The requested changes are too big and content was truncated. Show full diff
@@ -1,693 +1,695 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Base class to create plot operations |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import sys |
|
11 | 11 | import zmq |
|
12 | 12 | import time |
|
13 | 13 | import numpy |
|
14 | 14 | import datetime |
|
15 | 15 | from collections import deque |
|
16 | 16 | from functools import wraps |
|
17 | 17 | from threading import Thread |
|
18 | 18 | import matplotlib |
|
19 | 19 | |
|
20 | 20 | if 'BACKEND' in os.environ: |
|
21 | 21 | matplotlib.use(os.environ['BACKEND']) |
|
22 | 22 | elif 'linux' in sys.platform: |
|
23 | 23 | matplotlib.use("TkAgg") |
|
24 | 24 | elif 'darwin' in sys.platform: |
|
25 | 25 | matplotlib.use('MacOSX') |
|
26 | 26 | else: |
|
27 | 27 | from schainpy.utils import log |
|
28 | 28 | log.warning('Using default Backend="Agg"', 'INFO') |
|
29 | 29 | matplotlib.use('Agg') |
|
30 | 30 | |
|
31 | 31 | import matplotlib.pyplot as plt |
|
32 | 32 | from matplotlib.patches import Polygon |
|
33 | 33 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
34 | 34 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator |
|
35 | 35 | |
|
36 | 36 | from schainpy.model.data.jrodata import PlotterData |
|
37 | 37 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
38 | 38 | from schainpy.utils import log |
|
39 | 39 | |
|
40 | 40 | jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90] |
|
41 | 41 | blu_values = matplotlib.pyplot.get_cmap( |
|
42 | 42 | 'seismic_r', 20)(numpy.arange(20))[10:15] |
|
43 | 43 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list( |
|
44 | 44 | 'jro', numpy.vstack((blu_values, jet_values))) |
|
45 | 45 | matplotlib.pyplot.register_cmap(cmap=ncmap) |
|
46 | 46 | |
|
47 | 47 | CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis', |
|
48 | 48 | 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')] |
|
49 | 49 | |
|
50 | 50 | EARTH_RADIUS = 6.3710e3 |
|
51 | 51 | |
|
52 | 52 | def ll2xy(lat1, lon1, lat2, lon2): |
|
53 | 53 | |
|
54 | 54 | p = 0.017453292519943295 |
|
55 | 55 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
56 | 56 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
57 | 57 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
58 | 58 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
59 | 59 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
60 | 60 | theta = -theta + numpy.pi/2 |
|
61 | 61 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
62 | 62 | |
|
63 | 63 | |
|
64 | 64 | def km2deg(km): |
|
65 | 65 | ''' |
|
66 | 66 | Convert distance in km to degrees |
|
67 | 67 | ''' |
|
68 | 68 | |
|
69 | 69 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
70 | 70 | |
|
71 | 71 | |
|
72 | 72 | def figpause(interval): |
|
73 | 73 | backend = plt.rcParams['backend'] |
|
74 | 74 | if backend in matplotlib.rcsetup.interactive_bk: |
|
75 | 75 | figManager = matplotlib._pylab_helpers.Gcf.get_active() |
|
76 | 76 | if figManager is not None: |
|
77 | 77 | canvas = figManager.canvas |
|
78 | 78 | if canvas.figure.stale: |
|
79 | 79 | canvas.draw() |
|
80 | 80 | try: |
|
81 | 81 | canvas.start_event_loop(interval) |
|
82 | 82 | except: |
|
83 | 83 | pass |
|
84 | 84 | return |
|
85 | 85 | |
|
86 | 86 | def popup(message): |
|
87 | 87 | ''' |
|
88 | 88 | ''' |
|
89 | 89 | |
|
90 | 90 | fig = plt.figure(figsize=(12, 8), facecolor='r') |
|
91 | 91 | text = '\n'.join([s.strip() for s in message.split(':')]) |
|
92 | 92 | fig.text(0.01, 0.5, text, ha='left', va='center', |
|
93 | 93 | size='20', weight='heavy', color='w') |
|
94 | 94 | fig.show() |
|
95 | 95 | figpause(1000) |
|
96 | 96 | |
|
97 | 97 | |
|
98 | 98 | class Throttle(object): |
|
99 | 99 | ''' |
|
100 | 100 | Decorator that prevents a function from being called more than once every |
|
101 | 101 | time period. |
|
102 | 102 | To create a function that cannot be called more than once a minute, but |
|
103 | 103 | will sleep until it can be called: |
|
104 | 104 | @Throttle(minutes=1) |
|
105 | 105 | def foo(): |
|
106 | 106 | pass |
|
107 | 107 | |
|
108 | 108 | for i in range(10): |
|
109 | 109 | foo() |
|
110 | 110 | print "This function has run %s times." % i |
|
111 | 111 | ''' |
|
112 | 112 | |
|
113 | 113 | def __init__(self, seconds=0, minutes=0, hours=0): |
|
114 | 114 | self.throttle_period = datetime.timedelta( |
|
115 | 115 | seconds=seconds, minutes=minutes, hours=hours |
|
116 | 116 | ) |
|
117 | 117 | |
|
118 | 118 | self.time_of_last_call = datetime.datetime.min |
|
119 | 119 | |
|
120 | 120 | def __call__(self, fn): |
|
121 | 121 | @wraps(fn) |
|
122 | 122 | def wrapper(*args, **kwargs): |
|
123 | 123 | coerce = kwargs.pop('coerce', None) |
|
124 | 124 | if coerce: |
|
125 | 125 | self.time_of_last_call = datetime.datetime.now() |
|
126 | 126 | return fn(*args, **kwargs) |
|
127 | 127 | else: |
|
128 | 128 | now = datetime.datetime.now() |
|
129 | 129 | time_since_last_call = now - self.time_of_last_call |
|
130 | 130 | time_left = self.throttle_period - time_since_last_call |
|
131 | 131 | |
|
132 | 132 | if time_left > datetime.timedelta(seconds=0): |
|
133 | 133 | return |
|
134 | 134 | |
|
135 | 135 | self.time_of_last_call = datetime.datetime.now() |
|
136 | 136 | return fn(*args, **kwargs) |
|
137 | 137 | |
|
138 | 138 | return wrapper |
|
139 | 139 | |
|
140 | 140 | def apply_throttle(value): |
|
141 | 141 | |
|
142 | 142 | @Throttle(seconds=value) |
|
143 | 143 | def fnThrottled(fn): |
|
144 | 144 | fn() |
|
145 | 145 | |
|
146 | 146 | return fnThrottled |
|
147 | 147 | |
|
148 | 148 | |
|
149 | 149 | @MPDecorator |
|
150 | 150 | class Plot(Operation): |
|
151 | 151 | """Base class for Schain plotting operations |
|
152 | 152 | |
|
153 | 153 | This class should never be use directtly you must subclass a new operation, |
|
154 | 154 | children classes must be defined as follow: |
|
155 | 155 | |
|
156 | 156 | ExamplePlot(Plot): |
|
157 | 157 | |
|
158 | 158 | CODE = 'code' |
|
159 | 159 | colormap = 'jet' |
|
160 | 160 | plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer') |
|
161 | 161 | |
|
162 | 162 | def setup(self): |
|
163 | 163 | pass |
|
164 | 164 | |
|
165 | 165 | def plot(self): |
|
166 | 166 | pass |
|
167 | 167 | |
|
168 | 168 | """ |
|
169 | 169 | |
|
170 | 170 | CODE = 'Figure' |
|
171 | 171 | colormap = 'jet' |
|
172 | 172 | bgcolor = 'white' |
|
173 | 173 | buffering = True |
|
174 | 174 | __missing = 1E30 |
|
175 | 175 | |
|
176 | 176 | __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title', |
|
177 | 177 | 'showprofile'] |
|
178 | 178 | |
|
179 | 179 | def __init__(self): |
|
180 | 180 | |
|
181 | 181 | Operation.__init__(self) |
|
182 | 182 | self.isConfig = False |
|
183 | 183 | self.isPlotConfig = False |
|
184 | 184 | self.save_time = 0 |
|
185 | 185 | self.sender_time = 0 |
|
186 | 186 | self.data = None |
|
187 | 187 | self.firsttime = True |
|
188 | 188 | self.sender_queue = deque(maxlen=10) |
|
189 | 189 | self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2} |
|
190 | 190 | |
|
191 | 191 | def __fmtTime(self, x, pos): |
|
192 | 192 | ''' |
|
193 | 193 | ''' |
|
194 | 194 | |
|
195 | 195 | return '{}'.format(self.getDateTime(x).strftime('%H:%M')) |
|
196 | 196 | |
|
197 | 197 | def __setup(self, **kwargs): |
|
198 | 198 | ''' |
|
199 | 199 | Initialize variables |
|
200 | 200 | ''' |
|
201 | 201 | |
|
202 | 202 | self.figures = [] |
|
203 | 203 | self.axes = [] |
|
204 | 204 | self.cb_axes = [] |
|
205 | self.pf_axes = [] | |
|
205 | 206 | self.localtime = kwargs.pop('localtime', True) |
|
206 | 207 | self.show = kwargs.get('show', True) |
|
207 | 208 | self.save = kwargs.get('save', False) |
|
208 | 209 | self.save_period = kwargs.get('save_period', 0) |
|
209 | 210 | self.colormap = kwargs.get('colormap', self.colormap) |
|
210 | 211 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') |
|
211 | 212 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') |
|
212 | 213 | self.colormaps = kwargs.get('colormaps', None) |
|
213 | 214 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) |
|
214 | 215 | self.showprofile = kwargs.get('showprofile', False) |
|
215 | 216 | self.title = kwargs.get('wintitle', self.CODE.upper()) |
|
216 | 217 | self.cb_label = kwargs.get('cb_label', None) |
|
217 | 218 | self.cb_labels = kwargs.get('cb_labels', None) |
|
218 | 219 | self.labels = kwargs.get('labels', None) |
|
219 | 220 | self.xaxis = kwargs.get('xaxis', 'frequency') |
|
220 | 221 | self.zmin = kwargs.get('zmin', None) |
|
221 | 222 | self.zmax = kwargs.get('zmax', None) |
|
222 | 223 | self.zlimits = kwargs.get('zlimits', None) |
|
223 | 224 | self.xmin = kwargs.get('xmin', None) |
|
224 | 225 | self.xmax = kwargs.get('xmax', None) |
|
225 | 226 | self.xrange = kwargs.get('xrange', 12) |
|
226 | 227 | self.xscale = kwargs.get('xscale', None) |
|
227 | 228 | self.ymin = kwargs.get('ymin', None) |
|
228 | 229 | self.ymax = kwargs.get('ymax', None) |
|
229 | 230 | self.yscale = kwargs.get('yscale', None) |
|
230 | 231 | self.xlabel = kwargs.get('xlabel', None) |
|
231 | 232 | self.attr_time = kwargs.get('attr_time', 'utctime') |
|
232 | 233 | self.attr_data = kwargs.get('attr_data', 'data_param') |
|
233 | 234 | self.decimation = kwargs.get('decimation', None) |
|
234 | 235 | self.oneFigure = kwargs.get('oneFigure', True) |
|
235 | 236 | self.width = kwargs.get('width', None) |
|
236 | 237 | self.height = kwargs.get('height', None) |
|
237 | 238 | self.colorbar = kwargs.get('colorbar', True) |
|
238 | 239 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) |
|
239 | 240 | self.channels = kwargs.get('channels', None) |
|
240 | 241 | self.titles = kwargs.get('titles', []) |
|
241 | 242 | self.polar = False |
|
242 | 243 | self.type = kwargs.get('type', 'iq') |
|
243 | 244 | self.grid = kwargs.get('grid', False) |
|
244 | 245 | self.pause = kwargs.get('pause', False) |
|
245 | 246 | self.save_code = kwargs.get('save_code', self.CODE) |
|
246 | 247 | self.throttle = kwargs.get('throttle', 0) |
|
247 | 248 | self.exp_code = kwargs.get('exp_code', None) |
|
248 | 249 | self.server = kwargs.get('server', False) |
|
249 | 250 | self.sender_period = kwargs.get('sender_period', 60) |
|
250 | 251 | self.tag = kwargs.get('tag', '') |
|
251 | 252 | self.height_index = kwargs.get('height_index', None) |
|
252 | 253 | self.__throttle_plot = apply_throttle(self.throttle) |
|
253 | 254 | code = self.attr_data if self.attr_data else self.CODE |
|
254 | 255 | self.data = PlotterData(self.CODE, self.exp_code, self.localtime) |
|
256 | self.tmin = kwargs.get('tmin', None) | |
|
255 | 257 | |
|
256 | 258 | if self.server: |
|
257 | 259 | if not self.server.startswith('tcp://'): |
|
258 | 260 | self.server = 'tcp://{}'.format(self.server) |
|
259 | 261 | log.success( |
|
260 | 262 | 'Sending to server: {}'.format(self.server), |
|
261 | 263 | self.name |
|
262 | 264 | ) |
|
263 | 265 | |
|
264 | 266 | if isinstance(self.attr_data, str): |
|
265 | 267 | self.attr_data = [self.attr_data] |
|
266 | 268 | |
|
267 | 269 | def __setup_plot(self): |
|
268 | 270 | ''' |
|
269 | 271 | Common setup for all figures, here figures and axes are created |
|
270 | 272 | ''' |
|
271 | 273 | |
|
272 | 274 | self.setup() |
|
273 | 275 | |
|
274 | 276 | self.time_label = 'LT' if self.localtime else 'UTC' |
|
275 | 277 | |
|
276 | 278 | if self.width is None: |
|
277 | 279 | self.width = 8 |
|
278 | 280 | |
|
279 | 281 | self.figures = [] |
|
280 | 282 | self.axes = [] |
|
281 | 283 | self.cb_axes = [] |
|
282 | 284 | self.pf_axes = [] |
|
283 | 285 | self.cmaps = [] |
|
284 | 286 | |
|
285 | 287 | size = '15%' if self.ncols == 1 else '30%' |
|
286 | 288 | pad = '4%' if self.ncols == 1 else '8%' |
|
287 | 289 | |
|
288 | 290 | if self.oneFigure: |
|
289 | 291 | if self.height is None: |
|
290 | 292 | self.height = 1.4 * self.nrows + 1 |
|
291 | 293 | fig = plt.figure(figsize=(self.width, self.height), |
|
292 | 294 | edgecolor='k', |
|
293 | 295 | facecolor='w') |
|
294 | 296 | self.figures.append(fig) |
|
295 | 297 | for n in range(self.nplots): |
|
296 | 298 | ax = fig.add_subplot(self.nrows, self.ncols, |
|
297 | 299 | n + 1, polar=self.polar) |
|
298 | 300 | ax.tick_params(labelsize=8) |
|
299 | 301 | ax.firsttime = True |
|
300 | 302 | ax.index = 0 |
|
301 | 303 | ax.press = None |
|
302 | 304 | self.axes.append(ax) |
|
303 | 305 | if self.showprofile: |
|
304 | 306 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
305 | 307 | cax.tick_params(labelsize=8) |
|
306 | 308 | self.pf_axes.append(cax) |
|
307 | 309 | else: |
|
308 | 310 | if self.height is None: |
|
309 | 311 | self.height = 3 |
|
310 | 312 | for n in range(self.nplots): |
|
311 | 313 | fig = plt.figure(figsize=(self.width, self.height), |
|
312 | 314 | edgecolor='k', |
|
313 | 315 | facecolor='w') |
|
314 | 316 | ax = fig.add_subplot(1, 1, 1, polar=self.polar) |
|
315 | 317 | ax.tick_params(labelsize=8) |
|
316 | 318 | ax.firsttime = True |
|
317 | 319 | ax.index = 0 |
|
318 | 320 | ax.press = None |
|
319 | 321 | self.figures.append(fig) |
|
320 | 322 | self.axes.append(ax) |
|
321 | 323 | if self.showprofile: |
|
322 | 324 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
323 | 325 | cax.tick_params(labelsize=8) |
|
324 | 326 | self.pf_axes.append(cax) |
|
325 | 327 | |
|
326 | 328 | for n in range(self.nrows): |
|
327 | 329 | if self.colormaps is not None: |
|
328 | 330 | cmap = plt.get_cmap(self.colormaps[n]) |
|
329 | 331 | else: |
|
330 | 332 | cmap = plt.get_cmap(self.colormap) |
|
331 | 333 | cmap.set_bad(self.bgcolor, 1.) |
|
332 | 334 | self.cmaps.append(cmap) |
|
333 | 335 | |
|
334 | 336 | def __add_axes(self, ax, size='30%', pad='8%'): |
|
335 | 337 | ''' |
|
336 | 338 | Add new axes to the given figure |
|
337 | 339 | ''' |
|
338 | 340 | divider = make_axes_locatable(ax) |
|
339 | 341 | nax = divider.new_horizontal(size=size, pad=pad) |
|
340 | 342 | ax.figure.add_axes(nax) |
|
341 | 343 | return nax |
|
342 | 344 | |
|
343 | 345 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
344 | 346 | ''' |
|
345 | 347 | Create a masked array for missing data |
|
346 | 348 | ''' |
|
347 | 349 | if x_buffer.shape[0] < 2: |
|
348 | 350 | return x_buffer, y_buffer, z_buffer |
|
349 | 351 | |
|
350 | 352 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
351 | 353 | x_median = numpy.median(deltas) |
|
352 | 354 | |
|
353 | 355 | index = numpy.where(deltas > 5 * x_median) |
|
354 | 356 | |
|
355 | 357 | if len(index[0]) != 0: |
|
356 | 358 | z_buffer[::, index[0], ::] = self.__missing |
|
357 | 359 | z_buffer = numpy.ma.masked_inside(z_buffer, |
|
358 | 360 | 0.99 * self.__missing, |
|
359 | 361 | 1.01 * self.__missing) |
|
360 | 362 | |
|
361 | 363 | return x_buffer, y_buffer, z_buffer |
|
362 | 364 | |
|
363 | 365 | def decimate(self): |
|
364 | 366 | |
|
365 | 367 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
366 | 368 | dy = int(len(self.y) / self.decimation) + 1 |
|
367 | 369 | |
|
368 | 370 | # x = self.x[::dx] |
|
369 | 371 | x = self.x |
|
370 | 372 | y = self.y[::dy] |
|
371 | 373 | z = self.z[::, ::, ::dy] |
|
372 | 374 | |
|
373 | 375 | return x, y, z |
|
374 | 376 | |
|
375 | 377 | def format(self): |
|
376 | 378 | ''' |
|
377 | 379 | Set min and max values, labels, ticks and titles |
|
378 | 380 | ''' |
|
379 | 381 | |
|
380 | 382 | for n, ax in enumerate(self.axes): |
|
381 | 383 | if ax.firsttime: |
|
382 | 384 | if self.xaxis != 'time': |
|
383 | 385 | xmin = self.xmin |
|
384 | 386 | xmax = self.xmax |
|
385 | 387 | else: |
|
386 | 388 | xmin = self.tmin |
|
387 | 389 | xmax = self.tmin + self.xrange*60*60 |
|
388 | 390 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) |
|
389 | 391 | ax.xaxis.set_major_locator(LinearLocator(9)) |
|
390 | 392 | ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)]) |
|
391 | 393 | ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)]) |
|
392 | 394 | ax.set_facecolor(self.bgcolor) |
|
393 | 395 | if self.xscale: |
|
394 | 396 | ax.xaxis.set_major_formatter(FuncFormatter( |
|
395 | 397 | lambda x, pos: '{0:g}'.format(x*self.xscale))) |
|
396 | 398 | if self.yscale: |
|
397 | 399 | ax.yaxis.set_major_formatter(FuncFormatter( |
|
398 | 400 | lambda x, pos: '{0:g}'.format(x*self.yscale))) |
|
399 | 401 | if self.xlabel is not None: |
|
400 | 402 | ax.set_xlabel(self.xlabel) |
|
401 | 403 | if self.ylabel is not None: |
|
402 | 404 | ax.set_ylabel(self.ylabel) |
|
403 | 405 | if self.showprofile: |
|
404 | 406 | self.pf_axes[n].set_ylim(ymin, ymax) |
|
405 | 407 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) |
|
406 | 408 | self.pf_axes[n].set_xlabel('dB') |
|
407 | 409 | self.pf_axes[n].grid(b=True, axis='x') |
|
408 | 410 | [tick.set_visible(False) |
|
409 | 411 | for tick in self.pf_axes[n].get_yticklabels()] |
|
410 | 412 | if self.colorbar: |
|
411 | 413 | ax.cbar = plt.colorbar( |
|
412 | 414 | ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10) |
|
413 | 415 | ax.cbar.ax.tick_params(labelsize=8) |
|
414 | 416 | ax.cbar.ax.press = None |
|
415 | 417 | if self.cb_label: |
|
416 | 418 | ax.cbar.set_label(self.cb_label, size=8) |
|
417 | 419 | elif self.cb_labels: |
|
418 | 420 | ax.cbar.set_label(self.cb_labels[n], size=8) |
|
419 | 421 | else: |
|
420 | 422 | ax.cbar = None |
|
421 | 423 | ax.set_xlim(xmin, xmax) |
|
422 | 424 | ax.set_ylim(ymin, ymax) |
|
423 | 425 | ax.firsttime = False |
|
424 | 426 | if self.grid: |
|
425 | 427 | ax.grid(True) |
|
426 | 428 | if not self.polar: |
|
427 | 429 | ax.set_title('{} {} {}'.format( |
|
428 | 430 | self.titles[n], |
|
429 | 431 | self.getDateTime(self.data.max_time).strftime( |
|
430 | 432 | '%Y-%m-%d %H:%M:%S'), |
|
431 | 433 | self.time_label), |
|
432 | 434 | size=8) |
|
433 | 435 | else: |
|
434 | 436 | ax.set_title('{}'.format(self.titles[n]), size=8) |
|
435 | 437 | ax.set_ylim(0, 90) |
|
436 | 438 | ax.set_yticks(numpy.arange(0, 90, 20)) |
|
437 | 439 | ax.yaxis.labelpad = 40 |
|
438 | 440 | |
|
439 | 441 | if self.firsttime: |
|
440 | 442 | for n, fig in enumerate(self.figures): |
|
441 | 443 | fig.subplots_adjust(**self.plots_adjust) |
|
442 | 444 | self.firsttime = False |
|
443 | 445 | |
|
444 | 446 | def clear_figures(self): |
|
445 | 447 | ''' |
|
446 | 448 | Reset axes for redraw plots |
|
447 | 449 | ''' |
|
448 | 450 | |
|
449 | 451 | for ax in self.axes+self.pf_axes+self.cb_axes: |
|
450 | 452 | ax.clear() |
|
451 | 453 | ax.firsttime = True |
|
452 | 454 | if hasattr(ax, 'cbar') and ax.cbar: |
|
453 | 455 | ax.cbar.remove() |
|
454 | 456 | |
|
455 | 457 | def __plot(self): |
|
456 | 458 | ''' |
|
457 | 459 | Main function to plot, format and save figures |
|
458 | 460 | ''' |
|
459 | 461 | |
|
460 | 462 | self.plot() |
|
461 | 463 | self.format() |
|
462 | 464 | |
|
463 | 465 | for n, fig in enumerate(self.figures): |
|
464 | 466 | if self.nrows == 0 or self.nplots == 0: |
|
465 | 467 | log.warning('No data', self.name) |
|
466 | 468 | fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center') |
|
467 | 469 | fig.canvas.manager.set_window_title(self.CODE) |
|
468 | 470 | continue |
|
469 | 471 | |
|
470 | 472 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, |
|
471 | 473 | self.getDateTime(self.data.max_time).strftime('%Y/%m/%d'))) |
|
472 | 474 | fig.canvas.draw() |
|
473 | 475 | if self.show: |
|
474 | 476 | fig.show() |
|
475 | 477 | figpause(0.01) |
|
476 | 478 | |
|
477 | 479 | if self.save: |
|
478 | 480 | self.save_figure(n) |
|
479 | 481 | |
|
480 | 482 | if self.server: |
|
481 | 483 | self.send_to_server() |
|
482 | 484 | |
|
483 | 485 | def __update(self, dataOut, timestamp): |
|
484 | 486 | ''' |
|
485 | 487 | ''' |
|
486 | 488 | |
|
487 | 489 | metadata = { |
|
488 | 490 | 'yrange': dataOut.heightList, |
|
489 | 491 | 'interval': dataOut.timeInterval, |
|
490 | 492 | 'channels': dataOut.channelList |
|
491 | 493 | } |
|
492 | 494 | |
|
493 | 495 | data, meta = self.update(dataOut) |
|
494 | 496 | metadata.update(meta) |
|
495 | 497 | self.data.update(data, timestamp, metadata) |
|
496 | 498 | |
|
497 | 499 | def save_figure(self, n): |
|
498 | 500 | ''' |
|
499 | 501 | ''' |
|
500 | 502 | |
|
501 | 503 | if (self.data.max_time - self.save_time) <= self.save_period: |
|
502 | 504 | return |
|
503 | 505 | |
|
504 | 506 | self.save_time = self.data.max_time |
|
505 | 507 | |
|
506 | 508 | fig = self.figures[n] |
|
507 | 509 | |
|
508 | 510 | if self.throttle == 0: |
|
509 | 511 | figname = os.path.join( |
|
510 | 512 | self.save, |
|
511 | 513 | self.save_code, |
|
512 | 514 | '{}_{}.png'.format( |
|
513 | 515 | self.save_code, |
|
514 | 516 | self.getDateTime(self.data.max_time).strftime( |
|
515 | 517 | '%Y%m%d_%H%M%S' |
|
516 | 518 | ), |
|
517 | 519 | ) |
|
518 | 520 | ) |
|
519 | 521 | log.log('Saving figure: {}'.format(figname), self.name) |
|
520 | 522 | if not os.path.isdir(os.path.dirname(figname)): |
|
521 | 523 | os.makedirs(os.path.dirname(figname)) |
|
522 | 524 | fig.savefig(figname) |
|
523 | 525 | |
|
524 | 526 | figname = os.path.join( |
|
525 | 527 | self.save, |
|
526 | 528 | '{}_{}.png'.format( |
|
527 | 529 | self.save_code, |
|
528 | 530 | self.getDateTime(self.data.min_time).strftime( |
|
529 | 531 | '%Y%m%d' |
|
530 | 532 | ), |
|
531 | 533 | ) |
|
532 | 534 | ) |
|
533 | 535 | |
|
534 | 536 | log.log('Saving figure: {}'.format(figname), self.name) |
|
535 | 537 | if not os.path.isdir(os.path.dirname(figname)): |
|
536 | 538 | os.makedirs(os.path.dirname(figname)) |
|
537 | 539 | fig.savefig(figname) |
|
538 | 540 | |
|
539 | 541 | def send_to_server(self): |
|
540 | 542 | ''' |
|
541 | 543 | ''' |
|
542 | 544 | |
|
543 | 545 | if self.exp_code == None: |
|
544 | 546 | log.warning('Missing `exp_code` skipping sending to server...') |
|
545 | 547 | |
|
546 | 548 | last_time = self.data.max_time |
|
547 | 549 | interval = last_time - self.sender_time |
|
548 | 550 | if interval < self.sender_period: |
|
549 | 551 | return |
|
550 | 552 | |
|
551 | 553 | self.sender_time = last_time |
|
552 | 554 | |
|
553 | 555 | attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax'] |
|
554 | 556 | for attr in attrs: |
|
555 | 557 | value = getattr(self, attr) |
|
556 | 558 | if value: |
|
557 | 559 | if isinstance(value, (numpy.float32, numpy.float64)): |
|
558 | 560 | value = round(float(value), 2) |
|
559 | 561 | self.data.meta[attr] = value |
|
560 | 562 | if self.colormap == 'jet': |
|
561 | 563 | self.data.meta['colormap'] = 'Jet' |
|
562 | 564 | elif 'RdBu' in self.colormap: |
|
563 | 565 | self.data.meta['colormap'] = 'RdBu' |
|
564 | 566 | else: |
|
565 | 567 | self.data.meta['colormap'] = 'Viridis' |
|
566 | 568 | self.data.meta['interval'] = int(interval) |
|
567 | 569 | |
|
568 | 570 | self.sender_queue.append(last_time) |
|
569 | 571 | |
|
570 | 572 | while True: |
|
571 | 573 | try: |
|
572 | 574 | tm = self.sender_queue.popleft() |
|
573 | 575 | except IndexError: |
|
574 | 576 | break |
|
575 | 577 | msg = self.data.jsonify(tm, self.save_code, self.plot_type) |
|
576 | 578 | self.socket.send_string(msg) |
|
577 | 579 | socks = dict(self.poll.poll(2000)) |
|
578 | 580 | if socks.get(self.socket) == zmq.POLLIN: |
|
579 | 581 | reply = self.socket.recv_string() |
|
580 | 582 | if reply == 'ok': |
|
581 | 583 | log.log("Response from server ok", self.name) |
|
582 | 584 | time.sleep(0.1) |
|
583 | 585 | continue |
|
584 | 586 | else: |
|
585 | 587 | log.warning( |
|
586 | 588 | "Malformed reply from server: {}".format(reply), self.name) |
|
587 | 589 | else: |
|
588 | 590 | log.warning( |
|
589 | 591 | "No response from server, retrying...", self.name) |
|
590 | 592 | self.sender_queue.appendleft(tm) |
|
591 | 593 | self.socket.setsockopt(zmq.LINGER, 0) |
|
592 | 594 | self.socket.close() |
|
593 | 595 | self.poll.unregister(self.socket) |
|
594 | 596 | self.socket = self.context.socket(zmq.REQ) |
|
595 | 597 | self.socket.connect(self.server) |
|
596 | 598 | self.poll.register(self.socket, zmq.POLLIN) |
|
597 | 599 | break |
|
598 | 600 | |
|
599 | 601 | def setup(self): |
|
600 | 602 | ''' |
|
601 | 603 | This method should be implemented in the child class, the following |
|
602 | 604 | attributes should be set: |
|
603 | 605 | |
|
604 | 606 | self.nrows: number of rows |
|
605 | 607 | self.ncols: number of cols |
|
606 | 608 | self.nplots: number of plots (channels or pairs) |
|
607 | 609 | self.ylabel: label for Y axes |
|
608 | 610 | self.titles: list of axes title |
|
609 | 611 | |
|
610 | 612 | ''' |
|
611 | 613 | raise NotImplementedError |
|
612 | 614 | |
|
613 | 615 | def plot(self): |
|
614 | 616 | ''' |
|
615 | 617 | Must be defined in the child class, the actual plotting method |
|
616 | 618 | ''' |
|
617 | 619 | raise NotImplementedError |
|
618 | 620 | |
|
619 | 621 | def update(self, dataOut): |
|
620 | 622 | ''' |
|
621 | 623 | Must be defined in the child class, update self.data with new data |
|
622 | 624 | ''' |
|
623 | 625 | |
|
624 | 626 | data = { |
|
625 | 627 | self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE)) |
|
626 | 628 | } |
|
627 | 629 | meta = {} |
|
628 | 630 | |
|
629 | 631 | return data, meta |
|
630 | 632 | |
|
631 | 633 | def run(self, dataOut, **kwargs): |
|
632 | 634 | ''' |
|
633 | 635 | Main plotting routine |
|
634 | 636 | ''' |
|
635 | 637 | |
|
636 | 638 | if self.isConfig is False: |
|
637 | 639 | self.__setup(**kwargs) |
|
638 | 640 | |
|
639 | 641 | if self.localtime: |
|
640 | 642 | self.getDateTime = datetime.datetime.fromtimestamp |
|
641 | 643 | else: |
|
642 | 644 | self.getDateTime = datetime.datetime.utcfromtimestamp |
|
643 | 645 | |
|
644 | 646 | self.data.setup() |
|
645 | 647 | self.isConfig = True |
|
646 | 648 | if self.server: |
|
647 | 649 | self.context = zmq.Context() |
|
648 | 650 | self.socket = self.context.socket(zmq.REQ) |
|
649 | 651 | self.socket.connect(self.server) |
|
650 | 652 | self.poll = zmq.Poller() |
|
651 | 653 | self.poll.register(self.socket, zmq.POLLIN) |
|
652 | 654 | |
|
653 | 655 | tm = getattr(dataOut, self.attr_time) |
|
654 | 656 | |
|
655 | 657 | if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60: |
|
656 | 658 | self.save_time = tm |
|
657 | 659 | self.__plot() |
|
658 | 660 | self.tmin += self.xrange*60*60 |
|
659 | 661 | self.data.setup() |
|
660 | 662 | self.clear_figures() |
|
661 | 663 | |
|
662 | 664 | self.__update(dataOut, tm) |
|
663 | 665 | |
|
664 | 666 | if self.isPlotConfig is False: |
|
665 | 667 | self.__setup_plot() |
|
666 | 668 | self.isPlotConfig = True |
|
667 | 669 | if self.xaxis == 'time': |
|
668 | 670 | dt = self.getDateTime(tm) |
|
669 | 671 | if self.xmin is None: |
|
670 | 672 | self.tmin = tm |
|
671 | 673 | self.xmin = dt.hour |
|
672 | 674 | minutes = (self.xmin-int(self.xmin)) * 60 |
|
673 | 675 | seconds = (minutes - int(minutes)) * 60 |
|
674 | 676 | self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) - |
|
675 | 677 | datetime.datetime(1970, 1, 1)).total_seconds() |
|
676 | 678 | if self.localtime: |
|
677 | 679 | self.tmin += time.timezone |
|
678 | 680 | |
|
679 | 681 | if self.xmin is not None and self.xmax is not None: |
|
680 | 682 | self.xrange = self.xmax - self.xmin |
|
681 | 683 | |
|
682 | 684 | if self.throttle == 0: |
|
683 | 685 | self.__plot() |
|
684 | 686 | else: |
|
685 | 687 | self.__throttle_plot(self.__plot)#, coerce=coerce) |
|
686 | 688 | |
|
687 | 689 | def close(self): |
|
688 | 690 | |
|
689 | 691 | if self.data and not self.data.flagNoData: |
|
690 | 692 | self.save_time = 0 |
|
691 | 693 | self.__plot() |
|
692 | 694 | if self.data and not self.data.flagNoData and self.pause: |
|
693 | 695 | figpause(10) |
@@ -1,357 +1,356 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import numpy |
|
4 | 4 | |
|
5 | 5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
6 | 6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot |
|
7 | 7 | from schainpy.utils import log |
|
8 | 8 | |
|
9 | 9 | EARTH_RADIUS = 6.3710e3 |
|
10 | 10 | |
|
11 | 11 | |
|
12 | 12 | def ll2xy(lat1, lon1, lat2, lon2): |
|
13 | 13 | |
|
14 | 14 | p = 0.017453292519943295 |
|
15 | 15 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
16 | 16 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
17 | 17 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
18 | 18 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
19 | 19 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
20 | 20 | theta = -theta + numpy.pi/2 |
|
21 | 21 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def km2deg(km): |
|
25 | 25 | ''' |
|
26 | 26 | Convert distance in km to degrees |
|
27 | 27 | ''' |
|
28 | 28 | |
|
29 | 29 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
30 | 30 | |
|
31 | 31 | |
|
32 | 32 | |
|
33 | 33 | class SpectralMomentsPlot(SpectraPlot): |
|
34 | 34 | ''' |
|
35 | 35 | Plot for Spectral Moments |
|
36 | 36 | ''' |
|
37 | 37 | CODE = 'spc_moments' |
|
38 | 38 | colormap = 'jet' |
|
39 | 39 | plot_type = 'pcolor' |
|
40 | 40 | |
|
41 | 41 | |
|
42 | 42 | class SnrPlot(RTIPlot): |
|
43 | 43 | ''' |
|
44 | 44 | Plot for SNR Data |
|
45 | 45 | ''' |
|
46 | 46 | |
|
47 | 47 | CODE = 'snr' |
|
48 | 48 | colormap = 'jet' |
|
49 | 49 | |
|
50 | 50 | def update(self, dataOut): |
|
51 | 51 | |
|
52 | 52 | data = { |
|
53 | 53 |
'snr': 10*numpy.log10(dataOut.data_snr) |
|
54 | 54 | } |
|
55 | 55 | |
|
56 | 56 | return data, {} |
|
57 | 57 | |
|
58 | 58 | class DopplerPlot(RTIPlot): |
|
59 | 59 | ''' |
|
60 | 60 | Plot for DOPPLER Data (1st moment) |
|
61 | 61 | ''' |
|
62 | 62 | |
|
63 | 63 | CODE = 'dop' |
|
64 | 64 | colormap = 'jet' |
|
65 | 65 | |
|
66 | 66 | def update(self, dataOut): |
|
67 | 67 | |
|
68 | 68 | data = { |
|
69 | 69 |
'dop': 10*numpy.log10(dataOut.data_dop) |
|
70 | 70 | } |
|
71 | 71 | |
|
72 | 72 | return data, {} |
|
73 | 73 | |
|
74 | 74 | class PowerPlot(RTIPlot): |
|
75 | 75 | ''' |
|
76 | 76 | Plot for Power Data (0 moment) |
|
77 | 77 | ''' |
|
78 | 78 | |
|
79 | 79 | CODE = 'pow' |
|
80 | 80 | colormap = 'jet' |
|
81 | 81 | |
|
82 | 82 | def update(self, dataOut): |
|
83 | 83 | |
|
84 | 84 | data = { |
|
85 | 85 |
'pow': 10*numpy.log10(dataOut.data_pow) |
|
86 | 86 | } |
|
87 | ||
|
87 | print("data",data) | |
|
88 | 88 | return data, {} |
|
89 | 89 | |
|
90 | 90 | class SpectralWidthPlot(RTIPlot): |
|
91 | 91 | ''' |
|
92 | 92 | Plot for Spectral Width Data (2nd moment) |
|
93 | 93 | ''' |
|
94 | 94 | |
|
95 | 95 | CODE = 'width' |
|
96 | 96 | colormap = 'jet' |
|
97 | 97 | |
|
98 | 98 | def update(self, dataOut): |
|
99 | 99 | |
|
100 | 100 | data = { |
|
101 | 101 | 'width': dataOut.data_width |
|
102 | 102 | } |
|
103 | 103 | |
|
104 | 104 | return data, {} |
|
105 | 105 | |
|
106 | 106 | class SkyMapPlot(Plot): |
|
107 | 107 | ''' |
|
108 | 108 | Plot for meteors detection data |
|
109 | 109 | ''' |
|
110 | 110 | |
|
111 | 111 | CODE = 'param' |
|
112 | 112 | |
|
113 | 113 | def setup(self): |
|
114 | 114 | |
|
115 | 115 | self.ncols = 1 |
|
116 | 116 | self.nrows = 1 |
|
117 | 117 | self.width = 7.2 |
|
118 | 118 | self.height = 7.2 |
|
119 | 119 | self.nplots = 1 |
|
120 | 120 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
121 | 121 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
122 | 122 | self.polar = True |
|
123 | 123 | self.ymin = -180 |
|
124 | 124 | self.ymax = 180 |
|
125 | 125 | self.colorbar = False |
|
126 | 126 | |
|
127 | 127 | def plot(self): |
|
128 | 128 | |
|
129 | 129 | arrayParameters = numpy.concatenate(self.data['param']) |
|
130 | 130 | error = arrayParameters[:, -1] |
|
131 | 131 | indValid = numpy.where(error == 0)[0] |
|
132 | 132 | finalMeteor = arrayParameters[indValid, :] |
|
133 | 133 | finalAzimuth = finalMeteor[:, 3] |
|
134 | 134 | finalZenith = finalMeteor[:, 4] |
|
135 | 135 | |
|
136 | 136 | x = finalAzimuth * numpy.pi / 180 |
|
137 | 137 | y = finalZenith |
|
138 | 138 | |
|
139 | 139 | ax = self.axes[0] |
|
140 | 140 | |
|
141 | 141 | if ax.firsttime: |
|
142 | 142 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
143 | 143 | else: |
|
144 | 144 | ax.plot.set_data(x, y) |
|
145 | 145 | |
|
146 | 146 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
147 | 147 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
148 | 148 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
149 | 149 | dt2, |
|
150 | 150 | len(x)) |
|
151 | 151 | self.titles[0] = title |
|
152 | 152 | |
|
153 | 153 | |
|
154 | 154 | class GenericRTIPlot(Plot): |
|
155 | 155 | ''' |
|
156 | 156 | Plot for data_xxxx object |
|
157 | 157 | ''' |
|
158 | 158 | |
|
159 | 159 | CODE = 'param' |
|
160 | 160 | colormap = 'viridis' |
|
161 | 161 | plot_type = 'pcolorbuffer' |
|
162 | 162 | |
|
163 | 163 | def setup(self): |
|
164 | 164 | self.xaxis = 'time' |
|
165 | 165 | self.ncols = 1 |
|
166 | 166 | self.nrows = self.data.shape('param')[0] |
|
167 | 167 | self.nplots = self.nrows |
|
168 | 168 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
169 | 169 | |
|
170 | 170 | if not self.xlabel: |
|
171 | 171 | self.xlabel = 'Time' |
|
172 | 172 | |
|
173 | 173 | self.ylabel = 'Height [km]' |
|
174 | 174 | if not self.titles: |
|
175 | 175 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
176 | 176 | |
|
177 | 177 | def update(self, dataOut): |
|
178 | 178 | |
|
179 | 179 | data = { |
|
180 | 180 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
181 | 181 | } |
|
182 | 182 | |
|
183 | 183 | meta = {} |
|
184 | 184 | |
|
185 | 185 | return data, meta |
|
186 | 186 | |
|
187 | 187 | def plot(self): |
|
188 | 188 | # self.data.normalize_heights() |
|
189 | 189 | self.x = self.data.times |
|
190 | 190 | self.y = self.data.yrange |
|
191 | 191 | self.z = self.data['param'] |
|
192 | 192 | |
|
193 | 193 | self.z = numpy.ma.masked_invalid(self.z) |
|
194 | 194 | |
|
195 | 195 | if self.decimation is None: |
|
196 | 196 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
197 | 197 | else: |
|
198 | 198 | x, y, z = self.fill_gaps(*self.decimate()) |
|
199 | 199 | |
|
200 | 200 | for n, ax in enumerate(self.axes): |
|
201 | 201 | |
|
202 | 202 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
203 | 203 | self.z[n]) |
|
204 | 204 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
205 | 205 | self.z[n]) |
|
206 | 206 | |
|
207 | 207 | if ax.firsttime: |
|
208 | 208 | if self.zlimits is not None: |
|
209 | 209 | self.zmin, self.zmax = self.zlimits[n] |
|
210 | 210 | |
|
211 | 211 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
212 | 212 | vmin=self.zmin, |
|
213 | 213 | vmax=self.zmax, |
|
214 | 214 | cmap=self.cmaps[n] |
|
215 | 215 | ) |
|
216 | 216 | else: |
|
217 | 217 | if self.zlimits is not None: |
|
218 | 218 | self.zmin, self.zmax = self.zlimits[n] |
|
219 | 219 | ax.collections.remove(ax.collections[0]) |
|
220 | 220 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
221 | 221 | vmin=self.zmin, |
|
222 | 222 | vmax=self.zmax, |
|
223 | 223 | cmap=self.cmaps[n] |
|
224 | 224 | ) |
|
225 | 225 | |
|
226 | 226 | |
|
227 | 227 | class PolarMapPlot(Plot): |
|
228 | 228 | ''' |
|
229 | 229 | Plot for weather radar |
|
230 | 230 | ''' |
|
231 | 231 | |
|
232 | 232 | CODE = 'param' |
|
233 | 233 | colormap = 'seismic' |
|
234 | 234 | |
|
235 | 235 | def setup(self): |
|
236 | 236 | self.ncols = 1 |
|
237 | 237 | self.nrows = 1 |
|
238 | 238 | self.width = 9 |
|
239 | 239 | self.height = 8 |
|
240 | 240 | self.mode = self.data.meta['mode'] |
|
241 | 241 | if self.channels is not None: |
|
242 | 242 | self.nplots = len(self.channels) |
|
243 | 243 | self.nrows = len(self.channels) |
|
244 | 244 | else: |
|
245 | 245 | self.nplots = self.data.shape(self.CODE)[0] |
|
246 | 246 | self.nrows = self.nplots |
|
247 | 247 | self.channels = list(range(self.nplots)) |
|
248 | 248 | if self.mode == 'E': |
|
249 | 249 | self.xlabel = 'Longitude' |
|
250 | 250 | self.ylabel = 'Latitude' |
|
251 | 251 | else: |
|
252 | 252 | self.xlabel = 'Range (km)' |
|
253 | 253 | self.ylabel = 'Height (km)' |
|
254 | 254 | self.bgcolor = 'white' |
|
255 | 255 | self.cb_labels = self.data.meta['units'] |
|
256 | 256 | self.lat = self.data.meta['latitude'] |
|
257 | 257 | self.lon = self.data.meta['longitude'] |
|
258 | 258 | self.xmin, self.xmax = float( |
|
259 | 259 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
260 | 260 | self.ymin, self.ymax = float( |
|
261 | 261 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
262 | 262 | # self.polar = True |
|
263 | 263 | |
|
264 | 264 | def plot(self): |
|
265 | 265 | |
|
266 | 266 | for n, ax in enumerate(self.axes): |
|
267 | 267 | data = self.data['param'][self.channels[n]] |
|
268 | 268 | |
|
269 | 269 | zeniths = numpy.linspace( |
|
270 | 270 | 0, self.data.meta['max_range'], data.shape[1]) |
|
271 | 271 | if self.mode == 'E': |
|
272 | 272 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
273 | 273 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
274 | 274 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
275 | 275 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
276 | 276 | x = km2deg(x) + self.lon |
|
277 | 277 | y = km2deg(y) + self.lat |
|
278 | 278 | else: |
|
279 | 279 | azimuths = numpy.radians(self.data.yrange) |
|
280 | 280 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
281 | 281 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
282 | 282 | self.y = zeniths |
|
283 | 283 | |
|
284 | 284 | if ax.firsttime: |
|
285 | 285 | if self.zlimits is not None: |
|
286 | 286 | self.zmin, self.zmax = self.zlimits[n] |
|
287 | 287 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
288 | 288 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
289 | 289 | vmin=self.zmin, |
|
290 | 290 | vmax=self.zmax, |
|
291 | 291 | cmap=self.cmaps[n]) |
|
292 | 292 | else: |
|
293 | 293 | if self.zlimits is not None: |
|
294 | 294 | self.zmin, self.zmax = self.zlimits[n] |
|
295 | 295 | ax.collections.remove(ax.collections[0]) |
|
296 | 296 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
297 | 297 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
298 | 298 | vmin=self.zmin, |
|
299 | 299 | vmax=self.zmax, |
|
300 | 300 | cmap=self.cmaps[n]) |
|
301 | 301 | |
|
302 | 302 | if self.mode == 'A': |
|
303 | 303 | continue |
|
304 | 304 | |
|
305 | 305 | # plot district names |
|
306 | 306 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
307 | 307 | for line in f: |
|
308 | 308 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
309 | 309 | lat = float(lat) |
|
310 | 310 | lon = float(lon) |
|
311 | 311 | # ax.plot(lon, lat, '.b', ms=2) |
|
312 | 312 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
313 | 313 | va='bottom', size='8', color='black') |
|
314 | 314 | |
|
315 | 315 | # plot limites |
|
316 | 316 | limites = [] |
|
317 | 317 | tmp = [] |
|
318 | 318 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
319 | 319 | if '#' in line: |
|
320 | 320 | if tmp: |
|
321 | 321 | limites.append(tmp) |
|
322 | 322 | tmp = [] |
|
323 | 323 | continue |
|
324 | 324 | values = line.strip().split(',') |
|
325 | 325 | tmp.append((float(values[0]), float(values[1]))) |
|
326 | 326 | for points in limites: |
|
327 | 327 | ax.add_patch( |
|
328 | 328 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
329 | 329 | |
|
330 | 330 | # plot Cuencas |
|
331 | 331 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
332 | 332 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
333 | 333 | values = [line.strip().split(',') for line in f] |
|
334 | 334 | points = [(float(s[0]), float(s[1])) for s in values] |
|
335 | 335 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
336 | 336 | |
|
337 | 337 | # plot grid |
|
338 | 338 | for r in (15, 30, 45, 60): |
|
339 | 339 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
340 | 340 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
341 | 341 | ax.text( |
|
342 | 342 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
343 | 343 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
344 | 344 | '{}km'.format(r), |
|
345 | 345 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
346 | 346 | |
|
347 | 347 | if self.mode == 'E': |
|
348 | 348 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
349 | 349 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
350 | 350 | else: |
|
351 | 351 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
352 | 352 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
353 | 353 | |
|
354 | 354 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
355 | 355 | self.titles = ['{} {}'.format( |
|
356 | 356 | self.data.parameters[x], title) for x in self.channels] |
|
357 |
@@ -1,711 +1,712 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Classes to plot Spectra data |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import numpy |
|
11 | 11 | |
|
12 | 12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | class SpectraPlot(Plot): |
|
16 | 16 | ''' |
|
17 | 17 | Plot for Spectra data |
|
18 | 18 | ''' |
|
19 | 19 | |
|
20 | 20 | CODE = 'spc' |
|
21 | 21 | colormap = 'jet' |
|
22 | 22 | plot_type = 'pcolor' |
|
23 | 23 | buffering = False |
|
24 |
channelList = |
|
|
24 | channelList = [] | |
|
25 | 25 | |
|
26 | 26 | def setup(self): |
|
27 | 27 | self.nplots = len(self.data.channels) |
|
28 | 28 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
29 | 29 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
30 | 30 | self.height = 2.6 * self.nrows |
|
31 | 31 | |
|
32 | 32 | self.cb_label = 'dB' |
|
33 | 33 | if self.showprofile: |
|
34 | 34 | self.width = 4 * self.ncols |
|
35 | 35 | else: |
|
36 | 36 | self.width = 3.5 * self.ncols |
|
37 | 37 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
38 | 38 | self.ylabel = 'Range [km]' |
|
39 | 39 | |
|
40 | 40 | def update(self, dataOut): |
|
41 | 41 | if self.channelList == None: |
|
42 | 42 | self.channelList = dataOut.channelList |
|
43 | 43 | data = {} |
|
44 | 44 | meta = {} |
|
45 | 45 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
46 | 46 | data['spc'] = spc |
|
47 | 47 | data['rti'] = dataOut.getPower() |
|
48 | 48 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
49 | 49 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
50 | 50 | if self.CODE == 'spc_moments': |
|
51 | 51 | data['moments'] = dataOut.moments |
|
52 | 52 | |
|
53 | 53 | return data, meta |
|
54 | 54 | |
|
55 | 55 | def plot(self): |
|
56 | 56 | if self.xaxis == "frequency": |
|
57 | 57 | x = self.data.xrange[0] |
|
58 | 58 | self.xlabel = "Frequency (kHz)" |
|
59 | 59 | elif self.xaxis == "time": |
|
60 | 60 | x = self.data.xrange[1] |
|
61 | 61 | self.xlabel = "Time (ms)" |
|
62 | 62 | else: |
|
63 | 63 | x = self.data.xrange[2] |
|
64 | 64 | self.xlabel = "Velocity (m/s)" |
|
65 | 65 | |
|
66 | 66 | if self.CODE == 'spc_moments': |
|
67 | 67 | x = self.data.xrange[2] |
|
68 | 68 | self.xlabel = "Velocity (m/s)" |
|
69 | 69 | |
|
70 | 70 | self.titles = [] |
|
71 | 71 | |
|
72 | 72 | y = self.data.yrange |
|
73 | 73 | self.y = y |
|
74 | 74 | |
|
75 | 75 | data = self.data[-1] |
|
76 | 76 | z = data['spc'] |
|
77 | 77 | |
|
78 | 78 | for n, ax in enumerate(self.axes): |
|
79 | 79 | noise = data['noise'][n] |
|
80 | 80 | if self.CODE == 'spc_moments': |
|
81 | 81 | mean = data['moments'][n, 1] |
|
82 | 82 | if ax.firsttime: |
|
83 | 83 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
84 | 84 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
85 | 85 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
86 | 86 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
87 | 87 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
88 | 88 | vmin=self.zmin, |
|
89 | 89 | vmax=self.zmax, |
|
90 | 90 | cmap=plt.get_cmap(self.colormap) |
|
91 | 91 | ) |
|
92 | 92 | |
|
93 | 93 | if self.showprofile: |
|
94 | 94 | ax.plt_profile = self.pf_axes[n].plot( |
|
95 | 95 | data['rti'][n], y)[0] |
|
96 | 96 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
97 | 97 | color="k", linestyle="dashed", lw=1)[0] |
|
98 | 98 | if self.CODE == 'spc_moments': |
|
99 | 99 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
100 | 100 | else: |
|
101 | 101 | ax.plt.set_array(z[n].T.ravel()) |
|
102 | 102 | if self.showprofile: |
|
103 | 103 | ax.plt_profile.set_data(data['rti'][n], y) |
|
104 | 104 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
105 | 105 | if self.CODE == 'spc_moments': |
|
106 | 106 | ax.plt_mean.set_data(mean, y) |
|
107 | 107 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
108 | 108 | |
|
109 | 109 | |
|
110 | 110 | class CrossSpectraPlot(Plot): |
|
111 | 111 | |
|
112 | 112 | CODE = 'cspc' |
|
113 | 113 | colormap = 'jet' |
|
114 | 114 | plot_type = 'pcolor' |
|
115 | 115 | zmin_coh = None |
|
116 | 116 | zmax_coh = None |
|
117 | 117 | zmin_phase = None |
|
118 | 118 | zmax_phase = None |
|
119 | 119 | |
|
120 | 120 | def setup(self): |
|
121 | 121 | |
|
122 | 122 | self.ncols = 4 |
|
123 | 123 | self.nplots = len(self.data.pairs) * 2 |
|
124 | 124 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
125 | 125 | self.width = 3.1 * self.ncols |
|
126 | 126 | self.height = 2.6 * self.nrows |
|
127 | 127 | self.ylabel = 'Range [km]' |
|
128 | 128 | self.showprofile = False |
|
129 | 129 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
130 | 130 | |
|
131 | 131 | def update(self, dataOut): |
|
132 | 132 | |
|
133 | 133 | data = {} |
|
134 | 134 | meta = {} |
|
135 | 135 | |
|
136 | 136 | spc = dataOut.data_spc |
|
137 | 137 | cspc = dataOut.data_cspc |
|
138 | 138 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
139 | 139 | meta['pairs'] = dataOut.pairsList |
|
140 | 140 | |
|
141 | 141 | tmp = [] |
|
142 | 142 | |
|
143 | 143 | for n, pair in enumerate(meta['pairs']): |
|
144 | 144 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
145 | 145 | coh = numpy.abs(out) |
|
146 | 146 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
147 | 147 | tmp.append(coh) |
|
148 | 148 | tmp.append(phase) |
|
149 | 149 | |
|
150 | 150 | data['cspc'] = numpy.array(tmp) |
|
151 | 151 | |
|
152 | 152 | return data, meta |
|
153 | 153 | |
|
154 | 154 | def plot(self): |
|
155 | 155 | |
|
156 | 156 | if self.xaxis == "frequency": |
|
157 | 157 | x = self.data.xrange[0] |
|
158 | 158 | self.xlabel = "Frequency (kHz)" |
|
159 | 159 | elif self.xaxis == "time": |
|
160 | 160 | x = self.data.xrange[1] |
|
161 | 161 | self.xlabel = "Time (ms)" |
|
162 | 162 | else: |
|
163 | 163 | x = self.data.xrange[2] |
|
164 | 164 | self.xlabel = "Velocity (m/s)" |
|
165 | 165 | |
|
166 | 166 | self.titles = [] |
|
167 | 167 | |
|
168 | 168 | y = self.data.yrange |
|
169 | 169 | self.y = y |
|
170 | 170 | |
|
171 | 171 | data = self.data[-1] |
|
172 | 172 | cspc = data['cspc'] |
|
173 | 173 | |
|
174 | 174 | for n in range(len(self.data.pairs)): |
|
175 | 175 | pair = self.data.pairs[n] |
|
176 | 176 | coh = cspc[n*2] |
|
177 | 177 | phase = cspc[n*2+1] |
|
178 | 178 | ax = self.axes[2 * n] |
|
179 | 179 | if ax.firsttime: |
|
180 | 180 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
181 | 181 | vmin=0, |
|
182 | 182 | vmax=1, |
|
183 | 183 | cmap=plt.get_cmap(self.colormap_coh) |
|
184 | 184 | ) |
|
185 | 185 | else: |
|
186 | 186 | ax.plt.set_array(coh.T.ravel()) |
|
187 | 187 | self.titles.append( |
|
188 | 188 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
189 | 189 | |
|
190 | 190 | ax = self.axes[2 * n + 1] |
|
191 | 191 | if ax.firsttime: |
|
192 | 192 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
193 | 193 | vmin=-180, |
|
194 | 194 | vmax=180, |
|
195 | 195 | cmap=plt.get_cmap(self.colormap_phase) |
|
196 | 196 | ) |
|
197 | 197 | else: |
|
198 | 198 | ax.plt.set_array(phase.T.ravel()) |
|
199 | 199 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
200 | 200 | |
|
201 | 201 | |
|
202 | 202 | class RTIPlot(Plot): |
|
203 | 203 | ''' |
|
204 | 204 | Plot for RTI data |
|
205 | 205 | ''' |
|
206 | 206 | |
|
207 | 207 | CODE = 'rti' |
|
208 | 208 | colormap = 'jet' |
|
209 | 209 | plot_type = 'pcolorbuffer' |
|
210 | 210 | titles = None |
|
211 |
channelList = |
|
|
211 | channelList = [] | |
|
212 | 212 | |
|
213 | 213 | def setup(self): |
|
214 | 214 | self.xaxis = 'time' |
|
215 | 215 | self.ncols = 1 |
|
216 | print("dataChannels ",self.data.channels) | |
|
216 | 217 | self.nrows = len(self.data.channels) |
|
217 | 218 | self.nplots = len(self.data.channels) |
|
218 | 219 | self.ylabel = 'Range [km]' |
|
219 | 220 | self.xlabel = 'Time' |
|
220 | 221 | self.cb_label = 'dB' |
|
221 | 222 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) |
|
222 | 223 | self.titles = ['{} Channel {}'.format( |
|
223 | 224 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
224 | ||
|
225 | print("SETUP") | |
|
225 | 226 | def update(self, dataOut): |
|
226 |
if self.channelList == |
|
|
227 | if len(self.channelList) == 0: | |
|
227 | 228 | self.channelList = dataOut.channelList |
|
228 | 229 | data = {} |
|
229 | 230 | meta = {} |
|
230 | 231 | data['rti'] = dataOut.getPower() |
|
231 | 232 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
232 | 233 | |
|
233 | 234 | return data, meta |
|
234 | 235 | |
|
235 | 236 | def plot(self): |
|
236 | 237 | self.x = self.data.times |
|
237 | 238 | self.y = self.data.yrange |
|
238 | 239 | self.z = self.data[self.CODE] |
|
239 | 240 | self.z = numpy.ma.masked_invalid(self.z) |
|
240 | 241 | if self.channelList != None: |
|
241 | 242 | self.titles = ['{} Channel {}'.format( |
|
242 | 243 | self.CODE.upper(), x) for x in self.channelList] |
|
243 | 244 | |
|
244 | 245 | if self.decimation is None: |
|
245 | 246 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
246 | 247 | else: |
|
247 | 248 | x, y, z = self.fill_gaps(*self.decimate()) |
|
248 | 249 | |
|
249 | 250 | for n, ax in enumerate(self.axes): |
|
250 | 251 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
251 | 252 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
252 | 253 | data = self.data[-1] |
|
253 | 254 | if ax.firsttime: |
|
254 | 255 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
255 | 256 | vmin=self.zmin, |
|
256 | 257 | vmax=self.zmax, |
|
257 | 258 | cmap=plt.get_cmap(self.colormap) |
|
258 | 259 | ) |
|
259 | 260 | if self.showprofile: |
|
260 | 261 | ax.plot_profile = self.pf_axes[n].plot( |
|
261 | 262 | data['rti'][n], self.y)[0] |
|
262 | 263 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
263 | 264 | color="k", linestyle="dashed", lw=1)[0] |
|
264 | 265 | else: |
|
265 | 266 | ax.collections.remove(ax.collections[0]) |
|
266 | 267 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
267 | 268 | vmin=self.zmin, |
|
268 | 269 | vmax=self.zmax, |
|
269 | 270 | cmap=plt.get_cmap(self.colormap) |
|
270 | 271 | ) |
|
271 | 272 | if self.showprofile: |
|
272 | 273 | ax.plot_profile.set_data(data['rti'][n], self.y) |
|
273 | 274 | ax.plot_noise.set_data(numpy.repeat( |
|
274 | 275 | data['noise'][n], len(self.y)), self.y) |
|
275 | 276 | |
|
276 | 277 | |
|
277 | 278 | class CoherencePlot(RTIPlot): |
|
278 | 279 | ''' |
|
279 | 280 | Plot for Coherence data |
|
280 | 281 | ''' |
|
281 | 282 | |
|
282 | 283 | CODE = 'coh' |
|
283 | 284 | |
|
284 | 285 | def setup(self): |
|
285 | 286 | self.xaxis = 'time' |
|
286 | 287 | self.ncols = 1 |
|
287 | 288 | self.nrows = len(self.data.pairs) |
|
288 | 289 | self.nplots = len(self.data.pairs) |
|
289 | 290 | self.ylabel = 'Range [km]' |
|
290 | 291 | self.xlabel = 'Time' |
|
291 | 292 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
292 | 293 | if self.CODE == 'coh': |
|
293 | 294 | self.cb_label = '' |
|
294 | 295 | self.titles = [ |
|
295 | 296 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
296 | 297 | else: |
|
297 | 298 | self.cb_label = 'Degrees' |
|
298 | 299 | self.titles = [ |
|
299 | 300 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
300 | 301 | |
|
301 | 302 | def update(self, dataOut): |
|
302 | 303 | |
|
303 | 304 | data = {} |
|
304 | 305 | meta = {} |
|
305 | 306 | data['coh'] = dataOut.getCoherence() |
|
306 | 307 | meta['pairs'] = dataOut.pairsList |
|
307 | 308 | |
|
308 | 309 | return data, meta |
|
309 | 310 | |
|
310 | 311 | class PhasePlot(CoherencePlot): |
|
311 | 312 | ''' |
|
312 | 313 | Plot for Phase map data |
|
313 | 314 | ''' |
|
314 | 315 | |
|
315 | 316 | CODE = 'phase' |
|
316 | 317 | colormap = 'seismic' |
|
317 | 318 | |
|
318 | 319 | def update(self, dataOut): |
|
319 | 320 | |
|
320 | 321 | data = {} |
|
321 | 322 | meta = {} |
|
322 | 323 | data['phase'] = dataOut.getCoherence(phase=True) |
|
323 | 324 | meta['pairs'] = dataOut.pairsList |
|
324 | 325 | |
|
325 | 326 | return data, meta |
|
326 | 327 | |
|
327 | 328 | class NoisePlot(Plot): |
|
328 | 329 | ''' |
|
329 | 330 | Plot for noise |
|
330 | 331 | ''' |
|
331 | 332 | |
|
332 | 333 | CODE = 'noise' |
|
333 | 334 | plot_type = 'scatterbuffer' |
|
334 | 335 | |
|
335 | 336 | def setup(self): |
|
336 | 337 | self.xaxis = 'time' |
|
337 | 338 | self.ncols = 1 |
|
338 | 339 | self.nrows = 1 |
|
339 | 340 | self.nplots = 1 |
|
340 | 341 | self.ylabel = 'Intensity [dB]' |
|
341 | 342 | self.xlabel = 'Time' |
|
342 | 343 | self.titles = ['Noise'] |
|
343 | 344 | self.colorbar = False |
|
344 | 345 | self.plots_adjust.update({'right': 0.85 }) |
|
345 | 346 | |
|
346 | 347 | def update(self, dataOut): |
|
347 | 348 | |
|
348 | 349 | data = {} |
|
349 | 350 | meta = {} |
|
350 | 351 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
351 | 352 | meta['yrange'] = numpy.array([]) |
|
352 | 353 | |
|
353 | 354 | return data, meta |
|
354 | 355 | |
|
355 | 356 | def plot(self): |
|
356 | 357 | |
|
357 | 358 | x = self.data.times |
|
358 | 359 | xmin = self.data.min_time |
|
359 | 360 | xmax = xmin + self.xrange * 60 * 60 |
|
360 | 361 | Y = self.data['noise'] |
|
361 | 362 | |
|
362 | 363 | if self.axes[0].firsttime: |
|
363 | 364 | self.ymin = numpy.nanmin(Y) - 5 |
|
364 | 365 | self.ymax = numpy.nanmax(Y) + 5 |
|
365 | 366 | for ch in self.data.channels: |
|
366 | 367 | y = Y[ch] |
|
367 | 368 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
368 | 369 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
369 | 370 | else: |
|
370 | 371 | for ch in self.data.channels: |
|
371 | 372 | y = Y[ch] |
|
372 | 373 | self.axes[0].lines[ch].set_data(x, y) |
|
373 | 374 | |
|
374 | 375 | |
|
375 | 376 | class PowerProfilePlot(Plot): |
|
376 | 377 | |
|
377 | 378 | CODE = 'pow_profile' |
|
378 | 379 | plot_type = 'scatter' |
|
379 | 380 | |
|
380 | 381 | def setup(self): |
|
381 | 382 | |
|
382 | 383 | self.ncols = 1 |
|
383 | 384 | self.nrows = 1 |
|
384 | 385 | self.nplots = 1 |
|
385 | 386 | self.height = 4 |
|
386 | 387 | self.width = 3 |
|
387 | 388 | self.ylabel = 'Range [km]' |
|
388 | 389 | self.xlabel = 'Intensity [dB]' |
|
389 | 390 | self.titles = ['Power Profile'] |
|
390 | 391 | self.colorbar = False |
|
391 | 392 | |
|
392 | 393 | def update(self, dataOut): |
|
393 | 394 | |
|
394 | 395 | data = {} |
|
395 | 396 | meta = {} |
|
396 | 397 | data[self.CODE] = dataOut.getPower() |
|
397 | 398 | |
|
398 | 399 | return data, meta |
|
399 | 400 | |
|
400 | 401 | def plot(self): |
|
401 | 402 | |
|
402 | 403 | y = self.data.yrange |
|
403 | 404 | self.y = y |
|
404 | 405 | |
|
405 | 406 | x = self.data[-1][self.CODE] |
|
406 | 407 | |
|
407 | 408 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
408 | 409 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
409 | 410 | |
|
410 | 411 | if self.axes[0].firsttime: |
|
411 | 412 | for ch in self.data.channels: |
|
412 | 413 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
413 | 414 | plt.legend() |
|
414 | 415 | else: |
|
415 | 416 | for ch in self.data.channels: |
|
416 | 417 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
417 | 418 | |
|
418 | 419 | |
|
419 | 420 | class SpectraCutPlot(Plot): |
|
420 | 421 | |
|
421 | 422 | CODE = 'spc_cut' |
|
422 | 423 | plot_type = 'scatter' |
|
423 | 424 | buffering = False |
|
424 | 425 | |
|
425 | 426 | def setup(self): |
|
426 | 427 | |
|
427 | 428 | self.nplots = len(self.data.channels) |
|
428 | 429 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
429 | 430 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
430 | 431 | self.width = 3.4 * self.ncols + 1.5 |
|
431 | 432 | self.height = 3 * self.nrows |
|
432 | 433 | self.ylabel = 'Power [dB]' |
|
433 | 434 | self.colorbar = False |
|
434 | 435 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
435 | 436 | |
|
436 | 437 | def update(self, dataOut): |
|
437 | 438 | |
|
438 | 439 | data = {} |
|
439 | 440 | meta = {} |
|
440 | 441 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
441 | 442 | data['spc'] = spc |
|
442 | 443 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
443 | 444 | |
|
444 | 445 | return data, meta |
|
445 | 446 | |
|
446 | 447 | def plot(self): |
|
447 | 448 | if self.xaxis == "frequency": |
|
448 | 449 | x = self.data.xrange[0][1:] |
|
449 | 450 | self.xlabel = "Frequency (kHz)" |
|
450 | 451 | elif self.xaxis == "time": |
|
451 | 452 | x = self.data.xrange[1] |
|
452 | 453 | self.xlabel = "Time (ms)" |
|
453 | 454 | else: |
|
454 | 455 | x = self.data.xrange[2] |
|
455 | 456 | self.xlabel = "Velocity (m/s)" |
|
456 | 457 | |
|
457 | 458 | self.titles = [] |
|
458 | 459 | |
|
459 | 460 | y = self.data.yrange |
|
460 | 461 | z = self.data[-1]['spc'] |
|
461 | 462 | |
|
462 | 463 | if self.height_index: |
|
463 | 464 | index = numpy.array(self.height_index) |
|
464 | 465 | else: |
|
465 | 466 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
466 | 467 | |
|
467 | 468 | for n, ax in enumerate(self.axes): |
|
468 | 469 | if ax.firsttime: |
|
469 | 470 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
470 | 471 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
471 | 472 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
472 | 473 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
473 | 474 | ax.plt = ax.plot(x, z[n, :, index].T) |
|
474 | 475 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
475 | 476 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
476 | 477 | else: |
|
477 | 478 | for i, line in enumerate(ax.plt): |
|
478 | 479 | line.set_data(x, z[n, :, index[i]]) |
|
479 | 480 | self.titles.append('CH {}'.format(n)) |
|
480 | 481 | |
|
481 | 482 | |
|
482 | 483 | class BeaconPhase(Plot): |
|
483 | 484 | |
|
484 | 485 | __isConfig = None |
|
485 | 486 | __nsubplots = None |
|
486 | 487 | |
|
487 | 488 | PREFIX = 'beacon_phase' |
|
488 | 489 | |
|
489 | 490 | def __init__(self): |
|
490 | 491 | Plot.__init__(self) |
|
491 | 492 | self.timerange = 24*60*60 |
|
492 | 493 | self.isConfig = False |
|
493 | 494 | self.__nsubplots = 1 |
|
494 | 495 | self.counter_imagwr = 0 |
|
495 | 496 | self.WIDTH = 800 |
|
496 | 497 | self.HEIGHT = 400 |
|
497 | 498 | self.WIDTHPROF = 120 |
|
498 | 499 | self.HEIGHTPROF = 0 |
|
499 | 500 | self.xdata = None |
|
500 | 501 | self.ydata = None |
|
501 | 502 | |
|
502 | 503 | self.PLOT_CODE = BEACON_CODE |
|
503 | 504 | |
|
504 | 505 | self.FTP_WEI = None |
|
505 | 506 | self.EXP_CODE = None |
|
506 | 507 | self.SUB_EXP_CODE = None |
|
507 | 508 | self.PLOT_POS = None |
|
508 | 509 | |
|
509 | 510 | self.filename_phase = None |
|
510 | 511 | |
|
511 | 512 | self.figfile = None |
|
512 | 513 | |
|
513 | 514 | self.xmin = None |
|
514 | 515 | self.xmax = None |
|
515 | 516 | |
|
516 | 517 | def getSubplots(self): |
|
517 | 518 | |
|
518 | 519 | ncol = 1 |
|
519 | 520 | nrow = 1 |
|
520 | 521 | |
|
521 | 522 | return nrow, ncol |
|
522 | 523 | |
|
523 | 524 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
524 | 525 | |
|
525 | 526 | self.__showprofile = showprofile |
|
526 | 527 | self.nplots = nplots |
|
527 | 528 | |
|
528 | 529 | ncolspan = 7 |
|
529 | 530 | colspan = 6 |
|
530 | 531 | self.__nsubplots = 2 |
|
531 | 532 | |
|
532 | 533 | self.createFigure(id = id, |
|
533 | 534 | wintitle = wintitle, |
|
534 | 535 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
535 | 536 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
536 | 537 | show=show) |
|
537 | 538 | |
|
538 | 539 | nrow, ncol = self.getSubplots() |
|
539 | 540 | |
|
540 | 541 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
541 | 542 | |
|
542 | 543 | def save_phase(self, filename_phase): |
|
543 | 544 | f = open(filename_phase,'w+') |
|
544 | 545 | f.write('\n\n') |
|
545 | 546 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
546 | 547 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
547 | 548 | f.close() |
|
548 | 549 | |
|
549 | 550 | def save_data(self, filename_phase, data, data_datetime): |
|
550 | 551 | f=open(filename_phase,'a') |
|
551 | 552 | timetuple_data = data_datetime.timetuple() |
|
552 | 553 | day = str(timetuple_data.tm_mday) |
|
553 | 554 | month = str(timetuple_data.tm_mon) |
|
554 | 555 | year = str(timetuple_data.tm_year) |
|
555 | 556 | hour = str(timetuple_data.tm_hour) |
|
556 | 557 | minute = str(timetuple_data.tm_min) |
|
557 | 558 | second = str(timetuple_data.tm_sec) |
|
558 | 559 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
559 | 560 | f.close() |
|
560 | 561 | |
|
561 | 562 | def plot(self): |
|
562 | 563 | log.warning('TODO: Not yet implemented...') |
|
563 | 564 | |
|
564 | 565 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
565 | 566 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
566 | 567 | timerange=None, |
|
567 | 568 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
568 | 569 | server=None, folder=None, username=None, password=None, |
|
569 | 570 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
570 | 571 | |
|
571 | 572 | if dataOut.flagNoData: |
|
572 | 573 | return dataOut |
|
573 | 574 | |
|
574 | 575 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
575 | 576 | return |
|
576 | 577 | |
|
577 | 578 | if pairsList == None: |
|
578 | 579 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
579 | 580 | else: |
|
580 | 581 | pairsIndexList = [] |
|
581 | 582 | for pair in pairsList: |
|
582 | 583 | if pair not in dataOut.pairsList: |
|
583 | 584 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
584 | 585 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
585 | 586 | |
|
586 | 587 | if pairsIndexList == []: |
|
587 | 588 | return |
|
588 | 589 | |
|
589 | 590 | # if len(pairsIndexList) > 4: |
|
590 | 591 | # pairsIndexList = pairsIndexList[0:4] |
|
591 | 592 | |
|
592 | 593 | hmin_index = None |
|
593 | 594 | hmax_index = None |
|
594 | 595 | |
|
595 | 596 | if hmin != None and hmax != None: |
|
596 | 597 | indexes = numpy.arange(dataOut.nHeights) |
|
597 | 598 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
598 | 599 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
599 | 600 | |
|
600 | 601 | if hmin_list.any(): |
|
601 | 602 | hmin_index = hmin_list[0] |
|
602 | 603 | |
|
603 | 604 | if hmax_list.any(): |
|
604 | 605 | hmax_index = hmax_list[-1]+1 |
|
605 | 606 | |
|
606 | 607 | x = dataOut.getTimeRange() |
|
607 | 608 | |
|
608 | 609 | thisDatetime = dataOut.datatime |
|
609 | 610 | |
|
610 | 611 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
611 | 612 | xlabel = "Local Time" |
|
612 | 613 | ylabel = "Phase (degrees)" |
|
613 | 614 | |
|
614 | 615 | update_figfile = False |
|
615 | 616 | |
|
616 | 617 | nplots = len(pairsIndexList) |
|
617 | 618 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
618 | 619 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
619 | 620 | for i in range(nplots): |
|
620 | 621 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
621 | 622 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
622 | 623 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
623 | 624 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
624 | 625 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
625 | 626 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
626 | 627 | |
|
627 | 628 | if dataOut.beacon_heiIndexList: |
|
628 | 629 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
629 | 630 | else: |
|
630 | 631 | phase_beacon[i] = numpy.average(phase) |
|
631 | 632 | |
|
632 | 633 | if not self.isConfig: |
|
633 | 634 | |
|
634 | 635 | nplots = len(pairsIndexList) |
|
635 | 636 | |
|
636 | 637 | self.setup(id=id, |
|
637 | 638 | nplots=nplots, |
|
638 | 639 | wintitle=wintitle, |
|
639 | 640 | showprofile=showprofile, |
|
640 | 641 | show=show) |
|
641 | 642 | |
|
642 | 643 | if timerange != None: |
|
643 | 644 | self.timerange = timerange |
|
644 | 645 | |
|
645 | 646 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
646 | 647 | |
|
647 | 648 | if ymin == None: ymin = 0 |
|
648 | 649 | if ymax == None: ymax = 360 |
|
649 | 650 | |
|
650 | 651 | self.FTP_WEI = ftp_wei |
|
651 | 652 | self.EXP_CODE = exp_code |
|
652 | 653 | self.SUB_EXP_CODE = sub_exp_code |
|
653 | 654 | self.PLOT_POS = plot_pos |
|
654 | 655 | |
|
655 | 656 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
656 | 657 | self.isConfig = True |
|
657 | 658 | self.figfile = figfile |
|
658 | 659 | self.xdata = numpy.array([]) |
|
659 | 660 | self.ydata = numpy.array([]) |
|
660 | 661 | |
|
661 | 662 | update_figfile = True |
|
662 | 663 | |
|
663 | 664 | #open file beacon phase |
|
664 | 665 | path = '%s%03d' %(self.PREFIX, self.id) |
|
665 | 666 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
666 | 667 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
667 | 668 | #self.save_phase(self.filename_phase) |
|
668 | 669 | |
|
669 | 670 | |
|
670 | 671 | #store data beacon phase |
|
671 | 672 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
672 | 673 | |
|
673 | 674 | self.setWinTitle(title) |
|
674 | 675 | |
|
675 | 676 | |
|
676 | 677 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
677 | 678 | |
|
678 | 679 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
679 | 680 | |
|
680 | 681 | axes = self.axesList[0] |
|
681 | 682 | |
|
682 | 683 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
683 | 684 | |
|
684 | 685 | if len(self.ydata)==0: |
|
685 | 686 | self.ydata = phase_beacon.reshape(-1,1) |
|
686 | 687 | else: |
|
687 | 688 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
688 | 689 | |
|
689 | 690 | |
|
690 | 691 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
691 | 692 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
692 | 693 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
693 | 694 | XAxisAsTime=True, grid='both' |
|
694 | 695 | ) |
|
695 | 696 | |
|
696 | 697 | self.draw() |
|
697 | 698 | |
|
698 | 699 | if dataOut.ltctime >= self.xmax: |
|
699 | 700 | self.counter_imagwr = wr_period |
|
700 | 701 | self.isConfig = False |
|
701 | 702 | update_figfile = True |
|
702 | 703 | |
|
703 | 704 | self.save(figpath=figpath, |
|
704 | 705 | figfile=figfile, |
|
705 | 706 | save=save, |
|
706 | 707 | ftp=ftp, |
|
707 | 708 | wr_period=wr_period, |
|
708 | 709 | thisDatetime=thisDatetime, |
|
709 | 710 | update_figfile=update_figfile) |
|
710 | 711 | |
|
711 | 712 | return dataOut |
|
1 | NO CONTENT: modified file |
@@ -1,663 +1,661 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Set 9, 2015 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 Karim Kuyeng |
|
5 | 5 | |
|
6 | 6 | @update: 2021, Joab Apaza |
|
7 | 7 | ''' |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import sys |
|
11 | 11 | import glob |
|
12 | 12 | import fnmatch |
|
13 | 13 | import datetime |
|
14 | 14 | import time |
|
15 | 15 | import re |
|
16 | 16 | import h5py |
|
17 | 17 | import numpy |
|
18 | 18 | |
|
19 | 19 | try: |
|
20 | 20 | from gevent import sleep |
|
21 | 21 | except: |
|
22 | 22 | from time import sleep |
|
23 | 23 | |
|
24 | 24 | from schainpy.model.data.jroheaderIO import RadarControllerHeader, SystemHeader |
|
25 | 25 | from schainpy.model.data.jrodata import Voltage |
|
26 | 26 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
27 | 27 | from numpy import imag |
|
28 | 28 | |
|
29 | 29 | |
|
30 | 30 | class AMISRReader(ProcessingUnit): |
|
31 | 31 | ''' |
|
32 | 32 | classdocs |
|
33 | 33 | ''' |
|
34 | 34 | |
|
35 | 35 | def __init__(self): |
|
36 | 36 | ''' |
|
37 | 37 | Constructor |
|
38 | 38 | ''' |
|
39 | 39 | |
|
40 | 40 | ProcessingUnit.__init__(self) |
|
41 | 41 | |
|
42 | 42 | self.set = None |
|
43 | 43 | self.subset = None |
|
44 | 44 | self.extension_file = '.h5' |
|
45 | 45 | self.dtc_str = 'dtc' |
|
46 | 46 | self.dtc_id = 0 |
|
47 | 47 | self.status = True |
|
48 | 48 | self.isConfig = False |
|
49 | 49 | self.dirnameList = [] |
|
50 | 50 | self.filenameList = [] |
|
51 | 51 | self.fileIndex = None |
|
52 | 52 | self.flagNoMoreFiles = False |
|
53 | 53 | self.flagIsNewFile = 0 |
|
54 | 54 | self.filename = '' |
|
55 | 55 | self.amisrFilePointer = None |
|
56 | 56 | self.realBeamCode = [] |
|
57 | 57 | self.beamCodeMap = None |
|
58 | 58 | self.azimuthList = [] |
|
59 | 59 | self.elevationList = [] |
|
60 | 60 | self.dataShape = None |
|
61 | 61 | |
|
62 | 62 | |
|
63 | 63 | |
|
64 | 64 | self.profileIndex = 0 |
|
65 | 65 | |
|
66 | 66 | |
|
67 | 67 | self.beamCodeByFrame = None |
|
68 | 68 | self.radacTimeByFrame = None |
|
69 | 69 | |
|
70 | 70 | self.dataset = None |
|
71 | 71 | |
|
72 | 72 | self.__firstFile = True |
|
73 | 73 | |
|
74 | 74 | self.buffer = None |
|
75 | 75 | |
|
76 | 76 | self.timezone = 'ut' |
|
77 | 77 | |
|
78 | 78 | self.__waitForNewFile = 20 |
|
79 | 79 | self.__filename_online = None |
|
80 | 80 | #Is really necessary create the output object in the initializer |
|
81 | 81 | self.dataOut = Voltage() |
|
82 | 82 | self.dataOut.error=False |
|
83 | 83 | |
|
84 | 84 | |
|
85 | 85 | def setup(self,path=None, |
|
86 | 86 | startDate=None, |
|
87 | 87 | endDate=None, |
|
88 | 88 | startTime=None, |
|
89 | 89 | endTime=None, |
|
90 | 90 | walk=True, |
|
91 | 91 | timezone='ut', |
|
92 | 92 | all=0, |
|
93 | 93 | code = None, |
|
94 | 94 | nCode = 0, |
|
95 | 95 | nBaud = 0, |
|
96 | 96 | online=False): |
|
97 | 97 | |
|
98 | 98 | |
|
99 | 99 | |
|
100 | 100 | self.timezone = timezone |
|
101 | 101 | self.all = all |
|
102 | 102 | self.online = online |
|
103 | 103 | |
|
104 | 104 | self.code = code |
|
105 | 105 | self.nCode = int(nCode) |
|
106 | 106 | self.nBaud = int(nBaud) |
|
107 | 107 | |
|
108 | 108 | |
|
109 | 109 | |
|
110 | 110 | #self.findFiles() |
|
111 | 111 | if not(online): |
|
112 | 112 | #Busqueda de archivos offline |
|
113 | 113 | self.searchFilesOffLine(path, startDate, endDate, startTime, endTime, walk) |
|
114 | 114 | else: |
|
115 | 115 | self.searchFilesOnLine(path, startDate, endDate, startTime,endTime,walk) |
|
116 | 116 | |
|
117 | 117 | if not(self.filenameList): |
|
118 | 118 | print("There is no files into the folder: %s"%(path)) |
|
119 | 119 | sys.exit() |
|
120 | 120 | |
|
121 | 121 | self.fileIndex = 0 |
|
122 | 122 | |
|
123 | 123 | self.readNextFile(online) |
|
124 | 124 | |
|
125 | 125 | ''' |
|
126 | 126 | Add code |
|
127 | 127 | ''' |
|
128 | 128 | self.isConfig = True |
|
129 | 129 | # print("Setup Done") |
|
130 | 130 | pass |
|
131 | 131 | |
|
132 | 132 | |
|
133 | 133 | def readAMISRHeader(self,fp): |
|
134 | 134 | |
|
135 | 135 | if self.isConfig and (not self.flagNoMoreFiles): |
|
136 | 136 | newShape = fp.get('Raw11/Data/Samples/Data').shape[1:] |
|
137 | 137 | if self.dataShape != newShape and newShape != None: |
|
138 | 138 | print("\nNEW FILE HAS A DIFFERENT SHAPE") |
|
139 | 139 | print(self.dataShape,newShape,"\n") |
|
140 | 140 | return 0 |
|
141 | 141 | else: |
|
142 | 142 | self.dataShape = fp.get('Raw11/Data/Samples/Data').shape[1:] |
|
143 | 143 | |
|
144 | 144 | |
|
145 | 145 | header = 'Raw11/Data/RadacHeader' |
|
146 | 146 | self.beamCodeByPulse = fp.get(header+'/BeamCode') # LIST OF BEAMS PER PROFILE, TO BE USED ON REARRANGE |
|
147 | 147 | if (self.startDate> datetime.date(2021, 7, 15)): #Se cambió la forma de extracción de Apuntes el 17 |
|
148 | 148 | self.beamcodeFile = fp['Setup/Beamcodefile'][()].decode() |
|
149 | 149 | self.trueBeams = self.beamcodeFile.split("\n") |
|
150 | 150 | self.trueBeams.pop()#remove last |
|
151 | 151 | [self.realBeamCode.append(x) for x in self.trueBeams if x not in self.realBeamCode] |
|
152 | 152 | self.beamCode = [int(x, 16) for x in self.realBeamCode] |
|
153 | 153 | else: |
|
154 | 154 | _beamCode= fp.get('Raw11/Data/Beamcodes') #se usa la manera previa al cambio de apuntes |
|
155 | 155 | self.beamCode = _beamCode[0,:] |
|
156 | 156 | |
|
157 | 157 | if self.beamCodeMap == None: |
|
158 | 158 | self.beamCodeMap = fp['Setup/BeamcodeMap'] |
|
159 | 159 | for beam in self.beamCode: |
|
160 | 160 | beamAziElev = numpy.where(self.beamCodeMap[:,0]==beam) |
|
161 | 161 | beamAziElev = beamAziElev[0].squeeze() |
|
162 | 162 | self.azimuthList.append(self.beamCodeMap[beamAziElev,1]) |
|
163 | 163 | self.elevationList.append(self.beamCodeMap[beamAziElev,2]) |
|
164 | 164 | #print("Beamssss: ",self.beamCodeMap[beamAziElev,1],self.beamCodeMap[beamAziElev,2]) |
|
165 | 165 | #print(self.beamCode) |
|
166 | 166 | #self.code = fp.get(header+'/Code') # NOT USE FOR THIS |
|
167 | 167 | self.frameCount = fp.get(header+'/FrameCount')# NOT USE FOR THIS |
|
168 | 168 | self.modeGroup = fp.get(header+'/ModeGroup')# NOT USE FOR THIS |
|
169 | 169 | self.nsamplesPulse = fp.get(header+'/NSamplesPulse')# TO GET NSA OR USING DATA FOR THAT |
|
170 | 170 | self.pulseCount = fp.get(header+'/PulseCount')# NOT USE FOR THIS |
|
171 | 171 | self.radacTime = fp.get(header+'/RadacTime')# 1st TIME ON FILE ANDE CALCULATE THE REST WITH IPP*nindexprofile |
|
172 | 172 | self.timeCount = fp.get(header+'/TimeCount')# NOT USE FOR THIS |
|
173 | 173 | self.timeStatus = fp.get(header+'/TimeStatus')# NOT USE FOR THIS |
|
174 | 174 | self.rangeFromFile = fp.get('Raw11/Data/Samples/Range') |
|
175 | 175 | self.frequency = fp.get('Rx/Frequency') |
|
176 | 176 | txAus = fp.get('Raw11/Data/Pulsewidth') |
|
177 | 177 | |
|
178 | 178 | |
|
179 | 179 | self.nblocks = self.pulseCount.shape[0] #nblocks |
|
180 | 180 | |
|
181 | 181 | self.nprofiles = self.pulseCount.shape[1] #nprofile |
|
182 | 182 | self.nsa = self.nsamplesPulse[0,0] #ngates |
|
183 | 183 | self.nchannels = len(self.beamCode) |
|
184 | 184 | self.ippSeconds = (self.radacTime[0][1] -self.radacTime[0][0]) #Ipp in seconds |
|
185 | 185 | #self.__waitForNewFile = self.nblocks # wait depending on the number of blocks since each block is 1 sec |
|
186 | 186 | self.__waitForNewFile = self.nblocks * self.nprofiles * self.ippSeconds # wait until new file is created |
|
187 | 187 | |
|
188 | 188 | #filling radar controller header parameters |
|
189 | 189 | self.__ippKm = self.ippSeconds *.15*1e6 # in km |
|
190 | 190 | self.__txA = (txAus.value)*.15 #(ipp[us]*.15km/1us) in km |
|
191 | 191 | self.__txB = 0 |
|
192 | 192 | nWindows=1 |
|
193 | 193 | self.__nSamples = self.nsa |
|
194 | 194 | self.__firstHeight = self.rangeFromFile[0][0]/1000 #in km |
|
195 | 195 | self.__deltaHeight = (self.rangeFromFile[0][1] - self.rangeFromFile[0][0])/1000 |
|
196 | 196 | |
|
197 | 197 | #for now until understand why the code saved is different (code included even though code not in tuf file) |
|
198 | 198 | #self.__codeType = 0 |
|
199 | 199 | # self.__nCode = None |
|
200 | 200 | # self.__nBaud = None |
|
201 | 201 | self.__code = self.code |
|
202 | 202 | self.__codeType = 0 |
|
203 | 203 | if self.code != None: |
|
204 | 204 | self.__codeType = 1 |
|
205 | 205 | self.__nCode = self.nCode |
|
206 | 206 | self.__nBaud = self.nBaud |
|
207 | 207 | #self.__code = 0 |
|
208 | 208 | |
|
209 | 209 | #filling system header parameters |
|
210 | 210 | self.__nSamples = self.nsa |
|
211 | 211 | self.newProfiles = self.nprofiles/self.nchannels |
|
212 | 212 | self.__channelList = list(range(self.nchannels)) |
|
213 | 213 | |
|
214 | 214 | self.__frequency = self.frequency[0][0] |
|
215 | 215 | |
|
216 | 216 | |
|
217 | 217 | return 1 |
|
218 | 218 | |
|
219 | 219 | |
|
220 | 220 | def createBuffers(self): |
|
221 | 221 | |
|
222 | 222 | pass |
|
223 | 223 | |
|
224 | 224 | def __setParameters(self,path='', startDate='',endDate='',startTime='', endTime='', walk=''): |
|
225 | 225 | self.path = path |
|
226 | 226 | self.startDate = startDate |
|
227 | 227 | self.endDate = endDate |
|
228 | 228 | self.startTime = startTime |
|
229 | 229 | self.endTime = endTime |
|
230 | 230 | self.walk = walk |
|
231 | 231 | |
|
232 | 232 | def __checkPath(self): |
|
233 | 233 | if os.path.exists(self.path): |
|
234 | 234 | self.status = 1 |
|
235 | 235 | else: |
|
236 | 236 | self.status = 0 |
|
237 | 237 | print('Path:%s does not exists'%self.path) |
|
238 | 238 | |
|
239 | 239 | return |
|
240 | 240 | |
|
241 | 241 | |
|
242 | 242 | def __selDates(self, amisr_dirname_format): |
|
243 | 243 | try: |
|
244 | 244 | year = int(amisr_dirname_format[0:4]) |
|
245 | 245 | month = int(amisr_dirname_format[4:6]) |
|
246 | 246 | dom = int(amisr_dirname_format[6:8]) |
|
247 | 247 | thisDate = datetime.date(year,month,dom) |
|
248 | 248 | |
|
249 | 249 | if (thisDate>=self.startDate and thisDate <= self.endDate): |
|
250 | 250 | return amisr_dirname_format |
|
251 | 251 | except: |
|
252 | 252 | return None |
|
253 | 253 | |
|
254 | 254 | |
|
255 | 255 | def __findDataForDates(self,online=False): |
|
256 | 256 | |
|
257 | 257 | if not(self.status): |
|
258 | 258 | return None |
|
259 | 259 | |
|
260 | 260 | pat = '\d+.\d+' |
|
261 | 261 | dirnameList = [re.search(pat,x) for x in os.listdir(self.path)] |
|
262 | 262 | dirnameList = [x for x in dirnameList if x!=None] |
|
263 | 263 | dirnameList = [x.string for x in dirnameList] |
|
264 | 264 | if not(online): |
|
265 | 265 | dirnameList = [self.__selDates(x) for x in dirnameList] |
|
266 | 266 | dirnameList = [x for x in dirnameList if x!=None] |
|
267 | 267 | if len(dirnameList)>0: |
|
268 | 268 | self.status = 1 |
|
269 | 269 | self.dirnameList = dirnameList |
|
270 | 270 | self.dirnameList.sort() |
|
271 | 271 | else: |
|
272 | 272 | self.status = 0 |
|
273 | 273 | return None |
|
274 | 274 | |
|
275 | 275 | def __getTimeFromData(self): |
|
276 | 276 | startDateTime_Reader = datetime.datetime.combine(self.startDate,self.startTime) |
|
277 | 277 | endDateTime_Reader = datetime.datetime.combine(self.endDate,self.endTime) |
|
278 | 278 | |
|
279 | 279 | print('Filtering Files from %s to %s'%(startDateTime_Reader, endDateTime_Reader)) |
|
280 | 280 | print('........................................') |
|
281 | 281 | filter_filenameList = [] |
|
282 | 282 | self.filenameList.sort() |
|
283 | 283 | #for i in range(len(self.filenameList)-1): |
|
284 | 284 | for i in range(len(self.filenameList)): |
|
285 | 285 | filename = self.filenameList[i] |
|
286 | 286 | fp = h5py.File(filename,'r') |
|
287 | 287 | time_str = fp.get('Time/RadacTimeString') |
|
288 | 288 | |
|
289 | 289 | startDateTimeStr_File = time_str[0][0].decode('UTF-8').split('.')[0] |
|
290 | 290 | #startDateTimeStr_File = "2019-12-16 09:21:11" |
|
291 | 291 | junk = time.strptime(startDateTimeStr_File, '%Y-%m-%d %H:%M:%S') |
|
292 | 292 | startDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) |
|
293 | 293 | |
|
294 | 294 | #endDateTimeStr_File = "2019-12-16 11:10:11" |
|
295 | 295 | endDateTimeStr_File = time_str[-1][-1].decode('UTF-8').split('.')[0] |
|
296 | 296 | junk = time.strptime(endDateTimeStr_File, '%Y-%m-%d %H:%M:%S') |
|
297 | 297 | endDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) |
|
298 | 298 | |
|
299 | 299 | fp.close() |
|
300 | 300 | |
|
301 | 301 | #print("check time", startDateTime_File) |
|
302 | 302 | if self.timezone == 'lt': |
|
303 | 303 | startDateTime_File = startDateTime_File - datetime.timedelta(minutes = 300) |
|
304 | 304 | endDateTime_File = endDateTime_File - datetime.timedelta(minutes = 300) |
|
305 | 305 | if (endDateTime_File>=startDateTime_Reader and endDateTime_File<=endDateTime_Reader): |
|
306 | 306 | filter_filenameList.append(filename) |
|
307 | 307 | |
|
308 | 308 | if (endDateTime_File>endDateTime_Reader): |
|
309 | 309 | break |
|
310 | 310 | |
|
311 | 311 | |
|
312 | 312 | filter_filenameList.sort() |
|
313 | 313 | self.filenameList = filter_filenameList |
|
314 | 314 | return 1 |
|
315 | 315 | |
|
316 | 316 | def __filterByGlob1(self, dirName): |
|
317 | 317 | filter_files = glob.glob1(dirName, '*.*%s'%self.extension_file) |
|
318 | 318 | filter_files.sort() |
|
319 | 319 | filterDict = {} |
|
320 | 320 | filterDict.setdefault(dirName) |
|
321 | 321 | filterDict[dirName] = filter_files |
|
322 | 322 | return filterDict |
|
323 | 323 | |
|
324 | 324 | def __getFilenameList(self, fileListInKeys, dirList): |
|
325 | 325 | for value in fileListInKeys: |
|
326 | 326 | dirName = list(value.keys())[0] |
|
327 | 327 | for file in value[dirName]: |
|
328 | 328 | filename = os.path.join(dirName, file) |
|
329 | 329 | self.filenameList.append(filename) |
|
330 | 330 | |
|
331 | 331 | |
|
332 | 332 | def __selectDataForTimes(self, online=False): |
|
333 | 333 | #aun no esta implementado el filtro for tiempo |
|
334 | 334 | if not(self.status): |
|
335 | 335 | return None |
|
336 | 336 | |
|
337 | 337 | dirList = [os.path.join(self.path,x) for x in self.dirnameList] |
|
338 | 338 | |
|
339 | 339 | fileListInKeys = [self.__filterByGlob1(x) for x in dirList] |
|
340 | 340 | |
|
341 | 341 | self.__getFilenameList(fileListInKeys, dirList) |
|
342 | 342 | if not(online): |
|
343 | 343 | #filtro por tiempo |
|
344 | 344 | if not(self.all): |
|
345 | 345 | self.__getTimeFromData() |
|
346 | 346 | |
|
347 | 347 | if len(self.filenameList)>0: |
|
348 | 348 | self.status = 1 |
|
349 | 349 | self.filenameList.sort() |
|
350 | 350 | else: |
|
351 | 351 | self.status = 0 |
|
352 | 352 | return None |
|
353 | 353 | |
|
354 | 354 | else: |
|
355 | 355 | #get the last file - 1 |
|
356 | 356 | self.filenameList = [self.filenameList[-2]] |
|
357 | 357 | new_dirnameList = [] |
|
358 | 358 | for dirname in self.dirnameList: |
|
359 | 359 | junk = numpy.array([dirname in x for x in self.filenameList]) |
|
360 | 360 | junk_sum = junk.sum() |
|
361 | 361 | if junk_sum > 0: |
|
362 | 362 | new_dirnameList.append(dirname) |
|
363 | 363 | self.dirnameList = new_dirnameList |
|
364 | 364 | return 1 |
|
365 | 365 | |
|
366 | 366 | def searchFilesOnLine(self, path, startDate, endDate, startTime=datetime.time(0,0,0), |
|
367 | 367 | endTime=datetime.time(23,59,59),walk=True): |
|
368 | 368 | |
|
369 | 369 | if endDate ==None: |
|
370 | 370 | startDate = datetime.datetime.utcnow().date() |
|
371 | 371 | endDate = datetime.datetime.utcnow().date() |
|
372 | 372 | |
|
373 | 373 | self.__setParameters(path=path, startDate=startDate, endDate=endDate,startTime = startTime,endTime=endTime, walk=walk) |
|
374 | 374 | |
|
375 | 375 | self.__checkPath() |
|
376 | 376 | |
|
377 | 377 | self.__findDataForDates(online=True) |
|
378 | 378 | |
|
379 | 379 | self.dirnameList = [self.dirnameList[-1]] |
|
380 | 380 | |
|
381 | 381 | self.__selectDataForTimes(online=True) |
|
382 | 382 | |
|
383 | 383 | return |
|
384 | 384 | |
|
385 | 385 | |
|
386 | 386 | def searchFilesOffLine(self, |
|
387 | 387 | path, |
|
388 | 388 | startDate, |
|
389 | 389 | endDate, |
|
390 | 390 | startTime=datetime.time(0,0,0), |
|
391 | 391 | endTime=datetime.time(23,59,59), |
|
392 | 392 | walk=True): |
|
393 | 393 | |
|
394 | 394 | self.__setParameters(path, startDate, endDate, startTime, endTime, walk) |
|
395 | 395 | |
|
396 | 396 | self.__checkPath() |
|
397 | 397 | |
|
398 | 398 | self.__findDataForDates() |
|
399 | 399 | |
|
400 | 400 | self.__selectDataForTimes() |
|
401 | 401 | |
|
402 | 402 | for i in range(len(self.filenameList)): |
|
403 | 403 | print("%s" %(self.filenameList[i])) |
|
404 | 404 | |
|
405 | 405 | return |
|
406 | 406 | |
|
407 | 407 | def __setNextFileOffline(self): |
|
408 | 408 | |
|
409 | 409 | try: |
|
410 | 410 | self.filename = self.filenameList[self.fileIndex] |
|
411 | 411 | self.amisrFilePointer = h5py.File(self.filename,'r') |
|
412 | 412 | self.fileIndex += 1 |
|
413 | 413 | except: |
|
414 | 414 | self.flagNoMoreFiles = 1 |
|
415 | 415 | print("No more Files") |
|
416 | 416 | return 0 |
|
417 | 417 | |
|
418 | 418 | self.flagIsNewFile = 1 |
|
419 | 419 | print("Setting the file: %s"%self.filename) |
|
420 | 420 | |
|
421 | 421 | return 1 |
|
422 | 422 | |
|
423 | 423 | |
|
424 | 424 | def __setNextFileOnline(self): |
|
425 | 425 | filename = self.filenameList[0] |
|
426 | 426 | if self.__filename_online != None: |
|
427 | 427 | self.__selectDataForTimes(online=True) |
|
428 | 428 | filename = self.filenameList[0] |
|
429 | 429 | wait = 0 |
|
430 | 430 | self.__waitForNewFile=300 ## DEBUG: |
|
431 | 431 | while self.__filename_online == filename: |
|
432 | 432 | print('waiting %d seconds to get a new file...'%(self.__waitForNewFile)) |
|
433 | 433 | if wait == 5: |
|
434 | 434 | self.flagNoMoreFiles = 1 |
|
435 | 435 | return 0 |
|
436 | 436 | sleep(self.__waitForNewFile) |
|
437 | 437 | self.__selectDataForTimes(online=True) |
|
438 | 438 | filename = self.filenameList[0] |
|
439 | 439 | wait += 1 |
|
440 | 440 | |
|
441 | 441 | self.__filename_online = filename |
|
442 | 442 | |
|
443 | 443 | self.amisrFilePointer = h5py.File(filename,'r') |
|
444 | 444 | self.flagIsNewFile = 1 |
|
445 | 445 | self.filename = filename |
|
446 | 446 | print("Setting the file: %s"%self.filename) |
|
447 | 447 | return 1 |
|
448 | 448 | |
|
449 | 449 | |
|
450 | 450 | def readData(self): |
|
451 | 451 | buffer = self.amisrFilePointer.get('Raw11/Data/Samples/Data') |
|
452 | 452 | re = buffer[:,:,:,0] |
|
453 | 453 | im = buffer[:,:,:,1] |
|
454 | 454 | dataset = re + im*1j |
|
455 | 455 | |
|
456 | 456 | self.radacTime = self.amisrFilePointer.get('Raw11/Data/RadacHeader/RadacTime') |
|
457 | 457 | timeset = self.radacTime[:,0] |
|
458 | 458 | |
|
459 | 459 | return dataset,timeset |
|
460 | 460 | |
|
461 | 461 | def reshapeData(self): |
|
462 | 462 | #self.beamCodeByPulse, self.beamCode, self.nblocks, self.nprofiles, self.nsa, |
|
463 | 463 | channels = self.beamCodeByPulse[0,:] |
|
464 | 464 | nchan = self.nchannels |
|
465 | 465 | #self.newProfiles = self.nprofiles/nchan #must be defined on filljroheader |
|
466 | 466 | nblocks = self.nblocks |
|
467 | 467 | nsamples = self.nsa |
|
468 | 468 | |
|
469 | 469 | #Dimensions : nChannels, nProfiles, nSamples |
|
470 | 470 | new_block = numpy.empty((nblocks, nchan, numpy.int_(self.newProfiles), nsamples), dtype="complex64") |
|
471 | 471 | ############################################ |
|
472 | 472 | |
|
473 | 473 | for thisChannel in range(nchan): |
|
474 | 474 | new_block[:,thisChannel,:,:] = self.dataset[:,numpy.where(channels==self.beamCode[thisChannel])[0],:] |
|
475 | 475 | |
|
476 | 476 | |
|
477 | 477 | new_block = numpy.transpose(new_block, (1,0,2,3)) |
|
478 | 478 | new_block = numpy.reshape(new_block, (nchan,-1, nsamples)) |
|
479 | 479 | |
|
480 | 480 | return new_block |
|
481 | 481 | |
|
482 | 482 | def updateIndexes(self): |
|
483 | 483 | |
|
484 | 484 | pass |
|
485 | 485 | |
|
486 | 486 | def fillJROHeader(self): |
|
487 | 487 | |
|
488 | 488 | #fill radar controller header |
|
489 | 489 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader(ipp=self.__ippKm, |
|
490 | 490 | txA=self.__txA, |
|
491 | 491 | txB=0, |
|
492 | 492 | nWindows=1, |
|
493 | 493 | nHeights=self.__nSamples, |
|
494 | 494 | firstHeight=self.__firstHeight, |
|
495 | 495 | deltaHeight=self.__deltaHeight, |
|
496 | 496 | codeType=self.__codeType, |
|
497 | 497 | nCode=self.__nCode, nBaud=self.__nBaud, |
|
498 | 498 | code = self.__code, |
|
499 | 499 | fClock=1) |
|
500 | 500 | |
|
501 | 501 | #fill system header |
|
502 | 502 | self.dataOut.systemHeaderObj = SystemHeader(nSamples=self.__nSamples, |
|
503 | 503 | nProfiles=self.newProfiles, |
|
504 | 504 | nChannels=len(self.__channelList), |
|
505 | 505 | adcResolution=14, |
|
506 | 506 | pciDioBusWidth=32) |
|
507 | 507 | |
|
508 | 508 | self.dataOut.type = "Voltage" |
|
509 | 509 | self.dataOut.data = None |
|
510 | 510 | self.dataOut.dtype = numpy.dtype([('real','<i8'),('imag','<i8')]) |
|
511 | 511 | # self.dataOut.nChannels = 0 |
|
512 | 512 | |
|
513 | 513 | # self.dataOut.nHeights = 0 |
|
514 | 514 | |
|
515 | 515 | self.dataOut.nProfiles = self.newProfiles*self.nblocks |
|
516 | 516 | #self.dataOut.heightList = self.__firstHeigth + numpy.arange(self.__nSamples, dtype = numpy.float)*self.__deltaHeigth |
|
517 | 517 | ranges = numpy.reshape(self.rangeFromFile.value,(-1)) |
|
518 | 518 | self.dataOut.heightList = ranges/1000.0 #km |
|
519 | 519 | self.dataOut.channelList = self.__channelList |
|
520 | 520 | self.dataOut.blocksize = self.dataOut.nChannels * self.dataOut.nHeights |
|
521 | 521 | |
|
522 | 522 | # self.dataOut.channelIndexList = None |
|
523 | 523 | |
|
524 | 524 | |
|
525 | 525 | self.dataOut.azimuthList = numpy.array(self.azimuthList) |
|
526 | 526 | self.dataOut.elevationList = numpy.array(self.elevationList) |
|
527 | 527 | self.dataOut.codeList = numpy.array(self.beamCode) |
|
528 | 528 | #print(self.dataOut.elevationList) |
|
529 | 529 | self.dataOut.flagNoData = True |
|
530 | 530 | |
|
531 | 531 | #Set to TRUE if the data is discontinuous |
|
532 | 532 | self.dataOut.flagDiscontinuousBlock = False |
|
533 | 533 | |
|
534 | 534 | self.dataOut.utctime = None |
|
535 | 535 | |
|
536 | 536 | #self.dataOut.timeZone = -5 #self.__timezone/60 #timezone like jroheader, difference in minutes between UTC and localtime |
|
537 | 537 | if self.timezone == 'lt': |
|
538 | 538 | self.dataOut.timeZone = time.timezone / 60. #get the timezone in minutes |
|
539 | 539 | else: |
|
540 | 540 | self.dataOut.timeZone = 0 #by default time is UTC |
|
541 | 541 | |
|
542 | 542 | self.dataOut.dstFlag = 0 |
|
543 | 543 | self.dataOut.errorCount = 0 |
|
544 | 544 | self.dataOut.nCohInt = 1 |
|
545 | 545 | self.dataOut.flagDecodeData = False #asumo que la data esta decodificada |
|
546 | 546 | self.dataOut.flagDeflipData = False #asumo que la data esta sin flip |
|
547 | 547 | self.dataOut.flagShiftFFT = False |
|
548 | 548 | self.dataOut.ippSeconds = self.ippSeconds |
|
549 | 549 | |
|
550 | 550 | #Time interval between profiles |
|
551 | 551 | #self.dataOut.timeInterval = self.dataOut.ippSeconds * self.dataOut.nCohInt |
|
552 | 552 | |
|
553 | 553 | self.dataOut.frequency = self.__frequency |
|
554 | 554 | self.dataOut.realtime = self.online |
|
555 | 555 | pass |
|
556 | 556 | |
|
557 | 557 | def readNextFile(self,online=False): |
|
558 | 558 | |
|
559 | 559 | if not(online): |
|
560 | 560 | newFile = self.__setNextFileOffline() |
|
561 | 561 | else: |
|
562 | 562 | newFile = self.__setNextFileOnline() |
|
563 | 563 | |
|
564 | 564 | if not(newFile): |
|
565 | 565 | self.dataOut.error = True |
|
566 | 566 | return 0 |
|
567 | 567 | |
|
568 | 568 | if not self.readAMISRHeader(self.amisrFilePointer): |
|
569 | 569 | self.dataOut.error = True |
|
570 | 570 | return 0 |
|
571 | 571 | |
|
572 | 572 | self.createBuffers() |
|
573 | 573 | self.fillJROHeader() |
|
574 | 574 | |
|
575 | 575 | #self.__firstFile = False |
|
576 | 576 | |
|
577 | 577 | |
|
578 | 578 | |
|
579 | 579 | self.dataset,self.timeset = self.readData() |
|
580 | 580 | |
|
581 | 581 | if self.endDate!=None: |
|
582 | 582 | endDateTime_Reader = datetime.datetime.combine(self.endDate,self.endTime) |
|
583 | 583 | time_str = self.amisrFilePointer.get('Time/RadacTimeString') |
|
584 | 584 | startDateTimeStr_File = time_str[0][0].decode('UTF-8').split('.')[0] |
|
585 | 585 | junk = time.strptime(startDateTimeStr_File, '%Y-%m-%d %H:%M:%S') |
|
586 | 586 | startDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) |
|
587 | 587 | if self.timezone == 'lt': |
|
588 | 588 | startDateTime_File = startDateTime_File - datetime.timedelta(minutes = 300) |
|
589 | 589 | if (startDateTime_File>endDateTime_Reader): |
|
590 | 590 | return 0 |
|
591 | 591 | |
|
592 | 592 | self.jrodataset = self.reshapeData() |
|
593 | 593 | #----self.updateIndexes() |
|
594 | 594 | self.profileIndex = 0 |
|
595 | 595 | |
|
596 | 596 | return 1 |
|
597 | 597 | |
|
598 | 598 | |
|
599 | 599 | def __hasNotDataInBuffer(self): |
|
600 | 600 | if self.profileIndex >= (self.newProfiles*self.nblocks): |
|
601 | 601 | return 1 |
|
602 | 602 | return 0 |
|
603 | 603 | |
|
604 | 604 | |
|
605 | 605 | def getData(self): |
|
606 | 606 | |
|
607 | 607 | if self.flagNoMoreFiles: |
|
608 | 608 | self.dataOut.flagNoData = True |
|
609 | 609 | return 0 |
|
610 | 610 | |
|
611 | 611 | if self.__hasNotDataInBuffer(): |
|
612 | 612 | if not (self.readNextFile(self.online)): |
|
613 | 613 | return 0 |
|
614 | 614 | |
|
615 | 615 | |
|
616 | 616 | if self.dataset is None: # setear esta condicion cuando no hayan datos por leer |
|
617 | 617 | self.dataOut.flagNoData = True |
|
618 | 618 | return 0 |
|
619 | 619 | |
|
620 | 620 | #self.dataOut.data = numpy.reshape(self.jrodataset[self.profileIndex,:],(1,-1)) |
|
621 | 621 | |
|
622 | 622 | self.dataOut.data = self.jrodataset[:,self.profileIndex,:] |
|
623 | 623 | |
|
624 | 624 | #print("R_t",self.timeset) |
|
625 | 625 | |
|
626 | 626 | #self.dataOut.utctime = self.jrotimeset[self.profileIndex] |
|
627 | 627 | #verificar basic header de jro data y ver si es compatible con este valor |
|
628 | 628 | #self.dataOut.utctime = self.timeset + (self.profileIndex * self.ippSeconds * self.nchannels) |
|
629 | 629 | indexprof = numpy.mod(self.profileIndex, self.newProfiles) |
|
630 | 630 | indexblock = self.profileIndex/self.newProfiles |
|
631 | 631 | #print (indexblock, indexprof) |
|
632 | 632 | diffUTC = 1.8e4 #UTC diference from peru in seconds --Joab |
|
633 | 633 | diffUTC = 0 |
|
634 | 634 | t_comp = (indexprof * self.ippSeconds * self.nchannels) + diffUTC # |
|
635 | 635 | |
|
636 | 636 | #print("utc :",indexblock," __ ",t_comp) |
|
637 | 637 | #print(numpy.shape(self.timeset)) |
|
638 | 638 | self.dataOut.utctime = self.timeset[numpy.int_(indexblock)] + t_comp |
|
639 | 639 | #self.dataOut.utctime = self.timeset[self.profileIndex] + t_comp |
|
640 | 640 | #print(self.dataOut.utctime) |
|
641 | 641 | self.dataOut.profileIndex = self.profileIndex |
|
642 | 642 | #print("N profile:",self.profileIndex,self.newProfiles,self.nblocks,self.dataOut.utctime) |
|
643 | 643 | self.dataOut.flagNoData = False |
|
644 | 644 | # if indexprof == 0: |
|
645 | 645 | # print self.dataOut.utctime |
|
646 | 646 | |
|
647 | 647 | self.profileIndex += 1 |
|
648 | 648 | |
|
649 |
|
|
|
649 | return self.dataOut.data | |
|
650 | 650 | |
|
651 | 651 | |
|
652 | 652 | def run(self, **kwargs): |
|
653 | 653 | ''' |
|
654 | 654 | This method will be called many times so here you should put all your code |
|
655 | 655 | ''' |
|
656 | 656 | #print("running kamisr") |
|
657 | 657 | if not self.isConfig: |
|
658 | 658 | self.setup(**kwargs) |
|
659 | 659 | self.isConfig = True |
|
660 | 660 | |
|
661 | 661 | self.getData() |
|
662 | #return(self.dataOut.data) | |
|
663 | return(self.dataOut) |
@@ -1,626 +1,651 | |||
|
1 | 1 | import os |
|
2 | 2 | import time |
|
3 | 3 | import datetime |
|
4 | 4 | |
|
5 | 5 | import numpy |
|
6 | 6 | import h5py |
|
7 | 7 | |
|
8 | 8 | import schainpy.admin |
|
9 | 9 | from schainpy.model.data.jrodata import * |
|
10 | 10 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
11 | 11 | from schainpy.model.io.jroIO_base import * |
|
12 | 12 | from schainpy.utils import log |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | class HDFReader(Reader, ProcessingUnit): |
|
16 | 16 | """Processing unit to read HDF5 format files |
|
17 | 17 | |
|
18 | 18 | This unit reads HDF5 files created with `HDFWriter` operation contains |
|
19 | 19 | by default two groups Data and Metadata all variables would be saved as `dataOut` |
|
20 | 20 | attributes. |
|
21 | 21 | It is possible to read any HDF5 file by given the structure in the `description` |
|
22 | 22 | parameter, also you can add extra values to metadata with the parameter `extras`. |
|
23 | 23 | |
|
24 | 24 | Parameters: |
|
25 | 25 | ----------- |
|
26 | 26 | path : str |
|
27 | 27 | Path where files are located. |
|
28 | 28 | startDate : date |
|
29 | 29 | Start date of the files |
|
30 | 30 | endDate : list |
|
31 | 31 | End date of the files |
|
32 | 32 | startTime : time |
|
33 | 33 | Start time of the files |
|
34 | 34 | endTime : time |
|
35 | 35 | End time of the files |
|
36 | 36 | description : dict, optional |
|
37 | 37 | Dictionary with the description of the HDF5 file |
|
38 | 38 | extras : dict, optional |
|
39 | 39 | Dictionary with extra metadata to be be added to `dataOut` |
|
40 | 40 | |
|
41 | 41 | Examples |
|
42 | 42 | -------- |
|
43 | 43 | |
|
44 | 44 | desc = { |
|
45 | 45 | 'Data': { |
|
46 | 46 | 'data_output': ['u', 'v', 'w'], |
|
47 | 47 | 'utctime': 'timestamps', |
|
48 | 48 | } , |
|
49 | 49 | 'Metadata': { |
|
50 | 50 | 'heightList': 'heights' |
|
51 | 51 | } |
|
52 | 52 | } |
|
53 | 53 | |
|
54 | 54 | desc = { |
|
55 | 55 | 'Data': { |
|
56 | 56 | 'data_output': 'winds', |
|
57 | 57 | 'utctime': 'timestamps' |
|
58 | 58 | }, |
|
59 | 59 | 'Metadata': { |
|
60 | 60 | 'heightList': 'heights' |
|
61 | 61 | } |
|
62 | 62 | } |
|
63 | 63 | |
|
64 | 64 | extras = { |
|
65 | 65 | 'timeZone': 300 |
|
66 | 66 | } |
|
67 | 67 | |
|
68 | 68 | reader = project.addReadUnit( |
|
69 | 69 | name='HDFReader', |
|
70 | 70 | path='/path/to/files', |
|
71 | 71 | startDate='2019/01/01', |
|
72 | 72 | endDate='2019/01/31', |
|
73 | 73 | startTime='00:00:00', |
|
74 | 74 | endTime='23:59:59', |
|
75 | 75 | # description=json.dumps(desc), |
|
76 | 76 | # extras=json.dumps(extras), |
|
77 | 77 | ) |
|
78 | 78 | |
|
79 | 79 | """ |
|
80 | 80 | |
|
81 | 81 | __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'description', 'extras'] |
|
82 | 82 | |
|
83 | 83 | def __init__(self): |
|
84 | 84 | ProcessingUnit.__init__(self) |
|
85 | 85 | self.dataOut = Parameters() |
|
86 | 86 | self.ext = ".hdf5" |
|
87 | 87 | self.optchar = "D" |
|
88 | 88 | self.meta = {} |
|
89 | 89 | self.data = {} |
|
90 | 90 | self.open_file = h5py.File |
|
91 | 91 | self.open_mode = 'r' |
|
92 | 92 | self.description = {} |
|
93 | 93 | self.extras = {} |
|
94 | 94 | self.filefmt = "*%Y%j***" |
|
95 | 95 | self.folderfmt = "*%Y%j" |
|
96 | 96 | self.utcoffset = 0 |
|
97 | 97 | |
|
98 | 98 | def setup(self, **kwargs): |
|
99 | 99 | |
|
100 | 100 | self.set_kwargs(**kwargs) |
|
101 | 101 | if not self.ext.startswith('.'): |
|
102 | 102 | self.ext = '.{}'.format(self.ext) |
|
103 | 103 | |
|
104 | 104 | if self.online: |
|
105 | 105 | log.log("Searching files in online mode...", self.name) |
|
106 | 106 | |
|
107 | 107 | for nTries in range(self.nTries): |
|
108 | 108 | fullpath = self.searchFilesOnLine(self.path, self.startDate, |
|
109 | 109 | self.endDate, self.expLabel, self.ext, self.walk, |
|
110 | 110 | self.filefmt, self.folderfmt) |
|
111 | pathname, filename = os.path.split(fullpath) | |
|
112 | print(pathname,filename) | |
|
111 | 113 | try: |
|
112 | 114 | fullpath = next(fullpath) |
|
115 | ||
|
113 | 116 | except: |
|
114 | 117 | fullpath = None |
|
115 | 118 | |
|
116 | 119 | if fullpath: |
|
117 | 120 | break |
|
118 | 121 | |
|
119 | 122 | log.warning( |
|
120 | 123 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( |
|
121 | 124 | self.delay, self.path, nTries + 1), |
|
122 | 125 | self.name) |
|
123 | 126 | time.sleep(self.delay) |
|
124 | 127 | |
|
125 | 128 | if not(fullpath): |
|
126 | 129 | raise schainpy.admin.SchainError( |
|
127 | 130 | 'There isn\'t any valid file in {}'.format(self.path)) |
|
128 | 131 | |
|
129 | 132 | pathname, filename = os.path.split(fullpath) |
|
130 | 133 | self.year = int(filename[1:5]) |
|
131 | 134 | self.doy = int(filename[5:8]) |
|
132 | 135 | self.set = int(filename[8:11]) - 1 |
|
133 | 136 | else: |
|
134 | 137 | log.log("Searching files in {}".format(self.path), self.name) |
|
135 | 138 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, |
|
136 | 139 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) |
|
137 | 140 | |
|
138 | 141 | self.setNextFile() |
|
139 | 142 | |
|
140 | 143 | return |
|
141 | 144 | |
|
145 | ||
|
142 | 146 | def readFirstHeader(self): |
|
143 | 147 | '''Read metadata and data''' |
|
144 | 148 | |
|
145 | 149 | self.__readMetadata() |
|
146 | 150 | self.__readData() |
|
147 | 151 | self.__setBlockList() |
|
148 | 152 | |
|
149 | 153 | if 'type' in self.meta: |
|
150 | 154 | self.dataOut = eval(self.meta['type'])() |
|
151 | 155 | |
|
152 | 156 | for attr in self.meta: |
|
157 | print("attr: ", attr) | |
|
153 | 158 | setattr(self.dataOut, attr, self.meta[attr]) |
|
154 | 159 | |
|
160 | ||
|
155 | 161 | self.blockIndex = 0 |
|
156 | 162 | |
|
157 | 163 | return |
|
158 | 164 | |
|
159 | 165 | def __setBlockList(self): |
|
160 | 166 | ''' |
|
161 | 167 | Selects the data within the times defined |
|
162 | 168 | |
|
163 | 169 | self.fp |
|
164 | 170 | self.startTime |
|
165 | 171 | self.endTime |
|
166 | 172 | self.blockList |
|
167 | 173 | self.blocksPerFile |
|
168 | 174 | |
|
169 | 175 | ''' |
|
170 | 176 | |
|
171 | 177 | startTime = self.startTime |
|
172 | 178 | endTime = self.endTime |
|
173 | 179 | thisUtcTime = self.data['utctime'] + self.utcoffset |
|
174 | 180 | self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1]) |
|
175 | 181 | thisDatetime = datetime.datetime.utcfromtimestamp(thisUtcTime[0]) |
|
176 | ||
|
182 | self.startFileDatetime = thisDatetime | |
|
183 | print("datee ",self.startFileDatetime) | |
|
177 | 184 | thisDate = thisDatetime.date() |
|
178 | 185 | thisTime = thisDatetime.time() |
|
179 | 186 | |
|
180 | 187 | startUtcTime = (datetime.datetime.combine(thisDate, startTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
181 | 188 | endUtcTime = (datetime.datetime.combine(thisDate, endTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
182 | 189 | |
|
183 | 190 | ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0] |
|
184 | 191 | |
|
185 | 192 | self.blockList = ind |
|
186 | 193 | self.blocksPerFile = len(ind) |
|
194 | self.blocksPerFile = len(thisUtcTime) | |
|
187 | 195 | return |
|
188 | 196 | |
|
189 | 197 | def __readMetadata(self): |
|
190 | 198 | ''' |
|
191 | 199 | Reads Metadata |
|
192 | 200 | ''' |
|
193 | 201 | |
|
194 | 202 | meta = {} |
|
195 | 203 | |
|
196 | 204 | if self.description: |
|
197 | 205 | for key, value in self.description['Metadata'].items(): |
|
198 | 206 | meta[key] = self.fp[value][()] |
|
199 | 207 | else: |
|
200 | 208 | grp = self.fp['Metadata'] |
|
201 | 209 | for name in grp: |
|
202 | 210 | meta[name] = grp[name][()] |
|
203 | 211 | |
|
204 | 212 | if self.extras: |
|
205 | 213 | for key, value in self.extras.items(): |
|
206 | 214 | meta[key] = value |
|
207 | 215 | self.meta = meta |
|
208 | 216 | |
|
209 | 217 | return |
|
210 | 218 | |
|
219 | ||
|
220 | ||
|
221 | def checkForRealPath(self, nextFile, nextDay): | |
|
222 | ||
|
223 | # print("check FRP") | |
|
224 | # dt = self.startFileDatetime + datetime.timedelta(1) | |
|
225 | # filename = '{}.{}{}'.format(self.path, dt.strftime('%Y%m%d'), self.ext) | |
|
226 | # fullfilename = os.path.join(self.path, filename) | |
|
227 | # print("check Path ",fullfilename,filename) | |
|
228 | # if os.path.exists(fullfilename): | |
|
229 | # return fullfilename, filename | |
|
230 | # return None, filename | |
|
231 | return None,None | |
|
232 | ||
|
211 | 233 | def __readData(self): |
|
212 | 234 | |
|
213 | 235 | data = {} |
|
214 | 236 | |
|
215 | 237 | if self.description: |
|
216 | 238 | for key, value in self.description['Data'].items(): |
|
217 | 239 | if isinstance(value, str): |
|
218 | 240 | if isinstance(self.fp[value], h5py.Dataset): |
|
219 | 241 | data[key] = self.fp[value][()] |
|
220 | 242 | elif isinstance(self.fp[value], h5py.Group): |
|
221 | 243 | array = [] |
|
222 | 244 | for ch in self.fp[value]: |
|
223 | 245 | array.append(self.fp[value][ch][()]) |
|
224 | 246 | data[key] = numpy.array(array) |
|
225 | 247 | elif isinstance(value, list): |
|
226 | 248 | array = [] |
|
227 | 249 | for ch in value: |
|
228 | 250 | array.append(self.fp[ch][()]) |
|
229 | 251 | data[key] = numpy.array(array) |
|
230 | 252 | else: |
|
231 | 253 | grp = self.fp['Data'] |
|
232 | 254 | for name in grp: |
|
233 | 255 | if isinstance(grp[name], h5py.Dataset): |
|
234 | 256 | array = grp[name][()] |
|
235 | 257 | elif isinstance(grp[name], h5py.Group): |
|
236 | 258 | array = [] |
|
237 | 259 | for ch in grp[name]: |
|
238 | 260 | array.append(grp[name][ch][()]) |
|
239 | 261 | array = numpy.array(array) |
|
240 | 262 | else: |
|
241 | 263 | log.warning('Unknown type: {}'.format(name)) |
|
242 | 264 | |
|
243 | 265 | if name in self.description: |
|
244 | 266 | key = self.description[name] |
|
245 | 267 | else: |
|
246 | 268 | key = name |
|
247 | 269 | data[key] = array |
|
248 | 270 | |
|
249 | 271 | self.data = data |
|
250 | 272 | return |
|
251 | 273 | |
|
252 | 274 | def getData(self): |
|
253 | ||
|
275 | if not self.isDateTimeInRange(self.startFileDatetime, self.startDate, self.endDate, self.startTime, self.endTime): | |
|
276 | self.dataOut.flagNoData = True | |
|
277 | self.dataOut.error = True | |
|
278 | return | |
|
254 | 279 | for attr in self.data: |
|
255 | 280 | if self.data[attr].ndim == 1: |
|
256 | 281 | setattr(self.dataOut, attr, self.data[attr][self.blockIndex]) |
|
257 | 282 | else: |
|
258 | 283 | setattr(self.dataOut, attr, self.data[attr][:, self.blockIndex]) |
|
259 | 284 | |
|
260 | 285 | self.dataOut.flagNoData = False |
|
261 | 286 | self.blockIndex += 1 |
|
262 | 287 | |
|
263 | 288 | log.log("Block No. {}/{} -> {}".format( |
|
264 | 289 | self.blockIndex, |
|
265 | 290 | self.blocksPerFile, |
|
266 | 291 | self.dataOut.datatime.ctime()), self.name) |
|
267 | 292 | |
|
268 | 293 | return |
|
269 | 294 | |
|
270 | 295 | def run(self, **kwargs): |
|
271 | 296 | |
|
272 | 297 | if not(self.isConfig): |
|
273 | 298 | self.setup(**kwargs) |
|
274 | 299 | self.isConfig = True |
|
275 | 300 | |
|
276 | 301 | if self.blockIndex == self.blocksPerFile: |
|
277 | 302 | self.setNextFile() |
|
278 | 303 | |
|
279 | 304 | self.getData() |
|
280 | 305 | |
|
281 | 306 | return |
|
282 | 307 | |
|
283 | 308 | @MPDecorator |
|
284 | 309 | class HDFWriter(Operation): |
|
285 | 310 | """Operation to write HDF5 files. |
|
286 | 311 | |
|
287 | 312 | The HDF5 file contains by default two groups Data and Metadata where |
|
288 | 313 | you can save any `dataOut` attribute specified by `dataList` and `metadataList` |
|
289 | 314 | parameters, data attributes are normaly time dependent where the metadata |
|
290 | 315 | are not. |
|
291 | 316 | It is possible to customize the structure of the HDF5 file with the |
|
292 | 317 | optional description parameter see the examples. |
|
293 | 318 | |
|
294 | 319 | Parameters: |
|
295 | 320 | ----------- |
|
296 | 321 | path : str |
|
297 | 322 | Path where files will be saved. |
|
298 | 323 | blocksPerFile : int |
|
299 | 324 | Number of blocks per file |
|
300 | 325 | metadataList : list |
|
301 | 326 | List of the dataOut attributes that will be saved as metadata |
|
302 | 327 | dataList : int |
|
303 | 328 | List of the dataOut attributes that will be saved as data |
|
304 | 329 | setType : bool |
|
305 | 330 | If True the name of the files corresponds to the timestamp of the data |
|
306 | 331 | description : dict, optional |
|
307 | 332 | Dictionary with the desired description of the HDF5 file |
|
308 | 333 | |
|
309 | 334 | Examples |
|
310 | 335 | -------- |
|
311 | 336 | |
|
312 | 337 | desc = { |
|
313 | 338 | 'data_output': {'winds': ['z', 'w', 'v']}, |
|
314 | 339 | 'utctime': 'timestamps', |
|
315 | 340 | 'heightList': 'heights' |
|
316 | 341 | } |
|
317 | 342 | desc = { |
|
318 | 343 | 'data_output': ['z', 'w', 'v'], |
|
319 | 344 | 'utctime': 'timestamps', |
|
320 | 345 | 'heightList': 'heights' |
|
321 | 346 | } |
|
322 | 347 | desc = { |
|
323 | 348 | 'Data': { |
|
324 | 349 | 'data_output': 'winds', |
|
325 | 350 | 'utctime': 'timestamps' |
|
326 | 351 | }, |
|
327 | 352 | 'Metadata': { |
|
328 | 353 | 'heightList': 'heights' |
|
329 | 354 | } |
|
330 | 355 | } |
|
331 | 356 | |
|
332 | 357 | writer = proc_unit.addOperation(name='HDFWriter') |
|
333 | 358 | writer.addParameter(name='path', value='/path/to/file') |
|
334 | 359 | writer.addParameter(name='blocksPerFile', value='32') |
|
335 | 360 | writer.addParameter(name='metadataList', value='heightList,timeZone') |
|
336 | 361 | writer.addParameter(name='dataList',value='data_output,utctime') |
|
337 | 362 | # writer.addParameter(name='description',value=json.dumps(desc)) |
|
338 | 363 | |
|
339 | 364 | """ |
|
340 | 365 | |
|
341 | 366 | ext = ".hdf5" |
|
342 | 367 | optchar = "D" |
|
343 | 368 | filename = None |
|
344 | 369 | path = None |
|
345 | 370 | setFile = None |
|
346 | 371 | fp = None |
|
347 | 372 | firsttime = True |
|
348 | 373 | #Configurations |
|
349 | 374 | blocksPerFile = None |
|
350 | 375 | blockIndex = None |
|
351 | 376 | dataOut = None |
|
352 | 377 | #Data Arrays |
|
353 | 378 | dataList = None |
|
354 | 379 | metadataList = None |
|
355 | 380 | currentDay = None |
|
356 | 381 | lastTime = None |
|
357 | 382 | |
|
358 | 383 | def __init__(self): |
|
359 | 384 | |
|
360 | 385 | Operation.__init__(self) |
|
361 | 386 | return |
|
362 | 387 | |
|
363 | 388 | def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, description=None): |
|
364 | 389 | self.path = path |
|
365 | 390 | self.blocksPerFile = blocksPerFile |
|
366 | 391 | self.metadataList = metadataList |
|
367 | 392 | self.dataList = [s.strip() for s in dataList] |
|
368 | 393 | self.setType = setType |
|
369 | 394 | self.description = description |
|
370 | 395 | |
|
371 | 396 | if self.metadataList is None: |
|
372 | 397 | self.metadataList = self.dataOut.metadata_list |
|
373 | 398 | |
|
374 | 399 | tableList = [] |
|
375 | 400 | dsList = [] |
|
376 | 401 | |
|
377 | 402 | for i in range(len(self.dataList)): |
|
378 | 403 | dsDict = {} |
|
379 | 404 | if hasattr(self.dataOut, self.dataList[i]): |
|
380 | 405 | dataAux = getattr(self.dataOut, self.dataList[i]) |
|
381 | 406 | dsDict['variable'] = self.dataList[i] |
|
382 | 407 | else: |
|
383 | 408 | log.warning('Attribute {} not found in dataOut', self.name) |
|
384 | 409 | continue |
|
385 | 410 | |
|
386 | 411 | if dataAux is None: |
|
387 | 412 | continue |
|
388 | 413 | elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)): |
|
389 | 414 | dsDict['nDim'] = 0 |
|
390 | 415 | else: |
|
391 | 416 | dsDict['nDim'] = len(dataAux.shape) |
|
392 | 417 | dsDict['shape'] = dataAux.shape |
|
393 | 418 | dsDict['dsNumber'] = dataAux.shape[0] |
|
394 | 419 | dsDict['dtype'] = dataAux.dtype |
|
395 | 420 | |
|
396 | 421 | dsList.append(dsDict) |
|
397 | 422 | |
|
398 | 423 | self.dsList = dsList |
|
399 | 424 | self.currentDay = self.dataOut.datatime.date() |
|
400 | 425 | |
|
401 | 426 | def timeFlag(self): |
|
402 | 427 | currentTime = self.dataOut.utctime |
|
403 | 428 | timeTuple = time.localtime(currentTime) |
|
404 | 429 | dataDay = timeTuple.tm_yday |
|
405 | 430 | |
|
406 | 431 | if self.lastTime is None: |
|
407 | 432 | self.lastTime = currentTime |
|
408 | 433 | self.currentDay = dataDay |
|
409 | 434 | return False |
|
410 | 435 | |
|
411 | 436 | timeDiff = currentTime - self.lastTime |
|
412 | 437 | |
|
413 | 438 | #Si el dia es diferente o si la diferencia entre un dato y otro supera la hora |
|
414 | 439 | if dataDay != self.currentDay: |
|
415 | 440 | self.currentDay = dataDay |
|
416 | 441 | return True |
|
417 | 442 | elif timeDiff > 3*60*60: |
|
418 | 443 | self.lastTime = currentTime |
|
419 | 444 | return True |
|
420 | 445 | else: |
|
421 | 446 | self.lastTime = currentTime |
|
422 | 447 | return False |
|
423 | 448 | |
|
424 | 449 | def run(self, dataOut, path, blocksPerFile=10, metadataList=None, |
|
425 | 450 | dataList=[], setType=None, description={}): |
|
426 | 451 | |
|
427 | 452 | self.dataOut = dataOut |
|
428 | 453 | if not(self.isConfig): |
|
429 | 454 | self.setup(path=path, blocksPerFile=blocksPerFile, |
|
430 | 455 | metadataList=metadataList, dataList=dataList, |
|
431 | 456 | setType=setType, description=description) |
|
432 | 457 | |
|
433 | 458 | self.isConfig = True |
|
434 | 459 | self.setNextFile() |
|
435 | 460 | |
|
436 | 461 | self.putData() |
|
437 | 462 | return |
|
438 | 463 | |
|
439 | 464 | def setNextFile(self): |
|
440 | 465 | |
|
441 | 466 | ext = self.ext |
|
442 | 467 | path = self.path |
|
443 | 468 | setFile = self.setFile |
|
444 | 469 | |
|
445 | 470 | timeTuple = time.localtime(self.dataOut.utctime) |
|
446 | 471 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) |
|
447 | 472 | fullpath = os.path.join(path, subfolder) |
|
448 | 473 | |
|
449 | 474 | if os.path.exists(fullpath): |
|
450 | 475 | filesList = os.listdir(fullpath) |
|
451 | 476 | filesList = [k for k in filesList if k.startswith(self.optchar)] |
|
452 | 477 | if len( filesList ) > 0: |
|
453 | 478 | filesList = sorted(filesList, key=str.lower) |
|
454 | 479 | filen = filesList[-1] |
|
455 | 480 | # el filename debera tener el siguiente formato |
|
456 | 481 | # 0 1234 567 89A BCDE (hex) |
|
457 | 482 | # x YYYY DDD SSS .ext |
|
458 | 483 | if isNumber(filen[8:11]): |
|
459 | 484 | setFile = int(filen[8:11]) #inicializo mi contador de seteo al seteo del ultimo file |
|
460 | 485 | else: |
|
461 | 486 | setFile = -1 |
|
462 | 487 | else: |
|
463 | 488 | setFile = -1 #inicializo mi contador de seteo |
|
464 | 489 | else: |
|
465 | 490 | os.makedirs(fullpath) |
|
466 | 491 | setFile = -1 #inicializo mi contador de seteo |
|
467 | 492 | |
|
468 | 493 | if self.setType is None: |
|
469 | 494 | setFile += 1 |
|
470 | 495 | file = '%s%4.4d%3.3d%03d%s' % (self.optchar, |
|
471 | 496 | timeTuple.tm_year, |
|
472 | 497 | timeTuple.tm_yday, |
|
473 | 498 | setFile, |
|
474 | 499 | ext ) |
|
475 | 500 | else: |
|
476 | 501 | setFile = timeTuple.tm_hour*60+timeTuple.tm_min |
|
477 | 502 | file = '%s%4.4d%3.3d%04d%s' % (self.optchar, |
|
478 | 503 | timeTuple.tm_year, |
|
479 | 504 | timeTuple.tm_yday, |
|
480 | 505 | setFile, |
|
481 | 506 | ext ) |
|
482 | 507 | |
|
483 | 508 | self.filename = os.path.join( path, subfolder, file ) |
|
484 | 509 | |
|
485 | 510 | #Setting HDF5 File |
|
486 | 511 | self.fp = h5py.File(self.filename, 'w') |
|
487 | 512 | #write metadata |
|
488 | 513 | self.writeMetadata(self.fp) |
|
489 | 514 | #Write data |
|
490 | 515 | self.writeData(self.fp) |
|
491 | 516 | |
|
492 | 517 | def getLabel(self, name, x=None): |
|
493 | 518 | |
|
494 | 519 | if x is None: |
|
495 | 520 | if 'Data' in self.description: |
|
496 | 521 | data = self.description['Data'] |
|
497 | 522 | if 'Metadata' in self.description: |
|
498 | 523 | data.update(self.description['Metadata']) |
|
499 | 524 | else: |
|
500 | 525 | data = self.description |
|
501 | 526 | if name in data: |
|
502 | 527 | if isinstance(data[name], str): |
|
503 | 528 | return data[name] |
|
504 | 529 | elif isinstance(data[name], list): |
|
505 | 530 | return None |
|
506 | 531 | elif isinstance(data[name], dict): |
|
507 | 532 | for key, value in data[name].items(): |
|
508 | 533 | return key |
|
509 | 534 | return name |
|
510 | 535 | else: |
|
511 | 536 | if 'Metadata' in self.description: |
|
512 | 537 | meta = self.description['Metadata'] |
|
513 | 538 | else: |
|
514 | 539 | meta = self.description |
|
515 | 540 | if name in meta: |
|
516 | 541 | if isinstance(meta[name], list): |
|
517 | 542 | return meta[name][x] |
|
518 | 543 | elif isinstance(meta[name], dict): |
|
519 | 544 | for key, value in meta[name].items(): |
|
520 | 545 | return value[x] |
|
521 | 546 | if 'cspc' in name: |
|
522 | 547 | return 'pair{:02d}'.format(x) |
|
523 | 548 | else: |
|
524 | 549 | return 'channel{:02d}'.format(x) |
|
525 | 550 | |
|
526 | 551 | def writeMetadata(self, fp): |
|
527 | 552 | |
|
528 | 553 | if self.description: |
|
529 | 554 | if 'Metadata' in self.description: |
|
530 | 555 | grp = fp.create_group('Metadata') |
|
531 | 556 | else: |
|
532 | 557 | grp = fp |
|
533 | 558 | else: |
|
534 | 559 | grp = fp.create_group('Metadata') |
|
535 | 560 | |
|
536 | 561 | for i in range(len(self.metadataList)): |
|
537 | 562 | if not hasattr(self.dataOut, self.metadataList[i]): |
|
538 | 563 | log.warning('Metadata: `{}` not found'.format(self.metadataList[i]), self.name) |
|
539 | 564 | continue |
|
540 | 565 | value = getattr(self.dataOut, self.metadataList[i]) |
|
541 | 566 | if isinstance(value, bool): |
|
542 | 567 | if value is True: |
|
543 | 568 | value = 1 |
|
544 | 569 | else: |
|
545 | 570 | value = 0 |
|
546 | 571 | grp.create_dataset(self.getLabel(self.metadataList[i]), data=value) |
|
547 | 572 | return |
|
548 | 573 | |
|
549 | 574 | def writeData(self, fp): |
|
550 | 575 | |
|
551 | 576 | if self.description: |
|
552 | 577 | if 'Data' in self.description: |
|
553 | 578 | grp = fp.create_group('Data') |
|
554 | 579 | else: |
|
555 | 580 | grp = fp |
|
556 | 581 | else: |
|
557 | 582 | grp = fp.create_group('Data') |
|
558 | 583 | |
|
559 | 584 | dtsets = [] |
|
560 | 585 | data = [] |
|
561 | 586 | |
|
562 | 587 | for dsInfo in self.dsList: |
|
563 | 588 | if dsInfo['nDim'] == 0: |
|
564 | 589 | ds = grp.create_dataset( |
|
565 | 590 | self.getLabel(dsInfo['variable']), |
|
566 | 591 | (self.blocksPerFile, ), |
|
567 | 592 | chunks=True, |
|
568 | 593 | dtype=numpy.float64) |
|
569 | 594 | dtsets.append(ds) |
|
570 | 595 | data.append((dsInfo['variable'], -1)) |
|
571 | 596 | else: |
|
572 | 597 | label = self.getLabel(dsInfo['variable']) |
|
573 | 598 | if label is not None: |
|
574 | 599 | sgrp = grp.create_group(label) |
|
575 | 600 | else: |
|
576 | 601 | sgrp = grp |
|
577 | 602 | for i in range(dsInfo['dsNumber']): |
|
578 | 603 | ds = sgrp.create_dataset( |
|
579 | 604 | self.getLabel(dsInfo['variable'], i), |
|
580 | 605 | (self.blocksPerFile, ) + dsInfo['shape'][1:], |
|
581 | 606 | chunks=True, |
|
582 | 607 | dtype=dsInfo['dtype']) |
|
583 | 608 | dtsets.append(ds) |
|
584 | 609 | data.append((dsInfo['variable'], i)) |
|
585 | 610 | fp.flush() |
|
586 | 611 | |
|
587 | 612 | log.log('Creating file: {}'.format(fp.filename), self.name) |
|
588 | 613 | |
|
589 | 614 | self.ds = dtsets |
|
590 | 615 | self.data = data |
|
591 | 616 | self.firsttime = True |
|
592 | 617 | self.blockIndex = 0 |
|
593 | 618 | return |
|
594 | 619 | |
|
595 | 620 | def putData(self): |
|
596 | 621 | |
|
597 | 622 | if (self.blockIndex == self.blocksPerFile) or self.timeFlag(): |
|
598 | 623 | self.closeFile() |
|
599 | 624 | self.setNextFile() |
|
600 | 625 | |
|
601 | 626 | for i, ds in enumerate(self.ds): |
|
602 | 627 | attr, ch = self.data[i] |
|
603 | 628 | if ch == -1: |
|
604 | 629 | ds[self.blockIndex] = getattr(self.dataOut, attr) |
|
605 | 630 | else: |
|
606 | 631 | ds[self.blockIndex] = getattr(self.dataOut, attr)[ch] |
|
607 | 632 | |
|
608 | 633 | self.fp.flush() |
|
609 | 634 | self.blockIndex += 1 |
|
610 | 635 | log.log('Block No. {}/{}'.format(self.blockIndex, self.blocksPerFile), self.name) |
|
611 | 636 | |
|
612 | 637 | return |
|
613 | 638 | |
|
614 | 639 | def closeFile(self): |
|
615 | 640 | |
|
616 | 641 | if self.blockIndex != self.blocksPerFile: |
|
617 | 642 | for ds in self.ds: |
|
618 | 643 | ds.resize(self.blockIndex, axis=0) |
|
619 | 644 | |
|
620 | 645 | if self.fp: |
|
621 | 646 | self.fp.flush() |
|
622 | 647 | self.fp.close() |
|
623 | 648 | |
|
624 | 649 | def close(self): |
|
625 | 650 | |
|
626 | 651 | self.closeFile() |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
@@ -1,1411 +1,1411 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Spectra processing Unit and operations |
|
6 | 6 | |
|
7 | 7 | Here you will find the processing unit `SpectraProc` and several operations |
|
8 | 8 | to work with Spectra data type |
|
9 | 9 | """ |
|
10 | 10 | |
|
11 | 11 | import time |
|
12 | 12 | import itertools |
|
13 | 13 | |
|
14 | 14 | import numpy |
|
15 | 15 | import math |
|
16 | 16 | |
|
17 | 17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
18 | 18 | from schainpy.model.data.jrodata import Spectra |
|
19 | 19 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
20 | 20 | from schainpy.utils import log |
|
21 | 21 | |
|
22 | 22 | from scipy.optimize import curve_fit |
|
23 | 23 | |
|
24 | 24 | |
|
25 | 25 | class SpectraProc(ProcessingUnit): |
|
26 | 26 | |
|
27 | 27 | def __init__(self): |
|
28 | 28 | |
|
29 | 29 | ProcessingUnit.__init__(self) |
|
30 | 30 | |
|
31 | 31 | self.buffer = None |
|
32 | 32 | self.firstdatatime = None |
|
33 | 33 | self.profIndex = 0 |
|
34 | 34 | self.dataOut = Spectra() |
|
35 | 35 | self.id_min = None |
|
36 | 36 | self.id_max = None |
|
37 | 37 | self.setupReq = False #Agregar a todas las unidades de proc |
|
38 | 38 | |
|
39 | 39 | def __updateSpecFromVoltage(self): |
|
40 | 40 | |
|
41 | 41 | self.dataOut.timeZone = self.dataIn.timeZone |
|
42 | 42 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
43 | 43 | self.dataOut.errorCount = self.dataIn.errorCount |
|
44 | 44 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
45 | 45 | try: |
|
46 | 46 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
47 | 47 | except: |
|
48 | 48 | pass |
|
49 | 49 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
50 | 50 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
51 | 51 | self.dataOut.channelList = self.dataIn.channelList |
|
52 | 52 | self.dataOut.heightList = self.dataIn.heightList |
|
53 | 53 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
54 | 54 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
55 | 55 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
56 | 56 | self.dataOut.utctime = self.firstdatatime |
|
57 | 57 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
58 | 58 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
59 | 59 | self.dataOut.flagShiftFFT = False |
|
60 | 60 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
61 | 61 | self.dataOut.nIncohInt = 1 |
|
62 | 62 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
63 | 63 | self.dataOut.frequency = self.dataIn.frequency |
|
64 | 64 | self.dataOut.realtime = self.dataIn.realtime |
|
65 | 65 | self.dataOut.azimuth = self.dataIn.azimuth |
|
66 | 66 | self.dataOut.zenith = self.dataIn.zenith |
|
67 | 67 | self.dataOut.codeList = self.dataIn.codeList |
|
68 | 68 | self.dataOut.azimuthList = self.dataIn.azimuthList |
|
69 | 69 | self.dataOut.elevationList = self.dataIn.elevationList |
|
70 | 70 | |
|
71 | 71 | def __getFft(self): |
|
72 | 72 | """ |
|
73 | 73 | Convierte valores de Voltaje a Spectra |
|
74 | 74 | |
|
75 | 75 | Affected: |
|
76 | 76 | self.dataOut.data_spc |
|
77 | 77 | self.dataOut.data_cspc |
|
78 | 78 | self.dataOut.data_dc |
|
79 | 79 | self.dataOut.heightList |
|
80 | 80 | self.profIndex |
|
81 | 81 | self.buffer |
|
82 | 82 | self.dataOut.flagNoData |
|
83 | 83 | """ |
|
84 | 84 | fft_volt = numpy.fft.fft( |
|
85 | 85 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
86 | 86 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
87 | 87 | dc = fft_volt[:, 0, :] |
|
88 | 88 | |
|
89 | 89 | # calculo de self-spectra |
|
90 | 90 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
91 | 91 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
92 | 92 | spc = spc.real |
|
93 | 93 | |
|
94 | 94 | blocksize = 0 |
|
95 | 95 | blocksize += dc.size |
|
96 | 96 | blocksize += spc.size |
|
97 | 97 | |
|
98 | 98 | cspc = None |
|
99 | 99 | pairIndex = 0 |
|
100 | 100 | if self.dataOut.pairsList != None: |
|
101 | 101 | # calculo de cross-spectra |
|
102 | 102 | cspc = numpy.zeros( |
|
103 | 103 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
104 | 104 | for pair in self.dataOut.pairsList: |
|
105 | 105 | if pair[0] not in self.dataOut.channelList: |
|
106 | 106 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
107 | 107 | str(pair), str(self.dataOut.channelList))) |
|
108 | 108 | if pair[1] not in self.dataOut.channelList: |
|
109 | 109 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
110 | 110 | str(pair), str(self.dataOut.channelList))) |
|
111 | 111 | |
|
112 | 112 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
113 | 113 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
114 | 114 | pairIndex += 1 |
|
115 | 115 | blocksize += cspc.size |
|
116 | 116 | |
|
117 | 117 | self.dataOut.data_spc = spc |
|
118 | 118 | self.dataOut.data_cspc = cspc |
|
119 | 119 | self.dataOut.data_dc = dc |
|
120 | 120 | self.dataOut.blockSize = blocksize |
|
121 | 121 | self.dataOut.flagShiftFFT = False |
|
122 | 122 | |
|
123 | 123 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False): |
|
124 | 124 | |
|
125 | 125 | if self.dataIn.type == "Spectra": |
|
126 | 126 | self.dataOut.copy(self.dataIn) |
|
127 | 127 | if shift_fft: |
|
128 | 128 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
129 | 129 | shift = int(self.dataOut.nFFTPoints/2) |
|
130 | 130 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
131 | 131 | |
|
132 | 132 | if self.dataOut.data_cspc is not None: |
|
133 | 133 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
134 | 134 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
135 | 135 | if pairsList: |
|
136 | 136 | self.__selectPairs(pairsList) |
|
137 | 137 | |
|
138 | 138 | elif self.dataIn.type == "Voltage": |
|
139 | 139 | |
|
140 | 140 | self.dataOut.flagNoData = True |
|
141 | 141 | |
|
142 | 142 | if nFFTPoints == None: |
|
143 | 143 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
144 | 144 | |
|
145 | 145 | if nProfiles == None: |
|
146 | 146 | nProfiles = nFFTPoints |
|
147 | 147 | |
|
148 | 148 | if ippFactor == None: |
|
149 | 149 | self.dataOut.ippFactor = 1 |
|
150 | 150 | |
|
151 | 151 | self.dataOut.nFFTPoints = nFFTPoints |
|
152 | 152 | |
|
153 | 153 | if self.buffer is None: |
|
154 | 154 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
155 | 155 | nProfiles, |
|
156 | 156 | self.dataIn.nHeights), |
|
157 | 157 | dtype='complex') |
|
158 | 158 | |
|
159 | 159 | if self.dataIn.flagDataAsBlock: |
|
160 | 160 | nVoltProfiles = self.dataIn.data.shape[1] |
|
161 | 161 | |
|
162 | 162 | if nVoltProfiles == nProfiles: |
|
163 | 163 | self.buffer = self.dataIn.data.copy() |
|
164 | 164 | self.profIndex = nVoltProfiles |
|
165 | 165 | |
|
166 | 166 | elif nVoltProfiles < nProfiles: |
|
167 | 167 | |
|
168 | 168 | if self.profIndex == 0: |
|
169 | 169 | self.id_min = 0 |
|
170 | 170 | self.id_max = nVoltProfiles |
|
171 | 171 | |
|
172 | 172 | self.buffer[:, self.id_min:self.id_max, |
|
173 | 173 | :] = self.dataIn.data |
|
174 | 174 | self.profIndex += nVoltProfiles |
|
175 | 175 | self.id_min += nVoltProfiles |
|
176 | 176 | self.id_max += nVoltProfiles |
|
177 | 177 | else: |
|
178 | 178 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
179 | 179 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
180 | 180 | self.dataOut.flagNoData = True |
|
181 | 181 | else: |
|
182 | 182 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
183 | 183 | self.profIndex += 1 |
|
184 | 184 | |
|
185 | 185 | if self.firstdatatime == None: |
|
186 | 186 | self.firstdatatime = self.dataIn.utctime |
|
187 | 187 | |
|
188 | 188 | if self.profIndex == nProfiles: |
|
189 | 189 | self.__updateSpecFromVoltage() |
|
190 | 190 | if pairsList == None: |
|
191 | 191 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
192 | 192 | else: |
|
193 | 193 | self.dataOut.pairsList = pairsList |
|
194 | 194 | self.__getFft() |
|
195 | 195 | self.dataOut.flagNoData = False |
|
196 | 196 | self.firstdatatime = None |
|
197 | 197 | self.profIndex = 0 |
|
198 | 198 | else: |
|
199 | 199 | raise ValueError("The type of input object '%s' is not valid".format( |
|
200 | 200 | self.dataIn.type)) |
|
201 | 201 | |
|
202 | 202 | def __selectPairs(self, pairsList): |
|
203 | 203 | |
|
204 | 204 | if not pairsList: |
|
205 | 205 | return |
|
206 | 206 | |
|
207 | 207 | pairs = [] |
|
208 | 208 | pairsIndex = [] |
|
209 | 209 | |
|
210 | 210 | for pair in pairsList: |
|
211 | 211 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
212 | 212 | continue |
|
213 | 213 | pairs.append(pair) |
|
214 | 214 | pairsIndex.append(pairs.index(pair)) |
|
215 | 215 | |
|
216 | 216 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
217 | 217 | self.dataOut.pairsList = pairs |
|
218 | 218 | |
|
219 | 219 | return |
|
220 | 220 | |
|
221 | 221 | def selectFFTs(self, minFFT, maxFFT ): |
|
222 | 222 | """ |
|
223 | 223 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
224 | 224 | minFFT<= FFT <= maxFFT |
|
225 | 225 | """ |
|
226 | 226 | |
|
227 | 227 | if (minFFT > maxFFT): |
|
228 | 228 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
229 | 229 | |
|
230 | 230 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
231 | 231 | minFFT = self.dataOut.getFreqRange()[0] |
|
232 | 232 | |
|
233 | 233 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
234 | 234 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
235 | 235 | |
|
236 | 236 | minIndex = 0 |
|
237 | 237 | maxIndex = 0 |
|
238 | 238 | FFTs = self.dataOut.getFreqRange() |
|
239 | 239 | |
|
240 | 240 | inda = numpy.where(FFTs >= minFFT) |
|
241 | 241 | indb = numpy.where(FFTs <= maxFFT) |
|
242 | 242 | |
|
243 | 243 | try: |
|
244 | 244 | minIndex = inda[0][0] |
|
245 | 245 | except: |
|
246 | 246 | minIndex = 0 |
|
247 | 247 | |
|
248 | 248 | try: |
|
249 | 249 | maxIndex = indb[0][-1] |
|
250 | 250 | except: |
|
251 | 251 | maxIndex = len(FFTs) |
|
252 | 252 | |
|
253 | 253 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
254 | 254 | |
|
255 | 255 | return 1 |
|
256 | 256 | |
|
257 | 257 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
258 | 258 | newheis = numpy.where( |
|
259 | 259 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
260 | 260 | |
|
261 | 261 | if hei_ref != None: |
|
262 | 262 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
263 | 263 | |
|
264 | 264 | minIndex = min(newheis[0]) |
|
265 | 265 | maxIndex = max(newheis[0]) |
|
266 | 266 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
267 | 267 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
268 | 268 | |
|
269 | 269 | # determina indices |
|
270 | 270 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
271 | 271 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
272 | 272 | avg_dB = 10 * \ |
|
273 | 273 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
274 | 274 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
275 | 275 | beacon_heiIndexList = [] |
|
276 | 276 | for val in avg_dB.tolist(): |
|
277 | 277 | if val >= beacon_dB[0]: |
|
278 | 278 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
279 | 279 | |
|
280 | 280 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
281 | 281 | data_cspc = None |
|
282 | 282 | if self.dataOut.data_cspc is not None: |
|
283 | 283 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
284 | 284 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
285 | 285 | |
|
286 | 286 | data_dc = None |
|
287 | 287 | if self.dataOut.data_dc is not None: |
|
288 | 288 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
289 | 289 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
290 | 290 | |
|
291 | 291 | self.dataOut.data_spc = data_spc |
|
292 | 292 | self.dataOut.data_cspc = data_cspc |
|
293 | 293 | self.dataOut.data_dc = data_dc |
|
294 | 294 | self.dataOut.heightList = heightList |
|
295 | 295 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
296 | 296 | |
|
297 | 297 | return 1 |
|
298 | 298 | |
|
299 | 299 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
300 | 300 | """ |
|
301 | 301 | |
|
302 | 302 | """ |
|
303 | 303 | |
|
304 | 304 | if (minIndex < 0) or (minIndex > maxIndex): |
|
305 | 305 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
306 | 306 | |
|
307 | 307 | if (maxIndex >= self.dataOut.nProfiles): |
|
308 | 308 | maxIndex = self.dataOut.nProfiles-1 |
|
309 | 309 | |
|
310 | 310 | #Spectra |
|
311 | 311 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
312 | 312 | |
|
313 | 313 | data_cspc = None |
|
314 | 314 | if self.dataOut.data_cspc is not None: |
|
315 | 315 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
316 | 316 | |
|
317 | 317 | data_dc = None |
|
318 | 318 | if self.dataOut.data_dc is not None: |
|
319 | 319 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
320 | 320 | |
|
321 | 321 | self.dataOut.data_spc = data_spc |
|
322 | 322 | self.dataOut.data_cspc = data_cspc |
|
323 | 323 | self.dataOut.data_dc = data_dc |
|
324 | 324 | |
|
325 | 325 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
326 | 326 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
327 | 327 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
328 | 328 | |
|
329 | 329 | return 1 |
|
330 | 330 | |
|
331 | 331 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
332 | 332 | # validacion de rango |
|
333 | 333 | if minHei == None: |
|
334 | 334 | minHei = self.dataOut.heightList[0] |
|
335 | 335 | |
|
336 | 336 | if maxHei == None: |
|
337 | 337 | maxHei = self.dataOut.heightList[-1] |
|
338 | 338 | |
|
339 | 339 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
340 | 340 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
341 | 341 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
342 | 342 | minHei = self.dataOut.heightList[0] |
|
343 | 343 | |
|
344 | 344 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
345 | 345 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
346 | 346 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
347 | 347 | maxHei = self.dataOut.heightList[-1] |
|
348 | 348 | |
|
349 | 349 | # validacion de velocidades |
|
350 | 350 | velrange = self.dataOut.getVelRange(1) |
|
351 | 351 | |
|
352 | 352 | if minVel == None: |
|
353 | 353 | minVel = velrange[0] |
|
354 | 354 | |
|
355 | 355 | if maxVel == None: |
|
356 | 356 | maxVel = velrange[-1] |
|
357 | 357 | |
|
358 | 358 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
359 | 359 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
360 | 360 | print('minVel is setting to %.2f' % (velrange[0])) |
|
361 | 361 | minVel = velrange[0] |
|
362 | 362 | |
|
363 | 363 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
364 | 364 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
365 | 365 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
366 | 366 | maxVel = velrange[-1] |
|
367 | 367 | |
|
368 | 368 | # seleccion de indices para rango |
|
369 | 369 | minIndex = 0 |
|
370 | 370 | maxIndex = 0 |
|
371 | 371 | heights = self.dataOut.heightList |
|
372 | 372 | |
|
373 | 373 | inda = numpy.where(heights >= minHei) |
|
374 | 374 | indb = numpy.where(heights <= maxHei) |
|
375 | 375 | |
|
376 | 376 | try: |
|
377 | 377 | minIndex = inda[0][0] |
|
378 | 378 | except: |
|
379 | 379 | minIndex = 0 |
|
380 | 380 | |
|
381 | 381 | try: |
|
382 | 382 | maxIndex = indb[0][-1] |
|
383 | 383 | except: |
|
384 | 384 | maxIndex = len(heights) |
|
385 | 385 | |
|
386 | 386 | if (minIndex < 0) or (minIndex > maxIndex): |
|
387 | 387 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
388 | 388 | minIndex, maxIndex)) |
|
389 | 389 | |
|
390 | 390 | if (maxIndex >= self.dataOut.nHeights): |
|
391 | 391 | maxIndex = self.dataOut.nHeights - 1 |
|
392 | 392 | |
|
393 | 393 | # seleccion de indices para velocidades |
|
394 | 394 | indminvel = numpy.where(velrange >= minVel) |
|
395 | 395 | indmaxvel = numpy.where(velrange <= maxVel) |
|
396 | 396 | try: |
|
397 | 397 | minIndexVel = indminvel[0][0] |
|
398 | 398 | except: |
|
399 | 399 | minIndexVel = 0 |
|
400 | 400 | |
|
401 | 401 | try: |
|
402 | 402 | maxIndexVel = indmaxvel[0][-1] |
|
403 | 403 | except: |
|
404 | 404 | maxIndexVel = len(velrange) |
|
405 | 405 | |
|
406 | 406 | # seleccion del espectro |
|
407 | 407 | data_spc = self.dataOut.data_spc[:, |
|
408 | 408 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
409 | 409 | # estimacion de ruido |
|
410 | 410 | noise = numpy.zeros(self.dataOut.nChannels) |
|
411 | 411 | |
|
412 | 412 | for channel in range(self.dataOut.nChannels): |
|
413 | 413 | daux = data_spc[channel, :, :] |
|
414 | 414 | sortdata = numpy.sort(daux, axis=None) |
|
415 | 415 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
416 | 416 | |
|
417 | 417 | self.dataOut.noise_estimation = noise.copy() |
|
418 | 418 | |
|
419 | 419 | return 1 |
|
420 | 420 | |
|
421 | 421 | class removeDC(Operation): |
|
422 | 422 | |
|
423 | 423 | def run(self, dataOut, mode=2): |
|
424 | 424 | self.dataOut = dataOut |
|
425 | 425 | jspectra = self.dataOut.data_spc |
|
426 | 426 | jcspectra = self.dataOut.data_cspc |
|
427 | 427 | |
|
428 | 428 | num_chan = jspectra.shape[0] |
|
429 | 429 | num_hei = jspectra.shape[2] |
|
430 | 430 | |
|
431 | 431 | if jcspectra is not None: |
|
432 | 432 | jcspectraExist = True |
|
433 | 433 | num_pairs = jcspectra.shape[0] |
|
434 | 434 | else: |
|
435 | 435 | jcspectraExist = False |
|
436 | 436 | |
|
437 | 437 | freq_dc = int(jspectra.shape[1] / 2) |
|
438 | 438 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
439 | 439 | ind_vel = ind_vel.astype(int) |
|
440 | 440 | |
|
441 | 441 | if ind_vel[0] < 0: |
|
442 | 442 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
443 | 443 | |
|
444 | 444 | if mode == 1: |
|
445 | 445 | jspectra[:, freq_dc, :] = ( |
|
446 | 446 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
447 | 447 | |
|
448 | 448 | if jcspectraExist: |
|
449 | 449 | jcspectra[:, freq_dc, :] = ( |
|
450 | 450 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
451 | 451 | |
|
452 | 452 | if mode == 2: |
|
453 | 453 | |
|
454 | 454 | vel = numpy.array([-2, -1, 1, 2]) |
|
455 | 455 | xx = numpy.zeros([4, 4]) |
|
456 | 456 | |
|
457 | 457 | for fil in range(4): |
|
458 | 458 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
459 | 459 | |
|
460 | 460 | xx_inv = numpy.linalg.inv(xx) |
|
461 | 461 | xx_aux = xx_inv[0, :] |
|
462 | 462 | |
|
463 | 463 | for ich in range(num_chan): |
|
464 | 464 | yy = jspectra[ich, ind_vel, :] |
|
465 | 465 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
466 | 466 | |
|
467 | 467 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
468 | 468 | cjunkid = sum(junkid) |
|
469 | 469 | |
|
470 | 470 | if cjunkid.any(): |
|
471 | 471 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
472 | 472 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
473 | 473 | |
|
474 | 474 | if jcspectraExist: |
|
475 | 475 | for ip in range(num_pairs): |
|
476 | 476 | yy = jcspectra[ip, ind_vel, :] |
|
477 | 477 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
478 | 478 | |
|
479 | 479 | self.dataOut.data_spc = jspectra |
|
480 | 480 | self.dataOut.data_cspc = jcspectra |
|
481 | 481 | |
|
482 | 482 | return self.dataOut |
|
483 | 483 | |
|
484 | 484 | # import matplotlib.pyplot as plt |
|
485 | 485 | |
|
486 | 486 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): |
|
487 | 487 | z = (x - a1) / a2 |
|
488 | 488 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 |
|
489 | 489 | return y |
|
490 | 490 | class CleanRayleigh(Operation): |
|
491 | 491 | |
|
492 | 492 | def __init__(self): |
|
493 | 493 | |
|
494 | 494 | Operation.__init__(self) |
|
495 | 495 | self.i=0 |
|
496 | 496 | self.isConfig = False |
|
497 | 497 | self.__dataReady = False |
|
498 | 498 | self.__profIndex = 0 |
|
499 | 499 | self.byTime = False |
|
500 | 500 | self.byProfiles = False |
|
501 | 501 | |
|
502 | 502 | self.bloques = None |
|
503 | 503 | self.bloque0 = None |
|
504 | 504 | |
|
505 | 505 | self.index = 0 |
|
506 | 506 | |
|
507 | 507 | self.buffer = 0 |
|
508 | 508 | self.buffer2 = 0 |
|
509 | 509 | self.buffer3 = 0 |
|
510 | 510 | |
|
511 | 511 | |
|
512 | 512 | def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): |
|
513 | 513 | |
|
514 | 514 | self.nChannels = dataOut.nChannels |
|
515 | 515 | self.nProf = dataOut.nProfiles |
|
516 | 516 | self.nPairs = dataOut.data_cspc.shape[0] |
|
517 | 517 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
518 | 518 | self.spectra = dataOut.data_spc |
|
519 | 519 | self.cspectra = dataOut.data_cspc |
|
520 | 520 | self.heights = dataOut.heightList #alturas totales |
|
521 | 521 | self.nHeights = len(self.heights) |
|
522 | 522 | self.min_hei = min_hei |
|
523 | 523 | self.max_hei = max_hei |
|
524 | 524 | if (self.min_hei == None): |
|
525 | 525 | self.min_hei = 0 |
|
526 | 526 | if (self.max_hei == None): |
|
527 | 527 | self.max_hei = dataOut.heightList[-1] |
|
528 | 528 | self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() |
|
529 | 529 | self.heightsClean = self.heights[self.hval] #alturas filtradas |
|
530 | 530 | self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas |
|
531 | 531 | self.nHeightsClean = len(self.heightsClean) |
|
532 | 532 | self.channels = dataOut.channelList |
|
533 | 533 | self.nChan = len(self.channels) |
|
534 | 534 | self.nIncohInt = dataOut.nIncohInt |
|
535 | 535 | self.__initime = dataOut.utctime |
|
536 | 536 | self.maxAltInd = self.hval[-1]+1 |
|
537 | 537 | self.minAltInd = self.hval[0] |
|
538 | 538 | |
|
539 | 539 | self.crosspairs = dataOut.pairsList |
|
540 | 540 | self.nPairs = len(self.crosspairs) |
|
541 | 541 | self.normFactor = dataOut.normFactor |
|
542 | 542 | self.nFFTPoints = dataOut.nFFTPoints |
|
543 | 543 | self.ippSeconds = dataOut.ippSeconds |
|
544 | 544 | self.currentTime = self.__initime |
|
545 | 545 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
546 | 546 | self.factor_stdv = factor_stdv |
|
547 | print("CHANNELS: ",[x for x in self.channels]) | |
|
547 | #print("CHANNELS: ",[x for x in self.channels]) | |
|
548 | 548 | |
|
549 | 549 | if n != None : |
|
550 | 550 | self.byProfiles = True |
|
551 | 551 | self.nIntProfiles = n |
|
552 | 552 | else: |
|
553 | 553 | self.__integrationtime = timeInterval |
|
554 | 554 | |
|
555 | 555 | self.__dataReady = False |
|
556 | 556 | self.isConfig = True |
|
557 | 557 | |
|
558 | 558 | |
|
559 | 559 | |
|
560 | 560 | def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): |
|
561 | 561 | #print (dataOut.utctime) |
|
562 | 562 | if not self.isConfig : |
|
563 | 563 | #print("Setting config") |
|
564 | 564 | self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) |
|
565 | 565 | #print("Config Done") |
|
566 | 566 | tini=dataOut.utctime |
|
567 | 567 | |
|
568 | 568 | if self.byProfiles: |
|
569 | 569 | if self.__profIndex == self.nIntProfiles: |
|
570 | 570 | self.__dataReady = True |
|
571 | 571 | else: |
|
572 | 572 | if (tini - self.__initime) >= self.__integrationtime: |
|
573 | 573 | #print(tini - self.__initime,self.__profIndex) |
|
574 | 574 | self.__dataReady = True |
|
575 | 575 | self.__initime = tini |
|
576 | 576 | |
|
577 | 577 | #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): |
|
578 | 578 | |
|
579 | 579 | if self.__dataReady: |
|
580 | print("Data ready",self.__profIndex) | |
|
580 | #print("Data ready",self.__profIndex) | |
|
581 | 581 | self.__profIndex = 0 |
|
582 | 582 | jspc = self.buffer |
|
583 | 583 | jcspc = self.buffer2 |
|
584 | 584 | #jnoise = self.buffer3 |
|
585 | 585 | self.buffer = dataOut.data_spc |
|
586 | 586 | self.buffer2 = dataOut.data_cspc |
|
587 | 587 | #self.buffer3 = dataOut.noise |
|
588 | 588 | self.currentTime = dataOut.utctime |
|
589 | 589 | if numpy.any(jspc) : |
|
590 | 590 | #print( jspc.shape, jcspc.shape) |
|
591 | 591 | jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) |
|
592 | 592 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) |
|
593 | 593 | self.__dataReady = False |
|
594 | 594 | #print( jspc.shape, jcspc.shape) |
|
595 | 595 | dataOut.flagNoData = False |
|
596 | 596 | else: |
|
597 | 597 | dataOut.flagNoData = True |
|
598 | 598 | self.__dataReady = False |
|
599 | 599 | return dataOut |
|
600 | 600 | else: |
|
601 | 601 | #print( len(self.buffer)) |
|
602 | 602 | if numpy.any(self.buffer): |
|
603 | 603 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) |
|
604 | 604 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) |
|
605 | 605 | self.buffer3 += dataOut.data_dc |
|
606 | 606 | else: |
|
607 | 607 | self.buffer = dataOut.data_spc |
|
608 | 608 | self.buffer2 = dataOut.data_cspc |
|
609 | 609 | self.buffer3 = dataOut.data_dc |
|
610 | 610 | #print self.index, self.fint |
|
611 | 611 | #print self.buffer2.shape |
|
612 | 612 | dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO |
|
613 | 613 | self.__profIndex += 1 |
|
614 | 614 | return dataOut ## NOTE: REV |
|
615 | 615 | |
|
616 | 616 | |
|
617 | 617 | #index = tini.tm_hour*12+tini.tm_min/5 |
|
618 | 618 | '''REVISAR''' |
|
619 | 619 | # jspc = jspc/self.nFFTPoints/self.normFactor |
|
620 | 620 | # jcspc = jcspc/self.nFFTPoints/self.normFactor |
|
621 | 621 | |
|
622 | 622 | |
|
623 | #dataOut.data_spc,dataOut.data_cspc = self.CleanRayleigh(dataOut,jspc,jcspc,crosspairs,heights,channels,nProf,nHei,nChan,nPairs,nIncohInt,nBlocks=nBlocks) | |
|
624 | #tmp_spectra,tmp_cspectra,sat_spectra,sat_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.min_hei,self.max_hei) | |
|
625 | tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) | |
|
626 | #jspectra = tmp_spectra*len(jspc[:,0,0,0]) | |
|
627 | #jcspectra = tmp_cspectra*len(jspc[:,0,0,0]) | |
|
628 | 623 | |
|
624 | tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) | |
|
629 | 625 | dataOut.data_spc = tmp_spectra |
|
630 | 626 | dataOut.data_cspc = tmp_cspectra |
|
627 | ||
|
628 | #dataOut.data_spc,dataOut.data_cspc = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) | |
|
629 | ||
|
631 | 630 | dataOut.data_dc = self.buffer3 |
|
632 | 631 | dataOut.nIncohInt *= self.nIntProfiles |
|
633 | 632 | dataOut.utctime = self.currentTime #tiempo promediado |
|
634 | 633 | #print("Time: ",time.localtime(dataOut.utctime)) |
|
635 | 634 | # dataOut.data_spc = sat_spectra |
|
636 | 635 | # dataOut.data_cspc = sat_cspectra |
|
637 | 636 | self.buffer = 0 |
|
638 | 637 | self.buffer2 = 0 |
|
639 | 638 | self.buffer3 = 0 |
|
640 | 639 | |
|
641 | 640 | return dataOut |
|
642 | 641 | |
|
643 | 642 | def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): |
|
644 | print("OP cleanRayleigh") | |
|
643 | #print("OP cleanRayleigh") | |
|
645 | 644 | #import matplotlib.pyplot as plt |
|
646 | 645 | #for k in range(149): |
|
647 | 646 | |
|
648 | 647 | rfunc = cspectra.copy() #self.bloques |
|
649 | val_spc = spectra*0.0 #self.bloque0*0.0 | |
|
650 |
val_ |
|
|
651 |
|
|
|
652 |
in_sat_ |
|
|
648 | #rfunc = cspectra | |
|
649 | #val_spc = spectra*0.0 #self.bloque0*0.0 | |
|
650 | #val_cspc = cspectra*0.0 #self.bloques*0.0 | |
|
651 | #in_sat_spectra = spectra.copy() #self.bloque0 | |
|
652 | #in_sat_cspectra = cspectra.copy() #self.bloques | |
|
653 | 653 | |
|
654 | raxs = math.ceil(math.sqrt(self.nPairs)) | |
|
655 | caxs = math.ceil(self.nPairs/raxs) | |
|
654 | #raxs = math.ceil(math.sqrt(self.nPairs)) | |
|
655 | #caxs = math.ceil(self.nPairs/raxs) | |
|
656 | 656 | |
|
657 | 657 | #print(self.hval) |
|
658 | 658 | #print numpy.absolute(rfunc[:,0,0,14]) |
|
659 | gauss_fit, covariance = None, None | |
|
659 | 660 | for ih in range(self.minAltInd,self.maxAltInd): |
|
660 | 661 | for ifreq in range(self.nFFTPoints): |
|
661 | 662 | # fig, axs = plt.subplots(raxs, caxs) |
|
662 | 663 | # fig2, axs2 = plt.subplots(raxs, caxs) |
|
663 | col_ax = 0 | |
|
664 | row_ax = 0 | |
|
664 | # col_ax = 0 | |
|
665 | # row_ax = 0 | |
|
666 | #print(len(self.nPairs)) | |
|
665 | 667 | for ii in range(self.nPairs): #PARES DE CANALES SELF y CROSS |
|
666 | 668 | #print("ii: ",ii) |
|
667 | if (col_ax%caxs==0 and col_ax!=0): | |
|
668 | col_ax = 0 | |
|
669 | row_ax += 1 | |
|
669 | # if (col_ax%caxs==0 and col_ax!=0): | |
|
670 | # col_ax = 0 | |
|
671 | # row_ax += 1 | |
|
670 | 672 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? |
|
671 | 673 | #print(func2clean.shape) |
|
672 | 674 | val = (numpy.isfinite(func2clean)==True).nonzero() |
|
673 | 675 | |
|
674 | 676 | if len(val)>0: #limitador |
|
675 | 677 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) |
|
676 | 678 | if min_val <= -40 : |
|
677 | 679 | min_val = -40 |
|
678 | 680 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 |
|
679 | 681 | if max_val >= 200 : |
|
680 | 682 | max_val = 200 |
|
681 | 683 | #print min_val, max_val |
|
682 | 684 | step = 1 |
|
683 | 685 | #print("Getting bins and the histogram") |
|
684 | 686 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step |
|
685 | 687 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
686 | 688 | #print(len(y_dist),len(binstep[:-1])) |
|
687 | 689 | #print(row_ax,col_ax, " ..") |
|
688 | 690 | #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) |
|
689 | 691 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) |
|
690 | 692 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) |
|
691 | 693 | parg = [numpy.amax(y_dist),mean,sigma] |
|
692 | gauss_fit, covariance = None, None | |
|
693 | newY = None | |
|
694 | ||
|
695 | #newY = None | |
|
696 | ||
|
694 | 697 | try : |
|
695 | 698 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) |
|
696 | 699 | mode = gauss_fit[1] |
|
697 | 700 | stdv = gauss_fit[2] |
|
698 | 701 | #print(" FIT OK",gauss_fit) |
|
699 | 702 | ''' |
|
700 | 703 | newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) |
|
701 | 704 | axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
702 | 705 | axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
703 | 706 | axs[row_ax,col_ax].set_title("Pair "+str(self.crosspairs[ii]))''' |
|
704 | 707 | except: |
|
705 | 708 | mode = mean |
|
706 | 709 | stdv = sigma |
|
707 | 710 | #print("FIT FAIL") |
|
708 | 711 | |
|
709 | 712 | |
|
710 | 713 | #print(mode,stdv) |
|
711 |
#Removing echoes greater than mode + |
|
|
712 | #factor_stdv = 2 | |
|
714 | #Removing echoes greater than mode + std_factor*stdv | |
|
713 | 715 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() |
|
714 | 716 | #noval tiene los indices que se van a remover |
|
715 | 717 | #print("Pair ",ii," novals: ",len(noval[0])) |
|
716 | 718 | if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) |
|
717 | 719 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() |
|
718 | 720 | #print(novall) |
|
719 | 721 | #print(" ",self.pairsArray[ii]) |
|
720 | 722 | cross_pairs = self.pairsArray[ii] |
|
721 | 723 | #Getting coherent echoes which are removed. |
|
722 | 724 | # if len(novall[0]) > 0: |
|
723 | 725 | # |
|
724 | 726 | # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 |
|
725 | 727 | # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 |
|
726 | 728 | # val_cspc[novall[0],ii,ifreq,ih] = 1 |
|
727 | 729 | #print("OUT NOVALL 1") |
|
728 | 730 | #Removing coherent from ISR data |
|
729 | 731 | chA = self.channels.index(cross_pairs[0]) |
|
730 | 732 | chB = self.channels.index(cross_pairs[1]) |
|
731 | 733 | |
|
732 | 734 | new_a = numpy.delete(cspectra[:,ii,ifreq,ih], noval[0]) |
|
733 |
|
|
|
735 | cspectra[noval,ii,ifreq,ih] = numpy.mean(new_a) #mean CrossSpectra | |
|
734 | 736 | new_b = numpy.delete(spectra[:,chA,ifreq,ih], noval[0]) |
|
735 |
|
|
|
737 | spectra[noval,chA,ifreq,ih] = numpy.mean(new_b) #mean Spectra Pair A | |
|
736 | 738 | new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) |
|
737 |
|
|
|
738 | spectra[noval,chA,ifreq,ih] = mean_spc0 | |
|
739 | spectra[noval,chB,ifreq,ih] = mean_spc1 | |
|
740 | cspectra[noval,ii,ifreq,ih] = mean_cspc | |
|
739 | spectra[noval,chB,ifreq,ih] = numpy.mean(new_c) #mean Spectra Pair B | |
|
740 | ||
|
741 | 741 | |
|
742 | 742 | ''' |
|
743 | 743 | func2clean = 10*numpy.log10(numpy.absolute(cspectra[:,ii,ifreq,ih])) |
|
744 | 744 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
745 | 745 | axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
746 | 746 | axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
747 | 747 | axs2[row_ax,col_ax].set_title("Pair "+str(self.crosspairs[ii])) |
|
748 | 748 | ''' |
|
749 | 749 | |
|
750 | col_ax += 1 #contador de ploteo columnas | |
|
750 | #col_ax += 1 #contador de ploteo columnas | |
|
751 | 751 | ##print(col_ax) |
|
752 | 752 | ''' |
|
753 | 753 | title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" |
|
754 | 754 | title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" |
|
755 | 755 | fig.suptitle(title) |
|
756 | 756 | fig2.suptitle(title2) |
|
757 | 757 | plt.show()''' |
|
758 | 758 | |
|
759 | 759 | ''' channels = channels |
|
760 | 760 | cross_pairs = cross_pairs |
|
761 | 761 | #print("OUT NOVALL 2") |
|
762 | 762 | |
|
763 | 763 | vcross0 = (cross_pairs[0] == channels[ii]).nonzero() |
|
764 | 764 | vcross1 = (cross_pairs[1] == channels[ii]).nonzero() |
|
765 | 765 | vcross = numpy.concatenate((vcross0,vcross1),axis=None) |
|
766 | 766 | #print('vcros =', vcross) |
|
767 | 767 | |
|
768 | 768 | #Getting coherent echoes which are removed. |
|
769 | 769 | if len(novall) > 0: |
|
770 | 770 | #val_spc[novall,ii,ifreq,ih] = 1 |
|
771 | 771 | val_spc[ii,ifreq,ih,novall] = 1 |
|
772 | 772 | if len(vcross) > 0: |
|
773 | 773 | val_cspc[vcross,ifreq,ih,novall] = 1 |
|
774 | 774 | |
|
775 | 775 | #Removing coherent from ISR data. |
|
776 | 776 | self.bloque0[ii,ifreq,ih,noval] = numpy.nan |
|
777 | 777 | if len(vcross) > 0: |
|
778 | 778 | self.bloques[vcross,ifreq,ih,noval] = numpy.nan |
|
779 | 779 | ''' |
|
780 | 780 | |
|
781 | print("Getting average of the spectra and cross-spectra from incoherent echoes.") | |
|
781 | #print("Getting average of the spectra and cross-spectra from incoherent echoes.") | |
|
782 | 782 | out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan |
|
783 | 783 | out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan |
|
784 | 784 | for ih in range(self.nHeights): |
|
785 | 785 | for ifreq in range(self.nFFTPoints): |
|
786 | 786 | for ich in range(self.nChan): |
|
787 | 787 | tmp = spectra[:,ich,ifreq,ih] |
|
788 | 788 | valid = (numpy.isfinite(tmp[:])==True).nonzero() |
|
789 | 789 | # if ich == 0 and ifreq == 0 and ih == 17 : |
|
790 | 790 | # print tmp |
|
791 | 791 | # print valid |
|
792 | 792 | # print len(valid[0]) |
|
793 | 793 | #print('TMP',tmp) |
|
794 | 794 | if len(valid[0]) >0 : |
|
795 | 795 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
796 | 796 | #for icr in range(nPairs): |
|
797 | 797 | for icr in range(self.nPairs): |
|
798 | 798 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) |
|
799 | 799 | valid = (numpy.isfinite(tmp)==True).nonzero() |
|
800 | 800 | if len(valid[0]) > 0: |
|
801 | 801 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
802 | 802 | ''' |
|
803 | 803 | # print('##########################################################') |
|
804 | 804 | print("Removing fake coherent echoes (at least 4 points around the point)") |
|
805 | 805 | |
|
806 | 806 | val_spectra = numpy.sum(val_spc,0) |
|
807 | 807 | val_cspectra = numpy.sum(val_cspc,0) |
|
808 | 808 | |
|
809 | 809 | val_spectra = self.REM_ISOLATED_POINTS(val_spectra,4) |
|
810 | 810 | val_cspectra = self.REM_ISOLATED_POINTS(val_cspectra,4) |
|
811 | 811 | |
|
812 | 812 | for i in range(nChan): |
|
813 | 813 | for j in range(nProf): |
|
814 | 814 | for k in range(nHeights): |
|
815 | 815 | if numpy.isfinite(val_spectra[i,j,k]) and val_spectra[i,j,k] < 1 : |
|
816 | 816 | val_spc[:,i,j,k] = 0.0 |
|
817 | 817 | for i in range(nPairs): |
|
818 | 818 | for j in range(nProf): |
|
819 | 819 | for k in range(nHeights): |
|
820 | 820 | if numpy.isfinite(val_cspectra[i,j,k]) and val_cspectra[i,j,k] < 1 : |
|
821 | 821 | val_cspc[:,i,j,k] = 0.0 |
|
822 | 822 | |
|
823 | 823 | # val_spc = numpy.reshape(val_spc, (len(spectra[:,0,0,0]),nProf*nHeights*nChan)) |
|
824 | 824 | # if numpy.isfinite(val_spectra)==str(True): |
|
825 | 825 | # noval = (val_spectra<1).nonzero() |
|
826 | 826 | # if len(noval) > 0: |
|
827 | 827 | # val_spc[:,noval] = 0.0 |
|
828 | 828 | # val_spc = numpy.reshape(val_spc, (149,nChan,nProf,nHeights)) |
|
829 | 829 | |
|
830 | 830 | #val_cspc = numpy.reshape(val_spc, (149,nChan*nHeights*nProf)) |
|
831 | 831 | #if numpy.isfinite(val_cspectra)==str(True): |
|
832 | 832 | # noval = (val_cspectra<1).nonzero() |
|
833 | 833 | # if len(noval) > 0: |
|
834 | 834 | # val_cspc[:,noval] = 0.0 |
|
835 | 835 | # val_cspc = numpy.reshape(val_cspc, (149,nChan,nProf,nHeights)) |
|
836 | 836 | tmp_sat_spectra = spectra.copy() |
|
837 | 837 | tmp_sat_spectra = tmp_sat_spectra*numpy.nan |
|
838 | 838 | tmp_sat_cspectra = cspectra.copy() |
|
839 | 839 | tmp_sat_cspectra = tmp_sat_cspectra*numpy.nan |
|
840 | 840 | ''' |
|
841 | 841 | # fig = plt.figure(figsize=(6,5)) |
|
842 | 842 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
843 | 843 | # ax = fig.add_axes([left, bottom, width, height]) |
|
844 | 844 | # cp = ax.contour(10*numpy.log10(numpy.absolute(spectra[0,0,:,:]))) |
|
845 | 845 | # ax.clabel(cp, inline=True,fontsize=10) |
|
846 | 846 | # plt.show() |
|
847 | 847 | ''' |
|
848 | 848 | val = (val_spc > 0).nonzero() |
|
849 | 849 | if len(val[0]) > 0: |
|
850 | 850 | tmp_sat_spectra[val] = in_sat_spectra[val] |
|
851 | 851 | val = (val_cspc > 0).nonzero() |
|
852 | 852 | if len(val[0]) > 0: |
|
853 | 853 | tmp_sat_cspectra[val] = in_sat_cspectra[val] |
|
854 | 854 | |
|
855 | 855 | print("Getting average of the spectra and cross-spectra from incoherent echoes 2") |
|
856 | 856 | sat_spectra = numpy.zeros((nChan,nProf,nHeights), dtype=float) |
|
857 | 857 | sat_cspectra = numpy.zeros((nPairs,nProf,nHeights), dtype=complex) |
|
858 | 858 | for ih in range(nHeights): |
|
859 | 859 | for ifreq in range(nProf): |
|
860 | 860 | for ich in range(nChan): |
|
861 | 861 | tmp = numpy.squeeze(tmp_sat_spectra[:,ich,ifreq,ih]) |
|
862 | 862 | valid = (numpy.isfinite(tmp)).nonzero() |
|
863 | 863 | if len(valid[0]) > 0: |
|
864 | 864 | sat_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) |
|
865 | 865 | |
|
866 | 866 | for icr in range(nPairs): |
|
867 | 867 | tmp = numpy.squeeze(tmp_sat_cspectra[:,icr,ifreq,ih]) |
|
868 | 868 | valid = (numpy.isfinite(tmp)).nonzero() |
|
869 | 869 | if len(valid[0]) > 0: |
|
870 | 870 | sat_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) |
|
871 | 871 | ''' |
|
872 | 872 | #self.__dataReady= True |
|
873 | 873 | #sat_spectra, sat_cspectra= sat_spectra, sat_cspectra |
|
874 | 874 | #if not self.__dataReady: |
|
875 | 875 | #return None, None |
|
876 | 876 | #return out_spectra, out_cspectra ,sat_spectra,sat_cspectra |
|
877 | 877 | return out_spectra, out_cspectra |
|
878 | 878 | |
|
879 | 879 | def REM_ISOLATED_POINTS(self,array,rth): |
|
880 | 880 | # import matplotlib.pyplot as plt |
|
881 | 881 | if rth == None : |
|
882 | 882 | rth = 4 |
|
883 | 883 | print("REM ISO") |
|
884 | 884 | num_prof = len(array[0,:,0]) |
|
885 | 885 | num_hei = len(array[0,0,:]) |
|
886 | 886 | n2d = len(array[:,0,0]) |
|
887 | 887 | |
|
888 | 888 | for ii in range(n2d) : |
|
889 | 889 | #print ii,n2d |
|
890 | 890 | tmp = array[ii,:,:] |
|
891 | 891 | #print tmp.shape, array[ii,101,:],array[ii,102,:] |
|
892 | 892 | |
|
893 | 893 | # fig = plt.figure(figsize=(6,5)) |
|
894 | 894 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
895 | 895 | # ax = fig.add_axes([left, bottom, width, height]) |
|
896 | 896 | # x = range(num_prof) |
|
897 | 897 | # y = range(num_hei) |
|
898 | 898 | # cp = ax.contour(y,x,tmp) |
|
899 | 899 | # ax.clabel(cp, inline=True,fontsize=10) |
|
900 | 900 | # plt.show() |
|
901 | 901 | |
|
902 | 902 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) |
|
903 | 903 | tmp = numpy.reshape(tmp,num_prof*num_hei) |
|
904 | 904 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() |
|
905 | 905 | indxs2 = (tmp > 0).nonzero() |
|
906 | 906 | |
|
907 | 907 | indxs1 = (indxs1[0]) |
|
908 | 908 | indxs2 = indxs2[0] |
|
909 | 909 | #indxs1 = numpy.array(indxs1[0]) |
|
910 | 910 | #indxs2 = numpy.array(indxs2[0]) |
|
911 | 911 | indxs = None |
|
912 | 912 | #print indxs1 , indxs2 |
|
913 | 913 | for iv in range(len(indxs2)): |
|
914 | 914 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) |
|
915 | 915 | #print len(indxs2), indv |
|
916 | 916 | if len(indv[0]) > 0 : |
|
917 | 917 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) |
|
918 | 918 | # print indxs |
|
919 | 919 | indxs = indxs[1:] |
|
920 | 920 | #print(indxs, len(indxs)) |
|
921 | 921 | if len(indxs) < 4 : |
|
922 | 922 | array[ii,:,:] = 0. |
|
923 | 923 | return |
|
924 | 924 | |
|
925 | 925 | xpos = numpy.mod(indxs ,num_hei) |
|
926 | 926 | ypos = (indxs / num_hei) |
|
927 | 927 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) |
|
928 | 928 | #print sx |
|
929 | 929 | xpos = xpos[sx] |
|
930 | 930 | ypos = ypos[sx] |
|
931 | 931 | |
|
932 | 932 | # *********************************** Cleaning isolated points ********************************** |
|
933 | 933 | ic = 0 |
|
934 | 934 | while True : |
|
935 | 935 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) |
|
936 | 936 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) |
|
937 | 937 | #plt.plot(r) |
|
938 | 938 | #plt.show() |
|
939 | 939 | no_coh1 = (numpy.isfinite(r)==True).nonzero() |
|
940 | 940 | no_coh2 = (r <= rth).nonzero() |
|
941 | 941 | #print r, no_coh1, no_coh2 |
|
942 | 942 | no_coh1 = numpy.array(no_coh1[0]) |
|
943 | 943 | no_coh2 = numpy.array(no_coh2[0]) |
|
944 | 944 | no_coh = None |
|
945 | 945 | #print valid1 , valid2 |
|
946 | 946 | for iv in range(len(no_coh2)): |
|
947 | 947 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) |
|
948 | 948 | if len(indv[0]) > 0 : |
|
949 | 949 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) |
|
950 | 950 | no_coh = no_coh[1:] |
|
951 | 951 | #print len(no_coh), no_coh |
|
952 | 952 | if len(no_coh) < 4 : |
|
953 | 953 | #print xpos[ic], ypos[ic], ic |
|
954 | 954 | # plt.plot(r) |
|
955 | 955 | # plt.show() |
|
956 | 956 | xpos[ic] = numpy.nan |
|
957 | 957 | ypos[ic] = numpy.nan |
|
958 | 958 | |
|
959 | 959 | ic = ic + 1 |
|
960 | 960 | if (ic == len(indxs)) : |
|
961 | 961 | break |
|
962 | 962 | #print( xpos, ypos) |
|
963 | 963 | |
|
964 | 964 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() |
|
965 | 965 | #print indxs[0] |
|
966 | 966 | if len(indxs[0]) < 4 : |
|
967 | 967 | array[ii,:,:] = 0. |
|
968 | 968 | return |
|
969 | 969 | |
|
970 | 970 | xpos = xpos[indxs[0]] |
|
971 | 971 | ypos = ypos[indxs[0]] |
|
972 | 972 | for i in range(0,len(ypos)): |
|
973 | 973 | ypos[i]=int(ypos[i]) |
|
974 | 974 | junk = tmp |
|
975 | 975 | tmp = junk*0.0 |
|
976 | 976 | |
|
977 | 977 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] |
|
978 | 978 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) |
|
979 | 979 | |
|
980 | 980 | #print array.shape |
|
981 | 981 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) |
|
982 | 982 | #print tmp.shape |
|
983 | 983 | |
|
984 | 984 | # fig = plt.figure(figsize=(6,5)) |
|
985 | 985 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
986 | 986 | # ax = fig.add_axes([left, bottom, width, height]) |
|
987 | 987 | # x = range(num_prof) |
|
988 | 988 | # y = range(num_hei) |
|
989 | 989 | # cp = ax.contour(y,x,array[ii,:,:]) |
|
990 | 990 | # ax.clabel(cp, inline=True,fontsize=10) |
|
991 | 991 | # plt.show() |
|
992 | 992 | return array |
|
993 | 993 | |
|
994 | 994 | class removeInterference(Operation): |
|
995 | 995 | |
|
996 | 996 | def removeInterference2(self): |
|
997 | 997 | |
|
998 | 998 | cspc = self.dataOut.data_cspc |
|
999 | 999 | spc = self.dataOut.data_spc |
|
1000 | 1000 | Heights = numpy.arange(cspc.shape[2]) |
|
1001 | 1001 | realCspc = numpy.abs(cspc) |
|
1002 | 1002 | |
|
1003 | 1003 | for i in range(cspc.shape[0]): |
|
1004 | 1004 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
1005 | 1005 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
1006 | 1006 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
1007 | 1007 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
1008 | 1008 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
1009 | 1009 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
1010 | 1010 | |
|
1011 | 1011 | |
|
1012 | 1012 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
1013 | 1013 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
1014 | 1014 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
1015 | 1015 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
1016 | 1016 | |
|
1017 | 1017 | self.dataOut.data_cspc = cspc |
|
1018 | 1018 | |
|
1019 | 1019 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
1020 | 1020 | |
|
1021 | 1021 | jspectra = self.dataOut.data_spc |
|
1022 | 1022 | jcspectra = self.dataOut.data_cspc |
|
1023 | 1023 | jnoise = self.dataOut.getNoise() |
|
1024 | 1024 | num_incoh = self.dataOut.nIncohInt |
|
1025 | 1025 | |
|
1026 | 1026 | num_channel = jspectra.shape[0] |
|
1027 | 1027 | num_prof = jspectra.shape[1] |
|
1028 | 1028 | num_hei = jspectra.shape[2] |
|
1029 | 1029 | |
|
1030 | 1030 | # hei_interf |
|
1031 | 1031 | if hei_interf is None: |
|
1032 | 1032 | count_hei = int(num_hei / 2) |
|
1033 | 1033 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
1034 | 1034 | hei_interf = numpy.asarray(hei_interf)[0] |
|
1035 | 1035 | # nhei_interf |
|
1036 | 1036 | if (nhei_interf == None): |
|
1037 | 1037 | nhei_interf = 5 |
|
1038 | 1038 | if (nhei_interf < 1): |
|
1039 | 1039 | nhei_interf = 1 |
|
1040 | 1040 | if (nhei_interf > count_hei): |
|
1041 | 1041 | nhei_interf = count_hei |
|
1042 | 1042 | if (offhei_interf == None): |
|
1043 | 1043 | offhei_interf = 0 |
|
1044 | 1044 | |
|
1045 | 1045 | ind_hei = list(range(num_hei)) |
|
1046 | 1046 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
1047 | 1047 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
1048 | 1048 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
1049 | 1049 | num_mask_prof = mask_prof.size |
|
1050 | 1050 | comp_mask_prof = [0, num_prof / 2] |
|
1051 | 1051 | |
|
1052 | 1052 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
1053 | 1053 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
1054 | 1054 | jnoise = numpy.nan |
|
1055 | 1055 | noise_exist = jnoise[0] < numpy.Inf |
|
1056 | 1056 | |
|
1057 | 1057 | # Subrutina de Remocion de la Interferencia |
|
1058 | 1058 | for ich in range(num_channel): |
|
1059 | 1059 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
1060 | 1060 | power = jspectra[ich, mask_prof, :] |
|
1061 | 1061 | power = power[:, hei_interf] |
|
1062 | 1062 | power = power.sum(axis=0) |
|
1063 | 1063 | psort = power.ravel().argsort() |
|
1064 | 1064 | |
|
1065 | 1065 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
1066 | 1066 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
1067 | 1067 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1068 | 1068 | |
|
1069 | 1069 | if noise_exist: |
|
1070 | 1070 | # tmp_noise = jnoise[ich] / num_prof |
|
1071 | 1071 | tmp_noise = jnoise[ich] |
|
1072 | 1072 | junkspc_interf = junkspc_interf - tmp_noise |
|
1073 | 1073 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
1074 | 1074 | |
|
1075 | 1075 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
1076 | 1076 | jspc_interf = jspc_interf.transpose() |
|
1077 | 1077 | # Calculando el espectro de interferencia promedio |
|
1078 | 1078 | noiseid = numpy.where( |
|
1079 | 1079 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
1080 | 1080 | noiseid = noiseid[0] |
|
1081 | 1081 | cnoiseid = noiseid.size |
|
1082 | 1082 | interfid = numpy.where( |
|
1083 | 1083 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
1084 | 1084 | interfid = interfid[0] |
|
1085 | 1085 | cinterfid = interfid.size |
|
1086 | 1086 | |
|
1087 | 1087 | if (cnoiseid > 0): |
|
1088 | 1088 | jspc_interf[noiseid] = 0 |
|
1089 | 1089 | |
|
1090 | 1090 | # Expandiendo los perfiles a limpiar |
|
1091 | 1091 | if (cinterfid > 0): |
|
1092 | 1092 | new_interfid = ( |
|
1093 | 1093 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
1094 | 1094 | new_interfid = numpy.asarray(new_interfid) |
|
1095 | 1095 | new_interfid = {x for x in new_interfid} |
|
1096 | 1096 | new_interfid = numpy.array(list(new_interfid)) |
|
1097 | 1097 | new_cinterfid = new_interfid.size |
|
1098 | 1098 | else: |
|
1099 | 1099 | new_cinterfid = 0 |
|
1100 | 1100 | |
|
1101 | 1101 | for ip in range(new_cinterfid): |
|
1102 | 1102 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
1103 | 1103 | jspc_interf[new_interfid[ip] |
|
1104 | 1104 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
1105 | 1105 | |
|
1106 | 1106 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
1107 | 1107 | ind_hei] - jspc_interf # Corregir indices |
|
1108 | 1108 | |
|
1109 | 1109 | # Removiendo la interferencia del punto de mayor interferencia |
|
1110 | 1110 | ListAux = jspc_interf[mask_prof].tolist() |
|
1111 | 1111 | maxid = ListAux.index(max(ListAux)) |
|
1112 | 1112 | |
|
1113 | 1113 | if cinterfid > 0: |
|
1114 | 1114 | for ip in range(cinterfid * (interf == 2) - 1): |
|
1115 | 1115 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
1116 | 1116 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1117 | 1117 | cind = len(ind) |
|
1118 | 1118 | |
|
1119 | 1119 | if (cind > 0): |
|
1120 | 1120 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
1121 | 1121 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
1122 | 1122 | numpy.sqrt(num_incoh)) |
|
1123 | 1123 | |
|
1124 | 1124 | ind = numpy.array([-2, -1, 1, 2]) |
|
1125 | 1125 | xx = numpy.zeros([4, 4]) |
|
1126 | 1126 | |
|
1127 | 1127 | for id1 in range(4): |
|
1128 | 1128 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1129 | 1129 | |
|
1130 | 1130 | xx_inv = numpy.linalg.inv(xx) |
|
1131 | 1131 | xx = xx_inv[:, 0] |
|
1132 | 1132 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1133 | 1133 | yy = jspectra[ich, mask_prof[ind], :] |
|
1134 | 1134 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
1135 | 1135 | yy.transpose(), xx) |
|
1136 | 1136 | |
|
1137 | 1137 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
1138 | 1138 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1139 | 1139 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
1140 | 1140 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
1141 | 1141 | |
|
1142 | 1142 | # Remocion de Interferencia en el Cross Spectra |
|
1143 | 1143 | if jcspectra is None: |
|
1144 | 1144 | return jspectra, jcspectra |
|
1145 | 1145 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
1146 | 1146 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
1147 | 1147 | |
|
1148 | 1148 | for ip in range(num_pairs): |
|
1149 | 1149 | |
|
1150 | 1150 | #------------------------------------------- |
|
1151 | 1151 | |
|
1152 | 1152 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
1153 | 1153 | cspower = cspower[:, hei_interf] |
|
1154 | 1154 | cspower = cspower.sum(axis=0) |
|
1155 | 1155 | |
|
1156 | 1156 | cspsort = cspower.ravel().argsort() |
|
1157 | 1157 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
1158 | 1158 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1159 | 1159 | junkcspc_interf = junkcspc_interf.transpose() |
|
1160 | 1160 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
1161 | 1161 | |
|
1162 | 1162 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
1163 | 1163 | |
|
1164 | 1164 | median_real = int(numpy.median(numpy.real( |
|
1165 | 1165 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1166 | 1166 | median_imag = int(numpy.median(numpy.imag( |
|
1167 | 1167 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1168 | 1168 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
1169 | 1169 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
1170 | 1170 | median_real, median_imag) |
|
1171 | 1171 | |
|
1172 | 1172 | for iprof in range(num_prof): |
|
1173 | 1173 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
1174 | 1174 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
1175 | 1175 | |
|
1176 | 1176 | # Removiendo la Interferencia |
|
1177 | 1177 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
1178 | 1178 | :, ind_hei] - jcspc_interf |
|
1179 | 1179 | |
|
1180 | 1180 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
1181 | 1181 | maxid = ListAux.index(max(ListAux)) |
|
1182 | 1182 | |
|
1183 | 1183 | ind = numpy.array([-2, -1, 1, 2]) |
|
1184 | 1184 | xx = numpy.zeros([4, 4]) |
|
1185 | 1185 | |
|
1186 | 1186 | for id1 in range(4): |
|
1187 | 1187 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1188 | 1188 | |
|
1189 | 1189 | xx_inv = numpy.linalg.inv(xx) |
|
1190 | 1190 | xx = xx_inv[:, 0] |
|
1191 | 1191 | |
|
1192 | 1192 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1193 | 1193 | yy = jcspectra[ip, mask_prof[ind], :] |
|
1194 | 1194 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
1195 | 1195 | |
|
1196 | 1196 | # Guardar Resultados |
|
1197 | 1197 | self.dataOut.data_spc = jspectra |
|
1198 | 1198 | self.dataOut.data_cspc = jcspectra |
|
1199 | 1199 | |
|
1200 | 1200 | return 1 |
|
1201 | 1201 | |
|
1202 | 1202 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): |
|
1203 | 1203 | |
|
1204 | 1204 | self.dataOut = dataOut |
|
1205 | 1205 | |
|
1206 | 1206 | if mode == 1: |
|
1207 | 1207 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) |
|
1208 | 1208 | elif mode == 2: |
|
1209 | 1209 | self.removeInterference2() |
|
1210 | 1210 | |
|
1211 | 1211 | return self.dataOut |
|
1212 | 1212 | |
|
1213 | 1213 | |
|
1214 | 1214 | class IncohInt(Operation): |
|
1215 | 1215 | |
|
1216 | 1216 | __profIndex = 0 |
|
1217 | 1217 | __withOverapping = False |
|
1218 | 1218 | |
|
1219 | 1219 | __byTime = False |
|
1220 | 1220 | __initime = None |
|
1221 | 1221 | __lastdatatime = None |
|
1222 | 1222 | __integrationtime = None |
|
1223 | 1223 | |
|
1224 | 1224 | __buffer_spc = None |
|
1225 | 1225 | __buffer_cspc = None |
|
1226 | 1226 | __buffer_dc = None |
|
1227 | 1227 | |
|
1228 | 1228 | __dataReady = False |
|
1229 | 1229 | |
|
1230 | 1230 | __timeInterval = None |
|
1231 | 1231 | |
|
1232 | 1232 | n = None |
|
1233 | 1233 | |
|
1234 | 1234 | def __init__(self): |
|
1235 | 1235 | |
|
1236 | 1236 | Operation.__init__(self) |
|
1237 | 1237 | |
|
1238 | 1238 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
1239 | 1239 | """ |
|
1240 | 1240 | Set the parameters of the integration class. |
|
1241 | 1241 | |
|
1242 | 1242 | Inputs: |
|
1243 | 1243 | |
|
1244 | 1244 | n : Number of coherent integrations |
|
1245 | 1245 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1246 | 1246 | overlapping : |
|
1247 | 1247 | |
|
1248 | 1248 | """ |
|
1249 | 1249 | |
|
1250 | 1250 | self.__initime = None |
|
1251 | 1251 | self.__lastdatatime = 0 |
|
1252 | 1252 | |
|
1253 | 1253 | self.__buffer_spc = 0 |
|
1254 | 1254 | self.__buffer_cspc = 0 |
|
1255 | 1255 | self.__buffer_dc = 0 |
|
1256 | 1256 | |
|
1257 | 1257 | self.__profIndex = 0 |
|
1258 | 1258 | self.__dataReady = False |
|
1259 | 1259 | self.__byTime = False |
|
1260 | 1260 | |
|
1261 | 1261 | if n is None and timeInterval is None: |
|
1262 | 1262 | raise ValueError("n or timeInterval should be specified ...") |
|
1263 | 1263 | |
|
1264 | 1264 | if n is not None: |
|
1265 | 1265 | self.n = int(n) |
|
1266 | 1266 | else: |
|
1267 | 1267 | |
|
1268 | 1268 | self.__integrationtime = int(timeInterval) |
|
1269 | 1269 | self.n = None |
|
1270 | 1270 | self.__byTime = True |
|
1271 | 1271 | |
|
1272 | 1272 | def putData(self, data_spc, data_cspc, data_dc): |
|
1273 | 1273 | """ |
|
1274 | 1274 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1275 | 1275 | |
|
1276 | 1276 | """ |
|
1277 | 1277 | |
|
1278 | 1278 | self.__buffer_spc += data_spc |
|
1279 | 1279 | |
|
1280 | 1280 | if data_cspc is None: |
|
1281 | 1281 | self.__buffer_cspc = None |
|
1282 | 1282 | else: |
|
1283 | 1283 | self.__buffer_cspc += data_cspc |
|
1284 | 1284 | |
|
1285 | 1285 | if data_dc is None: |
|
1286 | 1286 | self.__buffer_dc = None |
|
1287 | 1287 | else: |
|
1288 | 1288 | self.__buffer_dc += data_dc |
|
1289 | 1289 | |
|
1290 | 1290 | self.__profIndex += 1 |
|
1291 | 1291 | |
|
1292 | 1292 | return |
|
1293 | 1293 | |
|
1294 | 1294 | def pushData(self): |
|
1295 | 1295 | """ |
|
1296 | 1296 | Return the sum of the last profiles and the profiles used in the sum. |
|
1297 | 1297 | |
|
1298 | 1298 | Affected: |
|
1299 | 1299 | |
|
1300 | 1300 | self.__profileIndex |
|
1301 | 1301 | |
|
1302 | 1302 | """ |
|
1303 | 1303 | |
|
1304 | 1304 | data_spc = self.__buffer_spc |
|
1305 | 1305 | data_cspc = self.__buffer_cspc |
|
1306 | 1306 | data_dc = self.__buffer_dc |
|
1307 | 1307 | n = self.__profIndex |
|
1308 | 1308 | |
|
1309 | 1309 | self.__buffer_spc = 0 |
|
1310 | 1310 | self.__buffer_cspc = 0 |
|
1311 | 1311 | self.__buffer_dc = 0 |
|
1312 | 1312 | self.__profIndex = 0 |
|
1313 | 1313 | |
|
1314 | 1314 | return data_spc, data_cspc, data_dc, n |
|
1315 | 1315 | |
|
1316 | 1316 | def byProfiles(self, *args): |
|
1317 | 1317 | |
|
1318 | 1318 | self.__dataReady = False |
|
1319 | 1319 | avgdata_spc = None |
|
1320 | 1320 | avgdata_cspc = None |
|
1321 | 1321 | avgdata_dc = None |
|
1322 | 1322 | |
|
1323 | 1323 | self.putData(*args) |
|
1324 | 1324 | |
|
1325 | 1325 | if self.__profIndex == self.n: |
|
1326 | 1326 | |
|
1327 | 1327 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1328 | 1328 | self.n = n |
|
1329 | 1329 | self.__dataReady = True |
|
1330 | 1330 | |
|
1331 | 1331 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1332 | 1332 | |
|
1333 | 1333 | def byTime(self, datatime, *args): |
|
1334 | 1334 | |
|
1335 | 1335 | self.__dataReady = False |
|
1336 | 1336 | avgdata_spc = None |
|
1337 | 1337 | avgdata_cspc = None |
|
1338 | 1338 | avgdata_dc = None |
|
1339 | 1339 | |
|
1340 | 1340 | self.putData(*args) |
|
1341 | 1341 | |
|
1342 | 1342 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1343 | 1343 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1344 | 1344 | self.n = n |
|
1345 | 1345 | self.__dataReady = True |
|
1346 | 1346 | |
|
1347 | 1347 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1348 | 1348 | |
|
1349 | 1349 | def integrate(self, datatime, *args): |
|
1350 | 1350 | |
|
1351 | 1351 | if self.__profIndex == 0: |
|
1352 | 1352 | self.__initime = datatime |
|
1353 | 1353 | |
|
1354 | 1354 | if self.__byTime: |
|
1355 | 1355 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1356 | 1356 | datatime, *args) |
|
1357 | 1357 | else: |
|
1358 | 1358 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1359 | 1359 | |
|
1360 | 1360 | if not self.__dataReady: |
|
1361 | 1361 | return None, None, None, None |
|
1362 | 1362 | |
|
1363 | 1363 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1364 | 1364 | |
|
1365 | 1365 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1366 | 1366 | if n == 1: |
|
1367 | 1367 | return dataOut |
|
1368 | 1368 | |
|
1369 | 1369 | dataOut.flagNoData = True |
|
1370 | 1370 | |
|
1371 | 1371 | if not self.isConfig: |
|
1372 | 1372 | self.setup(n, timeInterval, overlapping) |
|
1373 | 1373 | self.isConfig = True |
|
1374 | 1374 | |
|
1375 | 1375 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1376 | 1376 | dataOut.data_spc, |
|
1377 | 1377 | dataOut.data_cspc, |
|
1378 | 1378 | dataOut.data_dc) |
|
1379 | 1379 | |
|
1380 | 1380 | if self.__dataReady: |
|
1381 | 1381 | |
|
1382 | 1382 | dataOut.data_spc = avgdata_spc |
|
1383 | 1383 | dataOut.data_cspc = avgdata_cspc |
|
1384 | 1384 | dataOut.data_dc = avgdata_dc |
|
1385 | 1385 | dataOut.nIncohInt *= self.n |
|
1386 | 1386 | dataOut.utctime = avgdatatime |
|
1387 | 1387 | dataOut.flagNoData = False |
|
1388 | 1388 | |
|
1389 | 1389 | return dataOut |
|
1390 | 1390 | |
|
1391 | 1391 | class dopplerFlip(Operation): |
|
1392 | 1392 | |
|
1393 | 1393 | def run(self, dataOut): |
|
1394 | 1394 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
1395 | 1395 | self.dataOut = dataOut |
|
1396 | 1396 | # JULIA-oblicua, indice 2 |
|
1397 | 1397 | # arreglo 2: (num_profiles, num_heights) |
|
1398 | 1398 | jspectra = self.dataOut.data_spc[2] |
|
1399 | 1399 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
1400 | 1400 | num_profiles = jspectra.shape[0] |
|
1401 | 1401 | freq_dc = int(num_profiles / 2) |
|
1402 | 1402 | # Flip con for |
|
1403 | 1403 | for j in range(num_profiles): |
|
1404 | 1404 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
1405 | 1405 | # Intercambio perfil de DC con perfil inmediato anterior |
|
1406 | 1406 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
1407 | 1407 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
1408 | 1408 | # canal modificado es re-escrito en el arreglo de canales |
|
1409 | 1409 | self.dataOut.data_spc[2] = jspectra_tmp |
|
1410 | 1410 | |
|
1411 | 1411 | return self.dataOut |
General Comments 0
You need to be logged in to leave comments.
Login now