##// END OF EJS Templates
añadido FaradayIntegration para limpieza de datos, restringida la operación al funcionamiento con la pdata regular
añadido FaradayIntegration para limpieza de datos, restringida la operación al funcionamiento con la pdata regular

File last commit:

r1361:1dcf28d5b762 merge
r1399:101813202a42
Show More
bltrproc_parameters.py
400 lines | 15.6 KiB | text/x-python | PythonLexer
/ schainpy / model / proc / bltrproc_parameters.py
'''
Created on Oct 24, 2016
@author: roj- LouVD
'''
import numpy
import datetime
import time
from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation
from schainpy.model.data.jrodata import Parameters
class BLTRParametersProc(ProcessingUnit):
'''
Processing unit for BLTR parameters data (winds)
Inputs:
self.dataOut.nmodes - Number of operation modes
self.dataOut.nchannels - Number of channels
self.dataOut.nranges - Number of ranges
self.dataOut.data_snr - SNR array
self.dataOut.data_output - Zonal, Vertical and Meridional velocity array
self.dataOut.height - Height array (km)
self.dataOut.time - Time array (seconds)
self.dataOut.fileIndex -Index of the file currently read
self.dataOut.lat - Latitude coordinate of BLTR location
self.dataOut.doy - Experiment doy (number of the day in the current year)
self.dataOut.month - Experiment month
self.dataOut.day - Experiment day
self.dataOut.year - Experiment year
'''
def __init__(self):
'''
Inputs: None
'''
ProcessingUnit.__init__(self)
self.dataOut = Parameters()
def setup(self, mode):
'''
'''
self.dataOut.mode = mode
def run(self, mode, snr_threshold=None):
'''
Inputs:
mode = High resolution (0) or Low resolution (1) data
snr_threshold = snr filter value
'''
if not self.isConfig:
self.setup(mode)
self.isConfig = True
if self.dataIn.type == 'Parameters':
self.dataOut.copy(self.dataIn)
self.dataOut.data_param = self.dataOut.data[mode]
self.dataOut.heightList = self.dataOut.height[0]
self.dataOut.data_snr = self.dataOut.data_snr[mode]
SNRavg = numpy.average(self.dataOut.data_snr, axis=0)
SNRavgdB = 10*numpy.log10(SNRavg)
self.dataOut.data_snr_avg_db = SNRavgdB.reshape(1, *SNRavgdB.shape)
# Censoring Data
if snr_threshold is not None:
for i in range(3):
self.dataOut.data_param[i][SNRavgdB <= snr_threshold] = numpy.nan
# TODO
class OutliersFilter(Operation):
def __init__(self):
'''
'''
Operation.__init__(self)
def run(self, svalue2, method, factor, filter, npoints=9):
'''
Inputs:
svalue - string to select array velocity
svalue2 - string to choose axis filtering
method - 0 for SMOOTH or 1 for MEDIAN
factor - number used to set threshold
filter - 1 for data filtering using the standard deviation criteria else 0
npoints - number of points for mask filter
'''
print(' Outliers Filter {} {} / threshold = {}'.format(svalue, svalue, factor))
yaxis = self.dataOut.heightList
xaxis = numpy.array([[self.dataOut.utctime]])
# Zonal
value_temp = self.dataOut.data_output[0]
# Zonal
value_temp = self.dataOut.data_output[1]
# Vertical
value_temp = numpy.transpose(self.dataOut.data_output[2])
htemp = yaxis
std = value_temp
for h in range(len(htemp)):
nvalues_valid = len(numpy.where(numpy.isfinite(value_temp[h]))[0])
minvalid = npoints
#only if valid values greater than the minimum required (10%)
if nvalues_valid > minvalid:
if method == 0:
#SMOOTH
w = value_temp[h] - self.Smooth(input=value_temp[h], width=npoints, edge_truncate=1)
if method == 1:
#MEDIAN
w = value_temp[h] - self.Median(input=value_temp[h], width = npoints)
dw = numpy.std(w[numpy.where(numpy.isfinite(w))],ddof = 1)
threshold = dw*factor
value_temp[numpy.where(w > threshold),h] = numpy.nan
value_temp[numpy.where(w < -1*threshold),h] = numpy.nan
#At the end
if svalue2 == 'inHeight':
value_temp = numpy.transpose(value_temp)
output_array[:,m] = value_temp
if svalue == 'zonal':
self.dataOut.data_output[0] = output_array
elif svalue == 'meridional':
self.dataOut.data_output[1] = output_array
elif svalue == 'vertical':
self.dataOut.data_output[2] = output_array
return self.dataOut.data_output
def Median(self,input,width):
'''
Inputs:
input - Velocity array
width - Number of points for mask filter
'''
if numpy.mod(width,2) == 1:
pc = int((width - 1) / 2)
cont = 0
output = []
for i in range(len(input)):
if i >= pc and i < len(input) - pc:
new2 = input[i-pc:i+pc+1]
temp = numpy.where(numpy.isfinite(new2))
new = new2[temp]
value = numpy.median(new)
output.append(value)
output = numpy.array(output)
output = numpy.hstack((input[0:pc],output))
output = numpy.hstack((output,input[-pc:len(input)]))
return output
def Smooth(self,input,width,edge_truncate = None):
'''
Inputs:
input - Velocity array
width - Number of points for mask filter
edge_truncate - 1 for truncate the convolution product else
'''
if numpy.mod(width,2) == 0:
real_width = width + 1
nzeros = width / 2
else:
real_width = width
nzeros = (width - 1) / 2
half_width = int(real_width)/2
length = len(input)
gate = numpy.ones(real_width,dtype='float')
norm_of_gate = numpy.sum(gate)
nan_process = 0
nan_id = numpy.where(numpy.isnan(input))
if len(nan_id[0]) > 0:
nan_process = 1
pb = numpy.zeros(len(input))
pb[nan_id] = 1.
input[nan_id] = 0.
if edge_truncate == True:
output = numpy.convolve(input/norm_of_gate,gate,mode='same')
elif edge_truncate == False or edge_truncate == None:
output = numpy.convolve(input/norm_of_gate,gate,mode='valid')
output = numpy.hstack((input[0:half_width],output))
output = numpy.hstack((output,input[len(input)-half_width:len(input)]))
if nan_process:
pb = numpy.convolve(pb/norm_of_gate,gate,mode='valid')
pb = numpy.hstack((numpy.zeros(half_width),pb))
pb = numpy.hstack((pb,numpy.zeros(half_width)))
output[numpy.where(pb > 0.9999)] = numpy.nan
input[nan_id] = numpy.nan
return output
def Average(self,aver=0,nhaver=1):
'''
Inputs:
aver - Indicates the time period over which is averaged or consensus data
nhaver - Indicates the decimation factor in heights
'''
nhpoints = 48
lat_piura = -5.17
lat_huancayo = -12.04
lat_porcuya = -5.8
if '%2.2f'%self.dataOut.lat == '%2.2f'%lat_piura:
hcm = 3.
if self.dataOut.year == 2003 :
if self.dataOut.doy >= 25 and self.dataOut.doy < 64:
nhpoints = 12
elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_huancayo:
hcm = 3.
if self.dataOut.year == 2003 :
if self.dataOut.doy >= 25 and self.dataOut.doy < 64:
nhpoints = 12
elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_porcuya:
hcm = 5.#2
pdata = 0.2
taver = [1,2,3,4,6,8,12,24]
t0 = 0
tf = 24
ntime =(tf-t0)/taver[aver]
ti = numpy.arange(ntime)
tf = numpy.arange(ntime) + taver[aver]
old_height = self.dataOut.heightList
if nhaver > 1:
num_hei = len(self.dataOut.heightList)/nhaver/self.dataOut.nmodes
deltha = 0.05*nhaver
minhvalid = pdata*nhaver
for im in range(self.dataOut.nmodes):
new_height = numpy.arange(num_hei)*deltha + self.dataOut.height[im,0] + deltha/2.
data_fHeigths_List = []
data_fZonal_List = []
data_fMeridional_List = []
data_fVertical_List = []
startDTList = []
for i in range(ntime):
height = old_height
start = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(ti[i])) - datetime.timedelta(hours = 5)
stop = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(tf[i])) - datetime.timedelta(hours = 5)
limit_sec1 = time.mktime(start.timetuple())
limit_sec2 = time.mktime(stop.timetuple())
t1 = numpy.where(self.f_timesec >= limit_sec1)
t2 = numpy.where(self.f_timesec < limit_sec2)
time_select = []
for val_sec in t1[0]:
if val_sec in t2[0]:
time_select.append(val_sec)
time_select = numpy.array(time_select,dtype = 'int')
minvalid = numpy.ceil(pdata*nhpoints)
zon_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan
mer_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan
ver_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan
if nhaver > 1:
new_zon_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan
new_mer_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan
new_ver_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan
if len(time_select) > minvalid:
time_average = self.f_timesec[time_select]
for im in range(self.dataOut.nmodes):
for ih in range(self.dataOut.nranges):
if numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im])) >= minvalid:
zon_aver[ih,im] = numpy.nansum(self.f_zon[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im]))
if numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im])) >= minvalid:
mer_aver[ih,im] = numpy.nansum(self.f_mer[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im]))
if numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im])) >= minvalid:
ver_aver[ih,im] = numpy.nansum(self.f_ver[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im]))
if nhaver > 1:
for ih in range(num_hei):
hvalid = numpy.arange(nhaver) + nhaver*ih
if numpy.sum(numpy.isfinite(zon_aver[hvalid,im])) >= minvalid:
new_zon_aver[ih,im] = numpy.nansum(zon_aver[hvalid,im]) / numpy.sum(numpy.isfinite(zon_aver[hvalid,im]))
if numpy.sum(numpy.isfinite(mer_aver[hvalid,im])) >= minvalid:
new_mer_aver[ih,im] = numpy.nansum(mer_aver[hvalid,im]) / numpy.sum(numpy.isfinite(mer_aver[hvalid,im]))
if numpy.sum(numpy.isfinite(ver_aver[hvalid,im])) >= minvalid:
new_ver_aver[ih,im] = numpy.nansum(ver_aver[hvalid,im]) / numpy.sum(numpy.isfinite(ver_aver[hvalid,im]))
if nhaver > 1:
zon_aver = new_zon_aver
mer_aver = new_mer_aver
ver_aver = new_ver_aver
height = new_height
tstart = time_average[0]
tend = time_average[-1]
startTime = time.gmtime(tstart)
year = startTime.tm_year
month = startTime.tm_mon
day = startTime.tm_mday
hour = startTime.tm_hour
minute = startTime.tm_min
second = startTime.tm_sec
startDTList.append(datetime.datetime(year,month,day,hour,minute,second))
o_height = numpy.array([])
o_zon_aver = numpy.array([])
o_mer_aver = numpy.array([])
o_ver_aver = numpy.array([])
if self.dataOut.nmodes > 1:
for im in range(self.dataOut.nmodes):
if im == 0:
h_select = numpy.where(numpy.bitwise_and(height[0,:] >=0,height[0,:] <= hcm,numpy.isfinite(height[0,:])))
else:
h_select = numpy.where(numpy.bitwise_and(height[1,:] > hcm,height[1,:] < 20,numpy.isfinite(height[1,:])))
ht = h_select[0]
o_height = numpy.hstack((o_height,height[im,ht]))
o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im]))
o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im]))
o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im]))
data_fHeigths_List.append(o_height)
data_fZonal_List.append(o_zon_aver)
data_fMeridional_List.append(o_mer_aver)
data_fVertical_List.append(o_ver_aver)
else:
h_select = numpy.where(numpy.bitwise_and(height[0,:] <= hcm,numpy.isfinite(height[0,:])))
ht = h_select[0]
o_height = numpy.hstack((o_height,height[im,ht]))
o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im]))
o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im]))
o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im]))
data_fHeigths_List.append(o_height)
data_fZonal_List.append(o_zon_aver)
data_fMeridional_List.append(o_mer_aver)
data_fVertical_List.append(o_ver_aver)
return startDTList, data_fHeigths_List, data_fZonal_List, data_fMeridional_List, data_fVertical_List