##// END OF EJS Templates
añadido FaradayIntegration para limpieza de datos, restringida la operación al funcionamiento con la pdata regular
añadido FaradayIntegration para limpieza de datos, restringida la operación al funcionamiento con la pdata regular

File last commit:

r1167:1f521b07c958
r1399:101813202a42
Show More
jroproc_spectra_acf.py
735 lines | 25.5 KiB | text/x-python | PythonLexer
/ schainpy / model / proc / jroproc_spectra_acf.py
import numpy
from .jroproc_base import ProcessingUnit, Operation
from schainpy.model.data.jrodata import Spectra
from schainpy.model.data.jrodata import hildebrand_sekhon
class SpectraAFCProc(ProcessingUnit):
def __init__(self, **kwargs):
ProcessingUnit.__init__(self, **kwargs)
self.buffer = None
self.firstdatatime = None
self.profIndex = 0
self.dataOut = Spectra()
self.id_min = None
self.id_max = None
def __updateSpecFromVoltage(self):
self.dataOut.plotting = "spectra_acf"
self.dataOut.timeZone = self.dataIn.timeZone
self.dataOut.dstFlag = self.dataIn.dstFlag
self.dataOut.errorCount = self.dataIn.errorCount
self.dataOut.useLocalTime = self.dataIn.useLocalTime
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
self.dataOut.ippSeconds = self.dataIn.getDeltaH()*(10**-6)/0.15
self.dataOut.channelList = self.dataIn.channelList
self.dataOut.heightList = self.dataIn.heightList
self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
self.dataOut.nBaud = self.dataIn.nBaud
self.dataOut.nCode = self.dataIn.nCode
self.dataOut.code = self.dataIn.code
# self.dataOut.nProfiles = self.dataOut.nFFTPoints
self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
self.dataOut.utctime = self.firstdatatime
self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
self.dataOut.flagShiftFFT = False
self.dataOut.nCohInt = self.dataIn.nCohInt
self.dataOut.nIncohInt = 1
self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
self.dataOut.frequency = self.dataIn.frequency
self.dataOut.realtime = self.dataIn.realtime
self.dataOut.azimuth = self.dataIn.azimuth
self.dataOut.zenith = self.dataIn.zenith
self.dataOut.beam.codeList = self.dataIn.beam.codeList
self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList
self.dataOut.beam.zenithList = self.dataIn.beam.zenithList
def __decodeData(self, nProfiles, code):
if code is None:
return
for i in range(nProfiles):
self.buffer[:,i,:] = self.buffer[:,i,:]*code[0][i]
def __getFft(self):
"""
Convierte valores de Voltaje a Spectra
Affected:
self.dataOut.data_spc
self.dataOut.data_cspc
self.dataOut.data_dc
self.dataOut.heightList
self.profIndex
self.buffer
self.dataOut.flagNoData
"""
nsegments = self.dataOut.nHeights
_fft_buffer = numpy.zeros((self.dataOut.nChannels, self.dataOut.nProfiles, nsegments), dtype='complex')
for i in range(nsegments):
try:
_fft_buffer[:,:,i] = self.buffer[:,i:i+self.dataOut.nProfiles]
if self.code is not None:
_fft_buffer[:,:,i] = _fft_buffer[:,:,i]*self.code[0]
except:
pass
fft_volt = numpy.fft.fft(_fft_buffer, n=self.dataOut.nFFTPoints, axis=1)
fft_volt = fft_volt.astype(numpy.dtype('complex'))
dc = fft_volt[:,0,:]
#calculo de self-spectra
# fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,))
spc = fft_volt * numpy.conjugate(fft_volt)
data = numpy.fft.ifft(spc, axis=1)
data = numpy.fft.fftshift(data, axes=(1,))
spc = data
blocksize = 0
blocksize += dc.size
blocksize += spc.size
cspc = None
pairIndex = 0
if self.dataOut.pairsList != None:
#calculo de cross-spectra
cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex')
for pair in self.dataOut.pairsList:
if pair[0] not in self.dataOut.channelList:
raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList)))
if pair[1] not in self.dataOut.channelList:
raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList)))
chan_index0 = self.dataOut.channelList.index(pair[0])
chan_index1 = self.dataOut.channelList.index(pair[1])
cspc[pairIndex,:,:] = fft_volt[chan_index0,:,:] * numpy.conjugate(fft_volt[chan_index1,:,:])
pairIndex += 1
blocksize += cspc.size
self.dataOut.data_spc = spc
self.dataOut.data_cspc = cspc
self.dataOut.data_dc = dc
self.dataOut.blockSize = blocksize
self.dataOut.flagShiftFFT = True
def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], code=None, nCode=1, nBaud=1):
self.dataOut.flagNoData = True
if code is not None:
self.code = numpy.array(code).reshape(nCode,nBaud)
else:
self.code = None
if self.dataIn.type == "Voltage":
if nFFTPoints == None:
raise ValueError("This SpectraProc.run() need nFFTPoints input variable")
if nProfiles == None:
nProfiles = nFFTPoints
self.dataOut.ippFactor = 1
self.dataOut.nFFTPoints = nFFTPoints
self.dataOut.nProfiles = nProfiles
self.dataOut.pairsList = pairsList
# if self.buffer is None:
# self.buffer = numpy.zeros( (self.dataIn.nChannels, nProfiles, self.dataIn.nHeights),
# dtype='complex')
if not self.dataIn.flagDataAsBlock:
self.buffer = self.dataIn.data.copy()
# for i in range(self.dataIn.nHeights):
# self.buffer[:, self.profIndex, self.profIndex:] = voltage_data[:,:self.dataIn.nHeights - self.profIndex]
#
# self.profIndex += 1
else:
raise ValueError("")
self.firstdatatime = self.dataIn.utctime
self.profIndex == nProfiles
self.__updateSpecFromVoltage()
self.__getFft()
self.dataOut.flagNoData = False
return True
raise ValueError("The type of input object '%s' is not valid"%(self.dataIn.type))
def __selectPairs(self, pairsList):
if channelList == None:
return
pairsIndexListSelected = []
for thisPair in pairsList:
if thisPair not in self.dataOut.pairsList:
continue
pairIndex = self.dataOut.pairsList.index(thisPair)
pairsIndexListSelected.append(pairIndex)
if not pairsIndexListSelected:
self.dataOut.data_cspc = None
self.dataOut.pairsList = []
return
self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected]
self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected]
return
def __selectPairsByChannel(self, channelList=None):
if channelList == None:
return
pairsIndexListSelected = []
for pairIndex in self.dataOut.pairsIndexList:
#First pair
if self.dataOut.pairsList[pairIndex][0] not in channelList:
continue
#Second pair
if self.dataOut.pairsList[pairIndex][1] not in channelList:
continue
pairsIndexListSelected.append(pairIndex)
if not pairsIndexListSelected:
self.dataOut.data_cspc = None
self.dataOut.pairsList = []
return
self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected]
self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected]
return
def selectChannels(self, channelList):
channelIndexList = []
for channel in channelList:
if channel not in self.dataOut.channelList:
raise ValueError("Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" %(channel, str(self.dataOut.channelList)))
index = self.dataOut.channelList.index(channel)
channelIndexList.append(index)
self.selectChannelsByIndex(channelIndexList)
def selectChannelsByIndex(self, channelIndexList):
"""
Selecciona un bloque de datos en base a canales segun el channelIndexList
Input:
channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
Affected:
self.dataOut.data_spc
self.dataOut.channelIndexList
self.dataOut.nChannels
Return:
None
"""
for channelIndex in channelIndexList:
if channelIndex not in self.dataOut.channelIndexList:
raise ValueError("Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " %(channelIndex, self.dataOut.channelIndexList))
# nChannels = len(channelIndexList)
data_spc = self.dataOut.data_spc[channelIndexList,:]
data_dc = self.dataOut.data_dc[channelIndexList,:]
self.dataOut.data_spc = data_spc
self.dataOut.data_dc = data_dc
self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
# self.dataOut.nChannels = nChannels
self.__selectPairsByChannel(self.dataOut.channelList)
return 1
def selectHeights(self, minHei, maxHei):
"""
Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
minHei <= height <= maxHei
Input:
minHei : valor minimo de altura a considerar
maxHei : valor maximo de altura a considerar
Affected:
Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
Return:
1 si el metodo se ejecuto con exito caso contrario devuelve 0
"""
if (minHei > maxHei):
raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei))
if (minHei < self.dataOut.heightList[0]):
minHei = self.dataOut.heightList[0]
if (maxHei > self.dataOut.heightList[-1]):
maxHei = self.dataOut.heightList[-1]
minIndex = 0
maxIndex = 0
heights = self.dataOut.heightList
inda = numpy.where(heights >= minHei)
indb = numpy.where(heights <= maxHei)
try:
minIndex = inda[0][0]
except:
minIndex = 0
try:
maxIndex = indb[0][-1]
except:
maxIndex = len(heights)
self.selectHeightsByIndex(minIndex, maxIndex)
return 1
def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None):
newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
if hei_ref != None:
newheis = numpy.where(self.dataOut.heightList>hei_ref)
minIndex = min(newheis[0])
maxIndex = max(newheis[0])
data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1]
heightList = self.dataOut.heightList[minIndex:maxIndex+1]
# determina indices
nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0]))
avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0))
beacon_dB = numpy.sort(avg_dB)[-nheis:]
beacon_heiIndexList = []
for val in avg_dB.tolist():
if val >= beacon_dB[0]:
beacon_heiIndexList.append(avg_dB.tolist().index(val))
#data_spc = data_spc[:,:,beacon_heiIndexList]
data_cspc = None
if self.dataOut.data_cspc is not None:
data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1]
#data_cspc = data_cspc[:,:,beacon_heiIndexList]
data_dc = None
if self.dataOut.data_dc is not None:
data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1]
#data_dc = data_dc[:,beacon_heiIndexList]
self.dataOut.data_spc = data_spc
self.dataOut.data_cspc = data_cspc
self.dataOut.data_dc = data_dc
self.dataOut.heightList = heightList
self.dataOut.beacon_heiIndexList = beacon_heiIndexList
return 1
def selectHeightsByIndex(self, minIndex, maxIndex):
"""
Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
minIndex <= index <= maxIndex
Input:
minIndex : valor de indice minimo de altura a considerar
maxIndex : valor de indice maximo de altura a considerar
Affected:
self.dataOut.data_spc
self.dataOut.data_cspc
self.dataOut.data_dc
self.dataOut.heightList
Return:
1 si el metodo se ejecuto con exito caso contrario devuelve 0
"""
if (minIndex < 0) or (minIndex > maxIndex):
raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex))
if (maxIndex >= self.dataOut.nHeights):
maxIndex = self.dataOut.nHeights-1
#Spectra
data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1]
data_cspc = None
if self.dataOut.data_cspc is not None:
data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1]
data_dc = None
if self.dataOut.data_dc is not None:
data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1]
self.dataOut.data_spc = data_spc
self.dataOut.data_cspc = data_cspc
self.dataOut.data_dc = data_dc
self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1]
return 1
def removeDC(self, mode = 2):
jspectra = self.dataOut.data_spc
jcspectra = self.dataOut.data_cspc
num_chan = jspectra.shape[0]
num_hei = jspectra.shape[2]
if jcspectra is not None:
jcspectraExist = True
num_pairs = jcspectra.shape[0]
else: jcspectraExist = False
freq_dc = jspectra.shape[1]/2
ind_vel = numpy.array([-2,-1,1,2]) + freq_dc
if ind_vel[0]<0:
ind_vel[list(range(0,1))] = ind_vel[list(range(0,1))] + self.num_prof
if mode == 1:
jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION
if jcspectraExist:
jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2
if mode == 2:
vel = numpy.array([-2,-1,1,2])
xx = numpy.zeros([4,4])
for fil in range(4):
xx[fil,:] = vel[fil]**numpy.asarray(list(range(4)))
xx_inv = numpy.linalg.inv(xx)
xx_aux = xx_inv[0,:]
for ich in range(num_chan):
yy = jspectra[ich,ind_vel,:]
jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy)
junkid = jspectra[ich,freq_dc,:]<=0
cjunkid = sum(junkid)
if cjunkid.any():
jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2
if jcspectraExist:
for ip in range(num_pairs):
yy = jcspectra[ip,ind_vel,:]
jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy)
self.dataOut.data_spc = jspectra
self.dataOut.data_cspc = jcspectra
return 1
def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None):
jspectra = self.dataOut.data_spc
jcspectra = self.dataOut.data_cspc
jnoise = self.dataOut.getNoise()
num_incoh = self.dataOut.nIncohInt
num_channel = jspectra.shape[0]
num_prof = jspectra.shape[1]
num_hei = jspectra.shape[2]
#hei_interf
if hei_interf is None:
count_hei = num_hei/2 #Como es entero no importa
hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei
hei_interf = numpy.asarray(hei_interf)[0]
#nhei_interf
if (nhei_interf == None):
nhei_interf = 5
if (nhei_interf < 1):
nhei_interf = 1
if (nhei_interf > count_hei):
nhei_interf = count_hei
if (offhei_interf == None):
offhei_interf = 0
ind_hei = list(range(num_hei))
# mask_prof = numpy.asarray(range(num_prof - 2)) + 1
# mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1
mask_prof = numpy.asarray(list(range(num_prof)))
num_mask_prof = mask_prof.size
comp_mask_prof = [0, num_prof/2]
#noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal
if (jnoise.size < num_channel or numpy.isnan(jnoise).any()):
jnoise = numpy.nan
noise_exist = jnoise[0] < numpy.Inf
#Subrutina de Remocion de la Interferencia
for ich in range(num_channel):
#Se ordena los espectros segun su potencia (menor a mayor)
power = jspectra[ich,mask_prof,:]
power = power[:,hei_interf]
power = power.sum(axis = 0)
psort = power.ravel().argsort()
#Se estima la interferencia promedio en los Espectros de Potencia empleando
junkspc_interf = jspectra[ich,:,hei_interf[psort[list(range(offhei_interf, nhei_interf + offhei_interf))]]]
if noise_exist:
# tmp_noise = jnoise[ich] / num_prof
tmp_noise = jnoise[ich]
junkspc_interf = junkspc_interf - tmp_noise
#junkspc_interf[:,comp_mask_prof] = 0
jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf
jspc_interf = jspc_interf.transpose()
#Calculando el espectro de interferencia promedio
noiseid = numpy.where(jspc_interf <= tmp_noise/ numpy.sqrt(num_incoh))
noiseid = noiseid[0]
cnoiseid = noiseid.size
interfid = numpy.where(jspc_interf > tmp_noise/ numpy.sqrt(num_incoh))
interfid = interfid[0]
cinterfid = interfid.size
if (cnoiseid > 0): jspc_interf[noiseid] = 0
#Expandiendo los perfiles a limpiar
if (cinterfid > 0):
new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof
new_interfid = numpy.asarray(new_interfid)
new_interfid = {x for x in new_interfid}
new_interfid = numpy.array(list(new_interfid))
new_cinterfid = new_interfid.size
else: new_cinterfid = 0
for ip in range(new_cinterfid):
ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort()
jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]]
jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices
#Removiendo la interferencia del punto de mayor interferencia
ListAux = jspc_interf[mask_prof].tolist()
maxid = ListAux.index(max(ListAux))
if cinterfid > 0:
for ip in range(cinterfid*(interf == 2) - 1):
ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/numpy.sqrt(num_incoh))).nonzero()
cind = len(ind)
if (cind > 0):
jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/numpy.sqrt(num_incoh))
ind = numpy.array([-2,-1,1,2])
xx = numpy.zeros([4,4])
for id1 in range(4):
xx[:,id1] = ind[id1]**numpy.asarray(list(range(4)))
xx_inv = numpy.linalg.inv(xx)
xx = xx_inv[:,0]
ind = (ind + maxid + num_mask_prof)%num_mask_prof
yy = jspectra[ich,mask_prof[ind],:]
jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx)
indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/numpy.sqrt(num_incoh))).nonzero()
jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/numpy.sqrt(num_incoh))
#Remocion de Interferencia en el Cross Spectra
if jcspectra is None: return jspectra, jcspectra
num_pairs = jcspectra.size/(num_prof*num_hei)
jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei)
for ip in range(num_pairs):
#-------------------------------------------
cspower = numpy.abs(jcspectra[ip,mask_prof,:])
cspower = cspower[:,hei_interf]
cspower = cspower.sum(axis = 0)
cspsort = cspower.ravel().argsort()
junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[list(range(offhei_interf, nhei_interf + offhei_interf))]]]
junkcspc_interf = junkcspc_interf.transpose()
jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf
ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort()
median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[list(range(3*num_prof/4))]],:]))
median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[list(range(3*num_prof/4))]],:]))
junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag)
for iprof in range(num_prof):
ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort()
jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]]
#Removiendo la Interferencia
jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf
ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist()
maxid = ListAux.index(max(ListAux))
ind = numpy.array([-2,-1,1,2])
xx = numpy.zeros([4,4])
for id1 in range(4):
xx[:,id1] = ind[id1]**numpy.asarray(list(range(4)))
xx_inv = numpy.linalg.inv(xx)
xx = xx_inv[:,0]
ind = (ind + maxid + num_mask_prof)%num_mask_prof
yy = jcspectra[ip,mask_prof[ind],:]
jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx)
#Guardar Resultados
self.dataOut.data_spc = jspectra
self.dataOut.data_cspc = jcspectra
return 1
def setRadarFrequency(self, frequency=None):
if frequency != None:
self.dataOut.frequency = frequency
return 1
def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None):
#validacion de rango
if minHei == None:
minHei = self.dataOut.heightList[0]
if maxHei == None:
maxHei = self.dataOut.heightList[-1]
if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei):
print('minHei: %.2f is out of the heights range'%(minHei))
print('minHei is setting to %.2f'%(self.dataOut.heightList[0]))
minHei = self.dataOut.heightList[0]
if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei):
print('maxHei: %.2f is out of the heights range'%(maxHei))
print('maxHei is setting to %.2f'%(self.dataOut.heightList[-1]))
maxHei = self.dataOut.heightList[-1]
# validacion de velocidades
velrange = self.dataOut.getVelRange(1)
if minVel == None:
minVel = velrange[0]
if maxVel == None:
maxVel = velrange[-1]
if (minVel < velrange[0]) or (minVel > maxVel):
print('minVel: %.2f is out of the velocity range'%(minVel))
print('minVel is setting to %.2f'%(velrange[0]))
minVel = velrange[0]
if (maxVel > velrange[-1]) or (maxVel < minVel):
print('maxVel: %.2f is out of the velocity range'%(maxVel))
print('maxVel is setting to %.2f'%(velrange[-1]))
maxVel = velrange[-1]
# seleccion de indices para rango
minIndex = 0
maxIndex = 0
heights = self.dataOut.heightList
inda = numpy.where(heights >= minHei)
indb = numpy.where(heights <= maxHei)
try:
minIndex = inda[0][0]
except:
minIndex = 0
try:
maxIndex = indb[0][-1]
except:
maxIndex = len(heights)
if (minIndex < 0) or (minIndex > maxIndex):
raise ValueError("some value in (%d,%d) is not valid" % (minIndex, maxIndex))
if (maxIndex >= self.dataOut.nHeights):
maxIndex = self.dataOut.nHeights-1
# seleccion de indices para velocidades
indminvel = numpy.where(velrange >= minVel)
indmaxvel = numpy.where(velrange <= maxVel)
try:
minIndexVel = indminvel[0][0]
except:
minIndexVel = 0
try:
maxIndexVel = indmaxvel[0][-1]
except:
maxIndexVel = len(velrange)
#seleccion del espectro
data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1]
#estimacion de ruido
noise = numpy.zeros(self.dataOut.nChannels)
for channel in range(self.dataOut.nChannels):
daux = data_spc[channel,:,:]
noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt)
self.dataOut.noise_estimation = noise.copy()
return 1