh = None
|
|
|
zmin_phase = None
|
|
|
zmax_phase = None
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
self.ncols = 4
|
|
|
self.nplots = len(self.data.pairs) * 2
|
|
|
self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
|
|
|
self.width = 3.1 * self.ncols
|
|
|
self.height = 2.6 * self.nrows
|
|
|
self.ylabel = 'Range [km]'
|
|
|
self.showprofile = False
|
|
|
self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08})
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
|
|
|
spc = dataOut.data_spc
|
|
|
cspc = dataOut.data_cspc
|
|
|
meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1))
|
|
|
meta['pairs'] = dataOut.pairsList
|
|
|
|
|
|
tmp = []
|
|
|
|
|
|
for n, pair in enumerate(meta['pairs']):
|
|
|
out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]])
|
|
|
coh = numpy.abs(out)
|
|
|
phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi
|
|
|
tmp.append(coh)
|
|
|
tmp.append(phase)
|
|
|
|
|
|
data['cspc'] = numpy.array(tmp)
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
if self.xaxis == "frequency":
|
|
|
x = self.data.xrange[0]
|
|
|
self.xlabel = "Frequency (kHz)"
|
|
|
elif self.xaxis == "time":
|
|
|
x = self.data.xrange[1]
|
|
|
self.xlabel = "Time (ms)"
|
|
|
else:
|
|
|
x = self.data.xrange[2]
|
|
|
self.xlabel = "Velocity (m/s)"
|
|
|
|
|
|
self.titles = []
|
|
|
|
|
|
y = self.data.yrange
|
|
|
self.y = y
|
|
|
|
|
|
data = self.data[-1]
|
|
|
cspc = data['cspc']
|
|
|
|
|
|
for n in range(len(self.data.pairs)):
|
|
|
pair = self.data.pairs[n]
|
|
|
coh = cspc[n*2]
|
|
|
phase = cspc[n*2+1]
|
|
|
ax = self.axes[2 * n]
|
|
|
if ax.firsttime:
|
|
|
ax.plt = ax.pcolormesh(x, y, coh.T,
|
|
|
vmin=0,
|
|
|
vmax=1,
|
|
|
cmap=plt.get_cmap(self.colormap_coh)
|
|
|
)
|
|
|
else:
|
|
|
ax.plt.set_array(coh.T.ravel())
|
|
|
self.titles.append(
|
|
|
'Coherence Ch{} * Ch{}'.format(pair[0], pair[1]))
|
|
|
|
|
|
ax = self.axes[2 * n + 1]
|
|
|
if ax.firsttime:
|
|
|
ax.plt = ax.pcolormesh(x, y, phase.T,
|
|
|
vmin=-180,
|
|
|
vmax=180,
|
|
|
cmap=plt.get_cmap(self.colormap_phase)
|
|
|
)
|
|
|
else:
|
|
|
ax.plt.set_array(phase.T.ravel())
|
|
|
self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1]))
|
|
|
|
|
|
|
|
|
class RTIPlot(Plot):
|
|
|
'''
|
|
|
Plot for RTI data
|
|
|
'''
|
|
|
|
|
|
CODE = 'rti'
|
|
|
colormap = 'jet'
|
|
|
plot_type = 'pcolorbuffer'
|
|
|
|
|
|
def setup(self):
|
|
|
self.xaxis = 'time'
|
|
|
self.ncols = 1
|
|
|
self.nrows = len(self.data.channels)
|
|
|
self.nplots = len(self.data.channels)
|
|
|
self.ylabel = 'Range [km]'
|
|
|
self.xlabel = 'Time'
|
|
|
self.cb_label = 'dB'
|
|
|
self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95})
|
|
|
self.titles = ['{} Channel {}'.format(
|
|
|
self.CODE.upper(), x) for x in range(self.nrows)]
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
data['rti'] = dataOut.getPower()
|
|
|
data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor)
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
self.x = self.data.times
|
|
|
self.y = self.data.yrange
|
|
|
self.z = self.data[self.CODE]
|
|
|
self.z = numpy.ma.masked_invalid(self.z)
|
|
|
|
|
|
if self.decimation is None:
|
|
|
x, y, z = self.fill_gaps(self.x, self.y, self.z)
|
|
|
else:
|
|
|
x, y, z = self.fill_gaps(*self.decimate())
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
self.zmin = self.zmin if self.zmin else numpy.min(self.z)
|
|
|
self.zmax = self.zmax if self.zmax else numpy.max(self.z)
|
|
|
data = self.data[-1]
|
|
|
if ax.firsttime:
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
if self.showprofile:
|
|
|
ax.plot_profile = self.pf_axes[n].plot(
|
|
|
data['rti'][n], self.y)[0]
|
|
|
ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y,
|
|
|
color="k", linestyle="dashed", lw=1)[0]
|
|
|
else:
|
|
|
ax.collections.remove(ax.collections[0])
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
if self.showprofile:
|
|
|
ax.plot_profile.set_data(data['rti'][n], self.y)
|
|
|
ax.plot_noise.set_data(numpy.repeat(
|
|
|
data['noise'][n], len(self.y)), self.y)
|
|
|
|
|
|
|
|
|
class CoherencePlot(RTIPlot):
|
|
|
'''
|
|
|
Plot for Coherence data
|
|
|
'''
|
|
|
|
|
|
CODE = 'coh'
|
|
|
|
|
|
def setup(self):
|
|
|
self.xaxis = 'time'
|
|
|
self.ncols = 1
|
|
|
self.nrows = len(self.data.pairs)
|
|
|
self.nplots = len(self.data.pairs)
|
|
|
self.ylabel = 'Range [km]'
|
|
|
self.xlabel = 'Time'
|
|
|
self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95})
|
|
|
if self.CODE == 'coh':
|
|
|
self.cb_label = ''
|
|
|
self.titles = [
|
|
|
'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs]
|
|
|
else:
|
|
|
self.cb_label = 'Degrees'
|
|
|
self.titles = [
|
|
|
'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs]
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
data['coh'] = dataOut.getCoherence()
|
|
|
meta['pairs'] = dataOut.pairsList
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
class PhasePlot(CoherencePlot):
|
|
|
'''
|
|
|
Plot for Phase map data
|
|
|
'''
|
|
|
|
|
|
CODE = 'phase'
|
|
|
colormap = 'seismic'
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
data['phase'] = dataOut.getCoherence(phase=True)
|
|
|
meta['pairs'] = dataOut.pairsList
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
class NoisePlot(Plot):
|
|
|
'''
|
|
|
Plot for noise
|
|
|
'''
|
|
|
|
|
|
CODE = 'noise'
|
|
|
plot_type = 'scatterbuffer'
|
|
|
|
|
|
def setup(self):
|
|
|
self.xaxis = 'time'
|
|
|
self.ncols = 1
|
|
|
self.nrows = 1
|
|
|
self.nplots = 1
|
|
|
self.ylabel = 'Intensity [dB]'
|
|
|
self.xlabel = 'Time'
|
|
|
self.titles = ['Noise']
|
|
|
self.colorbar = False
|
|
|
self.plots_adjust.update({'right': 0.85 })
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1)
|
|
|
meta['yrange'] = numpy.array([])
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
x = self.data.times
|
|
|
xmin = self.data.min_time
|
|
|
xmax = xmin + self.xrange * 60 * 60
|
|
|
Y = self.data['noise']
|
|
|
|
|
|
if self.axes[0].firsttime:
|
|
|
self.ymin = numpy.nanmin(Y) - 5
|
|
|
self.ymax = numpy.nanmax(Y) + 5
|
|
|
for ch in self.data.channels:
|
|
|
y = Y[ch]
|
|
|
self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch))
|
|
|
plt.legend(bbox_to_anchor=(1.18, 1.0))
|
|
|
else:
|
|
|
for ch in self.data.channels:
|
|
|
y = Y[ch]
|
|
|
self.axes[0].lines[ch].set_data(x, y)
|
|
|
|
|
|
|
|
|
class PowerProfilePlot(Plot):
|
|
|
|
|
|
CODE = 'pow_profile'
|
|
|
plot_type = 'scatter'
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
self.ncols = 1
|
|
|
self.nrows = 1
|
|
|
self.nplots = 1
|
|
|
self.height = 4
|
|
|
self.width = 3
|
|
|
self.ylabel = 'Range [km]'
|
|
|
self.xlabel = 'Intensity [dB]'
|
|
|
self.titles = ['Power Profile']
|
|
|
self.colorbar = False
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
data[self.CODE] = dataOut.getPower()
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
y = self.data.yrange
|
|
|
self.y = y
|
|
|
|
|
|
x = self.data[-1][self.CODE]
|
|
|
|
|
|
if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9
|
|
|
if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1
|
|
|
|
|
|
if self.axes[0].firsttime:
|
|
|
for ch in self.data.channels:
|
|
|
self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch))
|
|
|
plt.legend()
|
|
|
else:
|
|
|
for ch in self.data.channels:
|
|
|
self.axes[0].lines[ch].set_data(x[ch], y)
|
|
|
|
|
|
|
|
|
class SpectraCutPlot(Plot):
|
|
|
|
|
|
CODE = 'spc_cut'
|
|
|
plot_type = 'scatter'
|
|
|
buffering = False
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
self.nplots = len(self.data.channels)
|
|
|
self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
|
|
|
self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
|
|
|
self.width = 3.4 * self.ncols + 1.5
|
|
|
self.height = 3 * self.nrows
|
|
|
self.ylabel = 'Power [dB]'
|
|
|
self.colorbar = False
|
|
|
self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08})
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor)
|
|
|
data['spc'] = spc
|
|
|
meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1))
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
if self.xaxis == "frequency":
|
|
|
x = self.data.xrange[0][1:]
|
|
|
self.xlabel = "Frequency (kHz)"
|
|
|
elif self.xaxis == "time":
|
|
|
x = self.data.xrange[1]
|
|
|
self.xlabel = "Time (ms)"
|
|
|
else:
|
|
|
x = self.data.xrange[2]
|
|
|
self.xlabel = "Velocity (m/s)"
|
|
|
|
|
|
self.titles = []
|
|
|
|
|
|
y = self.data.yrange
|
|
|
z = self.data[-1]['spc']
|
|
|
|
|
|
if self.height_index:
|
|
|
index = numpy.array(self.height_index)
|
|
|
else:
|
|
|
index = numpy.arange(0, len(y), int((len(y))/9))
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
if ax.firsttime:
|
|
|
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
|
|
|
self.xmin = self.xmin if self.xmin else -self.xmax
|
|
|
self.ymin = self.ymin if self.ymin else numpy.nanmin(z)
|
|
|
self.ymax = self.ymax if self.ymax else numpy.nanmax(z)
|
|
|
ax.plt = ax.plot(x, z[n, :, index].T)
|
|
|
labels = ['Range = {:2.1f}km'.format(y[i]) for i in index]
|
|
|
self.figures[0].legend(ax.plt, labels, loc='center right')
|
|
|
else:
|
|
|
for i, line in enumerate(ax.plt):
|
|
|
line.set_data(x, z[n, :, index[i]])
|
|
|
self.titles.append('CH {}'.format(n))
|
|
|
|
|
|
|
|
|
class BeaconPhase(Plot):
|
|
|
|
|
|
__isConfig = None
|
|
|
__nsubplots = None
|
|
|
|
|
|
PREFIX = 'beacon_phase'
|
|
|
|
|
|
def __init__(self):
|
|
|
Plot.__init__(self)
|
|
|
self.timerange = 24*60*60
|
|
|
self.isConfig = False
|
|
|
self.__nsubplots = 1
|
|
|
self.counter_imagwr = 0
|
|
|
self.WIDTH = 800
|
|
|
self.HEIGHT = 400
|
|
|
self.WIDTHPROF = 120
|
|
|
self.HEIGHTPROF = 0
|
|
|
self.xdata = None
|
|
|
self.ydata = None
|
|
|
|
|
|
self.PLOT_CODE = BEACON_CODE
|
|
|
|
|
|
self.FTP_WEI = None
|
|
|
self.EXP_CODE = None
|
|
|
self.SUB_EXP_CODE = None
|
|
|
self.PLOT_POS = None
|
|
|
|
|
|
self.filename_phase = None
|
|
|
|
|
|
self.figfile = None
|
|
|
|
|
|
self.xmin = None
|
|
|
self.xmax = None
|
|
|
|
|
|
def getSubplots(self):
|
|
|
|
|
|
ncol = 1
|
|
|
nrow = 1
|
|
|
|
|
|
return nrow, ncol
|
|
|
|
|
|
def setup(self, id, nplots, wintitle, showprofile=True, show=True):
|
|
|
|
|
|
self.__showprofile = showprofile
|
|
|
self.nplots = nplots
|
|
|
|
|
|
ncolspan = 7
|
|
|
colspan = 6
|
|
|
self.__nsubplots = 2
|
|
|
|
|
|
self.createFigure(id = id,
|
|
|
wintitle = wintitle,
|
|
|
widthplot = self.WIDTH+self.WIDTHPROF,
|
|
|
heightplot = self.HEIGHT+self.HEIGHTPROF,
|
|
|
show=show)
|
|
|
|
|
|
nrow, ncol = self.getSubplots()
|
|
|
|
|
|
self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1)
|
|
|
|
|
|
def save_phase(self, filename_phase):
|
|
|
f = open(filename_phase,'w+')
|
|
|
f.write('\n\n')
|
|
|
f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n')
|
|
|
f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' )
|
|
|
f.close()
|
|
|
|
|
|
def save_data(self, filename_phase, data, data_datetime):
|
|
|
f=open(filename_phase,'a')
|
|
|
timetuple_data = data_datetime.timetuple()
|
|
|
day = str(timetuple_data.tm_mday)
|
|
|
month = str(timetuple_data.tm_mon)
|
|
|
year = str(timetuple_data.tm_year)
|
|
|
hour = str(timetuple_data.tm_hour)
|
|
|
minute = str(timetuple_data.tm_min)
|
|
|
second = str(timetuple_data.tm_sec)
|
|
|
f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n')
|
|
|
f.close()
|
|
|
|
|
|
def plot(self):
|
|
|
log.warning('TODO: Not yet implemented...')
|
|
|
|
|
|
def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True',
|
|
|
xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None,
|
|
|
timerange=None,
|
|
|
save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
|
|
|
server=None, folder=None, username=None, password=None,
|
|
|
ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
|
|
|
|
|
|
if dataOut.flagNoData:
|
|
|
return dataOut
|
|
|
|
|
|
if not isTimeInHourRange(dataOut.datatime, xmin, xmax):
|
|
|
return
|
|
|
|
|
|
if pairsList == None:
|
|
|
pairsIndexList = dataOut.pairsIndexList[:10]
|
|
|
else:
|
|
|
pairsIndexList = []
|
|
|
for pair in pairsList:
|
|
|
if pair not in dataOut.pairsList:
|
|
|
raise ValueError("Pair %s is not in dataOut.pairsList" %(pair))
|
|
|
pairsIndexList.append(dataOut.pairsList.index(pair))
|
|
|
|
|
|
if pairsIndexList == []:
|
|
|
return
|
|
|
|
|
|
# if len(pairsIndexList) > 4:
|
|
|
# pairsIndexList = pairsIndexList[0:4]
|
|
|
|
|
|
hmin_index = None
|
|
|
hmax_index = None
|
|
|
|
|
|
if hmin != None and hmax != None:
|
|
|
indexes = numpy.arange(dataOut.nHeights)
|
|
|
hmin_list = indexes[dataOut.heightList >= hmin]
|
|
|
hmax_list = indexes[dataOut.heightList <= hmax]
|
|
|
|
|
|
if hmin_list.any():
|
|
|
hmin_index = hmin_list[0]
|
|
|
|
|
|
if hmax_list.any():
|
|
|
hmax_index = hmax_list[-1]+1
|
|
|
|
|
|
x = dataOut.getTimeRange()
|
|
|
|
|
|
thisDatetime = dataOut.datatime
|
|
|
|
|
|
title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y"))
|
|
|
xlabel = "Local Time"
|
|
|
ylabel = "Phase (degrees)"
|
|
|
|
|
|
update_figfile = False
|
|
|
|
|
|
nplots = len(pairsIndexList)
|
|
|
#phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList)))
|
|
|
phase_beacon = numpy.zeros(len(pairsIndexList))
|
|
|
for i in range(nplots):
|
|
|
pair = dataOut.pairsList[pairsIndexList[i]]
|
|
|
ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0)
|
|
|
powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0)
|
|
|
powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0)
|
|
|
avgcoherenceComplex = ccf/numpy.sqrt(powa*powb)
|
|
|
phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi
|
|
|
|
|
|
if dataOut.beacon_heiIndexList:
|
|
|
phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList])
|
|
|
else:
|
|
|
phase_beacon[i] = numpy.average(phase)
|
|
|
|
|
|
if not self.isConfig:
|
|
|
|
|
|
nplots = len(pairsIndexList)
|
|
|
|
|
|
self.setup(id=id,
|
|
|
nplots=nplots,
|
|
|
wintitle=wintitle,
|
|
|
showprofile=showprofile,
|
|
|
show=show)
|
|
|
|
|
|
if timerange != None:
|
|
|
self.timerange = timerange
|
|
|
|
|
|
self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange)
|
|
|
|
|
|
if ymin == None: ymin = 0
|
|
|
if ymax == None: ymax = 360
|
|
|
|
|
|
self.FTP_WEI = ftp_wei
|
|
|
self.EXP_CODE = exp_code
|
|
|
self.SUB_EXP_CODE = sub_exp_code
|
|
|
self.PLOT_POS = plot_pos
|
|
|
|
|
|
self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
|
|
|
self.isConfig = True
|
|
|
self.figfile = figfile
|
|
|
self.xdata = numpy.array([])
|
|
|
self.ydata = numpy.array([])
|
|
|
|
|
|
update_figfile = True
|
|
|
|
|
|
#open file beacon phase
|
|
|
path = '%s%03d' %(self.PREFIX, self.id)
|
|
|
beacon_file = os.path.join(path,'%s.txt'%self.name)
|
|
|
self.filename_phase = os.path.join(figpath,beacon_file)
|
|
|
#self.save_phase(self.filename_phase)
|
|
|
|
|
|
|
|
|
#store data beacon phase
|
|
|
#self.save_data(self.filename_phase, phase_beacon, thisDatetime)
|
|
|
|
|
|
self.setWinTitle(title)
|
|
|
|
|
|
|
|
|
title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
|
|
|
|
|
|
legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList]
|
|
|
|
|
|
axes = self.axesList[0]
|
|
|
|
|
|
self.xdata = numpy.hstack((self.xdata, x[0:1]))
|
|
|
|
|
|
if len(self.ydata)==0:
|
|
|
self.ydata = phase_beacon.reshape(-1,1)
|
|
|
else:
|
|
|
self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1)))
|
|
|
|
|
|
|
|
|
axes.pmultilineyaxis(x=self.xdata, y=self.ydata,
|
|
|
xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax,
|
|
|
xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid",
|
|
|
XAxisAsTime=True, grid='both'
|
|
|
)
|
|
|
|
|
|
self.draw()
|
|
|
|
|
|
if dataOut.ltctime >= self.xmax:
|
|
|
self.counter_imagwr = wr_period
|
|
|
self.isConfig = False
|
|
|
update_figfile = True
|
|
|
|
|
|
self.save(figpath=figpath,
|
|
|
figfile=figfile,
|
|
|
save=save,
|
|
|
ftp=ftp,
|
|
|
wr_period=wr_period,
|
|
|
thisDatetime=thisDatetime,
|
|
|
update_figfile=update_figfile)
|
|
|
|
|
|
return dataOut
|