|
|
# Copyright (c) 2012-2021 Jicamarca Radio Observatory
|
|
|
# All rights reserved.
|
|
|
#
|
|
|
# Distributed under the terms of the BSD 3-clause license.
|
|
|
"""Classes to plot Spectra data
|
|
|
|
|
|
"""
|
|
|
|
|
|
import os
|
|
|
import numpy
|
|
|
import datetime
|
|
|
|
|
|
from schainpy.model.graphics.jroplot_base import Plot, plt, log
|
|
|
from itertools import combinations
|
|
|
from matplotlib.ticker import LinearLocator
|
|
|
|
|
|
from schainpy.model.utils.BField import BField
|
|
|
from scipy.interpolate import splrep
|
|
|
from scipy.interpolate import splev
|
|
|
|
|
|
from matplotlib import __version__ as plt_version
|
|
|
|
|
|
if plt_version >='3.3.4':
|
|
|
EXTRA_POINTS = 0
|
|
|
else:
|
|
|
EXTRA_POINTS = 1
|
|
|
class SpectraPlot(Plot):
|
|
|
'''
|
|
|
Plot for Spectra data
|
|
|
'''
|
|
|
|
|
|
CODE = 'spc'
|
|
|
colormap = 'jet'
|
|
|
plot_type = 'pcolor'
|
|
|
buffering = False
|
|
|
channelList = []
|
|
|
elevationList = []
|
|
|
azimuthList = []
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
self.nplots = len(self.data.channels)
|
|
|
self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
|
|
|
self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
|
|
|
self.height = 3.4 * self.nrows
|
|
|
self.cb_label = 'dB'
|
|
|
if self.showprofile:
|
|
|
self.width = 5.2 * self.ncols
|
|
|
else:
|
|
|
self.width = 4.2* self.ncols
|
|
|
self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.12})
|
|
|
self.ylabel = 'Range [km]'
|
|
|
|
|
|
def update_list(self,dataOut):
|
|
|
|
|
|
if len(self.channelList) == 0:
|
|
|
self.channelList = dataOut.channelList
|
|
|
if len(self.elevationList) == 0:
|
|
|
self.elevationList = dataOut.elevationList
|
|
|
if len(self.azimuthList) == 0:
|
|
|
self.azimuthList = dataOut.azimuthList
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
self.update_list(dataOut)
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter
|
|
|
if dataOut.type == "Parameters":
|
|
|
noise = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor)
|
|
|
spc = 10*numpy.log10(dataOut.data_spc/(dataOut.nProfiles))
|
|
|
else:
|
|
|
noise = 10*numpy.log10(dataOut.getNoise()/norm)
|
|
|
|
|
|
z = numpy.zeros((dataOut.nChannels, dataOut.nFFTPoints, dataOut.nHeights))
|
|
|
for ch in range(dataOut.nChannels):
|
|
|
if hasattr(dataOut.normFactor,'ndim'):
|
|
|
if dataOut.normFactor.ndim > 1:
|
|
|
z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch]))
|
|
|
|
|
|
else:
|
|
|
z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor))
|
|
|
else:
|
|
|
z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor))
|
|
|
|
|
|
z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
|
|
|
spc = 10*numpy.log10(z)
|
|
|
|
|
|
data['spc'] = spc
|
|
|
data['rti'] = spc.mean(axis=1)
|
|
|
data['noise'] = noise
|
|
|
meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS))
|
|
|
if self.CODE == 'spc_moments':
|
|
|
data['moments'] = dataOut.moments
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
if self.xaxis == "frequency":
|
|
|
x = self.data.xrange[0]
|
|
|
self.xlabel = "Frequency (kHz)"
|
|
|
elif self.xaxis == "time":
|
|
|
x = self.data.xrange[1]
|
|
|
self.xlabel = "Time (ms)"
|
|
|
else:
|
|
|
x = self.data.xrange[2]
|
|
|
self.xlabel = "Velocity (m/s)"
|
|
|
|
|
|
if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'):
|
|
|
x = self.data.xrange[2]
|
|
|
self.xlabel = "Velocity (m/s)"
|
|
|
|
|
|
self.titles = []
|
|
|
|
|
|
y = self.data.yrange
|
|
|
self.y = y
|
|
|
|
|
|
data = self.data[-1]
|
|
|
z = data['spc']
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
noise = self.data['noise'][n][0]
|
|
|
# noise = data['noise'][n]
|
|
|
|
|
|
if self.CODE == 'spc_moments':
|
|
|
mean = data['moments'][n, 1]
|
|
|
if self.CODE == 'gaussian_fit':
|
|
|
gau0 = data['gaussfit'][n][2,:,0]
|
|
|
gau1 = data['gaussfit'][n][2,:,1]
|
|
|
if ax.firsttime:
|
|
|
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
|
|
|
self.xmin = self.xmin if self.xmin else -self.xmax
|
|
|
self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
|
|
|
self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
|
|
|
if self.showprofile:
|
|
|
ax.plt_profile = self.pf_axes[n].plot(
|
|
|
data['rti'][n], y)[0]
|
|
|
ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y,
|
|
|
color="k", linestyle="dashed", lw=1)[0]
|
|
|
if self.CODE == 'spc_moments':
|
|
|
ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0]
|
|
|
if self.CODE == 'gaussian_fit':
|
|
|
ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0]
|
|
|
ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0]
|
|
|
else:
|
|
|
ax.plt.set_array(z[n].T.ravel())
|
|
|
if self.showprofile:
|
|
|
ax.plt_profile.set_data(data['rti'][n], y)
|
|
|
ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y)
|
|
|
if self.CODE == 'spc_moments':
|
|
|
ax.plt_mean.set_data(mean, y)
|
|
|
if self.CODE == 'gaussian_fit':
|
|
|
ax.plt_gau0.set_data(gau0, y)
|
|
|
ax.plt_gau1.set_data(gau1, y)
|
|
|
if len(self.azimuthList) > 0 and len(self.elevationList) > 0:
|
|
|
self.titles.append('CH {}: {:2.1f}elv {:2.1f}az {:3.2f}dB'.format(self.channelList[n], noise, self.elevationList[n], self.azimuthList[n]))
|
|
|
else:
|
|
|
self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise))
|
|
|
|
|
|
class SpectraObliquePlot(Plot):
|
|
|
'''
|
|
|
Plot for Spectra data
|
|
|
'''
|
|
|
|
|
|
CODE = 'spc_oblique'
|
|
|
colormap = 'jet'
|
|
|
plot_type = 'pcolor'
|
|
|
|
|
|
def setup(self):
|
|
|
self.xaxis = "oblique"
|
|
|
self.nplots = len(self.data.channels)
|
|
|
self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
|
|
|
self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
|
|
|
self.height = 2.6 * self.nrows
|
|
|
self.cb_label = 'dB'
|
|
|
if self.showprofile:
|
|
|
self.width = 4 * self.ncols
|
|
|
else:
|
|
|
self.width = 3.5 * self.ncols
|
|
|
self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18})
|
|
|
self.ylabel = 'Range [km]'
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
|
|
|
spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor)
|
|
|
data['spc'] = spc
|
|
|
data['rti'] = dataOut.getPower()
|
|
|
data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor)
|
|
|
meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1))
|
|
|
|
|
|
data['shift1'] = dataOut.Dop_EEJ_T1[0]
|
|
|
data['shift2'] = dataOut.Dop_EEJ_T2[0]
|
|
|
data['max_val_2'] = dataOut.Oblique_params[0,-1,:]
|
|
|
data['shift1_error'] = dataOut.Err_Dop_EEJ_T1[0]
|
|
|
data['shift2_error'] = dataOut.Err_Dop_EEJ_T2[0]
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
if self.xaxis == "frequency":
|
|
|
x = self.data.xrange[0]
|
|
|
self.xlabel = "Frequency (kHz)"
|
|
|
elif self.xaxis == "time":
|
|
|
x = self.data.xrange[1]
|
|
|
self.xlabel = "Time (ms)"
|
|
|
else:
|
|
|
x = self.data.xrange[2]
|
|
|
self.xlabel = "Velocity (m/s)"
|
|
|
|
|
|
self.titles = []
|
|
|
|
|
|
y = self.data.yrange
|
|
|
self.y = y
|
|
|
|
|
|
data = self.data[-1]
|
|
|
z = data['spc']
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
noise = self.data['noise'][n][-1]
|
|
|
shift1 = data['shift1']
|
|
|
shift2 = data['shift2']
|
|
|
max_val_2 = data['max_val_2']
|
|
|
err1 = data['shift1_error']
|
|
|
err2 = data['shift2_error']
|
|
|
if ax.firsttime:
|
|
|
|
|
|
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
|
|
|
self.xmin = self.xmin if self.xmin else -self.xmax
|
|
|
self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
|
|
|
self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
|
|
|
if self.showprofile:
|
|
|
ax.plt_profile = self.pf_axes[n].plot(
|
|
|
self.data['rti'][n][-1], y)[0]
|
|
|
ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y,
|
|
|
color="k", linestyle="dashed", lw=1)[0]
|
|
|
|
|
|
self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2)
|
|
|
self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2)
|
|
|
self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2)
|
|
|
|
|
|
else:
|
|
|
self.ploterr1.remove()
|
|
|
self.ploterr2.remove()
|
|
|
self.ploterr3.remove()
|
|
|
ax.plt.set_array(z[n].T.ravel())
|
|
|
if self.showprofile:
|
|
|
ax.plt_profile.set_data(self.data['rti'][n][-1], y)
|
|
|
ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y)
|
|
|
self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2)
|
|
|
self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2)
|
|
|
self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2)
|
|
|
|
|
|
self.titles.append('CH {}: {:3.2f}dB'.format(n, noise))
|
|
|
|
|
|
|
|
|
class CrossSpectraPlot(Plot):
|
|
|
|
|
|
CODE = 'cspc'
|
|
|
colormap = 'jet'
|
|
|
plot_type = 'pcolor'
|
|
|
zmin_coh = None
|
|
|
zmax_coh = None
|
|
|
zmin_phase = None
|
|
|
zmax_phase = None
|
|
|
realChannels = None
|
|
|
crossPairs = None
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
self.ncols = 4
|
|
|
self.nplots = len(self.data.pairs) * 2
|
|
|
self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
|
|
|
self.width = 3.1 * self.ncols
|
|
|
self.height = 2.6 * self.nrows
|
|
|
self.ylabel = 'Range [km]'
|
|
|
self.showprofile = False
|
|
|
self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08})
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
|
|
|
spc = dataOut.data_spc
|
|
|
cspc = dataOut.data_cspc
|
|
|
meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS))
|
|
|
rawPairs = list(combinations(list(range(dataOut.nChannels)), 2))
|
|
|
meta['pairs'] = rawPairs
|
|
|
if self.crossPairs == None:
|
|
|
self.crossPairs = dataOut.pairsList
|
|
|
tmp = []
|
|
|
|
|
|
for n, pair in enumerate(meta['pairs']):
|
|
|
out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]])
|
|
|
coh = numpy.abs(out)
|
|
|
phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi
|
|
|
tmp.append(coh)
|
|
|
tmp.append(phase)
|
|
|
|
|
|
data['cspc'] = numpy.array(tmp)
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
if self.xaxis == "frequency":
|
|
|
x = self.data.xrange[0]
|
|
|
self.xlabel = "Frequency (kHz)"
|
|
|
elif self.xaxis == "time":
|
|
|
x = self.data.xrange[1]
|
|
|
self.xlabel = "Time (ms)"
|
|
|
else:
|
|
|
x = self.data.xrange[2]
|
|
|
self.xlabel = "Velocity (m/s)"
|
|
|
|
|
|
self.titles = []
|
|
|
|
|
|
y = self.data.yrange
|
|
|
self.y = y
|
|
|
|
|
|
data = self.data[-1]
|
|
|
cspc = data['cspc']
|
|
|
|
|
|
for n in range(len(self.data.pairs)):
|
|
|
pair = self.crossPairs[n]
|
|
|
coh = cspc[n*2]
|
|
|
phase = cspc[n*2+1]
|
|
|
ax = self.axes[2 * n]
|
|
|
if ax.firsttime:
|
|
|
ax.plt = ax.pcolormesh(x, y, coh.T,
|
|
|
vmin=self.zmin_coh,
|
|
|
vmax=self.zmax_coh,
|
|
|
cmap=plt.get_cmap(self.colormap_coh)
|
|
|
)
|
|
|
else:
|
|
|
ax.plt.set_array(coh.T.ravel())
|
|
|
self.titles.append(
|
|
|
'Coherence Ch{} * Ch{}'.format(pair[0], pair[1]))
|
|
|
|
|
|
ax = self.axes[2 * n + 1]
|
|
|
if ax.firsttime:
|
|
|
ax.plt = ax.pcolormesh(x, y, phase.T,
|
|
|
vmin=-180,
|
|
|
vmax=180,
|
|
|
cmap=plt.get_cmap(self.colormap_phase)
|
|
|
)
|
|
|
else:
|
|
|
ax.plt.set_array(phase.T.ravel())
|
|
|
self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1]))
|
|
|
|
|
|
|
|
|
class CrossSpectra4Plot(Plot):
|
|
|
|
|
|
CODE = 'cspc'
|
|
|
colormap = 'jet'
|
|
|
plot_type = 'pcolor'
|
|
|
zmin_coh = None
|
|
|
zmax_coh = None
|
|
|
zmin_phase = None
|
|
|
zmax_phase = None
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
self.ncols = 4
|
|
|
self.nrows = len(self.data.pairs)
|
|
|
self.nplots = self.nrows * 4
|
|
|
self.width = 3.1 * self.ncols
|
|
|
self.height = 5 * self.nrows
|
|
|
self.ylabel = 'Range [km]'
|
|
|
self.showprofile = False
|
|
|
self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08})
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
if self.xaxis == "frequency":
|
|
|
x = self.data.xrange[0]
|
|
|
self.xlabel = "Frequency (kHz)"
|
|
|
elif self.xaxis == "time":
|
|
|
x = self.data.xrange[1]
|
|
|
self.xlabel = "Time (ms)"
|
|
|
else:
|
|
|
x = self.data.xrange[2]
|
|
|
self.xlabel = "Velocity (m/s)"
|
|
|
|
|
|
self.titles = []
|
|
|
|
|
|
|
|
|
y = self.data.heights
|
|
|
self.y = y
|
|
|
nspc = self.data['spc']
|
|
|
spc = self.data['cspc'][0]
|
|
|
cspc = self.data['cspc'][1]
|
|
|
|
|
|
for n in range(self.nrows):
|
|
|
noise = self.data['noise'][:,-1]
|
|
|
pair = self.data.pairs[n]
|
|
|
|
|
|
ax = self.axes[4 * n]
|
|
|
if ax.firsttime:
|
|
|
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
|
|
|
self.xmin = self.xmin if self.xmin else -self.xmax
|
|
|
self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc)
|
|
|
self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc)
|
|
|
ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
else:
|
|
|
|
|
|
ax.plt.set_array(nspc[pair[0]].T.ravel())
|
|
|
self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]]))
|
|
|
|
|
|
ax = self.axes[4 * n + 1]
|
|
|
|
|
|
if ax.firsttime:
|
|
|
ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
else:
|
|
|
|
|
|
ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel())
|
|
|
self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]]))
|
|
|
|
|
|
out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]])
|
|
|
coh = numpy.abs(out)
|
|
|
phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi
|
|
|
|
|
|
ax = self.axes[4 * n + 2]
|
|
|
if ax.firsttime:
|
|
|
ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T,
|
|
|
vmin=0,
|
|
|
vmax=1,
|
|
|
cmap=plt.get_cmap(self.colormap_coh)
|
|
|
)
|
|
|
else:
|
|
|
ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel())
|
|
|
self.titles.append(
|
|
|
'Coherence Ch{} * Ch{}'.format(pair[0], pair[1]))
|
|
|
|
|
|
ax = self.axes[4 * n + 3]
|
|
|
if ax.firsttime:
|
|
|
ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T,
|
|
|
vmin=-180,
|
|
|
vmax=180,
|
|
|
cmap=plt.get_cmap(self.colormap_phase)
|
|
|
)
|
|
|
else:
|
|
|
ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel())
|
|
|
self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1]))
|
|
|
|
|
|
|
|
|
class CrossSpectra2Plot(Plot):
|
|
|
|
|
|
CODE = 'cspc'
|
|
|
colormap = 'jet'
|
|
|
plot_type = 'pcolor'
|
|
|
zmin_coh = None
|
|
|
zmax_coh = None
|
|
|
zmin_phase = None
|
|
|
zmax_phase = None
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
self.ncols = 1
|
|
|
self.nrows = len(self.data.pairs)
|
|
|
self.nplots = self.nrows * 1
|
|
|
self.width = 3.1 * self.ncols
|
|
|
self.height = 5 * self.nrows
|
|
|
self.ylabel = 'Range [km]'
|
|
|
self.showprofile = False
|
|
|
self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08})
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
if self.xaxis == "frequency":
|
|
|
x = self.data.xrange[0]
|
|
|
self.xlabel = "Frequency (kHz)"
|
|
|
elif self.xaxis == "time":
|
|
|
x = self.data.xrange[1]
|
|
|
self.xlabel = "Time (ms)"
|
|
|
else:
|
|
|
x = self.data.xrange[2]
|
|
|
self.xlabel = "Velocity (m/s)"
|
|
|
|
|
|
self.titles = []
|
|
|
|
|
|
|
|
|
y = self.data.heights
|
|
|
self.y = y
|
|
|
cspc = self.data['cspc'][1]
|
|
|
|
|
|
for n in range(self.nrows):
|
|
|
noise = self.data['noise'][:,-1]
|
|
|
pair = self.data.pairs[n]
|
|
|
out = cspc[n]
|
|
|
cross = numpy.abs(out)
|
|
|
z = cross/self.data.nFactor
|
|
|
cross = 10*numpy.log10(z)
|
|
|
|
|
|
ax = self.axes[1 * n]
|
|
|
if ax.firsttime:
|
|
|
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
|
|
|
self.xmin = self.xmin if self.xmin else -self.xmax
|
|
|
self.zmin = self.zmin if self.zmin else numpy.nanmin(cross)
|
|
|
self.zmax = self.zmax if self.zmax else numpy.nanmax(cross)
|
|
|
ax.plt = ax.pcolormesh(x, y, cross.T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
else:
|
|
|
ax.plt.set_array(cross.T.ravel())
|
|
|
self.titles.append(
|
|
|
'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1]))
|
|
|
|
|
|
|
|
|
class CrossSpectra3Plot(Plot):
|
|
|
|
|
|
CODE = 'cspc'
|
|
|
colormap = 'jet'
|
|
|
plot_type = 'pcolor'
|
|
|
zmin_coh = None
|
|
|
zmax_coh = None
|
|
|
zmin_phase = None
|
|
|
zmax_phase = None
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
self.ncols = 3
|
|
|
self.nrows = len(self.data.pairs)
|
|
|
self.nplots = self.nrows * 3
|
|
|
self.width = 3.1 * self.ncols
|
|
|
self.height = 5 * self.nrows
|
|
|
self.ylabel = 'Range [km]'
|
|
|
self.showprofile = False
|
|
|
self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08})
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
if self.xaxis == "frequency":
|
|
|
x = self.data.xrange[0]
|
|
|
self.xlabel = "Frequency (kHz)"
|
|
|
elif self.xaxis == "time":
|
|
|
x = self.data.xrange[1]
|
|
|
self.xlabel = "Time (ms)"
|
|
|
else:
|
|
|
x = self.data.xrange[2]
|
|
|
self.xlabel = "Velocity (m/s)"
|
|
|
|
|
|
self.titles = []
|
|
|
|
|
|
|
|
|
y = self.data.heights
|
|
|
self.y = y
|
|
|
|
|
|
cspc = self.data['cspc'][1]
|
|
|
|
|
|
for n in range(self.nrows):
|
|
|
noise = self.data['noise'][:,-1]
|
|
|
pair = self.data.pairs[n]
|
|
|
out = cspc[n]
|
|
|
|
|
|
cross = numpy.abs(out)
|
|
|
z = cross/self.data.nFactor
|
|
|
cross = 10*numpy.log10(z)
|
|
|
|
|
|
out_r= out.real/self.data.nFactor
|
|
|
|
|
|
out_i= out.imag/self.data.nFactor
|
|
|
|
|
|
ax = self.axes[3 * n]
|
|
|
if ax.firsttime:
|
|
|
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
|
|
|
self.xmin = self.xmin if self.xmin else -self.xmax
|
|
|
self.zmin = self.zmin if self.zmin else numpy.nanmin(cross)
|
|
|
self.zmax = self.zmax if self.zmax else numpy.nanmax(cross)
|
|
|
ax.plt = ax.pcolormesh(x, y, cross.T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
else:
|
|
|
ax.plt.set_array(cross.T.ravel())
|
|
|
self.titles.append(
|
|
|
'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1]))
|
|
|
|
|
|
ax = self.axes[3 * n + 1]
|
|
|
if ax.firsttime:
|
|
|
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
|
|
|
self.xmin = self.xmin if self.xmin else -self.xmax
|
|
|
self.zmin = self.zmin if self.zmin else numpy.nanmin(cross)
|
|
|
self.zmax = self.zmax if self.zmax else numpy.nanmax(cross)
|
|
|
ax.plt = ax.pcolormesh(x, y, out_r.T,
|
|
|
vmin=-1.e6,
|
|
|
vmax=0,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
else:
|
|
|
ax.plt.set_array(out_r.T.ravel())
|
|
|
self.titles.append(
|
|
|
'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1]))
|
|
|
|
|
|
ax = self.axes[3 * n + 2]
|
|
|
|
|
|
|
|
|
if ax.firsttime:
|
|
|
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
|
|
|
self.xmin = self.xmin if self.xmin else -self.xmax
|
|
|
self.zmin = self.zmin if self.zmin else numpy.nanmin(cross)
|
|
|
self.zmax = self.zmax if self.zmax else numpy.nanmax(cross)
|
|
|
ax.plt = ax.pcolormesh(x, y, out_i.T,
|
|
|
vmin=-1.e6,
|
|
|
vmax=1.e6,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
else:
|
|
|
ax.plt.set_array(out_i.T.ravel())
|
|
|
self.titles.append(
|
|
|
'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1]))
|
|
|
|
|
|
class RTIPlot(Plot):
|
|
|
'''
|
|
|
Plot for RTI data
|
|
|
'''
|
|
|
|
|
|
CODE = 'rti'
|
|
|
colormap = 'jet'
|
|
|
plot_type = 'pcolorbuffer'
|
|
|
titles = None
|
|
|
channelList = []
|
|
|
elevationList = []
|
|
|
azimuthList = []
|
|
|
|
|
|
def setup(self):
|
|
|
self.xaxis = 'time'
|
|
|
self.ncols = 1
|
|
|
self.nrows = len(self.data.channels)
|
|
|
self.nplots = len(self.data.channels)
|
|
|
self.ylabel = 'Range [km]'
|
|
|
#self.xlabel = 'Time'
|
|
|
self.cb_label = 'dB'
|
|
|
self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95})
|
|
|
self.titles = ['{} Channel {}'.format(
|
|
|
self.CODE.upper(), x) for x in range(self.nplots)]
|
|
|
|
|
|
def update_list(self,dataOut):
|
|
|
|
|
|
if len(self.channelList) == 0:
|
|
|
self.channelList = dataOut.channelList
|
|
|
if len(self.elevationList) == 0:
|
|
|
self.elevationList = dataOut.elevationList
|
|
|
if len(self.azimuthList) == 0:
|
|
|
self.azimuthList = dataOut.azimuthList
|
|
|
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
if len(self.channelList) == 0:
|
|
|
self.update_list(dataOut)
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
data['rti'] = dataOut.getPower()
|
|
|
norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter
|
|
|
noise = 10*numpy.log10(dataOut.getNoise()/norm)
|
|
|
data['noise'] = noise
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
self.x = self.data.times
|
|
|
self.y = self.data.yrange
|
|
|
self.z = self.data[self.CODE]
|
|
|
self.z = numpy.array(self.z, dtype=float)
|
|
|
self.z = numpy.ma.masked_invalid(self.z)
|
|
|
|
|
|
try:
|
|
|
if self.channelList != None:
|
|
|
if len(self.elevationList) > 0 and len(self.azimuthList) > 0:
|
|
|
self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format(
|
|
|
self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList]
|
|
|
else:
|
|
|
self.titles = ['{} Channel {}'.format(
|
|
|
self.CODE.upper(), x) for x in self.channelList]
|
|
|
except:
|
|
|
if self.channelList.any() != None:
|
|
|
if len(self.elevationList) > 0 and len(self.azimuthList) > 0:
|
|
|
self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format(
|
|
|
self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList]
|
|
|
else:
|
|
|
self.titles = ['{} Channel {}'.format(
|
|
|
self.CODE.upper(), x) for x in self.channelList]
|
|
|
|
|
|
if self.decimation is None:
|
|
|
x, y, z = self.fill_gaps(self.x, self.y, self.z)
|
|
|
else:
|
|
|
x, y, z = self.fill_gaps(*self.decimate())
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
|
|
|
self.zmin = self.zmin if self.zmin else numpy.min(self.z)
|
|
|
self.zmax = self.zmax if self.zmax else numpy.max(self.z)
|
|
|
data = self.data[-1]
|
|
|
if ax.firsttime:
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
if self.showprofile:
|
|
|
ax.plot_profile = self.pf_axes[n].plot(data[self.CODE][n], self.y)[0]
|
|
|
if "noise" in self.data:
|
|
|
|
|
|
ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y,
|
|
|
color="k", linestyle="dashed", lw=1)[0]
|
|
|
else:
|
|
|
ax.collections.remove(ax.collections[0])
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
if self.showprofile:
|
|
|
ax.plot_profile.set_data(data[self.CODE][n], self.y)
|
|
|
if "noise" in self.data:
|
|
|
ax.plot_noise.set_data(numpy.repeat(data['noise'][n], len(self.y)), self.y)
|
|
|
|
|
|
class SpectrogramPlot(Plot):
|
|
|
'''
|
|
|
Plot for Spectrogram data
|
|
|
'''
|
|
|
|
|
|
CODE = 'Spectrogram_Profile'
|
|
|
colormap = 'binary'
|
|
|
plot_type = 'pcolorbuffer'
|
|
|
|
|
|
def setup(self):
|
|
|
self.xaxis = 'time'
|
|
|
self.ncols = 1
|
|
|
self.nrows = len(self.data.channels)
|
|
|
self.nplots = len(self.data.channels)
|
|
|
self.xlabel = 'Time'
|
|
|
self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95})
|
|
|
self.titles = []
|
|
|
|
|
|
self.titles = ['{} Channel {}'.format(
|
|
|
self.CODE.upper(), x) for x in range(self.nrows)]
|
|
|
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
|
|
|
maxHei = 1620#+12000
|
|
|
indb = numpy.where(dataOut.heightList <= maxHei)
|
|
|
hei = indb[0][-1]
|
|
|
|
|
|
factor = dataOut.nIncohInt
|
|
|
z = dataOut.data_spc[:,:,hei] / factor
|
|
|
z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
|
|
|
|
|
|
meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1))
|
|
|
data['Spectrogram_Profile'] = 10 * numpy.log10(z)
|
|
|
|
|
|
data['hei'] = hei
|
|
|
data['DH'] = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step
|
|
|
data['nProfiles'] = dataOut.nProfiles
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
self.x = self.data.times
|
|
|
self.z = self.data[self.CODE]
|
|
|
self.y = self.data.xrange[0]
|
|
|
|
|
|
hei = self.data['hei'][-1]
|
|
|
DH = self.data['DH'][-1]
|
|
|
nProfiles = self.data['nProfiles'][-1]
|
|
|
|
|
|
self.ylabel = "Frequency (kHz)"
|
|
|
|
|
|
self.z = numpy.ma.masked_invalid(self.z)
|
|
|
|
|
|
if self.decimation is None:
|
|
|
x, y, z = self.fill_gaps(self.x, self.y, self.z)
|
|
|
else:
|
|
|
x, y, z = self.fill_gaps(*self.decimate())
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
self.zmin = self.zmin if self.zmin else numpy.min(self.z)
|
|
|
self.zmax = self.zmax if self.zmax else numpy.max(self.z)
|
|
|
data = self.data[-1]
|
|
|
if ax.firsttime:
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
else:
|
|
|
ax.collections.remove(ax.collections[0]) # error while running
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class CoherencePlot(RTIPlot):
|
|
|
'''
|
|
|
Plot for Coherence data
|
|
|
'''
|
|
|
|
|
|
CODE = 'coh'
|
|
|
titles = None
|
|
|
|
|
|
def setup(self):
|
|
|
self.xaxis = 'time'
|
|
|
self.ncols = 1
|
|
|
self.nrows = len(self.data.pairs)
|
|
|
self.nplots = len(self.data.pairs)
|
|
|
self.ylabel = 'Range [km]'
|
|
|
self.xlabel = 'Time'
|
|
|
self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95})
|
|
|
if self.CODE == 'coh':
|
|
|
self.cb_label = ''
|
|
|
self.titles = [
|
|
|
'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs]
|
|
|
else:
|
|
|
self.cb_label = 'Degrees'
|
|
|
self.titles = [
|
|
|
'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs]
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
data['coh'] = dataOut.getCoherence()
|
|
|
meta['pairs'] = dataOut.pairsList
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
class PhasePlot(CoherencePlot):
|
|
|
'''
|
|
|
Plot for Phase map data
|
|
|
'''
|
|
|
|
|
|
CODE = 'phase'
|
|
|
colormap = 'seismic'
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
data['phase'] = dataOut.getCoherence(phase=True)
|
|
|
meta['pairs'] = dataOut.pairsList
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
class NoisePlot(Plot):
|
|
|
'''
|
|
|
Plot for noise
|
|
|
'''
|
|
|
|
|
|
CODE = 'noise'
|
|
|
plot_type = 'scatterbuffer'
|
|
|
|
|
|
def setup(self):
|
|
|
self.xaxis = 'time'
|
|
|
self.ncols = 1
|
|
|
self.nrows = 1
|
|
|
self.nplots = 1
|
|
|
self.ylabel = 'Intensity [dB]'
|
|
|
self.xlabel = 'Time'
|
|
|
self.titles = ['Noise']
|
|
|
self.colorbar = False
|
|
|
self.plots_adjust.update({'right': 0.85 })
|
|
|
self.titles = ['Noise Plot']
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
noise = 10*numpy.log10(dataOut.getNoise())
|
|
|
noise = noise.reshape(dataOut.nChannels, 1)
|
|
|
data['noise'] = noise
|
|
|
meta['yrange'] = numpy.array([])
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
x = self.data.times
|
|
|
xmin = self.data.min_time
|
|
|
xmax = xmin + self.xrange * 60 * 60
|
|
|
Y = self.data['noise']
|
|
|
|
|
|
if self.axes[0].firsttime:
|
|
|
self.ymin = numpy.nanmin(Y) - 5
|
|
|
self.ymax = numpy.nanmax(Y) + 5
|
|
|
for ch in self.data.channels:
|
|
|
y = Y[ch]
|
|
|
self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch))
|
|
|
plt.legend(bbox_to_anchor=(1.18, 1.0))
|
|
|
else:
|
|
|
for ch in self.data.channels:
|
|
|
y = Y[ch]
|
|
|
self.axes[0].lines[ch].set_data(x, y)
|
|
|
|
|
|
class PowerProfilePlot(Plot):
|
|
|
|
|
|
CODE = 'pow_profile'
|
|
|
plot_type = 'scatter'
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
self.ncols = 1
|
|
|
self.nrows = 1
|
|
|
self.nplots = 1
|
|
|
self.height = 4
|
|
|
self.width = 3
|
|
|
self.ylabel = 'Range [km]'
|
|
|
self.xlabel = 'Intensity [dB]'
|
|
|
self.titles = ['Power Profile']
|
|
|
self.colorbar = False
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
data[self.CODE] = dataOut.getPower()
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
y = self.data.yrange
|
|
|
self.y = y
|
|
|
|
|
|
x = self.data[-1][self.CODE]
|
|
|
|
|
|
if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9
|
|
|
if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1
|
|
|
|
|
|
if self.axes[0].firsttime:
|
|
|
for ch in self.data.channels:
|
|
|
self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch))
|
|
|
plt.legend()
|
|
|
else:
|
|
|
for ch in self.data.channels:
|
|
|
self.axes[0].lines[ch].set_data(x[ch], y)
|
|
|
|
|
|
|
|
|
class SpectraCutPlot(Plot):
|
|
|
|
|
|
CODE = 'spc_cut'
|
|
|
plot_type = 'scatter'
|
|
|
buffering = False
|
|
|
heights = []
|
|
|
channelList = []
|
|
|
maintitle = "Spectra Cuts"
|
|
|
flag_setIndex = False
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
self.nplots = len(self.data.channels)
|
|
|
self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
|
|
|
self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
|
|
|
self.width = 4.5 * self.ncols + 2.5
|
|
|
self.height = 4.8 * self.nrows
|
|
|
self.ylabel = 'Power [dB]'
|
|
|
self.colorbar = False
|
|
|
self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.9, 'bottom':0.08})
|
|
|
|
|
|
if len(self.selectedHeightsList) > 0:
|
|
|
self.maintitle = "Spectra Cut"# for %d km " %(int(self.selectedHeight))
|
|
|
|
|
|
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
if len(self.channelList) == 0:
|
|
|
self.channelList = dataOut.channelList
|
|
|
|
|
|
self.heights = dataOut.heightList
|
|
|
#print("sels: ",self.selectedHeightsList)
|
|
|
if len(self.selectedHeightsList)>0 and not self.flag_setIndex:
|
|
|
|
|
|
for sel_height in self.selectedHeightsList:
|
|
|
index_list = numpy.where(self.heights >= sel_height)
|
|
|
index_list = index_list[0]
|
|
|
self.height_index.append(index_list[0])
|
|
|
#print("sels i:"", self.height_index)
|
|
|
self.flag_setIndex = True
|
|
|
#print(self.height_index)
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
|
|
|
norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter#*dataOut.nFFTPoints
|
|
|
n0 = 10*numpy.log10(dataOut.getNoise()/norm)
|
|
|
noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights)
|
|
|
|
|
|
|
|
|
z = []
|
|
|
for ch in range(dataOut.nChannels):
|
|
|
if hasattr(dataOut.normFactor,'shape'):
|
|
|
z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch]))
|
|
|
else:
|
|
|
z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor))
|
|
|
|
|
|
z = numpy.asarray(z)
|
|
|
z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
|
|
|
spc = 10*numpy.log10(z)
|
|
|
|
|
|
|
|
|
data['spc'] = spc - noise
|
|
|
meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS))
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
if self.xaxis == "frequency":
|
|
|
x = self.data.xrange[0][0:]
|
|
|
self.xlabel = "Frequency (kHz)"
|
|
|
elif self.xaxis == "time":
|
|
|
x = self.data.xrange[1]
|
|
|
self.xlabel = "Time (ms)"
|
|
|
else:
|
|
|
x = self.data.xrange[2]
|
|
|
self.xlabel = "Velocity (m/s)"
|
|
|
|
|
|
self.titles = []
|
|
|
|
|
|
y = self.data.yrange
|
|
|
z = self.data[-1]['spc']
|
|
|
#print(z.shape)
|
|
|
if len(self.height_index) > 0:
|
|
|
index = self.height_index
|
|
|
else:
|
|
|
index = numpy.arange(0, len(y), int((len(y))/9))
|
|
|
#print("inde x ", index, self.axes)
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
|
|
|
if ax.firsttime:
|
|
|
|
|
|
|
|
|
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
|
|
|
self.xmin = self.xmin if self.xmin else -self.xmax
|
|
|
self.ymin = self.ymin if self.ymin else numpy.nanmin(z)
|
|
|
self.ymax = self.ymax if self.ymax else numpy.nanmax(z)
|
|
|
|
|
|
|
|
|
ax.plt = ax.plot(x, z[n, :, index].T)
|
|
|
labels = ['Range = {:2.1f}km'.format(y[i]) for i in index]
|
|
|
self.figures[0].legend(ax.plt, labels, loc='center right', prop={'size': 8})
|
|
|
ax.minorticks_on()
|
|
|
ax.grid(which='major', axis='both')
|
|
|
ax.grid(which='minor', axis='x')
|
|
|
else:
|
|
|
for i, line in enumerate(ax.plt):
|
|
|
line.set_data(x, z[n, :, index[i]])
|
|
|
|
|
|
|
|
|
self.titles.append('CH {}'.format(self.channelList[n]))
|
|
|
plt.suptitle(self.maintitle, fontsize=10)
|
|
|
|
|
|
|
|
|
class BeaconPhase(Plot):
|
|
|
|
|
|
__isConfig = None
|
|
|
__nsubplots = None
|
|
|
|
|
|
PREFIX = 'beacon_phase'
|
|
|
|
|
|
def __init__(self):
|
|
|
Plot.__init__(self)
|
|
|
self.timerange = 24*60*60
|
|
|
self.isConfig = False
|
|
|
self.__nsubplots = 1
|
|
|
self.counter_imagwr = 0
|
|
|
self.WIDTH = 800
|
|
|
self.HEIGHT = 400
|
|
|
self.WIDTHPROF = 120
|
|
|
self.HEIGHTPROF = 0
|
|
|
self.xdata = None
|
|
|
self.ydata = None
|
|
|
|
|
|
self.PLOT_CODE = BEACON_CODE
|
|
|
|
|
|
self.FTP_WEI = None
|
|
|
self.EXP_CODE = None
|
|
|
self.SUB_EXP_CODE = None
|
|
|
self.PLOT_POS = None
|
|
|
|
|
|
self.filename_phase = None
|
|
|
|
|
|
self.figfile = None
|
|
|
|
|
|
self.xmin = None
|
|
|
self.xmax = None
|
|
|
|
|
|
def getSubplots(self):
|
|
|
|
|
|
ncol = 1
|
|
|
nrow = 1
|
|
|
|
|
|
return nrow, ncol
|
|
|
|
|
|
def setup(self, id, nplots, wintitle, showprofile=True, show=True):
|
|
|
|
|
|
self.__showprofile = showprofile
|
|
|
self.nplots = nplots
|
|
|
|
|
|
ncolspan = 7
|
|
|
colspan = 6
|
|
|
self.__nsubplots = 2
|
|
|
|
|
|
self.createFigure(id = id,
|
|
|
wintitle = wintitle,
|
|
|
widthplot = self.WIDTH+self.WIDTHPROF,
|
|
|
heightplot = self.HEIGHT+self.HEIGHTPROF,
|
|
|
show=show)
|
|
|
|
|
|
nrow, ncol = self.getSubplots()
|
|
|
|
|
|
self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1)
|
|
|
|
|
|
def save_phase(self, filename_phase):
|
|
|
f = open(filename_phase,'w+')
|
|
|
f.write('\n\n')
|
|
|
f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n')
|
|
|
f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' )
|
|
|
f.close()
|
|
|
|
|
|
def save_data(self, filename_phase, data, data_datetime):
|
|
|
f=open(filename_phase,'a')
|
|
|
timetuple_data = data_datetime.timetuple()
|
|
|
day = str(timetuple_data.tm_mday)
|
|
|
month = str(timetuple_data.tm_mon)
|
|
|
year = str(timetuple_data.tm_year)
|
|
|
hour = str(timetuple_data.tm_hour)
|
|
|
minute = str(timetuple_data.tm_min)
|
|
|
second = str(timetuple_data.tm_sec)
|
|
|
f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n')
|
|
|
f.close()
|
|
|
|
|
|
def plot(self):
|
|
|
log.warning('TODO: Not yet implemented...')
|
|
|
|
|
|
def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True',
|
|
|
xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None,
|
|
|
timerange=None,
|
|
|
save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
|
|
|
server=None, folder=None, username=None, password=None,
|
|
|
ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
|
|
|
|
|
|
if dataOut.flagNoData:
|
|
|
return dataOut
|
|
|
|
|
|
if not isTimeInHourRange(dataOut.datatime, xmin, xmax):
|
|
|
return
|
|
|
|
|
|
if pairsList == None:
|
|
|
pairsIndexList = dataOut.pairsIndexList[:10]
|
|
|
else:
|
|
|
pairsIndexList = []
|
|
|
for pair in pairsList:
|
|
|
if pair not in dataOut.pairsList:
|
|
|
raise ValueError("Pair %s is not in dataOut.pairsList" %(pair))
|
|
|
pairsIndexList.append(dataOut.pairsList.index(pair))
|
|
|
|
|
|
if pairsIndexList == []:
|
|
|
return
|
|
|
|
|
|
# if len(pairsIndexList) > 4:
|
|
|
# pairsIndexList = pairsIndexList[0:4]
|
|
|
|
|
|
hmin_index = None
|
|
|
hmax_index = None
|
|
|
|
|
|
if hmin != None and hmax != None:
|
|
|
indexes = numpy.arange(dataOut.nHeights)
|
|
|
hmin_list = indexes[dataOut.heightList >= hmin]
|
|
|
hmax_list = indexes[dataOut.heightList <= hmax]
|
|
|
|
|
|
if hmin_list.any():
|
|
|
hmin_index = hmin_list[0]
|
|
|
|
|
|
if hmax_list.any():
|
|
|
hmax_index = hmax_list[-1]+1
|
|
|
|
|
|
x = dataOut.getTimeRange()
|
|
|
|
|
|
thisDatetime = dataOut.datatime
|
|
|
|
|
|
title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y"))
|
|
|
xlabel = "Local Time"
|
|
|
ylabel = "Phase (degrees)"
|
|
|
|
|
|
update_figfile = False
|
|
|
|
|
|
nplots = len(pairsIndexList)
|
|
|
phase_beacon = numpy.zeros(len(pairsIndexList))
|
|
|
for i in range(nplots):
|
|
|
pair = dataOut.pairsList[pairsIndexList[i]]
|
|
|
ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0)
|
|
|
powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0)
|
|
|
powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0)
|
|
|
avgcoherenceComplex = ccf/numpy.sqrt(powa*powb)
|
|
|
phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi
|
|
|
|
|
|
if dataOut.beacon_heiIndexList:
|
|
|
phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList])
|
|
|
else:
|
|
|
phase_beacon[i] = numpy.average(phase)
|
|
|
|
|
|
if not self.isConfig:
|
|
|
|
|
|
nplots = len(pairsIndexList)
|
|
|
|
|
|
self.setup(id=id,
|
|
|
nplots=nplots,
|
|
|
wintitle=wintitle,
|
|
|
showprofile=showprofile,
|
|
|
show=show)
|
|
|
|
|
|
if timerange != None:
|
|
|
self.timerange = timerange
|
|
|
|
|
|
self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange)
|
|
|
|
|
|
if ymin == None: ymin = 0
|
|
|
if ymax == None: ymax = 360
|
|
|
|
|
|
self.FTP_WEI = ftp_wei
|
|
|
self.EXP_CODE = exp_code
|
|
|
self.SUB_EXP_CODE = sub_exp_code
|
|
|
self.PLOT_POS = plot_pos
|
|
|
|
|
|
self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
|
|
|
self.isConfig = True
|
|
|
self.figfile = figfile
|
|
|
self.xdata = numpy.array([])
|
|
|
self.ydata = numpy.array([])
|
|
|
|
|
|
update_figfile = True
|
|
|
|
|
|
#open file beacon phase
|
|
|
path = '%s%03d' %(self.PREFIX, self.id)
|
|
|
beacon_file = os.path.join(path,'%s.txt'%self.name)
|
|
|
self.filename_phase = os.path.join(figpath,beacon_file)
|
|
|
|
|
|
self.setWinTitle(title)
|
|
|
|
|
|
|
|
|
title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
|
|
|
|
|
|
legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList]
|
|
|
|
|
|
axes = self.axesList[0]
|
|
|
|
|
|
self.xdata = numpy.hstack((self.xdata, x[0:1]))
|
|
|
|
|
|
if len(self.ydata)==0:
|
|
|
self.ydata = phase_beacon.reshape(-1,1)
|
|
|
else:
|
|
|
self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1)))
|
|
|
|
|
|
|
|
|
axes.pmultilineyaxis(x=self.xdata, y=self.ydata,
|
|
|
xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax,
|
|
|
xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid",
|
|
|
XAxisAsTime=True, grid='both'
|
|
|
)
|
|
|
|
|
|
self.draw()
|
|
|
|
|
|
if dataOut.ltctime >= self.xmax:
|
|
|
self.counter_imagwr = wr_period
|
|
|
self.isConfig = False
|
|
|
update_figfile = True
|
|
|
|
|
|
self.save(figpath=figpath,
|
|
|
figfile=figfile,
|
|
|
save=save,
|
|
|
ftp=ftp,
|
|
|
wr_period=wr_period,
|
|
|
thisDatetime=thisDatetime,
|
|
|
update_figfile=update_figfile)
|
|
|
|
|
|
return dataOut
|
|
|
|
|
|
#####################################
|
|
|
class NoiselessSpectraPlot(Plot):
|
|
|
'''
|
|
|
Plot for Spectra data, subtracting
|
|
|
the noise in all channels, using for
|
|
|
amisr-14 data
|
|
|
'''
|
|
|
|
|
|
CODE = 'noiseless_spc'
|
|
|
colormap = 'jet'
|
|
|
plot_type = 'pcolor'
|
|
|
buffering = False
|
|
|
channelList = []
|
|
|
last_noise = None
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
self.nplots = len(self.data.channels)
|
|
|
self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
|
|
|
self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
|
|
|
self.height = 3.5 * self.nrows
|
|
|
|
|
|
self.cb_label = 'dB'
|
|
|
if self.showprofile:
|
|
|
self.width = 5.8 * self.ncols
|
|
|
else:
|
|
|
self.width = 4.8* self.ncols
|
|
|
self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.92, 'bottom': 0.12})
|
|
|
|
|
|
self.ylabel = 'Range [km]'
|
|
|
|
|
|
|
|
|
def update_list(self,dataOut):
|
|
|
if len(self.channelList) == 0:
|
|
|
self.channelList = dataOut.channelList
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
self.update_list(dataOut)
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
|
|
|
norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter
|
|
|
n0 = (dataOut.getNoise()/norm)
|
|
|
noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights)
|
|
|
noise = 10*numpy.log10(noise)
|
|
|
|
|
|
z = numpy.zeros((dataOut.nChannels, dataOut.nFFTPoints, dataOut.nHeights))
|
|
|
for ch in range(dataOut.nChannels):
|
|
|
if hasattr(dataOut.normFactor,'ndim'):
|
|
|
if dataOut.normFactor.ndim > 1:
|
|
|
z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch]))
|
|
|
else:
|
|
|
z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor))
|
|
|
else:
|
|
|
z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor))
|
|
|
|
|
|
z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
|
|
|
spc = 10*numpy.log10(z)
|
|
|
|
|
|
|
|
|
data['spc'] = spc - noise
|
|
|
#print(spc.shape)
|
|
|
data['rti'] = spc.mean(axis=1)
|
|
|
data['noise'] = noise
|
|
|
|
|
|
|
|
|
|
|
|
# data['noise'] = noise
|
|
|
meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS))
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
if self.xaxis == "frequency":
|
|
|
x = self.data.xrange[0]
|
|
|
self.xlabel = "Frequency (kHz)"
|
|
|
elif self.xaxis == "time":
|
|
|
x = self.data.xrange[1]
|
|
|
self.xlabel = "Time (ms)"
|
|
|
else:
|
|
|
x = self.data.xrange[2]
|
|
|
self.xlabel = "Velocity (m/s)"
|
|
|
|
|
|
self.titles = []
|
|
|
y = self.data.yrange
|
|
|
self.y = y
|
|
|
|
|
|
data = self.data[-1]
|
|
|
z = data['spc']
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
#noise = data['noise'][n]
|
|
|
|
|
|
if ax.firsttime:
|
|
|
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
|
|
|
self.xmin = self.xmin if self.xmin else -self.xmax
|
|
|
self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
|
|
|
self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
|
|
|
if self.showprofile:
|
|
|
ax.plt_profile = self.pf_axes[n].plot(
|
|
|
data['rti'][n], y)[0]
|
|
|
|
|
|
|
|
|
else:
|
|
|
ax.plt.set_array(z[n].T.ravel())
|
|
|
if self.showprofile:
|
|
|
ax.plt_profile.set_data(data['rti'][n], y)
|
|
|
|
|
|
|
|
|
self.titles.append('CH {}'.format(self.channelList[n]))
|
|
|
|
|
|
|
|
|
class NoiselessRTIPlot(RTIPlot):
|
|
|
'''
|
|
|
Plot for RTI data
|
|
|
'''
|
|
|
|
|
|
CODE = 'noiseless_rti'
|
|
|
colormap = 'jet'
|
|
|
plot_type = 'pcolorbuffer'
|
|
|
titles = None
|
|
|
channelList = []
|
|
|
elevationList = []
|
|
|
azimuthList = []
|
|
|
last_noise = None
|
|
|
|
|
|
def setup(self):
|
|
|
self.xaxis = 'time'
|
|
|
self.ncols = 1
|
|
|
#print("dataChannels ",self.data.channels)
|
|
|
self.nrows = len(self.data.channels)
|
|
|
self.nplots = len(self.data.channels)
|
|
|
self.ylabel = 'Range [km]'
|
|
|
#self.xlabel = 'Time'
|
|
|
self.cb_label = 'dB'
|
|
|
self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94})
|
|
|
self.titles = ['{} Channel {}'.format(
|
|
|
self.CODE.upper(), x) for x in range(self.nplots)]
|
|
|
|
|
|
def update_list(self,dataOut):
|
|
|
if len(self.channelList) == 0:
|
|
|
self.channelList = dataOut.channelList
|
|
|
if len(self.elevationList) == 0:
|
|
|
self.elevationList = dataOut.elevationList
|
|
|
if len(self.azimuthList) == 0:
|
|
|
self.azimuthList = dataOut.azimuthList
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
if len(self.channelList) == 0:
|
|
|
self.update_list(dataOut)
|
|
|
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
#print(dataOut.max_nIncohInt, dataOut.nIncohInt)
|
|
|
#print(dataOut.windowOfFilter,dataOut.nCohInt,dataOut.nProfiles,dataOut.max_nIncohInt,dataOut.nIncohInt
|
|
|
norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter
|
|
|
n0 = 10*numpy.log10(dataOut.getNoise()/norm)
|
|
|
data['noise'] = n0
|
|
|
noise = numpy.repeat(n0,dataOut.nHeights).reshape(dataOut.nChannels,dataOut.nHeights)
|
|
|
noiseless_data = dataOut.getPower() - noise
|
|
|
|
|
|
#print("power, noise:", dataOut.getPower(), n0)
|
|
|
#print(noise)
|
|
|
#print(noiseless_data)
|
|
|
|
|
|
data['noiseless_rti'] = noiseless_data
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
from matplotlib import pyplot as plt
|
|
|
self.x = self.data.times
|
|
|
self.y = self.data.yrange
|
|
|
self.z = self.data['noiseless_rti']
|
|
|
self.z = numpy.array(self.z, dtype=float)
|
|
|
self.z = numpy.ma.masked_invalid(self.z)
|
|
|
|
|
|
|
|
|
try:
|
|
|
if self.channelList != None:
|
|
|
if len(self.elevationList) > 0 and len(self.azimuthList) > 0:
|
|
|
self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format(
|
|
|
self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList]
|
|
|
else:
|
|
|
self.titles = ['{} Channel {}'.format(
|
|
|
self.CODE.upper(), x) for x in self.channelList]
|
|
|
except:
|
|
|
if self.channelList.any() != None:
|
|
|
if len(self.elevationList) > 0 and len(self.azimuthList) > 0:
|
|
|
self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format(
|
|
|
self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList]
|
|
|
else:
|
|
|
self.titles = ['{} Channel {}'.format(
|
|
|
self.CODE.upper(), x) for x in self.channelList]
|
|
|
|
|
|
|
|
|
if self.decimation is None:
|
|
|
x, y, z = self.fill_gaps(self.x, self.y, self.z)
|
|
|
else:
|
|
|
x, y, z = self.fill_gaps(*self.decimate())
|
|
|
|
|
|
dummy_var = self.axes #Extrañamente esto actualiza el valor axes
|
|
|
#print("plot shapes ", z.shape, x.shape, y.shape)
|
|
|
#print(self.axes)
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
|
|
|
|
|
|
self.zmin = self.zmin if self.zmin else numpy.min(self.z)
|
|
|
self.zmax = self.zmax if self.zmax else numpy.max(self.z)
|
|
|
data = self.data[-1]
|
|
|
if ax.firsttime:
|
|
|
if (n+1) == len(self.channelList):
|
|
|
ax.set_xlabel('Time')
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
if self.showprofile:
|
|
|
ax.plot_profile = self.pf_axes[n].plot(data['noiseless_rti'][n], self.y)[0]
|
|
|
|
|
|
else:
|
|
|
ax.collections.remove(ax.collections[0]) # error while running
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
if self.showprofile:
|
|
|
ax.plot_profile.set_data(data['noiseless_rti'][n], self.y)
|
|
|
# if "noise" in self.data:
|
|
|
# #ax.plot_noise.set_data(numpy.repeat(data['noise'][n], len(self.y)), self.y)
|
|
|
# ax.plot_noise.set_data(data['noise'][n], self.y)
|
|
|
|
|
|
|
|
|
class OutliersRTIPlot(Plot):
|
|
|
'''
|
|
|
Plot for data_xxxx object
|
|
|
'''
|
|
|
|
|
|
CODE = 'outlier_rtc' # Range Time Counts
|
|
|
colormap = 'cool'
|
|
|
plot_type = 'pcolorbuffer'
|
|
|
|
|
|
def setup(self):
|
|
|
self.xaxis = 'time'
|
|
|
self.ncols = 1
|
|
|
self.nrows = self.data.shape('outlier_rtc')[0]
|
|
|
self.nplots = self.nrows
|
|
|
self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94})
|
|
|
|
|
|
|
|
|
if not self.xlabel:
|
|
|
self.xlabel = 'Time'
|
|
|
|
|
|
self.ylabel = 'Height [km]'
|
|
|
if not self.titles:
|
|
|
self.titles = ['Outliers Ch:{}'.format(x) for x in range(self.nrows)]
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {}
|
|
|
data['outlier_rtc'] = dataOut.data_outlier
|
|
|
|
|
|
meta = {}
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
# self.data.normalize_heights()
|
|
|
self.x = self.data.times
|
|
|
self.y = self.data.yrange
|
|
|
self.z = self.data['outlier_rtc']
|
|
|
|
|
|
#self.z = numpy.ma.masked_invalid(self.z)
|
|
|
|
|
|
if self.decimation is None:
|
|
|
x, y, z = self.fill_gaps(self.x, self.y, self.z)
|
|
|
else:
|
|
|
x, y, z = self.fill_gaps(*self.decimate())
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
|
|
|
self.zmax = self.zmax if self.zmax is not None else numpy.max(
|
|
|
self.z[n])
|
|
|
self.zmin = self.zmin if self.zmin is not None else numpy.min(
|
|
|
self.z[n])
|
|
|
data = self.data[-1]
|
|
|
if ax.firsttime:
|
|
|
if self.zlimits is not None:
|
|
|
self.zmin, self.zmax = self.zlimits[n]
|
|
|
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=self.cmaps[n]
|
|
|
)
|
|
|
if self.showprofile:
|
|
|
ax.plot_profile = self.pf_axes[n].plot(data['outlier_rtc'][n], self.y)[0]
|
|
|
self.pf_axes[n].set_xlabel('')
|
|
|
else:
|
|
|
if self.zlimits is not None:
|
|
|
self.zmin, self.zmax = self.zlimits[n]
|
|
|
ax.collections.remove(ax.collections[0]) # error while running
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T ,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=self.cmaps[n]
|
|
|
)
|
|
|
if self.showprofile:
|
|
|
ax.plot_profile.set_data(data['outlier_rtc'][n], self.y)
|
|
|
self.pf_axes[n].set_xlabel('')
|
|
|
|
|
|
class NIncohIntRTIPlot(Plot):
|
|
|
'''
|
|
|
Plot for data_xxxx object
|
|
|
'''
|
|
|
|
|
|
CODE = 'integrations_rtc' # Range Time Counts
|
|
|
colormap = 'BuGn'
|
|
|
plot_type = 'pcolorbuffer'
|
|
|
|
|
|
def setup(self):
|
|
|
self.xaxis = 'time'
|
|
|
self.ncols = 1
|
|
|
self.nrows = self.data.shape('integrations_rtc')[0]
|
|
|
self.nplots = self.nrows
|
|
|
self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94})
|
|
|
|
|
|
|
|
|
if not self.xlabel:
|
|
|
self.xlabel = 'Time'
|
|
|
|
|
|
self.ylabel = 'Height [km]'
|
|
|
if not self.titles:
|
|
|
self.titles = ['Integration Ch:{}'.format(x) for x in range(self.nrows)]
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
data = {}
|
|
|
data['integrations_rtc'] = dataOut.nIncohInt
|
|
|
|
|
|
meta = {}
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
# self.data.normalize_heights()
|
|
|
self.x = self.data.times
|
|
|
self.y = self.data.yrange
|
|
|
self.z = self.data['integrations_rtc']
|
|
|
|
|
|
#self.z = numpy.ma.masked_invalid(self.z)
|
|
|
|
|
|
if self.decimation is None:
|
|
|
x, y, z = self.fill_gaps(self.x, self.y, self.z)
|
|
|
else:
|
|
|
x, y, z = self.fill_gaps(*self.decimate())
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
|
|
|
self.zmax = self.zmax if self.zmax is not None else numpy.max(
|
|
|
self.z[n])
|
|
|
self.zmin = self.zmin if self.zmin is not None else numpy.min(
|
|
|
self.z[n])
|
|
|
data = self.data[-1]
|
|
|
if ax.firsttime:
|
|
|
if self.zlimits is not None:
|
|
|
self.zmin, self.zmax = self.zlimits[n]
|
|
|
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=self.cmaps[n]
|
|
|
)
|
|
|
if self.showprofile:
|
|
|
ax.plot_profile = self.pf_axes[n].plot(data['integrations_rtc'][n], self.y)[0]
|
|
|
self.pf_axes[n].set_xlabel('')
|
|
|
else:
|
|
|
if self.zlimits is not None:
|
|
|
self.zmin, self.zmax = self.zlimits[n]
|
|
|
ax.collections.remove(ax.collections[0]) # error while running
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T ,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=self.cmaps[n]
|
|
|
)
|
|
|
if self.showprofile:
|
|
|
ax.plot_profile.set_data(data['integrations_rtc'][n], self.y)
|
|
|
self.pf_axes[n].set_xlabel('')
|
|
|
|
|
|
|
|
|
|
|
|
class RTIMapPlot(Plot):
|
|
|
'''
|
|
|
Plot for RTI data
|
|
|
|
|
|
Example:
|
|
|
|
|
|
controllerObj = Project()
|
|
|
controllerObj.setup(id = '11', name='eej_proc', description=desc)
|
|
|
##.......................................................................................
|
|
|
##.......................................................................................
|
|
|
readUnitConfObj = controllerObj.addReadUnit(datatype='AMISRReader', path=inPath, startDate='2023/05/24',endDate='2023/05/24',
|
|
|
startTime='12:00:00',endTime='12:45:59',walk=1,timezone='lt',margin_days=1,code = code,nCode = nCode,
|
|
|
nBaud = nBaud,nOsamp = nosamp,nChannels=nChannels,nFFT=NFFT,
|
|
|
syncronization=False,shiftChannels=0)
|
|
|
|
|
|
volts_proc = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId())
|
|
|
|
|
|
opObj01 = volts_proc.addOperation(name='Decoder', optype='other')
|
|
|
opObj01.addParameter(name='code', value=code, format='floatlist')
|
|
|
opObj01.addParameter(name='nCode', value=1, format='int')
|
|
|
opObj01.addParameter(name='nBaud', value=nBaud, format='int')
|
|
|
opObj01.addParameter(name='osamp', value=nosamp, format='int')
|
|
|
|
|
|
opObj12 = volts_proc.addOperation(name='selectHeights', optype='self')
|
|
|
opObj12.addParameter(name='minHei', value='90', format='float')
|
|
|
opObj12.addParameter(name='maxHei', value='150', format='float')
|
|
|
|
|
|
proc_spc = controllerObj.addProcUnit(datatype='SpectraProc', inputId=volts_proc.getId())
|
|
|
proc_spc.addParameter(name='nFFTPoints', value='8', format='int')
|
|
|
|
|
|
opObj11 = proc_spc.addOperation(name='IncohInt', optype='other')
|
|
|
opObj11.addParameter(name='n', value='1', format='int')
|
|
|
|
|
|
beamMapFile = "/home/japaza/Documents/AMISR_sky_mapper/UMET_beamcodes.csv"
|
|
|
|
|
|
opObj12 = proc_spc.addOperation(name='RTIMapPlot', optype='external')
|
|
|
opObj12.addParameter(name='selectedHeightsList', value='95, 100, 105, 110 ', format='int')
|
|
|
opObj12.addParameter(name='bField', value='100', format='int')
|
|
|
opObj12.addParameter(name='filename', value=beamMapFile, format='str')
|
|
|
|
|
|
'''
|
|
|
|
|
|
CODE = 'rti_skymap'
|
|
|
|
|
|
plot_type = 'scatter'
|
|
|
titles = None
|
|
|
colormap = 'jet'
|
|
|
channelList = []
|
|
|
elevationList = []
|
|
|
azimuthList = []
|
|
|
last_noise = None
|
|
|
flag_setIndex = False
|
|
|
heights = []
|
|
|
dcosx = []
|
|
|
dcosy = []
|
|
|
fullDcosy = None
|
|
|
fullDcosy = None
|
|
|
hindex = []
|
|
|
mapFile = False
|
|
|
##### BField ####
|
|
|
flagBField = False
|
|
|
dcosxB = []
|
|
|
dcosyB = []
|
|
|
Bmarker = ['+','*','D','x','s','>','o','^']
|
|
|
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
self.xaxis = 'Range (Km)'
|
|
|
if len(self.selectedHeightsList) > 0:
|
|
|
self.nplots = len(self.selectedHeightsList)
|
|
|
else:
|
|
|
self.nplots = 4
|
|
|
self.ncols = int(numpy.ceil(self.nplots/2))
|
|
|
self.nrows = int(numpy.ceil(self.nplots/self.ncols))
|
|
|
self.ylabel = 'dcosy'
|
|
|
self.xlabel = 'dcosx'
|
|
|
self.colorbar = True
|
|
|
self.width = 6 + 4.1*self.nrows
|
|
|
self.height = 3 + 3.5*self.ncols
|
|
|
|
|
|
|
|
|
if self.extFile!=None:
|
|
|
try:
|
|
|
pointings = numpy.genfromtxt(self.extFile, delimiter=',')
|
|
|
full_azi = pointings[:,1]
|
|
|
full_elev = pointings[:,2]
|
|
|
self.fullDcosx = numpy.cos(numpy.radians(full_elev))*numpy.sin(numpy.radians(full_azi))
|
|
|
self.fullDcosy = numpy.cos(numpy.radians(full_elev))*numpy.cos(numpy.radians(full_azi))
|
|
|
mapFile = True
|
|
|
except Exception as e:
|
|
|
self.extFile = None
|
|
|
print(e)
|
|
|
|
|
|
|
|
|
def update_list(self,dataOut):
|
|
|
if len(self.channelList) == 0:
|
|
|
self.channelList = dataOut.channelList
|
|
|
if len(self.elevationList) == 0:
|
|
|
self.elevationList = dataOut.elevationList
|
|
|
if len(self.azimuthList) == 0:
|
|
|
self.azimuthList = dataOut.azimuthList
|
|
|
a = numpy.radians(numpy.asarray(self.azimuthList))
|
|
|
e = numpy.radians(numpy.asarray(self.elevationList))
|
|
|
self.heights = dataOut.heightList
|
|
|
self.dcosx = numpy.cos(e)*numpy.sin(a)
|
|
|
self.dcosy = numpy.cos(e)*numpy.cos(a)
|
|
|
|
|
|
if len(self.bFieldList)>0:
|
|
|
datetObj = datetime.datetime.fromtimestamp(dataOut.utctime)
|
|
|
doy = datetObj.timetuple().tm_yday
|
|
|
year = datetObj.year
|
|
|
# self.dcosxB, self.dcosyB
|
|
|
ObjB = BField(year=year,doy=doy,site=2,heights=self.bFieldList)
|
|
|
[dcos, alpha, nlon, nlat] = ObjB.getBField()
|
|
|
|
|
|
alpha_location = numpy.zeros((nlon,2,len(self.bFieldList)))
|
|
|
for ih in range(len(self.bFieldList)):
|
|
|
alpha_location[:,0,ih] = dcos[:,0,ih,0]
|
|
|
for ilon in numpy.arange(nlon):
|
|
|
myx = (alpha[ilon,:,ih])[::-1]
|
|
|
myy = (dcos[ilon,:,ih,0])[::-1]
|
|
|
tck = splrep(myx,myy,s=0)
|
|
|
mydcosx = splev(ObjB.alpha_i,tck,der=0)
|
|
|
|
|
|
myx = (alpha[ilon,:,ih])[::-1]
|
|
|
myy = (dcos[ilon,:,ih,1])[::-1]
|
|
|
tck = splrep(myx,myy,s=0)
|
|
|
mydcosy = splev(ObjB.alpha_i,tck,der=0)
|
|
|
alpha_location[ilon,:,ih] = numpy.array([mydcosx, mydcosy])
|
|
|
self.dcosxB.append(alpha_location[:,0,ih])
|
|
|
self.dcosyB.append(alpha_location[:,1,ih])
|
|
|
self.flagBField = True
|
|
|
|
|
|
if len(self.celestialList)>0:
|
|
|
#getBField(self.bFieldList, date)
|
|
|
#pass = kwargs.get('celestial', [])
|
|
|
pass
|
|
|
|
|
|
|
|
|
def update(self, dataOut):
|
|
|
|
|
|
if len(self.channelList) == 0:
|
|
|
self.update_list(dataOut)
|
|
|
|
|
|
if not self.flag_setIndex:
|
|
|
if len(self.selectedHeightsList)>0:
|
|
|
for sel_height in self.selectedHeightsList:
|
|
|
index_list = numpy.where(self.heights >= sel_height)
|
|
|
index_list = index_list[0]
|
|
|
self.hindex.append(index_list[0])
|
|
|
self.flag_setIndex = True
|
|
|
|
|
|
data = {}
|
|
|
meta = {}
|
|
|
|
|
|
data['rti_skymap'] = dataOut.getPower()
|
|
|
norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter
|
|
|
noise = 10*numpy.log10(dataOut.getNoise()/norm)
|
|
|
data['noise'] = noise
|
|
|
|
|
|
return data, meta
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
self.x = self.dcosx
|
|
|
self.y = self.dcosy
|
|
|
self.z = self.data[-1]['rti_skymap']
|
|
|
self.z = numpy.array(self.z, dtype=float)
|
|
|
|
|
|
if len(self.hindex) > 0:
|
|
|
index = self.hindex
|
|
|
else:
|
|
|
index = numpy.arange(0, len(self.heights), int((len(self.heights))/4.2))
|
|
|
|
|
|
self.titles = ['Height {:.2f} km '.format(self.heights[i])+" " for i in index]
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
|
|
|
if ax.firsttime:
|
|
|
|
|
|
self.xmax = self.xmax if self.xmax else numpy.nanmax(self.x)
|
|
|
self.xmin = self.xmin if self.xmin else numpy.nanmin(self.x)
|
|
|
self.ymax = self.ymax if self.ymax else numpy.nanmax(self.y)
|
|
|
self.ymin = self.ymin if self.ymin else numpy.nanmin(self.y)
|
|
|
self.zmax = self.zmax if self.zmax else numpy.nanmax(self.z)
|
|
|
self.zmin = self.zmin if self.zmin else numpy.nanmin(self.z)
|
|
|
|
|
|
if self.extFile!=None:
|
|
|
ax.scatter(self.fullDcosx, self.fullDcosy, marker="+", s=20)
|
|
|
|
|
|
ax.plt = ax.scatter(self.x, self.y, c=self.z[:,index[n]], cmap = 'jet',vmin = self.zmin,
|
|
|
s=60, marker="s", vmax = self.zmax)
|
|
|
|
|
|
|
|
|
ax.minorticks_on()
|
|
|
ax.grid(which='major', axis='both')
|
|
|
ax.grid(which='minor', axis='x')
|
|
|
|
|
|
if self.flagBField :
|
|
|
|
|
|
for ih in range(len(self.bFieldList)):
|
|
|
label = str(self.bFieldList[ih]) + ' km'
|
|
|
ax.plot(self.dcosxB[ih], self.dcosyB[ih], color='k', marker=self.Bmarker[ih % 8],
|
|
|
label=label, linestyle='--', ms=4.0,lw=0.5)
|
|
|
handles, labels = ax.get_legend_handles_labels()
|
|
|
a = -0.05
|
|
|
b = 1.15 - 1.19*(self.nrows)
|
|
|
self.axes[0].legend(handles,labels, bbox_to_anchor=(a,b), prop={'size': (5.8+ 1.1*self.nplots)}, title='B Field ⊥')
|
|
|
|
|
|
else:
|
|
|
|
|
|
ax.plt = ax.scatter(self.x, self.y, c=self.z[:,index[n]], cmap = 'jet',vmin = self.zmin,
|
|
|
s=80, marker="s", vmax = self.zmax)
|
|
|
|
|
|
if self.flagBField :
|
|
|
for ih in range(len(self.bFieldList)):
|
|
|
ax.plot (self.dcosxB[ih], self.dcosyB[ih], color='k', marker=self.Bmarker[ih % 8],
|
|
|
linestyle='--', ms=4.0,lw=0.5)
|
|
|
|
|
|
|
|
|
|
|
|
|