##// END OF EJS Templates
test 2
test 2

File last commit:

r1751:2d2f96339643
r1751:2d2f96339643
Show More
jroplot_spectra.py
1934 lines | 66.8 KiB | text/x-python | PythonLexer
# Copyright (c) 2012-2021 Jicamarca Radio Observatory
# All rights reserved.
#
# Distributed under the terms of the BSD 3-clause license.
"""Classes to plot Spectra data
"""
import os
import numpy
import datetime
from schainpy.model.graphics.jroplot_base import Plot, plt, log
from itertools import combinations
from matplotlib.ticker import LinearLocator
from schainpy.model.utils.BField import BField
from scipy.interpolate import splrep
from scipy.interpolate import splev
from matplotlib import __version__ as plt_version
if plt_version >='3.3.4':
EXTRA_POINTS = 0
else:
EXTRA_POINTS = 1
class SpectraPlot(Plot):
'''
Plot for Spectra data
'''
CODE = 'spc'
colormap = 'jet'
plot_type = 'pcolor'
buffering = False
channelList = []
elevationList = []
azimuthList = []
def setup(self):
self.nplots = len(self.data.channels)
self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
self.height = 3.4 * self.nrows
self.cb_label = 'dB'
if self.showprofile:
self.width = 5.2 * self.ncols
else:
self.width = 4.2* self.ncols
self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.12})
self.ylabel = 'Range [km]'
def update_list(self,dataOut):
if len(self.channelList) == 0:
self.channelList = dataOut.channelList
if len(self.elevationList) == 0:
self.elevationList = dataOut.elevationList
if len(self.azimuthList) == 0:
self.azimuthList = dataOut.azimuthList
def update(self, dataOut):
self.update_list(dataOut)
data = {}
meta = {}
norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter
if dataOut.type == "Parameters":
noise = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor)
spc = 10*numpy.log10(dataOut.data_spc/(dataOut.nProfiles))
else:
noise = 10*numpy.log10(dataOut.getNoise()/norm)
z = numpy.zeros((dataOut.nChannels, dataOut.nFFTPoints, dataOut.nHeights))
for ch in range(dataOut.nChannels):
if hasattr(dataOut.normFactor,'ndim'):
if dataOut.normFactor.ndim > 1:
z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch]))
else:
z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor))
else:
z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor))
z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
spc = 10*numpy.log10(z)
data['spc'] = spc
data['rti'] = spc.mean(axis=1)
data['noise'] = noise
meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS))
if self.CODE == 'spc_moments':
data['moments'] = dataOut.moments
return data, meta
def plot(self):
if self.xaxis == "frequency":
x = self.data.xrange[0]
self.xlabel = "Frequency (kHz)"
elif self.xaxis == "time":
x = self.data.xrange[1]
self.xlabel = "Time (ms)"
else:
x = self.data.xrange[2]
self.xlabel = "Velocity (m/s)"
if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'):
x = self.data.xrange[2]
self.xlabel = "Velocity (m/s)"
self.titles = []
y = self.data.yrange
self.y = y
data = self.data[-1]
z = data['spc']
for n, ax in enumerate(self.axes):
noise = self.data['noise'][n][0]
# noise = data['noise'][n]
if self.CODE == 'spc_moments':
mean = data['moments'][n, 1]
if self.CODE == 'gaussian_fit':
gau0 = data['gaussfit'][n][2,:,0]
gau1 = data['gaussfit'][n][2,:,1]
if ax.firsttime:
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
self.xmin = self.xmin if self.xmin else -self.xmax
self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
ax.plt = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
if self.showprofile:
ax.plt_profile = self.pf_axes[n].plot(
data['rti'][n], y)[0]
ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y,
color="k", linestyle="dashed", lw=1)[0]
if self.CODE == 'spc_moments':
ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0]
if self.CODE == 'gaussian_fit':
ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0]
ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0]
else:
ax.plt.set_array(z[n].T.ravel())
if self.showprofile:
ax.plt_profile.set_data(data['rti'][n], y)
ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y)
if self.CODE == 'spc_moments':
ax.plt_mean.set_data(mean, y)
if self.CODE == 'gaussian_fit':
ax.plt_gau0.set_data(gau0, y)
ax.plt_gau1.set_data(gau1, y)
if len(self.azimuthList) > 0 and len(self.elevationList) > 0:
self.titles.append('CH {}: {:2.1f}elv {:2.1f}az {:3.2f}dB'.format(self.channelList[n], noise, self.elevationList[n], self.azimuthList[n]))
else:
self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise))
class SpectraObliquePlot(Plot):
'''
Plot for Spectra data
'''
CODE = 'spc_oblique'
colormap = 'jet'
plot_type = 'pcolor'
def setup(self):
self.xaxis = "oblique"
self.nplots = len(self.data.channels)
self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
self.height = 2.6 * self.nrows
self.cb_label = 'dB'
if self.showprofile:
self.width = 4 * self.ncols
else:
self.width = 3.5 * self.ncols
self.plots_adjust.update({'wspace': 0.8, 'hspace':0.2, 'left': 0.2, 'right': 0.9, 'bottom': 0.18})
self.ylabel = 'Range [km]'
def update(self, dataOut):
data = {}
meta = {}
spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor)
data['spc'] = spc
data['rti'] = dataOut.getPower()
data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor)
meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1))
data['shift1'] = dataOut.Dop_EEJ_T1[0]
data['shift2'] = dataOut.Dop_EEJ_T2[0]
data['max_val_2'] = dataOut.Oblique_params[0,-1,:]
data['shift1_error'] = dataOut.Err_Dop_EEJ_T1[0]
data['shift2_error'] = dataOut.Err_Dop_EEJ_T2[0]
return data, meta
def plot(self):
if self.xaxis == "frequency":
x = self.data.xrange[0]
self.xlabel = "Frequency (kHz)"
elif self.xaxis == "time":
x = self.data.xrange[1]
self.xlabel = "Time (ms)"
else:
x = self.data.xrange[2]
self.xlabel = "Velocity (m/s)"
self.titles = []
y = self.data.yrange
self.y = y
data = self.data[-1]
z = data['spc']
for n, ax in enumerate(self.axes):
noise = self.data['noise'][n][-1]
shift1 = data['shift1']
shift2 = data['shift2']
max_val_2 = data['max_val_2']
err1 = data['shift1_error']
err2 = data['shift2_error']
if ax.firsttime:
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
self.xmin = self.xmin if self.xmin else -self.xmax
self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
ax.plt = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
if self.showprofile:
ax.plt_profile = self.pf_axes[n].plot(
self.data['rti'][n][-1], y)[0]
ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y,
color="k", linestyle="dashed", lw=1)[0]
self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2)
self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2)
self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2)
else:
self.ploterr1.remove()
self.ploterr2.remove()
self.ploterr3.remove()
ax.plt.set_array(z[n].T.ravel())
if self.showprofile:
ax.plt_profile.set_data(self.data['rti'][n][-1], y)
ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y)
self.ploterr1 = ax.errorbar(shift1, y, xerr=err1, fmt='k^', elinewidth=2.2, marker='o', linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2)
self.ploterr2 = ax.errorbar(shift2, y, xerr=err2, fmt='m^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2)
self.ploterr3 = ax.errorbar(max_val_2, y, xerr=0, fmt='g^',elinewidth=2.2,marker='o',linestyle='None',markersize=2.5,capsize=0.3,markeredgewidth=0.2)
self.titles.append('CH {}: {:3.2f}dB'.format(n, noise))
class CrossSpectraPlot(Plot):
CODE = 'cspc'
colormap = 'jet'
plot_type = 'pcolor'
zmin_coh = None
zmax_coh = None
zmin_phase = None
zmax_phase = None
realChannels = None
crossPairs = None
def setup(self):
self.ncols = 4
self.nplots = len(self.data.pairs) * 2
self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
self.width = 3.1 * self.ncols
self.height = 2.6 * self.nrows
self.ylabel = 'Range [km]'
self.showprofile = False
self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08})
def update(self, dataOut):
data = {}
meta = {}
spc = dataOut.data_spc
cspc = dataOut.data_cspc
meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS))
rawPairs = list(combinations(list(range(dataOut.nChannels)), 2))
meta['pairs'] = rawPairs
if self.crossPairs == None:
self.crossPairs = dataOut.pairsList
tmp = []
for n, pair in enumerate(meta['pairs']):
out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]])
coh = numpy.abs(out)
phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi
tmp.append(coh)
tmp.append(phase)
data['cspc'] = numpy.array(tmp)
return data, meta
def plot(self):
if self.xaxis == "frequency":
x = self.data.xrange[0]
self.xlabel = "Frequency (kHz)"
elif self.xaxis == "time":
x = self.data.xrange[1]
self.xlabel = "Time (ms)"
else:
x = self.data.xrange[2]
self.xlabel = "Velocity (m/s)"
self.titles = []
y = self.data.yrange
self.y = y
data = self.data[-1]
cspc = data['cspc']
for n in range(len(self.data.pairs)):
pair = self.crossPairs[n]
coh = cspc[n*2]
phase = cspc[n*2+1]
ax = self.axes[2 * n]
if ax.firsttime:
ax.plt = ax.pcolormesh(x, y, coh.T,
vmin=self.zmin_coh,
vmax=self.zmax_coh,
cmap=plt.get_cmap(self.colormap_coh)
)
else:
ax.plt.set_array(coh.T.ravel())
self.titles.append(
'Coherence Ch{} * Ch{}'.format(pair[0], pair[1]))
ax = self.axes[2 * n + 1]
if ax.firsttime:
ax.plt = ax.pcolormesh(x, y, phase.T,
vmin=-180,
vmax=180,
cmap=plt.get_cmap(self.colormap_phase)
)
else:
ax.plt.set_array(phase.T.ravel())
self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1]))
class CrossSpectra4Plot(Plot):
CODE = 'cspc'
colormap = 'jet'
plot_type = 'pcolor'
zmin_coh = None
zmax_coh = None
zmin_phase = None
zmax_phase = None
def setup(self):
self.ncols = 4
self.nrows = len(self.data.pairs)
self.nplots = self.nrows * 4
self.width = 3.1 * self.ncols
self.height = 5 * self.nrows
self.ylabel = 'Range [km]'
self.showprofile = False
self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08})
def plot(self):
if self.xaxis == "frequency":
x = self.data.xrange[0]
self.xlabel = "Frequency (kHz)"
elif self.xaxis == "time":
x = self.data.xrange[1]
self.xlabel = "Time (ms)"
else:
x = self.data.xrange[2]
self.xlabel = "Velocity (m/s)"
self.titles = []
y = self.data.heights
self.y = y
nspc = self.data['spc']
spc = self.data['cspc'][0]
cspc = self.data['cspc'][1]
for n in range(self.nrows):
noise = self.data['noise'][:,-1]
pair = self.data.pairs[n]
ax = self.axes[4 * n]
if ax.firsttime:
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
self.xmin = self.xmin if self.xmin else -self.xmax
self.zmin = self.zmin if self.zmin else numpy.nanmin(nspc)
self.zmax = self.zmax if self.zmax else numpy.nanmax(nspc)
ax.plt = ax.pcolormesh(x , y , nspc[pair[0]].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
else:
ax.plt.set_array(nspc[pair[0]].T.ravel())
self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise[pair[0]]))
ax = self.axes[4 * n + 1]
if ax.firsttime:
ax.plt = ax.pcolormesh(x , y, numpy.flip(nspc[pair[1]],axis=0).T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
else:
ax.plt.set_array(numpy.flip(nspc[pair[1]],axis=0).T.ravel())
self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise[pair[1]]))
out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]])
coh = numpy.abs(out)
phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi
ax = self.axes[4 * n + 2]
if ax.firsttime:
ax.plt = ax.pcolormesh(x, y, numpy.flip(coh,axis=0).T,
vmin=0,
vmax=1,
cmap=plt.get_cmap(self.colormap_coh)
)
else:
ax.plt.set_array(numpy.flip(coh,axis=0).T.ravel())
self.titles.append(
'Coherence Ch{} * Ch{}'.format(pair[0], pair[1]))
ax = self.axes[4 * n + 3]
if ax.firsttime:
ax.plt = ax.pcolormesh(x, y, numpy.flip(phase,axis=0).T,
vmin=-180,
vmax=180,
cmap=plt.get_cmap(self.colormap_phase)
)
else:
ax.plt.set_array(numpy.flip(phase,axis=0).T.ravel())
self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1]))
class CrossSpectra2Plot(Plot):
CODE = 'cspc'
colormap = 'jet'
plot_type = 'pcolor'
zmin_coh = None
zmax_coh = None
zmin_phase = None
zmax_phase = None
def setup(self):
self.ncols = 1
self.nrows = len(self.data.pairs)
self.nplots = self.nrows * 1
self.width = 3.1 * self.ncols
self.height = 5 * self.nrows
self.ylabel = 'Range [km]'
self.showprofile = False
self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08})
def plot(self):
if self.xaxis == "frequency":
x = self.data.xrange[0]
self.xlabel = "Frequency (kHz)"
elif self.xaxis == "time":
x = self.data.xrange[1]
self.xlabel = "Time (ms)"
else:
x = self.data.xrange[2]
self.xlabel = "Velocity (m/s)"
self.titles = []
y = self.data.heights
self.y = y
cspc = self.data['cspc'][1]
for n in range(self.nrows):
noise = self.data['noise'][:,-1]
pair = self.data.pairs[n]
out = cspc[n]
cross = numpy.abs(out)
z = cross/self.data.nFactor
cross = 10*numpy.log10(z)
ax = self.axes[1 * n]
if ax.firsttime:
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
self.xmin = self.xmin if self.xmin else -self.xmax
self.zmin = self.zmin if self.zmin else numpy.nanmin(cross)
self.zmax = self.zmax if self.zmax else numpy.nanmax(cross)
ax.plt = ax.pcolormesh(x, y, cross.T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
else:
ax.plt.set_array(cross.T.ravel())
self.titles.append(
'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1]))
class CrossSpectra3Plot(Plot):
CODE = 'cspc'
colormap = 'jet'
plot_type = 'pcolor'
zmin_coh = None
zmax_coh = None
zmin_phase = None
zmax_phase = None
def setup(self):
self.ncols = 3
self.nrows = len(self.data.pairs)
self.nplots = self.nrows * 3
self.width = 3.1 * self.ncols
self.height = 5 * self.nrows
self.ylabel = 'Range [km]'
self.showprofile = False
self.plots_adjust.update({'left': 0.22, 'right': .90, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08})
def plot(self):
if self.xaxis == "frequency":
x = self.data.xrange[0]
self.xlabel = "Frequency (kHz)"
elif self.xaxis == "time":
x = self.data.xrange[1]
self.xlabel = "Time (ms)"
else:
x = self.data.xrange[2]
self.xlabel = "Velocity (m/s)"
self.titles = []
y = self.data.heights
self.y = y
cspc = self.data['cspc'][1]
for n in range(self.nrows):
noise = self.data['noise'][:,-1]
pair = self.data.pairs[n]
out = cspc[n]
cross = numpy.abs(out)
z = cross/self.data.nFactor
cross = 10*numpy.log10(z)
out_r= out.real/self.data.nFactor
out_i= out.imag/self.data.nFactor
ax = self.axes[3 * n]
if ax.firsttime:
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
self.xmin = self.xmin if self.xmin else -self.xmax
self.zmin = self.zmin if self.zmin else numpy.nanmin(cross)
self.zmax = self.zmax if self.zmax else numpy.nanmax(cross)
ax.plt = ax.pcolormesh(x, y, cross.T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
else:
ax.plt.set_array(cross.T.ravel())
self.titles.append(
'Cross Spectra Power Ch{} * Ch{}'.format(pair[0], pair[1]))
ax = self.axes[3 * n + 1]
if ax.firsttime:
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
self.xmin = self.xmin if self.xmin else -self.xmax
self.zmin = self.zmin if self.zmin else numpy.nanmin(cross)
self.zmax = self.zmax if self.zmax else numpy.nanmax(cross)
ax.plt = ax.pcolormesh(x, y, out_r.T,
vmin=-1.e6,
vmax=0,
cmap=plt.get_cmap(self.colormap)
)
else:
ax.plt.set_array(out_r.T.ravel())
self.titles.append(
'Cross Spectra Real Ch{} * Ch{}'.format(pair[0], pair[1]))
ax = self.axes[3 * n + 2]
if ax.firsttime:
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
self.xmin = self.xmin if self.xmin else -self.xmax
self.zmin = self.zmin if self.zmin else numpy.nanmin(cross)
self.zmax = self.zmax if self.zmax else numpy.nanmax(cross)
ax.plt = ax.pcolormesh(x, y, out_i.T,
vmin=-1.e6,
vmax=1.e6,
cmap=plt.get_cmap(self.colormap)
)
else:
ax.plt.set_array(out_i.T.ravel())
self.titles.append(
'Cross Spectra Imag Ch{} * Ch{}'.format(pair[0], pair[1]))
class RTIPlot(Plot):
'''
Plot for RTI data
'''
CODE = 'rti'
colormap = 'jet'
plot_type = 'pcolorbuffer'
titles = None
channelList = []
elevationList = []
azimuthList = []
def setup(self):
self.xaxis = 'time'
self.ncols = 1
self.nrows = len(self.data.channels)
self.nplots = len(self.data.channels)
self.ylabel = 'Range [km]'
#self.xlabel = 'Time'
self.cb_label = 'dB'
self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.1, 'right':0.95})
self.titles = ['{} Channel {}'.format(
self.CODE.upper(), x) for x in range(self.nplots)]
def update_list(self,dataOut):
if len(self.channelList) == 0:
self.channelList = dataOut.channelList
if len(self.elevationList) == 0:
self.elevationList = dataOut.elevationList
if len(self.azimuthList) == 0:
self.azimuthList = dataOut.azimuthList
def update(self, dataOut):
if len(self.channelList) == 0:
self.update_list(dataOut)
data = {}
meta = {}
data['rti'] = dataOut.getPower()
norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter
noise = 10*numpy.log10(dataOut.getNoise()/norm)
data['noise'] = noise
return data, meta
def plot(self):
self.x = self.data.times
self.y = self.data.yrange
self.z = self.data[self.CODE]
self.z = numpy.array(self.z, dtype=float)
self.z = numpy.ma.masked_invalid(self.z)
try:
if self.channelList != None:
if len(self.elevationList) > 0 and len(self.azimuthList) > 0:
self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format(
self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList]
else:
self.titles = ['{} Channel {}'.format(
self.CODE.upper(), x) for x in self.channelList]
except:
if self.channelList.any() != None:
if len(self.elevationList) > 0 and len(self.azimuthList) > 0:
self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format(
self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList]
else:
self.titles = ['{} Channel {}'.format(
self.CODE.upper(), x) for x in self.channelList]
if self.decimation is None:
x, y, z = self.fill_gaps(self.x, self.y, self.z)
else:
x, y, z = self.fill_gaps(*self.decimate())
for n, ax in enumerate(self.axes):
self.zmin = self.zmin if self.zmin else numpy.min(self.z)
self.zmax = self.zmax if self.zmax else numpy.max(self.z)
data = self.data[-1]
if ax.firsttime:
ax.plt = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
if self.showprofile:
ax.plot_profile = self.pf_axes[n].plot(data[self.CODE][n], self.y)[0]
if "noise" in self.data:
ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y,
color="k", linestyle="dashed", lw=1)[0]
else:
ax.collections.remove(ax.collections[0])
ax.plt = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
if self.showprofile:
ax.plot_profile.set_data(data[self.CODE][n], self.y)
if "noise" in self.data:
ax.plot_noise.set_data(numpy.repeat(data['noise'][n], len(self.y)), self.y)
class SpectrogramPlot(Plot):
'''
Plot for Spectrogram data
'''
CODE = 'Spectrogram_Profile'
colormap = 'binary'
plot_type = 'pcolorbuffer'
def setup(self):
self.xaxis = 'time'
self.ncols = 1
self.nrows = len(self.data.channels)
self.nplots = len(self.data.channels)
self.xlabel = 'Time'
self.plots_adjust.update({'hspace':1.2, 'left': 0.1, 'bottom': 0.12, 'right':0.95})
self.titles = []
self.titles = ['{} Channel {}'.format(
self.CODE.upper(), x) for x in range(self.nrows)]
def update(self, dataOut):
data = {}
meta = {}
maxHei = 1620#+12000
indb = numpy.where(dataOut.heightList <= maxHei)
hei = indb[0][-1]
factor = dataOut.nIncohInt
z = dataOut.data_spc[:,:,hei] / factor
z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1))
data['Spectrogram_Profile'] = 10 * numpy.log10(z)
data['hei'] = hei
data['DH'] = (dataOut.heightList[1] - dataOut.heightList[0])/dataOut.step
data['nProfiles'] = dataOut.nProfiles
return data, meta
def plot(self):
self.x = self.data.times
self.z = self.data[self.CODE]
self.y = self.data.xrange[0]
hei = self.data['hei'][-1]
DH = self.data['DH'][-1]
nProfiles = self.data['nProfiles'][-1]
self.ylabel = "Frequency (kHz)"
self.z = numpy.ma.masked_invalid(self.z)
if self.decimation is None:
x, y, z = self.fill_gaps(self.x, self.y, self.z)
else:
x, y, z = self.fill_gaps(*self.decimate())
for n, ax in enumerate(self.axes):
self.zmin = self.zmin if self.zmin else numpy.min(self.z)
self.zmax = self.zmax if self.zmax else numpy.max(self.z)
data = self.data[-1]
if ax.firsttime:
ax.plt = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
else:
ax.collections.remove(ax.collections[0]) # error while running
ax.plt = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
class CoherencePlot(RTIPlot):
'''
Plot for Coherence data
'''
CODE = 'coh'
titles = None
def setup(self):
self.xaxis = 'time'
self.ncols = 1
self.nrows = len(self.data.pairs)
self.nplots = len(self.data.pairs)
self.ylabel = 'Range [km]'
self.xlabel = 'Time'
self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95})
if self.CODE == 'coh':
self.cb_label = ''
self.titles = [
'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs]
else:
self.cb_label = 'Degrees'
self.titles = [
'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs]
def update(self, dataOut):
data = {}
meta = {}
data['coh'] = dataOut.getCoherence()
meta['pairs'] = dataOut.pairsList
return data, meta
class PhasePlot(CoherencePlot):
'''
Plot for Phase map data
'''
CODE = 'phase'
colormap = 'seismic'
def update(self, dataOut):
data = {}
meta = {}
data['phase'] = dataOut.getCoherence(phase=True)
meta['pairs'] = dataOut.pairsList
return data, meta
class NoisePlot(Plot):
'''
Plot for noise
'''
CODE = 'noise'
plot_type = 'scatterbuffer'
def setup(self):
self.xaxis = 'time'
self.ncols = 1
self.nrows = 1
self.nplots = 1
self.ylabel = 'Intensity [dB]'
self.xlabel = 'Time'
self.titles = ['Noise']
self.colorbar = False
self.plots_adjust.update({'right': 0.85 })
self.titles = ['Noise Plot']
def update(self, dataOut):
data = {}
meta = {}
noise = 10*numpy.log10(dataOut.getNoise())
noise = noise.reshape(dataOut.nChannels, 1)
data['noise'] = noise
meta['yrange'] = numpy.array([])
return data, meta
def plot(self):
x = self.data.times
xmin = self.data.min_time
xmax = xmin + self.xrange * 60 * 60
Y = self.data['noise']
if self.axes[0].firsttime:
self.ymin = numpy.nanmin(Y) - 5
self.ymax = numpy.nanmax(Y) + 5
for ch in self.data.channels:
y = Y[ch]
self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch))
plt.legend(bbox_to_anchor=(1.18, 1.0))
else:
for ch in self.data.channels:
y = Y[ch]
self.axes[0].lines[ch].set_data(x, y)
class PowerProfilePlot(Plot):
CODE = 'pow_profile'
plot_type = 'scatter'
def setup(self):
self.ncols = 1
self.nrows = 1
self.nplots = 1
self.height = 4
self.width = 3
self.ylabel = 'Range [km]'
self.xlabel = 'Intensity [dB]'
self.titles = ['Power Profile']
self.colorbar = False
def update(self, dataOut):
data = {}
meta = {}
data[self.CODE] = dataOut.getPower()
return data, meta
def plot(self):
y = self.data.yrange
self.y = y
x = self.data[-1][self.CODE]
if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9
if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1
if self.axes[0].firsttime:
for ch in self.data.channels:
self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch))
plt.legend()
else:
for ch in self.data.channels:
self.axes[0].lines[ch].set_data(x[ch], y)
class SpectraCutPlot(Plot):
CODE = 'spc_cut'
plot_type = 'scatter'
buffering = False
heights = []
channelList = []
maintitle = "Spectra Cuts"
flag_setIndex = False
def setup(self):
self.nplots = len(self.data.channels)
self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
self.width = 4.5 * self.ncols + 2.5
self.height = 4.8 * self.nrows
self.ylabel = 'Power [dB]'
self.colorbar = False
self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.9, 'bottom':0.08})
if len(self.selectedHeightsList) > 0:
self.maintitle = "Spectra Cut"# for %d km " %(int(self.selectedHeight))
def update(self, dataOut):
if len(self.channelList) == 0:
self.channelList = dataOut.channelList
self.heights = dataOut.heightList
#print("sels: ",self.selectedHeightsList)
if len(self.selectedHeightsList)>0 and not self.flag_setIndex:
for sel_height in self.selectedHeightsList:
index_list = numpy.where(self.heights >= sel_height)
index_list = index_list[0]
self.height_index.append(index_list[0])
#print("sels i:"", self.height_index)
self.flag_setIndex = True
#print(self.height_index)
data = {}
meta = {}
norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter#*dataOut.nFFTPoints
n0 = 10*numpy.log10(dataOut.getNoise()/norm)
noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights)
z = []
for ch in range(dataOut.nChannels):
if hasattr(dataOut.normFactor,'shape'):
z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch]))
else:
z.append(numpy.divide(dataOut.data_spc[ch],dataOut.normFactor))
z = numpy.asarray(z)
z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
spc = 10*numpy.log10(z)
data['spc'] = spc - noise
meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS))
return data, meta
def plot(self):
if self.xaxis == "frequency":
x = self.data.xrange[0][0:]
self.xlabel = "Frequency (kHz)"
elif self.xaxis == "time":
x = self.data.xrange[1]
self.xlabel = "Time (ms)"
else:
x = self.data.xrange[2]
self.xlabel = "Velocity (m/s)"
self.titles = []
y = self.data.yrange
z = self.data[-1]['spc']
#print(z.shape)
if len(self.height_index) > 0:
index = self.height_index
else:
index = numpy.arange(0, len(y), int((len(y))/9))
#print("inde x ", index, self.axes)
for n, ax in enumerate(self.axes):
if ax.firsttime:
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
self.xmin = self.xmin if self.xmin else -self.xmax
self.ymin = self.ymin if self.ymin else numpy.nanmin(z)
self.ymax = self.ymax if self.ymax else numpy.nanmax(z)
ax.plt = ax.plot(x, z[n, :, index].T)
labels = ['Range = {:2.1f}km'.format(y[i]) for i in index]
self.figures[0].legend(ax.plt, labels, loc='center right', prop={'size': 8})
ax.minorticks_on()
ax.grid(which='major', axis='both')
ax.grid(which='minor', axis='x')
else:
for i, line in enumerate(ax.plt):
line.set_data(x, z[n, :, index[i]])
self.titles.append('CH {}'.format(self.channelList[n]))
plt.suptitle(self.maintitle, fontsize=10)
class BeaconPhase(Plot):
__isConfig = None
__nsubplots = None
PREFIX = 'beacon_phase'
def __init__(self):
Plot.__init__(self)
self.timerange = 24*60*60
self.isConfig = False
self.__nsubplots = 1
self.counter_imagwr = 0
self.WIDTH = 800
self.HEIGHT = 400
self.WIDTHPROF = 120
self.HEIGHTPROF = 0
self.xdata = None
self.ydata = None
self.PLOT_CODE = BEACON_CODE
self.FTP_WEI = None
self.EXP_CODE = None
self.SUB_EXP_CODE = None
self.PLOT_POS = None
self.filename_phase = None
self.figfile = None
self.xmin = None
self.xmax = None
def getSubplots(self):
ncol = 1
nrow = 1
return nrow, ncol
def setup(self, id, nplots, wintitle, showprofile=True, show=True):
self.__showprofile = showprofile
self.nplots = nplots
ncolspan = 7
colspan = 6
self.__nsubplots = 2
self.createFigure(id = id,
wintitle = wintitle,
widthplot = self.WIDTH+self.WIDTHPROF,
heightplot = self.HEIGHT+self.HEIGHTPROF,
show=show)
nrow, ncol = self.getSubplots()
self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1)
def save_phase(self, filename_phase):
f = open(filename_phase,'w+')
f.write('\n\n')
f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n')
f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' )
f.close()
def save_data(self, filename_phase, data, data_datetime):
f=open(filename_phase,'a')
timetuple_data = data_datetime.timetuple()
day = str(timetuple_data.tm_mday)
month = str(timetuple_data.tm_mon)
year = str(timetuple_data.tm_year)
hour = str(timetuple_data.tm_hour)
minute = str(timetuple_data.tm_min)
second = str(timetuple_data.tm_sec)
f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n')
f.close()
def plot(self):
log.warning('TODO: Not yet implemented...')
def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True',
xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None,
timerange=None,
save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
server=None, folder=None, username=None, password=None,
ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
if dataOut.flagNoData:
return dataOut
if not isTimeInHourRange(dataOut.datatime, xmin, xmax):
return
if pairsList == None:
pairsIndexList = dataOut.pairsIndexList[:10]
else:
pairsIndexList = []
for pair in pairsList:
if pair not in dataOut.pairsList:
raise ValueError("Pair %s is not in dataOut.pairsList" %(pair))
pairsIndexList.append(dataOut.pairsList.index(pair))
if pairsIndexList == []:
return
# if len(pairsIndexList) > 4:
# pairsIndexList = pairsIndexList[0:4]
hmin_index = None
hmax_index = None
if hmin != None and hmax != None:
indexes = numpy.arange(dataOut.nHeights)
hmin_list = indexes[dataOut.heightList >= hmin]
hmax_list = indexes[dataOut.heightList <= hmax]
if hmin_list.any():
hmin_index = hmin_list[0]
if hmax_list.any():
hmax_index = hmax_list[-1]+1
x = dataOut.getTimeRange()
thisDatetime = dataOut.datatime
title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y"))
xlabel = "Local Time"
ylabel = "Phase (degrees)"
update_figfile = False
nplots = len(pairsIndexList)
phase_beacon = numpy.zeros(len(pairsIndexList))
for i in range(nplots):
pair = dataOut.pairsList[pairsIndexList[i]]
ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0)
powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0)
powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0)
avgcoherenceComplex = ccf/numpy.sqrt(powa*powb)
phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi
if dataOut.beacon_heiIndexList:
phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList])
else:
phase_beacon[i] = numpy.average(phase)
if not self.isConfig:
nplots = len(pairsIndexList)
self.setup(id=id,
nplots=nplots,
wintitle=wintitle,
showprofile=showprofile,
show=show)
if timerange != None:
self.timerange = timerange
self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange)
if ymin == None: ymin = 0
if ymax == None: ymax = 360
self.FTP_WEI = ftp_wei
self.EXP_CODE = exp_code
self.SUB_EXP_CODE = sub_exp_code
self.PLOT_POS = plot_pos
self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
self.isConfig = True
self.figfile = figfile
self.xdata = numpy.array([])
self.ydata = numpy.array([])
update_figfile = True
#open file beacon phase
path = '%s%03d' %(self.PREFIX, self.id)
beacon_file = os.path.join(path,'%s.txt'%self.name)
self.filename_phase = os.path.join(figpath,beacon_file)
self.setWinTitle(title)
title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList]
axes = self.axesList[0]
self.xdata = numpy.hstack((self.xdata, x[0:1]))
if len(self.ydata)==0:
self.ydata = phase_beacon.reshape(-1,1)
else:
self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1)))
axes.pmultilineyaxis(x=self.xdata, y=self.ydata,
xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax,
xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid",
XAxisAsTime=True, grid='both'
)
self.draw()
if dataOut.ltctime >= self.xmax:
self.counter_imagwr = wr_period
self.isConfig = False
update_figfile = True
self.save(figpath=figpath,
figfile=figfile,
save=save,
ftp=ftp,
wr_period=wr_period,
thisDatetime=thisDatetime,
update_figfile=update_figfile)
return dataOut
#####################################
class NoiselessSpectraPlot(Plot):
'''
Plot for Spectra data, subtracting
the noise in all channels, using for
amisr-14 data
'''
CODE = 'noiseless_spc'
colormap = 'jet'
plot_type = 'pcolor'
buffering = False
channelList = []
last_noise = None
def setup(self):
self.nplots = len(self.data.channels)
self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
self.height = 3.5 * self.nrows
self.cb_label = 'dB'
if self.showprofile:
self.width = 5.8 * self.ncols
else:
self.width = 4.8* self.ncols
self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.92, 'bottom': 0.12})
self.ylabel = 'Range [km]'
def update_list(self,dataOut):
if len(self.channelList) == 0:
self.channelList = dataOut.channelList
def update(self, dataOut):
self.update_list(dataOut)
data = {}
meta = {}
norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter
n0 = (dataOut.getNoise()/norm)
noise = numpy.repeat(n0,(dataOut.nFFTPoints*dataOut.nHeights)).reshape(dataOut.nChannels,dataOut.nFFTPoints,dataOut.nHeights)
noise = 10*numpy.log10(noise)
z = numpy.zeros((dataOut.nChannels, dataOut.nFFTPoints, dataOut.nHeights))
for ch in range(dataOut.nChannels):
if hasattr(dataOut.normFactor,'ndim'):
if dataOut.normFactor.ndim > 1:
z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor[ch]))
else:
z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor))
else:
z[ch] = (numpy.divide(dataOut.data_spc[ch],dataOut.normFactor))
z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
spc = 10*numpy.log10(z)
data['spc'] = spc - noise
#print(spc.shape)
data['rti'] = spc.mean(axis=1)
data['noise'] = noise
# data['noise'] = noise
meta['xrange'] = (dataOut.getFreqRange(EXTRA_POINTS)/1000., dataOut.getAcfRange(EXTRA_POINTS), dataOut.getVelRange(EXTRA_POINTS))
return data, meta
def plot(self):
if self.xaxis == "frequency":
x = self.data.xrange[0]
self.xlabel = "Frequency (kHz)"
elif self.xaxis == "time":
x = self.data.xrange[1]
self.xlabel = "Time (ms)"
else:
x = self.data.xrange[2]
self.xlabel = "Velocity (m/s)"
self.titles = []
y = self.data.yrange
self.y = y
data = self.data[-1]
z = data['spc']
for n, ax in enumerate(self.axes):
#noise = data['noise'][n]
if ax.firsttime:
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
self.xmin = self.xmin if self.xmin else -self.xmax
self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
ax.plt = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
if self.showprofile:
ax.plt_profile = self.pf_axes[n].plot(
data['rti'][n], y)[0]
else:
ax.plt.set_array(z[n].T.ravel())
if self.showprofile:
ax.plt_profile.set_data(data['rti'][n], y)
self.titles.append('CH {}'.format(self.channelList[n]))
class NoiselessRTIPlot(RTIPlot):
'''
Plot for RTI data
'''
CODE = 'noiseless_rti'
colormap = 'jet'
plot_type = 'pcolorbuffer'
titles = None
channelList = []
elevationList = []
azimuthList = []
last_noise = None
def setup(self):
self.xaxis = 'time'
self.ncols = 1
#print("dataChannels ",self.data.channels)
self.nrows = len(self.data.channels)
self.nplots = len(self.data.channels)
self.ylabel = 'Range [km]'
#self.xlabel = 'Time'
self.cb_label = 'dB'
self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94})
self.titles = ['{} Channel {}'.format(
self.CODE.upper(), x) for x in range(self.nplots)]
def update_list(self,dataOut):
if len(self.channelList) == 0:
self.channelList = dataOut.channelList
if len(self.elevationList) == 0:
self.elevationList = dataOut.elevationList
if len(self.azimuthList) == 0:
self.azimuthList = dataOut.azimuthList
def update(self, dataOut):
if len(self.channelList) == 0:
self.update_list(dataOut)
data = {}
meta = {}
#print(dataOut.max_nIncohInt, dataOut.nIncohInt)
#print(dataOut.windowOfFilter,dataOut.nCohInt,dataOut.nProfiles,dataOut.max_nIncohInt,dataOut.nIncohInt
norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter
n0 = 10*numpy.log10(dataOut.getNoise()/norm)
data['noise'] = n0
noise = numpy.repeat(n0,dataOut.nHeights).reshape(dataOut.nChannels,dataOut.nHeights)
noiseless_data = dataOut.getPower() - noise
#print("power, noise:", dataOut.getPower(), n0)
#print(noise)
#print(noiseless_data)
data['noiseless_rti'] = noiseless_data
return data, meta
def plot(self):
from matplotlib import pyplot as plt
self.x = self.data.times
self.y = self.data.yrange
self.z = self.data['noiseless_rti']
self.z = numpy.array(self.z, dtype=float)
self.z = numpy.ma.masked_invalid(self.z)
try:
if self.channelList != None:
if len(self.elevationList) > 0 and len(self.azimuthList) > 0:
self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format(
self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList]
else:
self.titles = ['{} Channel {}'.format(
self.CODE.upper(), x) for x in self.channelList]
except:
if self.channelList.any() != None:
if len(self.elevationList) > 0 and len(self.azimuthList) > 0:
self.titles = ['{} Channel {} ({:2.1f} Elev, {:2.1f} Azth)'.format(
self.CODE.upper(), x, self.elevationList[x], self.azimuthList[x]) for x in self.channelList]
else:
self.titles = ['{} Channel {}'.format(
self.CODE.upper(), x) for x in self.channelList]
if self.decimation is None:
x, y, z = self.fill_gaps(self.x, self.y, self.z)
else:
x, y, z = self.fill_gaps(*self.decimate())
dummy_var = self.axes #Extrañamente esto actualiza el valor axes
#print("plot shapes ", z.shape, x.shape, y.shape)
#print(self.axes)
for n, ax in enumerate(self.axes):
self.zmin = self.zmin if self.zmin else numpy.min(self.z)
self.zmax = self.zmax if self.zmax else numpy.max(self.z)
data = self.data[-1]
if ax.firsttime:
if (n+1) == len(self.channelList):
ax.set_xlabel('Time')
ax.plt = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
if self.showprofile:
ax.plot_profile = self.pf_axes[n].plot(data['noiseless_rti'][n], self.y)[0]
else:
ax.collections.remove(ax.collections[0]) # error while running
ax.plt = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
if self.showprofile:
ax.plot_profile.set_data(data['noiseless_rti'][n], self.y)
# if "noise" in self.data:
# #ax.plot_noise.set_data(numpy.repeat(data['noise'][n], len(self.y)), self.y)
# ax.plot_noise.set_data(data['noise'][n], self.y)
class OutliersRTIPlot(Plot):
'''
Plot for data_xxxx object
'''
CODE = 'outlier_rtc' # Range Time Counts
colormap = 'cool'
plot_type = 'pcolorbuffer'
def setup(self):
self.xaxis = 'time'
self.ncols = 1
self.nrows = self.data.shape('outlier_rtc')[0]
self.nplots = self.nrows
self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94})
if not self.xlabel:
self.xlabel = 'Time'
self.ylabel = 'Height [km]'
if not self.titles:
self.titles = ['Outliers Ch:{}'.format(x) for x in range(self.nrows)]
def update(self, dataOut):
data = {}
data['outlier_rtc'] = dataOut.data_outlier
meta = {}
return data, meta
def plot(self):
# self.data.normalize_heights()
self.x = self.data.times
self.y = self.data.yrange
self.z = self.data['outlier_rtc']
#self.z = numpy.ma.masked_invalid(self.z)
if self.decimation is None:
x, y, z = self.fill_gaps(self.x, self.y, self.z)
else:
x, y, z = self.fill_gaps(*self.decimate())
for n, ax in enumerate(self.axes):
self.zmax = self.zmax if self.zmax is not None else numpy.max(
self.z[n])
self.zmin = self.zmin if self.zmin is not None else numpy.min(
self.z[n])
data = self.data[-1]
if ax.firsttime:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.plt = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n]
)
if self.showprofile:
ax.plot_profile = self.pf_axes[n].plot(data['outlier_rtc'][n], self.y)[0]
self.pf_axes[n].set_xlabel('')
else:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.collections.remove(ax.collections[0]) # error while running
ax.plt = ax.pcolormesh(x, y, z[n].T ,
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n]
)
if self.showprofile:
ax.plot_profile.set_data(data['outlier_rtc'][n], self.y)
self.pf_axes[n].set_xlabel('')
class NIncohIntRTIPlot(Plot):
'''
Plot for data_xxxx object
'''
CODE = 'integrations_rtc' # Range Time Counts
colormap = 'BuGn'
plot_type = 'pcolorbuffer'
def setup(self):
self.xaxis = 'time'
self.ncols = 1
self.nrows = self.data.shape('integrations_rtc')[0]
self.nplots = self.nrows
self.plots_adjust.update({'hspace':0.8, 'left': 0.08, 'bottom': 0.2, 'right':0.94})
if not self.xlabel:
self.xlabel = 'Time'
self.ylabel = 'Height [km]'
if not self.titles:
self.titles = ['Integration Ch:{}'.format(x) for x in range(self.nrows)]
def update(self, dataOut):
data = {}
data['integrations_rtc'] = dataOut.nIncohInt
meta = {}
return data, meta
def plot(self):
# self.data.normalize_heights()
self.x = self.data.times
self.y = self.data.yrange
self.z = self.data['integrations_rtc']
#self.z = numpy.ma.masked_invalid(self.z)
if self.decimation is None:
x, y, z = self.fill_gaps(self.x, self.y, self.z)
else:
x, y, z = self.fill_gaps(*self.decimate())
for n, ax in enumerate(self.axes):
self.zmax = self.zmax if self.zmax is not None else numpy.max(
self.z[n])
self.zmin = self.zmin if self.zmin is not None else numpy.min(
self.z[n])
data = self.data[-1]
if ax.firsttime:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.plt = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n]
)
if self.showprofile:
ax.plot_profile = self.pf_axes[n].plot(data['integrations_rtc'][n], self.y)[0]
self.pf_axes[n].set_xlabel('')
else:
if self.zlimits is not None:
self.zmin, self.zmax = self.zlimits[n]
ax.collections.remove(ax.collections[0]) # error while running
ax.plt = ax.pcolormesh(x, y, z[n].T ,
vmin=self.zmin,
vmax=self.zmax,
cmap=self.cmaps[n]
)
if self.showprofile:
ax.plot_profile.set_data(data['integrations_rtc'][n], self.y)
self.pf_axes[n].set_xlabel('')
class RTIMapPlot(Plot):
'''
Plot for RTI data
Example:
controllerObj = Project()
controllerObj.setup(id = '11', name='eej_proc', description=desc)
##.......................................................................................
##.......................................................................................
readUnitConfObj = controllerObj.addReadUnit(datatype='AMISRReader', path=inPath, startDate='2023/05/24',endDate='2023/05/24',
startTime='12:00:00',endTime='12:45:59',walk=1,timezone='lt',margin_days=1,code = code,nCode = nCode,
nBaud = nBaud,nOsamp = nosamp,nChannels=nChannels,nFFT=NFFT,
syncronization=False,shiftChannels=0)
volts_proc = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId())
opObj01 = volts_proc.addOperation(name='Decoder', optype='other')
opObj01.addParameter(name='code', value=code, format='floatlist')
opObj01.addParameter(name='nCode', value=1, format='int')
opObj01.addParameter(name='nBaud', value=nBaud, format='int')
opObj01.addParameter(name='osamp', value=nosamp, format='int')
opObj12 = volts_proc.addOperation(name='selectHeights', optype='self')
opObj12.addParameter(name='minHei', value='90', format='float')
opObj12.addParameter(name='maxHei', value='150', format='float')
proc_spc = controllerObj.addProcUnit(datatype='SpectraProc', inputId=volts_proc.getId())
proc_spc.addParameter(name='nFFTPoints', value='8', format='int')
opObj11 = proc_spc.addOperation(name='IncohInt', optype='other')
opObj11.addParameter(name='n', value='1', format='int')
beamMapFile = "/home/japaza/Documents/AMISR_sky_mapper/UMET_beamcodes.csv"
opObj12 = proc_spc.addOperation(name='RTIMapPlot', optype='external')
opObj12.addParameter(name='selectedHeightsList', value='95, 100, 105, 110 ', format='int')
opObj12.addParameter(name='bField', value='100', format='int')
opObj12.addParameter(name='filename', value=beamMapFile, format='str')
'''
CODE = 'rti_skymap'
plot_type = 'scatter'
titles = None
colormap = 'jet'
channelList = []
elevationList = []
azimuthList = []
last_noise = None
flag_setIndex = False
heights = []
dcosx = []
dcosy = []
fullDcosy = None
fullDcosy = None
hindex = []
mapFile = False
##### BField ####
flagBField = False
dcosxB = []
dcosyB = []
Bmarker = ['+','*','D','x','s','>','o','^']
def setup(self):
self.xaxis = 'Range (Km)'
if len(self.selectedHeightsList) > 0:
self.nplots = len(self.selectedHeightsList)
else:
self.nplots = 4
self.ncols = int(numpy.ceil(self.nplots/2))
self.nrows = int(numpy.ceil(self.nplots/self.ncols))
self.ylabel = 'dcosy'
self.xlabel = 'dcosx'
self.colorbar = True
self.width = 6 + 4.1*self.nrows
self.height = 3 + 3.5*self.ncols
if self.extFile!=None:
try:
pointings = numpy.genfromtxt(self.extFile, delimiter=',')
full_azi = pointings[:,1]
full_elev = pointings[:,2]
self.fullDcosx = numpy.cos(numpy.radians(full_elev))*numpy.sin(numpy.radians(full_azi))
self.fullDcosy = numpy.cos(numpy.radians(full_elev))*numpy.cos(numpy.radians(full_azi))
mapFile = True
except Exception as e:
self.extFile = None
print(e)
def update_list(self,dataOut):
if len(self.channelList) == 0:
self.channelList = dataOut.channelList
if len(self.elevationList) == 0:
self.elevationList = dataOut.elevationList
if len(self.azimuthList) == 0:
self.azimuthList = dataOut.azimuthList
a = numpy.radians(numpy.asarray(self.azimuthList))
e = numpy.radians(numpy.asarray(self.elevationList))
self.heights = dataOut.heightList
self.dcosx = numpy.cos(e)*numpy.sin(a)
self.dcosy = numpy.cos(e)*numpy.cos(a)
if len(self.bFieldList)>0:
datetObj = datetime.datetime.fromtimestamp(dataOut.utctime)
doy = datetObj.timetuple().tm_yday
year = datetObj.year
# self.dcosxB, self.dcosyB
ObjB = BField(year=year,doy=doy,site=2,heights=self.bFieldList)
[dcos, alpha, nlon, nlat] = ObjB.getBField()
alpha_location = numpy.zeros((nlon,2,len(self.bFieldList)))
for ih in range(len(self.bFieldList)):
alpha_location[:,0,ih] = dcos[:,0,ih,0]
for ilon in numpy.arange(nlon):
myx = (alpha[ilon,:,ih])[::-1]
myy = (dcos[ilon,:,ih,0])[::-1]
tck = splrep(myx,myy,s=0)
mydcosx = splev(ObjB.alpha_i,tck,der=0)
myx = (alpha[ilon,:,ih])[::-1]
myy = (dcos[ilon,:,ih,1])[::-1]
tck = splrep(myx,myy,s=0)
mydcosy = splev(ObjB.alpha_i,tck,der=0)
alpha_location[ilon,:,ih] = numpy.array([mydcosx, mydcosy])
self.dcosxB.append(alpha_location[:,0,ih])
self.dcosyB.append(alpha_location[:,1,ih])
self.flagBField = True
if len(self.celestialList)>0:
#getBField(self.bFieldList, date)
#pass = kwargs.get('celestial', [])
pass
def update(self, dataOut):
if len(self.channelList) == 0:
self.update_list(dataOut)
if not self.flag_setIndex:
if len(self.selectedHeightsList)>0:
for sel_height in self.selectedHeightsList:
index_list = numpy.where(self.heights >= sel_height)
index_list = index_list[0]
self.hindex.append(index_list[0])
self.flag_setIndex = True
data = {}
meta = {}
data['rti_skymap'] = dataOut.getPower()
norm = dataOut.nProfiles * dataOut.max_nIncohInt * dataOut.nCohInt * dataOut.windowOfFilter
noise = 10*numpy.log10(dataOut.getNoise()/norm)
data['noise'] = noise
return data, meta
def plot(self):
self.x = self.dcosx
self.y = self.dcosy
self.z = self.data[-1]['rti_skymap']
self.z = numpy.array(self.z, dtype=float)
if len(self.hindex) > 0:
index = self.hindex
else:
index = numpy.arange(0, len(self.heights), int((len(self.heights))/4.2))
self.titles = ['Height {:.2f} km '.format(self.heights[i])+" " for i in index]
for n, ax in enumerate(self.axes):
if ax.firsttime:
self.xmax = self.xmax if self.xmax else numpy.nanmax(self.x)
self.xmin = self.xmin if self.xmin else numpy.nanmin(self.x)
self.ymax = self.ymax if self.ymax else numpy.nanmax(self.y)
self.ymin = self.ymin if self.ymin else numpy.nanmin(self.y)
self.zmax = self.zmax if self.zmax else numpy.nanmax(self.z)
self.zmin = self.zmin if self.zmin else numpy.nanmin(self.z)
if self.extFile!=None:
ax.scatter(self.fullDcosx, self.fullDcosy, marker="+", s=20)
ax.plt = ax.scatter(self.x, self.y, c=self.z[:,index[n]], cmap = 'jet',vmin = self.zmin,
s=60, marker="s", vmax = self.zmax)
ax.minorticks_on()
ax.grid(which='major', axis='both')
ax.grid(which='minor', axis='x')
if self.flagBField :
for ih in range(len(self.bFieldList)):
label = str(self.bFieldList[ih]) + ' km'
ax.plot(self.dcosxB[ih], self.dcosyB[ih], color='k', marker=self.Bmarker[ih % 8],
label=label, linestyle='--', ms=4.0,lw=0.5)
handles, labels = ax.get_legend_handles_labels()
a = -0.05
b = 1.15 - 1.19*(self.nrows)
self.axes[0].legend(handles,labels, bbox_to_anchor=(a,b), prop={'size': (5.8+ 1.1*self.nplots)}, title='B Field ⊥')
else:
ax.plt = ax.scatter(self.x, self.y, c=self.z[:,index[n]], cmap = 'jet',vmin = self.zmin,
s=80, marker="s", vmax = self.zmax)
if self.flagBField :
for ih in range(len(self.bFieldList)):
ax.plot (self.dcosxB[ih], self.dcosyB[ih], color='k', marker=self.Bmarker[ih % 8],
linestyle='--', ms=4.0,lw=0.5)