##// END OF EJS Templates
Correcion de plot eje, graficos centrados, seleccion de ploteo real,imag, abs por defecto, pruebas integrando5 min
Correcion de plot eje, graficos centrados, seleccion de ploteo real,imag, abs por defecto, pruebas integrando5 min

File last commit:

r989:57782215c6e2
r1244:464f48b8a1f9
Show More
jroproc_correlation.py
178 lines | 6.7 KiB | text/x-python | PythonLexer
/ schainpy / model / proc / jroproc_correlation.py
import numpy
from jroproc_base import ProcessingUnit, Operation
from schainpy.model.data.jrodata import Correlation, hildebrand_sekhon
class CorrelationProc(ProcessingUnit):
pairsList = None
data_cf = None
def __init__(self, **kwargs):
ProcessingUnit.__init__(self, **kwargs)
self.objectDict = {}
self.buffer = None
self.firstdatatime = None
self.profIndex = 0
self.dataOut = Correlation()
def __updateObjFromVoltage(self):
self.dataOut.timeZone = self.dataIn.timeZone
self.dataOut.dstFlag = self.dataIn.dstFlag
self.dataOut.errorCount = self.dataIn.errorCount
self.dataOut.useLocalTime = self.dataIn.useLocalTime
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
self.dataOut.channelList = self.dataIn.channelList
self.dataOut.heightList = self.dataIn.heightList
self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
# self.dataOut.nHeights = self.dataIn.nHeights
# self.dataOut.nChannels = self.dataIn.nChannels
self.dataOut.nBaud = self.dataIn.nBaud
self.dataOut.nCode = self.dataIn.nCode
self.dataOut.code = self.dataIn.code
# self.dataOut.nProfiles = self.dataOut.nFFTPoints
self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
self.dataOut.utctime = self.firstdatatime
self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
self.dataOut.nCohInt = self.dataIn.nCohInt
# self.dataOut.nIncohInt = 1
self.dataOut.ippSeconds = self.dataIn.ippSeconds
self.dataOut.nProfiles = self.dataIn.nProfiles
self.dataOut.utctime = self.dataIn.utctime
# self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
# self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nPoints
def removeDC(self, jspectra):
nChannel = jspectra.shape[0]
for i in range(nChannel):
jspectra_tmp = jspectra[i,:,:]
jspectra_DC = numpy.mean(jspectra_tmp,axis = 0)
jspectra_tmp = jspectra_tmp - jspectra_DC
jspectra[i,:,:] = jspectra_tmp
return jspectra
def removeNoise(self, mode = 2):
indR = numpy.where(self.dataOut.lagR == 0)[0][0]
indT = numpy.where(self.dataOut.lagT == 0)[0][0]
jspectra = self.dataOut.data_corr[:,:,indR,:]
num_chan = jspectra.shape[0]
num_hei = jspectra.shape[2]
freq_dc = indT
ind_vel = numpy.array([-2,-1,1,2]) + freq_dc
NPot = self.dataOut.getNoise(mode)
jspectra[:,freq_dc,:] = jspectra[:,freq_dc,:] - NPot
SPot = jspectra[:,freq_dc,:]
pairsAutoCorr = self.dataOut.getPairsAutoCorr()
# self.dataOut.signalPotency = SPot
self.dataOut.noise = NPot
self.dataOut.SNR = (SPot/NPot)[pairsAutoCorr]
self.dataOut.data_corr[:,:,indR,:] = jspectra
return 1
def run(self, lags=None, mode = 'time', pairsList=None, fullBuffer=False, nAvg = 1, removeDC = False, splitCF=False):
self.dataOut.flagNoData = True
if self.dataIn.type == "Correlation":
self.dataOut.copy(self.dataIn)
return
if self.dataIn.type == "Voltage":
nChannels = self.dataIn.nChannels
nProfiles = self.dataIn.nProfiles
nHeights = self.dataIn.nHeights
data_pre = self.dataIn.data
#--------------- Remover DC ------------
if removeDC:
data_pre = self.removeDC(data_pre)
#---------------------------------------------
# pairsList = list(ccfList)
# for i in acfList:
# pairsList.append((i,i))
#
# ccf_pairs = numpy.arange(len(ccfList))
# acf_pairs = numpy.arange(len(ccfList),len(pairsList))
self.__updateObjFromVoltage()
#----------------------------------------------------------------------
#Creating temporal buffers
if fullBuffer:
tmp = numpy.zeros((len(pairsList), len(lags), nProfiles, nHeights), dtype = 'complex')*numpy.nan
elif mode == 'time':
if lags == None:
lags = numpy.arange(-nProfiles+1, nProfiles)
tmp = numpy.zeros((len(pairsList), len(lags), nHeights),dtype='complex')
elif mode == 'height':
if lags == None:
lags = numpy.arange(-nHeights+1, nHeights)
tmp = numpy.zeros(len(pairsList), (len(lags), nProfiles),dtype='complex')
#For loop
for l in range(len(pairsList)):
ch0 = pairsList[l][0]
ch1 = pairsList[l][1]
for i in range(len(lags)):
idx = lags[i]
if idx >= 0:
if mode == 'time':
ccf0 = data_pre[ch0,:nProfiles-idx,:]*numpy.conj(data_pre[ch1,idx:,:]) #time
else:
ccf0 = data_pre[ch0,:,nHeights-idx]*numpy.conj(data_pre[ch1,:,idx:]) #heights
else:
if mode == 'time':
ccf0 = data_pre[ch0,-idx:,:]*numpy.conj(data_pre[ch1,:nProfiles+idx,:]) #time
else:
ccf0 = data_pre[ch0,:,-idx:]*numpy.conj(data_pre[ch1,:,:nHeights+idx]) #heights
if fullBuffer:
tmp[l,i,:ccf0.shape[0],:] = ccf0
else:
tmp[l,i,:] = numpy.sum(ccf0, axis=0)
#-----------------------------------------------------------------
if fullBuffer:
tmp = numpy.sum(numpy.reshape(tmp,(tmp.shape[0],tmp.shape[1],tmp.shape[2]/nAvg,nAvg,tmp.shape[3])),axis=3)
self.dataOut.nAvg = nAvg
self.dataOut.data_cf = tmp
self.dataOut.mode = mode
self.dataOut.nLags = len(lags)
self.dataOut.pairsList = pairsList
self.dataOut.nPairs = len(pairsList)
#Se Calcula los factores de Normalizacion
if mode == 'time':
delta = self.dataIn.ippSeconds*self.dataIn.nCohInt
else:
delta = self.dataIn.heightList[1] - self.dataIn.heightList[0]
self.dataOut.lagRange = numpy.array(lags)*delta
# self.dataOut.nCohInt = self.dataIn.nCohInt*nAvg
self.dataOut.flagNoData = False
# a = self.dataOut.normFactor
return