|
|
# Copyright (c) 2012-2020 Jicamarca Radio Observatory
|
|
|
# All rights reserved.
|
|
|
#
|
|
|
# Distributed under the terms of the BSD 3-clause license.
|
|
|
"""Definition of diferent Data objects for different types of data
|
|
|
|
|
|
Here you will find the diferent data objects for the different types
|
|
|
of data, this data objects must be used as dataIn or dataOut objects in
|
|
|
processing units and operations. Currently the supported data objects are:
|
|
|
Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters
|
|
|
"""
|
|
|
|
|
|
import copy
|
|
|
import numpy
|
|
|
import datetime
|
|
|
import json
|
|
|
|
|
|
import schainpy.admin
|
|
|
from schainpy.utils import log
|
|
|
from .jroheaderIO import SystemHeader, RadarControllerHeader
|
|
|
from schainpy.model.data import _noise
|
|
|
|
|
|
|
|
|
def getNumpyDtype(dataTypeCode):
|
|
|
|
|
|
if dataTypeCode == 0:
|
|
|
numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')])
|
|
|
elif dataTypeCode == 1:
|
|
|
numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')])
|
|
|
elif dataTypeCode == 2:
|
|
|
numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')])
|
|
|
elif dataTypeCode == 3:
|
|
|
numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')])
|
|
|
elif dataTypeCode == 4:
|
|
|
numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')])
|
|
|
elif dataTypeCode == 5:
|
|
|
numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')])
|
|
|
else:
|
|
|
raise ValueError('dataTypeCode was not defined')
|
|
|
|
|
|
return numpyDtype
|
|
|
|
|
|
|
|
|
def getDataTypeCode(numpyDtype):
|
|
|
|
|
|
if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]):
|
|
|
datatype = 0
|
|
|
elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]):
|
|
|
datatype = 1
|
|
|
elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]):
|
|
|
datatype = 2
|
|
|
elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]):
|
|
|
datatype = 3
|
|
|
elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]):
|
|
|
datatype = 4
|
|
|
elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]):
|
|
|
datatype = 5
|
|
|
else:
|
|
|
datatype = None
|
|
|
|
|
|
return datatype
|
|
|
|
|
|
|
|
|
def hildebrand_sekhon(data, navg):
|
|
|
"""
|
|
|
This method is for the objective determination of the noise level in Doppler spectra. This
|
|
|
implementation technique is based on the fact that the standard deviation of the spectral
|
|
|
densities is equal to the mean spectral density for white Gaussian noise
|
|
|
|
|
|
Inputs:
|
|
|
Data : heights
|
|
|
navg : numbers of averages
|
|
|
|
|
|
Return:
|
|
|
mean : noise's level
|
|
|
"""
|
|
|
|
|
|
sortdata = numpy.sort(data, axis=None)
|
|
|
'''
|
|
|
lenOfData = len(sortdata)
|
|
|
nums_min = lenOfData*0.2
|
|
|
|
|
|
if nums_min <= 5:
|
|
|
|
|
|
nums_min = 5
|
|
|
|
|
|
sump = 0.
|
|
|
sumq = 0.
|
|
|
|
|
|
j = 0
|
|
|
cont = 1
|
|
|
|
|
|
while((cont == 1)and(j < lenOfData)):
|
|
|
|
|
|
sump += sortdata[j]
|
|
|
sumq += sortdata[j]**2
|
|
|
|
|
|
if j > nums_min:
|
|
|
rtest = float(j)/(j-1) + 1.0/navg
|
|
|
if ((sumq*j) > (rtest*sump**2)):
|
|
|
j = j - 1
|
|
|
sump = sump - sortdata[j]
|
|
|
sumq = sumq - sortdata[j]**2
|
|
|
cont = 0
|
|
|
|
|
|
j += 1
|
|
|
|
|
|
lnoise = sump / j
|
|
|
'''
|
|
|
return _noise.hildebrand_sekhon(sortdata, navg)
|
|
|
|
|
|
|
|
|
class Beam:
|
|
|
|
|
|
def __init__(self):
|
|
|
self.codeList = []
|
|
|
self.azimuthList = []
|
|
|
self.zenithList = []
|
|
|
|
|
|
|
|
|
|
|
|
class GenericData(object):
|
|
|
|
|
|
flagNoData = True
|
|
|
|
|
|
def copy(self, inputObj=None):
|
|
|
|
|
|
if inputObj == None:
|
|
|
return copy.deepcopy(self)
|
|
|
|
|
|
for key in list(inputObj.__dict__.keys()):
|
|
|
|
|
|
attribute = inputObj.__dict__[key]
|
|
|
|
|
|
# If this attribute is a tuple or list
|
|
|
if type(inputObj.__dict__[key]) in (tuple, list):
|
|
|
self.__dict__[key] = attribute[:]
|
|
|
continue
|
|
|
|
|
|
# If this attribute is another object or instance
|
|
|
if hasattr(attribute, '__dict__'):
|
|
|
self.__dict__[key] = attribute.copy()
|
|
|
continue
|
|
|
|
|
|
self.__dict__[key] = inputObj.__dict__[key]
|
|
|
|
|
|
def deepcopy(self):
|
|
|
|
|
|
return copy.deepcopy(self)
|
|
|
|
|
|
def isEmpty(self):
|
|
|
|
|
|
return self.flagNoData
|
|
|
|
|
|
def isReady(self):
|
|
|
|
|
|
return not self.flagNoData
|
|
|
|
|
|
|
|
|
class JROData(GenericData):
|
|
|
|
|
|
systemHeaderObj = SystemHeader()
|
|
|
radarControllerHeaderObj = RadarControllerHeader()
|
|
|
type = None
|
|
|
datatype = None # dtype but in string
|
|
|
nProfiles = None
|
|
|
heightList = None
|
|
|
channelList = None
|
|
|
flagDiscontinuousBlock = False
|
|
|
useLocalTime = False
|
|
|
utctime = None
|
|
|
timeZone = None
|
|
|
dstFlag = None
|
|
|
errorCount = None
|
|
|
blocksize = None
|
|
|
flagDecodeData = False # asumo q la data no esta decodificada
|
|
|
flagDeflipData = False # asumo q la data no esta sin flip
|
|
|
flagShiftFFT = False
|
|
|
nCohInt = None
|
|
|
windowOfFilter = 1
|
|
|
C = 3e8
|
|
|
frequency = 49.92e6
|
|
|
realtime = False
|
|
|
beacon_heiIndexList = None
|
|
|
last_block = None
|
|
|
blocknow = None
|
|
|
azimuth = None
|
|
|
zenith = None
|
|
|
beam = Beam()
|
|
|
profileIndex = None
|
|
|
error = None
|
|
|
data = None
|
|
|
nmodes = None
|
|
|
metadata_list = ['heightList', 'timeZone', 'type']
|
|
|
codeList = None
|
|
|
azimuthList = None
|
|
|
elevationList = None
|
|
|
|
|
|
def __str__(self):
|
|
|
|
|
|
return '{} - {}'.format(self.type, self.datatime())
|
|
|
|
|
|
def getNoise(self):
|
|
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
@property
|
|
|
def nChannels(self):
|
|
|
|
|
|
return len(self.channelList)
|
|
|
|
|
|
@property
|
|
|
def channelIndexList(self):
|
|
|
|
|
|
return list(range(self.nChannels))
|
|
|
|
|
|
@property
|
|
|
def nHeights(self):
|
|
|
|
|
|
return len(self.heightList)
|
|
|
|
|
|
def getDeltaH(self):
|
|
|
|
|
|
return self.heightList[1] - self.heightList[0]
|
|
|
|
|
|
@property
|
|
|
def ltctime(self):
|
|
|
|
|
|
if self.useLocalTime:
|
|
|
return self.utctime - self.timeZone * 60
|
|
|
|
|
|
return self.utctime
|
|
|
|
|
|
@property
|
|
|
def datatime(self):
|
|
|
|
|
|
datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime)
|
|
|
return datatimeValue
|
|
|
|
|
|
def getTimeRange(self):
|
|
|
|
|
|
datatime = []
|
|
|
|
|
|
datatime.append(self.ltctime)
|
|
|
datatime.append(self.ltctime + self.timeInterval + 1)
|
|
|
|
|
|
datatime = numpy.array(datatime)
|
|
|
|
|
|
return datatime
|
|
|
|
|
|
def getFmaxTimeResponse(self):
|
|
|
|
|
|
period = (10**-6) * self.getDeltaH() / (0.15)
|
|
|
|
|
|
PRF = 1. / (period * self.nCohInt)
|
|
|
|
|
|
fmax = PRF
|
|
|
|
|
|
return fmax
|
|
|
|
|
|
def getFmax(self):
|
|
|
PRF = 1. / (self.ippSeconds * self.nCohInt)
|
|
|
|
|
|
fmax = PRF
|
|
|
return fmax
|
|
|
|
|
|
def getVmax(self):
|
|
|
|
|
|
_lambda = self.C / self.frequency
|
|
|
|
|
|
vmax = self.getFmax() * _lambda / 2
|
|
|
|
|
|
return vmax
|
|
|
|
|
|
@property
|
|
|
def ippSeconds(self):
|
|
|
'''
|
|
|
'''
|
|
|
return self.radarControllerHeaderObj.ippSeconds
|
|
|
|
|
|
@ippSeconds.setter
|
|
|
def ippSeconds(self, ippSeconds):
|
|
|
'''
|
|
|
'''
|
|
|
self.radarControllerHeaderObj.ippSeconds = ippSeconds
|
|
|
|
|
|
@property
|
|
|
def code(self):
|
|
|
'''
|
|
|
'''
|
|
|
return self.radarControllerHeaderObj.code
|
|
|
|
|
|
@code.setter
|
|
|
def code(self, code):
|
|
|
'''
|
|
|
'''
|
|
|
self.radarControllerHeaderObj.code = code
|
|
|
|
|
|
@property
|
|
|
def nCode(self):
|
|
|
'''
|
|
|
'''
|
|
|
return self.radarControllerHeaderObj.nCode
|
|
|
|
|
|
@nCode.setter
|
|
|
def nCode(self, ncode):
|
|
|
'''
|
|
|
'''
|
|
|
self.radarControllerHeaderObj.nCode = ncode
|
|
|
|
|
|
@property
|
|
|
def nBaud(self):
|
|
|
'''
|
|
|
'''
|
|
|
return self.radarControllerHeaderObj.nBaud
|
|
|
|
|
|
@nBaud.setter
|
|
|
def nBaud(self, nbaud):
|
|
|
'''
|
|
|
'''
|
|
|
self.radarControllerHeaderObj.nBaud = nbaud
|
|
|
|
|
|
@property
|
|
|
def ipp(self):
|
|
|
'''
|
|
|
'''
|
|
|
return self.radarControllerHeaderObj.ipp
|
|
|
|
|
|
@ipp.setter
|
|
|
def ipp(self, ipp):
|
|
|
'''
|
|
|
'''
|
|
|
self.radarControllerHeaderObj.ipp = ipp
|
|
|
|
|
|
@property
|
|
|
def metadata(self):
|
|
|
'''
|
|
|
'''
|
|
|
|
|
|
return {attr: getattr(self, attr) for attr in self.metadata_list}
|
|
|
|
|
|
|
|
|
class Voltage(JROData):
|
|
|
|
|
|
dataPP_POW = None
|
|
|
dataPP_DOP = None
|
|
|
dataPP_WIDTH = None
|
|
|
dataPP_SNR = None
|
|
|
|
|
|
def __init__(self):
|
|
|
'''
|
|
|
Constructor
|
|
|
'''
|
|
|
|
|
|
self.useLocalTime = True
|
|
|
self.radarControllerHeaderObj = RadarControllerHeader()
|
|
|
self.systemHeaderObj = SystemHeader()
|
|
|
self.type = "Voltage"
|
|
|
self.data = None
|
|
|
self.nProfiles = None
|
|
|
self.heightList = None
|
|
|
self.channelList = None
|
|
|
self.flagNoData = True
|
|
|
self.flagDiscontinuousBlock = False
|
|
|
self.utctime = None
|
|
|
self.timeZone = 0
|
|
|
self.dstFlag = None
|
|
|
self.errorCount = None
|
|
|
self.nCohInt = None
|
|
|
self.blocksize = None
|
|
|
self.flagCohInt = False
|
|
|
self.flagDecodeData = False # asumo q la data no esta decodificada
|
|
|
self.flagDeflipData = False # asumo q la data no esta sin flip
|
|
|
self.flagShiftFFT = False
|
|
|
self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil
|
|
|
self.profileIndex = 0
|
|
|
self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt',
|
|
|
'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp']
|
|
|
|
|
|
def getNoisebyHildebrand(self, channel=None):
|
|
|
"""
|
|
|
Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
|
|
|
|
|
|
Return:
|
|
|
noiselevel
|
|
|
"""
|
|
|
|
|
|
if channel != None:
|
|
|
data = self.data[channel]
|
|
|
nChannels = 1
|
|
|
else:
|
|
|
data = self.data
|
|
|
nChannels = self.nChannels
|
|
|
|
|
|
noise = numpy.zeros(nChannels)
|
|
|
power = data * numpy.conjugate(data)
|
|
|
|
|
|
for thisChannel in range(nChannels):
|
|
|
if nChannels == 1:
|
|
|
daux = power[:].real
|
|
|
else:
|
|
|
daux = power[thisChannel, :].real
|
|
|
noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt)
|
|
|
|
|
|
return noise
|
|
|
|
|
|
def getNoise(self, type=1, channel=None):
|
|
|
|
|
|
if type == 1:
|
|
|
noise = self.getNoisebyHildebrand(channel)
|
|
|
|
|
|
return noise
|
|
|
|
|
|
def getPower(self, channel=None):
|
|
|
|
|
|
if channel != None:
|
|
|
data = self.data[channel]
|
|
|
else:
|
|
|
data = self.data
|
|
|
|
|
|
power = data * numpy.conjugate(data)
|
|
|
powerdB = 10 * numpy.log10(power.real)
|
|
|
powerdB = numpy.squeeze(powerdB)
|
|
|
|
|
|
return powerdB
|
|
|
|
|
|
@property
|
|
|
def timeInterval(self):
|
|
|
|
|
|
return self.ippSeconds * self.nCohInt
|
|
|
|
|
|
noise = property(getNoise, "I'm the 'nHeights' property.")
|
|
|
|
|
|
|
|
|
class Spectra(JROData):
|
|
|
|
|
|
def __init__(self):
|
|
|
'''
|
|
|
Constructor
|
|
|
'''
|
|
|
|
|
|
self.data_dc = None
|
|
|
self.data_spc = None
|
|
|
self.data_cspc = None
|
|
|
self.useLocalTime = True
|
|
|
self.radarControllerHeaderObj = RadarControllerHeader()
|
|
|
self.systemHeaderObj = SystemHeader()
|
|
|
self.type = "Spectra"
|
|
|
self.timeZone = 0
|
|
|
self.nProfiles = None
|
|
|
self.heightList = None
|
|
|
self.channelList = None
|
|
|
self.pairsList = None
|
|
|
self.flagNoData = True
|
|
|
self.flagDiscontinuousBlock = False
|
|
|
self.utctime = None
|
|
|
self.nCohInt = None
|
|
|
self.nIncohInt = None
|
|
|
self.blocksize = None
|
|
|
self.nFFTPoints = None
|
|
|
self.wavelength = None
|
|
|
self.flagDecodeData = False # asumo q la data no esta decodificada
|
|
|
self.flagDeflipData = False # asumo q la data no esta sin flip
|
|
|
self.flagShiftFFT = False
|
|
|
self.ippFactor = 1
|
|
|
self.beacon_heiIndexList = []
|
|
|
self.noise_estimation = None
|
|
|
self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt',
|
|
|
'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles']
|
|
|
|
|
|
|
|
|
def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None):
|
|
|
"""
|
|
|
Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
|
|
|
|
|
|
Return:
|
|
|
noiselevel
|
|
|
"""
|
|
|
|
|
|
noise = numpy.zeros(self.nChannels)
|
|
|
for channel in range(self.nChannels):
|
|
|
daux = self.data_spc[channel,
|
|
|
xmin_index:xmax_index, ymin_index:ymax_index]
|
|
|
noise[channel] = hildebrand_sekhon(daux, self.nIncohInt)
|
|
|
|
|
|
return noise
|
|
|
|
|
|
def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None):
|
|
|
|
|
|
if self.noise_estimation is not None:
|
|
|
# this was estimated by getNoise Operation defined in jroproc_spectra.py
|
|
|
return self.noise_estimation
|
|
|
else:
|
|
|
noise = self.getNoisebyHildebrand(
|
|
|
xmin_index, xmax_index, ymin_index, ymax_index)
|
|
|
return noise
|
|
|
|
|
|
def getFreqRangeTimeResponse(self, extrapoints=0):
|
|
|
|
|
|
deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor)
|
|
|
freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2
|
|
|
|
|
|
return freqrange
|
|
|
|
|
|
def getAcfRange(self, extrapoints=0):
|
|
|
|
|
|
deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor))
|
|
|
freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2
|
|
|
|
|
|
return freqrange
|
|
|
|
|
|
def getFreqRange(self, extrapoints=0):
|
|
|
|
|
|
deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor)
|
|
|
freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2
|
|
|
|
|
|
return freqrange
|
|
|
|
|
|
def getVelRange(self, extrapoints=0):
|
|
|
|
|
|
deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor)
|
|
|
velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.)
|
|
|
|
|
|
if self.nmodes:
|
|
|
return velrange/self.nmodes
|
|
|
else:
|
|
|
return velrange
|
|
|
|
|
|
@property
|
|
|
def nPairs(self):
|
|
|
|
|
|
return len(self.pairsList)
|
|
|
|
|
|
@property
|
|
|
def pairsIndexList(self):
|
|
|
|
|
|
return list(range(self.nPairs))
|
|
|
|
|
|
@property
|
|
|
def normFactor(self):
|
|
|
|
|
|
pwcode = 1
|
|
|
|
|
|
if self.flagDecodeData:
|
|
|
pwcode = numpy.sum(self.code[0]**2)
|
|
|
#normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter
|
|
|
normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter
|
|
|
|
|
|
return normFactor
|
|
|
|
|
|
@property
|
|
|
def flag_cspc(self):
|
|
|
|
|
|
if self.data_cspc is None:
|
|
|
return True
|
|
|
|
|
|
return False
|
|
|
|
|
|
@property
|
|
|
def flag_dc(self):
|
|
|
|
|
|
if self.data_dc is None:
|
|
|
return True
|
|
|
|
|
|
return False
|
|
|
|
|
|
@property
|
|
|
def timeInterval(self):
|
|
|
|
|
|
timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor
|
|
|
if self.nmodes:
|
|
|
return self.nmodes*timeInterval
|
|
|
else:
|
|
|
return timeInterval
|
|
|
|
|
|
def getPower(self):
|
|
|
|
|
|
factor = self.normFactor
|
|
|
z = self.data_spc / factor
|
|
|
z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
|
|
|
avg = numpy.average(z, axis=1)
|
|
|
|
|
|
return 10 * numpy.log10(avg)
|
|
|
|
|
|
def getCoherence(self, pairsList=None, phase=False):
|
|
|
|
|
|
z = []
|
|
|
if pairsList is None:
|
|
|
pairsIndexList = self.pairsIndexList
|
|
|
else:
|
|
|
pairsIndexList = []
|
|
|
for pair in pairsList:
|
|
|
if pair not in self.pairsList:
|
|
|
raise ValueError("Pair %s is not in dataOut.pairsList" % (
|
|
|
pair))
|
|
|
pairsIndexList.append(self.pairsList.index(pair))
|
|
|
for i in range(len(pairsIndexList)):
|
|
|
pair = self.pairsList[pairsIndexList[i]]
|
|
|
ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0)
|
|
|
powa = numpy.average(self.data_spc[pair[0], :, :], axis=0)
|
|
|
powb = numpy.average(self.data_spc[pair[1], :, :], axis=0)
|
|
|
avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
|
|
|
if phase:
|
|
|
data = numpy.arctan2(avgcoherenceComplex.imag,
|
|
|
avgcoherenceComplex.real) * 180 / numpy.pi
|
|
|
else:
|
|
|
data = numpy.abs(avgcoherenceComplex)
|
|
|
|
|
|
z.append(data)
|
|
|
|
|
|
return numpy.array(z)
|
|
|
|
|
|
def setValue(self, value):
|
|
|
|
|
|
print("This property should not be initialized")
|
|
|
|
|
|
return
|
|
|
|
|
|
noise = property(getNoise, setValue, "I'm the 'nHeights' property.")
|
|
|
|
|
|
|
|
|
class SpectraHeis(Spectra):
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
|
self.radarControllerHeaderObj = RadarControllerHeader()
|
|
|
self.systemHeaderObj = SystemHeader()
|
|
|
self.type = "SpectraHeis"
|
|
|
self.nProfiles = None
|
|
|
self.heightList = None
|
|
|
self.channelList = None
|
|
|
self.flagNoData = True
|
|
|
self.flagDiscontinuousBlock = False
|
|
|
self.utctime = None
|
|
|
self.blocksize = None
|
|
|
self.profileIndex = 0
|
|
|
self.nCohInt = 1
|
|
|
self.nIncohInt = 1
|
|
|
|
|
|
@property
|
|
|
def normFactor(self):
|
|
|
pwcode = 1
|
|
|
if self.flagDecodeData:
|
|
|
pwcode = numpy.sum(self.code[0]**2)
|
|
|
|
|
|
normFactor = self.nIncohInt * self.nCohInt * pwcode
|
|
|
|
|
|
return normFactor
|
|
|
|
|
|
@property
|
|
|
def timeInterval(self):
|
|
|
|
|
|
return self.ippSeconds * self.nCohInt * self.nIncohInt
|
|
|
|
|
|
|
|
|
class Fits(JROData):
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
|
self.type = "Fits"
|
|
|
self.nProfiles = None
|
|
|
self.heightList = None
|
|
|
self.channelList = None
|
|
|
self.flagNoData = True
|
|
|
self.utctime = None
|
|
|
self.nCohInt = 1
|
|
|
self.nIncohInt = 1
|
|
|
self.useLocalTime = True
|
|
|
self.profileIndex = 0
|
|
|
self.timeZone = 0
|
|
|
|
|
|
def getTimeRange(self):
|
|
|
|
|
|
datatime = []
|
|
|
|
|
|
datatime.append(self.ltctime)
|
|
|
datatime.append(self.ltctime + self.timeInterval)
|
|
|
|
|
|
datatime = numpy.array(datatime)
|
|
|
|
|
|
return datatime
|
|
|
|
|
|
def getChannelIndexList(self):
|
|
|
|
|
|
return list(range(self.nChannels))
|
|
|
|
|
|
def getNoise(self, type=1):
|
|
|
|
|
|
|
|
|
if type == 1:
|
|
|
noise = self.getNoisebyHildebrand()
|
|
|
|
|
|
if type == 2:
|
|
|
noise = self.getNoisebySort()
|
|
|
|
|
|
if type == 3:
|
|
|
noise = self.getNoisebyWindow()
|
|
|
|
|
|
return noise
|
|
|
|
|
|
@property
|
|
|
def timeInterval(self):
|
|
|
|
|
|
timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt
|
|
|
|
|
|
return timeInterval
|
|
|
|
|
|
@property
|
|
|
def ippSeconds(self):
|
|
|
'''
|
|
|
'''
|
|
|
return self.ipp_sec
|
|
|
|
|
|
noise = property(getNoise, "I'm the 'nHeights' property.")
|
|
|
|
|
|
|
|
|
class Correlation(JROData):
|
|
|
|
|
|
def __init__(self):
|
|
|
'''
|
|
|
Constructor
|
|
|
'''
|
|
|
self.radarControllerHeaderObj = RadarControllerHeader()
|
|
|
self.systemHeaderObj = SystemHeader()
|
|
|
self.type = "Correlation"
|
|
|
self.data = None
|
|
|
self.dtype = None
|
|
|
self.nProfiles = None
|
|
|
self.heightList = None
|
|
|
self.channelList = None
|
|
|
self.flagNoData = True
|
|
|
self.flagDiscontinuousBlock = False
|
|
|
self.utctime = None
|
|
|
self.timeZone = 0
|
|
|
self.dstFlag = None
|
|
|
self.errorCount = None
|
|
|
self.blocksize = None
|
|
|
self.flagDecodeData = False # asumo q la data no esta decodificada
|
|
|
self.flagDeflipData = False # asumo q la data no esta sin flip
|
|
|
self.pairsList = None
|
|
|
self.nPoints = None
|
|
|
|
|
|
def getPairsList(self):
|
|
|
|
|
|
return self.pairsList
|
|
|
|
|
|
def getNoise(self, mode=2):
|
|
|
|
|
|
indR = numpy.where(self.lagR == 0)[0][0]
|
|
|
indT = numpy.where(self.lagT == 0)[0][0]
|
|
|
|
|
|
jspectra0 = self.data_corr[:, :, indR, :]
|
|
|
jspectra = copy.copy(jspectra0)
|
|
|
|
|
|
num_chan = jspectra.shape[0]
|
|
|
num_hei = jspectra.shape[2]
|
|
|
|
|
|
freq_dc = jspectra.shape[1] / 2
|
|
|
ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc
|
|
|
|
|
|
if ind_vel[0] < 0:
|
|
|
ind_vel[list(range(0, 1))] = ind_vel[list(
|
|
|
range(0, 1))] + self.num_prof
|
|
|
|
|
|
if mode == 1:
|
|
|
jspectra[:, freq_dc, :] = (
|
|
|
jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION
|
|
|
|
|
|
if mode == 2:
|
|
|
|
|
|
vel = numpy.array([-2, -1, 1, 2])
|
|
|
xx = numpy.zeros([4, 4])
|
|
|
|
|
|
for fil in range(4):
|
|
|
xx[fil, :] = vel[fil]**numpy.asarray(list(range(4)))
|
|
|
|
|
|
xx_inv = numpy.linalg.inv(xx)
|
|
|
xx_aux = xx_inv[0, :]
|
|
|
|
|
|
for ich in range(num_chan):
|
|
|
yy = jspectra[ich, ind_vel, :]
|
|
|
jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy)
|
|
|
|
|
|
junkid = jspectra[ich, freq_dc, :] <= 0
|
|
|
cjunkid = sum(junkid)
|
|
|
|
|
|
if cjunkid.any():
|
|
|
jspectra[ich, freq_dc, junkid.nonzero()] = (
|
|
|
jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2
|
|
|
|
|
|
noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :]
|
|
|
|
|
|
return noise
|
|
|
|
|
|
@property
|
|
|
def timeInterval(self):
|
|
|
|
|
|
return self.ippSeconds * self.nCohInt * self.nProfiles
|
|
|
|
|
|
def splitFunctions(self):
|
|
|
|
|
|
pairsList = self.pairsList
|
|
|
ccf_pairs = []
|
|
|
acf_pairs = []
|
|
|
ccf_ind = []
|
|
|
acf_ind = []
|
|
|
for l in range(len(pairsList)):
|
|
|
chan0 = pairsList[l][0]
|
|
|
chan1 = pairsList[l][1]
|
|
|
|
|
|
# Obteniendo pares de Autocorrelacion
|
|
|
if chan0 == chan1:
|
|
|
acf_pairs.append(chan0)
|
|
|
acf_ind.append(l)
|
|
|
else:
|
|
|
ccf_pairs.append(pairsList[l])
|
|
|
ccf_ind.append(l)
|
|
|
|
|
|
data_acf = self.data_cf[acf_ind]
|
|
|
data_ccf = self.data_cf[ccf_ind]
|
|
|
|
|
|
return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf
|
|
|
|
|
|
@property
|
|
|
def normFactor(self):
|
|
|
acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions()
|
|
|
acf_pairs = numpy.array(acf_pairs)
|
|
|
normFactor = numpy.zeros((self.nPairs, self.nHeights))
|
|
|
|
|
|
for p in range(self.nPairs):
|
|
|
pair = self.pairsList[p]
|
|
|
|
|
|
ch0 = pair[0]
|
|
|
ch1 = pair[1]
|
|
|
|
|
|
ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1)
|
|
|
ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1)
|
|
|
normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max)
|
|
|
|
|
|
return normFactor
|
|
|
|
|
|
|
|
|
class Parameters(Spectra):
|
|
|
|
|
|
groupList = None # List of Pairs, Groups, etc
|
|
|
data_param = None # Parameters obtained
|
|
|
data_pre = None # Data Pre Parametrization
|
|
|
data_SNR = None # Signal to Noise Ratio
|
|
|
abscissaList = None # Abscissa, can be velocities, lags or time
|
|
|
utctimeInit = None # Initial UTC time
|
|
|
paramInterval = None # Time interval to calculate Parameters in seconds
|
|
|
useLocalTime = True
|
|
|
# Fitting
|
|
|
data_error = None # Error of the estimation
|
|
|
constants = None
|
|
|
library = None
|
|
|
# Output signal
|
|
|
outputInterval = None # Time interval to calculate output signal in seconds
|
|
|
data_output = None # Out signal
|
|
|
nAvg = None
|
|
|
noise_estimation = None
|
|
|
GauSPC = None # Fit gaussian SPC
|
|
|
|
|
|
def __init__(self):
|
|
|
'''
|
|
|
Constructor
|
|
|
'''
|
|
|
self.radarControllerHeaderObj = RadarControllerHeader()
|
|
|
self.systemHeaderObj = SystemHeader()
|
|
|
self.type = "Parameters"
|
|
|
self.timeZone = 0
|
|
|
|
|
|
def getTimeRange1(self, interval):
|
|
|
|
|
|
datatime = []
|
|
|
|
|
|
if self.useLocalTime:
|
|
|
time1 = self.utctimeInit - self.timeZone * 60
|
|
|
else:
|
|
|
time1 = self.utctimeInit
|
|
|
|
|
|
datatime.append(time1)
|
|
|
datatime.append(time1 + interval)
|
|
|
datatime = numpy.array(datatime)
|
|
|
|
|
|
return datatime
|
|
|
|
|
|
@property
|
|
|
def timeInterval(self):
|
|
|
|
|
|
if hasattr(self, 'timeInterval1'):
|
|
|
return self.timeInterval1
|
|
|
else:
|
|
|
return self.paramInterval
|
|
|
|
|
|
def setValue(self, value):
|
|
|
|
|
|
print("This property should not be initialized")
|
|
|
|
|
|
return
|
|
|
|
|
|
def getNoise(self):
|
|
|
|
|
|
return self.spc_noise
|
|
|
|
|
|
noise = property(getNoise, setValue, "I'm the 'Noise' property.")
|
|
|
|
|
|
|
|
|
class PlotterData(object):
|
|
|
'''
|
|
|
Object to hold data to be plotted
|
|
|
'''
|
|
|
|
|
|
MAXNUMX = 200
|
|
|
MAXNUMY = 200
|
|
|
|
|
|
def __init__(self, code, exp_code, localtime=True):
|
|
|
|
|
|
self.key = code
|
|
|
self.exp_code = exp_code
|
|
|
self.ready = False
|
|
|
self.flagNoData = False
|
|
|
self.localtime = localtime
|
|
|
self.data = {}
|
|
|
self.meta = {}
|
|
|
self.__heights = []
|
|
|
|
|
|
def __str__(self):
|
|
|
dum = ['{}{}'.format(key, self.shape(key)) for key in self.data]
|
|
|
return 'Data[{}][{}]'.format(';'.join(dum), len(self.times))
|
|
|
|
|
|
def __len__(self):
|
|
|
return len(self.data)
|
|
|
|
|
|
def __getitem__(self, key):
|
|
|
if isinstance(key, int):
|
|
|
return self.data[self.times[key]]
|
|
|
elif isinstance(key, str):
|
|
|
ret = numpy.array([self.data[x][key] for x in self.times])
|
|
|
if ret.ndim > 1:
|
|
|
ret = numpy.swapaxes(ret, 0, 1)
|
|
|
return ret
|
|
|
|
|
|
def __contains__(self, key):
|
|
|
return key in self.data[self.min_time]
|
|
|
|
|
|
def setup(self):
|
|
|
'''
|
|
|
Configure object
|
|
|
'''
|
|
|
self.type = ''
|
|
|
self.ready = False
|
|
|
del self.data
|
|
|
self.data = {}
|
|
|
self.__heights = []
|
|
|
self.__all_heights = set()
|
|
|
|
|
|
def shape(self, key):
|
|
|
'''
|
|
|
Get the shape of the one-element data for the given key
|
|
|
'''
|
|
|
|
|
|
if len(self.data[self.min_time][key]):
|
|
|
return self.data[self.min_time][key].shape
|
|
|
return (0,)
|
|
|
|
|
|
def update(self, data, tm, meta={}):
|
|
|
'''
|
|
|
Update data object with new dataOut
|
|
|
'''
|
|
|
|
|
|
self.data[tm] = data
|
|
|
|
|
|
for key, value in meta.items():
|
|
|
setattr(self, key, value)
|
|
|
|
|
|
def normalize_heights(self):
|
|
|
'''
|
|
|
Ensure same-dimension of the data for different heighList
|
|
|
'''
|
|
|
|
|
|
H = numpy.array(list(self.__all_heights))
|
|
|
H.sort()
|
|
|
for key in self.data:
|
|
|
shape = self.shape(key)[:-1] + H.shape
|
|
|
for tm, obj in list(self.data[key].items()):
|
|
|
h = self.__heights[self.times.tolist().index(tm)]
|
|
|
if H.size == h.size:
|
|
|
continue
|
|
|
index = numpy.where(numpy.in1d(H, h))[0]
|
|
|
dummy = numpy.zeros(shape) + numpy.nan
|
|
|
if len(shape) == 2:
|
|
|
dummy[:, index] = obj
|
|
|
else:
|
|
|
dummy[index] = obj
|
|
|
self.data[key][tm] = dummy
|
|
|
|
|
|
self.__heights = [H for tm in self.times]
|
|
|
|
|
|
def jsonify(self, tm, plot_name, plot_type, decimate=False):
|
|
|
'''
|
|
|
Convert data to json
|
|
|
'''
|
|
|
|
|
|
meta = {}
|
|
|
meta['xrange'] = []
|
|
|
dy = int(len(self.yrange)/self.MAXNUMY) + 1
|
|
|
tmp = self.data[tm][self.key]
|
|
|
shape = tmp.shape
|
|
|
if len(shape) == 2:
|
|
|
data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist())
|
|
|
elif len(shape) == 3:
|
|
|
dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1
|
|
|
data = self.roundFloats(
|
|
|
self.data[tm][self.key][::, ::dx, ::dy].tolist())
|
|
|
meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist())
|
|
|
else:
|
|
|
data = self.roundFloats(self.data[tm][self.key].tolist())
|
|
|
|
|
|
ret = {
|
|
|
'plot': plot_name,
|
|
|
'code': self.exp_code,
|
|
|
'time': float(tm),
|
|
|
'data': data,
|
|
|
}
|
|
|
meta['type'] = plot_type
|
|
|
meta['interval'] = float(self.interval)
|
|
|
meta['localtime'] = self.localtime
|
|
|
meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist())
|
|
|
meta.update(self.meta)
|
|
|
ret['metadata'] = meta
|
|
|
return json.dumps(ret)
|
|
|
|
|
|
@property
|
|
|
def times(self):
|
|
|
'''
|
|
|
Return the list of times of the current data
|
|
|
'''
|
|
|
|
|
|
ret = [t for t in self.data]
|
|
|
ret.sort()
|
|
|
return numpy.array(ret)
|
|
|
|
|
|
@property
|
|
|
def min_time(self):
|
|
|
'''
|
|
|
Return the minimun time value
|
|
|
'''
|
|
|
|
|
|
return self.times[0]
|
|
|
|
|
|
@property
|
|
|
def max_time(self):
|
|
|
'''
|
|
|
Return the maximun time value
|
|
|
'''
|
|
|
|
|
|
return self.times[-1]
|
|
|
|
|
|
# @property
|
|
|
# def heights(self):
|
|
|
# '''
|
|
|
# Return the list of heights of the current data
|
|
|
# '''
|
|
|
|
|
|
# return numpy.array(self.__heights[-1])
|
|
|
|
|
|
@staticmethod
|
|
|
def roundFloats(obj):
|
|
|
if isinstance(obj, list):
|
|
|
return list(map(PlotterData.roundFloats, obj))
|
|
|
elif isinstance(obj, float):
|
|
|
return round(obj, 2)
|
|
|
|