|
1 | NO CONTENT: new file 100644, binary diff hidden |
@@ -1,358 +1,371 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import numpy |
|
4 | 4 | |
|
5 | 5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot | |
|
6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot | |
|
7 | 7 | from schainpy.utils import log |
|
8 | 8 | |
|
9 | 9 | EARTH_RADIUS = 6.3710e3 |
|
10 | 10 | |
|
11 | 11 | |
|
12 | 12 | def ll2xy(lat1, lon1, lat2, lon2): |
|
13 | 13 | |
|
14 | 14 | p = 0.017453292519943295 |
|
15 | 15 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
16 | 16 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
17 | 17 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
18 | 18 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
19 | 19 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
20 | 20 | theta = -theta + numpy.pi/2 |
|
21 | 21 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def km2deg(km): |
|
25 | 25 | ''' |
|
26 | 26 | Convert distance in km to degrees |
|
27 | 27 | ''' |
|
28 | 28 | |
|
29 | 29 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
30 | 30 | |
|
31 | 31 | |
|
32 | 32 | |
|
33 | 33 | class SpectralMomentsPlot(SpectraPlot): |
|
34 | 34 | ''' |
|
35 | 35 | Plot for Spectral Moments |
|
36 | 36 | ''' |
|
37 | 37 | CODE = 'spc_moments' |
|
38 | colormap = 'jet' | |
|
39 | plot_type = 'pcolor' | |
|
38 | # colormap = 'jet' | |
|
39 | # plot_type = 'pcolor' | |
|
40 | ||
|
41 | class DobleGaussianPlot(SpectraPlot): | |
|
42 | ''' | |
|
43 | Plot for Double Gaussian Plot | |
|
44 | ''' | |
|
45 | CODE = 'gaussian_fit' | |
|
46 | # colormap = 'jet' | |
|
47 | # plot_type = 'pcolor' | |
|
40 | 48 | |
|
49 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): | |
|
50 | ''' | |
|
51 | Plot SpectraCut with Double Gaussian Fit | |
|
52 | ''' | |
|
53 | CODE = 'cut_gaussian_fit' | |
|
41 | 54 | |
|
42 | 55 | class SnrPlot(RTIPlot): |
|
43 | 56 | ''' |
|
44 | 57 | Plot for SNR Data |
|
45 | 58 | ''' |
|
46 | 59 | |
|
47 | 60 | CODE = 'snr' |
|
48 | 61 | colormap = 'jet' |
|
49 | 62 | |
|
50 | 63 | def update(self, dataOut): |
|
51 | 64 | |
|
52 | 65 | data = { |
|
53 | 66 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
54 | 67 | } |
|
55 | 68 | |
|
56 | 69 | return data, {} |
|
57 | 70 | |
|
58 | 71 | class DopplerPlot(RTIPlot): |
|
59 | 72 | ''' |
|
60 | 73 | Plot for DOPPLER Data (1st moment) |
|
61 | 74 | ''' |
|
62 | 75 | |
|
63 | 76 | CODE = 'dop' |
|
64 | 77 | colormap = 'jet' |
|
65 | 78 | |
|
66 | 79 | def update(self, dataOut): |
|
67 | 80 | |
|
68 | 81 | data = { |
|
69 | 82 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
70 | 83 | } |
|
71 | 84 | |
|
72 | 85 | return data, {} |
|
73 | 86 | |
|
74 | 87 | class PowerPlot(RTIPlot): |
|
75 | 88 | ''' |
|
76 | 89 | Plot for Power Data (0 moment) |
|
77 | 90 | ''' |
|
78 | 91 | |
|
79 | 92 | CODE = 'pow' |
|
80 | 93 | colormap = 'jet' |
|
81 | 94 | |
|
82 | 95 | def update(self, dataOut): |
|
83 | 96 | |
|
84 | 97 | data = { |
|
85 | 'pow': 10*numpy.log10(dataOut.data_pow) | |
|
98 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) | |
|
86 | 99 | } |
|
87 | 100 | |
|
88 | 101 | return data, {} |
|
89 | 102 | |
|
90 | 103 | class SpectralWidthPlot(RTIPlot): |
|
91 | 104 | ''' |
|
92 | 105 | Plot for Spectral Width Data (2nd moment) |
|
93 | 106 | ''' |
|
94 | 107 | |
|
95 | 108 | CODE = 'width' |
|
96 | 109 | colormap = 'jet' |
|
97 | 110 | |
|
98 | 111 | def update(self, dataOut): |
|
99 | 112 | |
|
100 | 113 | data = { |
|
101 | 114 | 'width': dataOut.data_width |
|
102 | 115 | } |
|
103 | 116 | |
|
104 | 117 | return data, {} |
|
105 | 118 | |
|
106 | 119 | class SkyMapPlot(Plot): |
|
107 | 120 | ''' |
|
108 | 121 | Plot for meteors detection data |
|
109 | 122 | ''' |
|
110 | 123 | |
|
111 | 124 | CODE = 'param' |
|
112 | 125 | |
|
113 | 126 | def setup(self): |
|
114 | 127 | |
|
115 | 128 | self.ncols = 1 |
|
116 | 129 | self.nrows = 1 |
|
117 | 130 | self.width = 7.2 |
|
118 | 131 | self.height = 7.2 |
|
119 | 132 | self.nplots = 1 |
|
120 | 133 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
121 | 134 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
122 | 135 | self.polar = True |
|
123 | 136 | self.ymin = -180 |
|
124 | 137 | self.ymax = 180 |
|
125 | 138 | self.colorbar = False |
|
126 | 139 | |
|
127 | 140 | def plot(self): |
|
128 | 141 | |
|
129 | 142 | arrayParameters = numpy.concatenate(self.data['param']) |
|
130 | 143 | error = arrayParameters[:, -1] |
|
131 | 144 | indValid = numpy.where(error == 0)[0] |
|
132 | 145 | finalMeteor = arrayParameters[indValid, :] |
|
133 | 146 | finalAzimuth = finalMeteor[:, 3] |
|
134 | 147 | finalZenith = finalMeteor[:, 4] |
|
135 | 148 | |
|
136 | 149 | x = finalAzimuth * numpy.pi / 180 |
|
137 | 150 | y = finalZenith |
|
138 | 151 | |
|
139 | 152 | ax = self.axes[0] |
|
140 | 153 | |
|
141 | 154 | if ax.firsttime: |
|
142 | 155 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
143 | 156 | else: |
|
144 | 157 | ax.plot.set_data(x, y) |
|
145 | 158 | |
|
146 | 159 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
147 | 160 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
148 | 161 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
149 | 162 | dt2, |
|
150 | 163 | len(x)) |
|
151 | 164 | self.titles[0] = title |
|
152 | 165 | |
|
153 | 166 | |
|
154 | 167 | class GenericRTIPlot(Plot): |
|
155 | 168 | ''' |
|
156 | 169 | Plot for data_xxxx object |
|
157 | 170 | ''' |
|
158 | 171 | |
|
159 | 172 | CODE = 'param' |
|
160 | 173 | colormap = 'viridis' |
|
161 | 174 | plot_type = 'pcolorbuffer' |
|
162 | 175 | |
|
163 | 176 | def setup(self): |
|
164 | 177 | self.xaxis = 'time' |
|
165 | 178 | self.ncols = 1 |
|
166 | 179 | self.nrows = self.data.shape(self.attr_data)[0] |
|
167 | 180 | self.nplots = self.nrows |
|
168 | 181 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
169 | 182 | |
|
170 | 183 | if not self.xlabel: |
|
171 | 184 | self.xlabel = 'Time' |
|
172 | 185 | |
|
173 |
self.ylabel = ' |
|
|
186 | self.ylabel = 'Range [km]' | |
|
174 | 187 | if not self.titles: |
|
175 | 188 | self.titles = self.data.parameters \ |
|
176 | 189 | if self.data.parameters else ['Param {}'.format(x) for x in range(self.nrows)] |
|
177 | 190 | |
|
178 | 191 | def update(self, dataOut): |
|
179 | 192 | |
|
180 | 193 | data = { |
|
181 | 194 | self.attr_data : getattr(dataOut, self.attr_data) |
|
182 | 195 | } |
|
183 | 196 | |
|
184 | 197 | meta = {} |
|
185 | 198 | |
|
186 | 199 | return data, meta |
|
187 | 200 | |
|
188 | 201 | def plot(self): |
|
189 | 202 | # self.data.normalize_heights() |
|
190 | 203 | self.x = self.data.times |
|
191 | 204 | self.y = self.data.yrange |
|
192 | 205 | self.z = self.data[self.attr_data] |
|
193 | 206 | |
|
194 | 207 | self.z = numpy.ma.masked_invalid(self.z) |
|
195 | 208 | |
|
196 | 209 | if self.decimation is None: |
|
197 | 210 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
198 | 211 | else: |
|
199 | 212 | x, y, z = self.fill_gaps(*self.decimate()) |
|
200 | 213 | |
|
201 | 214 | for n, ax in enumerate(self.axes): |
|
202 | 215 | |
|
203 | 216 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
204 | 217 | self.z[n]) |
|
205 | 218 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
206 | 219 | self.z[n]) |
|
207 | 220 | |
|
208 | 221 | if ax.firsttime: |
|
209 | 222 | if self.zlimits is not None: |
|
210 | 223 | self.zmin, self.zmax = self.zlimits[n] |
|
211 | 224 | |
|
212 | 225 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
213 | 226 | vmin=self.zmin, |
|
214 | 227 | vmax=self.zmax, |
|
215 | 228 | cmap=self.cmaps[n] |
|
216 | 229 | ) |
|
217 | 230 | else: |
|
218 | 231 | if self.zlimits is not None: |
|
219 | 232 | self.zmin, self.zmax = self.zlimits[n] |
|
220 | 233 | ax.collections.remove(ax.collections[0]) |
|
221 | 234 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
222 | 235 | vmin=self.zmin, |
|
223 | 236 | vmax=self.zmax, |
|
224 | 237 | cmap=self.cmaps[n] |
|
225 | 238 | ) |
|
226 | 239 | |
|
227 | 240 | |
|
228 | 241 | class PolarMapPlot(Plot): |
|
229 | 242 | ''' |
|
230 | 243 | Plot for weather radar |
|
231 | 244 | ''' |
|
232 | 245 | |
|
233 | 246 | CODE = 'param' |
|
234 | 247 | colormap = 'seismic' |
|
235 | 248 | |
|
236 | 249 | def setup(self): |
|
237 | 250 | self.ncols = 1 |
|
238 | 251 | self.nrows = 1 |
|
239 | 252 | self.width = 9 |
|
240 | 253 | self.height = 8 |
|
241 | 254 | self.mode = self.data.meta['mode'] |
|
242 | 255 | if self.channels is not None: |
|
243 | 256 | self.nplots = len(self.channels) |
|
244 | 257 | self.nrows = len(self.channels) |
|
245 | 258 | else: |
|
246 | 259 | self.nplots = self.data.shape(self.CODE)[0] |
|
247 | 260 | self.nrows = self.nplots |
|
248 | 261 | self.channels = list(range(self.nplots)) |
|
249 | 262 | if self.mode == 'E': |
|
250 | 263 | self.xlabel = 'Longitude' |
|
251 | 264 | self.ylabel = 'Latitude' |
|
252 | 265 | else: |
|
253 | 266 | self.xlabel = 'Range (km)' |
|
254 | 267 | self.ylabel = 'Height (km)' |
|
255 | 268 | self.bgcolor = 'white' |
|
256 | 269 | self.cb_labels = self.data.meta['units'] |
|
257 | 270 | self.lat = self.data.meta['latitude'] |
|
258 | 271 | self.lon = self.data.meta['longitude'] |
|
259 | 272 | self.xmin, self.xmax = float( |
|
260 | 273 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
261 | 274 | self.ymin, self.ymax = float( |
|
262 | 275 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
263 | 276 | # self.polar = True |
|
264 | 277 | |
|
265 | 278 | def plot(self): |
|
266 | 279 | |
|
267 | 280 | for n, ax in enumerate(self.axes): |
|
268 | 281 | data = self.data['param'][self.channels[n]] |
|
269 | 282 | |
|
270 | 283 | zeniths = numpy.linspace( |
|
271 | 284 | 0, self.data.meta['max_range'], data.shape[1]) |
|
272 | 285 | if self.mode == 'E': |
|
273 | 286 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
274 | 287 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
275 | 288 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
276 | 289 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
277 | 290 | x = km2deg(x) + self.lon |
|
278 | 291 | y = km2deg(y) + self.lat |
|
279 | 292 | else: |
|
280 | 293 | azimuths = numpy.radians(self.data.yrange) |
|
281 | 294 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
282 | 295 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
283 | 296 | self.y = zeniths |
|
284 | 297 | |
|
285 | 298 | if ax.firsttime: |
|
286 | 299 | if self.zlimits is not None: |
|
287 | 300 | self.zmin, self.zmax = self.zlimits[n] |
|
288 | 301 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
289 | 302 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
290 | 303 | vmin=self.zmin, |
|
291 | 304 | vmax=self.zmax, |
|
292 | 305 | cmap=self.cmaps[n]) |
|
293 | 306 | else: |
|
294 | 307 | if self.zlimits is not None: |
|
295 | 308 | self.zmin, self.zmax = self.zlimits[n] |
|
296 | 309 | ax.collections.remove(ax.collections[0]) |
|
297 | 310 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
298 | 311 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
299 | 312 | vmin=self.zmin, |
|
300 | 313 | vmax=self.zmax, |
|
301 | 314 | cmap=self.cmaps[n]) |
|
302 | 315 | |
|
303 | 316 | if self.mode == 'A': |
|
304 | 317 | continue |
|
305 | 318 | |
|
306 | 319 | # plot district names |
|
307 | 320 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
308 | 321 | for line in f: |
|
309 | 322 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
310 | 323 | lat = float(lat) |
|
311 | 324 | lon = float(lon) |
|
312 | 325 | # ax.plot(lon, lat, '.b', ms=2) |
|
313 | 326 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
314 | 327 | va='bottom', size='8', color='black') |
|
315 | 328 | |
|
316 | 329 | # plot limites |
|
317 | 330 | limites = [] |
|
318 | 331 | tmp = [] |
|
319 | 332 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
320 | 333 | if '#' in line: |
|
321 | 334 | if tmp: |
|
322 | 335 | limites.append(tmp) |
|
323 | 336 | tmp = [] |
|
324 | 337 | continue |
|
325 | 338 | values = line.strip().split(',') |
|
326 | 339 | tmp.append((float(values[0]), float(values[1]))) |
|
327 | 340 | for points in limites: |
|
328 | 341 | ax.add_patch( |
|
329 | 342 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
330 | 343 | |
|
331 | 344 | # plot Cuencas |
|
332 | 345 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
333 | 346 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
334 | 347 | values = [line.strip().split(',') for line in f] |
|
335 | 348 | points = [(float(s[0]), float(s[1])) for s in values] |
|
336 | 349 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
337 | 350 | |
|
338 | 351 | # plot grid |
|
339 | 352 | for r in (15, 30, 45, 60): |
|
340 | 353 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
341 | 354 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
342 | 355 | ax.text( |
|
343 | 356 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
344 | 357 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
345 | 358 | '{}km'.format(r), |
|
346 | 359 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
347 | 360 | |
|
348 | 361 | if self.mode == 'E': |
|
349 | 362 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
350 | 363 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
351 | 364 | else: |
|
352 | 365 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
353 | 366 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
354 | 367 | |
|
355 | 368 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
356 | 369 | self.titles = ['{} {}'.format( |
|
357 | 370 | self.data.parameters[x], title) for x in self.channels] |
|
358 | 371 |
@@ -1,702 +1,743 | |||
|
1 |
# Copyright (c) 2012-202 |
|
|
1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory | |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Classes to plot Spectra data |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import numpy |
|
11 | 11 | |
|
12 | 12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | class SpectraPlot(Plot): |
|
16 | 16 | ''' |
|
17 | 17 | Plot for Spectra data |
|
18 | 18 | ''' |
|
19 | 19 | |
|
20 | 20 | CODE = 'spc' |
|
21 | 21 | colormap = 'jet' |
|
22 | 22 | plot_type = 'pcolor' |
|
23 | 23 | buffering = False |
|
24 | 24 | |
|
25 | 25 | def setup(self): |
|
26 | 26 | self.nplots = len(self.data.channels) |
|
27 | 27 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
28 | 28 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
29 | 29 | self.height = 2.6 * self.nrows |
|
30 | 30 | self.cb_label = 'dB' |
|
31 | 31 | if self.showprofile: |
|
32 | 32 | self.width = 4 * self.ncols |
|
33 | 33 | else: |
|
34 | 34 | self.width = 3.5 * self.ncols |
|
35 | 35 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
36 | 36 | self.ylabel = 'Range [km]' |
|
37 | 37 | |
|
38 | 38 | def update(self, dataOut): |
|
39 | 39 | |
|
40 | 40 | data = {} |
|
41 | 41 | meta = {} |
|
42 | 42 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
43 | 43 | data['spc'] = spc |
|
44 | 44 | data['rti'] = dataOut.getPower() |
|
45 | 45 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
46 | 46 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
47 | ||
|
47 | 48 | if self.CODE == 'spc_moments': |
|
48 | 49 | data['moments'] = dataOut.moments |
|
49 | ||
|
50 | # data['spc'] = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) | |
|
51 | if self.CODE == 'gaussian_fit': | |
|
52 | # data['moments'] = dataOut.moments | |
|
53 | data['gaussfit'] = dataOut.DGauFitParams | |
|
54 | # data['spc'] = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) | |
|
55 | ||
|
50 | 56 | return data, meta |
|
51 | 57 | |
|
52 | 58 | def plot(self): |
|
53 | 59 | if self.xaxis == "frequency": |
|
54 | 60 | x = self.data.xrange[0] |
|
55 | 61 | self.xlabel = "Frequency (kHz)" |
|
56 | 62 | elif self.xaxis == "time": |
|
57 | 63 | x = self.data.xrange[1] |
|
58 | 64 | self.xlabel = "Time (ms)" |
|
59 | 65 | else: |
|
60 | 66 | x = self.data.xrange[2] |
|
61 | 67 | self.xlabel = "Velocity (m/s)" |
|
62 | 68 | |
|
63 | if self.CODE == 'spc_moments': | |
|
69 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): | |
|
64 | 70 | x = self.data.xrange[2] |
|
65 | 71 | self.xlabel = "Velocity (m/s)" |
|
66 | 72 | |
|
67 | 73 | self.titles = [] |
|
68 | 74 | |
|
69 | 75 | y = self.data.yrange |
|
70 | 76 | self.y = y |
|
71 | 77 | |
|
72 | 78 | data = self.data[-1] |
|
73 | 79 | z = data['spc'] |
|
74 | 80 | |
|
75 | 81 | for n, ax in enumerate(self.axes): |
|
76 | 82 | noise = data['noise'][n] |
|
77 | 83 | if self.CODE == 'spc_moments': |
|
78 |
mean = data['moments'][n, |
|
|
84 | mean = data['moments'][n, 1] | |
|
85 | if self.CODE == 'gaussian_fit': | |
|
86 | # mean = data['moments'][n, 1] | |
|
87 | gau0 = data['gaussfit'][n][2,:,0] | |
|
88 | gau1 = data['gaussfit'][n][2,:,1] | |
|
79 | 89 | if ax.firsttime: |
|
80 | 90 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
81 | 91 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
82 | 92 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
83 | 93 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
84 | 94 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
85 | 95 | vmin=self.zmin, |
|
86 | 96 | vmax=self.zmax, |
|
87 | 97 | cmap=plt.get_cmap(self.colormap) |
|
88 | 98 | ) |
|
89 | 99 | |
|
90 | 100 | if self.showprofile: |
|
91 | 101 | ax.plt_profile = self.pf_axes[n].plot( |
|
92 | 102 | data['rti'][n], y)[0] |
|
93 | 103 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
94 | 104 | color="k", linestyle="dashed", lw=1)[0] |
|
95 | 105 | if self.CODE == 'spc_moments': |
|
96 | ax.plt_mean = ax.plot(mean, y, color='k')[0] | |
|
106 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] | |
|
107 | if self.CODE == 'gaussian_fit': | |
|
108 | # ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] | |
|
109 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] | |
|
110 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] | |
|
97 | 111 | else: |
|
98 | 112 | ax.plt.set_array(z[n].T.ravel()) |
|
99 | 113 | if self.showprofile: |
|
100 | 114 | ax.plt_profile.set_data(data['rti'][n], y) |
|
101 | 115 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
102 | 116 | if self.CODE == 'spc_moments': |
|
103 | 117 | ax.plt_mean.set_data(mean, y) |
|
118 | if self.CODE == 'gaussian_fit': | |
|
119 | # ax.plt_mean.set_data(mean, y) | |
|
120 | ax.plt_gau0.set_data(gau0, y) | |
|
121 | ax.plt_gau1.set_data(gau1, y) | |
|
104 | 122 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
105 | 123 | |
|
106 | 124 | |
|
107 | 125 | class CrossSpectraPlot(Plot): |
|
108 | 126 | |
|
109 | 127 | CODE = 'cspc' |
|
110 | 128 | colormap = 'jet' |
|
111 | 129 | plot_type = 'pcolor' |
|
112 | 130 | zmin_coh = None |
|
113 | 131 | zmax_coh = None |
|
114 | 132 | zmin_phase = None |
|
115 | 133 | zmax_phase = None |
|
116 | 134 | |
|
117 | 135 | def setup(self): |
|
118 | 136 | |
|
119 | 137 | self.ncols = 4 |
|
120 | 138 | self.nplots = len(self.data.pairs) * 2 |
|
121 | 139 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
122 | 140 | self.width = 3.1 * self.ncols |
|
123 | 141 | self.height = 2.6 * self.nrows |
|
124 | 142 | self.ylabel = 'Range [km]' |
|
125 | 143 | self.showprofile = False |
|
126 | 144 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
127 | 145 | |
|
128 | 146 | def update(self, dataOut): |
|
129 | 147 | |
|
130 | 148 | data = {} |
|
131 | 149 | meta = {} |
|
132 | 150 | |
|
133 | 151 | spc = dataOut.data_spc |
|
134 | 152 | cspc = dataOut.data_cspc |
|
135 | 153 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
136 | 154 | meta['pairs'] = dataOut.pairsList |
|
137 | 155 | |
|
138 | 156 | tmp = [] |
|
139 | 157 | |
|
140 | 158 | for n, pair in enumerate(meta['pairs']): |
|
141 | 159 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
142 | 160 | coh = numpy.abs(out) |
|
143 | 161 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
144 | 162 | tmp.append(coh) |
|
145 | 163 | tmp.append(phase) |
|
146 | 164 | |
|
147 | 165 | data['cspc'] = numpy.array(tmp) |
|
148 | 166 | |
|
149 | 167 | return data, meta |
|
150 | 168 | |
|
151 | 169 | def plot(self): |
|
152 | 170 | |
|
153 | 171 | if self.xaxis == "frequency": |
|
154 | 172 | x = self.data.xrange[0] |
|
155 | 173 | self.xlabel = "Frequency (kHz)" |
|
156 | 174 | elif self.xaxis == "time": |
|
157 | 175 | x = self.data.xrange[1] |
|
158 | 176 | self.xlabel = "Time (ms)" |
|
159 | 177 | else: |
|
160 | 178 | x = self.data.xrange[2] |
|
161 | 179 | self.xlabel = "Velocity (m/s)" |
|
162 | 180 | |
|
163 | 181 | self.titles = [] |
|
164 | 182 | |
|
165 | 183 | y = self.data.yrange |
|
166 | 184 | self.y = y |
|
167 | 185 | |
|
168 | 186 | data = self.data[-1] |
|
169 | 187 | cspc = data['cspc'] |
|
170 | 188 | |
|
171 | 189 | for n in range(len(self.data.pairs)): |
|
172 | 190 | pair = self.data.pairs[n] |
|
173 | 191 | coh = cspc[n*2] |
|
174 | 192 | phase = cspc[n*2+1] |
|
175 | 193 | ax = self.axes[2 * n] |
|
176 | 194 | if ax.firsttime: |
|
177 | 195 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
178 | 196 | vmin=0, |
|
179 | 197 | vmax=1, |
|
180 | 198 | cmap=plt.get_cmap(self.colormap_coh) |
|
181 | 199 | ) |
|
182 | 200 | else: |
|
183 | 201 | ax.plt.set_array(coh.T.ravel()) |
|
184 | 202 | self.titles.append( |
|
185 | 203 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
186 | 204 | |
|
187 | 205 | ax = self.axes[2 * n + 1] |
|
188 | 206 | if ax.firsttime: |
|
189 | 207 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
190 | 208 | vmin=-180, |
|
191 | 209 | vmax=180, |
|
192 | 210 | cmap=plt.get_cmap(self.colormap_phase) |
|
193 | 211 | ) |
|
194 | 212 | else: |
|
195 | 213 | ax.plt.set_array(phase.T.ravel()) |
|
196 | 214 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
197 | 215 | |
|
198 | 216 | |
|
199 | 217 | class RTIPlot(Plot): |
|
200 | 218 | ''' |
|
201 | 219 | Plot for RTI data |
|
202 | 220 | ''' |
|
203 | 221 | |
|
204 | 222 | CODE = 'rti' |
|
205 | 223 | colormap = 'jet' |
|
206 | 224 | plot_type = 'pcolorbuffer' |
|
207 | 225 | |
|
208 | 226 | def setup(self): |
|
209 | 227 | self.xaxis = 'time' |
|
210 | 228 | self.ncols = 1 |
|
211 | 229 | self.nrows = len(self.data.channels) |
|
212 | 230 | self.nplots = len(self.data.channels) |
|
213 | 231 | self.ylabel = 'Range [km]' |
|
214 | 232 | self.xlabel = 'Time' |
|
215 | 233 | self.cb_label = 'dB' |
|
216 | 234 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) |
|
217 | 235 | self.titles = ['{} Channel {}'.format( |
|
218 | 236 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
219 | 237 | |
|
220 | 238 | def update(self, dataOut): |
|
221 | 239 | |
|
222 | 240 | data = {} |
|
223 | 241 | meta = {} |
|
224 | 242 | data['rti'] = dataOut.getPower() |
|
225 | 243 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
226 | 244 | |
|
227 | 245 | return data, meta |
|
228 | 246 | |
|
229 | 247 | def plot(self): |
|
230 | 248 | self.x = self.data.times |
|
231 | 249 | self.y = self.data.yrange |
|
232 | 250 | self.z = self.data[self.CODE] |
|
233 | 251 | self.z = numpy.ma.masked_invalid(self.z) |
|
234 | 252 | |
|
235 | 253 | if self.decimation is None: |
|
236 | 254 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
237 | 255 | else: |
|
238 | 256 | x, y, z = self.fill_gaps(*self.decimate()) |
|
239 | 257 | |
|
240 | 258 | for n, ax in enumerate(self.axes): |
|
241 | 259 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
242 | 260 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
243 | 261 | data = self.data[-1] |
|
244 | 262 | if ax.firsttime: |
|
245 | 263 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
246 | 264 | vmin=self.zmin, |
|
247 | 265 | vmax=self.zmax, |
|
248 | 266 | cmap=plt.get_cmap(self.colormap) |
|
249 | 267 | ) |
|
250 | 268 | if self.showprofile: |
|
251 | 269 | ax.plot_profile = self.pf_axes[n].plot( |
|
252 | 270 | data['rti'][n], self.y)[0] |
|
253 | 271 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
254 | 272 | color="k", linestyle="dashed", lw=1)[0] |
|
255 | 273 | else: |
|
256 | 274 | ax.collections.remove(ax.collections[0]) |
|
257 | 275 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
258 | 276 | vmin=self.zmin, |
|
259 | 277 | vmax=self.zmax, |
|
260 | 278 | cmap=plt.get_cmap(self.colormap) |
|
261 | 279 | ) |
|
262 | 280 | if self.showprofile: |
|
263 | 281 | ax.plot_profile.set_data(data['rti'][n], self.y) |
|
264 | 282 | ax.plot_noise.set_data(numpy.repeat( |
|
265 | 283 | data['noise'][n], len(self.y)), self.y) |
|
266 | 284 | |
|
267 | 285 | |
|
268 | 286 | class CoherencePlot(RTIPlot): |
|
269 | 287 | ''' |
|
270 | 288 | Plot for Coherence data |
|
271 | 289 | ''' |
|
272 | 290 | |
|
273 | 291 | CODE = 'coh' |
|
274 | 292 | |
|
275 | 293 | def setup(self): |
|
276 | 294 | self.xaxis = 'time' |
|
277 | 295 | self.ncols = 1 |
|
278 | 296 | self.nrows = len(self.data.pairs) |
|
279 | 297 | self.nplots = len(self.data.pairs) |
|
280 | 298 | self.ylabel = 'Range [km]' |
|
281 | 299 | self.xlabel = 'Time' |
|
282 | 300 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
283 | 301 | if self.CODE == 'coh': |
|
284 | 302 | self.cb_label = '' |
|
285 | 303 | self.titles = [ |
|
286 | 304 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
287 | 305 | else: |
|
288 | 306 | self.cb_label = 'Degrees' |
|
289 | 307 | self.titles = [ |
|
290 | 308 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
291 | 309 | |
|
292 | 310 | def update(self, dataOut): |
|
293 | 311 | |
|
294 | 312 | data = {} |
|
295 | 313 | meta = {} |
|
296 | 314 | data['coh'] = dataOut.getCoherence() |
|
297 | 315 | meta['pairs'] = dataOut.pairsList |
|
298 | 316 | |
|
299 | 317 | return data, meta |
|
300 | 318 | |
|
301 | 319 | class PhasePlot(CoherencePlot): |
|
302 | 320 | ''' |
|
303 | 321 | Plot for Phase map data |
|
304 | 322 | ''' |
|
305 | 323 | |
|
306 | 324 | CODE = 'phase' |
|
307 | 325 | colormap = 'seismic' |
|
308 | 326 | |
|
309 | 327 | def update(self, dataOut): |
|
310 | 328 | |
|
311 | 329 | data = {} |
|
312 | 330 | meta = {} |
|
313 | 331 | data['phase'] = dataOut.getCoherence(phase=True) |
|
314 | 332 | meta['pairs'] = dataOut.pairsList |
|
315 | 333 | |
|
316 | 334 | return data, meta |
|
317 | 335 | |
|
318 | 336 | class NoisePlot(Plot): |
|
319 | 337 | ''' |
|
320 | 338 | Plot for noise |
|
321 | 339 | ''' |
|
322 | 340 | |
|
323 | 341 | CODE = 'noise' |
|
324 | 342 | plot_type = 'scatterbuffer' |
|
325 | 343 | |
|
326 | 344 | def setup(self): |
|
327 | 345 | self.xaxis = 'time' |
|
328 | 346 | self.ncols = 1 |
|
329 | 347 | self.nrows = 1 |
|
330 | 348 | self.nplots = 1 |
|
331 | 349 | self.ylabel = 'Intensity [dB]' |
|
332 | 350 | self.xlabel = 'Time' |
|
333 | 351 | self.titles = ['Noise'] |
|
334 | 352 | self.colorbar = False |
|
335 | 353 | self.plots_adjust.update({'right': 0.85 }) |
|
336 | 354 | |
|
337 | 355 | def update(self, dataOut): |
|
338 | 356 | |
|
339 | 357 | data = {} |
|
340 | 358 | meta = {} |
|
341 | 359 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
342 | 360 | meta['yrange'] = numpy.array([]) |
|
343 | 361 | |
|
344 | 362 | return data, meta |
|
345 | 363 | |
|
346 | 364 | def plot(self): |
|
347 | 365 | |
|
348 | 366 | x = self.data.times |
|
349 | 367 | xmin = self.data.min_time |
|
350 | 368 | xmax = xmin + self.xrange * 60 * 60 |
|
351 | 369 | Y = self.data['noise'] |
|
352 | 370 | |
|
353 | 371 | if self.axes[0].firsttime: |
|
354 | 372 | self.ymin = numpy.nanmin(Y) - 5 |
|
355 | 373 | self.ymax = numpy.nanmax(Y) + 5 |
|
356 | 374 | for ch in self.data.channels: |
|
357 | 375 | y = Y[ch] |
|
358 | 376 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
359 | 377 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
360 | 378 | else: |
|
361 | 379 | for ch in self.data.channels: |
|
362 | 380 | y = Y[ch] |
|
363 | 381 | self.axes[0].lines[ch].set_data(x, y) |
|
364 | 382 | |
|
365 | 383 | |
|
366 | 384 | class PowerProfilePlot(Plot): |
|
367 | 385 | |
|
368 | 386 | CODE = 'pow_profile' |
|
369 | 387 | plot_type = 'scatter' |
|
370 | 388 | |
|
371 | 389 | def setup(self): |
|
372 | 390 | |
|
373 | 391 | self.ncols = 1 |
|
374 | 392 | self.nrows = 1 |
|
375 | 393 | self.nplots = 1 |
|
376 | 394 | self.height = 4 |
|
377 | 395 | self.width = 3 |
|
378 | 396 | self.ylabel = 'Range [km]' |
|
379 | 397 | self.xlabel = 'Intensity [dB]' |
|
380 | 398 | self.titles = ['Power Profile'] |
|
381 | 399 | self.colorbar = False |
|
382 | 400 | |
|
383 | 401 | def update(self, dataOut): |
|
384 | 402 | |
|
385 | 403 | data = {} |
|
386 | 404 | meta = {} |
|
387 | 405 | data[self.CODE] = dataOut.getPower() |
|
388 | 406 | |
|
389 | 407 | return data, meta |
|
390 | 408 | |
|
391 | 409 | def plot(self): |
|
392 | 410 | |
|
393 | 411 | y = self.data.yrange |
|
394 | 412 | self.y = y |
|
395 | 413 | |
|
396 | 414 | x = self.data[-1][self.CODE] |
|
397 | 415 | |
|
398 | 416 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
399 | 417 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
400 | 418 | |
|
401 | 419 | if self.axes[0].firsttime: |
|
402 | 420 | for ch in self.data.channels: |
|
403 | 421 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
404 | 422 | plt.legend() |
|
405 | 423 | else: |
|
406 | 424 | for ch in self.data.channels: |
|
407 | 425 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
408 | 426 | |
|
409 | 427 | |
|
410 | 428 | class SpectraCutPlot(Plot): |
|
411 | 429 | |
|
412 | 430 | CODE = 'spc_cut' |
|
413 | 431 | plot_type = 'scatter' |
|
414 | 432 | buffering = False |
|
415 | 433 | |
|
416 | 434 | def setup(self): |
|
417 | 435 | |
|
418 | 436 | self.nplots = len(self.data.channels) |
|
419 | 437 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
420 | 438 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
421 | 439 | self.width = 3.4 * self.ncols + 1.5 |
|
422 | 440 | self.height = 3 * self.nrows |
|
423 | 441 | self.ylabel = 'Power [dB]' |
|
424 | 442 | self.colorbar = False |
|
425 | 443 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
426 | 444 | |
|
427 | 445 | def update(self, dataOut): |
|
428 | 446 | |
|
429 | 447 | data = {} |
|
430 | 448 | meta = {} |
|
431 |
spc = 10*numpy.log10(dataOut.data_ |
|
|
449 | spc = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) | |
|
432 | 450 | data['spc'] = spc |
|
433 | 451 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
434 | ||
|
452 | if self.CODE == 'cut_gaussian_fit': | |
|
453 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) | |
|
454 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) | |
|
435 | 455 | return data, meta |
|
436 | 456 | |
|
437 | 457 | def plot(self): |
|
438 | 458 | if self.xaxis == "frequency": |
|
439 | 459 | x = self.data.xrange[0][1:] |
|
440 | 460 | self.xlabel = "Frequency (kHz)" |
|
441 | 461 | elif self.xaxis == "time": |
|
442 | 462 | x = self.data.xrange[1] |
|
443 | 463 | self.xlabel = "Time (ms)" |
|
444 | 464 | else: |
|
445 | x = self.data.xrange[2] | |
|
465 | x = self.data.xrange[2][:-1] | |
|
466 | self.xlabel = "Velocity (m/s)" | |
|
467 | ||
|
468 | if self.CODE == 'cut_gaussian_fit': | |
|
469 | x = self.data.xrange[2][:-1] | |
|
446 | 470 | self.xlabel = "Velocity (m/s)" |
|
447 | 471 | |
|
448 | 472 | self.titles = [] |
|
449 | 473 | |
|
450 | 474 | y = self.data.yrange |
|
451 |
|
|
|
475 | data = self.data[-1] | |
|
476 | z = data['spc'] | |
|
452 | 477 | |
|
453 | 478 | if self.height_index: |
|
454 | 479 | index = numpy.array(self.height_index) |
|
455 | 480 | else: |
|
456 | 481 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
457 | 482 | |
|
458 | 483 | for n, ax in enumerate(self.axes): |
|
484 | if self.CODE == 'cut_gaussian_fit': | |
|
485 | gau0 = data['gauss_fit0'] | |
|
486 | gau1 = data['gauss_fit1'] | |
|
459 | 487 | if ax.firsttime: |
|
460 | 488 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
461 | 489 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
462 | 490 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
463 | 491 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
464 | ax.plt = ax.plot(x, z[n, :, index].T) | |
|
492 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) | |
|
493 | if self.CODE == 'cut_gaussian_fit': | |
|
494 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') | |
|
495 | for i, line in enumerate(ax.plt_gau0): | |
|
496 | line.set_color(ax.plt[i].get_color()) | |
|
497 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') | |
|
498 | for i, line in enumerate(ax.plt_gau1): | |
|
499 | line.set_color(ax.plt[i].get_color()) | |
|
465 | 500 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
466 | 501 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
467 | 502 | else: |
|
468 | 503 | for i, line in enumerate(ax.plt): |
|
469 | line.set_data(x, z[n, :, i]) | |
|
504 | line.set_data(x, z[n, :, index[i]].T) | |
|
505 | for i, line in enumerate(ax.plt_gau0): | |
|
506 | line.set_data(x, gau0[n, :, index[i]].T) | |
|
507 | line.set_color(ax.plt[i].get_color()) | |
|
508 | for i, line in enumerate(ax.plt_gau1): | |
|
509 | line.set_data(x, gau1[n, :, index[i]].T) | |
|
510 | line.set_color(ax.plt[i].get_color()) | |
|
470 | 511 | self.titles.append('CH {}'.format(n)) |
|
471 | 512 | |
|
472 | 513 | |
|
473 | 514 | class BeaconPhase(Plot): |
|
474 | 515 | |
|
475 | 516 | __isConfig = None |
|
476 | 517 | __nsubplots = None |
|
477 | 518 | |
|
478 | 519 | PREFIX = 'beacon_phase' |
|
479 | 520 | |
|
480 | 521 | def __init__(self): |
|
481 | 522 | Plot.__init__(self) |
|
482 | 523 | self.timerange = 24*60*60 |
|
483 | 524 | self.isConfig = False |
|
484 | 525 | self.__nsubplots = 1 |
|
485 | 526 | self.counter_imagwr = 0 |
|
486 | 527 | self.WIDTH = 800 |
|
487 | 528 | self.HEIGHT = 400 |
|
488 | 529 | self.WIDTHPROF = 120 |
|
489 | 530 | self.HEIGHTPROF = 0 |
|
490 | 531 | self.xdata = None |
|
491 | 532 | self.ydata = None |
|
492 | 533 | |
|
493 | 534 | self.PLOT_CODE = BEACON_CODE |
|
494 | 535 | |
|
495 | 536 | self.FTP_WEI = None |
|
496 | 537 | self.EXP_CODE = None |
|
497 | 538 | self.SUB_EXP_CODE = None |
|
498 | 539 | self.PLOT_POS = None |
|
499 | 540 | |
|
500 | 541 | self.filename_phase = None |
|
501 | 542 | |
|
502 | 543 | self.figfile = None |
|
503 | 544 | |
|
504 | 545 | self.xmin = None |
|
505 | 546 | self.xmax = None |
|
506 | 547 | |
|
507 | 548 | def getSubplots(self): |
|
508 | 549 | |
|
509 | 550 | ncol = 1 |
|
510 | 551 | nrow = 1 |
|
511 | 552 | |
|
512 | 553 | return nrow, ncol |
|
513 | 554 | |
|
514 | 555 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
515 | 556 | |
|
516 | 557 | self.__showprofile = showprofile |
|
517 | 558 | self.nplots = nplots |
|
518 | 559 | |
|
519 | 560 | ncolspan = 7 |
|
520 | 561 | colspan = 6 |
|
521 | 562 | self.__nsubplots = 2 |
|
522 | 563 | |
|
523 | 564 | self.createFigure(id = id, |
|
524 | 565 | wintitle = wintitle, |
|
525 | 566 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
526 | 567 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
527 | 568 | show=show) |
|
528 | 569 | |
|
529 | 570 | nrow, ncol = self.getSubplots() |
|
530 | 571 | |
|
531 | 572 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
532 | 573 | |
|
533 | 574 | def save_phase(self, filename_phase): |
|
534 | 575 | f = open(filename_phase,'w+') |
|
535 | 576 | f.write('\n\n') |
|
536 | 577 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
537 | 578 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
538 | 579 | f.close() |
|
539 | 580 | |
|
540 | 581 | def save_data(self, filename_phase, data, data_datetime): |
|
541 | 582 | f=open(filename_phase,'a') |
|
542 | 583 | timetuple_data = data_datetime.timetuple() |
|
543 | 584 | day = str(timetuple_data.tm_mday) |
|
544 | 585 | month = str(timetuple_data.tm_mon) |
|
545 | 586 | year = str(timetuple_data.tm_year) |
|
546 | 587 | hour = str(timetuple_data.tm_hour) |
|
547 | 588 | minute = str(timetuple_data.tm_min) |
|
548 | 589 | second = str(timetuple_data.tm_sec) |
|
549 | 590 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
550 | 591 | f.close() |
|
551 | 592 | |
|
552 | 593 | def plot(self): |
|
553 | 594 | log.warning('TODO: Not yet implemented...') |
|
554 | 595 | |
|
555 | 596 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
556 | 597 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
557 | 598 | timerange=None, |
|
558 | 599 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
559 | 600 | server=None, folder=None, username=None, password=None, |
|
560 | 601 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
561 | 602 | |
|
562 | 603 | if dataOut.flagNoData: |
|
563 | 604 | return dataOut |
|
564 | 605 | |
|
565 | 606 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
566 | 607 | return |
|
567 | 608 | |
|
568 | 609 | if pairsList == None: |
|
569 | 610 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
570 | 611 | else: |
|
571 | 612 | pairsIndexList = [] |
|
572 | 613 | for pair in pairsList: |
|
573 | 614 | if pair not in dataOut.pairsList: |
|
574 | 615 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
575 | 616 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
576 | 617 | |
|
577 | 618 | if pairsIndexList == []: |
|
578 | 619 | return |
|
579 | 620 | |
|
580 | 621 | # if len(pairsIndexList) > 4: |
|
581 | 622 | # pairsIndexList = pairsIndexList[0:4] |
|
582 | 623 | |
|
583 | 624 | hmin_index = None |
|
584 | 625 | hmax_index = None |
|
585 | 626 | |
|
586 | 627 | if hmin != None and hmax != None: |
|
587 | 628 | indexes = numpy.arange(dataOut.nHeights) |
|
588 | 629 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
589 | 630 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
590 | 631 | |
|
591 | 632 | if hmin_list.any(): |
|
592 | 633 | hmin_index = hmin_list[0] |
|
593 | 634 | |
|
594 | 635 | if hmax_list.any(): |
|
595 | 636 | hmax_index = hmax_list[-1]+1 |
|
596 | 637 | |
|
597 | 638 | x = dataOut.getTimeRange() |
|
598 | 639 | |
|
599 | 640 | thisDatetime = dataOut.datatime |
|
600 | 641 | |
|
601 | 642 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
602 | 643 | xlabel = "Local Time" |
|
603 | 644 | ylabel = "Phase (degrees)" |
|
604 | 645 | |
|
605 | 646 | update_figfile = False |
|
606 | 647 | |
|
607 | 648 | nplots = len(pairsIndexList) |
|
608 | 649 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
609 | 650 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
610 | 651 | for i in range(nplots): |
|
611 | 652 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
612 | 653 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
613 | 654 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
614 | 655 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
615 | 656 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
616 | 657 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
617 | 658 | |
|
618 | 659 | if dataOut.beacon_heiIndexList: |
|
619 | 660 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
620 | 661 | else: |
|
621 | 662 | phase_beacon[i] = numpy.average(phase) |
|
622 | 663 | |
|
623 | 664 | if not self.isConfig: |
|
624 | 665 | |
|
625 | 666 | nplots = len(pairsIndexList) |
|
626 | 667 | |
|
627 | 668 | self.setup(id=id, |
|
628 | 669 | nplots=nplots, |
|
629 | 670 | wintitle=wintitle, |
|
630 | 671 | showprofile=showprofile, |
|
631 | 672 | show=show) |
|
632 | 673 | |
|
633 | 674 | if timerange != None: |
|
634 | 675 | self.timerange = timerange |
|
635 | 676 | |
|
636 | 677 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
637 | 678 | |
|
638 | 679 | if ymin == None: ymin = 0 |
|
639 | 680 | if ymax == None: ymax = 360 |
|
640 | 681 | |
|
641 | 682 | self.FTP_WEI = ftp_wei |
|
642 | 683 | self.EXP_CODE = exp_code |
|
643 | 684 | self.SUB_EXP_CODE = sub_exp_code |
|
644 | 685 | self.PLOT_POS = plot_pos |
|
645 | 686 | |
|
646 | 687 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
647 | 688 | self.isConfig = True |
|
648 | 689 | self.figfile = figfile |
|
649 | 690 | self.xdata = numpy.array([]) |
|
650 | 691 | self.ydata = numpy.array([]) |
|
651 | 692 | |
|
652 | 693 | update_figfile = True |
|
653 | 694 | |
|
654 | 695 | #open file beacon phase |
|
655 | 696 | path = '%s%03d' %(self.PREFIX, self.id) |
|
656 | 697 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
657 | 698 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
658 | 699 | #self.save_phase(self.filename_phase) |
|
659 | 700 | |
|
660 | 701 | |
|
661 | 702 | #store data beacon phase |
|
662 | 703 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
663 | 704 | |
|
664 | 705 | self.setWinTitle(title) |
|
665 | 706 | |
|
666 | 707 | |
|
667 | 708 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
668 | 709 | |
|
669 | 710 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
670 | 711 | |
|
671 | 712 | axes = self.axesList[0] |
|
672 | 713 | |
|
673 | 714 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
674 | 715 | |
|
675 | 716 | if len(self.ydata)==0: |
|
676 | 717 | self.ydata = phase_beacon.reshape(-1,1) |
|
677 | 718 | else: |
|
678 | 719 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
679 | 720 | |
|
680 | 721 | |
|
681 | 722 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
682 | 723 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
683 | 724 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
684 | 725 | XAxisAsTime=True, grid='both' |
|
685 | 726 | ) |
|
686 | 727 | |
|
687 | 728 | self.draw() |
|
688 | 729 | |
|
689 | 730 | if dataOut.ltctime >= self.xmax: |
|
690 | 731 | self.counter_imagwr = wr_period |
|
691 | 732 | self.isConfig = False |
|
692 | 733 | update_figfile = True |
|
693 | 734 | |
|
694 | 735 | self.save(figpath=figpath, |
|
695 | 736 | figfile=figfile, |
|
696 | 737 | save=save, |
|
697 | 738 | ftp=ftp, |
|
698 | 739 | wr_period=wr_period, |
|
699 | 740 | thisDatetime=thisDatetime, |
|
700 | 741 | update_figfile=update_figfile) |
|
701 | 742 | |
|
702 | 743 | return dataOut No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now