##// END OF EJS Templates
add Ffiles
add Ffiles

File last commit:

r1601:3b2826fe0d97
r1601:3b2826fe0d97
Show More
nnls.f
2093 lines | 72.4 KiB | text/x-fortran | FortranFixedLexer
SUBROUTINE BNDACC (G,MDG,NB,IP,IR,MT,JT)
c
C SEQUENTIAL ALGORITHM FOR BANDED LEAST SQUARES PROBLEM..
C ACCUMULATION PHASE. FOR SOLUTION PHASE USE BNDSOL.
c
c The original version of this code was developed by
c Charles L. Lawson and Richard J. Hanson at Jet Propulsion Laboratory
c 1973 JUN 12, and published in the book
c "SOLVING LEAST SQUARES PROBLEMS", Prentice-HalL, 1974.
c Revised FEB 1995 to accompany reprinting of the book by SIAM.
C
C THE CALLING PROGRAM MUST SET IR=1 AND IP=1 BEFORE THE FIRST CALL
C TO BNDACC FOR A NEW CASE.
C
C THE SECOND SUBSCRIPT OF G( ) MUST BE DIMENSIONED AT LEAST
C NB+1 IN THE CALLING PROGRAM.
c ------------------------------------------------------------------
integer I, J, IE, IG, IG1, IG2, IP, IR, JG, JT, K, KH, L, LP1
integer MDG, MH, MT, MU, NB, NBP1
c double precision G(MDG,NB+1)
double precision G(MDG,*)
double precision RHO, ZERO
parameter(ZERO = 0.0d0)
c ------------------------------------------------------------------
C
C ALG. STEPS 1-4 ARE PERFORMED EXTERNAL TO THIS SUBROUTINE.
C
NBP1=NB+1
IF (MT.LE.0) RETURN
C ALG. STEP 5
IF (JT.EQ.IP) GO TO 70
C ALG. STEPS 6-7
IF (JT.LE.IR) GO TO 30
C ALG. STEPS 8-9
DO 10 I=1,MT
IG1=JT+MT-I
IG2=IR+MT-I
DO 10 J=1,NBP1
10 G(IG1,J)=G(IG2,J)
C ALG. STEP 10
IE=JT-IR
DO 20 I=1,IE
IG=IR+I-1
DO 20 J=1,NBP1
20 G(IG,J)=ZERO
C ALG. STEP 11
IR=JT
C ALG. STEP 12
30 MU=min(NB-1,IR-IP-1)
IF (MU.EQ.0) GO TO 60
C ALG. STEP 13
DO 50 L=1,MU
C ALG. STEP 14
K=min(L,JT-IP)
C ALG. STEP 15
LP1=L+1
IG=IP+L
DO 40 I=LP1,NB
JG=I-K
40 G(IG,JG)=G(IG,I)
C ALG. STEP 16
DO 50 I=1,K
JG=NBP1-I
50 G(IG,JG)=ZERO
C ALG. STEP 17
60 IP=JT
C ALG. STEPS 18-19
70 MH=IR+MT-IP
KH=min(NBP1,MH)
C ALG. STEP 20
DO 80 I=1,KH
CALL H12 (1,I,max(I+1,IR-IP+1),MH,G(IP,I),1,RHO,
* G(IP,I+1),1,MDG,NBP1-I)
80 continue
C ALG. STEP 21
IR=IP+KH
C ALG. STEP 22
IF (KH.LT.NBP1) GO TO 100
C ALG. STEP 23
DO 90 I=1,NB
90 G(IR-1,I)=ZERO
C ALG. STEP 24
100 CONTINUE
C ALG. STEP 25
RETURN
END
SUBROUTINE BNDSOL (MODE,G,MDG,NB,IP,IR,X,N,RNORM)
c
C SEQUENTIAL SOLUTION OF A BANDED LEAST SQUARES PROBLEM..
C SOLUTION PHASE. FOR THE ACCUMULATION PHASE USE BNDACC.
c
c The original version of this code was developed by
c Charles L. Lawson and Richard J. Hanson at Jet Propulsion Laboratory
c 1973 JUN 12, and published in the book
c "SOLVING LEAST SQUARES PROBLEMS", Prentice-HalL, 1974.
c Revised FEB 1995 to accompany reprinting of the book by SIAM.
C
C MODE = 1 SOLVE R*X=Y WHERE R AND Y ARE IN THE G( ) ARRAY
C AND X WILL BE STORED IN THE X( ) ARRAY.
C 2 SOLVE (R**T)*X=Y WHERE R IS IN G( ),
C Y IS INITIALLY IN X( ), AND X REPLACES Y IN X( ),
C 3 SOLVE R*X=Y WHERE R IS IN G( ).
C Y IS INITIALLY IN X( ), AND X REPLACES Y IN X( ).
C
C THE SECOND SUBSCRIPT OF G( ) MUST BE DIMENSIONED AT LEAST
C NB+1 IN THE CALLING PROGRAM.
integer I, I1, I2, IE, II, IP, IR, IX, J, JG, L
integer MDG, MODE, N, NB, NP1, IRM1
double precision G(MDG,*), RNORM, RSQ, S, X(N), ZERO
parameter(ZERO = 0.0d0)
C
RNORM=ZERO
GO TO (10,90,50), MODE
C ********************* MODE = 1
C ALG. STEP 26
10 DO 20 J=1,N
20 X(J)=G(J,NB+1)
RSQ=ZERO
NP1=N+1
IRM1=IR-1
IF (NP1.GT.IRM1) GO TO 40
DO 30 J=NP1,IRM1
30 RSQ=RSQ+G(J,NB+1)**2
RNORM=SQRT(RSQ)
40 CONTINUE
C ********************* MODE = 3
C ALG. STEP 27
50 DO 80 II=1,N
I=N+1-II
C ALG. STEP 28
S=ZERO
L=max(0,I-IP)
C ALG. STEP 29
IF (I.EQ.N) GO TO 70
C ALG. STEP 30
IE=min(N+1-I,NB)
DO 60 J=2,IE
JG=J+L
IX=I-1+J
60 S=S+G(I,JG)*X(IX)
C ALG. STEP 31
70 continue
IF (G(I,L+1) .eq. ZERO) go to 130
80 X(I)=(X(I)-S)/G(I,L+1)
C ALG. STEP 32
RETURN
C ********************* MODE = 2
90 DO 120 J=1,N
S=ZERO
IF (J.EQ.1) GO TO 110
I1=max(1,J-NB+1)
I2=J-1
DO 100 I=I1,I2
L=J-I+1+max(0,I-IP)
100 S=S+X(I)*G(I,L)
110 L=max(0,J-IP)
IF (G(J,L+1) .eq. ZERO) go to 130
120 X(J)=(X(J)-S)/G(J,L+1)
RETURN
C
130 write (*,'(/a/a,4i6)')' ZERO DIAGONAL TERM IN BNDSOL.',
* ' MODE,I,J,L = ',MODE,I,J,L
STOP
END
double precision FUNCTION DIFF(X,Y)
c
c Function used in tests that depend on machine precision.
c
c The original version of this code was developed by
c Charles L. Lawson and Richard J. Hanson at Jet Propulsion Laboratory
c 1973 JUN 7, and published in the book
c "SOLVING LEAST SQUARES PROBLEMS", Prentice-HalL, 1974.
c Revised FEB 1995 to accompany reprinting of the book by SIAM.
C
double precision X, Y
DIFF=X-Y
RETURN
END
SUBROUTINE G1 (A,B,CTERM,STERM,SIG)
c
C COMPUTE ORTHOGONAL ROTATION MATRIX..
c
c The original version of this code was developed by
c Charles L. Lawson and Richard J. Hanson at Jet Propulsion Laboratory
c 1973 JUN 12, and published in the book
c "SOLVING LEAST SQUARES PROBLEMS", Prentice-HalL, 1974.
c Revised FEB 1995 to accompany reprinting of the book by SIAM.
C
C COMPUTE.. MATRIX (C, S) SO THAT (C, S)(A) = (SQRT(A**2+B**2))
C (-S,C) (-S,C)(B) ( 0 )
C COMPUTE SIG = SQRT(A**2+B**2)
C SIG IS COMPUTED LAST TO ALLOW FOR THE POSSIBILITY THAT
C SIG MAY BE IN THE SAME LOCATION AS A OR B .
C ------------------------------------------------------------------
double precision A, B, CTERM, ONE, SIG, STERM, XR, YR, ZERO
parameter(ONE = 1.0d0, ZERO = 0.0d0)
C ------------------------------------------------------------------
if (abs(A) .gt. abs(B)) then
XR=B/A
YR=sqrt(ONE+XR**2)
CTERM=sign(ONE/YR,A)
STERM=CTERM*XR
SIG=abs(A)*YR
RETURN
endif
if (B .ne. ZERO) then
XR=A/B
YR=sqrt(ONE+XR**2)
STERM=sign(ONE/YR,B)
CTERM=STERM*XR
SIG=abs(B)*YR
RETURN
endif
SIG=ZERO
CTERM=ZERO
STERM=ONE
RETURN
END
SUBROUTINE G2 (CTERM,STERM,X,Y)
c
C APPLY THE ROTATION COMPUTED BY G1 TO (X,Y).
c
c The original version of this code was developed by
c Charles L. Lawson and Richard J. Hanson at Jet Propulsion Laboratory
c 1972 DEC 15, and published in the book
c "SOLVING LEAST SQUARES PROBLEMS", Prentice-HalL, 1974.
c Revised FEB 1995 to accompany reprinting of the book by SIAM.
c ------------------------------------------------------------------
double precision CTERM, STERM, X, XR, Y
c ------------------------------------------------------------------
XR=CTERM*X+STERM*Y
Y=-STERM*X+CTERM*Y
X=XR
RETURN
END
double precision FUNCTION GEN2(ANOISE)
c
C GENERATE NUMBERS FOR CONSTRUCTION OF TEST CASES.
c
c The original version of this code was developed by
c Charles L. Lawson and Richard J. Hanson at Jet Propulsion Laboratory
c 1972 DEC 15, and published in the book
c "SOLVING LEAST SQUARES PROBLEMS", Prentice-HalL, 1974.
c Revised FEB 1995 to accompany reprinting of the book by SIAM.
c ------------------------------------------------------------------
integer I, J, MI, MJ
double precision AI, AJ, ANOISE, ZERO
parameter(ZERO = 0.0d0)
SAVE
c ------------------------------------------------------------------
IF (ANOISE) 10,30,20
10 MI=891
MJ=457
I=5
J=7
AJ= ZERO
GEN2= ZERO
RETURN
C
C THE SEQUENCE OF VALUES OF J IS BOUNDED BETWEEN 1 AND 996
C IF INITIAL J = 1,2,3,4,5,6,7,8, OR 9, THE PERIOD IS 332
20 J=J*MJ
J=J-997*(J/997)
AJ=J-498
C THE SEQUENCE OF VALUES OF I IS BOUNDED BETWEEN 1 AND 999
C IF INITIAL I = 1,2,3,6,7, OR 9, THE PERIOD WILL BE 50
C IF INITIAL I = 4 OR 8 THE PERIOD WILL BE 25
C IF INITIAL I = 5 THE PERIOD WILL BE 10
30 I=I*MI
I=I-1000*(I/1000)
AI=I-500
GEN2=AI+AJ*ANOISE
RETURN
END
C SUBROUTINE H12 (MODE,LPIVOT,L1,M,U,IUE,UP,C,ICE,ICV,NCV)
C
C CONSTRUCTION AND/OR APPLICATION OF A SINGLE
C HOUSEHOLDER TRANSFORMATION.. Q = I + U*(U**T)/B
C
c The original version of this code was developed by
c Charles L. Lawson and Richard J. Hanson at Jet Propulsion Laboratory
c 1973 JUN 12, and published in the book
c "SOLVING LEAST SQUARES PROBLEMS", Prentice-HalL, 1974.
c Revised FEB 1995 to accompany reprinting of the book by SIAM.
C ------------------------------------------------------------------
c Subroutine Arguments
c
C MODE = 1 OR 2 Selects Algorithm H1 to construct and apply a
c Householder transformation, or Algorithm H2 to apply a
c previously constructed transformation.
C LPIVOT IS THE INDEX OF THE PIVOT ELEMENT.
C L1,M IF L1 .LE. M THE TRANSFORMATION WILL BE CONSTRUCTED TO
C ZERO ELEMENTS INDEXED FROM L1 THROUGH M. IF L1 GT. M
C THE SUBROUTINE DOES AN IDENTITY TRANSFORMATION.
C U(),IUE,UP On entry with MODE = 1, U() contains the pivot
c vector. IUE is the storage increment between elements.
c On exit when MODE = 1, U() and UP contain quantities
c defining the vector U of the Householder transformation.
c on entry with MODE = 2, U() and UP should contain
c quantities previously computed with MODE = 1. These will
c not be modified during the entry with MODE = 2.
C C() ON ENTRY with MODE = 1 or 2, C() CONTAINS A MATRIX WHICH
c WILL BE REGARDED AS A SET OF VECTORS TO WHICH THE
c HOUSEHOLDER TRANSFORMATION IS TO BE APPLIED.
c ON EXIT C() CONTAINS THE SET OF TRANSFORMED VECTORS.
C ICE STORAGE INCREMENT BETWEEN ELEMENTS OF VECTORS IN C().
C ICV STORAGE INCREMENT BETWEEN VECTORS IN C().
C NCV NUMBER OF VECTORS IN C() TO BE TRANSFORMED. IF NCV .LE. 0
C NO OPERATIONS WILL BE DONE ON C().
C ------------------------------------------------------------------
SUBROUTINE H12 (MODE,LPIVOT,L1,M,U,IUE,UP,C,ICE,ICV,NCV)
C ------------------------------------------------------------------
integer I, I2, I3, I4, ICE, ICV, INCR, IUE, J
integer L1, LPIVOT, M, MODE, NCV
double precision B, C(*), CL, CLINV, ONE, SM
c double precision U(IUE,M)
double precision U(IUE,*)
double precision UP
parameter(ONE = 1.0d0)
C ------------------------------------------------------------------
IF (0.GE.LPIVOT.OR.LPIVOT.GE.L1.OR.L1.GT.M) RETURN
CL=abs(U(1,LPIVOT))
IF (MODE.EQ.2) GO TO 60
C ****** CONSTRUCT THE TRANSFORMATION. ******
DO 10 J=L1,M
10 CL=MAX(abs(U(1,J)),CL)
IF (CL) 130,130,20
20 CLINV=ONE/CL
SM=(U(1,LPIVOT)*CLINV)**2
DO 30 J=L1,M
30 SM=SM+(U(1,J)*CLINV)**2
CL=CL*SQRT(SM)
IF (U(1,LPIVOT)) 50,50,40
40 CL=-CL
50 UP=U(1,LPIVOT)-CL
U(1,LPIVOT)=CL
GO TO 70
C ****** APPLY THE TRANSFORMATION I+U*(U**T)/B TO C. ******
C
60 IF (CL) 130,130,70
70 IF (NCV.LE.0) RETURN
B= UP*U(1,LPIVOT)
C B MUST BE NONPOSITIVE HERE. IF B = 0., RETURN.
C
IF (B) 80,130,130
80 B=ONE/B
I2=1-ICV+ICE*(LPIVOT-1)
INCR=ICE*(L1-LPIVOT)
DO 120 J=1,NCV
I2=I2+ICV
I3=I2+INCR
I4=I3
SM=C(I2)*UP
DO 90 I=L1,M
SM=SM+C(I3)*U(1,I)
90 I3=I3+ICE
IF (SM) 100,120,100
100 SM=SM*B
C(I2)=C(I2)+SM*UP
DO 110 I=L1,M
C(I4)=C(I4)+SM*U(1,I)
110 I4=I4+ICE
120 CONTINUE
130 RETURN
END
SUBROUTINE HFTI (A,MDA,M,N,B,MDB,NB,TAU,KRANK,RNORM,H,G,IP)
c
C SOLVE LEAST SQUARES PROBLEM USING ALGORITHM, HFTI.
c Householder Forward Triangulation with column Interchanges.
c
c The original version of this code was developed by
c Charles L. Lawson and Richard J. Hanson at Jet Propulsion Laboratory
c 1973 JUN 12, and published in the book
c "SOLVING LEAST SQUARES PROBLEMS", Prentice-HalL, 1974.
c Revised FEB 1995 to accompany reprinting of the book by SIAM.
C ------------------------------------------------------------------
integer I, II, IP1, J, JB, JJ, K, KP1, KRANK
integer L, LDIAG, LMAX, M, MDA, MDB, N, NB
c integer IP(N)
c double precision A(MDA,N),B(MDB,NB),H(N),G(N),RNORM(NB)
integer IP(*)
double precision A(MDA,*),B(MDB, *),H(*),G(*),RNORM( *)
double precision DIFF, FACTOR, HMAX, SM, TAU, TMP, ZERO
parameter(FACTOR = 0.001d0, ZERO = 0.0d0)
C ------------------------------------------------------------------
C
K=0
LDIAG=min(M,N)
IF (LDIAG.LE.0) GO TO 270
DO 80 J=1,LDIAG
IF (J.EQ.1) GO TO 20
C
C UPDATE SQUARED COLUMN LENGTHS AND FIND LMAX
C ..
LMAX=J
DO 10 L=J,N
H(L)=H(L)-A(J-1,L)**2
IF (H(L).GT.H(LMAX)) LMAX=L
10 CONTINUE
IF(DIFF(HMAX+FACTOR*H(LMAX),HMAX)) 20,20,50
C
C COMPUTE SQUARED COLUMN LENGTHS AND FIND LMAX
C ..
20 LMAX=J
DO 40 L=J,N
H(L)=0.
DO 30 I=J,M
30 H(L)=H(L)+A(I,L)**2
IF (H(L).GT.H(LMAX)) LMAX=L
40 CONTINUE
HMAX=H(LMAX)
C ..
C LMAX HAS BEEN DETERMINED
C
C DO COLUMN INTERCHANGES IF NEEDED.
C ..
50 CONTINUE
IP(J)=LMAX
IF (IP(J).EQ.J) GO TO 70
DO 60 I=1,M
TMP=A(I,J)
A(I,J)=A(I,LMAX)
60 A(I,LMAX)=TMP
H(LMAX)=H(J)
C
C COMPUTE THE J-TH TRANSFORMATION AND APPLY IT TO A AND B.
C ..
70 CALL H12 (1,J,J+1,M,A(1,J),1,H(J),A(1,J+1),1,MDA,N-J)
80 CALL H12 (2,J,J+1,M,A(1,J),1,H(J),B,1,MDB,NB)
C
C DETERMINE THE PSEUDORANK, K, USING THE TOLERANCE, TAU.
C ..
DO 90 J=1,LDIAG
IF (ABS(A(J,J)).LE.TAU) GO TO 100
90 CONTINUE
K=LDIAG
GO TO 110
100 K=J-1
110 KP1=K+1
C
C COMPUTE THE NORMS OF THE RESIDUAL VECTORS.
C
IF (NB.LE.0) GO TO 140
DO 130 JB=1,NB
TMP=ZERO
IF (KP1.GT.M) GO TO 130
DO 120 I=KP1,M
120 TMP=TMP+B(I,JB)**2
130 RNORM(JB)=SQRT(TMP)
140 CONTINUE
C SPECIAL FOR PSEUDORANK = 0
IF (K.GT.0) GO TO 160
IF (NB.LE.0) GO TO 270
DO 150 JB=1,NB
DO 150 I=1,N
150 B(I,JB)=ZERO
GO TO 270
C
C IF THE PSEUDORANK IS LESS THAN N COMPUTE HOUSEHOLDER
C DECOMPOSITION OF FIRST K ROWS.
C ..
160 IF (K.EQ.N) GO TO 180
DO 170 II=1,K
I=KP1-II
170 CALL H12 (1,I,KP1,N,A(I,1),MDA,G(I),A,MDA,1,I-1)
180 CONTINUE
C
C
IF (NB.LE.0) GO TO 270
DO 260 JB=1,NB
C
C SOLVE THE K BY K TRIANGULAR SYSTEM.
C ..
DO 210 L=1,K
SM=ZERO
I=KP1-L
IF (I.EQ.K) GO TO 200
IP1=I+1
DO 190 J=IP1,K
190 SM=SM+A(I,J)*B(J,JB)
200 continue
210 B(I,JB)=(B(I,JB)-SM)/A(I,I)
C
C COMPLETE COMPUTATION OF SOLUTION VECTOR.
C ..
IF (K.EQ.N) GO TO 240
DO 220 J=KP1,N
220 B(J,JB)=ZERO
DO 230 I=1,K
230 CALL H12 (2,I,KP1,N,A(I,1),MDA,G(I),B(1,JB),1,MDB,1)
C
C RE-ORDER THE SOLUTION VECTOR TO COMPENSATE FOR THE
C COLUMN INTERCHANGES.
C ..
240 DO 250 JJ=1,LDIAG
J=LDIAG+1-JJ
IF (IP(J).EQ.J) GO TO 250
L=IP(J)
TMP=B(L,JB)
B(L,JB)=B(J,JB)
B(J,JB)=TMP
250 CONTINUE
260 CONTINUE
C ..
C THE SOLUTION VECTORS, X, ARE NOW
C IN THE FIRST N ROWS OF THE ARRAY B(,).
C
270 KRANK=K
RETURN
END
SUBROUTINE LDP (G,MDG,M,N,H,X,XNORM,W,INDEX,MODE)
c
C Algorithm LDP: LEAST DISTANCE PROGRAMMING
c
c The original version of this code was developed by
c Charles L. Lawson and Richard J. Hanson at Jet Propulsion Laboratory
c 1974 MAR 1, and published in the book
c "SOLVING LEAST SQUARES PROBLEMS", Prentice-HalL, 1974.
c Revised FEB 1995 to accompany reprinting of the book by SIAM.
C ------------------------------------------------------------------
integer I, IW, IWDUAL, IY, IZ, J, JF, M, MDG, MODE, N, NP1
c integer INDEX(M)
c double precision G(MDG,N), H(M), X(N), W(*)
integer INDEX(*)
double precision G(MDG,*), H(*), X(*), W(*)
double precision DIFF, FAC, ONE, RNORM, XNORM, ZERO
parameter(ONE = 1.0d0, ZERO = 0.0d0)
C ------------------------------------------------------------------
IF (N.LE.0) GO TO 120
DO 10 J=1,N
10 X(J)=ZERO
XNORM=ZERO
IF (M.LE.0) GO TO 110
C
C THE DECLARED DIMENSION OF W() MUST BE AT LEAST (N+1)*(M+2)+2*M.
C
C FIRST (N+1)*M LOCS OF W() = MATRIX E FOR PROBLEM NNLS.
C NEXT N+1 LOCS OF W() = VECTOR F FOR PROBLEM NNLS.
C NEXT N+1 LOCS OF W() = VECTOR Z FOR PROBLEM NNLS.
C NEXT M LOCS OF W() = VECTOR Y FOR PROBLEM NNLS.
C NEXT M LOCS OF W() = VECTOR WDUAL FOR PROBLEM NNLS.
C COPY G**T INTO FIRST N ROWS AND M COLUMNS OF E.
C COPY H**T INTO ROW N+1 OF E.
C
IW=0
DO 30 J=1,M
DO 20 I=1,N
IW=IW+1
20 W(IW)=G(J,I)
IW=IW+1
30 W(IW)=H(J)
JF=IW+1
C STORE N ZEROS FOLLOWED BY A ONE INTO F.
DO 40 I=1,N
IW=IW+1
40 W(IW)=ZERO
W(IW+1)=ONE
C
NP1=N+1
IZ=IW+2
IY=IZ+NP1
IWDUAL=IY+M
C
CALL NNLS (W,NP1,NP1,M,W(JF),W(IY),RNORM,W(IWDUAL),W(IZ),INDEX,
* MODE)
C USE THE FOLLOWING RETURN IF UNSUCCESSFUL IN NNLS.
IF (MODE.NE.1) RETURN
IF (RNORM) 130,130,50
50 FAC=ONE
IW=IY-1
DO 60 I=1,M
IW=IW+1
C HERE WE ARE USING THE SOLUTION VECTOR Y.
60 FAC=FAC-H(I)*W(IW)
C
IF (DIFF(ONE+FAC,ONE)) 130,130,70
70 FAC=ONE/FAC
DO 90 J=1,N
IW=IY-1
DO 80 I=1,M
IW=IW+1
C HERE WE ARE USING THE SOLUTION VECTOR Y.
80 X(J)=X(J)+G(I,J)*W(IW)
90 X(J)=X(J)*FAC
DO 100 J=1,N
100 XNORM=XNORM+X(J)**2
XNORM=sqrt(XNORM)
C SUCCESSFUL RETURN.
110 MODE=1
RETURN
C ERROR RETURN. N .LE. 0.
120 MODE=2
RETURN
C RETURNING WITH CONSTRAINTS NOT COMPATIBLE.
130 MODE=4
RETURN
END
subroutine MFEOUT (A, MDA, M, N, NAMES, MODE, UNIT, WIDTH)
c
C LABELED MATRIX OUTPUT FOR USE WITH SINGULAR VALUE ANALYSIS.
C
c The original version of this code was developed by
c Charles L. Lawson and Richard J. Hanson at Jet Propulsion Laboratory
c 1973 JUN 12, and published in the book
c "SOLVING LEAST SQUARES PROBLEMS", Prentice-HalL, 1974.
c Revised FEB 1995 to accompany reprinting of the book by SIAM.
C ------------------------------------------------------------------
c This 1995 version has additional arguments, UNIT and WIDTH,
c to support user options regarding the output unit and the width of
c print lines. Also allows user to choose length of names in NAMES().
c ------------------------------------------------------------------
c Subroutine Arguments
C All are input arguments. None are modified by this subroutine.
c
C A(,) Array containing matrix to be output.
C MDA First dimension of the array, A(,).
C M, N No. of rows and columns, respectively in the matrix
c contained in A(,).
C NAMES() [character array] Array of names.
c If NAMES(1) contains only blanks, the rest of the NAMES()
c array will be ignored.
C MODE =1 Write header for V matrix and use an F format.
C =2 Write header for for candidate solutions and use
c P format.
c UNIT [integer] Selects output unit. If UNIT .ge. 0 then UNIT
c is the output unit number. If UNIT = -1, output to
c the '*' unit.
c WIDTH [integer] Selects width of output lines.
c Each output line from this subroutine will have at most
c max(26,min(124,WIDTH)) characters plus one additional
c leading character for Fortran "carriage control". The
c carriage control character will always be a blank.
c ------------------------------------------------------------------
integer I, J, J1, J2, KBLOCK, L, LENNAM
integer M, MAXCOL, MDA, MODE, N, NAMSIZ, NBLOCK, UNIT, WIDTH
double precision A(MDA,N)
character NAMES(M)*(*)
character*4 HEAD (2)
character*26 FMT1(2)
character*26 FMT2(2)
logical BLKNAM, STAR
C
data HEAD(1)/' COL'/
data HEAD(2)/'SOLN'/
data FMT1 / '(/7x,00x,8(5x,a4,i4,1x)/)',
* '(/7x,00x,8(2x,a4,i4,4x)/)'/
data FMT2 / '(1x,i4,1x,a00,1x,4p8f14.0)',
* '(1x,i4,1x,a00,1x,8g14.6 )'/
c ------------------------------------------------------------------
if (M .le. 0 .or. N .le. 0) return
STAR = UNIT .lt. 0
C
c The LEN function returns the char length of a single element of
c the NAMES() array.
c
LENNAM = len(NAMES(1))
BLKNAM = NAMES(1) .eq. ' '
NAMSIZ = 1
if(.not. BLKNAM) then
do 30 I = 1,M
do 10 L = LENNAM, NAMSIZ+1, -1
if(NAMES(I)(L:L) .ne. ' ') then
NAMSIZ = L
go to 20
endif
10 continue
20 continue
30 continue
endif
c
write(FMT1(MODE)(6:7),'(i2.2)') NAMSIZ
write(FMT2(MODE)(12:13),'(i2.2)') NAMSIZ
70 format(/' V-Matrix of the Singular Value Decomposition of A*D.'/
* ' (Elements of V scaled up by a factor of 10**4)')
80 format(/' Sequence of candidate solutions, X')
if(STAR) then
if (MODE .eq. 1) then
write (*,70)
else
write (*,80)
endif
else
if (MODE .eq. 1) then
write (UNIT,70)
else
write (UNIT,80)
endif
endif
c
c With NAMSIZ characters allowed for the "name" and MAXCOL
c columns of numbers, the total line width, exclusive of a
c carriage control character, will be 6 + LENNAM + 14 * MAXCOL.
c
MAXCOL = max(1,min(8,(WIDTH - 6 - NAMSIZ)/14))
C
NBLOCK = (N + MAXCOL -1) / MAXCOL
J2 = 0
C
do 50 KBLOCK = 1, NBLOCK
J1 = J2 + 1
J2 = min(N, J2 + MAXCOL)
if(STAR) then
write (*,FMT1(MODE)) (HEAD(MODE),J,J=J1,J2)
else
write (UNIT,FMT1(MODE)) (HEAD(MODE),J,J=J1,J2)
endif
C
do 40 I=1,M
if(STAR) then
if(BLKNAM) then
write (*,FMT2(MODE)) I,' ',(A(I,J),J=J1,J2)
else
write (*,FMT2(MODE)) I,NAMES(I),(A(I,J),J=J1,J2)
endif
else
if(BLKNAM) then
write (UNIT,FMT2(MODE)) I,' ',(A(I,J),J=J1,J2)
else
write (UNIT,FMT2(MODE)) I,NAMES(I),(A(I,J),J=J1,J2)
endif
endif
40 continue
50 continue
end
C SUBROUTINE NNLS (A,MDA,M,N,B,X,RNORM,W,ZZ,INDEX,MODE)
C
C Algorithm NNLS: NONNEGATIVE LEAST SQUARES
C
c The original version of this code was developed by
c Charles L. Lawson and Richard J. Hanson at Jet Propulsion Laboratory
c 1973 JUN 15, and published in the book
c "SOLVING LEAST SQUARES PROBLEMS", Prentice-HalL, 1974.
c Revised FEB 1995 to accompany reprinting of the book by SIAM.
c
C GIVEN AN M BY N MATRIX, A, AND AN M-VECTOR, B, COMPUTE AN
C N-VECTOR, X, THAT SOLVES THE LEAST SQUARES PROBLEM
C
C A * X = B SUBJECT TO X .GE. 0
C ------------------------------------------------------------------
c Subroutine Arguments
c
C A(),MDA,M,N MDA IS THE FIRST DIMENSIONING PARAMETER FOR THE
C ARRAY, A(). ON ENTRY A() CONTAINS THE M BY N
C MATRIX, A. ON EXIT A() CONTAINS
C THE PRODUCT MATRIX, Q*A , WHERE Q IS AN
C M BY M ORTHOGONAL MATRIX GENERATED IMPLICITLY BY
C THIS SUBROUTINE.
C B() ON ENTRY B() CONTAINS THE M-VECTOR, B. ON EXIT B() CON-
C TAINS Q*B.
C X() ON ENTRY X() NEED NOT BE INITIALIZED. ON EXIT X() WILL
C CONTAIN THE SOLUTION VECTOR.
C RNORM ON EXIT RNORM CONTAINS THE EUCLIDEAN NORM OF THE
C RESIDUAL VECTOR.
C W() AN N-ARRAY OF WORKING SPACE. ON EXIT W() WILL CONTAIN
C THE DUAL SOLUTION VECTOR. W WILL SATISFY W(I) = 0.
C FOR ALL I IN SET P AND W(I) .LE. 0. FOR ALL I IN SET Z
C ZZ() AN M-ARRAY OF WORKING SPACE.
C INDEX() AN INTEGER WORKING ARRAY OF LENGTH AT LEAST N.
C ON EXIT THE CONTENTS OF THIS ARRAY DEFINE THE SETS
C P AND Z AS FOLLOWS..
C
C INDEX(1) THRU INDEX(NSETP) = SET P.
C INDEX(IZ1) THRU INDEX(IZ2) = SET Z.
C IZ1 = NSETP + 1 = NPP1
C IZ2 = N
C MODE THIS IS A SUCCESS-FAILURE FLAG WITH THE FOLLOWING
C MEANINGS.
C 1 THE SOLUTION HAS BEEN COMPUTED SUCCESSFULLY.
C 2 THE DIMENSIONS OF THE PROBLEM ARE BAD.
C EITHER M .LE. 0 OR N .LE. 0.
C 3 ITERATION COUNT EXCEEDED. MORE THAN 3*N ITERATIONS.
C
C ------------------------------------------------------------------
SUBROUTINE NNLS (A,MDA,M,N,B,X,RNORM,W,ZZ,INDEX,MODE)
C ------------------------------------------------------------------
integer I, II, IP, ITER, ITMAX, IZ, IZ1, IZ2, IZMAX, J, JJ, JZ, L
integer M, MDA, MODE,N, NPP1, NSETP, RTNKEY
c integer INDEX(N)
c double precision A(MDA,N), B(M), W(N), X(N), ZZ(M)
integer INDEX(*)
double precision A(MDA,*), B(*), W(*), X(*), ZZ(*)
double precision ALPHA, ASAVE, CC, DIFF, DUMMY, FACTOR, RNORM
double precision SM, SS, T, TEMP, TWO, UNORM, UP, WMAX
double precision ZERO, ZTEST
parameter(FACTOR = 0.01d0)
parameter(TWO = 2.0d0, ZERO = 0.0d0)
C ------------------------------------------------------------------
MODE=1
IF (M .le. 0 .or. N .le. 0) then
MODE=2
RETURN
endif
ITER=0
ITMAX=3*N
C
C INITIALIZE THE ARRAYS INDEX() AND X().
C
DO 20 I=1,N
X(I)=ZERO
20 INDEX(I)=I
C
IZ2=N
IZ1=1
NSETP=0
NPP1=1
C ****** MAIN LOOP BEGINS HERE ******
30 CONTINUE
C QUIT IF ALL COEFFICIENTS ARE ALREADY IN THE SOLUTION.
C OR IF M COLS OF A HAVE BEEN TRIANGULARIZED.
C
IF (IZ1 .GT.IZ2.OR.NSETP.GE.M) GO TO 350
C
C COMPUTE COMPONENTS OF THE DUAL (NEGATIVE GRADIENT) VECTOR W().
C
DO 50 IZ=IZ1,IZ2
J=INDEX(IZ)
SM=ZERO
DO 40 L=NPP1,M
40 SM=SM+A(L,J)*B(L)
W(J)=SM
50 continue
C FIND LARGEST POSITIVE W(J).
60 continue
WMAX=ZERO
DO 70 IZ=IZ1,IZ2
J=INDEX(IZ)
IF (W(J) .gt. WMAX) then
WMAX=W(J)
IZMAX=IZ
endif
70 CONTINUE
C
C IF WMAX .LE. 0. GO TO TERMINATION.
C THIS INDICATES SATISFACTION OF THE KUHN-TUCKER CONDITIONS.
C
IF (WMAX .le. ZERO) go to 350
IZ=IZMAX
J=INDEX(IZ)
C
C THE SIGN OF W(J) IS OK FOR J TO BE MOVED TO SET P.
C BEGIN THE TRANSFORMATION AND CHECK NEW DIAGONAL ELEMENT TO AVOID
C NEAR LINEAR DEPENDENCE.
C
ASAVE=A(NPP1,J)
CALL H12 (1,NPP1,NPP1+1,M,A(1,J),1,UP,DUMMY,1,1,0)
UNORM=ZERO
IF (NSETP .ne. 0) then
DO 90 L=1,NSETP
90 UNORM=UNORM+A(L,J)**2
endif
UNORM=sqrt(UNORM)
IF (DIFF(UNORM+ABS(A(NPP1,J))*FACTOR,UNORM) .gt. ZERO) then
C
C COL J IS SUFFICIENTLY INDEPENDENT. COPY B INTO ZZ, UPDATE ZZ
C AND SOLVE FOR ZTEST ( = PROPOSED NEW VALUE FOR X(J) ).
C
DO 120 L=1,M
120 ZZ(L)=B(L)
CALL H12 (2,NPP1,NPP1+1,M,A(1,J),1,UP,ZZ,1,1,1)
ZTEST=ZZ(NPP1)/A(NPP1,J)
C
C SEE IF ZTEST IS POSITIVE
C
IF (ZTEST .gt. ZERO) go to 140
endif
C
C REJECT J AS A CANDIDATE TO BE MOVED FROM SET Z TO SET P.
C RESTORE A(NPP1,J), SET W(J)=0., AND LOOP BACK TO TEST DUAL
C COEFFS AGAIN.
C
A(NPP1,J)=ASAVE
W(J)=ZERO
GO TO 60
C
C THE INDEX J=INDEX(IZ) HAS BEEN SELECTED TO BE MOVED FROM
C SET Z TO SET P. UPDATE B, UPDATE INDICES, APPLY HOUSEHOLDER
C TRANSFORMATIONS TO COLS IN NEW SET Z, ZERO SUBDIAGONAL ELTS IN
C COL J, SET W(J)=0.
C
140 continue
DO 150 L=1,M
150 B(L)=ZZ(L)
C
INDEX(IZ)=INDEX(IZ1)
INDEX(IZ1)=J
IZ1=IZ1+1
NSETP=NPP1
NPP1=NPP1+1
C
IF (IZ1 .le. IZ2) then
DO 160 JZ=IZ1,IZ2
JJ=INDEX(JZ)
CALL H12 (2,NSETP,NPP1,M,A(1,J),1,UP,A(1,JJ),1,MDA,1)
160 continue
endif
C
IF (NSETP .ne. M) then
DO 180 L=NPP1,M
180 A(L,J)=ZERO
endif
C
W(J)=ZERO
C SOLVE THE TRIANGULAR SYSTEM.
C STORE THE SOLUTION TEMPORARILY IN ZZ().
RTNKEY = 1
GO TO 400
200 CONTINUE
C
C ****** SECONDARY LOOP BEGINS HERE ******
C
C ITERATION COUNTER.
C
210 continue
ITER=ITER+1
IF (ITER .gt. ITMAX) then
MODE=3
write (*,'(/a)') ' NNLS quitting on iteration count.'
GO TO 350
endif
C
C SEE IF ALL NEW CONSTRAINED COEFFS ARE FEASIBLE.
C IF NOT COMPUTE ALPHA.
C
ALPHA=TWO
DO 240 IP=1,NSETP
L=INDEX(IP)
IF (ZZ(IP) .le. ZERO) then
T=-X(L)/(ZZ(IP)-X(L))
IF (ALPHA .gt. T) then
ALPHA=T
JJ=IP
endif
endif
240 CONTINUE
C
C IF ALL NEW CONSTRAINED COEFFS ARE FEASIBLE THEN ALPHA WILL
C STILL = 2. IF SO EXIT FROM SECONDARY LOOP TO MAIN LOOP.
C
IF (ALPHA.EQ.TWO) GO TO 330
C
C OTHERWISE USE ALPHA WHICH WILL BE BETWEEN 0. AND 1. TO
C INTERPOLATE BETWEEN THE OLD X AND THE NEW ZZ.
C
DO 250 IP=1,NSETP
L=INDEX(IP)
X(L)=X(L)+ALPHA*(ZZ(IP)-X(L))
250 continue
C
C MODIFY A AND B AND THE INDEX ARRAYS TO MOVE COEFFICIENT I
C FROM SET P TO SET Z.
C
I=INDEX(JJ)
260 continue
X(I)=ZERO
C
IF (JJ .ne. NSETP) then
JJ=JJ+1
DO 280 J=JJ,NSETP
II=INDEX(J)
INDEX(J-1)=II
CALL G1 (A(J-1,II),A(J,II),CC,SS,A(J-1,II))
A(J,II)=ZERO
DO 270 L=1,N
IF (L.NE.II) then
c
c Apply procedure G2 (CC,SS,A(J-1,L),A(J,L))
c
TEMP = A(J-1,L)
A(J-1,L) = CC*TEMP + SS*A(J,L)
A(J,L) =-SS*TEMP + CC*A(J,L)
endif
270 CONTINUE
c
c Apply procedure G2 (CC,SS,B(J-1),B(J))
c
TEMP = B(J-1)
B(J-1) = CC*TEMP + SS*B(J)
B(J) =-SS*TEMP + CC*B(J)
280 continue
endif
c
NPP1=NSETP
NSETP=NSETP-1
IZ1=IZ1-1
INDEX(IZ1)=I
C
C SEE IF THE REMAINING COEFFS IN SET P ARE FEASIBLE. THEY SHOULD
C BE BECAUSE OF THE WAY ALPHA WAS DETERMINED.
C IF ANY ARE INFEASIBLE IT IS DUE TO ROUND-OFF ERROR. ANY
C THAT ARE NONPOSITIVE WILL BE SET TO ZERO
C AND MOVED FROM SET P TO SET Z.
C
DO 300 JJ=1,NSETP
I=INDEX(JJ)
IF (X(I) .le. ZERO) go to 260
300 CONTINUE
C
C COPY B( ) INTO ZZ( ). THEN SOLVE AGAIN AND LOOP BACK.
C
DO 310 I=1,M
310 ZZ(I)=B(I)
RTNKEY = 2
GO TO 400
320 CONTINUE
GO TO 210
C ****** END OF SECONDARY LOOP ******
C
330 continue
DO 340 IP=1,NSETP
I=INDEX(IP)
340 X(I)=ZZ(IP)
C ALL NEW COEFFS ARE POSITIVE. LOOP BACK TO BEGINNING.
GO TO 30
C
C ****** END OF MAIN LOOP ******
C
C COME TO HERE FOR TERMINATION.
C COMPUTE THE NORM OF THE FINAL RESIDUAL VECTOR.
C
350 continue
SM=ZERO
IF (NPP1 .le. M) then
DO 360 I=NPP1,M
360 SM=SM+B(I)**2
else
DO 380 J=1,N
380 W(J)=ZERO
endif
RNORM=sqrt(SM)
RETURN
C
C THE FOLLOWING BLOCK OF CODE IS USED AS AN INTERNAL SUBROUTINE
C TO SOLVE THE TRIANGULAR SYSTEM, PUTTING THE SOLUTION IN ZZ().
C
400 continue
DO 430 L=1,NSETP
IP=NSETP+1-L
IF (L .ne. 1) then
DO 410 II=1,IP
ZZ(II)=ZZ(II)-A(II,JJ)*ZZ(IP+1)
410 continue
endif
JJ=INDEX(IP)
ZZ(IP)=ZZ(IP)/A(IP,JJ)
430 continue
go to (200, 320), RTNKEY
END
C SUBROUTINE QRBD (IPASS,Q,E,NN,V,MDV,NRV,C,MDC,NCC)
c
C QR ALGORITHM FOR SINGULAR VALUES OF A BIDIAGONAL MATRIX.
c
c The original version of this code was developed by
c Charles L. Lawson and Richard J. Hanson at Jet Propulsion Laboratory
c 1973 JUN 12, and published in the book
c "SOLVING LEAST SQUARES PROBLEMS", Prentice-HalL, 1974.
c Revised FEB 1995 to accompany reprinting of the book by SIAM.
C ------------------------------------------------------------------
C THE BIDIAGONAL MATRIX
C
C (Q1,E2,0... )
C ( Q2,E3,0... )
C D= ( . )
C ( . 0)
C ( .EN)
C ( 0,QN)
C
C IS PRE AND POST MULTIPLIED BY
C ELEMENTARY ROTATION MATRICES
C RI AND PI SO THAT
C
C RK...R1*D*P1**(T)...PK**(T) = DIAG(S1,...,SN)
C
C TO WITHIN WORKING ACCURACY.
C
C 1. EI AND QI OCCUPY E(I) AND Q(I) AS INPUT.
C
C 2. RM...R1*C REPLACES 'C' IN STORAGE AS OUTPUT.
C
C 3. V*P1**(T)...PM**(T) REPLACES 'V' IN STORAGE AS OUTPUT.
C
C 4. SI OCCUPIES Q(I) AS OUTPUT.
C
C 5. THE SI'S ARE NONINCREASING AND NONNEGATIVE.
C
C THIS CODE IS BASED ON THE PAPER AND 'ALGOL' CODE..
C REF..
C 1. REINSCH,C.H. AND GOLUB,G.H. 'SINGULAR VALUE DECOMPOSITION
C AND LEAST SQUARES SOLUTIONS' (NUMER. MATH.), VOL. 14,(1970).
C
C ------------------------------------------------------------------
SUBROUTINE QRBD (IPASS,Q,E,NN,V,MDV,NRV,C,MDC,NCC)
C ------------------------------------------------------------------
integer MDC, MDV, NCC, NN, NRV
c double precision C(MDC,NCC), E(NN), Q(NN),V(MDV,NN)
double precision C(MDC,* ), E(* ), Q(* ),V(MDV,* )
integer I, II, IPASS, J, K, KK, L, LL, LP1, N, N10, NQRS
double precision CS, DIFF, DNORM, F, G, H, SMALL
double precision ONE, SN, T, TEMP, TWO, X, Y, Z, ZERO
logical WNTV ,HAVERS,FAIL
parameter(ONE = 1.0d0, TWO = 2.0d0, ZERO = 0.0d0)
C ------------------------------------------------------------------
N=NN
IPASS=1
IF (N.LE.0) RETURN
N10=10*N
WNTV=NRV.GT.0
HAVERS=NCC.GT.0
FAIL=.FALSE.
NQRS=0
E(1)=ZERO
DNORM=ZERO
DO 10 J=1,N
10 DNORM=max(abs(Q(J))+abs(E(J)),DNORM)
DO 200 KK=1,N
K=N+1-KK
C
C TEST FOR SPLITTING OR RANK DEFICIENCIES..
C FIRST MAKE TEST FOR LAST DIAGONAL TERM, Q(K), BEING SMALL.
20 IF(K.EQ.1) GO TO 50
IF(DIFF(DNORM+Q(K),DNORM) .ne. ZERO) go to 50
C
C SINCE Q(K) IS SMALL WE WILL MAKE A SPECIAL PASS TO
C TRANSFORM E(K) TO ZERO.
C
CS=ZERO
SN=-ONE
DO 40 II=2,K
I=K+1-II
F=-SN*E(I+1)
E(I+1)=CS*E(I+1)
CALL G1 (Q(I),F,CS,SN,Q(I))
C TRANSFORMATION CONSTRUCTED TO ZERO POSITION (I,K).
C
IF (.NOT.WNTV) GO TO 40
DO 30 J=1,NRV
c
c Apply procedure G2 (CS,SN,V(J,I),V(J,K))
c
TEMP = V(J,I)
V(J,I) = CS*TEMP + SN*V(J,K)
V(J,K) =-SN*TEMP + CS*V(J,K)
30 continue
C ACCUMULATE RT. TRANSFORMATIONS IN V.
C
40 CONTINUE
C
C THE MATRIX IS NOW BIDIAGONAL, AND OF LOWER ORDER
C SINCE E(K) .EQ. ZERO..
C
50 DO 60 LL=1,K
L=K+1-LL
IF(DIFF(DNORM+E(L),DNORM) .eq. ZERO) go to 100
IF(DIFF(DNORM+Q(L-1),DNORM) .eq. ZERO) go to 70
60 CONTINUE
C THIS LOOP CAN'T COMPLETE SINCE E(1) = ZERO.
C
GO TO 100
C
C CANCELLATION OF E(L), L.GT.1.
70 CS=ZERO
SN=-ONE
DO 90 I=L,K
F=-SN*E(I)
E(I)=CS*E(I)
IF(DIFF(DNORM+F,DNORM) .eq. ZERO) go to 100
CALL G1 (Q(I),F,CS,SN,Q(I))
IF (HAVERS) then
DO 80 J=1,NCC
c
c Apply procedure G2 ( CS, SN, C(I,J), C(L-1,J)
c
TEMP = C(I,J)
C(I,J) = CS*TEMP + SN*C(L-1,J)
C(L-1,J) =-SN*TEMP + CS*C(L-1,J)
80 continue
endif
90 CONTINUE
C
C TEST FOR CONVERGENCE..
100 Z=Q(K)
IF (L.EQ.K) GO TO 170
C
C SHIFT FROM BOTTOM 2 BY 2 MINOR OF B**(T)*B.
X=Q(L)
Y=Q(K-1)
G=E(K-1)
H=E(K)
F=((Y-Z)*(Y+Z)+(G-H)*(G+H))/(TWO*H*Y)
G=sqrt(ONE+F**2)
IF (F .ge. ZERO) then
T=F+G
else
T=F-G
endif
F=((X-Z)*(X+Z)+H*(Y/T-H))/X
C
C NEXT QR SWEEP..
CS=ONE
SN=ONE
LP1=L+1
DO 160 I=LP1,K
G=E(I)
Y=Q(I)
H=SN*G
G=CS*G
CALL G1 (F,H,CS,SN,E(I-1))
F=X*CS+G*SN
G=-X*SN+G*CS
H=Y*SN
Y=Y*CS
IF (WNTV) then
C
C ACCUMULATE ROTATIONS (FROM THE RIGHT) IN 'V'
c
DO 130 J=1,NRV
c
c Apply procedure G2 (CS,SN,V(J,I-1),V(J,I))
c
TEMP = V(J,I-1)
V(J,I-1) = CS*TEMP + SN*V(J,I)
V(J,I) =-SN*TEMP + CS*V(J,I)
130 continue
endif
CALL G1 (F,H,CS,SN,Q(I-1))
F=CS*G+SN*Y
X=-SN*G+CS*Y
IF (HAVERS) then
DO 150 J=1,NCC
c
c Apply procedure G2 (CS,SN,C(I-1,J),C(I,J))
c
TEMP = C(I-1,J)
C(I-1,J) = CS*TEMP + SN*C(I,J)
C(I,J) =-SN*TEMP + CS*C(I,J)
150 continue
endif
c
C APPLY ROTATIONS FROM THE LEFT TO
C RIGHT HAND SIDES IN 'C'..
C
160 CONTINUE
E(L)=ZERO
E(K)=F
Q(K)=X
NQRS=NQRS+1
IF (NQRS.LE.N10) GO TO 20
C RETURN TO 'TEST FOR SPLITTING'.
C
SMALL=ABS(E(K))
I=K
C IF FAILURE TO CONVERGE SET SMALLEST MAGNITUDE
C TERM IN OFF-DIAGONAL TO ZERO. CONTINUE ON.
C ..
DO 165 J=L,K
TEMP=ABS(E(J))
IF(TEMP .EQ. ZERO) GO TO 165
IF(TEMP .LT. SMALL) THEN
SMALL=TEMP
I=J
end if
165 CONTINUE
E(I)=ZERO
NQRS=0
FAIL=.TRUE.
GO TO 20
C ..
C CUTOFF FOR CONVERGENCE FAILURE. 'NQRS' WILL BE 2*N USUALLY.
170 IF (Z.GE.ZERO) GO TO 190
Q(K)=-Z
IF (WNTV) then
DO 180 J=1,NRV
180 V(J,K)=-V(J,K)
endif
190 CONTINUE
C CONVERGENCE. Q(K) IS MADE NONNEGATIVE..
C
200 CONTINUE
IF (N.EQ.1) RETURN
DO 210 I=2,N
IF (Q(I).GT.Q(I-1)) GO TO 220
210 CONTINUE
IF (FAIL) IPASS=2
RETURN
C ..
C EVERY SINGULAR VALUE IS IN ORDER..
220 DO 270 I=2,N
T=Q(I-1)
K=I-1
DO 230 J=I,N
IF (T.GE.Q(J)) GO TO 230
T=Q(J)
K=J
230 CONTINUE
IF (K.EQ.I-1) GO TO 270
Q(K)=Q(I-1)
Q(I-1)=T
IF (HAVERS) then
DO 240 J=1,NCC
T=C(I-1,J)
C(I-1,J)=C(K,J)
240 C(K,J)=T
endif
250 IF (WNTV) then
DO 260 J=1,NRV
T=V(J,I-1)
V(J,I-1)=V(J,K)
260 V(J,K)=T
endif
270 CONTINUE
C END OF ORDERING ALGORITHM.
C
IF (FAIL) IPASS=2
RETURN
END
subroutine SVA(A,MDA,M,N,MDATA,B,SING,KPVEC,NAMES,ISCALE,D,WORK)
c
C SINGULAR VALUE ANALYSIS. COMPUTES THE SINGULAR VALUE
C DECOMPOSITION OF THE MATRIX OF A LEAST SQUARES PROBLEM, AND
C PRODUCES A PRINTED REPORT.
c
c The original version of this code was developed by
c Charles L. Lawson and Richard J. Hanson at Jet Propulsion Laboratory
c 1973 JUN 12, and published in the book
c "SOLVING LEAST SQUARES PROBLEMS", Prentice-HalL, 1974.
c Revised FEB 1995 to accompany reprinting of the book by SIAM.
C ------------------------------------------------------------------
c This 1995 version differs from the original 1973 version by the
c addition of the arguments KPVEC() and WORK(), and by allowing user to
c choose the length of names in NAMES().
c KPVEC() allows the user to exercise options regarding printing.
c WORK() provides 2*N locations of work space. Originally SING() was
c required to have 3*N elements, of which the last 2*N were used for
c work space. Now SING() only needs N elements.
c ------------------------------------------------------------------
c Subroutine Arguments
c A(,) [inout] On entry, contains the M x N matrix of the least
c squares problem to be analyzed. This could be a matrix
c obtained by preliminary orthogonal transformations
c applied to the actual problem matrix which may have had
c more rows (See MDATA below.)
c
c MDA [in] First dimensioning parameter for A(,). Require
c MDA .ge. max(M, N).
c
c M,N [in] No. of rows and columns, respectively, in the
c matrix, A. Either M > N or M .le. N is permitted.
c Require M > 0 and N > 0.
c
c MDATA [in] No. of rows in actual least squares problem.
c Generally MDATA .ge. M. MDATA is used only in computing
c statistics for the report and is not used as a loop
c count or array dimension.
c
c B() [inout] On entry, contains the right-side vector, b, of the
c least squares problem. This vector is of length, M.
c On return, contains the vector, g = (U**t)*b, where U
c comes from the singular value decomposition of A. The
c vector , g, is also of length M.
c
c SING() [out] On return, contains the singular values of A, in
c descending order, in locations indexed 1 thru min(M,N).
c If M < N, locations indexed from M+1 through N will be
c set to zero.
c
c KPVEC() [integer array, in] Array of integers to select print
c options. KPVEC(1) determines whether the rest of
c the array is to be used or ignored.
c If KPVEC(1) = 1, the contents of (KPVEC(I), I=2,4)
c will be used to set internal variables as follows:
c PRBLK = KPVEC(2)
c UNIT = KPVEC(3)
c WIDTH = KPVEC(4)
c If KPVEC(1) = 0 default settings will be used. The user
c need not dimension KPVEC() greater than 1. The subr will
c set PRBLK = 111111, UNIT = -1, and WIDTH = 69.
c
c The internal variables PRBLK, UNIT, and WIDTH are
c interpreted as follows:
c
c PRBLK The decimal representation of PRBLK must be
c representable as at most 6 digits, each being 0 or 1.
c The decimal digits will be interpreted as independant
c on/off flags for the 6 possible blocks of printed output.
c Examples: 111111 selects all blocks, 0 suppresses all
c printing, 101010 selects the 1st, 3rd, and 5th blocks,
c etc.
c The six blocks are:
c 1. Header, with size and scaling option parameters.
c 2. V-matrix. Amount of output depends on M and N.
c 3. Singular values and related quantities. Amount of
c output depends on N.
c 4. Listing of YNORM and RNORM and their logarithms.
c Amount of output depends on N.
c 5. Levenberg-Marquart analysis.
c 6. Candidate solutions. Amount of output depends on
c M and N.
c
c UNIT Selects the output unit. If UNIT .ge. 0,
c UNIT will be used as the output unit number.
c If UNIT = -1, output will be written to the "*" output
c unit, i.e., the standard system output unit.
c The calling program unit is responsible for opening
c and/or closing the selected output unit if the host
c system requires these actions.
c
c WIDTH Default value is 79. Determines the width of
c blocks 2, 3, and 6 of the output report.
c Block 3 will use 95(+1) cols if WIDTH .ge. 95, and otherwise
c 69(+1) cols.
c Blocks 2 and 6 are printed by subroutine MFEOUT. These blocks
c generally use at most WIDTH(+1) cols, but will use more if
c the names are so long that more space is needed to print one
c name and one numeric column. The (+1)'s above are reminders
c that in all cases there is one extra initial column for Fortran
c "carriage control". The carriage control character will always
c be a blank.
c Blocks 1, 4, and 5 have fixed widths of 63(+1), 66(+1) and
c 66(+1), respectively.
c
c NAMES() [in] NAMES(j), for j = 1, ..., N, may contain a
c name for the jth component of the solution
c vector. The declared length of the elements of the
c NAMES() array is not specifically limited, but a
c greater length reduces the space available for columns
c of the matris to be printed.
c If NAMES(1) contains only blank characters,
c it will be assumed that no names have been provided,
c and this subr will not access the NAMES() array beyond
c the first element.
C
C ISCALE [in] Set by the user to 1, 2, or 3 to select the column
c scaling option.
C 1 SUBR WILL USE IDENTITY SCALING AND IGNORE THE D()
C ARRAY.
C 2 SUBR WILL SCALE NONZERO COLS TO HAVE UNIT EUCLID-
C EAN LENGTH AND WILL STORE RECIPROCAL LENGTHS OF
C ORIGINAL NONZERO COLS IN D().
C 3 USER SUPPLIES COL SCALE FACTORS IN D(). SUBR
C WILL MULT COL J BY D(J) AND REMOVE THE SCALING
C FROM THE SOLN AT THE END.
c
c D() [ignored or out or in] Usage of D() depends on ISCALE as
c described above. When used, its length must be
c at least N.
c
c WORK() [scratch] Work space of length at least 2*N. Used
c directly in this subr and also in _SVDRS.
c ------------------------------------------------------------------
integer I, IE, IPASS, ISCALE, J, K, KPVEC(4), M, MDA, MDATA
integer MINMN, MINMN1, MPASS, N, NSOL
integer PRBLK, UNIT, WIDTH
double precision A(MDA,N), A1, A2, A3, A4, ALAMB, ALN10, B(M)
double precision D(N), DEL, EL, EL2
double precision ONE, PCOEF, RL, RNORM, RS
double precision SB, SING(N), SL, TEN, THOU, TWENTY
double precision WORK(2*N), YL, YNORM, YS, YSQ, ZERO
character*(*) NAMES(N)
logical BLK(6), NARROW, STAR
parameter( ZERO = 0.0d0, ONE = 1.0d0)
parameter( TEN = 10.0d0, TWENTY = 20.0d0, THOU = 1000.0d0)
c -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
220 format (1X/' INDEX SING. VAL. P COEF ',
* ' RECIPROCAL G COEF G**2 ',
* ' CUMULATIVE SCALED SQRT'/
* 31x,' SING. VAL.',26x,
* ' SUM of SQRS of CUM.S.S.')
221 format (1X/' INDEX SING. VAL. P COEF ',
* ' RECIPROCAL G COEF SCALED SQRT'/
* 31x,' SING. VAL.',13x,' of CUM.S.S.')
222 format (1X/' INDEX SING. VAL. G COEF G**2 ',
* ' CUMULATIVE SCALED SQRT'/
* 44x,' SUM of SQRS of CUM.S.S.')
230 format (' ',4X,'0',64X,2g13.4)
231 format (' ',4X,'0',51X, g13.4)
232 format (' ',4X,'0',38X,2g13.4)
240 format (' ',i5,g12.4,6g13.4)
260 format (1X,' M = ',I6,', N =',I4,', MDATA =',I8)
270 format (1X/' Singular Value Analysis of the least squares',
* ' problem, A*X = B,'/
* ' scaled as (A*D)*Y = B.')
280 format (1X/' Scaling option No.',I2,'. D is a diagonal',
* ' matrix with the following diagonal elements..'/(5X,10E12.4))
290 format (1X/' Scaling option No. 1. D is the identity matrix.'/
* 1X)
300 format (1X/' INDEX',12X,'YNORM RNORM',11X,
* ' LOG10 LOG10'/
* 45X,' YNORM RNORM'/1X)
310 format (' ',I5,6X,2E11.3,11X,2F11.3)
320 format (1X/
*' Norms of solution and residual vectors for a range of values'/
*' of the Levenberg-Marquardt parameter, LAMBDA.'//
* ' LAMBDA YNORM RNORM',
* ' LOG10 LOG10 LOG10'/
* 34X,' LAMBDA YNORM RNORM')
330 format (1X, 3E11.3, 3F11.3)
c ------------------------------------------------------------------
IF (M.LE.0 .OR. N.LE.0) RETURN
MINMN = min(M,N)
MINMN1 = MINMN + 1
if(KPVEC(1) .eq. 0) then
PRBLK = 111111
UNIT = -1
WIDTH = 79
else
PRBLK = KPVEC(2)
UNIT = KPVEC(3)
WIDTH = KPVEC(4)
endif
STAR = UNIT .lt. 0
c Build logical array BLK() by testing
c decimal digits of PRBLK.
do 20 I=6, 1, -1
J = PRBLK/10
BLK(I) = (PRBLK - 10*J) .gt. 0
PRBLK = J
20 continue
c -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c Optionally print header and M, N, MDATA
if(BLK(1)) then
if(STAR) then
write (*,270)
write (*,260) M,N,MDATA
else
write (UNIT,270)
write (UNIT,260) M,N,MDATA
endif
endif
c -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c Handle scaling as selected by ISCALE.
if( ISCALE .eq. 1) then
if(BLK(1)) then
if(STAR) then
write (*,290)
else
write (UNIT,290)
endif
endif
else
C
C Apply column scaling to A.
C
DO 52 J = 1,N
A1 = D(J)
if( ISCALE .le. 2) then
SB = ZERO
DO 30 I = 1,M
30 SB = SB + A(I,J)**2
A1 = sqrt(SB)
IF (A1.EQ.ZERO) A1 = ONE
A1 = ONE/A1
D(J) = A1
endif
DO 50 I = 1,M
A(I,J) = A(I,J)*A1
50 continue
52 continue
if(BLK(1)) then
if(STAR) then
write (*,280) ISCALE,(D(J),J = 1,N)
else
write (UNIT,280) ISCALE,(D(J),J = 1,N)
endif
endif
endif
c -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C Compute the Singular Value Decomposition of the scaled matrix.
C
call SVDRS (A,MDA,M,N,B,M,1,SING,WORK)
c
c Determine NSOL.
NSOL = MINMN
do 60 J = 1,MINMN
if(SING(J) .eq. ZERO) then
NSOL = J-1
go to 65
endif
60 continue
65 continue
C
c The array B() contains the vector G.
C Compute cumulative sums of squares of components of
C G and store them in WORK(I), I = 1,...,MINMN+1
C
SB = ZERO
DO 70 I = MINMN1,M
SB = SB + B(I)**2
70 CONTINUE
WORK(MINMN+1) = SB
DO 75 J = MINMN, 1, -1
SB = SB + B(J)**2
WORK(J) = SB
75 CONTINUE
c -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C PRINT THE V MATRIX.
C
if(BLK(2)) CALL MFEOUT (A,MDA,N,N,NAMES,1, UNIT, WIDTH)
c -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C REPLACE V BY D*V IN THE ARRAY A()
if (ISCALE .gt.1) then
do 82 I = 1,N
do 80 J = 1,N
A(I,J) = D(I)*A(I,J)
80 continue
82 continue
endif
c -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if(BLK(3)) then
c Print singular values and other summary results.
c
c Output will be done using one of two layouts. The narrow
c layout uses 69 cols + 1 for carriage control, and makes two passes
c through the computation.
c The wide layout uses 95 cols + 1 for carriage control, and makes
c only one pass through the computation.
c
C G NOW IN B() ARRAY. V NOW IN A(,) ARRAY.
C
NARROW = WIDTH .lt. 95
MPASS = 1
if(NARROW) MPASS = 2
do 170 IPASS = 1, MPASS
if(STAR) then
if(NARROW) then
if(IPASS .eq. 1) then
write(*,221)
else
write(*,222)
endif
else
write (*,220)
endif
else
if(NARROW) then
if(IPASS .eq. 1) then
write(UNIT,221)
else
write(UNIT,222)
endif
else
write (UNIT,220)
endif
endif
c The following stmt converts from
c integer to floating-point.
A3 = WORK(1)
A4 = sqrt(A3/ max(1,MDATA))
if(STAR) then
if(NARROW) then
if(IPASS .eq. 1) then
write(*,231) A4
else
write(*,232) A3, A4
endif
else
write (*,230) A3,A4
endif
else
if(NARROW) then
if(IPASS .eq. 1) then
write(UNIT,231) A4
else
write(UNIT,232) A3, A4
endif
else
write (UNIT,230) A3,A4
endif
endif
C
DO 160 K = 1,MINMN
if (SING(K).EQ.ZERO) then
PCOEF = ZERO
if(STAR) then
write (*,240) K,SING(K)
else
write (UNIT,240) K,SING(K)
endif
else
PCOEF = B(K) / SING(K)
A1 = ONE / SING(K)
A2 = B(K)**2
A3 = WORK(K+1)
A4 = sqrt(A3/max(1,MDATA-K))
if(STAR) then
if(NARROW) then
if(IPASS .eq. 1) then
write(*,240) K,SING(K),PCOEF,A1,B(K), A4
else
write(*,240) K,SING(K), B(K),A2,A3,A4
endif
else
write (*,240) K,SING(K),PCOEF,A1,B(K),A2,A3,A4
endif
else
if(NARROW) then
if(IPASS .eq. 1) then
write(UNIT,240) K,SING(K),PCOEF,A1,B(K), A4
else
write(UNIT,240) K,SING(K), B(K),A2,A3,A4
endif
else
write (UNIT,240) K,SING(K),PCOEF,A1,B(K),A2,A3,A4
endif
endif
endif
160 continue
170 continue
endif
c -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if( BLK(4) ) then
C
C Compute and print values of YNORM, RNORM and their logarithms.
C
if(STAR) then
write (*,300)
else
write (UNIT,300)
endif
YSQ = ZERO
do 180 J = 0, NSOL
if(J .ne. 0) YSQ = YSQ + (B(J) / SING(J))**2
YNORM = sqrt(YSQ)
RNORM = sqrt(WORK(J+1))
YL = -THOU
IF (YNORM .GT. ZERO) YL = log10(YNORM)
RL = -THOU
IF (RNORM .GT. ZERO) RL = log10(RNORM)
if(STAR) then
write (*,310) J,YNORM,RNORM,YL,RL
else
write (UNIT,310) J,YNORM,RNORM,YL,RL
endif
180 continue
endif
c -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if( BLK(5) .and. SING(1) .ne. ZERO ) then
C
C COMPUTE VALUES OF XNORM AND RNORM FOR A SEQUENCE OF VALUES OF
C THE LEVENBERG-MARQUARDT PARAMETER.
C
EL = log10(SING(1)) + ONE
EL2 = log10(SING(NSOL)) - ONE
DEL = (EL2-EL) / TWENTY
ALN10 = log(TEN)
if(STAR) then
write (*,320)
else
write (UNIT,320)
endif
DO 200 IE = 1,21
C COMPUTE ALAMB = 10.0**EL
ALAMB = EXP(ALN10*EL)
YS = ZERO
RS = WORK(NSOL+1)
DO 190 I = 1,MINMN
SL = SING(I)**2 + ALAMB**2
YS = YS + (B(I)*SING(I)/SL)**2
RS = RS + (B(I)*(ALAMB**2)/SL)**2
190 CONTINUE
YNORM = sqrt(YS)
RNORM = sqrt(RS)
RL = -THOU
IF (RNORM.GT.ZERO) RL = log10(RNORM)
YL = -THOU
IF (YNORM.GT.ZERO) YL = log10(YNORM)
if(STAR) then
write (*,330) ALAMB,YNORM,RNORM,EL,YL,RL
else
write (UNIT,330) ALAMB,YNORM,RNORM,EL,YL,RL
endif
EL = EL + DEL
200 CONTINUE
endif
c -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C Compute and optionally print candidate solutions.
C
do 215 K = 1,NSOL
PCOEF = B(K) / SING(K)
DO 210 I = 1,N
A(I,K) = A(I,K) * PCOEF
210 IF (K.GT.1) A(I,K) = A(I,K) + A(I,K-1)
215 continue
if (BLK(6) .and. NSOL.GE.1)
* CALL MFEOUT (A,MDA,N,NSOL,NAMES,2,UNIT,WIDTH)
return
END
C SUBROUTINE SVDRS (A, MDA, M1, N1, B, MDB, NB, S, WORK)
c
C SINGULAR VALUE DECOMPOSITION ALSO TREATING RIGHT SIDE VECTOR.
c
c The original version of this code was developed by
c Charles L. Lawson and Richard J. Hanson at Jet Propulsion Laboratory
c 1974 SEP 25, and published in the book
c "SOLVING LEAST SQUARES PROBLEMS", Prentice-HalL, 1974.
c Revised FEB 1995 to accompany reprinting of the book by SIAM.
C ------------------------------------------------------------------
c This 1995 version differs from the original 1974 version by adding
c the argument WORK().
c WORK() provides 2*N1 locations of work space. Originally S() was
c required to have 3*N1 elements, of which the last 2*N1 were used for
c work space. Now S() only needs N1 elements.
C ------------------------------------------------------------------
c This subroutine computes the singular value decomposition of the
c given M1 x N1 matrix, A, and optionally applys the transformations
c from the left to the NB column vectors of the M1 x NB matrix B.
c Either M1 .ge. N1 or M1 .lt. N1 is permitted.
c
c The singular value decomposition of A is of the form
c
c A = U * S * V**t
c
c where U is M1 x M1 orthogonal, S is M1 x N1 diagonal with the
c diagonal terms nonnegative and ordered from large to small, and
c V is N1 x N1 orthogonal. Note that these matrices also satisfy
c
c S = (U**t) * A * V
c
c The matrix V is returned in the leading N1 rows and
c columns of the array A(,).
c
c The singular values, i.e. the diagonal terms of the matrix S,
c are returned in the array S(). If M1 .lt. N1, positions M1+1
c through N1 of S() will be set to zero.
c
c The product matrix G = U**t * B replaces the given matrix B
c in the array B(,).
c
c If the user wishes to obtain a minimum length least squares
c solution of the linear system
c
c A * X ~=~ B
c
c the solution X can be constructed, following use of this subroutine,
c by computing the sum for i = 1, ..., R of the outer products
c
c (Col i of V) * (1/S(i)) * (Row i of G)
c
c Here R denotes the pseudorank of A which the user may choose
c in the range 0 through Min(M1, N1) based on the sizes of the
c singular values.
C ------------------------------------------------------------------
C Subroutine Arguments
c
c A(,) (In/Out) On input contains the M1 x N1 matrix A.
c On output contains the N1 x N1 matrix V.
c
c LDA (In) First dimensioning parameter for A(,).
c Require LDA .ge. Max(M1, N1).
c
c M1 (In) No. of rows of matrices A, B, and G.
c Require M1 > 0.
c
c N1 (In) No. of cols of matrix A, No. of rows and cols of
c matrix V. Permit M1 .ge. N1 or M1 .lt. N1.
c Require N1 > 0.
c
c B(,) (In/Out) If NB .gt. 0 this array must contain an
c M1 x NB matrix on input and will contain the
c M1 x NB product matrix, G = (U**t) * B on output.
c
c LDB (In) First dimensioning parameter for B(,).
c Require LDB .ge. M1.
c
c NB (In) No. of cols in the matrices B and G.
c Require NB .ge. 0.
c
c S() (Out) Must be dimensioned at least N1. On return will
c contain the singular values of A, with the ordering
c S(1) .ge. S(2) .ge. ... .ge. S(N1) .ge. 0.
c If M1 .lt. N1 the singular values indexed from M1+1
c through N1 will be zero.
c If the given integer arguments are not consistent, this
c subroutine will return immediately, setting S(1) = -1.0.
c
c WORK() (Scratch) Work space of total size at least 2*N1.
c Locations 1 thru N1 will hold the off-diagonal terms of
c the bidiagonal matrix for subroutine QRBD. Locations N1+1
c thru 2*N1 will save info from one call to the next of
c H12.
c ------------------------------------------------------------------
C This code gives special treatment to rows and columns that are
c entirely zero. This causes certain zero sing. vals. to appear as
c exact zeros rather than as about MACHEPS times the largest sing. val.
c It similarly cleans up the associated columns of U and V.
c
c METHOD..
c 1. EXCHANGE COLS OF A TO PACK NONZERO COLS TO THE LEFT.
c SET N = NO. OF NONZERO COLS.
c USE LOCATIONS A(1,N1),A(1,N1-1),...,A(1,N+1) TO RECORD THE
c COL PERMUTATIONS.
c 2. EXCHANGE ROWS OF A TO PACK NONZERO ROWS TO THE TOP.
c QUIT PACKING IF FIND N NONZERO ROWS. MAKE SAME ROW EXCHANGES
c IN B. SET M SO THAT ALL NONZERO ROWS OF THE PERMUTED A
c ARE IN FIRST M ROWS. IF M .LE. N THEN ALL M ROWS ARE
c NONZERO. IF M .GT. N THEN THE FIRST N ROWS ARE KNOWN
c TO BE NONZERO,AND ROWS N+1 THRU M MAY BE ZERO OR NONZERO.
c 3. APPLY ORIGINAL ALGORITHM TO THE M BY N PROBLEM.
c 4. MOVE PERMUTATION RECORD FROM A(,) TO S(I),I=N+1,...,N1.
c 5. BUILD V UP FROM N BY N TO N1 BY N1 BY PLACING ONES ON
c THE DIAGONAL AND ZEROS ELSEWHERE. THIS IS ONLY PARTLY DONE
c EXPLICITLY. IT IS COMPLETED DURING STEP 6.
c 6. EXCHANGE ROWS OF V TO COMPENSATE FOR COL EXCHANGES OF STEP 2.
c 7. PLACE ZEROS IN S(I),I=N+1,N1 TO REPRESENT ZERO SING VALS.
c ------------------------------------------------------------------
subroutine SVDRS (A, MDA, M1, N1, B, MDB, NB, S, WORK)
integer I, IPASS, J, K, L, M, MDA, MDB, M1
integer N, NB, N1, NP1, NS, NSP1
c double precision A(MDA,N1),B(MDB,NB), S(N1)
double precision A(MDA, *),B(MDB, *), S( *)
double precision ONE, T, WORK(N1,2), ZERO
parameter(ONE = 1.0d0, ZERO = 0.0d0)
c -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C BEGIN.. SPECIAL FOR ZERO ROWS AND COLS.
C
C PACK THE NONZERO COLS TO THE LEFT
C
N=N1
IF (N.LE.0.OR.M1.LE.0) RETURN
J=N
10 CONTINUE
DO 20 I=1,M1
IF (A(I,J) .ne. ZERO) go to 50
20 CONTINUE
C
C COL J IS ZERO. EXCHANGE IT WITH COL N.
C
IF (J .ne. N) then
DO 30 I=1,M1
30 A(I,J)=A(I,N)
endif
A(1,N)=J
N=N-1
50 CONTINUE
J=J-1
IF (J.GE.1) GO TO 10
C IF N=0 THEN A IS ENTIRELY ZERO AND SVD
C COMPUTATION CAN BE SKIPPED
NS=0
IF (N.EQ.0) GO TO 240
C PACK NONZERO ROWS TO THE TOP
C QUIT PACKING IF FIND N NONZERO ROWS
I=1
M=M1
60 IF (I.GT.N.OR.I.GE.M) GO TO 150
IF (A(I,I)) 90,70,90
70 DO 80 J=1,N
IF (A(I,J)) 90,80,90
80 CONTINUE
GO TO 100
90 I=I+1
GO TO 60
C ROW I IS ZERO
C EXCHANGE ROWS I AND M
100 IF(NB.LE.0) GO TO 115
DO 110 J=1,NB
T=B(I,J)
B(I,J)=B(M,J)
110 B(M,J)=T
115 DO 120 J=1,N
120 A(I,J)=A(M,J)
IF (M.GT.N) GO TO 140
DO 130 J=1,N
130 A(M,J)=ZERO
140 CONTINUE
C EXCHANGE IS FINISHED
M=M-1
GO TO 60
C
150 CONTINUE
C END.. SPECIAL FOR ZERO ROWS AND COLUMNS
C BEGIN.. SVD ALGORITHM
C METHOD..
C (1) REDUCE THE MATRIX TO UPPER BIDIAGONAL FORM WITH
C HOUSEHOLDER TRANSFORMATIONS.
C H(N)...H(1)AQ(1)...Q(N-2) = (D**T,0)**T
C WHERE D IS UPPER BIDIAGONAL.
C
C (2) APPLY H(N)...H(1) TO B. HERE H(N)...H(1)*B REPLACES B
C IN STORAGE.
C
C (3) THE MATRIX PRODUCT W= Q(1)...Q(N-2) OVERWRITES THE FIRST
C N ROWS OF A IN STORAGE.
C
C (4) AN SVD FOR D IS COMPUTED. HERE K ROTATIONS RI AND PI ARE
C COMPUTED SO THAT
C RK...R1*D*P1**(T)...PK**(T) = DIAG(S1,...,SM)
C TO WORKING ACCURACY. THE SI ARE NONNEGATIVE AND NONINCREASING.
C HERE RK...R1*B OVERWRITES B IN STORAGE WHILE
C A*P1**(T)...PK**(T) OVERWRITES A IN STORAGE.
C
C (5) IT FOLLOWS THAT,WITH THE PROPER DEFINITIONS,
C U**(T)*B OVERWRITES B, WHILE V OVERWRITES THE FIRST N ROW AND
C COLUMNS OF A.
C
L=min(M,N)
C THE FOLLOWING LOOP REDUCES A TO UPPER BIDIAGONAL AND
C ALSO APPLIES THE PREMULTIPLYING TRANSFORMATIONS TO B.
C
DO 170 J=1,L
IF (J.GE.M) GO TO 160
CALL H12 (1,J,J+1,M,A(1,J),1,T,A(1,J+1),1,MDA,N-J)
CALL H12 (2,J,J+1,M,A(1,J),1,T,B,1,MDB,NB)
160 IF (J.GE.N-1) GO TO 170
CALL H12 (1,J+1,J+2,N,A(J,1),MDA,work(J,2),A(J+1,1),MDA,1,M-J)
170 CONTINUE
C
C COPY THE BIDIAGONAL MATRIX INTO S() and WORK() FOR QRBD.
C 1986 Jan 8. C. L. Lawson. Changed N to L in following 2 statements.
IF (L.EQ.1) GO TO 190
DO 180 J=2,L
S(J)=A(J,J)
180 WORK(J,1)=A(J-1,J)
190 S(1)=A(1,1)
C
NS=N
IF (M.GE.N) GO TO 200
NS=M+1
S(NS)=ZERO
WORK(NS,1)=A(M,M+1)
200 CONTINUE
C
C CONSTRUCT THE EXPLICIT N BY N PRODUCT MATRIX, W=Q1*Q2*...*QL*I
C IN THE ARRAY A().
C
DO 230 K=1,N
I=N+1-K
IF (I .GT. min(M,N-2)) GO TO 210
CALL H12 (2,I+1,I+2,N,A(I,1),MDA,WORK(I,2),A(1,I+1),1,MDA,N-I)
210 DO 220 J=1,N
220 A(I,J)=ZERO
230 A(I,I)=ONE
C
C COMPUTE THE SVD OF THE BIDIAGONAL MATRIX
C
CALL QRBD (IPASS,S(1),WORK(1,1),NS,A,MDA,N,B,MDB,NB)
C
if(IPASS .eq. 2) then
write (*,'(/a)')
* ' FULL ACCURACY NOT ATTAINED IN BIDIAGONAL SVD'
endif
240 CONTINUE
IF (NS.GE.N) GO TO 260
NSP1=NS+1
DO 250 J=NSP1,N
250 S(J)=ZERO
260 CONTINUE
IF (N.EQ.N1) RETURN
NP1=N+1
C MOVE RECORD OF PERMUTATIONS
C AND STORE ZEROS
DO 280 J=NP1,N1
S(J)=A(1,J)
DO 270 I=1,N
270 A(I,J)=ZERO
280 CONTINUE
C PERMUTE ROWS AND SET ZERO SINGULAR VALUES.
DO 300 K=NP1,N1
I=S(K)
S(K)=ZERO
DO 290 J=1,N1
A(K,J)=A(I,J)
290 A(I,J)=ZERO
A(I,K)=ONE
300 CONTINUE
C END.. SPECIAL FOR ZERO ROWS AND COLUMNS
RETURN
END