##// END OF EJS Templates
--
--

File last commit:

r1712:562a60b2dcd6
r1712:562a60b2dcd6
Show More
jroproc_voltage.py
3248 lines | 110.2 KiB | text/x-python | PythonLexer
import sys
import numpy,math
from scipy import interpolate
from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon
from schainpy.utils import log
from schainpy.model.io.utilsIO import getHei_index
from time import time
import datetime
import numpy
#import copy
from schainpy.model.data import _noise
from matplotlib import pyplot as plt
class VoltageProc(ProcessingUnit):
def __init__(self):
ProcessingUnit.__init__(self)
self.dataOut = Voltage()
self.flip = 1
self.setupReq = False
def run(self):
#print("running volt proc")
if self.dataIn.type == 'AMISR':
self.__updateObjFromAmisrInput()
if self.dataOut.buffer_empty:
if self.dataIn.type == 'Voltage':
self.dataOut.copy(self.dataIn)
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
self.dataOut.ippSeconds = self.dataIn.ippSeconds
self.dataOut.ipp = self.dataIn.ipp
#update Processing Header:
self.dataOut.processingHeaderObj.heightList = self.dataOut.heightList
self.dataOut.processingHeaderObj.ipp = self.dataOut.ipp
self.dataOut.processingHeaderObj.nCohInt = self.dataOut.nCohInt
self.dataOut.processingHeaderObj.dtype = self.dataOut.type
self.dataOut.processingHeaderObj.channelList = self.dataOut.channelList
self.dataOut.processingHeaderObj.azimuthList = self.dataOut.azimuthList
self.dataOut.processingHeaderObj.elevationList = self.dataOut.elevationList
self.dataOut.processingHeaderObj.codeList = self.dataOut.nChannels
self.dataOut.processingHeaderObj.heightList = self.dataOut.heightList
self.dataOut.processingHeaderObj.heightResolution = self.dataOut.heightList[1] - self.dataOut.heightList[0]
def __updateObjFromAmisrInput(self):
self.dataOut.timeZone = self.dataIn.timeZone
self.dataOut.dstFlag = self.dataIn.dstFlag
self.dataOut.errorCount = self.dataIn.errorCount
self.dataOut.useLocalTime = self.dataIn.useLocalTime
self.dataOut.flagNoData = self.dataIn.flagNoData
self.dataOut.data = self.dataIn.data
self.dataOut.utctime = self.dataIn.utctime
self.dataOut.channelList = self.dataIn.channelList
#self.dataOut.timeInterval = self.dataIn.timeInterval
self.dataOut.heightList = self.dataIn.heightList
self.dataOut.nProfiles = self.dataIn.nProfiles
self.dataOut.nCohInt = self.dataIn.nCohInt
self.dataOut.ippSeconds = self.dataIn.ippSeconds
self.dataOut.frequency = self.dataIn.frequency
self.dataOut.azimuth = self.dataIn.azimuth
self.dataOut.zenith = self.dataIn.zenith
self.dataOut.beam.codeList = self.dataIn.beam.codeList
self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList
self.dataOut.beam.zenithList = self.dataIn.beam.zenithList
class selectChannels(Operation):
def run(self, dataOut, channelList=[]):
if isinstance(channelList, int):
channelList = [channelList]
self.channelList = channelList
if len(self.channelList) == 0:
print("Missing channelList")
return dataOut
channelIndexList = []
if not dataOut.buffer_empty: # cuando se usa proc volts como buffer de datos
return dataOut
#print("channel List: ", dataOut.channelList)
if type(dataOut.channelList) is not list: #leer array desde HDF5
try:
dataOut.channelList = dataOut.channelList.tolist()
except Exception as e:
print("Select Channels: ",e)
for channel in self.channelList:
if channel not in dataOut.channelList:
raise ValueError("Channel %d is not in %s" %(channel, str(dataOut.channelList)))
index = dataOut.channelList.index(channel)
channelIndexList.append(index)
dataOut = self.selectChannelsByIndex(dataOut,channelIndexList)
#update Processing Header:
dataOut.processingHeaderObj.channelList = dataOut.channelList
dataOut.processingHeaderObj.elevationList = dataOut.elevationList
dataOut.processingHeaderObj.azimuthList = dataOut.azimuthList
dataOut.processingHeaderObj.codeList = dataOut.codeList
dataOut.processingHeaderObj.nChannels = len(dataOut.channelList)
return dataOut
def selectChannelsByIndex(self, dataOut, channelIndexList):
"""
Selecciona un bloque de datos en base a canales segun el channelIndexList
Input:
channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
Affected:
dataOut.data
dataOut.channelIndexList
dataOut.nChannels
dataOut.m_ProcessingHeader.totalSpectra
dataOut.systemHeaderObj.numChannels
dataOut.m_ProcessingHeader.blockSize
Return:
None
"""
#print("selectChannelsByIndex")
# for channelIndex in channelIndexList:
# if channelIndex not in dataOut.channelIndexList:
# raise ValueError("The value %d in channelIndexList is not valid" %channelIndex)
if dataOut.type == 'Voltage':
if dataOut.flagDataAsBlock:
"""
Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
"""
data = dataOut.data[channelIndexList,:,:]
else:
data = dataOut.data[channelIndexList,:]
dataOut.data = data
# dataOut.channelList = [dataOut.channelList[i] for i in channelIndexList]
dataOut.channelList = [n for n in range(len(channelIndexList))]
elif dataOut.type == 'Spectra':
if hasattr(dataOut, 'data_spc'):
if dataOut.data_spc is None:
raise ValueError("data_spc is None")
return dataOut
else:
data_spc = dataOut.data_spc[channelIndexList, :]
dataOut.data_spc = data_spc
# if hasattr(dataOut, 'data_dc') :# and
# if dataOut.data_dc is None:
# raise ValueError("data_dc is None")
# return dataOut
# else:
# data_dc = dataOut.data_dc[channelIndexList, :]
# dataOut.data_dc = data_dc
# dataOut.channelList = [dataOut.channelList[i] for i in channelIndexList]
dataOut.channelList = channelIndexList
dataOut = self.__selectPairsByChannel(dataOut,channelIndexList)
# channelIndexList = numpy.asarray(channelIndexList)
dataOut.elevationList = numpy.asarray(dataOut.elevationList)
dataOut.azimuthList = numpy.asarray(dataOut.azimuthList)
dataOut.codeList = numpy.asarray(dataOut.codeList)
if (len(dataOut.elevationList) > 0):
dataOut.elevationList = dataOut.elevationList[channelIndexList]
dataOut.azimuthList = dataOut.azimuthList[channelIndexList]
dataOut.codeList = dataOut.codeList[channelIndexList]
return dataOut
def __selectPairsByChannel(self, dataOut, channelList=None):
#print("__selectPairsByChannel")
if channelList == None:
return
pairsIndexListSelected = []
for pairIndex in dataOut.pairsIndexList:
# First pair
if dataOut.pairsList[pairIndex][0] not in channelList:
continue
# Second pair
if dataOut.pairsList[pairIndex][1] not in channelList:
continue
pairsIndexListSelected.append(pairIndex)
if not pairsIndexListSelected:
dataOut.data_cspc = None
dataOut.pairsList = []
return
dataOut.data_cspc = dataOut.data_cspc[pairsIndexListSelected]
dataOut.pairsList = [dataOut.pairsList[i]
for i in pairsIndexListSelected]
return dataOut
class selectHeights(Operation):
def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None):
"""
Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
minHei <= height <= maxHei
Input:
minHei : valor minimo de altura a considerar
maxHei : valor maximo de altura a considerar
Affected:
Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
Return:
1 si el metodo se ejecuto con exito caso contrario devuelve 0
"""
self.dataOut = dataOut
if minHei and maxHei:
if (minHei < dataOut.heightList[0]):
minHei = dataOut.heightList[0]
if (maxHei > dataOut.heightList[-1]):
maxHei = dataOut.heightList[-1]
minIndex = 0
maxIndex = 0
heights = dataOut.heightList
inda = numpy.where(heights >= minHei)
indb = numpy.where(heights <= maxHei)
try:
minIndex = inda[0][0]
except:
minIndex = 0
try:
maxIndex = indb[0][-1]
except:
maxIndex = len(heights)
self.selectHeightsByIndex(minIndex, maxIndex)
#update Processing Header:
dataOut.processingHeaderObj.heightList = dataOut.heightList
return dataOut
def selectHeightsByIndex(self, minIndex, maxIndex):
"""
Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
minIndex <= index <= maxIndex
Input:
minIndex : valor de indice minimo de altura a considerar
maxIndex : valor de indice maximo de altura a considerar
Affected:
self.dataOut.data
self.dataOut.heightList
Return:
1 si el metodo se ejecuto con exito caso contrario devuelve 0
"""
if self.dataOut.type == 'Voltage':
if (minIndex < 0) or (minIndex > maxIndex):
raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex))
if (maxIndex >= self.dataOut.nHeights):
maxIndex = self.dataOut.nHeights
#voltage
if self.dataOut.flagDataAsBlock:
"""
Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
"""
data = self.dataOut.data[:,:, minIndex:maxIndex]
else:
data = self.dataOut.data[:, minIndex:maxIndex]
# firstHeight = self.dataOut.heightList[minIndex]
self.dataOut.data = data
self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex]
if self.dataOut.nHeights <= 1:
raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights))
elif self.dataOut.type == 'Spectra':
if (minIndex < 0) or (minIndex > maxIndex):
raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (
minIndex, maxIndex))
if (maxIndex >= self.dataOut.nHeights):
maxIndex = self.dataOut.nHeights - 1
# Spectra
data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1]
data_cspc = None
if self.dataOut.data_cspc is not None:
data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1]
data_dc = None
if self.dataOut.data_dc is not None:
data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1]
self.dataOut.data_spc = data_spc
self.dataOut.data_cspc = data_cspc
self.dataOut.data_dc = data_dc
self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1]
return 1
class filterByHeights(Operation):
ifConfig=False
deltaHeight = None
newdelta=None
newheights=None
r=None
h0=None
nHeights=None
def run(self, dataOut, window):
# print("1",dataOut.data.shape)
# print(dataOut.nHeights)
if window == None:
window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / self.deltaHeight
if not self.ifConfig: #and dataOut.useInputBuffer:
self.deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
self.ifConfig = True
self.newdelta = self.deltaHeight * window
self.r = dataOut.nHeights % window
self.newheights = (dataOut.nHeights-self.r)/window
self.h0 = dataOut.heightList[0]
self.nHeights = dataOut.nHeights
if self.newheights <= 1:
raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window))
if dataOut.flagDataAsBlock:
"""
Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
"""
buffer = dataOut.data[:, :, 0:int(self.nHeights-self.r)]
buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(self.nHeights/window), window)
buffer = numpy.sum(buffer,3)
else:
buffer = dataOut.data[:,0:int(self.nHeights-self.r)]
buffer = buffer.reshape(dataOut.nChannels,int(self.nHeights/window),int(window))
buffer = numpy.sum(buffer,2)
dataOut.data = buffer
dataOut.heightList = self.h0 + numpy.arange( self.newheights )*self.newdelta
dataOut.windowOfFilter = window
#update Processing Header:
dataOut.processingHeaderObj.heightList = dataOut.heightList
dataOut.processingHeaderObj.nWindows = window
return dataOut
class setH0(Operation):
def run(self, dataOut, h0, deltaHeight = None):
if not deltaHeight:
deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
nHeights = dataOut.nHeights
newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight
dataOut.heightList = newHeiRange
#update Processing Header:
dataOut.processingHeaderObj.heightList = dataOut.heightList
return dataOut
class deFlip(Operation):
def run(self, dataOut, channelList = []):
data = dataOut.data.copy()
if dataOut.flagDataAsBlock:
flip = self.flip
profileList = list(range(dataOut.nProfiles))
if not channelList:
for thisProfile in profileList:
data[:,thisProfile,:] = data[:,thisProfile,:]*flip
flip *= -1.0
else:
for thisChannel in channelList:
if thisChannel not in dataOut.channelList:
continue
for thisProfile in profileList:
data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip
flip *= -1.0
self.flip = flip
else:
if not channelList:
data[:,:] = data[:,:]*self.flip
else:
for thisChannel in channelList:
if thisChannel not in dataOut.channelList:
continue
data[thisChannel,:] = data[thisChannel,:]*self.flip
self.flip *= -1.
dataOut.data = data
return dataOut
class setAttribute(Operation):
'''
Set an arbitrary attribute(s) to dataOut
'''
def __init__(self):
Operation.__init__(self)
self._ready = False
def run(self, dataOut, **kwargs):
for key, value in kwargs.items():
setattr(dataOut, key, value)
return dataOut
@MPDecorator
class printAttribute(Operation):
'''
Print an arbitrary attribute of dataOut
'''
def __init__(self):
Operation.__init__(self)
def run(self, dataOut, attributes):
if isinstance(attributes, str):
attributes = [attributes]
for attr in attributes:
if hasattr(dataOut, attr):
log.log(getattr(dataOut, attr), attr)
class cleanHeightsInterf(Operation):
__slots__ =('heights_indx', 'repeats', 'step', 'factor', 'idate', 'idxs','config','wMask')
def __init__(self):
self.repeats = 0
self.factor=1
self.wMask = None
self.config = False
self.idxs = None
self.heights_indx = None
def run(self, dataOut, heightsList, repeats=0, step=0, factor=1, idate=None, startH=None, endH=None):
#print(dataOut.data.shape)
startTime = datetime.datetime.combine(idate,startH)
endTime = datetime.datetime.combine(idate,endH)
currentTime = datetime.datetime.fromtimestamp(dataOut.utctime)
if currentTime < startTime or currentTime > endTime:
return dataOut
if not self.config:
#print(wMask)
heights = [float(hei) for hei in heightsList]
for r in range(repeats):
heights += [ (h+(step*(r+1))) for h in heights]
#print(heights)
heiList = dataOut.heightList
self.heights_indx = [getHei_index(h,h,heiList)[0] for h in heights]
self.wMask = numpy.asarray(factor)
self.wMask = numpy.tile(self.wMask,(repeats+2))
self.config = True
"""
getNoisebyHildebrand(self, channel=None, ymin_index=None, ymax_index=None)
"""
#print(self.noise =10*numpy.log10(dataOut.getNoisebyHildebrand(ymin_index=self.min_ref, ymax_index=self.max_ref)))
for ch in range(dataOut.data.shape[0]):
i = 0
for hei in self.heights_indx:
h = hei - 1
if dataOut.data.ndim < 3:
module = numpy.absolute(dataOut.data[ch,h])
prev_h1 = numpy.absolute(dataOut.data[ch,h-1])
dataOut.data[ch,h] = (dataOut.data[ch,h])/module * prev_h1
#dataOut.data[ch,hei-1] = (dataOut.data[ch,hei-1])*self.wMask[i]
else:
module = numpy.absolute(dataOut.data[ch,:,h])
prev_h1 = numpy.absolute(dataOut.data[ch,:,h-1])
dataOut.data[ch,:,h] = (dataOut.data[ch,:,h])/module * prev_h1
#dataOut.data[ch,:,hei-1] = (dataOut.data[ch,:,hei-1])*self.wMask[i]
#print("done")
i += 1
return dataOut
class interpolateHeights(Operation):
def run(self, dataOut, topLim, botLim):
#69 al 72 para julia
#82-84 para meteoros
if len(numpy.shape(dataOut.data))==2:
sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2
sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1)))
#dataOut.data[:,botLim:limSup+1] = sampInterp
dataOut.data[:,botLim:topLim+1] = sampInterp
else:
nHeights = dataOut.data.shape[2]
x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights)))
y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))]
f = interpolate.interp1d(x, y, axis = 2)
xnew = numpy.arange(botLim,topLim+1)
ynew = f(xnew)
dataOut.data[:,:,botLim:topLim+1] = ynew
return dataOut
class CohInt(Operation):
isConfig = False
__profIndex = 0
__byTime = False
__initime = None
__lastdatatime = None
__integrationtime = None
__buffer = None
__bufferStride = []
__dataReady = False
__profIndexStride = 0
__dataToPutStride = False
n = None
def __init__(self, **kwargs):
Operation.__init__(self, **kwargs)
def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False):
"""
Set the parameters of the integration class.
Inputs:
n : Number of coherent integrations
timeInterval : Time of integration. If the parameter "n" is selected this one does not work
overlapping :
"""
self.__initime = None
self.__lastdatatime = 0
self.__buffer = None
self.__dataReady = False
self.byblock = byblock
self.stride = stride
if n == None and timeInterval == None:
raise ValueError("n or timeInterval should be specified ...")
if n != None:
self.n = n
self.__byTime = False
else:
self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line
self.n = 9999
self.__byTime = True
if overlapping:
self.__withOverlapping = True
self.__buffer = None
else:
self.__withOverlapping = False
self.__buffer = 0
self.__profIndex = 0
def putData(self, data):
"""
Add a profile to the __buffer and increase in one the __profileIndex
"""
if not self.__withOverlapping:
self.__buffer += data.copy()
self.__profIndex += 1
return
#Overlapping data
nChannels, nHeis = data.shape
data = numpy.reshape(data, (1, nChannels, nHeis))
#If the buffer is empty then it takes the data value
if self.__buffer is None:
self.__buffer = data
self.__profIndex += 1
return
#If the buffer length is lower than n then stakcing the data value
if self.__profIndex < self.n:
self.__buffer = numpy.vstack((self.__buffer, data))
self.__profIndex += 1
return
#If the buffer length is equal to n then replacing the last buffer value with the data value
self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
self.__buffer[self.n-1] = data
self.__profIndex = self.n
return
def pushData(self):
"""
Return the sum of the last profiles and the profiles used in the sum.
Affected:
self.__profileIndex
"""
if not self.__withOverlapping:
data = self.__buffer
n = self.__profIndex
self.__buffer = 0
self.__profIndex = 0
return data, n
#Integration with Overlapping
data = numpy.sum(self.__buffer, axis=0)
# print data
# raise
n = self.__profIndex
return data, n
def byProfiles(self, data):
self.__dataReady = False
avgdata = None
# n = None
# print data
# raise
self.putData(data)
if self.__profIndex == self.n:
avgdata, n = self.pushData()
self.__dataReady = True
return avgdata
def byTime(self, data, datatime):
self.__dataReady = False
avgdata = None
n = None
self.putData(data)
if (datatime - self.__initime) >= self.__integrationtime:
avgdata, n = self.pushData()
self.n = n
self.__dataReady = True
return avgdata
def integrateByStride(self, data, datatime):
# print data
if self.__profIndex == 0:
self.__buffer = [[data.copy(), datatime]]
else:
self.__buffer.append([data.copy(),datatime])
self.__profIndex += 1
self.__dataReady = False
if self.__profIndex == self.n * self.stride :
self.__dataToPutStride = True
self.__profIndexStride = 0
self.__profIndex = 0
self.__bufferStride = []
for i in range(self.stride):
current = self.__buffer[i::self.stride]
data = numpy.sum([t[0] for t in current], axis=0)
avgdatatime = numpy.average([t[1] for t in current])
# print data
self.__bufferStride.append((data, avgdatatime))
if self.__dataToPutStride:
self.__dataReady = True
self.__profIndexStride += 1
if self.__profIndexStride == self.stride:
self.__dataToPutStride = False
# print self.__bufferStride[self.__profIndexStride - 1]
# raise
return self.__bufferStride[self.__profIndexStride - 1]
return None, None
def integrate(self, data, datatime=None):
if self.__initime == None:
self.__initime = datatime
if self.__byTime:
avgdata = self.byTime(data, datatime)
else:
avgdata = self.byProfiles(data)
self.__lastdatatime = datatime
if avgdata is None:
return None, None
avgdatatime = self.__initime
deltatime = datatime - self.__lastdatatime
if not self.__withOverlapping:
self.__initime = datatime
else:
self.__initime += deltatime
return avgdata, avgdatatime
def integrateByBlock(self, dataOut):
times = int(dataOut.data.shape[1]/self.n)
avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex)
id_min = 0
id_max = self.n
for i in range(times):
junk = dataOut.data[:,id_min:id_max,:]
avgdata[:,i,:] = junk.sum(axis=1)
id_min += self.n
id_max += self.n
timeInterval = dataOut.ippSeconds*self.n
avgdatatime = (times - 1) * timeInterval + dataOut.utctime
self.__dataReady = True
return avgdata, avgdatatime
def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs):
if not self.isConfig:
self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs)
self.isConfig = True
if dataOut.flagDataAsBlock:
"""
Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis]
"""
avgdata, avgdatatime = self.integrateByBlock(dataOut)
dataOut.nProfiles /= self.n
else:
if stride is None:
avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime)
else:
avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime)
# dataOut.timeInterval *= n
dataOut.flagNoData = True
if self.__dataReady:
dataOut.data = avgdata
if not dataOut.flagCohInt:
dataOut.nCohInt *= self.n
dataOut.flagCohInt = True
dataOut.utctime = avgdatatime
# print avgdata, avgdatatime
# raise
# dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt
dataOut.flagNoData = False
#update Processing Header:
dataOut.processingHeaderObj.nCohInt = dataOut.nCohInt
return dataOut
class Decoder(Operation):
isConfig = False
__profIndex = 0
code = None
nCode = None
nBaud = None
def __init__(self, **kwargs):
Operation.__init__(self, **kwargs)
self.times = None
self.osamp = None
# self.__setValues = False
self.isConfig = False
self.setupReq = False
def setup(self, code, osamp, dataOut):
self.__profIndex = 0
self.code = code
self.nCode = len(code)
self.nBaud = len(code[0])
if (osamp != None) and (osamp >1):
self.osamp = osamp
self.code = numpy.repeat(code, repeats=self.osamp, axis=1)
self.nBaud = self.nBaud*self.osamp
self.__nChannels = dataOut.nChannels
self.__nProfiles = dataOut.nProfiles
self.__nHeis = dataOut.nHeights
if self.__nHeis < self.nBaud:
raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud))
#Frequency
__codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex)
__codeBuffer[:,0:self.nBaud] = self.code
self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1))
if dataOut.flagDataAsBlock:
self.ndatadec = self.__nHeis #- self.nBaud + 1
self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex)
else:
#Time
self.ndatadec = self.__nHeis #- self.nBaud + 1
self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex)
def __convolutionInFreq(self, data):
fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
fft_data = numpy.fft.fft(data, axis=1)
conv = fft_data*fft_code
data = numpy.fft.ifft(conv,axis=1)
return data
def __convolutionInFreqOpt(self, data):
raise NotImplementedError
def __convolutionInTime(self, data):
code = self.code[self.__profIndex]
for i in range(self.__nChannels):
self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:]
return self.datadecTime
def __convolutionByBlockInTime(self, data):
repetitions = int(self.__nProfiles / self.nCode)
junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize))
junk = junk.flatten()
code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud))
profilesList = range(self.__nProfiles)
for i in range(self.__nChannels):
for j in profilesList:
self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:]
return self.datadecTime
def __convolutionByBlockInFreq(self, data):
raise NotImplementedError("Decoder by frequency fro Blocks not implemented")
fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
fft_data = numpy.fft.fft(data, axis=2)
conv = fft_data*fft_code
data = numpy.fft.ifft(conv,axis=2)
return data
def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None):
if dataOut.flagDecodeData:
print("This data is already decoded, recoding again ...")
if not self.isConfig:
if code is None:
if dataOut.code is None:
raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type)
code = dataOut.code
else:
code = numpy.array(code).reshape(nCode,nBaud)
self.setup(code, osamp, dataOut)
self.isConfig = True
if mode == 3:
sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode)
if times != None:
sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n")
if self.code is None:
print("Fail decoding: Code is not defined.")
return
self.__nProfiles = dataOut.nProfiles
datadec = None
if mode == 3:
mode = 0
if dataOut.flagDataAsBlock:
"""
Decoding when data have been read as block,
"""
if mode == 0:
datadec = self.__convolutionByBlockInTime(dataOut.data)
if mode == 1:
datadec = self.__convolutionByBlockInFreq(dataOut.data)
else:
"""
Decoding when data have been read profile by profile
"""
if mode == 0:
datadec = self.__convolutionInTime(dataOut.data)
if mode == 1:
datadec = self.__convolutionInFreq(dataOut.data)
if mode == 2:
datadec = self.__convolutionInFreqOpt(dataOut.data)
if datadec is None:
raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode)
dataOut.code = self.code
dataOut.nCode = self.nCode
dataOut.nBaud = self.nBaud
dataOut.data = datadec
dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]]
dataOut.flagDecodeData = True #asumo q la data esta decodificada
#update Processing Header:
dataOut.radarControllerHeaderObj.code = self.code
dataOut.radarControllerHeaderObj.nCode = self.nCode
dataOut.radarControllerHeaderObj.nBaud = self.nBaud
dataOut.radarControllerHeaderObj.nOsamp = osamp
#update Processing Header:
dataOut.processingHeaderObj.heightList = dataOut.heightList
dataOut.processingHeaderObj.heightResolution = dataOut.heightList[1]-dataOut.heightList[0]
if self.__profIndex == self.nCode-1:
self.__profIndex = 0
return dataOut
self.__profIndex += 1
return dataOut
class ProfileConcat(Operation):
isConfig = False
buffer = None
def __init__(self, **kwargs):
Operation.__init__(self, **kwargs)
self.profileIndex = 0
def reset(self):
self.buffer = numpy.zeros_like(self.buffer)
self.start_index = 0
self.times = 1
def setup(self, data, m, n=1):
self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0]))
self.nHeights = data.shape[1]#.nHeights
self.start_index = 0
self.times = 1
def concat(self, data):
self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy()
self.start_index = self.start_index + self.nHeights
def run(self, dataOut, m):
dataOut.flagNoData = True
if not self.isConfig:
self.setup(dataOut.data, m, 1)
self.isConfig = True
if dataOut.flagDataAsBlock:
raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False")
else:
self.concat(dataOut.data)
self.times += 1
if self.times > m:
dataOut.data = self.buffer
self.reset()
dataOut.flagNoData = False
# se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas
deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m
dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight)
dataOut.ippSeconds *= m
#update Processing Header:
dataOut.processingHeaderObj.heightList = dataOut.heightList
dataOut.processingHeaderObj.ipp = dataOut.ippSeconds
return dataOut
class ProfileSelector(Operation):
profileIndex = None
# Tamanho total de los perfiles
nProfiles = None
def __init__(self, **kwargs):
Operation.__init__(self, **kwargs)
self.profileIndex = 0
def incProfileIndex(self):
self.profileIndex += 1
if self.profileIndex >= self.nProfiles:
self.profileIndex = 0
def isThisProfileInRange(self, profileIndex, minIndex, maxIndex):
if profileIndex < minIndex:
return False
if profileIndex > maxIndex:
return False
return True
def isThisProfileInList(self, profileIndex, profileList):
if profileIndex not in profileList:
return False
return True
def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None):
"""
ProfileSelector:
Inputs:
profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8)
profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30)
rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256))
"""
if rangeList is not None:
if type(rangeList[0]) not in (tuple, list):
rangeList = [rangeList]
dataOut.flagNoData = True
if dataOut.flagDataAsBlock:
"""
data dimension = [nChannels, nProfiles, nHeis]
"""
if profileList != None:
dataOut.data = dataOut.data[:,profileList,:]
if profileRangeList != None:
minIndex = profileRangeList[0]
maxIndex = profileRangeList[1]
profileList = list(range(minIndex, maxIndex+1))
dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:]
if rangeList != None:
profileList = []
for thisRange in rangeList:
minIndex = thisRange[0]
maxIndex = thisRange[1]
profileList.extend(list(range(minIndex, maxIndex+1)))
dataOut.data = dataOut.data[:,profileList,:]
dataOut.nProfiles = len(profileList)
dataOut.profileIndex = dataOut.nProfiles - 1
dataOut.flagNoData = False
return dataOut
"""
data dimension = [nChannels, nHeis]
"""
if profileList != None:
if self.isThisProfileInList(dataOut.profileIndex, profileList):
self.nProfiles = len(profileList)
dataOut.nProfiles = self.nProfiles
dataOut.profileIndex = self.profileIndex
dataOut.flagNoData = False
self.incProfileIndex()
return dataOut
if profileRangeList != None:
minIndex = profileRangeList[0]
maxIndex = profileRangeList[1]
if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex):
self.nProfiles = maxIndex - minIndex + 1
dataOut.nProfiles = self.nProfiles
dataOut.profileIndex = self.profileIndex
dataOut.flagNoData = False
self.incProfileIndex()
return dataOut
if rangeList != None:
nProfiles = 0
for thisRange in rangeList:
minIndex = thisRange[0]
maxIndex = thisRange[1]
nProfiles += maxIndex - minIndex + 1
for thisRange in rangeList:
minIndex = thisRange[0]
maxIndex = thisRange[1]
if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex):
self.nProfiles = nProfiles
dataOut.nProfiles = self.nProfiles
dataOut.profileIndex = self.profileIndex
dataOut.flagNoData = False
self.incProfileIndex()
break
return dataOut
if beam != None: #beam is only for AMISR data
if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]):
dataOut.flagNoData = False
dataOut.profileIndex = self.profileIndex
self.incProfileIndex()
return dataOut
raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter")
class Reshaper(Operation):
def __init__(self, **kwargs):
Operation.__init__(self, **kwargs)
self.__buffer = None
self.__nitems = 0
def __appendProfile(self, dataOut, nTxs):
if self.__buffer is None:
shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) )
self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype)
ini = dataOut.nHeights * self.__nitems
end = ini + dataOut.nHeights
self.__buffer[:, ini:end] = dataOut.data
self.__nitems += 1
return int(self.__nitems*nTxs)
def __getBuffer(self):
if self.__nitems == int(1./self.__nTxs):
self.__nitems = 0
return self.__buffer.copy()
return None
def __checkInputs(self, dataOut, shape, nTxs):
if shape is None and nTxs is None:
raise ValueError("Reshaper: shape of factor should be defined")
if nTxs:
if nTxs < 0:
raise ValueError("nTxs should be greater than 0")
if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0:
raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs)))
shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs]
return shape, nTxs
if len(shape) != 2 and len(shape) != 3:
raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights))
if len(shape) == 2:
shape_tuple = [dataOut.nChannels]
shape_tuple.extend(shape)
else:
shape_tuple = list(shape)
nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles
return shape_tuple, nTxs
def run(self, dataOut, shape=None, nTxs=None):
shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs)
dataOut.flagNoData = True
profileIndex = None
if dataOut.flagDataAsBlock:
dataOut.data = numpy.reshape(dataOut.data, shape_tuple)
dataOut.flagNoData = False
profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1
else:
if self.__nTxs < 1:
self.__appendProfile(dataOut, self.__nTxs)
new_data = self.__getBuffer()
if new_data is not None:
dataOut.data = new_data
dataOut.flagNoData = False
profileIndex = dataOut.profileIndex*nTxs
else:
raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)")
deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0]
dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs)
dataOut.profileIndex = profileIndex
dataOut.ippSeconds /= self.__nTxs
return dataOut
class SplitProfiles(Operation):
def __init__(self, **kwargs):
Operation.__init__(self, **kwargs)
def run(self, dataOut, n):
dataOut.flagNoData = True
profileIndex = None
if dataOut.flagDataAsBlock:
#nchannels, nprofiles, nsamples
shape = dataOut.data.shape
if shape[2] % n != 0:
raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2]))
new_shape = shape[0], shape[1]*n, int(shape[2]/n)
dataOut.data = numpy.reshape(dataOut.data, new_shape)
dataOut.flagNoData = False
profileIndex = int(dataOut.nProfiles/n) - 1
else:
raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)")
deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0]
dataOut.nProfiles = int(dataOut.nProfiles*n)
dataOut.profileIndex = profileIndex
dataOut.ippSeconds /= n
return dataOut
class CombineProfiles(Operation):
def __init__(self, **kwargs):
Operation.__init__(self, **kwargs)
self.__remData = None
self.__profileIndex = 0
def run(self, dataOut, n):
dataOut.flagNoData = True
profileIndex = None
if dataOut.flagDataAsBlock:
#nchannels, nprofiles, nsamples
shape = dataOut.data.shape
new_shape = shape[0], shape[1]/n, shape[2]*n
if shape[1] % n != 0:
raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1]))
dataOut.data = numpy.reshape(dataOut.data, new_shape)
dataOut.flagNoData = False
profileIndex = int(dataOut.nProfiles*n) - 1
else:
#nchannels, nsamples
if self.__remData is None:
newData = dataOut.data
else:
newData = numpy.concatenate((self.__remData, dataOut.data), axis=1)
self.__profileIndex += 1
if self.__profileIndex < n:
self.__remData = newData
#continue
return
self.__profileIndex = 0
self.__remData = None
dataOut.data = newData
dataOut.flagNoData = False
profileIndex = dataOut.profileIndex/n
deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0]
dataOut.nProfiles = int(dataOut.nProfiles/n)
dataOut.profileIndex = profileIndex
dataOut.ippSeconds *= n
return dataOut
class PulsePairVoltage(Operation):
'''
Function PulsePair(Signal Power, Velocity)
The real component of Lag[0] provides Intensity Information
The imag component of Lag[1] Phase provides Velocity Information
Configuration Parameters:
nPRF = Number of Several PRF
theta = Degree Azimuth angel Boundaries
Input:
self.dataOut
lag[N]
Affected:
self.dataOut.spc
'''
isConfig = False
__profIndex = 0
__initime = None
__lastdatatime = None
__buffer = None
noise = None
__dataReady = False
n = None
__nch = 0
__nHeis = 0
removeDC = False
ipp = None
lambda_ = 0
def __init__(self,**kwargs):
Operation.__init__(self,**kwargs)
def setup(self, dataOut, n = None, removeDC=False):
'''
n= Numero de PRF's de entrada
'''
self.__initime = None
self.__lastdatatime = 0
self.__dataReady = False
self.__buffer = 0
self.__profIndex = 0
self.noise = None
self.__nch = dataOut.nChannels
self.__nHeis = dataOut.nHeights
self.removeDC = removeDC
self.lambda_ = 3.0e8/(9345.0e6)
self.ippSec = dataOut.ippSeconds
self.nCohInt = dataOut.nCohInt
if n == None:
raise ValueError("n should be specified.")
if n != None:
if n<2:
raise ValueError("n should be greater than 2")
self.n = n
self.__nProf = n
self.__buffer = numpy.zeros((dataOut.nChannels,
n,
dataOut.nHeights),
dtype='complex')
def putData(self,data):
'''
Add a profile to he __buffer and increase in one the __profiel Index
'''
self.__buffer[:,self.__profIndex,:]= data
self.__profIndex += 1
return
def pushData(self,dataOut):
'''
Return the PULSEPAIR and the profiles used in the operation
Affected : self.__profileIndex
'''
#----------------- Remove DC-----------------------------------
if self.removeDC==True:
mean = numpy.mean(self.__buffer,1)
tmp = mean.reshape(self.__nch,1,self.__nHeis)
dc= numpy.tile(tmp,[1,self.__nProf,1])
self.__buffer = self.__buffer - dc
#------------------Calculo de Potencia ------------------------
pair0 = self.__buffer*numpy.conj(self.__buffer)
pair0 = pair0.real
lag_0 = numpy.sum(pair0,1)
#------------------Calculo de Ruido x canal--------------------
self.noise = numpy.zeros(self.__nch)
for i in range(self.__nch):
daux = numpy.sort(pair0[i,:,:],axis= None)
self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt)
self.noise = self.noise.reshape(self.__nch,1)
self.noise = numpy.tile(self.noise,[1,self.__nHeis])
noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis)
noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1])
#------------------ Potencia recibida= P , Potencia senal = S , Ruido= N--
#------------------ P= S+N ,P=lag_0/N ---------------------------------
#-------------------- Power --------------------------------------------------
data_power = lag_0/(self.n*self.nCohInt)
#------------------ Senal ---------------------------------------------------
data_intensity = pair0 - noise_buffer
data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt)
#data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt)
for i in range(self.__nch):
for j in range(self.__nHeis):
if data_intensity[i][j] < 0:
data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j]))
#----------------- Calculo de Frecuencia y Velocidad doppler--------
pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:])
lag_1 = numpy.sum(pair1,1)
data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1)
data_velocity = (self.lambda_/2.0)*data_freq
#---------------- Potencia promedio estimada de la Senal-----------
lag_0 = lag_0/self.n
S = lag_0-self.noise
#---------------- Frecuencia Doppler promedio ---------------------
lag_1 = lag_1/(self.n-1)
R1 = numpy.abs(lag_1)
#---------------- Calculo del SNR----------------------------------
data_snrPP = S/self.noise
for i in range(self.__nch):
for j in range(self.__nHeis):
if data_snrPP[i][j] < 1.e-20:
data_snrPP[i][j] = 1.e-20
#----------------- Calculo del ancho espectral ----------------------
L = S/R1
L = numpy.where(L<0,1,L)
L = numpy.log(L)
tmp = numpy.sqrt(numpy.absolute(L))
data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L)
n = self.__profIndex
self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex')
self.__profIndex = 0
return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,n
def pulsePairbyProfiles(self,dataOut):
self.__dataReady = False
data_power = None
data_intensity = None
data_velocity = None
data_specwidth = None
data_snrPP = None
self.putData(data=dataOut.data)
if self.__profIndex == self.n:
data_power,data_intensity, data_velocity,data_snrPP,data_specwidth, n = self.pushData(dataOut=dataOut)
self.__dataReady = True
return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth
def pulsePairOp(self, dataOut, datatime= None):
if self.__initime == None:
self.__initime = datatime
data_power, data_intensity, data_velocity, data_snrPP, data_specwidth = self.pulsePairbyProfiles(dataOut)
self.__lastdatatime = datatime
if data_power is None:
return None, None, None,None,None,None
avgdatatime = self.__initime
deltatime = datatime - self.__lastdatatime
self.__initime = datatime
return data_power, data_intensity, data_velocity, data_snrPP, data_specwidth, avgdatatime
def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs):
if not self.isConfig:
self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs)
self.isConfig = True
data_power, data_intensity, data_velocity,data_snrPP,data_specwidth, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime)
dataOut.flagNoData = True
if self.__dataReady:
dataOut.nCohInt *= self.n
dataOut.dataPP_POW = data_intensity # S
dataOut.dataPP_POWER = data_power # P
dataOut.dataPP_DOP = data_velocity
dataOut.dataPP_SNR = data_snrPP
dataOut.dataPP_WIDTH = data_specwidth
dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo.
dataOut.utctime = avgdatatime
dataOut.flagNoData = False
return dataOut
# import collections
# from scipy.stats import mode
#
# class Synchronize(Operation):
#
# isConfig = False
# __profIndex = 0
#
# def __init__(self, **kwargs):
#
# Operation.__init__(self, **kwargs)
# # self.isConfig = False
# self.__powBuffer = None
# self.__startIndex = 0
# self.__pulseFound = False
#
# def __findTxPulse(self, dataOut, channel=0, pulse_with = None):
#
# #Read data
#
# powerdB = dataOut.getPower(channel = channel)
# noisedB = dataOut.getNoise(channel = channel)[0]
#
# self.__powBuffer.extend(powerdB.flatten())
#
# dataArray = numpy.array(self.__powBuffer)
#
# filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same")
#
# maxValue = numpy.nanmax(filteredPower)
#
# if maxValue < noisedB + 10:
# #No se encuentra ningun pulso de transmision
# return None
#
# maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0]
#
# if len(maxValuesIndex) < 2:
# #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX
# return None
#
# phasedMaxValuesIndex = maxValuesIndex - self.__nSamples
#
# #Seleccionar solo valores con un espaciamiento de nSamples
# pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex)
#
# if len(pulseIndex) < 2:
# #Solo se encontro un pulso de transmision con ancho mayor a 1
# return None
#
# spacing = pulseIndex[1:] - pulseIndex[:-1]
#
# #remover senales que se distancien menos de 10 unidades o muestras
# #(No deberian existir IPP menor a 10 unidades)
#
# realIndex = numpy.where(spacing > 10 )[0]
#
# if len(realIndex) < 2:
# #Solo se encontro un pulso de transmision con ancho mayor a 1
# return None
#
# #Eliminar pulsos anchos (deja solo la diferencia entre IPPs)
# realPulseIndex = pulseIndex[realIndex]
#
# period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0]
#
# print "IPP = %d samples" %period
#
# self.__newNSamples = dataOut.nHeights #int(period)
# self.__startIndex = int(realPulseIndex[0])
#
# return 1
#
#
# def setup(self, nSamples, nChannels, buffer_size = 4):
#
# self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float),
# maxlen = buffer_size*nSamples)
#
# bufferList = []
#
# for i in range(nChannels):
# bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN,
# maxlen = buffer_size*nSamples)
#
# bufferList.append(bufferByChannel)
#
# self.__nSamples = nSamples
# self.__nChannels = nChannels
# self.__bufferList = bufferList
#
# def run(self, dataOut, channel = 0):
#
# if not self.isConfig:
# nSamples = dataOut.nHeights
# nChannels = dataOut.nChannels
# self.setup(nSamples, nChannels)
# self.isConfig = True
#
# #Append new data to internal buffer
# for thisChannel in range(self.__nChannels):
# bufferByChannel = self.__bufferList[thisChannel]
# bufferByChannel.extend(dataOut.data[thisChannel])
#
# if self.__pulseFound:
# self.__startIndex -= self.__nSamples
#
# #Finding Tx Pulse
# if not self.__pulseFound:
# indexFound = self.__findTxPulse(dataOut, channel)
#
# if indexFound == None:
# dataOut.flagNoData = True
# return
#
# self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex)
# self.__pulseFound = True
# self.__startIndex = indexFound
#
# #If pulse was found ...
# for thisChannel in range(self.__nChannels):
# bufferByChannel = self.__bufferList[thisChannel]
# #print self.__startIndex
# x = numpy.array(bufferByChannel)
# self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples]
#
# deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
# dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight
# # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6
#
# dataOut.data = self.__arrayBuffer
#
# self.__startIndex += self.__newNSamples
#
# return
class SSheightProfiles(Operation):
step = None
nsamples = None
bufferShape = None
profileShape = None
sshProfiles = None
profileIndex = None
def __init__(self, **kwargs):
Operation.__init__(self, **kwargs)
self.isConfig = False
def setup(self,dataOut ,step = None , nsamples = None):
if step == None and nsamples == None:
raise ValueError("step or nheights should be specified ...")
self.step = step
self.nsamples = nsamples
self.__nChannels = dataOut.nChannels
self.__nProfiles = dataOut.nProfiles
self.__nHeis = dataOut.nHeights
shape = dataOut.data.shape #nchannels, nprofiles, nsamples
residue = (shape[1] - self.nsamples) % self.step
if residue != 0:
print("The residue is %d, step=%d should be multiple of %d to avoid loss of %d samples"%(residue,step,shape[1] - self.nsamples,residue))
deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
numberProfile = self.nsamples
numberSamples = (shape[1] - self.nsamples)/self.step
self.bufferShape = int(shape[0]), int(numberSamples), int(numberProfile) # nchannels, nsamples , nprofiles
self.profileShape = int(shape[0]), int(numberProfile), int(numberSamples) # nchannels, nprofiles, nsamples
self.buffer = numpy.zeros(self.bufferShape , dtype=numpy.complex)
self.sshProfiles = numpy.zeros(self.profileShape, dtype=numpy.complex)
def run(self, dataOut, step, nsamples, code = None, repeat = None):
dataOut.flagNoData = True
profileIndex = None
#print("nProfiles, nHeights ",dataOut.nProfiles, dataOut.nHeights)
#print(dataOut.getFreqRange(1)/1000.)
#exit(1)
if dataOut.flagDataAsBlock:
dataOut.data = numpy.average(dataOut.data,axis=1)
#print("jee")
dataOut.flagDataAsBlock = False
if not self.isConfig:
self.setup(dataOut, step=step , nsamples=nsamples)
#print("Setup done")
self.isConfig = True
if code is not None:
code = numpy.array(code)
code_block = code
if repeat is not None:
code_block = numpy.repeat(code_block, repeats=repeat, axis=1)
#print(code_block.shape)
for i in range(self.buffer.shape[1]):
if code is not None:
self.buffer[:,i] = dataOut.data[:,i*self.step:i*self.step + self.nsamples]*code_block
else:
self.buffer[:,i] = dataOut.data[:,i*self.step:i*self.step + self.nsamples]#*code[dataOut.profileIndex,:]
#self.buffer[:,j,self.__nHeis-j*self.step - self.nheights:self.__nHeis-j*self.step] = numpy.flip(dataOut.data[:,j*self.step:j*self.step + self.nheights])
for j in range(self.buffer.shape[0]):
self.sshProfiles[j] = numpy.transpose(self.buffer[j])
profileIndex = self.nsamples
deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
ippSeconds = (deltaHeight*1.0e-6)/(0.15)
#print("ippSeconds, dH: ",ippSeconds,deltaHeight)
try:
if dataOut.concat_m is not None:
ippSeconds= ippSeconds/float(dataOut.concat_m)
#print "Profile concat %d"%dataOut.concat_m
except:
pass
dataOut.data = self.sshProfiles
dataOut.flagNoData = False
dataOut.heightList = numpy.arange(self.buffer.shape[1]) *self.step*deltaHeight + dataOut.heightList[0]
dataOut.nProfiles = int(dataOut.nProfiles*self.nsamples)
dataOut.profileIndex = profileIndex
dataOut.flagDataAsBlock = True
dataOut.ippSeconds = ippSeconds
dataOut.step = self.step
#print(numpy.shape(dataOut.data))
#exit(1)
#print("new data shape and time:", dataOut.data.shape, dataOut.utctime)
return dataOut
################################################################################3############################3
################################################################################3############################3
################################################################################3############################3
################################################################################3############################3
class SSheightProfiles2(Operation):
'''
Procesa por perfiles y por bloques
Versión corregida y actualizada para trabajar con RemoveProfileSats2
Usar esto
'''
bufferShape = None
profileShape = None
sshProfiles = None
profileIndex = None
#nsamples = None
#step = None
#deltaHeight = None
#init_range = None
__slots__ = ('step', 'nsamples', 'deltaHeight', 'init_range', 'isConfig', '__nChannels',
'__nProfiles', '__nHeis', 'deltaHeight', 'new_nHeights')
def __init__(self, **kwargs):
Operation.__init__(self, **kwargs)
self.isConfig = False
def setup(self,dataOut ,step = None , nsamples = None):
if step == None and nsamples == None:
raise ValueError("step or nheights should be specified ...")
self.step = step
self.nsamples = nsamples
self.__nChannels = int(dataOut.nChannels)
self.__nProfiles = int(dataOut.nProfiles)
self.__nHeis = int(dataOut.nHeights)
residue = (self.__nHeis - self.nsamples) % self.step
if residue != 0:
print("The residue is %d, step=%d should be multiple of %d to avoid loss of %d samples"%(residue,step,self.__nProfiles - self.nsamples,residue))
self.deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
self.init_range = dataOut.heightList[0]
#numberProfile = self.nsamples
numberSamples = (self.__nHeis - self.nsamples)/self.step
self.new_nHeights = numberSamples
self.bufferShape = int(self.__nChannels), int(numberSamples), int(self.nsamples) # nchannels, nsamples , nprofiles
self.profileShape = int(self.__nChannels), int(self.nsamples), int(numberSamples) # nchannels, nprofiles, nsamples
self.buffer = numpy.zeros(self.bufferShape , dtype=numpy.complex)
self.sshProfiles = numpy.zeros(self.profileShape, dtype=numpy.complex)
def getNewProfiles(self, data, code=None, repeat=None):
if code is not None:
code = numpy.array(code)
code_block = code
if repeat is not None:
code_block = numpy.repeat(code_block, repeats=repeat, axis=1)
if data.ndim < 3:
data = data.reshape(self.__nChannels,1,self.__nHeis )
#print("buff, data, :",self.buffer.shape, data.shape,self.sshProfiles.shape, code_block.shape)
for ch in range(self.__nChannels):
for i in range(int(self.new_nHeights)): #nuevas alturas
if code is not None:
self.buffer[ch,i,:] = data[ch,:,i*self.step:i*self.step + self.nsamples]*code_block
else:
self.buffer[ch,i,:] = data[ch,:,i*self.step:i*self.step + self.nsamples]#*code[dataOut.profileIndex,:]
for j in range(self.__nChannels): #en los cananles
self.sshProfiles[j,:,:] = numpy.transpose(self.buffer[j,:,:])
#print("new profs Done")
def run(self, dataOut, step, nsamples, code = None, repeat = None):
# print("running")
if dataOut.flagNoData == True:
return dataOut
dataOut.flagNoData = True
#print("init data shape:", dataOut.data.shape)
#print("ch: {} prof: {} hs: {}".format(int(dataOut.nChannels),
# int(dataOut.nProfiles),int(dataOut.nHeights)))
profileIndex = None
# if not dataOut.flagDataAsBlock:
# dataOut.nProfiles = 1
if not self.isConfig:
self.setup(dataOut, step=step , nsamples=nsamples)
#print("Setup done")
self.isConfig = True
dataBlock = None
nprof = 1
if dataOut.flagDataAsBlock:
nprof = int(dataOut.nProfiles)
#print("dataOut nProfiles:", dataOut.nProfiles)
for profile in range(nprof):
if dataOut.flagDataAsBlock:
#print("read blocks")
self.getNewProfiles(dataOut.data[:,profile,:], code=code, repeat=repeat)
else:
#print("read profiles")
self.getNewProfiles(dataOut.data, code=code, repeat=repeat) #only one channe
if profile == 0:
dataBlock = self.sshProfiles.copy()
else: #by blocks
dataBlock = numpy.concatenate((dataBlock,self.sshProfiles), axis=1) #profile axis
#print("by blocks: ",dataBlock.shape, self.sshProfiles.shape)
profileIndex = self.nsamples
#deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
ippSeconds = (self.deltaHeight*1.0e-6)/(0.15)
dataOut.data = dataBlock
#print("show me: ",self.step,self.deltaHeight, dataOut.heightList, self.new_nHeights)
dataOut.heightList = numpy.arange(int(self.new_nHeights)) *self.step*self.deltaHeight + self.init_range
dataOut.sampled_heightsFFT = self.nsamples
dataOut.ippSeconds = ippSeconds
dataOut.step = self.step
dataOut.deltaHeight = self.step*self.deltaHeight
dataOut.flagNoData = False
if dataOut.flagDataAsBlock:
dataOut.nProfiles = int(dataOut.nProfiles*self.nsamples)
else:
dataOut.nProfiles = int(self.nsamples)
dataOut.profileIndex = dataOut.nProfiles
dataOut.flagDataAsBlock = True
dataBlock = None
#print("new data shape:", dataOut.data.shape, dataOut.utctime)
#update Processing Header:
dataOut.processingHeaderObj.heightList = dataOut.heightList
dataOut.processingHeaderObj.ipp = ippSeconds
dataOut.processingHeaderObj.heightResolution = dataOut.deltaHeight
#dataOut.processingHeaderObj.profilesPerBlock = nProfiles
# # dataOut.data = CH, PROFILES, HEIGHTS
#print(dataOut.data .shape)
if dataOut.flagProfilesByRange:
# #assuming the same remotion for all channels
aux = [ self.nsamples - numpy.count_nonzero(dataOut.data[0, :, h]==0) for h in range(len(dataOut.heightList))]
dataOut.nProfilesByRange = (numpy.asarray(aux)).reshape((1,len(dataOut.heightList) ))
#print(dataOut.nProfilesByRange.shape)
else:
dataOut.nProfilesByRange = numpy.ones((1, len(dataOut.heightList)))*dataOut.nProfiles
return dataOut
class RemoveProfileSats(Operation):
'''
Escrito: Joab Apaza
Omite los perfiles contaminados con señal de satélites, usando una altura de referencia
In: minHei = min_sat_range
max_sat_range
min_hei_ref
max_hei_ref
th = diference between profiles mean, ref and sats
Out:
profile clean
'''
__buffer_data = []
__buffer_times = []
buffer = None
outliers_IDs_list = []
__slots__ = ('n','navg','profileMargin','thHistOutlier','minHei_idx','maxHei_idx','nHeights',
'first_utcBlock','__profIndex','init_prof','end_prof','lenProfileOut','nChannels',
'__count_exec','__initime','__dataReady','__ipp', 'minRef', 'maxRef', 'thdB')
def __init__(self, **kwargs):
Operation.__init__(self, **kwargs)
self.isConfig = False
def setup(self,dataOut, n=None , navg=0.8, profileMargin=50,thHistOutlier=15,
minHei=None, maxHei=None, minRef=None, maxRef=None, thdB=10):
if n == None and timeInterval == None:
raise ValueError("nprofiles or timeInterval should be specified ...")
if n != None:
self.n = n
self.navg = navg
self.profileMargin = profileMargin
self.thHistOutlier = thHistOutlier
self.__profIndex = 0
self.buffer = None
self._ipp = dataOut.ippSeconds
self.n_prof_released = 0
self.heightList = dataOut.heightList
self.init_prof = 0
self.end_prof = 0
self.__count_exec = 0
self.__profIndex = 0
self.first_utcBlock = None
#self.__dh = dataOut.heightList[1] - dataOut.heightList[0]
minHei = minHei
maxHei = maxHei
if minHei==None :
minHei = dataOut.heightList[0]
if maxHei==None :
maxHei = dataOut.heightList[-1]
self.minHei_idx,self.maxHei_idx = getHei_index(minHei, maxHei, dataOut.heightList)
self.min_ref, self.max_ref = getHei_index(minRef, maxRef, dataOut.heightList)
self.nChannels = dataOut.nChannels
self.nHeights = dataOut.nHeights
self.test_counter = 0
self.thdB = thdB
def filterSatsProfiles(self):
data = self.__buffer_data
#print(data.shape)
nChannels, profiles, heights = data.shape
indexes=numpy.zeros([], dtype=int)
outliers_IDs=[]
for c in range(nChannels):
#print(self.min_ref,self.max_ref)
noise_ref = 10* numpy.log10((data[c,:,self.min_ref:self.max_ref] * numpy.conjugate(data[c,:,self.min_ref:self.max_ref])).real)
#print("Noise ",numpy.percentile(noise_ref,95))
p95 = numpy.percentile(noise_ref,95)
noise_ref = noise_ref.mean()
#print("Noise ",noise_ref
for h in range(self.minHei_idx, self.maxHei_idx):
power = 10* numpy.log10((data[c,:,h] * numpy.conjugate(data[c,:,h])).real)
#th = noise_ref + self.thdB
th = noise_ref + 1.5*(p95-noise_ref)
index = numpy.where(power > th )
if index[0].size > 10 and index[0].size < int(self.navg*profiles):
indexes = numpy.append(indexes, index[0])
#print(index[0])
#print(index[0])
# fig,ax = plt.subplots()
# #ax.set_title(str(k)+" "+str(j))
# x=range(len(power))
# ax.scatter(x,power)
# #ax.axvline(index)
# plt.grid()
# plt.show()
#print(indexes)
#outliers_IDs = outliers_IDs.astype(numpy.dtype('int64'))
#outliers_IDs = numpy.unique(outliers_IDs)
outs_lines = numpy.unique(indexes)
#Agrupando el histograma de outliers,
my_bins = numpy.linspace(0,int(profiles), int(profiles/100), endpoint=True)
hist, bins = numpy.histogram(outs_lines,bins=my_bins)
hist_outliers_indexes = numpy.where(hist > self.thHistOutlier) #es outlier
hist_outliers_indexes = hist_outliers_indexes[0]
# if len(hist_outliers_indexes>0):
# hist_outliers_indexes = numpy.append(hist_outliers_indexes,hist_outliers_indexes[-1]+1)
#print(hist_outliers_indexes)
#print(bins, hist_outliers_indexes)
bins_outliers_indexes = [int(i) for i in (bins[hist_outliers_indexes])] #
outlier_loc_index = []
# for n in range(len(bins_outliers_indexes)):
# for e in range(bins_outliers_indexes[n]-self.profileMargin,bins_outliers_indexes[n]+ self.profileMargin):
# outlier_loc_index.append(e)
outlier_loc_index = [e for n in range(len(bins_outliers_indexes)) for e in range(bins_outliers_indexes[n]-self.profileMargin,bins_outliers_indexes[n]+ profiles//100 + self.profileMargin) ]
outlier_loc_index = numpy.asarray(outlier_loc_index)
#print("outliers Ids: ", outlier_loc_index, outlier_loc_index.shape)
outlier_loc_index = outlier_loc_index[ (outlier_loc_index >= 0) & (outlier_loc_index<profiles)]
#print("outliers final: ", outlier_loc_index)
from matplotlib import pyplot as plt
x, y = numpy.meshgrid(numpy.arange(profiles), self.heightList)
fig, ax = plt.subplots(1,2,figsize=(8, 6))
dat = data[0,:,:].real
dat = 10* numpy.log10((data[0,:,:] * numpy.conjugate(data[0,:,:])).real)
m = numpy.nanmean(dat)
o = numpy.nanstd(dat)
#print(m, o, x.shape, y.shape)
#c = ax[0].pcolormesh(x, y, dat.T, cmap ='YlGnBu', vmin = (m-2*o), vmax = (m+2*o))
c = ax[0].pcolormesh(x, y, dat.T, cmap ='YlGnBu', vmin = 50, vmax = 75)
ax[0].vlines(outs_lines,200,600, linestyles='dashed', label = 'outs', color='w')
fig.colorbar(c)
ax[0].vlines(outlier_loc_index,650,750, linestyles='dashed', label = 'outs', color='r')
ax[1].hist(outs_lines,bins=my_bins)
plt.show()
self.outliers_IDs_list = outlier_loc_index
#print("outs list: ", self.outliers_IDs_list)
return data
def fillBuffer(self, data, datatime):
if self.__profIndex == 0:
self.__buffer_data = data.copy()
else:
self.__buffer_data = numpy.concatenate((self.__buffer_data,data), axis=1)#en perfiles
self.__profIndex += 1
self.__buffer_times.append(datatime)
def getData(self, data, datatime=None):
if self.__profIndex == 0:
self.__initime = datatime
self.__dataReady = False
self.fillBuffer(data, datatime)
dataBlock = None
if self.__profIndex == self.n:
#print("apnd : ",data)
dataBlock = self.filterSatsProfiles()
self.__dataReady = True
return dataBlock
if dataBlock is None:
return None, None
return dataBlock
def releaseBlock(self):
if self.n % self.lenProfileOut != 0:
raise ValueError("lenProfileOut %d must be submultiple of nProfiles %d" %(self.lenProfileOut, self.n))
return None
data = self.buffer[:,self.init_prof:self.end_prof:,:] #ch, prof, alt
self.init_prof = self.end_prof
self.end_prof += self.lenProfileOut
#print("data release shape: ",dataOut.data.shape, self.end_prof)
self.n_prof_released += 1
return data
def run(self, dataOut, n=None, navg=0.8, nProfilesOut=1, profile_margin=50,
th_hist_outlier=15,minHei=None, maxHei=None, minRef=None, maxRef=None, thdB=10):
if not self.isConfig:
#print("init p idx: ", dataOut.profileIndex )
self.setup(dataOut,n=n, navg=navg,profileMargin=profile_margin,thHistOutlier=th_hist_outlier,
minHei=minHei, maxHei=maxHei, minRef=minRef, maxRef=maxRef, thdB=thdB)
self.isConfig = True
dataBlock = None
if not dataOut.buffer_empty: #hay datos acumulados
if self.init_prof == 0:
self.n_prof_released = 0
self.lenProfileOut = nProfilesOut
dataOut.flagNoData = False
#print("tp 2 ",dataOut.data.shape)
self.init_prof = 0
self.end_prof = self.lenProfileOut
dataOut.nProfiles = self.lenProfileOut
if nProfilesOut == 1:
dataOut.flagDataAsBlock = False
else:
dataOut.flagDataAsBlock = True
#print("prof: ",self.init_prof)
dataOut.flagNoData = False
if numpy.isin(self.n_prof_released, self.outliers_IDs_list):
#print("omitting: ", self.n_prof_released)
dataOut.flagNoData = True
dataOut.ippSeconds = self._ipp
dataOut.utctime = self.first_utcBlock + self.init_prof*self._ipp
# print("time: ", dataOut.utctime, self.first_utcBlock, self.init_prof,self._ipp,dataOut.ippSeconds)
#dataOut.data = self.releaseBlock()
#########################################################3
if self.n % self.lenProfileOut != 0:
raise ValueError("lenProfileOut %d must be submultiple of nProfiles %d" %(self.lenProfileOut, self.n))
return None
dataOut.data = None
if nProfilesOut == 1:
dataOut.data = self.buffer[:,self.end_prof-1,:] #ch, prof, alt
else:
dataOut.data = self.buffer[:,self.init_prof:self.end_prof,:] #ch, prof, alt
self.init_prof = self.end_prof
self.end_prof += self.lenProfileOut
#print("data release shape: ",dataOut.data.shape, self.end_prof, dataOut.flagNoData)
self.n_prof_released += 1
if self.end_prof >= (self.n +self.lenProfileOut):
self.init_prof = 0
self.__profIndex = 0
self.buffer = None
dataOut.buffer_empty = True
self.outliers_IDs_list = []
self.n_prof_released = 0
dataOut.flagNoData = False #enviar ultimo aunque sea outlier :(
#print("cleaning...", dataOut.buffer_empty)
dataOut.profileIndex = 0 #self.lenProfileOut
####################################################################
return dataOut
#print("tp 223 ",dataOut.data.shape)
dataOut.flagNoData = True
try:
#dataBlock = self.getData(dataOut.data.reshape(self.nChannels,1,self.nHeights), dataOut.utctime)
dataBlock = self.getData(numpy.reshape(dataOut.data,(self.nChannels,1,self.nHeights)), dataOut.utctime)
self.__count_exec +=1
except Exception as e:
print("Error getting profiles data",self.__count_exec )
print(e)
sys.exit()
if self.__dataReady:
#print("omitting: ", len(self.outliers_IDs_list))
self.__count_exec = 0
#dataOut.data =
#self.buffer = numpy.flip(dataBlock, axis=1)
self.buffer = dataBlock
self.first_utcBlock = self.__initime
dataOut.utctime = self.__initime
dataOut.nProfiles = self.__profIndex
#dataOut.flagNoData = False
self.init_prof = 0
self.__profIndex = 0
self.__initime = None
dataBlock = None
self.__buffer_times = []
dataOut.error = False
dataOut.useInputBuffer = True
dataOut.buffer_empty = False
#print("1 ch: {} prof: {} hs: {}".format(int(dataOut.nChannels),int(dataOut.nProfiles),int(dataOut.nHeights)))
#print(self.__count_exec)
return dataOut
class RemoveProfileSats2(Operation):
'''
Escrito: Joab Apaza
Omite los perfiles contaminados con señal de satélites, usando una altura de referencia
promedia todas las alturas para los cálculos
In:
n = Cantidad de perfiles que se acumularan, usualmente 10 segundos
navg = Porcentaje de perfiles que puede considerarse como satélite, máximo 90%
minHei =
minRef =
maxRef =
nBins =
profile_margin =
th_hist_outlier =
nProfilesOut =
Pensado para remover interferencias de las YAGI, se puede adaptar a otras interferencias
remYagi = Activa la funcion de remoción de interferencias de la YAGI
nProfYagi = Cantidad de perfiles que son afectados, acorde NTX de la YAGI
offYagi =
minHJULIA = Altura mínima donde aparece la señal referencia de JULIA (-50)
maxHJULIA = Altura máxima donde aparece la señal referencia de JULIA (-15)
debug = Activa los gráficos, recomendable ejecutar para ajustar los parámetros
para un experimento en específico.
** se modifica para remover interferencias puntuales, es decir, desde otros radares.
Inicialmente se ha configurado para omitir también los perfiles de la YAGI en los datos
de AMISR-ISR.
Out:
profile clean
'''
__buffer_data = []
__buffer_times = []
buffer = None
outliers_IDs_list = []
__slots__ = ('n','navg','profileMargin','thHistOutlier','minHei_idx','maxHei_idx','nHeights',
'first_utcBlock','__profIndex','init_prof','end_prof','lenProfileOut','nChannels','cohFactor',
'__count_exec','__initime','__dataReady','__ipp', 'minRef', 'maxRef', 'debug','prev_pnoise','thfactor')
def __init__(self, **kwargs):
Operation.__init__(self, **kwargs)
self.isConfig = False
self.currentTime = None
def setup(self,dataOut, n=None , navg=0.9, profileMargin=50,thHistOutlier=15,minHei=None, maxHei=None, nBins=10,
minRef=None, maxRef=None, debug=False, remYagi=False, nProfYagi = 0, offYagi=0, minHJULIA=None, maxHJULIA=None,
idate=None,startH=None,endH=None, thfactor=1 ):
if n == None and timeInterval == None:
raise ValueError("nprofiles or timeInterval should be specified ...")
if n != None:
self.n = n
self.navg = navg
self.profileMargin = profileMargin
self.thHistOutlier = thHistOutlier
self.__profIndex = 0
self.buffer = None
self._ipp = dataOut.ippSeconds
self.n_prof_released = 0
self.heightList = dataOut.heightList
self.init_prof = 0
self.end_prof = 0
self.__count_exec = 0
self.__profIndex = 0
self.first_utcBlock = None
self.prev_pnoise = None
self.nBins = nBins
self.thfactor = thfactor
#self.__dh = dataOut.heightList[1] - dataOut.heightList[0]
minHei = minHei
maxHei = maxHei
if minHei==None :
minHei = dataOut.heightList[0]
if maxHei==None :
maxHei = dataOut.heightList[-1]
self.minHei_idx,self.maxHei_idx = getHei_index(minHei, maxHei, dataOut.heightList)
self.min_ref, self.max_ref = getHei_index(minRef, maxRef, dataOut.heightList)
self.nChannels = dataOut.nChannels
self.nHeights = dataOut.nHeights
self.test_counter = 0
self.debug = debug
self.remYagi = remYagi
self.cohFactor = dataOut.nCohInt
if self.remYagi :
if minHJULIA==None or maxHJULIA==None:
raise ValueError("Parameters minHYagi and minHYagi are necessary!")
return
if idate==None or startH==None or endH==None:
raise ValueError("Date and hour parameters are necessary!")
return
self.minHJULIA_idx,self.maxHJULIA_idx = getHei_index(minHJULIA, maxHJULIA, dataOut.heightList)
self.offYagi = offYagi
self.nTxYagi = nProfYagi
self.startTime = datetime.datetime.combine(idate,startH)
self.endTime = datetime.datetime.combine(idate,endH)
log.warning("Be careful with the selection of parameters for sats removal! It is avisable to \
activate the debug parameter in this operation for calibration", self.name)
def filterSatsProfiles(self):
data = self.__buffer_data.copy()
#print(data.shape)
nChannels, profiles, heights = data.shape
indexes=numpy.zeros([], dtype=int)
indexes = numpy.delete(indexes,0)
indexesYagi=numpy.zeros([], dtype=int)
indexesYagi = numpy.delete(indexesYagi,0)
indexesYagi_up=numpy.zeros([], dtype=int)
indexesYagi_up = numpy.delete(indexesYagi_up,0)
indexesYagi_down=numpy.zeros([], dtype=int)
indexesYagi_down = numpy.delete(indexesYagi_down,0)
indexesJULIA=numpy.zeros([], dtype=int)
indexesJULIA = numpy.delete(indexesJULIA,0)
outliers_IDs=[]
div = profiles//self.nBins
for c in range(nChannels):
#print(self.min_ref,self.max_ref)
import scipy.signal
b, a = scipy.signal.butter(3, 0.5)
#noise_ref = (data[c,:,self.min_ref:self.max_ref] * numpy.conjugate(data[c,:,self.min_ref:self.max_ref]))
noise_ref = numpy.abs(data[c,:,self.min_ref:self.max_ref])
lnoise = len(noise_ref[0,:])
#print(noise_ref.shape)
noise_ref = noise_ref.mean(axis=1)
#fnoise = noise_ref
fnoise = scipy.signal.filtfilt(b, a, noise_ref)
#noise_refdB = 10* numpy.log10(noise_ref)
#print("Noise ",numpy.percentile(noise_ref,95))
p95 = numpy.percentile(fnoise,95)
mean_noise = fnoise.mean()
if self.prev_pnoise != None:
if mean_noise < (1.1 * self.prev_pnoise) and mean_noise > (0.9 * self.prev_pnoise):
mean_noise = 0.9*mean_noise + 0.1*self.prev_pnoise
self.prev_pnoise = mean_noise
else:
mean_noise = self.prev_pnoise
else:
self.prev_pnoise = mean_noise
std = fnoise.std()+ fnoise.mean()
#power = (data[c,:,self.minHei_idx:self.maxHei_idx] * numpy.conjugate(data[c,:,self.minHei_idx:self.maxHei_idx]))
power = numpy.abs(data[c,:,self.minHei_idx:self.maxHei_idx])
npower = len(power[0,:])
#print(power.shape)
power = power.mean(axis=1)
fpower = scipy.signal.filtfilt(b, a, power)
#print(power.shape)
#powerdB = 10* numpy.log10(power)
#th = p95 * self.thfactor
th = mean_noise * self.thfactor
index = numpy.where(fpower > th )
#print("Noise ",mean_noise, p95)
#print(index)
if index[0].size <= int(self.navg*profiles): #outliers from sats
indexes = numpy.append(indexes, index[0])
index2low = numpy.where(fpower < (th*0.5 )) #outliers from no TX
if index2low[0].size <= int(self.navg*profiles):
indexes = numpy.append(indexes, index2low[0])
#print("sdas ", noise_ref.mean())
if self.remYagi :
#print(self.minHJULIA_idx, self.maxHJULIA_idx)
powerJULIA = (data[c,:,self.minHJULIA_idx:self.maxHJULIA_idx] * numpy.conjugate(data[c,:,self.minHJULIA_idx:self.maxHJULIA_idx])).real
powerJULIA = powerJULIA.mean(axis=1)
th_JULIA = powerJULIA.mean()*0.85
indexJULIA = numpy.where(powerJULIA >= th_JULIA )
indexesJULIA= numpy.append(indexesJULIA, indexJULIA[0])
# fig, ax = plt.subplots()
# ax.plot(powerJULIA)
# ax.axhline(th_JULIA, color='r')
# plt.grid()
# plt.show()
if self.debug:
fig, ax = plt.subplots()
ax.plot(fpower, label="power")
#ax.plot(fnoise, label="noise ref")
ax.axhline(th, color='g', label="th")
#ax.axhline(std, color='b', label="mean")
ax.legend()
plt.grid()
plt.show()
#print(indexes)
#outliers_IDs = outliers_IDs.astype(numpy.dtype('int64'))
#outliers_IDs = numpy.unique(outliers_IDs)
# print(indexesJULIA)
if len(indexesJULIA > 1):
iJ = indexesJULIA
locs = [ (iJ[n]-iJ[n-1]) > 5 for n in range(len(iJ))]
locs_2 = numpy.where(locs)[0]
#print(locs_2, indexesJULIA[locs_2-1])
indexesYagi_up = numpy.append(indexesYagi_up, indexesJULIA[locs_2-1])
indexesYagi_down = numpy.append(indexesYagi_down, indexesJULIA[locs_2])
indexesYagi_up = numpy.append(indexesYagi_up,indexesJULIA[-1])
indexesYagi_down = numpy.append(indexesYagi_down,indexesJULIA[0])
indexesYagi_up = numpy.unique(indexesYagi_up)
indexesYagi_down = numpy.unique(indexesYagi_down)
aux_ind = [ numpy.arange( (self.offYagi + k)+1, (self.offYagi + k + self.nTxYagi)+1, 1, dtype=int) for k in indexesYagi_up]
indexesYagi_up = (numpy.asarray(aux_ind)).flatten()
aux_ind2 = [ numpy.arange( (k - self.nTxYagi)+1, k+1 , 1, dtype=int) for k in indexesYagi_down]
indexesYagi_down = (numpy.asarray(aux_ind2)).flatten()
indexesYagi = numpy.append(indexesYagi,indexesYagi_up)
indexesYagi = numpy.append(indexesYagi,indexesYagi_down)
indexesYagi = indexesYagi[ (indexesYagi >= 0) & (indexesYagi<profiles)]
indexesYagi = numpy.unique(indexesYagi)
#print("indexes: " ,indexes)
outs_lines = numpy.unique(indexes)
#print(outs_lines)
#Agrupando el histograma de outliers,
my_bins = numpy.linspace(0,int(profiles), div, endpoint=True)
hist, bins = numpy.histogram(outs_lines,bins=my_bins)
#print("hist: ",hist)
hist_outliers_indexes = numpy.where(hist >= self.thHistOutlier)[0] #es outlier
# print(hist_outliers_indexes)
if len(hist_outliers_indexes>0):
hist_outliers_indexes = numpy.append(hist_outliers_indexes,hist_outliers_indexes[-1]+1)
bins_outliers_indexes = [int(i)+1 for i in (bins[hist_outliers_indexes])] #
outlier_loc_index = []
#print("out indexes ", bins_outliers_indexes)
# if len(bins_outliers_indexes) <= 2:
# extprof = 0
# else:
# extprof = self.profileMargin
extprof = self.profileMargin
outlier_loc_index = [e for n in range(len(bins_outliers_indexes)) for e in range(bins_outliers_indexes[n]-extprof,bins_outliers_indexes[n] + extprof) ]
outlier_loc_index = numpy.asarray(outlier_loc_index)
# if len(outlier_loc_index)>1:
# ipmax = numpy.where(fpower==fpower.max())[0]
# print("pmax: ",ipmax)
#print("outliers Ids: ", outlier_loc_index, outlier_loc_index.shape)
outlier_loc_index = outlier_loc_index[ (outlier_loc_index >= 0) & (outlier_loc_index<profiles)]
#print("outliers final: ", outlier_loc_index)
if self.debug:
x, y = numpy.meshgrid(numpy.arange(profiles), self.heightList)
fig, ax = plt.subplots(nChannels,2,figsize=(8, 6))
for i in range(nChannels):
dat = data[i,:,:].real
dat = 10* numpy.log10((data[i,:,:] * numpy.conjugate(data[i,:,:])).real)
m = numpy.nanmean(dat)
o = numpy.nanstd(dat)
if nChannels>1:
c = ax[i][0].pcolormesh(x, y, dat.T, cmap ='jet', vmin = 60, vmax = 70)
ax[i][0].vlines(outs_lines,650,700, linestyles='dashed', label = 'outs', color='w')
#fig.colorbar(c)
ax[i][0].vlines(outlier_loc_index,700,750, linestyles='dashed', label = 'outs', color='r')
ax[i][1].hist(outs_lines,bins=my_bins)
if self.remYagi :
ax[0].vlines(indexesYagi,750,850, linestyles='dashed', label = 'yagi', color='m')
else:
c = ax[0].pcolormesh(x, y, dat.T, cmap ='jet', vmin = 60, vmax = (70+2*self.cohFactor))
ax[0].vlines(outs_lines,650,700, linestyles='dashed', label = 'outs', color='w')
#fig.colorbar(c)
ax[0].vlines(outlier_loc_index,700,750, linestyles='dashed', label = 'outs', color='r')
ax[1].hist(outs_lines,bins=my_bins)
if self.remYagi :
ax[0].vlines(indexesYagi,750,850, linestyles='dashed', label = 'yagi', color='m')
plt.show()
if self.remYagi and (self.currentTime < self.startTime and self.currentTime < self.endTime):
outlier_loc_index = numpy.append(outlier_loc_index,indexesYagi)
self.outliers_IDs_list = numpy.unique(outlier_loc_index)
#print("outs list: ", self.outliers_IDs_list)
return self.__buffer_data
def fillBuffer(self, data, datatime):
if self.__profIndex == 0:
self.__buffer_data = data.copy()
else:
self.__buffer_data = numpy.concatenate((self.__buffer_data,data), axis=1)#en perfiles
self.__profIndex += 1
self.__buffer_times.append(datatime)
def getData(self, data, datatime=None):
if self.__profIndex == 0:
self.__initime = datatime
self.__dataReady = False
self.fillBuffer(data, datatime)
dataBlock = None
if self.__profIndex == self.n:
#print("apnd : ",data)
dataBlock = self.filterSatsProfiles()
self.__dataReady = True
return dataBlock
if dataBlock is None:
return None, None
return dataBlock
def releaseBlock(self):
if self.n % self.lenProfileOut != 0:
raise ValueError("lenProfileOut %d must be submultiple of nProfiles %d" %(self.lenProfileOut, self.n))
return None
data = self.buffer[:,self.init_prof:self.end_prof:,:] #ch, prof, alt
self.init_prof = self.end_prof
self.end_prof += self.lenProfileOut
#print("data release shape: ",dataOut.data.shape, self.end_prof)
self.n_prof_released += 1
return data
def run(self, dataOut, n=None, navg=0.9, nProfilesOut=1, profile_margin=50, th_hist_outlier=15,minHei=None,nBins=10,
maxHei=None, minRef=None, maxRef=None, debug=False, remYagi=False, nProfYagi = 0, offYagi=0, minHJULIA=None, maxHJULIA=None,
idate=None,startH=None,endH=None, thfactor=1):
if not self.isConfig:
#print("init p idx: ", dataOut.profileIndex )
self.setup(dataOut,n=n, navg=navg,profileMargin=profile_margin,thHistOutlier=th_hist_outlier,minHei=minHei,
nBins=10, maxHei=maxHei, minRef=minRef, maxRef=maxRef, debug=debug, remYagi=remYagi, nProfYagi = nProfYagi,
offYagi=offYagi, minHJULIA=minHJULIA,maxHJULIA=maxHJULIA,idate=idate,startH=startH,endH=endH, thfactor=thfactor)
self.isConfig = True
dataBlock = None
self.currentTime = datetime.datetime.fromtimestamp(dataOut.utctime)
if not dataOut.buffer_empty: #hay datos acumulados
if self.init_prof == 0:
self.n_prof_released = 0
self.lenProfileOut = nProfilesOut
dataOut.flagNoData = False
#print("tp 2 ",dataOut.data.shape)
self.init_prof = 0
self.end_prof = self.lenProfileOut
dataOut.nProfiles = self.lenProfileOut
if nProfilesOut == 1:
dataOut.flagDataAsBlock = False
else:
dataOut.flagDataAsBlock = True
#print("prof: ",self.init_prof)
dataOut.flagNoData = False
if numpy.isin(self.n_prof_released, self.outliers_IDs_list):
#print("omitting: ", self.n_prof_released)
dataOut.flagNoData = True
dataOut.ippSeconds = self._ipp
dataOut.utctime = self.first_utcBlock + self.init_prof*self._ipp
# print("time: ", dataOut.utctime, self.first_utcBlock, self.init_prof,self._ipp,dataOut.ippSeconds)
#dataOut.data = self.releaseBlock()
#########################################################3
if self.n % self.lenProfileOut != 0:
raise ValueError("lenProfileOut %d must be submultiple of nProfiles %d" %(self.lenProfileOut, self.n))
return None
dataOut.data = None
if nProfilesOut == 1:
dataOut.data = self.buffer[:,self.end_prof-1,:] #ch, prof, alt
else:
dataOut.data = self.buffer[:,self.init_prof:self.end_prof,:] #ch, prof, alt
self.init_prof = self.end_prof
self.end_prof += self.lenProfileOut
#print("data release shape: ",dataOut.data.shape, self.end_prof, dataOut.flagNoData)
self.n_prof_released += 1
if self.end_prof >= (self.n +self.lenProfileOut):
self.init_prof = 0
self.__profIndex = 0
self.buffer = None
dataOut.buffer_empty = True
self.outliers_IDs_list = []
self.n_prof_released = 0
dataOut.flagNoData = False #enviar ultimo aunque sea outlier :(
#print("cleaning...", dataOut.buffer_empty)
dataOut.profileIndex = self.__profIndex
####################################################################
return dataOut
#print("tp 223 ",dataOut.data.shape)
dataOut.flagNoData = True
try:
#dataBlock = self.getData(dataOut.data.reshape(self.nChannels,1,self.nHeights), dataOut.utctime)
dataBlock = self.getData(numpy.reshape(dataOut.data,(self.nChannels,1,self.nHeights)), dataOut.utctime)
self.__count_exec +=1
except Exception as e:
print("Error getting profiles data",self.__count_exec )
print(e)
sys.exit()
if self.__dataReady:
#print("omitting: ", len(self.outliers_IDs_list))
self.__count_exec = 0
#dataOut.data =
#self.buffer = numpy.flip(dataBlock, axis=1)
self.buffer = dataBlock
self.first_utcBlock = self.__initime
dataOut.utctime = self.__initime
dataOut.nProfiles = self.__profIndex
#dataOut.flagNoData = False
self.init_prof = 0
self.__profIndex = 0
self.__initime = None
dataBlock = None
self.__buffer_times = []
dataOut.error = False
dataOut.useInputBuffer = True
dataOut.buffer_empty = False
#print("1 ch: {} prof: {} hs: {}".format(int(dataOut.nChannels),int(dataOut.nProfiles),int(dataOut.nHeights)))
#print(self.__count_exec)
return dataOut
class remHeightsIppInterf(Operation):
def __init__(self, **kwargs):
Operation.__init__(self, **kwargs)
self.isConfig = False
self.heights_indx = None
self.heightsList = []
self.ipp1 = None
self.ipp2 = None
self.tx1 = None
self.tx2 = None
self.dh1 = None
def setup(self, dataOut, ipp1=None, ipp2=None, tx1=None, tx2=None, dh1=None,
idate=None, startH=None, endH=None):
self.ipp1 = ipp1
self.ipp2 = ipp2
self.tx1 = tx1
self.tx2 = tx2
self.dh1 = dh1
_maxIpp1R = dataOut.heightList.max()
_n_repeats = int(_maxIpp1R / ipp2)
_init_hIntf = (tx1 + ipp2/2)+ dh1
_n_hIntf = int(tx2 / dh1)
self.heightsList = [_init_hIntf+n*ipp2 for n in range(_n_repeats) ]
heiList = dataOut.heightList
self.heights_indx = [getHei_index(h,h,heiList)[0] for h in self.heightsList]
self.heights_indx = [ numpy.asarray([k for k in range(_n_hIntf+2)])+(getHei_index(h,h,heiList)[0] -1) for h in self.heightsList]
self.heights_indx = numpy.asarray(self.heights_indx )
self.isConfig = True
self.startTime = datetime.datetime.combine(idate,startH)
self.endTime = datetime.datetime.combine(idate,endH)
#print(self.startTime, self.endTime)
#print("nrepeats: ", _n_repeats, " _nH: ",_n_hIntf )
log.warning("Heights set to zero (km): ", self.name)
log.warning(str((dataOut.heightList[self.heights_indx].flatten())), self.name)
log.warning("Be careful with the selection of heights for noise calculation!")
def run(self, dataOut, ipp1=None, ipp2=None, tx1=None, tx2=None, dh1=None, idate=None,
startH=None, endH=None):
#print(locals().values())
if None in locals().values():
log.warning('Missing kwargs, invalid values """None""" ', self.name)
return dataOut
if not self.isConfig:
self.setup(dataOut, ipp1=ipp1, ipp2=ipp2, tx1=tx1, tx2=tx2, dh1=dh1,
idate=idate, startH=startH, endH=endH)
dataOut.flagProfilesByRange = False
currentTime = datetime.datetime.fromtimestamp(dataOut.utctime)
if currentTime < self.startTime or currentTime > self.endTime:
return dataOut
for ch in range(dataOut.data.shape[0]):
for hk in self.heights_indx.flatten():
if dataOut.data.ndim < 3:
dataOut.data[ch,hk] = 0.0 + 0.0j
else:
dataOut.data[ch,:,hk] = 0.0 + 0.0j
dataOut.flagProfilesByRange = True
return dataOut
class profiles2Block(Operation):
'''
Escrito: Joab Apaza
genera un bloque de perfiles
Out:
block
'''
isConfig = False
__buffer_data = []
__buffer_times = []
__profIndex = 0
__byTime = False
__initime = None
__lastdatatime = None
buffer = None
n = None
__dataReady = False
__nChannels = None
__nHeis = None
def __init__(self, **kwargs):
Operation.__init__(self, **kwargs)
self.isConfig = False
def setup(self,n=None, timeInterval=None):
if n == None and timeInterval == None:
raise ValueError("n or timeInterval should be specified ...")
if n != None:
self.n = n
self.__byTime = False
else:
self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line
self.n = 9999
self.__byTime = True
self.__profIndex = 0
def fillBuffer(self, data, datatime):
if self.__profIndex == 0:
self.__buffer_data = data.copy()
else:
self.__buffer_data = numpy.concatenate((self.__buffer_data,data), axis=1)#en perfiles
self.__profIndex += 1
self.__buffer_times.append(datatime)
def getData(self, data, datatime=None):
if self.__initime == None:
self.__initime = datatime
if data.ndim < 3:
data = data.reshape(self.__nChannels,1,self.__nHeis )
if self.__byTime:
dataBlock = self.byTime(data, datatime)
else:
dataBlock = self.byProfiles(data, datatime)
self.__lastdatatime = datatime
if dataBlock is None:
return None, None
return dataBlock, self.__buffer_times
def byProfiles(self, data, datatime):
self.__dataReady = False
dataBlock = None
# n = None
# print data
# raise
self.fillBuffer(data, datatime)
if self.__profIndex == self.n:
dataBlock = self.__buffer_data
self.__dataReady = True
return dataBlock
def byTime(self, data, datatime):
self.__dataReady = False
dataBlock = None
n = None
self.fillBuffer(data, datatime)
if (datatime - self.__initime) >= self.__integrationtime:
dataBlock = self.__buffer_data
self.n = self.__profIndex
self.__dataReady = True
return dataBlock
def run(self, dataOut, n=None, timeInterval=None, **kwargs):
if not self.isConfig:
self.setup(n=n, timeInterval=timeInterval, **kwargs)
self.__nChannels = dataOut.nChannels
self.__nHeis = len(dataOut.heightList)
self.isConfig = True
if dataOut.flagDataAsBlock:
"""
Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis]
"""
raise ValueError("The data is already a block")
return
else:
dataBlock, timeBlock = self.getData(dataOut.data, dataOut.utctime)
# print(dataOut.data.shape)
# dataOut.timeInterval *= n
dataOut.flagNoData = True
if self.__dataReady:
dataOut.data = dataBlock
dataOut.flagDataAsBlock = True
dataOut.utctime = timeBlock[-1]
dataOut.nProfiles = self.__profIndex
# print avgdata, avgdatatime
# raise
dataOut.flagNoData = False
self.__profIndex = 0
self.__initime = None
#update Processing Header:
# print(dataOut.data.shape)
return dataOut
class remFaradayProfiles(Operation):
def __init__(self, **kwargs):
Operation.__init__(self, **kwargs)
self.isConfig = False
self.nprofile2 = 0
self.profile = 0
self.flagRun = False
self.flagRemove = False
self.k = 0
def setup(self, channel,nChannels=5, nProfiles=300,nBlocks=100, nIpp2=300, nTx2=132, nTaus=22, offTaus=14, iTaus=8,
nfft=1):
'''
nProfiles = amisr profiles per block -> raw data
nIpp1 = number of profiles in one AMISR sync
nIpp2 = number of profiles in one Jicamarca sync
nTx2 = number of profiles transmited for Faraday Experiment
nTaus = Total profiles for lags
offTaus = where starts the interference, (profile)
iTaus = lenght of the interference
irepeat = number of repetition of the Taus
'''
self.nIpp2 = nIpp2
self.channel = channel
self.nChannels = nChannels
self.nTx2 = nTx2
self.nTaus = nTaus
booldataset = numpy.ones( (nBlocks, nProfiles) )
self.profilesFlag = None
#marking the afected profiles
f_iTaus=False
f_ntx = False
fi = 0
k = 0
kt =0
fi_reps = 0
for i in range(nBlocks):
for j in range(nProfiles):
# fi 0---nTaus
#
if k%nIpp2==0: #each sync PPs or 2, 3, or 5
f_ntx = True
kt = 0
if f_ntx:
if kt%nTaus==0: #each sequence of Taus
f_iTaus = True
fi = 0
if f_iTaus:
if fi > offTaus-1:
booldataset[i, j]=0 #Afected profile
fi += 1
if fi == nTaus-1: #restart the taus sequence
fi = 0
f_iTaus = False
fi_reps += 1
if fi_reps == (nTx2/nTaus):
fi = 0
fi_reps = 0
f_ntx=False
kt += 1
k += 1
# fig = plt.figure()
# ax = fig.add_subplot(111)
# cax = ax.pcolormesh(booldataset, cmap='plasma')
# cbar = fig.colorbar(cax)
# plt.show()
#reshape the Flag as AMISR reader
profPerCH = int( (nProfiles) / (nfft*nChannels))
new_block = numpy.empty( (nBlocks, nChannels, int(nProfiles/nChannels) ) )
# print(new_block.shape, profPerCH)
for thisChannel in range(nChannels):
ich = thisChannel
idx_ch = [nfft*(ich + nChannels*k) for k in range(profPerCH)]
#print(idx_ch)
if nfft > 1:
aux = [numpy.arange(i, i+nfft) for i in idx_ch]
idx_ch = None
idx_ch =aux
idx_ch = numpy.array(idx_ch, dtype=int).flatten()
else:
idx_ch = numpy.array(idx_ch, dtype=int)
new_block[:,ich,:] = booldataset[:,idx_ch]
new_block = numpy.transpose(new_block, (1,0,2))
#new_block = numpy.reshape(new_block, (nChannels,-1))
new_block = numpy.reshape(new_block, (nChannels,profPerCH*nBlocks))
self.profilesFlag = new_block.copy()
# fig = plt.figure()
# ax = fig.add_subplot(111)
# cax = ax.pcolormesh(new_block, cmap='plasma')
# cbar = fig.colorbar(cax)
# plt.show()
self.isConfig = True
def run(self,dataOut, channel=0, nChannels=5, nProfiles=300,nBlocks=100,nIpp1=100,
nIpp2=300, nTx2=132, nTaus=22, offTaus=8, iTaus=14, nfft=1 ,offIpp=0):
dataOut.flagNoData = False
if not self.isConfig:
self.setup(channel,nChannels=nChannels, nProfiles=nProfiles,nBlocks=nBlocks, nIpp2=nIpp2,
nTx2=nTx2, nTaus=nTaus, offTaus=offTaus, iTaus=iTaus, nfft=nfft)
#print("Setup Done")
#print(offIpp*nIpp1/nChannels)
if not self.flagRun:
if self.nprofile2 < offIpp*nIpp1/nChannels :
self.nprofile2 += 1
return dataOut
else:
self.flagRun = True
self.profile = 0
#check profile ## Faraday interference
if self.profilesFlag[channel, self.profile]==0:
dataOut.flagNoData = True # do not pass this profile
self.profile +=1
self.nprofile2 +=1
if self.nprofile2 == int((nProfiles*nBlocks)/self.nChannels):
self.nprofile2 = 0
self.profile = 0
self.flagRun = False
return dataOut