##// END OF EJS Templates
añadido FaradayIntegration para limpieza de datos, restringida la operación al funcionamiento con la pdata regular
añadido FaradayIntegration para limpieza de datos, restringida la operación al funcionamiento con la pdata regular

File last commit:

r1385:83c0b1494611
r1399:101813202a42
Show More
jroplot_heispectra.py
102 lines | 3.1 KiB | text/x-python | PythonLexer
# Copyright (c) 2012-2020 Jicamarca Radio Observatory
# All rights reserved.
#
# Distributed under the terms of the BSD 3-clause license.
"""Classes to plo Specra Heis data
"""
import numpy
from schainpy.model.graphics.jroplot_base import Plot, plt
import matplotlib.pyplot as plt
class SpectraHeisPlot(Plot):
CODE = 'spc_heis'
def setup(self):
self.nplots = len(self.data.channels)
self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
self.height = 2.6 * self.nrows
self.width = 3.5 * self.ncols
self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.95, 'bottom': 0.08})
self.ylabel = 'Intensity [dB]'
self.xlabel = 'Frequency [KHz]'
self.colorbar = False
def update(self, dataOut):
data = {}
meta = {}
spc = 10*numpy.log10(dataOut.data_spc / dataOut.normFactor)
data['spc_heis'] = spc
return data, meta
def plot(self):
c = 3E8
deltaHeight = self.data.yrange[1] - self.data.yrange[0] # yrange = heightList
x = numpy.arange(-1*len(self.data.yrange)/2., len(self.data.yrange)/2.)*(c/(2*deltaHeight*len(self.data.yrange)*1000))
self.y = self.data[-1]['spc_heis']
self.titles = []
Maintitle = "Range from %d km to %d km" %(int(self.data.yrange[0]),int(self.data.yrange[-1]))
for n, ax in enumerate(self.axes):
ychannel = self.y[n,:]
if ax.firsttime:
self.xmin = min(x) if self.xmin is None else self.xmin
self.xmax = max(x) if self.xmax is None else self.xmax
ax.plt = ax.plot(x, ychannel, lw=1, color='b')[0]
else:
ax.plt.set_data(x, ychannel)
self.titles.append("Channel {}: {:4.2f}dB".format(n, numpy.max(ychannel)))
plt.suptitle(Maintitle)
class RTIHeisPlot(Plot):
CODE = 'rti_heis'
def setup(self):
self.xaxis = 'time'
self.ncols = 1
self.nrows = 1
self.nplots = 1
self.ylabel = 'Intensity [dB]'
self.xlabel = 'Time'
self.titles = ['RTI']
self.colorbar = False
self.height = 4
self.plots_adjust.update({'right': 0.85 })
def update(self, dataOut):
data = {}
meta = {}
spc = dataOut.data_spc / dataOut.normFactor
spc = 10*numpy.log10(numpy.average(spc, axis=1))
data['rti_heis'] = spc
return data, meta
def plot(self):
x = self.data.times
Y = self.data['rti_heis']
if self.axes[0].firsttime:
self.ymin = numpy.nanmin(Y) - 5 if self.ymin == None else self.ymin
self.ymax = numpy.nanmax(Y) + 5 if self.ymax == None else self.ymax
for ch in self.data.channels:
y = Y[ch]
self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch))
plt.legend(bbox_to_anchor=(1.18, 1.0))
else:
for ch in self.data.channels:
y = Y[ch]
self.axes[0].lines[ch].set_data(x, y)