##// END OF EJS Templates
Kudeki's experiment test using nTxs...
Kudeki's experiment test using nTxs Modified by M. Urco

File last commit:

r173:585618fd3a5c
r536:0037ee77e590
Show More
SpectraIO.py
948 lines | 31.0 KiB | text/x-python | PythonLexer
'''
$Author$
$Id$
'''
import os, sys
import numpy
import pyfits
import glob
import fnmatch
import time, datetime
path = os.path.split(os.getcwd())[0]
sys.path.append(path)
from JROHeaderIO import *
from JRODataIO import JRODataReader
from JRODataIO import JRODataWriter
from Data.JROData import Spectra
from Data.JROData import SpectraHeis
class SpectraReader(JRODataReader):
"""
Esta clase permite leer datos de espectros desde archivos procesados (.pdata). La lectura
de los datos siempre se realiza por bloques. Los datos leidos (array de 3 dimensiones)
son almacenados en tres buffer's para el Self Spectra, el Cross Spectra y el DC Channel.
paresCanalesIguales * alturas * perfiles (Self Spectra)
paresCanalesDiferentes * alturas * perfiles (Cross Spectra)
canales * alturas (DC Channels)
Esta clase contiene instancias (objetos) de las clases BasicHeader, SystemHeader,
RadarControllerHeader y Spectra. Los tres primeros se usan para almacenar informacion de la
cabecera de datos (metadata), y el cuarto (Spectra) para obtener y almacenar un bloque de
datos desde el "buffer" cada vez que se ejecute el metodo "getData".
Example:
dpath = "/home/myuser/data"
startTime = datetime.datetime(2010,1,20,0,0,0,0,0,0)
endTime = datetime.datetime(2010,1,21,23,59,59,0,0,0)
readerObj = SpectraReader()
readerObj.setup(dpath, startTime, endTime)
while(True):
readerObj.getData()
print readerObj.data_spc
print readerObj.data_cspc
print readerObj.data_dc
if readerObj.flagNoMoreFiles:
break
"""
pts2read_SelfSpectra = 0
pts2read_CrossSpectra = 0
pts2read_DCchannels = 0
ext = ".pdata"
optchar = "P"
dataOutObj = None
nRdChannels = None
nRdPairs = None
rdPairList = []
def __init__(self, dataOutObj=None):
"""
Inicializador de la clase SpectraReader para la lectura de datos de espectros.
Inputs:
dataOutObj : Objeto de la clase Spectra. Este objeto sera utilizado para
almacenar un perfil de datos cada vez que se haga un requerimiento
(getData). El perfil sera obtenido a partir del buffer de datos,
si el buffer esta vacio se hara un nuevo proceso de lectura de un
bloque de datos.
Si este parametro no es pasado se creara uno internamente.
Affected:
self.dataOutObj
Return : None
"""
self.pts2read_SelfSpectra = 0
self.pts2read_CrossSpectra = 0
self.pts2read_DCchannels = 0
self.datablock = None
self.utc = None
self.ext = ".pdata"
self.optchar = "P"
self.basicHeaderObj = BasicHeader()
self.systemHeaderObj = SystemHeader()
self.radarControllerHeaderObj = RadarControllerHeader()
self.processingHeaderObj = ProcessingHeader()
self.online = 0
self.fp = None
self.idFile = None
self.dtype = None
self.fileSizeByHeader = None
self.filenameList = []
self.filename = None
self.fileSize = None
self.firstHeaderSize = 0
self.basicHeaderSize = 24
self.pathList = []
self.lastUTTime = 0
self.maxTimeStep = 30
self.flagNoMoreFiles = 0
self.set = 0
self.path = None
self.delay = 3 #seconds
self.nTries = 3 #quantity tries
self.nFiles = 3 #number of files for searching
self.nReadBlocks = 0
self.flagIsNewFile = 1
self.ippSeconds = 0
self.flagTimeBlock = 0
self.flagIsNewBlock = 0
self.nTotalBlocks = 0
self.blocksize = 0
def createObjByDefault(self):
dataObj = Spectra()
return dataObj
def __hasNotDataInBuffer(self):
return 1
def getBlockDimension(self):
"""
Obtiene la cantidad de puntos a leer por cada bloque de datos
Affected:
self.nRdChannels
self.nRdPairs
self.pts2read_SelfSpectra
self.pts2read_CrossSpectra
self.pts2read_DCchannels
self.blocksize
self.dataOutObj.nChannels
self.dataOutObj.nPairs
Return:
None
"""
self.nRdChannels = 0
self.nRdPairs = 0
self.rdPairList = []
for i in range(0, self.processingHeaderObj.totalSpectra*2, 2):
if self.processingHeaderObj.spectraComb[i] == self.processingHeaderObj.spectraComb[i+1]:
self.nRdChannels = self.nRdChannels + 1 #par de canales iguales
else:
self.nRdPairs = self.nRdPairs + 1 #par de canales diferentes
self.rdPairList.append((self.processingHeaderObj.spectraComb[i], self.processingHeaderObj.spectraComb[i+1]))
pts2read = self.processingHeaderObj.nHeights * self.processingHeaderObj.profilesPerBlock
self.pts2read_SelfSpectra = int(self.nRdChannels * pts2read)
self.blocksize = self.pts2read_SelfSpectra
if self.processingHeaderObj.flag_cspc:
self.pts2read_CrossSpectra = int(self.nRdPairs * pts2read)
self.blocksize += self.pts2read_CrossSpectra
if self.processingHeaderObj.flag_dc:
self.pts2read_DCchannels = int(self.systemHeaderObj.nChannels * self.processingHeaderObj.nHeights)
self.blocksize += self.pts2read_DCchannels
# self.blocksize = self.pts2read_SelfSpectra + self.pts2read_CrossSpectra + self.pts2read_DCchannels
def readBlock(self):
"""
Lee el bloque de datos desde la posicion actual del puntero del archivo
(self.fp) y actualiza todos los parametros relacionados al bloque de datos
(metadata + data). La data leida es almacenada en el buffer y el contador del buffer
es seteado a 0
Return: None
Variables afectadas:
self.flagIsNewFile
self.flagIsNewBlock
self.nTotalBlocks
self.data_spc
self.data_cspc
self.data_dc
Exceptions:
Si un bloque leido no es un bloque valido
"""
blockOk_flag = False
fpointer = self.fp.tell()
spc = numpy.fromfile( self.fp, self.dtype[0], self.pts2read_SelfSpectra )
spc = spc.reshape( (self.nRdChannels, self.processingHeaderObj.nHeights, self.processingHeaderObj.profilesPerBlock) ) #transforma a un arreglo 3D
if self.processingHeaderObj.flag_cspc:
cspc = numpy.fromfile( self.fp, self.dtype, self.pts2read_CrossSpectra )
cspc = cspc.reshape( (self.nRdPairs, self.processingHeaderObj.nHeights, self.processingHeaderObj.profilesPerBlock) ) #transforma a un arreglo 3D
if self.processingHeaderObj.flag_dc:
dc = numpy.fromfile( self.fp, self.dtype, self.pts2read_DCchannels ) #int(self.processingHeaderObj.nHeights*self.systemHeaderObj.nChannels) )
dc = dc.reshape( (self.systemHeaderObj.nChannels, self.processingHeaderObj.nHeights) ) #transforma a un arreglo 2D
if not(self.processingHeaderObj.shif_fft):
spc = numpy.roll( spc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones
if self.processingHeaderObj.flag_cspc:
cspc = numpy.roll( cspc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones
spc = numpy.transpose( spc, (0,2,1) )
self.data_spc = spc
if self.processingHeaderObj.flag_cspc:
cspc = numpy.transpose( cspc, (0,2,1) )
self.data_cspc = cspc['real'] + cspc['imag']*1j
else:
self.data_cspc = None
if self.processingHeaderObj.flag_dc:
self.data_dc = dc['real'] + dc['imag']*1j
else:
self.data_dc = None
self.flagIsNewFile = 0
self.flagIsNewBlock = 1
self.nTotalBlocks += 1
self.nReadBlocks += 1
return 1
def getData(self):
"""
Copia el buffer de lectura a la clase "Spectra",
con todos los parametros asociados a este (metadata). cuando no hay datos en el buffer de
lectura es necesario hacer una nueva lectura de los bloques de datos usando "readNextBlock"
Return:
0 : Si no hay mas archivos disponibles
1 : Si hizo una buena copia del buffer
Affected:
self.dataOutObj
self.flagTimeBlock
self.flagIsNewBlock
"""
if self.flagNoMoreFiles: return 0
self.flagTimeBlock = 0
self.flagIsNewBlock = 0
if self.__hasNotDataInBuffer():
if not( self.readNextBlock() ):
return 0
# self.updateDataHeader()
if self.flagNoMoreFiles == 1:
print 'Process finished'
return 0
#data es un numpy array de 3 dmensiones (perfiles, alturas y canales)
if self.data_dc == None:
self.dataOutObj.flagNoData = True
return 0
self.dataOutObj.data_spc = self.data_spc
self.dataOutObj.data_cspc = self.data_cspc
self.dataOutObj.data_dc = self.data_dc
self.dataOutObj.flagTimeBlock = self.flagTimeBlock
self.dataOutObj.flagNoData = False
self.dataOutObj.dtype = self.dtype
self.dataOutObj.nChannels = self.nRdChannels
self.dataOutObj.nPairs = self.nRdPairs
self.dataOutObj.pairsList = self.rdPairList
self.dataOutObj.nHeights = self.processingHeaderObj.nHeights
self.dataOutObj.nProfiles = self.processingHeaderObj.profilesPerBlock
self.dataOutObj.nFFTPoints = self.processingHeaderObj.profilesPerBlock
self.dataOutObj.nIncohInt = self.processingHeaderObj.nIncohInt
xf = self.processingHeaderObj.firstHeight + self.processingHeaderObj.nHeights*self.processingHeaderObj.deltaHeight
self.dataOutObj.heightList = numpy.arange(self.processingHeaderObj.firstHeight, xf, self.processingHeaderObj.deltaHeight)
self.dataOutObj.channelList = range(self.systemHeaderObj.nChannels)
self.dataOutObj.channelIndexList = range(self.systemHeaderObj.nChannels)
self.dataOutObj.utctime = self.basicHeaderObj.utc + self.basicHeaderObj.miliSecond/1000.#+ self.profileIndex * self.ippSeconds
self.dataOutObj.ippSeconds = self.ippSeconds
self.dataOutObj.timeInterval = self.ippSeconds * self.processingHeaderObj.nCohInt * self.processingHeaderObj.nIncohInt * self.dataOutObj.nFFTPoints
self.dataOutObj.flagShiftFFT = self.processingHeaderObj.shif_fft
# self.profileIndex += 1
self.dataOutObj.systemHeaderObj = self.systemHeaderObj.copy()
self.dataOutObj.radarControllerHeaderObj = self.radarControllerHeaderObj.copy()
return self.dataOutObj.data_spc
class SpectraWriter(JRODataWriter):
"""
Esta clase permite escribir datos de espectros a archivos procesados (.pdata). La escritura
de los datos siempre se realiza por bloques.
"""
ext = ".pdata"
optchar = "P"
shape_spc_Buffer = None
shape_cspc_Buffer = None
shape_dc_Buffer = None
data_spc = None
data_cspc = None
data_dc = None
wrPairList = []
nWrPairs = 0
nWrChannels = 0
# dataOutObj = None
def __init__(self, dataOutObj=None):
"""
Inicializador de la clase SpectraWriter para la escritura de datos de espectros.
Affected:
self.dataOutObj
self.basicHeaderObj
self.systemHeaderObj
self.radarControllerHeaderObj
self.processingHeaderObj
Return: None
"""
if dataOutObj == None:
dataOutObj = Spectra()
if not( isinstance(dataOutObj, Spectra) ):
raise ValueError, "in SpectraReader, dataOutObj must be an Spectra class object"
self.dataOutObj = dataOutObj
self.nTotalBlocks = 0
self.nWrChannels = self.dataOutObj.nChannels
# if len(pairList) > 0:
# self.wrPairList = pairList
#
# self.nWrPairs = len(pairList)
self.wrPairList = self.dataOutObj.pairsList
self.nWrPairs = self.dataOutObj.nPairs
# self.data_spc = None
# self.data_cspc = None
# self.data_dc = None
# self.fp = None
# self.flagIsNewFile = 1
#
# self.nTotalBlocks = 0
#
# self.flagIsNewBlock = 0
#
# self.flagNoMoreFiles = 0
#
# self.setFile = None
#
# self.dtype = None
#
# self.path = None
#
# self.noMoreFiles = 0
#
# self.filename = None
#
# self.basicHeaderObj = BasicHeader()
#
# self.systemHeaderObj = SystemHeader()
#
# self.radarControllerHeaderObj = RadarControllerHeader()
#
# self.processingHeaderObj = ProcessingHeader()
def hasAllDataInBuffer(self):
return 1
def setBlockDimension(self):
"""
Obtiene las formas dimensionales del los subbloques de datos que componen un bloque
Affected:
self.shape_spc_Buffer
self.shape_cspc_Buffer
self.shape_dc_Buffer
Return: None
"""
self.shape_spc_Buffer = (self.dataOutObj.nChannels,
self.processingHeaderObj.nHeights,
self.processingHeaderObj.profilesPerBlock)
self.shape_cspc_Buffer = (self.dataOutObj.nPairs,
self.processingHeaderObj.nHeights,
self.processingHeaderObj.profilesPerBlock)
self.shape_dc_Buffer = (self.dataOutObj.nChannels,
self.processingHeaderObj.nHeights)
def writeBlock(self):
"""
Escribe el buffer en el file designado
Affected:
self.data_spc
self.data_cspc
self.data_dc
self.flagIsNewFile
self.flagIsNewBlock
self.nTotalBlocks
self.nWriteBlocks
Return: None
"""
spc = numpy.transpose( self.data_spc, (0,2,1) )
if not( self.processingHeaderObj.shif_fft ):
spc = numpy.roll( spc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones
data = spc.reshape((-1))
data.tofile(self.fp)
if self.data_cspc != None:
data = numpy.zeros( self.shape_cspc_Buffer, self.dtype )
cspc = numpy.transpose( self.data_cspc, (0,2,1) )
if not( self.processingHeaderObj.shif_fft ):
cspc = numpy.roll( cspc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones
data['real'] = cspc.real
data['imag'] = cspc.imag
data = data.reshape((-1))
data.tofile(self.fp)
if self.data_dc != None:
data = numpy.zeros( self.shape_dc_Buffer, self.dtype )
dc = self.data_dc
data['real'] = dc.real
data['imag'] = dc.imag
data = data.reshape((-1))
data.tofile(self.fp)
self.data_spc.fill(0)
self.data_dc.fill(0)
if self.data_cspc != None:
self.data_cspc.fill(0)
self.flagIsNewFile = 0
self.flagIsNewBlock = 1
self.nTotalBlocks += 1
self.nWriteBlocks += 1
self.blockIndex += 1
def putData(self):
"""
Setea un bloque de datos y luego los escribe en un file
Affected:
self.data_spc
self.data_cspc
self.data_dc
Return:
0 : Si no hay data o no hay mas files que puedan escribirse
1 : Si se escribio la data de un bloque en un file
"""
self.flagIsNewBlock = 0
if self.dataOutObj.flagNoData:
return 0
if self.dataOutObj.flagTimeBlock:
self.data_spc.fill(0)
self.data_cspc.fill(0)
self.data_dc.fill(0)
self.setNextFile()
if self.flagIsNewFile == 0:
self.getBasicHeader()
self.data_spc = self.dataOutObj.data_spc
self.data_cspc = self.dataOutObj.data_cspc
self.data_dc = self.dataOutObj.data_dc
# #self.processingHeaderObj.dataBlocksPerFile)
if self.hasAllDataInBuffer():
# self.getDataHeader()
self.writeNextBlock()
if self.flagNoMoreFiles:
#print 'Process finished'
return 0
return 1
def __getProcessFlags(self):
processFlags = 0
dtype0 = numpy.dtype([('real','<i1'),('imag','<i1')])
dtype1 = numpy.dtype([('real','<i2'),('imag','<i2')])
dtype2 = numpy.dtype([('real','<i4'),('imag','<i4')])
dtype3 = numpy.dtype([('real','<i8'),('imag','<i8')])
dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')])
dtype5 = numpy.dtype([('real','<f8'),('imag','<f8')])
dtypeList = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5]
datatypeValueList = [PROCFLAG.DATATYPE_CHAR,
PROCFLAG.DATATYPE_SHORT,
PROCFLAG.DATATYPE_LONG,
PROCFLAG.DATATYPE_INT64,
PROCFLAG.DATATYPE_FLOAT,
PROCFLAG.DATATYPE_DOUBLE]
for index in range(len(dtypeList)):
if self.dataOutObj.dtype == dtypeList[index]:
dtypeValue = datatypeValueList[index]
break
processFlags += dtypeValue
if self.dataOutObj.flagDecodeData:
processFlags += PROCFLAG.DECODE_DATA
if self.dataOutObj.flagDeflipData:
processFlags += PROCFLAG.DEFLIP_DATA
if self.dataOutObj.code != None:
processFlags += PROCFLAG.DEFINE_PROCESS_CODE
if self.dataOutObj.nIncohInt > 1:
processFlags += PROCFLAG.INCOHERENT_INTEGRATION
if self.dataOutObj.data_dc != None:
processFlags += PROCFLAG.SAVE_CHANNELS_DC
return processFlags
def __getBlockSize(self):
'''
Este metodos determina el cantidad de bytes para un bloque de datos de tipo Spectra
'''
dtype0 = numpy.dtype([('real','<i1'),('imag','<i1')])
dtype1 = numpy.dtype([('real','<i2'),('imag','<i2')])
dtype2 = numpy.dtype([('real','<i4'),('imag','<i4')])
dtype3 = numpy.dtype([('real','<i8'),('imag','<i8')])
dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')])
dtype5 = numpy.dtype([('real','<f8'),('imag','<f8')])
dtypeList = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5]
datatypeValueList = [1,2,4,8,4,8]
for index in range(len(dtypeList)):
if self.dataOutObj.dtype == dtypeList[index]:
datatypeValue = datatypeValueList[index]
break
pts2write = self.dataOutObj.nHeights * self.dataOutObj.nFFTPoints
pts2write_SelfSpectra = int(self.nWrChannels * pts2write)
blocksize = (pts2write_SelfSpectra*datatypeValue)
if self.dataOutObj.data_cspc != None:
pts2write_CrossSpectra = int(self.nWrPairs * pts2write)
blocksize += (pts2write_CrossSpectra*datatypeValue*2)
if self.dataOutObj.data_dc != None:
pts2write_DCchannels = int(self.nWrChannels * self.dataOutObj.nHeights)
blocksize += (pts2write_DCchannels*datatypeValue*2)
blocksize = blocksize #* datatypeValue * 2 #CORREGIR ESTO
return blocksize
def getBasicHeader(self):
self.basicHeaderObj.size = self.basicHeaderSize #bytes
self.basicHeaderObj.version = self.versionFile
self.basicHeaderObj.dataBlock = self.nTotalBlocks
utc = numpy.floor(self.dataOutObj.utctime)
milisecond = (self.dataOutObj.utctime - utc)* 1000.0
self.basicHeaderObj.utc = utc
self.basicHeaderObj.miliSecond = milisecond
self.basicHeaderObj.timeZone = 0
self.basicHeaderObj.dstFlag = 0
self.basicHeaderObj.errorCount = 0
def getDataHeader(self):
"""
Obtiene una copia del First Header
Affected:
self.systemHeaderObj
self.radarControllerHeaderObj
self.dtype
Return:
None
"""
self.systemHeaderObj = self.dataOutObj.systemHeaderObj.copy()
self.systemHeaderObj.nChannels = self.dataOutObj.nChannels
self.radarControllerHeaderObj = self.dataOutObj.radarControllerHeaderObj.copy()
self.getBasicHeader()
processingHeaderSize = 40 # bytes
self.processingHeaderObj.dtype = 0 # Voltage
self.processingHeaderObj.blockSize = self.__getBlockSize()
self.processingHeaderObj.profilesPerBlock = self.dataOutObj.nFFTPoints
self.processingHeaderObj.dataBlocksPerFile = self.blocksPerFile
self.processingHeaderObj.nWindows = 1 #podria ser 1 o self.dataOutObj.processingHeaderObj.nWindows
self.processingHeaderObj.processFlags = self.__getProcessFlags()
self.processingHeaderObj.nCohInt = self.dataOutObj.nCohInt# Se requiere para determinar el valor de timeInterval
self.processingHeaderObj.nIncohInt = self.dataOutObj.nIncohInt
self.processingHeaderObj.totalSpectra = self.dataOutObj.nPairs + self.dataOutObj.nChannels
if self.processingHeaderObj.totalSpectra > 0:
channelList = []
for channel in range(self.dataOutObj.nChannels):
channelList.append(channel)
channelList.append(channel)
pairsList = []
for pair in self.dataOutObj.pairsList:
pairsList.append(pair[0])
pairsList.append(pair[1])
spectraComb = channelList + pairsList
spectraComb = numpy.array(spectraComb,dtype="u1")
self.processingHeaderObj.spectraComb = spectraComb
sizeOfSpcComb = len(spectraComb)
processingHeaderSize += sizeOfSpcComb
if self.dataOutObj.code != None:
self.processingHeaderObj.code = self.dataOutObj.code
self.processingHeaderObj.nCode = self.dataOutObj.nCode
self.processingHeaderObj.nBaud = self.dataOutObj.nBaud
nCodeSize = 4 # bytes
nBaudSize = 4 # bytes
codeSize = 4 # bytes
sizeOfCode = int(nCodeSize + nBaudSize + codeSize * self.dataOutObj.nCode * self.dataOutObj.nBaud)
processingHeaderSize += sizeOfCode
if self.processingHeaderObj.nWindows != 0:
self.processingHeaderObj.firstHeight = self.dataOutObj.heightList[0]
self.processingHeaderObj.deltaHeight = self.dataOutObj.heightList[1] - self.dataOutObj.heightList[0]
self.processingHeaderObj.nHeights = self.dataOutObj.nHeights
self.processingHeaderObj.samplesWin = self.dataOutObj.nHeights
sizeOfFirstHeight = 4
sizeOfdeltaHeight = 4
sizeOfnHeights = 4
sizeOfWindows = (sizeOfFirstHeight + sizeOfdeltaHeight + sizeOfnHeights)*self.processingHeaderObj.nWindows
processingHeaderSize += sizeOfWindows
self.processingHeaderObj.size = processingHeaderSize
class FITS:
name=None
format=None
array =None
data =None
thdulist=None
prihdr=None
hdu=None
def __init__(self):
pass
def setColF(self,name,format,array):
self.name=name
self.format=format
self.array=array
a1=numpy.array([self.array],dtype=numpy.float32)
self.col1 = pyfits.Column(name=self.name, format=self.format, array=a1)
return self.col1
# def setColP(self,name,format,data):
# self.name=name
# self.format=format
# self.data=data
# a2=numpy.array([self.data],dtype=numpy.float32)
# self.col2 = pyfits.Column(name=self.name, format=self.format, array=a2)
# return self.col2
def writeData(self,name,format,data):
self.name=name
self.format=format
self.data=data
a2=numpy.array([self.data],dtype=numpy.float32)
self.col2 = pyfits.Column(name=self.name, format=self.format, array=a2)
return self.col2
def cFImage(self,idblock,year,month,day,hour,minute,second):
self.hdu= pyfits.PrimaryHDU(idblock)
self.hdu.header.set("Year",year)
self.hdu.header.set("Month",month)
self.hdu.header.set("Day",day)
self.hdu.header.set("Hour",hour)
self.hdu.header.set("Minute",minute)
self.hdu.header.set("Second",second)
return self.hdu
def Ctable(self,colList):
self.cols=pyfits.ColDefs(colList)
self.tbhdu = pyfits.new_table(self.cols)
return self.tbhdu
def CFile(self,hdu,tbhdu):
self.thdulist=pyfits.HDUList([hdu,tbhdu])
def wFile(self,filename):
self.thdulist.writeto(filename)
class SpectraHeisWriter(JRODataWriter):
set = None
setFile = None
idblock = None
doypath = None
subfolder = None
def __init__(self, dataOutObj):
self.wrObj = FITS()
self.dataOutObj = dataOutObj
self.nTotalBlocks=0
self.set = None
self.setFile = 0
self.idblock = 0
self.wrpath = None
self.doypath = None
self.subfolder = None
def isNumber(str):
"""
Chequea si el conjunto de caracteres que componen un string puede ser convertidos a un numero.
Excepciones:
Si un determinado string no puede ser convertido a numero
Input:
str, string al cual se le analiza para determinar si convertible a un numero o no
Return:
True : si el string es uno numerico
False : no es un string numerico
"""
try:
float( str )
return True
except:
return False
def setup(self, wrpath):
if not(os.path.exists(wrpath)):
os.mkdir(wrpath)
self.wrpath = wrpath
self.setFile = 0
def putData(self):
name= time.localtime( self.dataOutObj.utctime)
ext=".fits"
if self.doypath == None:
self.subfolder = 'F%4.4d%3.3d_%d' % (name.tm_year,name.tm_yday,time.mktime(datetime.datetime.now().timetuple()))
self.doypath = os.path.join( self.wrpath, self.subfolder )
os.mkdir(self.doypath)
if self.set == None:
self.set = self.dataOutObj.set
self.setFile = 0
if self.set != self.dataOutObj.set:
self.set = self.dataOutObj.set
self.setFile = 0
#make the filename
file = 'D%4.4d%3.3d%3.3d_%3.3d%s' % (name.tm_year,name.tm_yday,self.set,self.setFile,ext)
filename = os.path.join(self.wrpath,self.subfolder, file)
idblock = numpy.array([self.idblock],dtype="int64")
header=self.wrObj.cFImage(idblock=idblock,
year=time.gmtime(self.dataOutObj.utctime).tm_year,
month=time.gmtime(self.dataOutObj.utctime).tm_mon,
day=time.gmtime(self.dataOutObj.utctime).tm_mday,
hour=time.gmtime(self.dataOutObj.utctime).tm_hour,
minute=time.gmtime(self.dataOutObj.utctime).tm_min,
second=time.gmtime(self.dataOutObj.utctime).tm_sec)
c=3E8
freq=numpy.arange(-1*self.dataOutObj.nHeights/2.,self.dataOutObj.nHeights/2.)*(c/(2*self.dataOutObj.deltaHeight*1000))
colList = []
colFreq=self.wrObj.setColF(name="freq", format=str(self.dataOutObj.nFFTPoints)+'E', array=freq)
colList.append(colFreq)
nchannel=self.dataOutObj.nChannels
for i in range(nchannel):
col = self.wrObj.writeData(name="PCh"+str(i+1),
format=str(self.dataOutObj.nFFTPoints)+'E',
data=10*numpy.log10(self.dataOutObj.data_spc[i,:]))
colList.append(col)
data=self.wrObj.Ctable(colList=colList)
self.wrObj.CFile(header,data)
self.wrObj.wFile(filename)
#update the setFile
self.setFile += 1
self.idblock += 1
return 1