|
|
'''
|
|
|
|
|
|
$Author$
|
|
|
$Id$
|
|
|
'''
|
|
|
|
|
|
import os, sys
|
|
|
import numpy
|
|
|
|
|
|
import pyfits
|
|
|
import glob
|
|
|
import fnmatch
|
|
|
import time, datetime
|
|
|
|
|
|
path = os.path.split(os.getcwd())[0]
|
|
|
sys.path.append(path)
|
|
|
|
|
|
from JROHeaderIO import *
|
|
|
from JRODataIO import JRODataReader
|
|
|
from JRODataIO import JRODataWriter
|
|
|
|
|
|
from Data.JROData import Spectra
|
|
|
|
|
|
from Data.JROData import SpectraHeis
|
|
|
|
|
|
class SpectraReader(JRODataReader):
|
|
|
"""
|
|
|
Esta clase permite leer datos de espectros desde archivos procesados (.pdata). La lectura
|
|
|
de los datos siempre se realiza por bloques. Los datos leidos (array de 3 dimensiones)
|
|
|
son almacenados en tres buffer's para el Self Spectra, el Cross Spectra y el DC Channel.
|
|
|
|
|
|
paresCanalesIguales * alturas * perfiles (Self Spectra)
|
|
|
paresCanalesDiferentes * alturas * perfiles (Cross Spectra)
|
|
|
canales * alturas (DC Channels)
|
|
|
|
|
|
Esta clase contiene instancias (objetos) de las clases BasicHeader, SystemHeader,
|
|
|
RadarControllerHeader y Spectra. Los tres primeros se usan para almacenar informacion de la
|
|
|
cabecera de datos (metadata), y el cuarto (Spectra) para obtener y almacenar un bloque de
|
|
|
datos desde el "buffer" cada vez que se ejecute el metodo "getData".
|
|
|
|
|
|
Example:
|
|
|
dpath = "/home/myuser/data"
|
|
|
|
|
|
startTime = datetime.datetime(2010,1,20,0,0,0,0,0,0)
|
|
|
|
|
|
endTime = datetime.datetime(2010,1,21,23,59,59,0,0,0)
|
|
|
|
|
|
readerObj = SpectraReader()
|
|
|
|
|
|
readerObj.setup(dpath, startTime, endTime)
|
|
|
|
|
|
while(True):
|
|
|
|
|
|
readerObj.getData()
|
|
|
|
|
|
print readerObj.data_spc
|
|
|
|
|
|
print readerObj.data_cspc
|
|
|
|
|
|
print readerObj.data_dc
|
|
|
|
|
|
if readerObj.flagNoMoreFiles:
|
|
|
break
|
|
|
|
|
|
"""
|
|
|
|
|
|
pts2read_SelfSpectra = 0
|
|
|
|
|
|
pts2read_CrossSpectra = 0
|
|
|
|
|
|
pts2read_DCchannels = 0
|
|
|
|
|
|
ext = ".pdata"
|
|
|
|
|
|
optchar = "P"
|
|
|
|
|
|
dataOutObj = None
|
|
|
|
|
|
nRdChannels = None
|
|
|
|
|
|
nRdPairs = None
|
|
|
|
|
|
rdPairList = []
|
|
|
|
|
|
|
|
|
def __init__(self, dataOutObj=None):
|
|
|
"""
|
|
|
Inicializador de la clase SpectraReader para la lectura de datos de espectros.
|
|
|
|
|
|
Inputs:
|
|
|
dataOutObj : Objeto de la clase Spectra. Este objeto sera utilizado para
|
|
|
almacenar un perfil de datos cada vez que se haga un requerimiento
|
|
|
(getData). El perfil sera obtenido a partir del buffer de datos,
|
|
|
si el buffer esta vacio se hara un nuevo proceso de lectura de un
|
|
|
bloque de datos.
|
|
|
Si este parametro no es pasado se creara uno internamente.
|
|
|
|
|
|
Affected:
|
|
|
self.dataOutObj
|
|
|
|
|
|
Return : None
|
|
|
"""
|
|
|
|
|
|
self.pts2read_SelfSpectra = 0
|
|
|
|
|
|
self.pts2read_CrossSpectra = 0
|
|
|
|
|
|
self.pts2read_DCchannels = 0
|
|
|
|
|
|
self.datablock = None
|
|
|
|
|
|
self.utc = None
|
|
|
|
|
|
self.ext = ".pdata"
|
|
|
|
|
|
self.optchar = "P"
|
|
|
|
|
|
self.basicHeaderObj = BasicHeader()
|
|
|
|
|
|
self.systemHeaderObj = SystemHeader()
|
|
|
|
|
|
self.radarControllerHeaderObj = RadarControllerHeader()
|
|
|
|
|
|
self.processingHeaderObj = ProcessingHeader()
|
|
|
|
|
|
self.online = 0
|
|
|
|
|
|
self.fp = None
|
|
|
|
|
|
self.idFile = None
|
|
|
|
|
|
self.dtype = None
|
|
|
|
|
|
self.fileSizeByHeader = None
|
|
|
|
|
|
self.filenameList = []
|
|
|
|
|
|
self.filename = None
|
|
|
|
|
|
self.fileSize = None
|
|
|
|
|
|
self.firstHeaderSize = 0
|
|
|
|
|
|
self.basicHeaderSize = 24
|
|
|
|
|
|
self.pathList = []
|
|
|
|
|
|
self.lastUTTime = 0
|
|
|
|
|
|
self.maxTimeStep = 30
|
|
|
|
|
|
self.flagNoMoreFiles = 0
|
|
|
|
|
|
self.set = 0
|
|
|
|
|
|
self.path = None
|
|
|
|
|
|
self.delay = 3 #seconds
|
|
|
|
|
|
self.nTries = 3 #quantity tries
|
|
|
|
|
|
self.nFiles = 3 #number of files for searching
|
|
|
|
|
|
self.nReadBlocks = 0
|
|
|
|
|
|
self.flagIsNewFile = 1
|
|
|
|
|
|
self.ippSeconds = 0
|
|
|
|
|
|
self.flagTimeBlock = 0
|
|
|
|
|
|
self.flagIsNewBlock = 0
|
|
|
|
|
|
self.nTotalBlocks = 0
|
|
|
|
|
|
self.blocksize = 0
|
|
|
|
|
|
|
|
|
def createObjByDefault(self):
|
|
|
|
|
|
dataObj = Spectra()
|
|
|
|
|
|
return dataObj
|
|
|
|
|
|
def __hasNotDataInBuffer(self):
|
|
|
return 1
|
|
|
|
|
|
|
|
|
def getBlockDimension(self):
|
|
|
"""
|
|
|
Obtiene la cantidad de puntos a leer por cada bloque de datos
|
|
|
|
|
|
Affected:
|
|
|
self.nRdChannels
|
|
|
self.nRdPairs
|
|
|
self.pts2read_SelfSpectra
|
|
|
self.pts2read_CrossSpectra
|
|
|
self.pts2read_DCchannels
|
|
|
self.blocksize
|
|
|
self.dataOutObj.nChannels
|
|
|
self.dataOutObj.nPairs
|
|
|
|
|
|
Return:
|
|
|
None
|
|
|
"""
|
|
|
self.nRdChannels = 0
|
|
|
self.nRdPairs = 0
|
|
|
self.rdPairList = []
|
|
|
|
|
|
for i in range(0, self.processingHeaderObj.totalSpectra*2, 2):
|
|
|
if self.processingHeaderObj.spectraComb[i] == self.processingHeaderObj.spectraComb[i+1]:
|
|
|
self.nRdChannels = self.nRdChannels + 1 #par de canales iguales
|
|
|
else:
|
|
|
self.nRdPairs = self.nRdPairs + 1 #par de canales diferentes
|
|
|
self.rdPairList.append((self.processingHeaderObj.spectraComb[i], self.processingHeaderObj.spectraComb[i+1]))
|
|
|
|
|
|
pts2read = self.processingHeaderObj.nHeights * self.processingHeaderObj.profilesPerBlock
|
|
|
|
|
|
self.pts2read_SelfSpectra = int(self.nRdChannels * pts2read)
|
|
|
self.blocksize = self.pts2read_SelfSpectra
|
|
|
|
|
|
if self.processingHeaderObj.flag_cspc:
|
|
|
self.pts2read_CrossSpectra = int(self.nRdPairs * pts2read)
|
|
|
self.blocksize += self.pts2read_CrossSpectra
|
|
|
|
|
|
if self.processingHeaderObj.flag_dc:
|
|
|
self.pts2read_DCchannels = int(self.systemHeaderObj.nChannels * self.processingHeaderObj.nHeights)
|
|
|
self.blocksize += self.pts2read_DCchannels
|
|
|
|
|
|
# self.blocksize = self.pts2read_SelfSpectra + self.pts2read_CrossSpectra + self.pts2read_DCchannels
|
|
|
|
|
|
|
|
|
def readBlock(self):
|
|
|
"""
|
|
|
Lee el bloque de datos desde la posicion actual del puntero del archivo
|
|
|
(self.fp) y actualiza todos los parametros relacionados al bloque de datos
|
|
|
(metadata + data). La data leida es almacenada en el buffer y el contador del buffer
|
|
|
es seteado a 0
|
|
|
|
|
|
Return: None
|
|
|
|
|
|
Variables afectadas:
|
|
|
|
|
|
self.flagIsNewFile
|
|
|
self.flagIsNewBlock
|
|
|
self.nTotalBlocks
|
|
|
self.data_spc
|
|
|
self.data_cspc
|
|
|
self.data_dc
|
|
|
|
|
|
Exceptions:
|
|
|
Si un bloque leido no es un bloque valido
|
|
|
"""
|
|
|
blockOk_flag = False
|
|
|
fpointer = self.fp.tell()
|
|
|
|
|
|
spc = numpy.fromfile( self.fp, self.dtype[0], self.pts2read_SelfSpectra )
|
|
|
spc = spc.reshape( (self.nRdChannels, self.processingHeaderObj.nHeights, self.processingHeaderObj.profilesPerBlock) ) #transforma a un arreglo 3D
|
|
|
|
|
|
if self.processingHeaderObj.flag_cspc:
|
|
|
cspc = numpy.fromfile( self.fp, self.dtype, self.pts2read_CrossSpectra )
|
|
|
cspc = cspc.reshape( (self.nRdPairs, self.processingHeaderObj.nHeights, self.processingHeaderObj.profilesPerBlock) ) #transforma a un arreglo 3D
|
|
|
|
|
|
if self.processingHeaderObj.flag_dc:
|
|
|
dc = numpy.fromfile( self.fp, self.dtype, self.pts2read_DCchannels ) #int(self.processingHeaderObj.nHeights*self.systemHeaderObj.nChannels) )
|
|
|
dc = dc.reshape( (self.systemHeaderObj.nChannels, self.processingHeaderObj.nHeights) ) #transforma a un arreglo 2D
|
|
|
|
|
|
|
|
|
if not(self.processingHeaderObj.shif_fft):
|
|
|
spc = numpy.roll( spc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones
|
|
|
|
|
|
if self.processingHeaderObj.flag_cspc:
|
|
|
cspc = numpy.roll( cspc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones
|
|
|
|
|
|
|
|
|
spc = numpy.transpose( spc, (0,2,1) )
|
|
|
self.data_spc = spc
|
|
|
|
|
|
if self.processingHeaderObj.flag_cspc:
|
|
|
cspc = numpy.transpose( cspc, (0,2,1) )
|
|
|
self.data_cspc = cspc['real'] + cspc['imag']*1j
|
|
|
else:
|
|
|
self.data_cspc = None
|
|
|
|
|
|
if self.processingHeaderObj.flag_dc:
|
|
|
self.data_dc = dc['real'] + dc['imag']*1j
|
|
|
else:
|
|
|
self.data_dc = None
|
|
|
|
|
|
self.flagIsNewFile = 0
|
|
|
self.flagIsNewBlock = 1
|
|
|
|
|
|
self.nTotalBlocks += 1
|
|
|
self.nReadBlocks += 1
|
|
|
|
|
|
return 1
|
|
|
|
|
|
|
|
|
def getData(self):
|
|
|
"""
|
|
|
Copia el buffer de lectura a la clase "Spectra",
|
|
|
con todos los parametros asociados a este (metadata). cuando no hay datos en el buffer de
|
|
|
lectura es necesario hacer una nueva lectura de los bloques de datos usando "readNextBlock"
|
|
|
|
|
|
Return:
|
|
|
0 : Si no hay mas archivos disponibles
|
|
|
1 : Si hizo una buena copia del buffer
|
|
|
|
|
|
Affected:
|
|
|
self.dataOutObj
|
|
|
|
|
|
self.flagTimeBlock
|
|
|
self.flagIsNewBlock
|
|
|
"""
|
|
|
|
|
|
if self.flagNoMoreFiles: return 0
|
|
|
|
|
|
self.flagTimeBlock = 0
|
|
|
self.flagIsNewBlock = 0
|
|
|
|
|
|
if self.__hasNotDataInBuffer():
|
|
|
|
|
|
if not( self.readNextBlock() ):
|
|
|
return 0
|
|
|
|
|
|
# self.updateDataHeader()
|
|
|
|
|
|
if self.flagNoMoreFiles == 1:
|
|
|
print 'Process finished'
|
|
|
return 0
|
|
|
|
|
|
#data es un numpy array de 3 dmensiones (perfiles, alturas y canales)
|
|
|
|
|
|
if self.data_dc == None:
|
|
|
self.dataOutObj.flagNoData = True
|
|
|
return 0
|
|
|
|
|
|
|
|
|
self.dataOutObj.data_spc = self.data_spc
|
|
|
|
|
|
self.dataOutObj.data_cspc = self.data_cspc
|
|
|
|
|
|
self.dataOutObj.data_dc = self.data_dc
|
|
|
|
|
|
self.dataOutObj.flagTimeBlock = self.flagTimeBlock
|
|
|
|
|
|
self.dataOutObj.flagNoData = False
|
|
|
|
|
|
self.dataOutObj.dtype = self.dtype
|
|
|
|
|
|
self.dataOutObj.nChannels = self.nRdChannels
|
|
|
|
|
|
self.dataOutObj.nPairs = self.nRdPairs
|
|
|
|
|
|
self.dataOutObj.pairsList = self.rdPairList
|
|
|
|
|
|
self.dataOutObj.nHeights = self.processingHeaderObj.nHeights
|
|
|
|
|
|
self.dataOutObj.nProfiles = self.processingHeaderObj.profilesPerBlock
|
|
|
|
|
|
self.dataOutObj.nFFTPoints = self.processingHeaderObj.profilesPerBlock
|
|
|
|
|
|
self.dataOutObj.nIncohInt = self.processingHeaderObj.nIncohInt
|
|
|
|
|
|
|
|
|
xf = self.processingHeaderObj.firstHeight + self.processingHeaderObj.nHeights*self.processingHeaderObj.deltaHeight
|
|
|
|
|
|
self.dataOutObj.heightList = numpy.arange(self.processingHeaderObj.firstHeight, xf, self.processingHeaderObj.deltaHeight)
|
|
|
|
|
|
self.dataOutObj.channelList = range(self.systemHeaderObj.nChannels)
|
|
|
|
|
|
self.dataOutObj.channelIndexList = range(self.systemHeaderObj.nChannels)
|
|
|
|
|
|
self.dataOutObj.utctime = self.basicHeaderObj.utc + self.basicHeaderObj.miliSecond/1000.#+ self.profileIndex * self.ippSeconds
|
|
|
|
|
|
self.dataOutObj.ippSeconds = self.ippSeconds
|
|
|
|
|
|
self.dataOutObj.timeInterval = self.ippSeconds * self.processingHeaderObj.nCohInt * self.processingHeaderObj.nIncohInt * self.dataOutObj.nFFTPoints
|
|
|
|
|
|
self.dataOutObj.flagShiftFFT = self.processingHeaderObj.shif_fft
|
|
|
|
|
|
# self.profileIndex += 1
|
|
|
|
|
|
self.dataOutObj.systemHeaderObj = self.systemHeaderObj.copy()
|
|
|
|
|
|
self.dataOutObj.radarControllerHeaderObj = self.radarControllerHeaderObj.copy()
|
|
|
|
|
|
return self.dataOutObj.data_spc
|
|
|
|
|
|
|
|
|
class SpectraWriter(JRODataWriter):
|
|
|
|
|
|
"""
|
|
|
Esta clase permite escribir datos de espectros a archivos procesados (.pdata). La escritura
|
|
|
de los datos siempre se realiza por bloques.
|
|
|
"""
|
|
|
|
|
|
ext = ".pdata"
|
|
|
|
|
|
optchar = "P"
|
|
|
|
|
|
shape_spc_Buffer = None
|
|
|
|
|
|
shape_cspc_Buffer = None
|
|
|
|
|
|
shape_dc_Buffer = None
|
|
|
|
|
|
data_spc = None
|
|
|
|
|
|
data_cspc = None
|
|
|
|
|
|
data_dc = None
|
|
|
|
|
|
wrPairList = []
|
|
|
|
|
|
nWrPairs = 0
|
|
|
|
|
|
nWrChannels = 0
|
|
|
|
|
|
# dataOutObj = None
|
|
|
|
|
|
def __init__(self, dataOutObj=None):
|
|
|
"""
|
|
|
Inicializador de la clase SpectraWriter para la escritura de datos de espectros.
|
|
|
|
|
|
Affected:
|
|
|
self.dataOutObj
|
|
|
self.basicHeaderObj
|
|
|
self.systemHeaderObj
|
|
|
self.radarControllerHeaderObj
|
|
|
self.processingHeaderObj
|
|
|
|
|
|
Return: None
|
|
|
"""
|
|
|
if dataOutObj == None:
|
|
|
dataOutObj = Spectra()
|
|
|
|
|
|
if not( isinstance(dataOutObj, Spectra) ):
|
|
|
raise ValueError, "in SpectraReader, dataOutObj must be an Spectra class object"
|
|
|
|
|
|
self.dataOutObj = dataOutObj
|
|
|
|
|
|
self.nTotalBlocks = 0
|
|
|
|
|
|
self.nWrChannels = self.dataOutObj.nChannels
|
|
|
|
|
|
# if len(pairList) > 0:
|
|
|
# self.wrPairList = pairList
|
|
|
#
|
|
|
# self.nWrPairs = len(pairList)
|
|
|
|
|
|
self.wrPairList = self.dataOutObj.pairsList
|
|
|
|
|
|
self.nWrPairs = self.dataOutObj.nPairs
|
|
|
|
|
|
# self.data_spc = None
|
|
|
# self.data_cspc = None
|
|
|
# self.data_dc = None
|
|
|
|
|
|
# self.fp = None
|
|
|
|
|
|
# self.flagIsNewFile = 1
|
|
|
#
|
|
|
# self.nTotalBlocks = 0
|
|
|
#
|
|
|
# self.flagIsNewBlock = 0
|
|
|
#
|
|
|
# self.flagNoMoreFiles = 0
|
|
|
#
|
|
|
# self.setFile = None
|
|
|
#
|
|
|
# self.dtype = None
|
|
|
#
|
|
|
# self.path = None
|
|
|
#
|
|
|
# self.noMoreFiles = 0
|
|
|
#
|
|
|
# self.filename = None
|
|
|
#
|
|
|
# self.basicHeaderObj = BasicHeader()
|
|
|
#
|
|
|
# self.systemHeaderObj = SystemHeader()
|
|
|
#
|
|
|
# self.radarControllerHeaderObj = RadarControllerHeader()
|
|
|
#
|
|
|
# self.processingHeaderObj = ProcessingHeader()
|
|
|
|
|
|
|
|
|
def hasAllDataInBuffer(self):
|
|
|
return 1
|
|
|
|
|
|
|
|
|
def setBlockDimension(self):
|
|
|
"""
|
|
|
Obtiene las formas dimensionales del los subbloques de datos que componen un bloque
|
|
|
|
|
|
Affected:
|
|
|
self.shape_spc_Buffer
|
|
|
self.shape_cspc_Buffer
|
|
|
self.shape_dc_Buffer
|
|
|
|
|
|
Return: None
|
|
|
"""
|
|
|
self.shape_spc_Buffer = (self.dataOutObj.nChannels,
|
|
|
self.processingHeaderObj.nHeights,
|
|
|
self.processingHeaderObj.profilesPerBlock)
|
|
|
|
|
|
self.shape_cspc_Buffer = (self.dataOutObj.nPairs,
|
|
|
self.processingHeaderObj.nHeights,
|
|
|
self.processingHeaderObj.profilesPerBlock)
|
|
|
|
|
|
self.shape_dc_Buffer = (self.dataOutObj.nChannels,
|
|
|
self.processingHeaderObj.nHeights)
|
|
|
|
|
|
|
|
|
def writeBlock(self):
|
|
|
"""
|
|
|
Escribe el buffer en el file designado
|
|
|
|
|
|
Affected:
|
|
|
self.data_spc
|
|
|
self.data_cspc
|
|
|
self.data_dc
|
|
|
self.flagIsNewFile
|
|
|
self.flagIsNewBlock
|
|
|
self.nTotalBlocks
|
|
|
self.nWriteBlocks
|
|
|
|
|
|
Return: None
|
|
|
"""
|
|
|
|
|
|
spc = numpy.transpose( self.data_spc, (0,2,1) )
|
|
|
if not( self.processingHeaderObj.shif_fft ):
|
|
|
spc = numpy.roll( spc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones
|
|
|
data = spc.reshape((-1))
|
|
|
data.tofile(self.fp)
|
|
|
|
|
|
if self.data_cspc != None:
|
|
|
data = numpy.zeros( self.shape_cspc_Buffer, self.dtype )
|
|
|
cspc = numpy.transpose( self.data_cspc, (0,2,1) )
|
|
|
if not( self.processingHeaderObj.shif_fft ):
|
|
|
cspc = numpy.roll( cspc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones
|
|
|
data['real'] = cspc.real
|
|
|
data['imag'] = cspc.imag
|
|
|
data = data.reshape((-1))
|
|
|
data.tofile(self.fp)
|
|
|
|
|
|
if self.data_dc != None:
|
|
|
data = numpy.zeros( self.shape_dc_Buffer, self.dtype )
|
|
|
dc = self.data_dc
|
|
|
data['real'] = dc.real
|
|
|
data['imag'] = dc.imag
|
|
|
data = data.reshape((-1))
|
|
|
data.tofile(self.fp)
|
|
|
|
|
|
self.data_spc.fill(0)
|
|
|
self.data_dc.fill(0)
|
|
|
if self.data_cspc != None:
|
|
|
self.data_cspc.fill(0)
|
|
|
|
|
|
self.flagIsNewFile = 0
|
|
|
self.flagIsNewBlock = 1
|
|
|
self.nTotalBlocks += 1
|
|
|
self.nWriteBlocks += 1
|
|
|
self.blockIndex += 1
|
|
|
|
|
|
|
|
|
def putData(self):
|
|
|
"""
|
|
|
Setea un bloque de datos y luego los escribe en un file
|
|
|
|
|
|
Affected:
|
|
|
self.data_spc
|
|
|
self.data_cspc
|
|
|
self.data_dc
|
|
|
|
|
|
Return:
|
|
|
0 : Si no hay data o no hay mas files que puedan escribirse
|
|
|
1 : Si se escribio la data de un bloque en un file
|
|
|
"""
|
|
|
self.flagIsNewBlock = 0
|
|
|
|
|
|
if self.dataOutObj.flagNoData:
|
|
|
return 0
|
|
|
|
|
|
if self.dataOutObj.flagTimeBlock:
|
|
|
self.data_spc.fill(0)
|
|
|
self.data_cspc.fill(0)
|
|
|
self.data_dc.fill(0)
|
|
|
self.setNextFile()
|
|
|
|
|
|
if self.flagIsNewFile == 0:
|
|
|
self.getBasicHeader()
|
|
|
|
|
|
self.data_spc = self.dataOutObj.data_spc
|
|
|
self.data_cspc = self.dataOutObj.data_cspc
|
|
|
self.data_dc = self.dataOutObj.data_dc
|
|
|
|
|
|
# #self.processingHeaderObj.dataBlocksPerFile)
|
|
|
if self.hasAllDataInBuffer():
|
|
|
# self.getDataHeader()
|
|
|
self.writeNextBlock()
|
|
|
|
|
|
if self.flagNoMoreFiles:
|
|
|
#print 'Process finished'
|
|
|
return 0
|
|
|
return 1
|
|
|
|
|
|
|
|
|
def __getProcessFlags(self):
|
|
|
|
|
|
processFlags = 0
|
|
|
|
|
|
dtype0 = numpy.dtype([('real','<i1'),('imag','<i1')])
|
|
|
dtype1 = numpy.dtype([('real','<i2'),('imag','<i2')])
|
|
|
dtype2 = numpy.dtype([('real','<i4'),('imag','<i4')])
|
|
|
dtype3 = numpy.dtype([('real','<i8'),('imag','<i8')])
|
|
|
dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')])
|
|
|
dtype5 = numpy.dtype([('real','<f8'),('imag','<f8')])
|
|
|
|
|
|
dtypeList = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5]
|
|
|
|
|
|
|
|
|
|
|
|
datatypeValueList = [PROCFLAG.DATATYPE_CHAR,
|
|
|
PROCFLAG.DATATYPE_SHORT,
|
|
|
PROCFLAG.DATATYPE_LONG,
|
|
|
PROCFLAG.DATATYPE_INT64,
|
|
|
PROCFLAG.DATATYPE_FLOAT,
|
|
|
PROCFLAG.DATATYPE_DOUBLE]
|
|
|
|
|
|
|
|
|
for index in range(len(dtypeList)):
|
|
|
if self.dataOutObj.dtype == dtypeList[index]:
|
|
|
dtypeValue = datatypeValueList[index]
|
|
|
break
|
|
|
|
|
|
processFlags += dtypeValue
|
|
|
|
|
|
if self.dataOutObj.flagDecodeData:
|
|
|
processFlags += PROCFLAG.DECODE_DATA
|
|
|
|
|
|
if self.dataOutObj.flagDeflipData:
|
|
|
processFlags += PROCFLAG.DEFLIP_DATA
|
|
|
|
|
|
if self.dataOutObj.code != None:
|
|
|
processFlags += PROCFLAG.DEFINE_PROCESS_CODE
|
|
|
|
|
|
if self.dataOutObj.nIncohInt > 1:
|
|
|
processFlags += PROCFLAG.INCOHERENT_INTEGRATION
|
|
|
|
|
|
if self.dataOutObj.data_dc != None:
|
|
|
processFlags += PROCFLAG.SAVE_CHANNELS_DC
|
|
|
|
|
|
return processFlags
|
|
|
|
|
|
|
|
|
def __getBlockSize(self):
|
|
|
'''
|
|
|
Este metodos determina el cantidad de bytes para un bloque de datos de tipo Spectra
|
|
|
'''
|
|
|
|
|
|
dtype0 = numpy.dtype([('real','<i1'),('imag','<i1')])
|
|
|
dtype1 = numpy.dtype([('real','<i2'),('imag','<i2')])
|
|
|
dtype2 = numpy.dtype([('real','<i4'),('imag','<i4')])
|
|
|
dtype3 = numpy.dtype([('real','<i8'),('imag','<i8')])
|
|
|
dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')])
|
|
|
dtype5 = numpy.dtype([('real','<f8'),('imag','<f8')])
|
|
|
|
|
|
dtypeList = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5]
|
|
|
datatypeValueList = [1,2,4,8,4,8]
|
|
|
for index in range(len(dtypeList)):
|
|
|
if self.dataOutObj.dtype == dtypeList[index]:
|
|
|
datatypeValue = datatypeValueList[index]
|
|
|
break
|
|
|
|
|
|
|
|
|
pts2write = self.dataOutObj.nHeights * self.dataOutObj.nFFTPoints
|
|
|
|
|
|
pts2write_SelfSpectra = int(self.nWrChannels * pts2write)
|
|
|
blocksize = (pts2write_SelfSpectra*datatypeValue)
|
|
|
|
|
|
if self.dataOutObj.data_cspc != None:
|
|
|
pts2write_CrossSpectra = int(self.nWrPairs * pts2write)
|
|
|
blocksize += (pts2write_CrossSpectra*datatypeValue*2)
|
|
|
|
|
|
if self.dataOutObj.data_dc != None:
|
|
|
pts2write_DCchannels = int(self.nWrChannels * self.dataOutObj.nHeights)
|
|
|
blocksize += (pts2write_DCchannels*datatypeValue*2)
|
|
|
|
|
|
blocksize = blocksize #* datatypeValue * 2 #CORREGIR ESTO
|
|
|
|
|
|
return blocksize
|
|
|
|
|
|
|
|
|
def getBasicHeader(self):
|
|
|
self.basicHeaderObj.size = self.basicHeaderSize #bytes
|
|
|
self.basicHeaderObj.version = self.versionFile
|
|
|
self.basicHeaderObj.dataBlock = self.nTotalBlocks
|
|
|
|
|
|
utc = numpy.floor(self.dataOutObj.utctime)
|
|
|
milisecond = (self.dataOutObj.utctime - utc)* 1000.0
|
|
|
|
|
|
self.basicHeaderObj.utc = utc
|
|
|
self.basicHeaderObj.miliSecond = milisecond
|
|
|
self.basicHeaderObj.timeZone = 0
|
|
|
self.basicHeaderObj.dstFlag = 0
|
|
|
self.basicHeaderObj.errorCount = 0
|
|
|
|
|
|
def getDataHeader(self):
|
|
|
|
|
|
"""
|
|
|
Obtiene una copia del First Header
|
|
|
|
|
|
Affected:
|
|
|
self.systemHeaderObj
|
|
|
self.radarControllerHeaderObj
|
|
|
self.dtype
|
|
|
|
|
|
Return:
|
|
|
None
|
|
|
"""
|
|
|
|
|
|
self.systemHeaderObj = self.dataOutObj.systemHeaderObj.copy()
|
|
|
self.systemHeaderObj.nChannels = self.dataOutObj.nChannels
|
|
|
self.radarControllerHeaderObj = self.dataOutObj.radarControllerHeaderObj.copy()
|
|
|
|
|
|
self.getBasicHeader()
|
|
|
|
|
|
processingHeaderSize = 40 # bytes
|
|
|
self.processingHeaderObj.dtype = 0 # Voltage
|
|
|
self.processingHeaderObj.blockSize = self.__getBlockSize()
|
|
|
self.processingHeaderObj.profilesPerBlock = self.dataOutObj.nFFTPoints
|
|
|
self.processingHeaderObj.dataBlocksPerFile = self.blocksPerFile
|
|
|
self.processingHeaderObj.nWindows = 1 #podria ser 1 o self.dataOutObj.processingHeaderObj.nWindows
|
|
|
self.processingHeaderObj.processFlags = self.__getProcessFlags()
|
|
|
self.processingHeaderObj.nCohInt = self.dataOutObj.nCohInt# Se requiere para determinar el valor de timeInterval
|
|
|
self.processingHeaderObj.nIncohInt = self.dataOutObj.nIncohInt
|
|
|
self.processingHeaderObj.totalSpectra = self.dataOutObj.nPairs + self.dataOutObj.nChannels
|
|
|
|
|
|
if self.processingHeaderObj.totalSpectra > 0:
|
|
|
channelList = []
|
|
|
for channel in range(self.dataOutObj.nChannels):
|
|
|
channelList.append(channel)
|
|
|
channelList.append(channel)
|
|
|
|
|
|
pairsList = []
|
|
|
for pair in self.dataOutObj.pairsList:
|
|
|
pairsList.append(pair[0])
|
|
|
pairsList.append(pair[1])
|
|
|
spectraComb = channelList + pairsList
|
|
|
spectraComb = numpy.array(spectraComb,dtype="u1")
|
|
|
self.processingHeaderObj.spectraComb = spectraComb
|
|
|
sizeOfSpcComb = len(spectraComb)
|
|
|
processingHeaderSize += sizeOfSpcComb
|
|
|
|
|
|
if self.dataOutObj.code != None:
|
|
|
self.processingHeaderObj.code = self.dataOutObj.code
|
|
|
self.processingHeaderObj.nCode = self.dataOutObj.nCode
|
|
|
self.processingHeaderObj.nBaud = self.dataOutObj.nBaud
|
|
|
nCodeSize = 4 # bytes
|
|
|
nBaudSize = 4 # bytes
|
|
|
codeSize = 4 # bytes
|
|
|
sizeOfCode = int(nCodeSize + nBaudSize + codeSize * self.dataOutObj.nCode * self.dataOutObj.nBaud)
|
|
|
processingHeaderSize += sizeOfCode
|
|
|
|
|
|
if self.processingHeaderObj.nWindows != 0:
|
|
|
self.processingHeaderObj.firstHeight = self.dataOutObj.heightList[0]
|
|
|
self.processingHeaderObj.deltaHeight = self.dataOutObj.heightList[1] - self.dataOutObj.heightList[0]
|
|
|
self.processingHeaderObj.nHeights = self.dataOutObj.nHeights
|
|
|
self.processingHeaderObj.samplesWin = self.dataOutObj.nHeights
|
|
|
sizeOfFirstHeight = 4
|
|
|
sizeOfdeltaHeight = 4
|
|
|
sizeOfnHeights = 4
|
|
|
sizeOfWindows = (sizeOfFirstHeight + sizeOfdeltaHeight + sizeOfnHeights)*self.processingHeaderObj.nWindows
|
|
|
processingHeaderSize += sizeOfWindows
|
|
|
|
|
|
self.processingHeaderObj.size = processingHeaderSize
|
|
|
|
|
|
|
|
|
|
|
|
class FITS:
|
|
|
name=None
|
|
|
format=None
|
|
|
array =None
|
|
|
data =None
|
|
|
thdulist=None
|
|
|
prihdr=None
|
|
|
hdu=None
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
|
pass
|
|
|
|
|
|
def setColF(self,name,format,array):
|
|
|
self.name=name
|
|
|
self.format=format
|
|
|
self.array=array
|
|
|
a1=numpy.array([self.array],dtype=numpy.float32)
|
|
|
self.col1 = pyfits.Column(name=self.name, format=self.format, array=a1)
|
|
|
return self.col1
|
|
|
|
|
|
# def setColP(self,name,format,data):
|
|
|
# self.name=name
|
|
|
# self.format=format
|
|
|
# self.data=data
|
|
|
# a2=numpy.array([self.data],dtype=numpy.float32)
|
|
|
# self.col2 = pyfits.Column(name=self.name, format=self.format, array=a2)
|
|
|
# return self.col2
|
|
|
|
|
|
|
|
|
def writeData(self,name,format,data):
|
|
|
self.name=name
|
|
|
self.format=format
|
|
|
self.data=data
|
|
|
a2=numpy.array([self.data],dtype=numpy.float32)
|
|
|
self.col2 = pyfits.Column(name=self.name, format=self.format, array=a2)
|
|
|
return self.col2
|
|
|
|
|
|
def cFImage(self,idblock,year,month,day,hour,minute,second):
|
|
|
self.hdu= pyfits.PrimaryHDU(idblock)
|
|
|
self.hdu.header.set("Year",year)
|
|
|
self.hdu.header.set("Month",month)
|
|
|
self.hdu.header.set("Day",day)
|
|
|
self.hdu.header.set("Hour",hour)
|
|
|
self.hdu.header.set("Minute",minute)
|
|
|
self.hdu.header.set("Second",second)
|
|
|
return self.hdu
|
|
|
|
|
|
|
|
|
def Ctable(self,colList):
|
|
|
self.cols=pyfits.ColDefs(colList)
|
|
|
self.tbhdu = pyfits.new_table(self.cols)
|
|
|
return self.tbhdu
|
|
|
|
|
|
|
|
|
def CFile(self,hdu,tbhdu):
|
|
|
self.thdulist=pyfits.HDUList([hdu,tbhdu])
|
|
|
|
|
|
def wFile(self,filename):
|
|
|
self.thdulist.writeto(filename)
|
|
|
|
|
|
class SpectraHeisWriter(JRODataWriter):
|
|
|
set = None
|
|
|
setFile = None
|
|
|
idblock = None
|
|
|
doypath = None
|
|
|
subfolder = None
|
|
|
|
|
|
def __init__(self, dataOutObj):
|
|
|
self.wrObj = FITS()
|
|
|
self.dataOutObj = dataOutObj
|
|
|
self.nTotalBlocks=0
|
|
|
self.set = None
|
|
|
self.setFile = 0
|
|
|
self.idblock = 0
|
|
|
self.wrpath = None
|
|
|
self.doypath = None
|
|
|
self.subfolder = None
|
|
|
|
|
|
|
|
|
def isNumber(str):
|
|
|
"""
|
|
|
Chequea si el conjunto de caracteres que componen un string puede ser convertidos a un numero.
|
|
|
|
|
|
Excepciones:
|
|
|
Si un determinado string no puede ser convertido a numero
|
|
|
Input:
|
|
|
str, string al cual se le analiza para determinar si convertible a un numero o no
|
|
|
|
|
|
Return:
|
|
|
True : si el string es uno numerico
|
|
|
False : no es un string numerico
|
|
|
"""
|
|
|
try:
|
|
|
float( str )
|
|
|
return True
|
|
|
except:
|
|
|
return False
|
|
|
|
|
|
def setup(self, wrpath):
|
|
|
|
|
|
if not(os.path.exists(wrpath)):
|
|
|
os.mkdir(wrpath)
|
|
|
|
|
|
self.wrpath = wrpath
|
|
|
self.setFile = 0
|
|
|
|
|
|
def putData(self):
|
|
|
name= time.localtime( self.dataOutObj.utctime)
|
|
|
ext=".fits"
|
|
|
|
|
|
if self.doypath == None:
|
|
|
self.subfolder = 'F%4.4d%3.3d_%d' % (name.tm_year,name.tm_yday,time.mktime(datetime.datetime.now().timetuple()))
|
|
|
self.doypath = os.path.join( self.wrpath, self.subfolder )
|
|
|
os.mkdir(self.doypath)
|
|
|
|
|
|
if self.set == None:
|
|
|
self.set = self.dataOutObj.set
|
|
|
self.setFile = 0
|
|
|
if self.set != self.dataOutObj.set:
|
|
|
self.set = self.dataOutObj.set
|
|
|
self.setFile = 0
|
|
|
|
|
|
#make the filename
|
|
|
file = 'D%4.4d%3.3d%3.3d_%3.3d%s' % (name.tm_year,name.tm_yday,self.set,self.setFile,ext)
|
|
|
|
|
|
filename = os.path.join(self.wrpath,self.subfolder, file)
|
|
|
|
|
|
idblock = numpy.array([self.idblock],dtype="int64")
|
|
|
header=self.wrObj.cFImage(idblock=idblock,
|
|
|
year=time.gmtime(self.dataOutObj.utctime).tm_year,
|
|
|
month=time.gmtime(self.dataOutObj.utctime).tm_mon,
|
|
|
day=time.gmtime(self.dataOutObj.utctime).tm_mday,
|
|
|
hour=time.gmtime(self.dataOutObj.utctime).tm_hour,
|
|
|
minute=time.gmtime(self.dataOutObj.utctime).tm_min,
|
|
|
second=time.gmtime(self.dataOutObj.utctime).tm_sec)
|
|
|
|
|
|
c=3E8
|
|
|
freq=numpy.arange(-1*self.dataOutObj.nHeights/2.,self.dataOutObj.nHeights/2.)*(c/(2*self.dataOutObj.deltaHeight*1000))
|
|
|
|
|
|
colList = []
|
|
|
|
|
|
colFreq=self.wrObj.setColF(name="freq", format=str(self.dataOutObj.nFFTPoints)+'E', array=freq)
|
|
|
|
|
|
colList.append(colFreq)
|
|
|
|
|
|
nchannel=self.dataOutObj.nChannels
|
|
|
|
|
|
for i in range(nchannel):
|
|
|
col = self.wrObj.writeData(name="PCh"+str(i+1),
|
|
|
format=str(self.dataOutObj.nFFTPoints)+'E',
|
|
|
data=10*numpy.log10(self.dataOutObj.data_spc[i,:]))
|
|
|
|
|
|
colList.append(col)
|
|
|
|
|
|
data=self.wrObj.Ctable(colList=colList)
|
|
|
|
|
|
self.wrObj.CFile(header,data)
|
|
|
|
|
|
self.wrObj.wFile(filename)
|
|
|
|
|
|
#update the setFile
|
|
|
self.setFile += 1
|
|
|
self.idblock += 1
|
|
|
|
|
|
return 1
|
|
|
|
|
|
|