##// END OF EJS Templates
AMISR modules to read hdf5 files and link to SignalChain Objects...
AMISR modules to read hdf5 files and link to SignalChain Objects Two examples: to read hdf5 files and show RTI and Spectra from specific Beam

File last commit:

r491:3acb3a6f21eb
r491:3acb3a6f21eb
Show More
jroproc_voltage.py
524 lines | 15.3 KiB | text/x-python | PythonLexer
import numpy
from jroproc_base import ProcessingUnit, Operation
from model.data.jrodata import Voltage
class VoltageProc(ProcessingUnit):
def __init__(self):
ProcessingUnit.__init__(self)
# self.objectDict = {}
self.dataOut = Voltage()
self.flip = 1
def run(self):
if self.dataIn.type == 'AMISR':
self.__updateObjFromAmisrInput()
if self.dataIn.type == 'Voltage':
self.dataOut.copy(self.dataIn)
# self.dataOut.copy(self.dataIn)
def __updateObjFromAmisrInput(self):
self.dataOut.timeZone = self.dataIn.timeZone
self.dataOut.dstFlag = self.dataIn.dstFlag
self.dataOut.errorCount = self.dataIn.errorCount
self.dataOut.useLocalTime = self.dataIn.useLocalTime
self.dataOut.flagNoData = self.dataIn.flagNoData
self.dataOut.data = self.dataIn.data
self.dataOut.utctime = self.dataIn.utctime
self.dataOut.channelList = self.dataIn.channelList
self.dataOut.timeInterval = self.dataIn.timeInterval
self.dataOut.heightList = self.dataIn.heightList
self.dataOut.nProfiles = self.dataIn.nProfiles
self.dataOut.nCohInt = self.dataIn.nCohInt
self.dataOut.ippSeconds = self.dataIn.ippSeconds
self.dataOut.frequency = self.dataIn.frequency
#
# pass#
#
# def init(self):
#
#
# if self.dataIn.type == 'AMISR':
# self.__updateObjFromAmisrInput()
#
# if self.dataIn.type == 'Voltage':
# self.dataOut.copy(self.dataIn)
# # No necesita copiar en cada init() los atributos de dataIn
# # la copia deberia hacerse por cada nuevo bloque de datos
def selectChannels(self, channelList):
channelIndexList = []
for channel in channelList:
index = self.dataOut.channelList.index(channel)
channelIndexList.append(index)
self.selectChannelsByIndex(channelIndexList)
def selectChannelsByIndex(self, channelIndexList):
"""
Selecciona un bloque de datos en base a canales segun el channelIndexList
Input:
channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
Affected:
self.dataOut.data
self.dataOut.channelIndexList
self.dataOut.nChannels
self.dataOut.m_ProcessingHeader.totalSpectra
self.dataOut.systemHeaderObj.numChannels
self.dataOut.m_ProcessingHeader.blockSize
Return:
None
"""
for channelIndex in channelIndexList:
if channelIndex not in self.dataOut.channelIndexList:
print channelIndexList
raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex
# nChannels = len(channelIndexList)
data = self.dataOut.data[channelIndexList,:]
self.dataOut.data = data
self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
# self.dataOut.nChannels = nChannels
return 1
def selectHeights(self, minHei=None, maxHei=None):
"""
Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
minHei <= height <= maxHei
Input:
minHei : valor minimo de altura a considerar
maxHei : valor maximo de altura a considerar
Affected:
Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
Return:
1 si el metodo se ejecuto con exito caso contrario devuelve 0
"""
if minHei == None:
minHei = self.dataOut.heightList[0]
if maxHei == None:
maxHei = self.dataOut.heightList[-1]
if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei):
raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
if (maxHei > self.dataOut.heightList[-1]):
maxHei = self.dataOut.heightList[-1]
# raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
minIndex = 0
maxIndex = 0
heights = self.dataOut.heightList
inda = numpy.where(heights >= minHei)
indb = numpy.where(heights <= maxHei)
try:
minIndex = inda[0][0]
except:
minIndex = 0
try:
maxIndex = indb[0][-1]
except:
maxIndex = len(heights)
self.selectHeightsByIndex(minIndex, maxIndex)
return 1
def selectHeightsByIndex(self, minIndex, maxIndex):
"""
Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
minIndex <= index <= maxIndex
Input:
minIndex : valor de indice minimo de altura a considerar
maxIndex : valor de indice maximo de altura a considerar
Affected:
self.dataOut.data
self.dataOut.heightList
Return:
1 si el metodo se ejecuto con exito caso contrario devuelve 0
"""
if (minIndex < 0) or (minIndex > maxIndex):
raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
if (maxIndex >= self.dataOut.nHeights):
maxIndex = self.dataOut.nHeights-1
# raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
# nHeights = maxIndex - minIndex + 1
#voltage
data = self.dataOut.data[:,minIndex:maxIndex+1]
# firstHeight = self.dataOut.heightList[minIndex]
self.dataOut.data = data
self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1]
return 1
def filterByHeights(self, window):
deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0]
if window == None:
window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight
newdelta = deltaHeight * window
r = self.dataOut.data.shape[1] % window
buffer = self.dataOut.data[:,0:self.dataOut.data.shape[1]-r]
buffer = buffer.reshape(self.dataOut.data.shape[0],self.dataOut.data.shape[1]/window,window)
buffer = numpy.sum(buffer,2)
self.dataOut.data = buffer
self.dataOut.heightList = numpy.arange(self.dataOut.heightList[0],newdelta*(self.dataOut.nHeights-r)/window,newdelta)
self.dataOut.windowOfFilter = window
def deFlip(self):
self.dataOut.data *= self.flip
self.flip *= -1.
def setRadarFrequency(self, frequency=None):
if frequency != None:
self.dataOut.frequency = frequency
return 1
class CohInt(Operation):
isConfig = False
__profIndex = 0
__withOverapping = False
__byTime = False
__initime = None
__lastdatatime = None
__integrationtime = None
__buffer = None
__dataReady = False
n = None
def __init__(self):
Operation.__init__(self)
# self.isConfig = False
def setup(self, n=None, timeInterval=None, overlapping=False):
"""
Set the parameters of the integration class.
Inputs:
n : Number of coherent integrations
timeInterval : Time of integration. If the parameter "n" is selected this one does not work
overlapping :
"""
self.__initime = None
self.__lastdatatime = 0
self.__buffer = None
self.__dataReady = False
if n == None and timeInterval == None:
raise ValueError, "n or timeInterval should be specified ..."
if n != None:
self.n = n
self.__byTime = False
else:
self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line
self.n = 9999
self.__byTime = True
if overlapping:
self.__withOverapping = True
self.__buffer = None
else:
self.__withOverapping = False
self.__buffer = 0
self.__profIndex = 0
def putData(self, data):
"""
Add a profile to the __buffer and increase in one the __profileIndex
"""
if not self.__withOverapping:
self.__buffer += data.copy()
self.__profIndex += 1
return
#Overlapping data
nChannels, nHeis = data.shape
data = numpy.reshape(data, (1, nChannels, nHeis))
#If the buffer is empty then it takes the data value
if self.__buffer == None:
self.__buffer = data
self.__profIndex += 1
return
#If the buffer length is lower than n then stakcing the data value
if self.__profIndex < self.n:
self.__buffer = numpy.vstack((self.__buffer, data))
self.__profIndex += 1
return
#If the buffer length is equal to n then replacing the last buffer value with the data value
self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
self.__buffer[self.n-1] = data
self.__profIndex = self.n
return
def pushData(self):
"""
Return the sum of the last profiles and the profiles used in the sum.
Affected:
self.__profileIndex
"""
if not self.__withOverapping:
data = self.__buffer
n = self.__profIndex
self.__buffer = 0
self.__profIndex = 0
return data, n
#Integration with Overlapping
data = numpy.sum(self.__buffer, axis=0)
n = self.__profIndex
return data, n
def byProfiles(self, data):
self.__dataReady = False
avgdata = None
# n = None
self.putData(data)
if self.__profIndex == self.n:
avgdata, n = self.pushData()
self.__dataReady = True
return avgdata
def byTime(self, data, datatime):
self.__dataReady = False
avgdata = None
n = None
self.putData(data)
if (datatime - self.__initime) >= self.__integrationtime:
avgdata, n = self.pushData()
self.n = n
self.__dataReady = True
return avgdata
def integrate(self, data, datatime=None):
if self.__initime == None:
self.__initime = datatime
if self.__byTime:
avgdata = self.byTime(data, datatime)
else:
avgdata = self.byProfiles(data)
self.__lastdatatime = datatime
if avgdata == None:
return None, None
avgdatatime = self.__initime
deltatime = datatime -self.__lastdatatime
if not self.__withOverapping:
self.__initime = datatime
else:
self.__initime += deltatime
return avgdata, avgdatatime
def run(self, dataOut, **kwargs):
if not self.isConfig:
self.setup(**kwargs)
self.isConfig = True
avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime)
# dataOut.timeInterval *= n
dataOut.flagNoData = True
if self.__dataReady:
dataOut.data = avgdata
dataOut.nCohInt *= self.n
dataOut.utctime = avgdatatime
dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt
dataOut.flagNoData = False
class Decoder(Operation):
isConfig = False
__profIndex = 0
code = None
nCode = None
nBaud = None
def __init__(self):
Operation.__init__(self)
# self.isConfig = False
def setup(self, code, shape):
self.__profIndex = 0
self.code = code
self.nCode = len(code)
self.nBaud = len(code[0])
self.__nChannels, self.__nHeis = shape
__codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex)
__codeBuffer[:,0:self.nBaud] = self.code
self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1))
self.ndatadec = self.__nHeis - self.nBaud + 1
self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex)
def convolutionInFreq(self, data):
fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
fft_data = numpy.fft.fft(data, axis=1)
conv = fft_data*fft_code
data = numpy.fft.ifft(conv,axis=1)
datadec = data[:,:-self.nBaud+1]
return datadec
def convolutionInFreqOpt(self, data):
fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
data = cfunctions.decoder(fft_code, data)
datadec = data[:,:-self.nBaud+1]
return datadec
def convolutionInTime(self, data):
code = self.code[self.__profIndex]
for i in range(self.__nChannels):
self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='valid')
return self.datadecTime
def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0):
if code == None:
code = dataOut.code
else:
code = numpy.array(code).reshape(nCode,nBaud)
dataOut.code = code
dataOut.nCode = nCode
dataOut.nBaud = nBaud
dataOut.radarControllerHeaderObj.code = code
dataOut.radarControllerHeaderObj.nCode = nCode
dataOut.radarControllerHeaderObj.nBaud = nBaud
if not self.isConfig:
self.setup(code, dataOut.data.shape)
self.isConfig = True
if mode == 0:
datadec = self.convolutionInTime(dataOut.data)
if mode == 1:
datadec = self.convolutionInFreq(dataOut.data)
if mode == 2:
datadec = self.convolutionInFreqOpt(dataOut.data)
dataOut.data = datadec
dataOut.heightList = dataOut.heightList[0:self.ndatadec]
dataOut.flagDecodeData = True #asumo q la data no esta decodificada
if self.__profIndex == self.nCode-1:
self.__profIndex = 0
return 1
self.__profIndex += 1
return 1
# dataOut.flagDeflipData = True #asumo q la data no esta sin flip