@@ -1,693 +1,695 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Base class to create plot operations |
|
5 | """Base class to create plot operations | |
6 |
|
6 | |||
7 | """ |
|
7 | """ | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import sys |
|
10 | import sys | |
11 | import zmq |
|
11 | import zmq | |
12 | import time |
|
12 | import time | |
13 | import numpy |
|
13 | import numpy | |
14 | import datetime |
|
14 | import datetime | |
15 | from collections import deque |
|
15 | from collections import deque | |
16 | from functools import wraps |
|
16 | from functools import wraps | |
17 | from threading import Thread |
|
17 | from threading import Thread | |
18 | import matplotlib |
|
18 | import matplotlib | |
19 |
|
19 | |||
20 | if 'BACKEND' in os.environ: |
|
20 | if 'BACKEND' in os.environ: | |
21 | matplotlib.use(os.environ['BACKEND']) |
|
21 | matplotlib.use(os.environ['BACKEND']) | |
22 | elif 'linux' in sys.platform: |
|
22 | elif 'linux' in sys.platform: | |
23 | matplotlib.use("TkAgg") |
|
23 | matplotlib.use("TkAgg") | |
24 | elif 'darwin' in sys.platform: |
|
24 | elif 'darwin' in sys.platform: | |
25 | matplotlib.use('MacOSX') |
|
25 | matplotlib.use('MacOSX') | |
26 | else: |
|
26 | else: | |
27 | from schainpy.utils import log |
|
27 | from schainpy.utils import log | |
28 | log.warning('Using default Backend="Agg"', 'INFO') |
|
28 | log.warning('Using default Backend="Agg"', 'INFO') | |
29 | matplotlib.use('Agg') |
|
29 | matplotlib.use('Agg') | |
30 |
|
30 | |||
31 | import matplotlib.pyplot as plt |
|
31 | import matplotlib.pyplot as plt | |
32 | from matplotlib.patches import Polygon |
|
32 | from matplotlib.patches import Polygon | |
33 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
33 | from mpl_toolkits.axes_grid1 import make_axes_locatable | |
34 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator |
|
34 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator | |
35 |
|
35 | |||
36 | from schainpy.model.data.jrodata import PlotterData |
|
36 | from schainpy.model.data.jrodata import PlotterData | |
37 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
37 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
38 | from schainpy.utils import log |
|
38 | from schainpy.utils import log | |
39 |
|
39 | |||
40 | jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90] |
|
40 | jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90] | |
41 | blu_values = matplotlib.pyplot.get_cmap( |
|
41 | blu_values = matplotlib.pyplot.get_cmap( | |
42 | 'seismic_r', 20)(numpy.arange(20))[10:15] |
|
42 | 'seismic_r', 20)(numpy.arange(20))[10:15] | |
43 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list( |
|
43 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list( | |
44 | 'jro', numpy.vstack((blu_values, jet_values))) |
|
44 | 'jro', numpy.vstack((blu_values, jet_values))) | |
45 | matplotlib.pyplot.register_cmap(cmap=ncmap) |
|
45 | matplotlib.pyplot.register_cmap(cmap=ncmap) | |
46 |
|
46 | |||
47 | CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis', |
|
47 | CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis', | |
48 | 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')] |
|
48 | 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')] | |
49 |
|
49 | |||
50 | EARTH_RADIUS = 6.3710e3 |
|
50 | EARTH_RADIUS = 6.3710e3 | |
51 |
|
51 | |||
52 | def ll2xy(lat1, lon1, lat2, lon2): |
|
52 | def ll2xy(lat1, lon1, lat2, lon2): | |
53 |
|
53 | |||
54 | p = 0.017453292519943295 |
|
54 | p = 0.017453292519943295 | |
55 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
55 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |
56 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
56 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |
57 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
57 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
58 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
58 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |
59 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
59 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |
60 | theta = -theta + numpy.pi/2 |
|
60 | theta = -theta + numpy.pi/2 | |
61 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
61 | return r*numpy.cos(theta), r*numpy.sin(theta) | |
62 |
|
62 | |||
63 |
|
63 | |||
64 | def km2deg(km): |
|
64 | def km2deg(km): | |
65 | ''' |
|
65 | ''' | |
66 | Convert distance in km to degrees |
|
66 | Convert distance in km to degrees | |
67 | ''' |
|
67 | ''' | |
68 |
|
68 | |||
69 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
69 | return numpy.rad2deg(km/EARTH_RADIUS) | |
70 |
|
70 | |||
71 |
|
71 | |||
72 | def figpause(interval): |
|
72 | def figpause(interval): | |
73 | backend = plt.rcParams['backend'] |
|
73 | backend = plt.rcParams['backend'] | |
74 | if backend in matplotlib.rcsetup.interactive_bk: |
|
74 | if backend in matplotlib.rcsetup.interactive_bk: | |
75 | figManager = matplotlib._pylab_helpers.Gcf.get_active() |
|
75 | figManager = matplotlib._pylab_helpers.Gcf.get_active() | |
76 | if figManager is not None: |
|
76 | if figManager is not None: | |
77 | canvas = figManager.canvas |
|
77 | canvas = figManager.canvas | |
78 | if canvas.figure.stale: |
|
78 | if canvas.figure.stale: | |
79 | canvas.draw() |
|
79 | canvas.draw() | |
80 | try: |
|
80 | try: | |
81 | canvas.start_event_loop(interval) |
|
81 | canvas.start_event_loop(interval) | |
82 | except: |
|
82 | except: | |
83 | pass |
|
83 | pass | |
84 | return |
|
84 | return | |
85 |
|
85 | |||
86 | def popup(message): |
|
86 | def popup(message): | |
87 | ''' |
|
87 | ''' | |
88 | ''' |
|
88 | ''' | |
89 |
|
89 | |||
90 | fig = plt.figure(figsize=(12, 8), facecolor='r') |
|
90 | fig = plt.figure(figsize=(12, 8), facecolor='r') | |
91 | text = '\n'.join([s.strip() for s in message.split(':')]) |
|
91 | text = '\n'.join([s.strip() for s in message.split(':')]) | |
92 | fig.text(0.01, 0.5, text, ha='left', va='center', |
|
92 | fig.text(0.01, 0.5, text, ha='left', va='center', | |
93 | size='20', weight='heavy', color='w') |
|
93 | size='20', weight='heavy', color='w') | |
94 | fig.show() |
|
94 | fig.show() | |
95 | figpause(1000) |
|
95 | figpause(1000) | |
96 |
|
96 | |||
97 |
|
97 | |||
98 | class Throttle(object): |
|
98 | class Throttle(object): | |
99 | ''' |
|
99 | ''' | |
100 | Decorator that prevents a function from being called more than once every |
|
100 | Decorator that prevents a function from being called more than once every | |
101 | time period. |
|
101 | time period. | |
102 | To create a function that cannot be called more than once a minute, but |
|
102 | To create a function that cannot be called more than once a minute, but | |
103 | will sleep until it can be called: |
|
103 | will sleep until it can be called: | |
104 | @Throttle(minutes=1) |
|
104 | @Throttle(minutes=1) | |
105 | def foo(): |
|
105 | def foo(): | |
106 | pass |
|
106 | pass | |
107 |
|
107 | |||
108 | for i in range(10): |
|
108 | for i in range(10): | |
109 | foo() |
|
109 | foo() | |
110 | print "This function has run %s times." % i |
|
110 | print "This function has run %s times." % i | |
111 | ''' |
|
111 | ''' | |
112 |
|
112 | |||
113 | def __init__(self, seconds=0, minutes=0, hours=0): |
|
113 | def __init__(self, seconds=0, minutes=0, hours=0): | |
114 | self.throttle_period = datetime.timedelta( |
|
114 | self.throttle_period = datetime.timedelta( | |
115 | seconds=seconds, minutes=minutes, hours=hours |
|
115 | seconds=seconds, minutes=minutes, hours=hours | |
116 | ) |
|
116 | ) | |
117 |
|
117 | |||
118 | self.time_of_last_call = datetime.datetime.min |
|
118 | self.time_of_last_call = datetime.datetime.min | |
119 |
|
119 | |||
120 | def __call__(self, fn): |
|
120 | def __call__(self, fn): | |
121 | @wraps(fn) |
|
121 | @wraps(fn) | |
122 | def wrapper(*args, **kwargs): |
|
122 | def wrapper(*args, **kwargs): | |
123 | coerce = kwargs.pop('coerce', None) |
|
123 | coerce = kwargs.pop('coerce', None) | |
124 | if coerce: |
|
124 | if coerce: | |
125 | self.time_of_last_call = datetime.datetime.now() |
|
125 | self.time_of_last_call = datetime.datetime.now() | |
126 | return fn(*args, **kwargs) |
|
126 | return fn(*args, **kwargs) | |
127 | else: |
|
127 | else: | |
128 | now = datetime.datetime.now() |
|
128 | now = datetime.datetime.now() | |
129 | time_since_last_call = now - self.time_of_last_call |
|
129 | time_since_last_call = now - self.time_of_last_call | |
130 | time_left = self.throttle_period - time_since_last_call |
|
130 | time_left = self.throttle_period - time_since_last_call | |
131 |
|
131 | |||
132 | if time_left > datetime.timedelta(seconds=0): |
|
132 | if time_left > datetime.timedelta(seconds=0): | |
133 | return |
|
133 | return | |
134 |
|
134 | |||
135 | self.time_of_last_call = datetime.datetime.now() |
|
135 | self.time_of_last_call = datetime.datetime.now() | |
136 | return fn(*args, **kwargs) |
|
136 | return fn(*args, **kwargs) | |
137 |
|
137 | |||
138 | return wrapper |
|
138 | return wrapper | |
139 |
|
139 | |||
140 | def apply_throttle(value): |
|
140 | def apply_throttle(value): | |
141 |
|
141 | |||
142 | @Throttle(seconds=value) |
|
142 | @Throttle(seconds=value) | |
143 | def fnThrottled(fn): |
|
143 | def fnThrottled(fn): | |
144 | fn() |
|
144 | fn() | |
145 |
|
145 | |||
146 | return fnThrottled |
|
146 | return fnThrottled | |
147 |
|
147 | |||
148 |
|
148 | |||
149 | @MPDecorator |
|
149 | @MPDecorator | |
150 | class Plot(Operation): |
|
150 | class Plot(Operation): | |
151 | """Base class for Schain plotting operations |
|
151 | """Base class for Schain plotting operations | |
152 |
|
152 | |||
153 | This class should never be use directtly you must subclass a new operation, |
|
153 | This class should never be use directtly you must subclass a new operation, | |
154 | children classes must be defined as follow: |
|
154 | children classes must be defined as follow: | |
155 |
|
155 | |||
156 | ExamplePlot(Plot): |
|
156 | ExamplePlot(Plot): | |
157 |
|
157 | |||
158 | CODE = 'code' |
|
158 | CODE = 'code' | |
159 | colormap = 'jet' |
|
159 | colormap = 'jet' | |
160 | plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer') |
|
160 | plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer') | |
161 |
|
161 | |||
162 | def setup(self): |
|
162 | def setup(self): | |
163 | pass |
|
163 | pass | |
164 |
|
164 | |||
165 | def plot(self): |
|
165 | def plot(self): | |
166 | pass |
|
166 | pass | |
167 |
|
167 | |||
168 | """ |
|
168 | """ | |
169 |
|
169 | |||
170 | CODE = 'Figure' |
|
170 | CODE = 'Figure' | |
171 | colormap = 'jet' |
|
171 | colormap = 'jet' | |
172 | bgcolor = 'white' |
|
172 | bgcolor = 'white' | |
173 | buffering = True |
|
173 | buffering = True | |
174 | __missing = 1E30 |
|
174 | __missing = 1E30 | |
175 |
|
175 | |||
176 | __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title', |
|
176 | __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title', | |
177 | 'showprofile'] |
|
177 | 'showprofile'] | |
178 |
|
178 | |||
179 | def __init__(self): |
|
179 | def __init__(self): | |
180 |
|
180 | |||
181 | Operation.__init__(self) |
|
181 | Operation.__init__(self) | |
182 | self.isConfig = False |
|
182 | self.isConfig = False | |
183 | self.isPlotConfig = False |
|
183 | self.isPlotConfig = False | |
184 | self.save_time = 0 |
|
184 | self.save_time = 0 | |
185 | self.sender_time = 0 |
|
185 | self.sender_time = 0 | |
186 | self.data = None |
|
186 | self.data = None | |
187 | self.firsttime = True |
|
187 | self.firsttime = True | |
188 | self.sender_queue = deque(maxlen=10) |
|
188 | self.sender_queue = deque(maxlen=10) | |
189 | self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2} |
|
189 | self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2} | |
190 |
|
190 | |||
191 | def __fmtTime(self, x, pos): |
|
191 | def __fmtTime(self, x, pos): | |
192 | ''' |
|
192 | ''' | |
193 | ''' |
|
193 | ''' | |
194 |
|
194 | |||
195 | return '{}'.format(self.getDateTime(x).strftime('%H:%M')) |
|
195 | return '{}'.format(self.getDateTime(x).strftime('%H:%M')) | |
196 |
|
196 | |||
197 | def __setup(self, **kwargs): |
|
197 | def __setup(self, **kwargs): | |
198 | ''' |
|
198 | ''' | |
199 | Initialize variables |
|
199 | Initialize variables | |
200 | ''' |
|
200 | ''' | |
201 |
|
201 | |||
202 | self.figures = [] |
|
202 | self.figures = [] | |
203 | self.axes = [] |
|
203 | self.axes = [] | |
204 | self.cb_axes = [] |
|
204 | self.cb_axes = [] | |
|
205 | self.pf_axes = [] | |||
205 | self.localtime = kwargs.pop('localtime', True) |
|
206 | self.localtime = kwargs.pop('localtime', True) | |
206 | self.show = kwargs.get('show', True) |
|
207 | self.show = kwargs.get('show', True) | |
207 | self.save = kwargs.get('save', False) |
|
208 | self.save = kwargs.get('save', False) | |
208 | self.save_period = kwargs.get('save_period', 0) |
|
209 | self.save_period = kwargs.get('save_period', 0) | |
209 | self.colormap = kwargs.get('colormap', self.colormap) |
|
210 | self.colormap = kwargs.get('colormap', self.colormap) | |
210 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') |
|
211 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') | |
211 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') |
|
212 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') | |
212 | self.colormaps = kwargs.get('colormaps', None) |
|
213 | self.colormaps = kwargs.get('colormaps', None) | |
213 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) |
|
214 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) | |
214 | self.showprofile = kwargs.get('showprofile', False) |
|
215 | self.showprofile = kwargs.get('showprofile', False) | |
215 | self.title = kwargs.get('wintitle', self.CODE.upper()) |
|
216 | self.title = kwargs.get('wintitle', self.CODE.upper()) | |
216 | self.cb_label = kwargs.get('cb_label', None) |
|
217 | self.cb_label = kwargs.get('cb_label', None) | |
217 | self.cb_labels = kwargs.get('cb_labels', None) |
|
218 | self.cb_labels = kwargs.get('cb_labels', None) | |
218 | self.labels = kwargs.get('labels', None) |
|
219 | self.labels = kwargs.get('labels', None) | |
219 | self.xaxis = kwargs.get('xaxis', 'frequency') |
|
220 | self.xaxis = kwargs.get('xaxis', 'frequency') | |
220 | self.zmin = kwargs.get('zmin', None) |
|
221 | self.zmin = kwargs.get('zmin', None) | |
221 | self.zmax = kwargs.get('zmax', None) |
|
222 | self.zmax = kwargs.get('zmax', None) | |
222 | self.zlimits = kwargs.get('zlimits', None) |
|
223 | self.zlimits = kwargs.get('zlimits', None) | |
223 | self.xmin = kwargs.get('xmin', None) |
|
224 | self.xmin = kwargs.get('xmin', None) | |
224 | self.xmax = kwargs.get('xmax', None) |
|
225 | self.xmax = kwargs.get('xmax', None) | |
225 | self.xrange = kwargs.get('xrange', 12) |
|
226 | self.xrange = kwargs.get('xrange', 12) | |
226 | self.xscale = kwargs.get('xscale', None) |
|
227 | self.xscale = kwargs.get('xscale', None) | |
227 | self.ymin = kwargs.get('ymin', None) |
|
228 | self.ymin = kwargs.get('ymin', None) | |
228 | self.ymax = kwargs.get('ymax', None) |
|
229 | self.ymax = kwargs.get('ymax', None) | |
229 | self.yscale = kwargs.get('yscale', None) |
|
230 | self.yscale = kwargs.get('yscale', None) | |
230 | self.xlabel = kwargs.get('xlabel', None) |
|
231 | self.xlabel = kwargs.get('xlabel', None) | |
231 | self.attr_time = kwargs.get('attr_time', 'utctime') |
|
232 | self.attr_time = kwargs.get('attr_time', 'utctime') | |
232 | self.attr_data = kwargs.get('attr_data', 'data_param') |
|
233 | self.attr_data = kwargs.get('attr_data', 'data_param') | |
233 | self.decimation = kwargs.get('decimation', None) |
|
234 | self.decimation = kwargs.get('decimation', None) | |
234 | self.oneFigure = kwargs.get('oneFigure', True) |
|
235 | self.oneFigure = kwargs.get('oneFigure', True) | |
235 | self.width = kwargs.get('width', None) |
|
236 | self.width = kwargs.get('width', None) | |
236 | self.height = kwargs.get('height', None) |
|
237 | self.height = kwargs.get('height', None) | |
237 | self.colorbar = kwargs.get('colorbar', True) |
|
238 | self.colorbar = kwargs.get('colorbar', True) | |
238 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) |
|
239 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) | |
239 | self.channels = kwargs.get('channels', None) |
|
240 | self.channels = kwargs.get('channels', None) | |
240 | self.titles = kwargs.get('titles', []) |
|
241 | self.titles = kwargs.get('titles', []) | |
241 | self.polar = False |
|
242 | self.polar = False | |
242 | self.type = kwargs.get('type', 'iq') |
|
243 | self.type = kwargs.get('type', 'iq') | |
243 | self.grid = kwargs.get('grid', False) |
|
244 | self.grid = kwargs.get('grid', False) | |
244 | self.pause = kwargs.get('pause', False) |
|
245 | self.pause = kwargs.get('pause', False) | |
245 | self.save_code = kwargs.get('save_code', self.CODE) |
|
246 | self.save_code = kwargs.get('save_code', self.CODE) | |
246 | self.throttle = kwargs.get('throttle', 0) |
|
247 | self.throttle = kwargs.get('throttle', 0) | |
247 | self.exp_code = kwargs.get('exp_code', None) |
|
248 | self.exp_code = kwargs.get('exp_code', None) | |
248 | self.server = kwargs.get('server', False) |
|
249 | self.server = kwargs.get('server', False) | |
249 | self.sender_period = kwargs.get('sender_period', 60) |
|
250 | self.sender_period = kwargs.get('sender_period', 60) | |
250 | self.tag = kwargs.get('tag', '') |
|
251 | self.tag = kwargs.get('tag', '') | |
251 | self.height_index = kwargs.get('height_index', None) |
|
252 | self.height_index = kwargs.get('height_index', None) | |
252 | self.__throttle_plot = apply_throttle(self.throttle) |
|
253 | self.__throttle_plot = apply_throttle(self.throttle) | |
253 | code = self.attr_data if self.attr_data else self.CODE |
|
254 | code = self.attr_data if self.attr_data else self.CODE | |
254 | self.data = PlotterData(self.CODE, self.exp_code, self.localtime) |
|
255 | self.data = PlotterData(self.CODE, self.exp_code, self.localtime) | |
|
256 | self.tmin = kwargs.get('tmin', None) | |||
255 |
|
257 | |||
256 | if self.server: |
|
258 | if self.server: | |
257 | if not self.server.startswith('tcp://'): |
|
259 | if not self.server.startswith('tcp://'): | |
258 | self.server = 'tcp://{}'.format(self.server) |
|
260 | self.server = 'tcp://{}'.format(self.server) | |
259 | log.success( |
|
261 | log.success( | |
260 | 'Sending to server: {}'.format(self.server), |
|
262 | 'Sending to server: {}'.format(self.server), | |
261 | self.name |
|
263 | self.name | |
262 | ) |
|
264 | ) | |
263 |
|
265 | |||
264 | if isinstance(self.attr_data, str): |
|
266 | if isinstance(self.attr_data, str): | |
265 | self.attr_data = [self.attr_data] |
|
267 | self.attr_data = [self.attr_data] | |
266 |
|
268 | |||
267 | def __setup_plot(self): |
|
269 | def __setup_plot(self): | |
268 | ''' |
|
270 | ''' | |
269 | Common setup for all figures, here figures and axes are created |
|
271 | Common setup for all figures, here figures and axes are created | |
270 | ''' |
|
272 | ''' | |
271 |
|
273 | |||
272 | self.setup() |
|
274 | self.setup() | |
273 |
|
275 | |||
274 | self.time_label = 'LT' if self.localtime else 'UTC' |
|
276 | self.time_label = 'LT' if self.localtime else 'UTC' | |
275 |
|
277 | |||
276 | if self.width is None: |
|
278 | if self.width is None: | |
277 | self.width = 8 |
|
279 | self.width = 8 | |
278 |
|
280 | |||
279 | self.figures = [] |
|
281 | self.figures = [] | |
280 | self.axes = [] |
|
282 | self.axes = [] | |
281 | self.cb_axes = [] |
|
283 | self.cb_axes = [] | |
282 | self.pf_axes = [] |
|
284 | self.pf_axes = [] | |
283 | self.cmaps = [] |
|
285 | self.cmaps = [] | |
284 |
|
286 | |||
285 | size = '15%' if self.ncols == 1 else '30%' |
|
287 | size = '15%' if self.ncols == 1 else '30%' | |
286 | pad = '4%' if self.ncols == 1 else '8%' |
|
288 | pad = '4%' if self.ncols == 1 else '8%' | |
287 |
|
289 | |||
288 | if self.oneFigure: |
|
290 | if self.oneFigure: | |
289 | if self.height is None: |
|
291 | if self.height is None: | |
290 | self.height = 1.4 * self.nrows + 1 |
|
292 | self.height = 1.4 * self.nrows + 1 | |
291 | fig = plt.figure(figsize=(self.width, self.height), |
|
293 | fig = plt.figure(figsize=(self.width, self.height), | |
292 | edgecolor='k', |
|
294 | edgecolor='k', | |
293 | facecolor='w') |
|
295 | facecolor='w') | |
294 | self.figures.append(fig) |
|
296 | self.figures.append(fig) | |
295 | for n in range(self.nplots): |
|
297 | for n in range(self.nplots): | |
296 | ax = fig.add_subplot(self.nrows, self.ncols, |
|
298 | ax = fig.add_subplot(self.nrows, self.ncols, | |
297 | n + 1, polar=self.polar) |
|
299 | n + 1, polar=self.polar) | |
298 | ax.tick_params(labelsize=8) |
|
300 | ax.tick_params(labelsize=8) | |
299 | ax.firsttime = True |
|
301 | ax.firsttime = True | |
300 | ax.index = 0 |
|
302 | ax.index = 0 | |
301 | ax.press = None |
|
303 | ax.press = None | |
302 | self.axes.append(ax) |
|
304 | self.axes.append(ax) | |
303 | if self.showprofile: |
|
305 | if self.showprofile: | |
304 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
306 | cax = self.__add_axes(ax, size=size, pad=pad) | |
305 | cax.tick_params(labelsize=8) |
|
307 | cax.tick_params(labelsize=8) | |
306 | self.pf_axes.append(cax) |
|
308 | self.pf_axes.append(cax) | |
307 | else: |
|
309 | else: | |
308 | if self.height is None: |
|
310 | if self.height is None: | |
309 | self.height = 3 |
|
311 | self.height = 3 | |
310 | for n in range(self.nplots): |
|
312 | for n in range(self.nplots): | |
311 | fig = plt.figure(figsize=(self.width, self.height), |
|
313 | fig = plt.figure(figsize=(self.width, self.height), | |
312 | edgecolor='k', |
|
314 | edgecolor='k', | |
313 | facecolor='w') |
|
315 | facecolor='w') | |
314 | ax = fig.add_subplot(1, 1, 1, polar=self.polar) |
|
316 | ax = fig.add_subplot(1, 1, 1, polar=self.polar) | |
315 | ax.tick_params(labelsize=8) |
|
317 | ax.tick_params(labelsize=8) | |
316 | ax.firsttime = True |
|
318 | ax.firsttime = True | |
317 | ax.index = 0 |
|
319 | ax.index = 0 | |
318 | ax.press = None |
|
320 | ax.press = None | |
319 | self.figures.append(fig) |
|
321 | self.figures.append(fig) | |
320 | self.axes.append(ax) |
|
322 | self.axes.append(ax) | |
321 | if self.showprofile: |
|
323 | if self.showprofile: | |
322 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
324 | cax = self.__add_axes(ax, size=size, pad=pad) | |
323 | cax.tick_params(labelsize=8) |
|
325 | cax.tick_params(labelsize=8) | |
324 | self.pf_axes.append(cax) |
|
326 | self.pf_axes.append(cax) | |
325 |
|
327 | |||
326 | for n in range(self.nrows): |
|
328 | for n in range(self.nrows): | |
327 | if self.colormaps is not None: |
|
329 | if self.colormaps is not None: | |
328 | cmap = plt.get_cmap(self.colormaps[n]) |
|
330 | cmap = plt.get_cmap(self.colormaps[n]) | |
329 | else: |
|
331 | else: | |
330 | cmap = plt.get_cmap(self.colormap) |
|
332 | cmap = plt.get_cmap(self.colormap) | |
331 | cmap.set_bad(self.bgcolor, 1.) |
|
333 | cmap.set_bad(self.bgcolor, 1.) | |
332 | self.cmaps.append(cmap) |
|
334 | self.cmaps.append(cmap) | |
333 |
|
335 | |||
334 | def __add_axes(self, ax, size='30%', pad='8%'): |
|
336 | def __add_axes(self, ax, size='30%', pad='8%'): | |
335 | ''' |
|
337 | ''' | |
336 | Add new axes to the given figure |
|
338 | Add new axes to the given figure | |
337 | ''' |
|
339 | ''' | |
338 | divider = make_axes_locatable(ax) |
|
340 | divider = make_axes_locatable(ax) | |
339 | nax = divider.new_horizontal(size=size, pad=pad) |
|
341 | nax = divider.new_horizontal(size=size, pad=pad) | |
340 | ax.figure.add_axes(nax) |
|
342 | ax.figure.add_axes(nax) | |
341 | return nax |
|
343 | return nax | |
342 |
|
344 | |||
343 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
345 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): | |
344 | ''' |
|
346 | ''' | |
345 | Create a masked array for missing data |
|
347 | Create a masked array for missing data | |
346 | ''' |
|
348 | ''' | |
347 | if x_buffer.shape[0] < 2: |
|
349 | if x_buffer.shape[0] < 2: | |
348 | return x_buffer, y_buffer, z_buffer |
|
350 | return x_buffer, y_buffer, z_buffer | |
349 |
|
351 | |||
350 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
352 | deltas = x_buffer[1:] - x_buffer[0:-1] | |
351 | x_median = numpy.median(deltas) |
|
353 | x_median = numpy.median(deltas) | |
352 |
|
354 | |||
353 | index = numpy.where(deltas > 5 * x_median) |
|
355 | index = numpy.where(deltas > 5 * x_median) | |
354 |
|
356 | |||
355 | if len(index[0]) != 0: |
|
357 | if len(index[0]) != 0: | |
356 | z_buffer[::, index[0], ::] = self.__missing |
|
358 | z_buffer[::, index[0], ::] = self.__missing | |
357 | z_buffer = numpy.ma.masked_inside(z_buffer, |
|
359 | z_buffer = numpy.ma.masked_inside(z_buffer, | |
358 | 0.99 * self.__missing, |
|
360 | 0.99 * self.__missing, | |
359 | 1.01 * self.__missing) |
|
361 | 1.01 * self.__missing) | |
360 |
|
362 | |||
361 | return x_buffer, y_buffer, z_buffer |
|
363 | return x_buffer, y_buffer, z_buffer | |
362 |
|
364 | |||
363 | def decimate(self): |
|
365 | def decimate(self): | |
364 |
|
366 | |||
365 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
367 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 | |
366 | dy = int(len(self.y) / self.decimation) + 1 |
|
368 | dy = int(len(self.y) / self.decimation) + 1 | |
367 |
|
369 | |||
368 | # x = self.x[::dx] |
|
370 | # x = self.x[::dx] | |
369 | x = self.x |
|
371 | x = self.x | |
370 | y = self.y[::dy] |
|
372 | y = self.y[::dy] | |
371 | z = self.z[::, ::, ::dy] |
|
373 | z = self.z[::, ::, ::dy] | |
372 |
|
374 | |||
373 | return x, y, z |
|
375 | return x, y, z | |
374 |
|
376 | |||
375 | def format(self): |
|
377 | def format(self): | |
376 | ''' |
|
378 | ''' | |
377 | Set min and max values, labels, ticks and titles |
|
379 | Set min and max values, labels, ticks and titles | |
378 | ''' |
|
380 | ''' | |
379 |
|
381 | |||
380 | for n, ax in enumerate(self.axes): |
|
382 | for n, ax in enumerate(self.axes): | |
381 | if ax.firsttime: |
|
383 | if ax.firsttime: | |
382 | if self.xaxis != 'time': |
|
384 | if self.xaxis != 'time': | |
383 | xmin = self.xmin |
|
385 | xmin = self.xmin | |
384 | xmax = self.xmax |
|
386 | xmax = self.xmax | |
385 | else: |
|
387 | else: | |
386 | xmin = self.tmin |
|
388 | xmin = self.tmin | |
387 | xmax = self.tmin + self.xrange*60*60 |
|
389 | xmax = self.tmin + self.xrange*60*60 | |
388 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) |
|
390 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) | |
389 | ax.xaxis.set_major_locator(LinearLocator(9)) |
|
391 | ax.xaxis.set_major_locator(LinearLocator(9)) | |
390 | ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)]) |
|
392 | ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)]) | |
391 | ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)]) |
|
393 | ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)]) | |
392 | ax.set_facecolor(self.bgcolor) |
|
394 | ax.set_facecolor(self.bgcolor) | |
393 | if self.xscale: |
|
395 | if self.xscale: | |
394 | ax.xaxis.set_major_formatter(FuncFormatter( |
|
396 | ax.xaxis.set_major_formatter(FuncFormatter( | |
395 | lambda x, pos: '{0:g}'.format(x*self.xscale))) |
|
397 | lambda x, pos: '{0:g}'.format(x*self.xscale))) | |
396 | if self.yscale: |
|
398 | if self.yscale: | |
397 | ax.yaxis.set_major_formatter(FuncFormatter( |
|
399 | ax.yaxis.set_major_formatter(FuncFormatter( | |
398 | lambda x, pos: '{0:g}'.format(x*self.yscale))) |
|
400 | lambda x, pos: '{0:g}'.format(x*self.yscale))) | |
399 | if self.xlabel is not None: |
|
401 | if self.xlabel is not None: | |
400 | ax.set_xlabel(self.xlabel) |
|
402 | ax.set_xlabel(self.xlabel) | |
401 | if self.ylabel is not None: |
|
403 | if self.ylabel is not None: | |
402 | ax.set_ylabel(self.ylabel) |
|
404 | ax.set_ylabel(self.ylabel) | |
403 | if self.showprofile: |
|
405 | if self.showprofile: | |
404 | self.pf_axes[n].set_ylim(ymin, ymax) |
|
406 | self.pf_axes[n].set_ylim(ymin, ymax) | |
405 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) |
|
407 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) | |
406 | self.pf_axes[n].set_xlabel('dB') |
|
408 | self.pf_axes[n].set_xlabel('dB') | |
407 | self.pf_axes[n].grid(b=True, axis='x') |
|
409 | self.pf_axes[n].grid(b=True, axis='x') | |
408 | [tick.set_visible(False) |
|
410 | [tick.set_visible(False) | |
409 | for tick in self.pf_axes[n].get_yticklabels()] |
|
411 | for tick in self.pf_axes[n].get_yticklabels()] | |
410 | if self.colorbar: |
|
412 | if self.colorbar: | |
411 | ax.cbar = plt.colorbar( |
|
413 | ax.cbar = plt.colorbar( | |
412 | ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10) |
|
414 | ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10) | |
413 | ax.cbar.ax.tick_params(labelsize=8) |
|
415 | ax.cbar.ax.tick_params(labelsize=8) | |
414 | ax.cbar.ax.press = None |
|
416 | ax.cbar.ax.press = None | |
415 | if self.cb_label: |
|
417 | if self.cb_label: | |
416 | ax.cbar.set_label(self.cb_label, size=8) |
|
418 | ax.cbar.set_label(self.cb_label, size=8) | |
417 | elif self.cb_labels: |
|
419 | elif self.cb_labels: | |
418 | ax.cbar.set_label(self.cb_labels[n], size=8) |
|
420 | ax.cbar.set_label(self.cb_labels[n], size=8) | |
419 | else: |
|
421 | else: | |
420 | ax.cbar = None |
|
422 | ax.cbar = None | |
421 | ax.set_xlim(xmin, xmax) |
|
423 | ax.set_xlim(xmin, xmax) | |
422 | ax.set_ylim(ymin, ymax) |
|
424 | ax.set_ylim(ymin, ymax) | |
423 | ax.firsttime = False |
|
425 | ax.firsttime = False | |
424 | if self.grid: |
|
426 | if self.grid: | |
425 | ax.grid(True) |
|
427 | ax.grid(True) | |
426 | if not self.polar: |
|
428 | if not self.polar: | |
427 | ax.set_title('{} {} {}'.format( |
|
429 | ax.set_title('{} {} {}'.format( | |
428 | self.titles[n], |
|
430 | self.titles[n], | |
429 | self.getDateTime(self.data.max_time).strftime( |
|
431 | self.getDateTime(self.data.max_time).strftime( | |
430 | '%Y-%m-%d %H:%M:%S'), |
|
432 | '%Y-%m-%d %H:%M:%S'), | |
431 | self.time_label), |
|
433 | self.time_label), | |
432 | size=8) |
|
434 | size=8) | |
433 | else: |
|
435 | else: | |
434 | ax.set_title('{}'.format(self.titles[n]), size=8) |
|
436 | ax.set_title('{}'.format(self.titles[n]), size=8) | |
435 | ax.set_ylim(0, 90) |
|
437 | ax.set_ylim(0, 90) | |
436 | ax.set_yticks(numpy.arange(0, 90, 20)) |
|
438 | ax.set_yticks(numpy.arange(0, 90, 20)) | |
437 | ax.yaxis.labelpad = 40 |
|
439 | ax.yaxis.labelpad = 40 | |
438 |
|
440 | |||
439 | if self.firsttime: |
|
441 | if self.firsttime: | |
440 | for n, fig in enumerate(self.figures): |
|
442 | for n, fig in enumerate(self.figures): | |
441 | fig.subplots_adjust(**self.plots_adjust) |
|
443 | fig.subplots_adjust(**self.plots_adjust) | |
442 | self.firsttime = False |
|
444 | self.firsttime = False | |
443 |
|
445 | |||
444 | def clear_figures(self): |
|
446 | def clear_figures(self): | |
445 | ''' |
|
447 | ''' | |
446 | Reset axes for redraw plots |
|
448 | Reset axes for redraw plots | |
447 | ''' |
|
449 | ''' | |
448 |
|
450 | |||
449 | for ax in self.axes+self.pf_axes+self.cb_axes: |
|
451 | for ax in self.axes+self.pf_axes+self.cb_axes: | |
450 | ax.clear() |
|
452 | ax.clear() | |
451 | ax.firsttime = True |
|
453 | ax.firsttime = True | |
452 | if hasattr(ax, 'cbar') and ax.cbar: |
|
454 | if hasattr(ax, 'cbar') and ax.cbar: | |
453 | ax.cbar.remove() |
|
455 | ax.cbar.remove() | |
454 |
|
456 | |||
455 | def __plot(self): |
|
457 | def __plot(self): | |
456 | ''' |
|
458 | ''' | |
457 | Main function to plot, format and save figures |
|
459 | Main function to plot, format and save figures | |
458 | ''' |
|
460 | ''' | |
459 |
|
461 | |||
460 | self.plot() |
|
462 | self.plot() | |
461 | self.format() |
|
463 | self.format() | |
462 |
|
464 | |||
463 | for n, fig in enumerate(self.figures): |
|
465 | for n, fig in enumerate(self.figures): | |
464 | if self.nrows == 0 or self.nplots == 0: |
|
466 | if self.nrows == 0 or self.nplots == 0: | |
465 | log.warning('No data', self.name) |
|
467 | log.warning('No data', self.name) | |
466 | fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center') |
|
468 | fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center') | |
467 | fig.canvas.manager.set_window_title(self.CODE) |
|
469 | fig.canvas.manager.set_window_title(self.CODE) | |
468 | continue |
|
470 | continue | |
469 |
|
471 | |||
470 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, |
|
472 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, | |
471 | self.getDateTime(self.data.max_time).strftime('%Y/%m/%d'))) |
|
473 | self.getDateTime(self.data.max_time).strftime('%Y/%m/%d'))) | |
472 | fig.canvas.draw() |
|
474 | fig.canvas.draw() | |
473 | if self.show: |
|
475 | if self.show: | |
474 | fig.show() |
|
476 | fig.show() | |
475 | figpause(0.01) |
|
477 | figpause(0.01) | |
476 |
|
478 | |||
477 | if self.save: |
|
479 | if self.save: | |
478 | self.save_figure(n) |
|
480 | self.save_figure(n) | |
479 |
|
481 | |||
480 | if self.server: |
|
482 | if self.server: | |
481 | self.send_to_server() |
|
483 | self.send_to_server() | |
482 |
|
484 | |||
483 | def __update(self, dataOut, timestamp): |
|
485 | def __update(self, dataOut, timestamp): | |
484 | ''' |
|
486 | ''' | |
485 | ''' |
|
487 | ''' | |
486 |
|
488 | |||
487 | metadata = { |
|
489 | metadata = { | |
488 | 'yrange': dataOut.heightList, |
|
490 | 'yrange': dataOut.heightList, | |
489 | 'interval': dataOut.timeInterval, |
|
491 | 'interval': dataOut.timeInterval, | |
490 | 'channels': dataOut.channelList |
|
492 | 'channels': dataOut.channelList | |
491 | } |
|
493 | } | |
492 |
|
494 | |||
493 | data, meta = self.update(dataOut) |
|
495 | data, meta = self.update(dataOut) | |
494 | metadata.update(meta) |
|
496 | metadata.update(meta) | |
495 | self.data.update(data, timestamp, metadata) |
|
497 | self.data.update(data, timestamp, metadata) | |
496 |
|
498 | |||
497 | def save_figure(self, n): |
|
499 | def save_figure(self, n): | |
498 | ''' |
|
500 | ''' | |
499 | ''' |
|
501 | ''' | |
500 |
|
502 | |||
501 | if (self.data.max_time - self.save_time) <= self.save_period: |
|
503 | if (self.data.max_time - self.save_time) <= self.save_period: | |
502 | return |
|
504 | return | |
503 |
|
505 | |||
504 | self.save_time = self.data.max_time |
|
506 | self.save_time = self.data.max_time | |
505 |
|
507 | |||
506 | fig = self.figures[n] |
|
508 | fig = self.figures[n] | |
507 |
|
509 | |||
508 | if self.throttle == 0: |
|
510 | if self.throttle == 0: | |
509 | figname = os.path.join( |
|
511 | figname = os.path.join( | |
510 | self.save, |
|
512 | self.save, | |
511 | self.save_code, |
|
513 | self.save_code, | |
512 | '{}_{}.png'.format( |
|
514 | '{}_{}.png'.format( | |
513 | self.save_code, |
|
515 | self.save_code, | |
514 | self.getDateTime(self.data.max_time).strftime( |
|
516 | self.getDateTime(self.data.max_time).strftime( | |
515 | '%Y%m%d_%H%M%S' |
|
517 | '%Y%m%d_%H%M%S' | |
516 | ), |
|
518 | ), | |
517 | ) |
|
519 | ) | |
518 | ) |
|
520 | ) | |
519 | log.log('Saving figure: {}'.format(figname), self.name) |
|
521 | log.log('Saving figure: {}'.format(figname), self.name) | |
520 | if not os.path.isdir(os.path.dirname(figname)): |
|
522 | if not os.path.isdir(os.path.dirname(figname)): | |
521 | os.makedirs(os.path.dirname(figname)) |
|
523 | os.makedirs(os.path.dirname(figname)) | |
522 | fig.savefig(figname) |
|
524 | fig.savefig(figname) | |
523 |
|
525 | |||
524 | figname = os.path.join( |
|
526 | figname = os.path.join( | |
525 | self.save, |
|
527 | self.save, | |
526 | '{}_{}.png'.format( |
|
528 | '{}_{}.png'.format( | |
527 | self.save_code, |
|
529 | self.save_code, | |
528 | self.getDateTime(self.data.min_time).strftime( |
|
530 | self.getDateTime(self.data.min_time).strftime( | |
529 | '%Y%m%d' |
|
531 | '%Y%m%d' | |
530 | ), |
|
532 | ), | |
531 | ) |
|
533 | ) | |
532 | ) |
|
534 | ) | |
533 |
|
535 | |||
534 | log.log('Saving figure: {}'.format(figname), self.name) |
|
536 | log.log('Saving figure: {}'.format(figname), self.name) | |
535 | if not os.path.isdir(os.path.dirname(figname)): |
|
537 | if not os.path.isdir(os.path.dirname(figname)): | |
536 | os.makedirs(os.path.dirname(figname)) |
|
538 | os.makedirs(os.path.dirname(figname)) | |
537 | fig.savefig(figname) |
|
539 | fig.savefig(figname) | |
538 |
|
540 | |||
539 | def send_to_server(self): |
|
541 | def send_to_server(self): | |
540 | ''' |
|
542 | ''' | |
541 | ''' |
|
543 | ''' | |
542 |
|
544 | |||
543 | if self.exp_code == None: |
|
545 | if self.exp_code == None: | |
544 | log.warning('Missing `exp_code` skipping sending to server...') |
|
546 | log.warning('Missing `exp_code` skipping sending to server...') | |
545 |
|
547 | |||
546 | last_time = self.data.max_time |
|
548 | last_time = self.data.max_time | |
547 | interval = last_time - self.sender_time |
|
549 | interval = last_time - self.sender_time | |
548 | if interval < self.sender_period: |
|
550 | if interval < self.sender_period: | |
549 | return |
|
551 | return | |
550 |
|
552 | |||
551 | self.sender_time = last_time |
|
553 | self.sender_time = last_time | |
552 |
|
554 | |||
553 | attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax'] |
|
555 | attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax'] | |
554 | for attr in attrs: |
|
556 | for attr in attrs: | |
555 | value = getattr(self, attr) |
|
557 | value = getattr(self, attr) | |
556 | if value: |
|
558 | if value: | |
557 | if isinstance(value, (numpy.float32, numpy.float64)): |
|
559 | if isinstance(value, (numpy.float32, numpy.float64)): | |
558 | value = round(float(value), 2) |
|
560 | value = round(float(value), 2) | |
559 | self.data.meta[attr] = value |
|
561 | self.data.meta[attr] = value | |
560 | if self.colormap == 'jet': |
|
562 | if self.colormap == 'jet': | |
561 | self.data.meta['colormap'] = 'Jet' |
|
563 | self.data.meta['colormap'] = 'Jet' | |
562 | elif 'RdBu' in self.colormap: |
|
564 | elif 'RdBu' in self.colormap: | |
563 | self.data.meta['colormap'] = 'RdBu' |
|
565 | self.data.meta['colormap'] = 'RdBu' | |
564 | else: |
|
566 | else: | |
565 | self.data.meta['colormap'] = 'Viridis' |
|
567 | self.data.meta['colormap'] = 'Viridis' | |
566 | self.data.meta['interval'] = int(interval) |
|
568 | self.data.meta['interval'] = int(interval) | |
567 |
|
569 | |||
568 | self.sender_queue.append(last_time) |
|
570 | self.sender_queue.append(last_time) | |
569 |
|
571 | |||
570 | while True: |
|
572 | while True: | |
571 | try: |
|
573 | try: | |
572 | tm = self.sender_queue.popleft() |
|
574 | tm = self.sender_queue.popleft() | |
573 | except IndexError: |
|
575 | except IndexError: | |
574 | break |
|
576 | break | |
575 | msg = self.data.jsonify(tm, self.save_code, self.plot_type) |
|
577 | msg = self.data.jsonify(tm, self.save_code, self.plot_type) | |
576 | self.socket.send_string(msg) |
|
578 | self.socket.send_string(msg) | |
577 | socks = dict(self.poll.poll(2000)) |
|
579 | socks = dict(self.poll.poll(2000)) | |
578 | if socks.get(self.socket) == zmq.POLLIN: |
|
580 | if socks.get(self.socket) == zmq.POLLIN: | |
579 | reply = self.socket.recv_string() |
|
581 | reply = self.socket.recv_string() | |
580 | if reply == 'ok': |
|
582 | if reply == 'ok': | |
581 | log.log("Response from server ok", self.name) |
|
583 | log.log("Response from server ok", self.name) | |
582 | time.sleep(0.1) |
|
584 | time.sleep(0.1) | |
583 | continue |
|
585 | continue | |
584 | else: |
|
586 | else: | |
585 | log.warning( |
|
587 | log.warning( | |
586 | "Malformed reply from server: {}".format(reply), self.name) |
|
588 | "Malformed reply from server: {}".format(reply), self.name) | |
587 | else: |
|
589 | else: | |
588 | log.warning( |
|
590 | log.warning( | |
589 | "No response from server, retrying...", self.name) |
|
591 | "No response from server, retrying...", self.name) | |
590 | self.sender_queue.appendleft(tm) |
|
592 | self.sender_queue.appendleft(tm) | |
591 | self.socket.setsockopt(zmq.LINGER, 0) |
|
593 | self.socket.setsockopt(zmq.LINGER, 0) | |
592 | self.socket.close() |
|
594 | self.socket.close() | |
593 | self.poll.unregister(self.socket) |
|
595 | self.poll.unregister(self.socket) | |
594 | self.socket = self.context.socket(zmq.REQ) |
|
596 | self.socket = self.context.socket(zmq.REQ) | |
595 | self.socket.connect(self.server) |
|
597 | self.socket.connect(self.server) | |
596 | self.poll.register(self.socket, zmq.POLLIN) |
|
598 | self.poll.register(self.socket, zmq.POLLIN) | |
597 | break |
|
599 | break | |
598 |
|
600 | |||
599 | def setup(self): |
|
601 | def setup(self): | |
600 | ''' |
|
602 | ''' | |
601 | This method should be implemented in the child class, the following |
|
603 | This method should be implemented in the child class, the following | |
602 | attributes should be set: |
|
604 | attributes should be set: | |
603 |
|
605 | |||
604 | self.nrows: number of rows |
|
606 | self.nrows: number of rows | |
605 | self.ncols: number of cols |
|
607 | self.ncols: number of cols | |
606 | self.nplots: number of plots (channels or pairs) |
|
608 | self.nplots: number of plots (channels or pairs) | |
607 | self.ylabel: label for Y axes |
|
609 | self.ylabel: label for Y axes | |
608 | self.titles: list of axes title |
|
610 | self.titles: list of axes title | |
609 |
|
611 | |||
610 | ''' |
|
612 | ''' | |
611 | raise NotImplementedError |
|
613 | raise NotImplementedError | |
612 |
|
614 | |||
613 | def plot(self): |
|
615 | def plot(self): | |
614 | ''' |
|
616 | ''' | |
615 | Must be defined in the child class, the actual plotting method |
|
617 | Must be defined in the child class, the actual plotting method | |
616 | ''' |
|
618 | ''' | |
617 | raise NotImplementedError |
|
619 | raise NotImplementedError | |
618 |
|
620 | |||
619 | def update(self, dataOut): |
|
621 | def update(self, dataOut): | |
620 | ''' |
|
622 | ''' | |
621 | Must be defined in the child class, update self.data with new data |
|
623 | Must be defined in the child class, update self.data with new data | |
622 | ''' |
|
624 | ''' | |
623 |
|
625 | |||
624 | data = { |
|
626 | data = { | |
625 | self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE)) |
|
627 | self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE)) | |
626 | } |
|
628 | } | |
627 | meta = {} |
|
629 | meta = {} | |
628 |
|
630 | |||
629 | return data, meta |
|
631 | return data, meta | |
630 |
|
632 | |||
631 | def run(self, dataOut, **kwargs): |
|
633 | def run(self, dataOut, **kwargs): | |
632 | ''' |
|
634 | ''' | |
633 | Main plotting routine |
|
635 | Main plotting routine | |
634 | ''' |
|
636 | ''' | |
635 |
|
637 | |||
636 | if self.isConfig is False: |
|
638 | if self.isConfig is False: | |
637 | self.__setup(**kwargs) |
|
639 | self.__setup(**kwargs) | |
638 |
|
640 | |||
639 | if self.localtime: |
|
641 | if self.localtime: | |
640 | self.getDateTime = datetime.datetime.fromtimestamp |
|
642 | self.getDateTime = datetime.datetime.fromtimestamp | |
641 | else: |
|
643 | else: | |
642 | self.getDateTime = datetime.datetime.utcfromtimestamp |
|
644 | self.getDateTime = datetime.datetime.utcfromtimestamp | |
643 |
|
645 | |||
644 | self.data.setup() |
|
646 | self.data.setup() | |
645 | self.isConfig = True |
|
647 | self.isConfig = True | |
646 | if self.server: |
|
648 | if self.server: | |
647 | self.context = zmq.Context() |
|
649 | self.context = zmq.Context() | |
648 | self.socket = self.context.socket(zmq.REQ) |
|
650 | self.socket = self.context.socket(zmq.REQ) | |
649 | self.socket.connect(self.server) |
|
651 | self.socket.connect(self.server) | |
650 | self.poll = zmq.Poller() |
|
652 | self.poll = zmq.Poller() | |
651 | self.poll.register(self.socket, zmq.POLLIN) |
|
653 | self.poll.register(self.socket, zmq.POLLIN) | |
652 |
|
654 | |||
653 | tm = getattr(dataOut, self.attr_time) |
|
655 | tm = getattr(dataOut, self.attr_time) | |
654 |
|
656 | |||
655 | if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60: |
|
657 | if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60: | |
656 | self.save_time = tm |
|
658 | self.save_time = tm | |
657 | self.__plot() |
|
659 | self.__plot() | |
658 | self.tmin += self.xrange*60*60 |
|
660 | self.tmin += self.xrange*60*60 | |
659 | self.data.setup() |
|
661 | self.data.setup() | |
660 | self.clear_figures() |
|
662 | self.clear_figures() | |
661 |
|
663 | |||
662 | self.__update(dataOut, tm) |
|
664 | self.__update(dataOut, tm) | |
663 |
|
665 | |||
664 | if self.isPlotConfig is False: |
|
666 | if self.isPlotConfig is False: | |
665 | self.__setup_plot() |
|
667 | self.__setup_plot() | |
666 | self.isPlotConfig = True |
|
668 | self.isPlotConfig = True | |
667 | if self.xaxis == 'time': |
|
669 | if self.xaxis == 'time': | |
668 | dt = self.getDateTime(tm) |
|
670 | dt = self.getDateTime(tm) | |
669 | if self.xmin is None: |
|
671 | if self.xmin is None: | |
670 | self.tmin = tm |
|
672 | self.tmin = tm | |
671 | self.xmin = dt.hour |
|
673 | self.xmin = dt.hour | |
672 | minutes = (self.xmin-int(self.xmin)) * 60 |
|
674 | minutes = (self.xmin-int(self.xmin)) * 60 | |
673 | seconds = (minutes - int(minutes)) * 60 |
|
675 | seconds = (minutes - int(minutes)) * 60 | |
674 | self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) - |
|
676 | self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) - | |
675 | datetime.datetime(1970, 1, 1)).total_seconds() |
|
677 | datetime.datetime(1970, 1, 1)).total_seconds() | |
676 | if self.localtime: |
|
678 | if self.localtime: | |
677 | self.tmin += time.timezone |
|
679 | self.tmin += time.timezone | |
678 |
|
680 | |||
679 | if self.xmin is not None and self.xmax is not None: |
|
681 | if self.xmin is not None and self.xmax is not None: | |
680 | self.xrange = self.xmax - self.xmin |
|
682 | self.xrange = self.xmax - self.xmin | |
681 |
|
683 | |||
682 | if self.throttle == 0: |
|
684 | if self.throttle == 0: | |
683 | self.__plot() |
|
685 | self.__plot() | |
684 | else: |
|
686 | else: | |
685 | self.__throttle_plot(self.__plot)#, coerce=coerce) |
|
687 | self.__throttle_plot(self.__plot)#, coerce=coerce) | |
686 |
|
688 | |||
687 | def close(self): |
|
689 | def close(self): | |
688 |
|
690 | |||
689 | if self.data and not self.data.flagNoData: |
|
691 | if self.data and not self.data.flagNoData: | |
690 | self.save_time = 0 |
|
692 | self.save_time = 0 | |
691 | self.__plot() |
|
693 | self.__plot() | |
692 | if self.data and not self.data.flagNoData and self.pause: |
|
694 | if self.data and not self.data.flagNoData and self.pause: | |
693 | figpause(10) |
|
695 | figpause(10) |
@@ -1,357 +1,356 | |||||
1 | import os |
|
1 | import os | |
2 | import datetime |
|
2 | import datetime | |
3 | import numpy |
|
3 | import numpy | |
4 |
|
4 | |||
5 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
5 | from schainpy.model.graphics.jroplot_base import Plot, plt | |
6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot |
|
6 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot | |
7 | from schainpy.utils import log |
|
7 | from schainpy.utils import log | |
8 |
|
8 | |||
9 | EARTH_RADIUS = 6.3710e3 |
|
9 | EARTH_RADIUS = 6.3710e3 | |
10 |
|
10 | |||
11 |
|
11 | |||
12 | def ll2xy(lat1, lon1, lat2, lon2): |
|
12 | def ll2xy(lat1, lon1, lat2, lon2): | |
13 |
|
13 | |||
14 | p = 0.017453292519943295 |
|
14 | p = 0.017453292519943295 | |
15 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
15 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |
16 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
16 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |
17 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
17 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
18 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
18 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |
19 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
19 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |
20 | theta = -theta + numpy.pi/2 |
|
20 | theta = -theta + numpy.pi/2 | |
21 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
21 | return r*numpy.cos(theta), r*numpy.sin(theta) | |
22 |
|
22 | |||
23 |
|
23 | |||
24 | def km2deg(km): |
|
24 | def km2deg(km): | |
25 | ''' |
|
25 | ''' | |
26 | Convert distance in km to degrees |
|
26 | Convert distance in km to degrees | |
27 | ''' |
|
27 | ''' | |
28 |
|
28 | |||
29 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
29 | return numpy.rad2deg(km/EARTH_RADIUS) | |
30 |
|
30 | |||
31 |
|
31 | |||
32 |
|
32 | |||
33 | class SpectralMomentsPlot(SpectraPlot): |
|
33 | class SpectralMomentsPlot(SpectraPlot): | |
34 | ''' |
|
34 | ''' | |
35 | Plot for Spectral Moments |
|
35 | Plot for Spectral Moments | |
36 | ''' |
|
36 | ''' | |
37 | CODE = 'spc_moments' |
|
37 | CODE = 'spc_moments' | |
38 | colormap = 'jet' |
|
38 | colormap = 'jet' | |
39 | plot_type = 'pcolor' |
|
39 | plot_type = 'pcolor' | |
40 |
|
40 | |||
41 |
|
41 | |||
42 | class SnrPlot(RTIPlot): |
|
42 | class SnrPlot(RTIPlot): | |
43 | ''' |
|
43 | ''' | |
44 | Plot for SNR Data |
|
44 | Plot for SNR Data | |
45 | ''' |
|
45 | ''' | |
46 |
|
46 | |||
47 | CODE = 'snr' |
|
47 | CODE = 'snr' | |
48 | colormap = 'jet' |
|
48 | colormap = 'jet' | |
49 |
|
49 | |||
50 | def update(self, dataOut): |
|
50 | def update(self, dataOut): | |
51 |
|
51 | |||
52 | data = { |
|
52 | data = { | |
53 |
'snr': 10*numpy.log10(dataOut.data_snr) |
|
53 | 'snr': 10*numpy.log10(dataOut.data_snr) | |
54 | } |
|
54 | } | |
55 |
|
55 | |||
56 | return data, {} |
|
56 | return data, {} | |
57 |
|
57 | |||
58 | class DopplerPlot(RTIPlot): |
|
58 | class DopplerPlot(RTIPlot): | |
59 | ''' |
|
59 | ''' | |
60 | Plot for DOPPLER Data (1st moment) |
|
60 | Plot for DOPPLER Data (1st moment) | |
61 | ''' |
|
61 | ''' | |
62 |
|
62 | |||
63 | CODE = 'dop' |
|
63 | CODE = 'dop' | |
64 | colormap = 'jet' |
|
64 | colormap = 'jet' | |
65 |
|
65 | |||
66 | def update(self, dataOut): |
|
66 | def update(self, dataOut): | |
67 |
|
67 | |||
68 | data = { |
|
68 | data = { | |
69 |
'dop': 10*numpy.log10(dataOut.data_dop) |
|
69 | 'dop': 10*numpy.log10(dataOut.data_dop) | |
70 | } |
|
70 | } | |
71 |
|
71 | |||
72 | return data, {} |
|
72 | return data, {} | |
73 |
|
73 | |||
74 | class PowerPlot(RTIPlot): |
|
74 | class PowerPlot(RTIPlot): | |
75 | ''' |
|
75 | ''' | |
76 | Plot for Power Data (0 moment) |
|
76 | Plot for Power Data (0 moment) | |
77 | ''' |
|
77 | ''' | |
78 |
|
78 | |||
79 | CODE = 'pow' |
|
79 | CODE = 'pow' | |
80 | colormap = 'jet' |
|
80 | colormap = 'jet' | |
81 |
|
81 | |||
82 | def update(self, dataOut): |
|
82 | def update(self, dataOut): | |
83 |
|
83 | |||
84 | data = { |
|
84 | data = { | |
85 |
'pow': 10*numpy.log10(dataOut.data_pow) |
|
85 | 'pow': 10*numpy.log10(dataOut.data_pow) | |
86 | } |
|
86 | } | |
87 |
|
87 | print("data",data) | ||
88 | return data, {} |
|
88 | return data, {} | |
89 |
|
89 | |||
90 | class SpectralWidthPlot(RTIPlot): |
|
90 | class SpectralWidthPlot(RTIPlot): | |
91 | ''' |
|
91 | ''' | |
92 | Plot for Spectral Width Data (2nd moment) |
|
92 | Plot for Spectral Width Data (2nd moment) | |
93 | ''' |
|
93 | ''' | |
94 |
|
94 | |||
95 | CODE = 'width' |
|
95 | CODE = 'width' | |
96 | colormap = 'jet' |
|
96 | colormap = 'jet' | |
97 |
|
97 | |||
98 | def update(self, dataOut): |
|
98 | def update(self, dataOut): | |
99 |
|
99 | |||
100 | data = { |
|
100 | data = { | |
101 | 'width': dataOut.data_width |
|
101 | 'width': dataOut.data_width | |
102 | } |
|
102 | } | |
103 |
|
103 | |||
104 | return data, {} |
|
104 | return data, {} | |
105 |
|
105 | |||
106 | class SkyMapPlot(Plot): |
|
106 | class SkyMapPlot(Plot): | |
107 | ''' |
|
107 | ''' | |
108 | Plot for meteors detection data |
|
108 | Plot for meteors detection data | |
109 | ''' |
|
109 | ''' | |
110 |
|
110 | |||
111 | CODE = 'param' |
|
111 | CODE = 'param' | |
112 |
|
112 | |||
113 | def setup(self): |
|
113 | def setup(self): | |
114 |
|
114 | |||
115 | self.ncols = 1 |
|
115 | self.ncols = 1 | |
116 | self.nrows = 1 |
|
116 | self.nrows = 1 | |
117 | self.width = 7.2 |
|
117 | self.width = 7.2 | |
118 | self.height = 7.2 |
|
118 | self.height = 7.2 | |
119 | self.nplots = 1 |
|
119 | self.nplots = 1 | |
120 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
120 | self.xlabel = 'Zonal Zenith Angle (deg)' | |
121 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
121 | self.ylabel = 'Meridional Zenith Angle (deg)' | |
122 | self.polar = True |
|
122 | self.polar = True | |
123 | self.ymin = -180 |
|
123 | self.ymin = -180 | |
124 | self.ymax = 180 |
|
124 | self.ymax = 180 | |
125 | self.colorbar = False |
|
125 | self.colorbar = False | |
126 |
|
126 | |||
127 | def plot(self): |
|
127 | def plot(self): | |
128 |
|
128 | |||
129 | arrayParameters = numpy.concatenate(self.data['param']) |
|
129 | arrayParameters = numpy.concatenate(self.data['param']) | |
130 | error = arrayParameters[:, -1] |
|
130 | error = arrayParameters[:, -1] | |
131 | indValid = numpy.where(error == 0)[0] |
|
131 | indValid = numpy.where(error == 0)[0] | |
132 | finalMeteor = arrayParameters[indValid, :] |
|
132 | finalMeteor = arrayParameters[indValid, :] | |
133 | finalAzimuth = finalMeteor[:, 3] |
|
133 | finalAzimuth = finalMeteor[:, 3] | |
134 | finalZenith = finalMeteor[:, 4] |
|
134 | finalZenith = finalMeteor[:, 4] | |
135 |
|
135 | |||
136 | x = finalAzimuth * numpy.pi / 180 |
|
136 | x = finalAzimuth * numpy.pi / 180 | |
137 | y = finalZenith |
|
137 | y = finalZenith | |
138 |
|
138 | |||
139 | ax = self.axes[0] |
|
139 | ax = self.axes[0] | |
140 |
|
140 | |||
141 | if ax.firsttime: |
|
141 | if ax.firsttime: | |
142 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
142 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] | |
143 | else: |
|
143 | else: | |
144 | ax.plot.set_data(x, y) |
|
144 | ax.plot.set_data(x, y) | |
145 |
|
145 | |||
146 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
146 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') | |
147 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
147 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') | |
148 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
148 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | |
149 | dt2, |
|
149 | dt2, | |
150 | len(x)) |
|
150 | len(x)) | |
151 | self.titles[0] = title |
|
151 | self.titles[0] = title | |
152 |
|
152 | |||
153 |
|
153 | |||
154 | class GenericRTIPlot(Plot): |
|
154 | class GenericRTIPlot(Plot): | |
155 | ''' |
|
155 | ''' | |
156 | Plot for data_xxxx object |
|
156 | Plot for data_xxxx object | |
157 | ''' |
|
157 | ''' | |
158 |
|
158 | |||
159 | CODE = 'param' |
|
159 | CODE = 'param' | |
160 | colormap = 'viridis' |
|
160 | colormap = 'viridis' | |
161 | plot_type = 'pcolorbuffer' |
|
161 | plot_type = 'pcolorbuffer' | |
162 |
|
162 | |||
163 | def setup(self): |
|
163 | def setup(self): | |
164 | self.xaxis = 'time' |
|
164 | self.xaxis = 'time' | |
165 | self.ncols = 1 |
|
165 | self.ncols = 1 | |
166 | self.nrows = self.data.shape('param')[0] |
|
166 | self.nrows = self.data.shape('param')[0] | |
167 | self.nplots = self.nrows |
|
167 | self.nplots = self.nrows | |
168 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
168 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) | |
169 |
|
169 | |||
170 | if not self.xlabel: |
|
170 | if not self.xlabel: | |
171 | self.xlabel = 'Time' |
|
171 | self.xlabel = 'Time' | |
172 |
|
172 | |||
173 | self.ylabel = 'Height [km]' |
|
173 | self.ylabel = 'Height [km]' | |
174 | if not self.titles: |
|
174 | if not self.titles: | |
175 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
175 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] | |
176 |
|
176 | |||
177 | def update(self, dataOut): |
|
177 | def update(self, dataOut): | |
178 |
|
178 | |||
179 | data = { |
|
179 | data = { | |
180 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
180 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) | |
181 | } |
|
181 | } | |
182 |
|
182 | |||
183 | meta = {} |
|
183 | meta = {} | |
184 |
|
184 | |||
185 | return data, meta |
|
185 | return data, meta | |
186 |
|
186 | |||
187 | def plot(self): |
|
187 | def plot(self): | |
188 | # self.data.normalize_heights() |
|
188 | # self.data.normalize_heights() | |
189 | self.x = self.data.times |
|
189 | self.x = self.data.times | |
190 | self.y = self.data.yrange |
|
190 | self.y = self.data.yrange | |
191 | self.z = self.data['param'] |
|
191 | self.z = self.data['param'] | |
192 |
|
192 | |||
193 | self.z = numpy.ma.masked_invalid(self.z) |
|
193 | self.z = numpy.ma.masked_invalid(self.z) | |
194 |
|
194 | |||
195 | if self.decimation is None: |
|
195 | if self.decimation is None: | |
196 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
196 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
197 | else: |
|
197 | else: | |
198 | x, y, z = self.fill_gaps(*self.decimate()) |
|
198 | x, y, z = self.fill_gaps(*self.decimate()) | |
199 |
|
199 | |||
200 | for n, ax in enumerate(self.axes): |
|
200 | for n, ax in enumerate(self.axes): | |
201 |
|
201 | |||
202 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
202 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
203 | self.z[n]) |
|
203 | self.z[n]) | |
204 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
204 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
205 | self.z[n]) |
|
205 | self.z[n]) | |
206 |
|
206 | |||
207 | if ax.firsttime: |
|
207 | if ax.firsttime: | |
208 | if self.zlimits is not None: |
|
208 | if self.zlimits is not None: | |
209 | self.zmin, self.zmax = self.zlimits[n] |
|
209 | self.zmin, self.zmax = self.zlimits[n] | |
210 |
|
210 | |||
211 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
211 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
212 | vmin=self.zmin, |
|
212 | vmin=self.zmin, | |
213 | vmax=self.zmax, |
|
213 | vmax=self.zmax, | |
214 | cmap=self.cmaps[n] |
|
214 | cmap=self.cmaps[n] | |
215 | ) |
|
215 | ) | |
216 | else: |
|
216 | else: | |
217 | if self.zlimits is not None: |
|
217 | if self.zlimits is not None: | |
218 | self.zmin, self.zmax = self.zlimits[n] |
|
218 | self.zmin, self.zmax = self.zlimits[n] | |
219 | ax.collections.remove(ax.collections[0]) |
|
219 | ax.collections.remove(ax.collections[0]) | |
220 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
220 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
221 | vmin=self.zmin, |
|
221 | vmin=self.zmin, | |
222 | vmax=self.zmax, |
|
222 | vmax=self.zmax, | |
223 | cmap=self.cmaps[n] |
|
223 | cmap=self.cmaps[n] | |
224 | ) |
|
224 | ) | |
225 |
|
225 | |||
226 |
|
226 | |||
227 | class PolarMapPlot(Plot): |
|
227 | class PolarMapPlot(Plot): | |
228 | ''' |
|
228 | ''' | |
229 | Plot for weather radar |
|
229 | Plot for weather radar | |
230 | ''' |
|
230 | ''' | |
231 |
|
231 | |||
232 | CODE = 'param' |
|
232 | CODE = 'param' | |
233 | colormap = 'seismic' |
|
233 | colormap = 'seismic' | |
234 |
|
234 | |||
235 | def setup(self): |
|
235 | def setup(self): | |
236 | self.ncols = 1 |
|
236 | self.ncols = 1 | |
237 | self.nrows = 1 |
|
237 | self.nrows = 1 | |
238 | self.width = 9 |
|
238 | self.width = 9 | |
239 | self.height = 8 |
|
239 | self.height = 8 | |
240 | self.mode = self.data.meta['mode'] |
|
240 | self.mode = self.data.meta['mode'] | |
241 | if self.channels is not None: |
|
241 | if self.channels is not None: | |
242 | self.nplots = len(self.channels) |
|
242 | self.nplots = len(self.channels) | |
243 | self.nrows = len(self.channels) |
|
243 | self.nrows = len(self.channels) | |
244 | else: |
|
244 | else: | |
245 | self.nplots = self.data.shape(self.CODE)[0] |
|
245 | self.nplots = self.data.shape(self.CODE)[0] | |
246 | self.nrows = self.nplots |
|
246 | self.nrows = self.nplots | |
247 | self.channels = list(range(self.nplots)) |
|
247 | self.channels = list(range(self.nplots)) | |
248 | if self.mode == 'E': |
|
248 | if self.mode == 'E': | |
249 | self.xlabel = 'Longitude' |
|
249 | self.xlabel = 'Longitude' | |
250 | self.ylabel = 'Latitude' |
|
250 | self.ylabel = 'Latitude' | |
251 | else: |
|
251 | else: | |
252 | self.xlabel = 'Range (km)' |
|
252 | self.xlabel = 'Range (km)' | |
253 | self.ylabel = 'Height (km)' |
|
253 | self.ylabel = 'Height (km)' | |
254 | self.bgcolor = 'white' |
|
254 | self.bgcolor = 'white' | |
255 | self.cb_labels = self.data.meta['units'] |
|
255 | self.cb_labels = self.data.meta['units'] | |
256 | self.lat = self.data.meta['latitude'] |
|
256 | self.lat = self.data.meta['latitude'] | |
257 | self.lon = self.data.meta['longitude'] |
|
257 | self.lon = self.data.meta['longitude'] | |
258 | self.xmin, self.xmax = float( |
|
258 | self.xmin, self.xmax = float( | |
259 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
259 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) | |
260 | self.ymin, self.ymax = float( |
|
260 | self.ymin, self.ymax = float( | |
261 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
261 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) | |
262 | # self.polar = True |
|
262 | # self.polar = True | |
263 |
|
263 | |||
264 | def plot(self): |
|
264 | def plot(self): | |
265 |
|
265 | |||
266 | for n, ax in enumerate(self.axes): |
|
266 | for n, ax in enumerate(self.axes): | |
267 | data = self.data['param'][self.channels[n]] |
|
267 | data = self.data['param'][self.channels[n]] | |
268 |
|
268 | |||
269 | zeniths = numpy.linspace( |
|
269 | zeniths = numpy.linspace( | |
270 | 0, self.data.meta['max_range'], data.shape[1]) |
|
270 | 0, self.data.meta['max_range'], data.shape[1]) | |
271 | if self.mode == 'E': |
|
271 | if self.mode == 'E': | |
272 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
272 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 | |
273 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
273 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
274 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
274 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( | |
275 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
275 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) | |
276 | x = km2deg(x) + self.lon |
|
276 | x = km2deg(x) + self.lon | |
277 | y = km2deg(y) + self.lat |
|
277 | y = km2deg(y) + self.lat | |
278 | else: |
|
278 | else: | |
279 | azimuths = numpy.radians(self.data.yrange) |
|
279 | azimuths = numpy.radians(self.data.yrange) | |
280 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
280 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
281 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
281 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) | |
282 | self.y = zeniths |
|
282 | self.y = zeniths | |
283 |
|
283 | |||
284 | if ax.firsttime: |
|
284 | if ax.firsttime: | |
285 | if self.zlimits is not None: |
|
285 | if self.zlimits is not None: | |
286 | self.zmin, self.zmax = self.zlimits[n] |
|
286 | self.zmin, self.zmax = self.zlimits[n] | |
287 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
287 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
288 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
288 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
289 | vmin=self.zmin, |
|
289 | vmin=self.zmin, | |
290 | vmax=self.zmax, |
|
290 | vmax=self.zmax, | |
291 | cmap=self.cmaps[n]) |
|
291 | cmap=self.cmaps[n]) | |
292 | else: |
|
292 | else: | |
293 | if self.zlimits is not None: |
|
293 | if self.zlimits is not None: | |
294 | self.zmin, self.zmax = self.zlimits[n] |
|
294 | self.zmin, self.zmax = self.zlimits[n] | |
295 | ax.collections.remove(ax.collections[0]) |
|
295 | ax.collections.remove(ax.collections[0]) | |
296 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
296 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
297 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
297 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
298 | vmin=self.zmin, |
|
298 | vmin=self.zmin, | |
299 | vmax=self.zmax, |
|
299 | vmax=self.zmax, | |
300 | cmap=self.cmaps[n]) |
|
300 | cmap=self.cmaps[n]) | |
301 |
|
301 | |||
302 | if self.mode == 'A': |
|
302 | if self.mode == 'A': | |
303 | continue |
|
303 | continue | |
304 |
|
304 | |||
305 | # plot district names |
|
305 | # plot district names | |
306 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
306 | f = open('/data/workspace/schain_scripts/distrito.csv') | |
307 | for line in f: |
|
307 | for line in f: | |
308 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
308 | label, lon, lat = [s.strip() for s in line.split(',') if s] | |
309 | lat = float(lat) |
|
309 | lat = float(lat) | |
310 | lon = float(lon) |
|
310 | lon = float(lon) | |
311 | # ax.plot(lon, lat, '.b', ms=2) |
|
311 | # ax.plot(lon, lat, '.b', ms=2) | |
312 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
312 | ax.text(lon, lat, label.decode('utf8'), ha='center', | |
313 | va='bottom', size='8', color='black') |
|
313 | va='bottom', size='8', color='black') | |
314 |
|
314 | |||
315 | # plot limites |
|
315 | # plot limites | |
316 | limites = [] |
|
316 | limites = [] | |
317 | tmp = [] |
|
317 | tmp = [] | |
318 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
318 | for line in open('/data/workspace/schain_scripts/lima.csv'): | |
319 | if '#' in line: |
|
319 | if '#' in line: | |
320 | if tmp: |
|
320 | if tmp: | |
321 | limites.append(tmp) |
|
321 | limites.append(tmp) | |
322 | tmp = [] |
|
322 | tmp = [] | |
323 | continue |
|
323 | continue | |
324 | values = line.strip().split(',') |
|
324 | values = line.strip().split(',') | |
325 | tmp.append((float(values[0]), float(values[1]))) |
|
325 | tmp.append((float(values[0]), float(values[1]))) | |
326 | for points in limites: |
|
326 | for points in limites: | |
327 | ax.add_patch( |
|
327 | ax.add_patch( | |
328 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
328 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) | |
329 |
|
329 | |||
330 | # plot Cuencas |
|
330 | # plot Cuencas | |
331 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
331 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): | |
332 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
332 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) | |
333 | values = [line.strip().split(',') for line in f] |
|
333 | values = [line.strip().split(',') for line in f] | |
334 | points = [(float(s[0]), float(s[1])) for s in values] |
|
334 | points = [(float(s[0]), float(s[1])) for s in values] | |
335 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
335 | ax.add_patch(Polygon(points, ec='b', fc='none')) | |
336 |
|
336 | |||
337 | # plot grid |
|
337 | # plot grid | |
338 | for r in (15, 30, 45, 60): |
|
338 | for r in (15, 30, 45, 60): | |
339 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
339 | ax.add_artist(plt.Circle((self.lon, self.lat), | |
340 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
340 | km2deg(r), color='0.6', fill=False, lw=0.2)) | |
341 | ax.text( |
|
341 | ax.text( | |
342 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
342 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), | |
343 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
343 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), | |
344 | '{}km'.format(r), |
|
344 | '{}km'.format(r), | |
345 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
345 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') | |
346 |
|
346 | |||
347 | if self.mode == 'E': |
|
347 | if self.mode == 'E': | |
348 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
348 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) | |
349 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
349 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) | |
350 | else: |
|
350 | else: | |
351 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
351 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) | |
352 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
352 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) | |
353 |
|
353 | |||
354 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
354 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] | |
355 | self.titles = ['{} {}'.format( |
|
355 | self.titles = ['{} {}'.format( | |
356 | self.data.parameters[x], title) for x in self.channels] |
|
356 | self.data.parameters[x], title) for x in self.channels] | |
357 |
|
@@ -1,711 +1,712 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Classes to plot Spectra data |
|
5 | """Classes to plot Spectra data | |
6 |
|
6 | |||
7 | """ |
|
7 | """ | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import numpy |
|
10 | import numpy | |
11 |
|
11 | |||
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log | |
13 |
|
13 | |||
14 |
|
14 | |||
15 | class SpectraPlot(Plot): |
|
15 | class SpectraPlot(Plot): | |
16 | ''' |
|
16 | ''' | |
17 | Plot for Spectra data |
|
17 | Plot for Spectra data | |
18 | ''' |
|
18 | ''' | |
19 |
|
19 | |||
20 | CODE = 'spc' |
|
20 | CODE = 'spc' | |
21 | colormap = 'jet' |
|
21 | colormap = 'jet' | |
22 | plot_type = 'pcolor' |
|
22 | plot_type = 'pcolor' | |
23 | buffering = False |
|
23 | buffering = False | |
24 |
channelList = |
|
24 | channelList = [] | |
25 |
|
25 | |||
26 | def setup(self): |
|
26 | def setup(self): | |
27 | self.nplots = len(self.data.channels) |
|
27 | self.nplots = len(self.data.channels) | |
28 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
28 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
29 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
29 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
30 | self.height = 2.6 * self.nrows |
|
30 | self.height = 2.6 * self.nrows | |
31 |
|
31 | |||
32 | self.cb_label = 'dB' |
|
32 | self.cb_label = 'dB' | |
33 | if self.showprofile: |
|
33 | if self.showprofile: | |
34 | self.width = 4 * self.ncols |
|
34 | self.width = 4 * self.ncols | |
35 | else: |
|
35 | else: | |
36 | self.width = 3.5 * self.ncols |
|
36 | self.width = 3.5 * self.ncols | |
37 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
37 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
38 | self.ylabel = 'Range [km]' |
|
38 | self.ylabel = 'Range [km]' | |
39 |
|
39 | |||
40 | def update(self, dataOut): |
|
40 | def update(self, dataOut): | |
41 | if self.channelList == None: |
|
41 | if self.channelList == None: | |
42 | self.channelList = dataOut.channelList |
|
42 | self.channelList = dataOut.channelList | |
43 | data = {} |
|
43 | data = {} | |
44 | meta = {} |
|
44 | meta = {} | |
45 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
45 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
46 | data['spc'] = spc |
|
46 | data['spc'] = spc | |
47 | data['rti'] = dataOut.getPower() |
|
47 | data['rti'] = dataOut.getPower() | |
48 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
48 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
49 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
49 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
50 | if self.CODE == 'spc_moments': |
|
50 | if self.CODE == 'spc_moments': | |
51 | data['moments'] = dataOut.moments |
|
51 | data['moments'] = dataOut.moments | |
52 |
|
52 | |||
53 | return data, meta |
|
53 | return data, meta | |
54 |
|
54 | |||
55 | def plot(self): |
|
55 | def plot(self): | |
56 | if self.xaxis == "frequency": |
|
56 | if self.xaxis == "frequency": | |
57 | x = self.data.xrange[0] |
|
57 | x = self.data.xrange[0] | |
58 | self.xlabel = "Frequency (kHz)" |
|
58 | self.xlabel = "Frequency (kHz)" | |
59 | elif self.xaxis == "time": |
|
59 | elif self.xaxis == "time": | |
60 | x = self.data.xrange[1] |
|
60 | x = self.data.xrange[1] | |
61 | self.xlabel = "Time (ms)" |
|
61 | self.xlabel = "Time (ms)" | |
62 | else: |
|
62 | else: | |
63 | x = self.data.xrange[2] |
|
63 | x = self.data.xrange[2] | |
64 | self.xlabel = "Velocity (m/s)" |
|
64 | self.xlabel = "Velocity (m/s)" | |
65 |
|
65 | |||
66 | if self.CODE == 'spc_moments': |
|
66 | if self.CODE == 'spc_moments': | |
67 | x = self.data.xrange[2] |
|
67 | x = self.data.xrange[2] | |
68 | self.xlabel = "Velocity (m/s)" |
|
68 | self.xlabel = "Velocity (m/s)" | |
69 |
|
69 | |||
70 | self.titles = [] |
|
70 | self.titles = [] | |
71 |
|
71 | |||
72 | y = self.data.yrange |
|
72 | y = self.data.yrange | |
73 | self.y = y |
|
73 | self.y = y | |
74 |
|
74 | |||
75 | data = self.data[-1] |
|
75 | data = self.data[-1] | |
76 | z = data['spc'] |
|
76 | z = data['spc'] | |
77 |
|
77 | |||
78 | for n, ax in enumerate(self.axes): |
|
78 | for n, ax in enumerate(self.axes): | |
79 | noise = data['noise'][n] |
|
79 | noise = data['noise'][n] | |
80 | if self.CODE == 'spc_moments': |
|
80 | if self.CODE == 'spc_moments': | |
81 | mean = data['moments'][n, 1] |
|
81 | mean = data['moments'][n, 1] | |
82 | if ax.firsttime: |
|
82 | if ax.firsttime: | |
83 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
83 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
84 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
84 | self.xmin = self.xmin if self.xmin else -self.xmax | |
85 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
85 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
86 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
86 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
87 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
87 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
88 | vmin=self.zmin, |
|
88 | vmin=self.zmin, | |
89 | vmax=self.zmax, |
|
89 | vmax=self.zmax, | |
90 | cmap=plt.get_cmap(self.colormap) |
|
90 | cmap=plt.get_cmap(self.colormap) | |
91 | ) |
|
91 | ) | |
92 |
|
92 | |||
93 | if self.showprofile: |
|
93 | if self.showprofile: | |
94 | ax.plt_profile = self.pf_axes[n].plot( |
|
94 | ax.plt_profile = self.pf_axes[n].plot( | |
95 | data['rti'][n], y)[0] |
|
95 | data['rti'][n], y)[0] | |
96 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
96 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
97 | color="k", linestyle="dashed", lw=1)[0] |
|
97 | color="k", linestyle="dashed", lw=1)[0] | |
98 | if self.CODE == 'spc_moments': |
|
98 | if self.CODE == 'spc_moments': | |
99 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
99 | ax.plt_mean = ax.plot(mean, y, color='k')[0] | |
100 | else: |
|
100 | else: | |
101 | ax.plt.set_array(z[n].T.ravel()) |
|
101 | ax.plt.set_array(z[n].T.ravel()) | |
102 | if self.showprofile: |
|
102 | if self.showprofile: | |
103 | ax.plt_profile.set_data(data['rti'][n], y) |
|
103 | ax.plt_profile.set_data(data['rti'][n], y) | |
104 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
104 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
105 | if self.CODE == 'spc_moments': |
|
105 | if self.CODE == 'spc_moments': | |
106 | ax.plt_mean.set_data(mean, y) |
|
106 | ax.plt_mean.set_data(mean, y) | |
107 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) |
|
107 | self.titles.append('CH {}: {:3.2f}dB'.format(self.channelList[n], noise)) | |
108 |
|
108 | |||
109 |
|
109 | |||
110 | class CrossSpectraPlot(Plot): |
|
110 | class CrossSpectraPlot(Plot): | |
111 |
|
111 | |||
112 | CODE = 'cspc' |
|
112 | CODE = 'cspc' | |
113 | colormap = 'jet' |
|
113 | colormap = 'jet' | |
114 | plot_type = 'pcolor' |
|
114 | plot_type = 'pcolor' | |
115 | zmin_coh = None |
|
115 | zmin_coh = None | |
116 | zmax_coh = None |
|
116 | zmax_coh = None | |
117 | zmin_phase = None |
|
117 | zmin_phase = None | |
118 | zmax_phase = None |
|
118 | zmax_phase = None | |
119 |
|
119 | |||
120 | def setup(self): |
|
120 | def setup(self): | |
121 |
|
121 | |||
122 | self.ncols = 4 |
|
122 | self.ncols = 4 | |
123 | self.nplots = len(self.data.pairs) * 2 |
|
123 | self.nplots = len(self.data.pairs) * 2 | |
124 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
124 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
125 | self.width = 3.1 * self.ncols |
|
125 | self.width = 3.1 * self.ncols | |
126 | self.height = 2.6 * self.nrows |
|
126 | self.height = 2.6 * self.nrows | |
127 | self.ylabel = 'Range [km]' |
|
127 | self.ylabel = 'Range [km]' | |
128 | self.showprofile = False |
|
128 | self.showprofile = False | |
129 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
129 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
130 |
|
130 | |||
131 | def update(self, dataOut): |
|
131 | def update(self, dataOut): | |
132 |
|
132 | |||
133 | data = {} |
|
133 | data = {} | |
134 | meta = {} |
|
134 | meta = {} | |
135 |
|
135 | |||
136 | spc = dataOut.data_spc |
|
136 | spc = dataOut.data_spc | |
137 | cspc = dataOut.data_cspc |
|
137 | cspc = dataOut.data_cspc | |
138 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
138 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
139 | meta['pairs'] = dataOut.pairsList |
|
139 | meta['pairs'] = dataOut.pairsList | |
140 |
|
140 | |||
141 | tmp = [] |
|
141 | tmp = [] | |
142 |
|
142 | |||
143 | for n, pair in enumerate(meta['pairs']): |
|
143 | for n, pair in enumerate(meta['pairs']): | |
144 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
144 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
145 | coh = numpy.abs(out) |
|
145 | coh = numpy.abs(out) | |
146 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
146 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
147 | tmp.append(coh) |
|
147 | tmp.append(coh) | |
148 | tmp.append(phase) |
|
148 | tmp.append(phase) | |
149 |
|
149 | |||
150 | data['cspc'] = numpy.array(tmp) |
|
150 | data['cspc'] = numpy.array(tmp) | |
151 |
|
151 | |||
152 | return data, meta |
|
152 | return data, meta | |
153 |
|
153 | |||
154 | def plot(self): |
|
154 | def plot(self): | |
155 |
|
155 | |||
156 | if self.xaxis == "frequency": |
|
156 | if self.xaxis == "frequency": | |
157 | x = self.data.xrange[0] |
|
157 | x = self.data.xrange[0] | |
158 | self.xlabel = "Frequency (kHz)" |
|
158 | self.xlabel = "Frequency (kHz)" | |
159 | elif self.xaxis == "time": |
|
159 | elif self.xaxis == "time": | |
160 | x = self.data.xrange[1] |
|
160 | x = self.data.xrange[1] | |
161 | self.xlabel = "Time (ms)" |
|
161 | self.xlabel = "Time (ms)" | |
162 | else: |
|
162 | else: | |
163 | x = self.data.xrange[2] |
|
163 | x = self.data.xrange[2] | |
164 | self.xlabel = "Velocity (m/s)" |
|
164 | self.xlabel = "Velocity (m/s)" | |
165 |
|
165 | |||
166 | self.titles = [] |
|
166 | self.titles = [] | |
167 |
|
167 | |||
168 | y = self.data.yrange |
|
168 | y = self.data.yrange | |
169 | self.y = y |
|
169 | self.y = y | |
170 |
|
170 | |||
171 | data = self.data[-1] |
|
171 | data = self.data[-1] | |
172 | cspc = data['cspc'] |
|
172 | cspc = data['cspc'] | |
173 |
|
173 | |||
174 | for n in range(len(self.data.pairs)): |
|
174 | for n in range(len(self.data.pairs)): | |
175 | pair = self.data.pairs[n] |
|
175 | pair = self.data.pairs[n] | |
176 | coh = cspc[n*2] |
|
176 | coh = cspc[n*2] | |
177 | phase = cspc[n*2+1] |
|
177 | phase = cspc[n*2+1] | |
178 | ax = self.axes[2 * n] |
|
178 | ax = self.axes[2 * n] | |
179 | if ax.firsttime: |
|
179 | if ax.firsttime: | |
180 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
180 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
181 | vmin=0, |
|
181 | vmin=0, | |
182 | vmax=1, |
|
182 | vmax=1, | |
183 | cmap=plt.get_cmap(self.colormap_coh) |
|
183 | cmap=plt.get_cmap(self.colormap_coh) | |
184 | ) |
|
184 | ) | |
185 | else: |
|
185 | else: | |
186 | ax.plt.set_array(coh.T.ravel()) |
|
186 | ax.plt.set_array(coh.T.ravel()) | |
187 | self.titles.append( |
|
187 | self.titles.append( | |
188 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
188 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
189 |
|
189 | |||
190 | ax = self.axes[2 * n + 1] |
|
190 | ax = self.axes[2 * n + 1] | |
191 | if ax.firsttime: |
|
191 | if ax.firsttime: | |
192 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
192 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
193 | vmin=-180, |
|
193 | vmin=-180, | |
194 | vmax=180, |
|
194 | vmax=180, | |
195 | cmap=plt.get_cmap(self.colormap_phase) |
|
195 | cmap=plt.get_cmap(self.colormap_phase) | |
196 | ) |
|
196 | ) | |
197 | else: |
|
197 | else: | |
198 | ax.plt.set_array(phase.T.ravel()) |
|
198 | ax.plt.set_array(phase.T.ravel()) | |
199 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
199 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
200 |
|
200 | |||
201 |
|
201 | |||
202 | class RTIPlot(Plot): |
|
202 | class RTIPlot(Plot): | |
203 | ''' |
|
203 | ''' | |
204 | Plot for RTI data |
|
204 | Plot for RTI data | |
205 | ''' |
|
205 | ''' | |
206 |
|
206 | |||
207 | CODE = 'rti' |
|
207 | CODE = 'rti' | |
208 | colormap = 'jet' |
|
208 | colormap = 'jet' | |
209 | plot_type = 'pcolorbuffer' |
|
209 | plot_type = 'pcolorbuffer' | |
210 | titles = None |
|
210 | titles = None | |
211 |
channelList = |
|
211 | channelList = [] | |
212 |
|
212 | |||
213 | def setup(self): |
|
213 | def setup(self): | |
214 | self.xaxis = 'time' |
|
214 | self.xaxis = 'time' | |
215 | self.ncols = 1 |
|
215 | self.ncols = 1 | |
|
216 | print("dataChannels ",self.data.channels) | |||
216 | self.nrows = len(self.data.channels) |
|
217 | self.nrows = len(self.data.channels) | |
217 | self.nplots = len(self.data.channels) |
|
218 | self.nplots = len(self.data.channels) | |
218 | self.ylabel = 'Range [km]' |
|
219 | self.ylabel = 'Range [km]' | |
219 | self.xlabel = 'Time' |
|
220 | self.xlabel = 'Time' | |
220 | self.cb_label = 'dB' |
|
221 | self.cb_label = 'dB' | |
221 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) |
|
222 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) | |
222 | self.titles = ['{} Channel {}'.format( |
|
223 | self.titles = ['{} Channel {}'.format( | |
223 | self.CODE.upper(), x) for x in range(self.nplots)] |
|
224 | self.CODE.upper(), x) for x in range(self.nplots)] | |
224 |
|
225 | print("SETUP") | ||
225 | def update(self, dataOut): |
|
226 | def update(self, dataOut): | |
226 |
if self.channelList == |
|
227 | if len(self.channelList) == 0: | |
227 | self.channelList = dataOut.channelList |
|
228 | self.channelList = dataOut.channelList | |
228 | data = {} |
|
229 | data = {} | |
229 | meta = {} |
|
230 | meta = {} | |
230 | data['rti'] = dataOut.getPower() |
|
231 | data['rti'] = dataOut.getPower() | |
231 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
232 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
232 |
|
233 | |||
233 | return data, meta |
|
234 | return data, meta | |
234 |
|
235 | |||
235 | def plot(self): |
|
236 | def plot(self): | |
236 | self.x = self.data.times |
|
237 | self.x = self.data.times | |
237 | self.y = self.data.yrange |
|
238 | self.y = self.data.yrange | |
238 | self.z = self.data[self.CODE] |
|
239 | self.z = self.data[self.CODE] | |
239 | self.z = numpy.ma.masked_invalid(self.z) |
|
240 | self.z = numpy.ma.masked_invalid(self.z) | |
240 | if self.channelList != None: |
|
241 | if self.channelList != None: | |
241 | self.titles = ['{} Channel {}'.format( |
|
242 | self.titles = ['{} Channel {}'.format( | |
242 | self.CODE.upper(), x) for x in self.channelList] |
|
243 | self.CODE.upper(), x) for x in self.channelList] | |
243 |
|
244 | |||
244 | if self.decimation is None: |
|
245 | if self.decimation is None: | |
245 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
246 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
246 | else: |
|
247 | else: | |
247 | x, y, z = self.fill_gaps(*self.decimate()) |
|
248 | x, y, z = self.fill_gaps(*self.decimate()) | |
248 |
|
249 | |||
249 | for n, ax in enumerate(self.axes): |
|
250 | for n, ax in enumerate(self.axes): | |
250 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
251 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
251 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
252 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
252 | data = self.data[-1] |
|
253 | data = self.data[-1] | |
253 | if ax.firsttime: |
|
254 | if ax.firsttime: | |
254 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
255 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
255 | vmin=self.zmin, |
|
256 | vmin=self.zmin, | |
256 | vmax=self.zmax, |
|
257 | vmax=self.zmax, | |
257 | cmap=plt.get_cmap(self.colormap) |
|
258 | cmap=plt.get_cmap(self.colormap) | |
258 | ) |
|
259 | ) | |
259 | if self.showprofile: |
|
260 | if self.showprofile: | |
260 | ax.plot_profile = self.pf_axes[n].plot( |
|
261 | ax.plot_profile = self.pf_axes[n].plot( | |
261 | data['rti'][n], self.y)[0] |
|
262 | data['rti'][n], self.y)[0] | |
262 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
263 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, | |
263 | color="k", linestyle="dashed", lw=1)[0] |
|
264 | color="k", linestyle="dashed", lw=1)[0] | |
264 | else: |
|
265 | else: | |
265 | ax.collections.remove(ax.collections[0]) |
|
266 | ax.collections.remove(ax.collections[0]) | |
266 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
267 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
267 | vmin=self.zmin, |
|
268 | vmin=self.zmin, | |
268 | vmax=self.zmax, |
|
269 | vmax=self.zmax, | |
269 | cmap=plt.get_cmap(self.colormap) |
|
270 | cmap=plt.get_cmap(self.colormap) | |
270 | ) |
|
271 | ) | |
271 | if self.showprofile: |
|
272 | if self.showprofile: | |
272 | ax.plot_profile.set_data(data['rti'][n], self.y) |
|
273 | ax.plot_profile.set_data(data['rti'][n], self.y) | |
273 | ax.plot_noise.set_data(numpy.repeat( |
|
274 | ax.plot_noise.set_data(numpy.repeat( | |
274 | data['noise'][n], len(self.y)), self.y) |
|
275 | data['noise'][n], len(self.y)), self.y) | |
275 |
|
276 | |||
276 |
|
277 | |||
277 | class CoherencePlot(RTIPlot): |
|
278 | class CoherencePlot(RTIPlot): | |
278 | ''' |
|
279 | ''' | |
279 | Plot for Coherence data |
|
280 | Plot for Coherence data | |
280 | ''' |
|
281 | ''' | |
281 |
|
282 | |||
282 | CODE = 'coh' |
|
283 | CODE = 'coh' | |
283 |
|
284 | |||
284 | def setup(self): |
|
285 | def setup(self): | |
285 | self.xaxis = 'time' |
|
286 | self.xaxis = 'time' | |
286 | self.ncols = 1 |
|
287 | self.ncols = 1 | |
287 | self.nrows = len(self.data.pairs) |
|
288 | self.nrows = len(self.data.pairs) | |
288 | self.nplots = len(self.data.pairs) |
|
289 | self.nplots = len(self.data.pairs) | |
289 | self.ylabel = 'Range [km]' |
|
290 | self.ylabel = 'Range [km]' | |
290 | self.xlabel = 'Time' |
|
291 | self.xlabel = 'Time' | |
291 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
292 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) | |
292 | if self.CODE == 'coh': |
|
293 | if self.CODE == 'coh': | |
293 | self.cb_label = '' |
|
294 | self.cb_label = '' | |
294 | self.titles = [ |
|
295 | self.titles = [ | |
295 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
296 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
296 | else: |
|
297 | else: | |
297 | self.cb_label = 'Degrees' |
|
298 | self.cb_label = 'Degrees' | |
298 | self.titles = [ |
|
299 | self.titles = [ | |
299 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
300 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
300 |
|
301 | |||
301 | def update(self, dataOut): |
|
302 | def update(self, dataOut): | |
302 |
|
303 | |||
303 | data = {} |
|
304 | data = {} | |
304 | meta = {} |
|
305 | meta = {} | |
305 | data['coh'] = dataOut.getCoherence() |
|
306 | data['coh'] = dataOut.getCoherence() | |
306 | meta['pairs'] = dataOut.pairsList |
|
307 | meta['pairs'] = dataOut.pairsList | |
307 |
|
308 | |||
308 | return data, meta |
|
309 | return data, meta | |
309 |
|
310 | |||
310 | class PhasePlot(CoherencePlot): |
|
311 | class PhasePlot(CoherencePlot): | |
311 | ''' |
|
312 | ''' | |
312 | Plot for Phase map data |
|
313 | Plot for Phase map data | |
313 | ''' |
|
314 | ''' | |
314 |
|
315 | |||
315 | CODE = 'phase' |
|
316 | CODE = 'phase' | |
316 | colormap = 'seismic' |
|
317 | colormap = 'seismic' | |
317 |
|
318 | |||
318 | def update(self, dataOut): |
|
319 | def update(self, dataOut): | |
319 |
|
320 | |||
320 | data = {} |
|
321 | data = {} | |
321 | meta = {} |
|
322 | meta = {} | |
322 | data['phase'] = dataOut.getCoherence(phase=True) |
|
323 | data['phase'] = dataOut.getCoherence(phase=True) | |
323 | meta['pairs'] = dataOut.pairsList |
|
324 | meta['pairs'] = dataOut.pairsList | |
324 |
|
325 | |||
325 | return data, meta |
|
326 | return data, meta | |
326 |
|
327 | |||
327 | class NoisePlot(Plot): |
|
328 | class NoisePlot(Plot): | |
328 | ''' |
|
329 | ''' | |
329 | Plot for noise |
|
330 | Plot for noise | |
330 | ''' |
|
331 | ''' | |
331 |
|
332 | |||
332 | CODE = 'noise' |
|
333 | CODE = 'noise' | |
333 | plot_type = 'scatterbuffer' |
|
334 | plot_type = 'scatterbuffer' | |
334 |
|
335 | |||
335 | def setup(self): |
|
336 | def setup(self): | |
336 | self.xaxis = 'time' |
|
337 | self.xaxis = 'time' | |
337 | self.ncols = 1 |
|
338 | self.ncols = 1 | |
338 | self.nrows = 1 |
|
339 | self.nrows = 1 | |
339 | self.nplots = 1 |
|
340 | self.nplots = 1 | |
340 | self.ylabel = 'Intensity [dB]' |
|
341 | self.ylabel = 'Intensity [dB]' | |
341 | self.xlabel = 'Time' |
|
342 | self.xlabel = 'Time' | |
342 | self.titles = ['Noise'] |
|
343 | self.titles = ['Noise'] | |
343 | self.colorbar = False |
|
344 | self.colorbar = False | |
344 | self.plots_adjust.update({'right': 0.85 }) |
|
345 | self.plots_adjust.update({'right': 0.85 }) | |
345 |
|
346 | |||
346 | def update(self, dataOut): |
|
347 | def update(self, dataOut): | |
347 |
|
348 | |||
348 | data = {} |
|
349 | data = {} | |
349 | meta = {} |
|
350 | meta = {} | |
350 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
351 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) | |
351 | meta['yrange'] = numpy.array([]) |
|
352 | meta['yrange'] = numpy.array([]) | |
352 |
|
353 | |||
353 | return data, meta |
|
354 | return data, meta | |
354 |
|
355 | |||
355 | def plot(self): |
|
356 | def plot(self): | |
356 |
|
357 | |||
357 | x = self.data.times |
|
358 | x = self.data.times | |
358 | xmin = self.data.min_time |
|
359 | xmin = self.data.min_time | |
359 | xmax = xmin + self.xrange * 60 * 60 |
|
360 | xmax = xmin + self.xrange * 60 * 60 | |
360 | Y = self.data['noise'] |
|
361 | Y = self.data['noise'] | |
361 |
|
362 | |||
362 | if self.axes[0].firsttime: |
|
363 | if self.axes[0].firsttime: | |
363 | self.ymin = numpy.nanmin(Y) - 5 |
|
364 | self.ymin = numpy.nanmin(Y) - 5 | |
364 | self.ymax = numpy.nanmax(Y) + 5 |
|
365 | self.ymax = numpy.nanmax(Y) + 5 | |
365 | for ch in self.data.channels: |
|
366 | for ch in self.data.channels: | |
366 | y = Y[ch] |
|
367 | y = Y[ch] | |
367 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
368 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
368 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
369 | plt.legend(bbox_to_anchor=(1.18, 1.0)) | |
369 | else: |
|
370 | else: | |
370 | for ch in self.data.channels: |
|
371 | for ch in self.data.channels: | |
371 | y = Y[ch] |
|
372 | y = Y[ch] | |
372 | self.axes[0].lines[ch].set_data(x, y) |
|
373 | self.axes[0].lines[ch].set_data(x, y) | |
373 |
|
374 | |||
374 |
|
375 | |||
375 | class PowerProfilePlot(Plot): |
|
376 | class PowerProfilePlot(Plot): | |
376 |
|
377 | |||
377 | CODE = 'pow_profile' |
|
378 | CODE = 'pow_profile' | |
378 | plot_type = 'scatter' |
|
379 | plot_type = 'scatter' | |
379 |
|
380 | |||
380 | def setup(self): |
|
381 | def setup(self): | |
381 |
|
382 | |||
382 | self.ncols = 1 |
|
383 | self.ncols = 1 | |
383 | self.nrows = 1 |
|
384 | self.nrows = 1 | |
384 | self.nplots = 1 |
|
385 | self.nplots = 1 | |
385 | self.height = 4 |
|
386 | self.height = 4 | |
386 | self.width = 3 |
|
387 | self.width = 3 | |
387 | self.ylabel = 'Range [km]' |
|
388 | self.ylabel = 'Range [km]' | |
388 | self.xlabel = 'Intensity [dB]' |
|
389 | self.xlabel = 'Intensity [dB]' | |
389 | self.titles = ['Power Profile'] |
|
390 | self.titles = ['Power Profile'] | |
390 | self.colorbar = False |
|
391 | self.colorbar = False | |
391 |
|
392 | |||
392 | def update(self, dataOut): |
|
393 | def update(self, dataOut): | |
393 |
|
394 | |||
394 | data = {} |
|
395 | data = {} | |
395 | meta = {} |
|
396 | meta = {} | |
396 | data[self.CODE] = dataOut.getPower() |
|
397 | data[self.CODE] = dataOut.getPower() | |
397 |
|
398 | |||
398 | return data, meta |
|
399 | return data, meta | |
399 |
|
400 | |||
400 | def plot(self): |
|
401 | def plot(self): | |
401 |
|
402 | |||
402 | y = self.data.yrange |
|
403 | y = self.data.yrange | |
403 | self.y = y |
|
404 | self.y = y | |
404 |
|
405 | |||
405 | x = self.data[-1][self.CODE] |
|
406 | x = self.data[-1][self.CODE] | |
406 |
|
407 | |||
407 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
408 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 | |
408 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
409 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 | |
409 |
|
410 | |||
410 | if self.axes[0].firsttime: |
|
411 | if self.axes[0].firsttime: | |
411 | for ch in self.data.channels: |
|
412 | for ch in self.data.channels: | |
412 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
413 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) | |
413 | plt.legend() |
|
414 | plt.legend() | |
414 | else: |
|
415 | else: | |
415 | for ch in self.data.channels: |
|
416 | for ch in self.data.channels: | |
416 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
417 | self.axes[0].lines[ch].set_data(x[ch], y) | |
417 |
|
418 | |||
418 |
|
419 | |||
419 | class SpectraCutPlot(Plot): |
|
420 | class SpectraCutPlot(Plot): | |
420 |
|
421 | |||
421 | CODE = 'spc_cut' |
|
422 | CODE = 'spc_cut' | |
422 | plot_type = 'scatter' |
|
423 | plot_type = 'scatter' | |
423 | buffering = False |
|
424 | buffering = False | |
424 |
|
425 | |||
425 | def setup(self): |
|
426 | def setup(self): | |
426 |
|
427 | |||
427 | self.nplots = len(self.data.channels) |
|
428 | self.nplots = len(self.data.channels) | |
428 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
429 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
429 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
430 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
430 | self.width = 3.4 * self.ncols + 1.5 |
|
431 | self.width = 3.4 * self.ncols + 1.5 | |
431 | self.height = 3 * self.nrows |
|
432 | self.height = 3 * self.nrows | |
432 | self.ylabel = 'Power [dB]' |
|
433 | self.ylabel = 'Power [dB]' | |
433 | self.colorbar = False |
|
434 | self.colorbar = False | |
434 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
435 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) | |
435 |
|
436 | |||
436 | def update(self, dataOut): |
|
437 | def update(self, dataOut): | |
437 |
|
438 | |||
438 | data = {} |
|
439 | data = {} | |
439 | meta = {} |
|
440 | meta = {} | |
440 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
441 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
441 | data['spc'] = spc |
|
442 | data['spc'] = spc | |
442 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
443 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
443 |
|
444 | |||
444 | return data, meta |
|
445 | return data, meta | |
445 |
|
446 | |||
446 | def plot(self): |
|
447 | def plot(self): | |
447 | if self.xaxis == "frequency": |
|
448 | if self.xaxis == "frequency": | |
448 | x = self.data.xrange[0][1:] |
|
449 | x = self.data.xrange[0][1:] | |
449 | self.xlabel = "Frequency (kHz)" |
|
450 | self.xlabel = "Frequency (kHz)" | |
450 | elif self.xaxis == "time": |
|
451 | elif self.xaxis == "time": | |
451 | x = self.data.xrange[1] |
|
452 | x = self.data.xrange[1] | |
452 | self.xlabel = "Time (ms)" |
|
453 | self.xlabel = "Time (ms)" | |
453 | else: |
|
454 | else: | |
454 | x = self.data.xrange[2] |
|
455 | x = self.data.xrange[2] | |
455 | self.xlabel = "Velocity (m/s)" |
|
456 | self.xlabel = "Velocity (m/s)" | |
456 |
|
457 | |||
457 | self.titles = [] |
|
458 | self.titles = [] | |
458 |
|
459 | |||
459 | y = self.data.yrange |
|
460 | y = self.data.yrange | |
460 | z = self.data[-1]['spc'] |
|
461 | z = self.data[-1]['spc'] | |
461 |
|
462 | |||
462 | if self.height_index: |
|
463 | if self.height_index: | |
463 | index = numpy.array(self.height_index) |
|
464 | index = numpy.array(self.height_index) | |
464 | else: |
|
465 | else: | |
465 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
466 | index = numpy.arange(0, len(y), int((len(y))/9)) | |
466 |
|
467 | |||
467 | for n, ax in enumerate(self.axes): |
|
468 | for n, ax in enumerate(self.axes): | |
468 | if ax.firsttime: |
|
469 | if ax.firsttime: | |
469 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
470 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
470 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
471 | self.xmin = self.xmin if self.xmin else -self.xmax | |
471 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
472 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) | |
472 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
473 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) | |
473 | ax.plt = ax.plot(x, z[n, :, index].T) |
|
474 | ax.plt = ax.plot(x, z[n, :, index].T) | |
474 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
475 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] | |
475 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
476 | self.figures[0].legend(ax.plt, labels, loc='center right') | |
476 | else: |
|
477 | else: | |
477 | for i, line in enumerate(ax.plt): |
|
478 | for i, line in enumerate(ax.plt): | |
478 | line.set_data(x, z[n, :, index[i]]) |
|
479 | line.set_data(x, z[n, :, index[i]]) | |
479 | self.titles.append('CH {}'.format(n)) |
|
480 | self.titles.append('CH {}'.format(n)) | |
480 |
|
481 | |||
481 |
|
482 | |||
482 | class BeaconPhase(Plot): |
|
483 | class BeaconPhase(Plot): | |
483 |
|
484 | |||
484 | __isConfig = None |
|
485 | __isConfig = None | |
485 | __nsubplots = None |
|
486 | __nsubplots = None | |
486 |
|
487 | |||
487 | PREFIX = 'beacon_phase' |
|
488 | PREFIX = 'beacon_phase' | |
488 |
|
489 | |||
489 | def __init__(self): |
|
490 | def __init__(self): | |
490 | Plot.__init__(self) |
|
491 | Plot.__init__(self) | |
491 | self.timerange = 24*60*60 |
|
492 | self.timerange = 24*60*60 | |
492 | self.isConfig = False |
|
493 | self.isConfig = False | |
493 | self.__nsubplots = 1 |
|
494 | self.__nsubplots = 1 | |
494 | self.counter_imagwr = 0 |
|
495 | self.counter_imagwr = 0 | |
495 | self.WIDTH = 800 |
|
496 | self.WIDTH = 800 | |
496 | self.HEIGHT = 400 |
|
497 | self.HEIGHT = 400 | |
497 | self.WIDTHPROF = 120 |
|
498 | self.WIDTHPROF = 120 | |
498 | self.HEIGHTPROF = 0 |
|
499 | self.HEIGHTPROF = 0 | |
499 | self.xdata = None |
|
500 | self.xdata = None | |
500 | self.ydata = None |
|
501 | self.ydata = None | |
501 |
|
502 | |||
502 | self.PLOT_CODE = BEACON_CODE |
|
503 | self.PLOT_CODE = BEACON_CODE | |
503 |
|
504 | |||
504 | self.FTP_WEI = None |
|
505 | self.FTP_WEI = None | |
505 | self.EXP_CODE = None |
|
506 | self.EXP_CODE = None | |
506 | self.SUB_EXP_CODE = None |
|
507 | self.SUB_EXP_CODE = None | |
507 | self.PLOT_POS = None |
|
508 | self.PLOT_POS = None | |
508 |
|
509 | |||
509 | self.filename_phase = None |
|
510 | self.filename_phase = None | |
510 |
|
511 | |||
511 | self.figfile = None |
|
512 | self.figfile = None | |
512 |
|
513 | |||
513 | self.xmin = None |
|
514 | self.xmin = None | |
514 | self.xmax = None |
|
515 | self.xmax = None | |
515 |
|
516 | |||
516 | def getSubplots(self): |
|
517 | def getSubplots(self): | |
517 |
|
518 | |||
518 | ncol = 1 |
|
519 | ncol = 1 | |
519 | nrow = 1 |
|
520 | nrow = 1 | |
520 |
|
521 | |||
521 | return nrow, ncol |
|
522 | return nrow, ncol | |
522 |
|
523 | |||
523 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
524 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
524 |
|
525 | |||
525 | self.__showprofile = showprofile |
|
526 | self.__showprofile = showprofile | |
526 | self.nplots = nplots |
|
527 | self.nplots = nplots | |
527 |
|
528 | |||
528 | ncolspan = 7 |
|
529 | ncolspan = 7 | |
529 | colspan = 6 |
|
530 | colspan = 6 | |
530 | self.__nsubplots = 2 |
|
531 | self.__nsubplots = 2 | |
531 |
|
532 | |||
532 | self.createFigure(id = id, |
|
533 | self.createFigure(id = id, | |
533 | wintitle = wintitle, |
|
534 | wintitle = wintitle, | |
534 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
535 | widthplot = self.WIDTH+self.WIDTHPROF, | |
535 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
536 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
536 | show=show) |
|
537 | show=show) | |
537 |
|
538 | |||
538 | nrow, ncol = self.getSubplots() |
|
539 | nrow, ncol = self.getSubplots() | |
539 |
|
540 | |||
540 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
541 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
541 |
|
542 | |||
542 | def save_phase(self, filename_phase): |
|
543 | def save_phase(self, filename_phase): | |
543 | f = open(filename_phase,'w+') |
|
544 | f = open(filename_phase,'w+') | |
544 | f.write('\n\n') |
|
545 | f.write('\n\n') | |
545 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
546 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') | |
546 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
547 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) | |
547 | f.close() |
|
548 | f.close() | |
548 |
|
549 | |||
549 | def save_data(self, filename_phase, data, data_datetime): |
|
550 | def save_data(self, filename_phase, data, data_datetime): | |
550 | f=open(filename_phase,'a') |
|
551 | f=open(filename_phase,'a') | |
551 | timetuple_data = data_datetime.timetuple() |
|
552 | timetuple_data = data_datetime.timetuple() | |
552 | day = str(timetuple_data.tm_mday) |
|
553 | day = str(timetuple_data.tm_mday) | |
553 | month = str(timetuple_data.tm_mon) |
|
554 | month = str(timetuple_data.tm_mon) | |
554 | year = str(timetuple_data.tm_year) |
|
555 | year = str(timetuple_data.tm_year) | |
555 | hour = str(timetuple_data.tm_hour) |
|
556 | hour = str(timetuple_data.tm_hour) | |
556 | minute = str(timetuple_data.tm_min) |
|
557 | minute = str(timetuple_data.tm_min) | |
557 | second = str(timetuple_data.tm_sec) |
|
558 | second = str(timetuple_data.tm_sec) | |
558 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
559 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') | |
559 | f.close() |
|
560 | f.close() | |
560 |
|
561 | |||
561 | def plot(self): |
|
562 | def plot(self): | |
562 | log.warning('TODO: Not yet implemented...') |
|
563 | log.warning('TODO: Not yet implemented...') | |
563 |
|
564 | |||
564 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
565 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
565 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
566 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, | |
566 | timerange=None, |
|
567 | timerange=None, | |
567 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
568 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
568 | server=None, folder=None, username=None, password=None, |
|
569 | server=None, folder=None, username=None, password=None, | |
569 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
570 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
570 |
|
571 | |||
571 | if dataOut.flagNoData: |
|
572 | if dataOut.flagNoData: | |
572 | return dataOut |
|
573 | return dataOut | |
573 |
|
574 | |||
574 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
575 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
575 | return |
|
576 | return | |
576 |
|
577 | |||
577 | if pairsList == None: |
|
578 | if pairsList == None: | |
578 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
579 | pairsIndexList = dataOut.pairsIndexList[:10] | |
579 | else: |
|
580 | else: | |
580 | pairsIndexList = [] |
|
581 | pairsIndexList = [] | |
581 | for pair in pairsList: |
|
582 | for pair in pairsList: | |
582 | if pair not in dataOut.pairsList: |
|
583 | if pair not in dataOut.pairsList: | |
583 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
584 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) | |
584 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
585 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
585 |
|
586 | |||
586 | if pairsIndexList == []: |
|
587 | if pairsIndexList == []: | |
587 | return |
|
588 | return | |
588 |
|
589 | |||
589 | # if len(pairsIndexList) > 4: |
|
590 | # if len(pairsIndexList) > 4: | |
590 | # pairsIndexList = pairsIndexList[0:4] |
|
591 | # pairsIndexList = pairsIndexList[0:4] | |
591 |
|
592 | |||
592 | hmin_index = None |
|
593 | hmin_index = None | |
593 | hmax_index = None |
|
594 | hmax_index = None | |
594 |
|
595 | |||
595 | if hmin != None and hmax != None: |
|
596 | if hmin != None and hmax != None: | |
596 | indexes = numpy.arange(dataOut.nHeights) |
|
597 | indexes = numpy.arange(dataOut.nHeights) | |
597 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
598 | hmin_list = indexes[dataOut.heightList >= hmin] | |
598 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
599 | hmax_list = indexes[dataOut.heightList <= hmax] | |
599 |
|
600 | |||
600 | if hmin_list.any(): |
|
601 | if hmin_list.any(): | |
601 | hmin_index = hmin_list[0] |
|
602 | hmin_index = hmin_list[0] | |
602 |
|
603 | |||
603 | if hmax_list.any(): |
|
604 | if hmax_list.any(): | |
604 | hmax_index = hmax_list[-1]+1 |
|
605 | hmax_index = hmax_list[-1]+1 | |
605 |
|
606 | |||
606 | x = dataOut.getTimeRange() |
|
607 | x = dataOut.getTimeRange() | |
607 |
|
608 | |||
608 | thisDatetime = dataOut.datatime |
|
609 | thisDatetime = dataOut.datatime | |
609 |
|
610 | |||
610 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
611 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
611 | xlabel = "Local Time" |
|
612 | xlabel = "Local Time" | |
612 | ylabel = "Phase (degrees)" |
|
613 | ylabel = "Phase (degrees)" | |
613 |
|
614 | |||
614 | update_figfile = False |
|
615 | update_figfile = False | |
615 |
|
616 | |||
616 | nplots = len(pairsIndexList) |
|
617 | nplots = len(pairsIndexList) | |
617 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
618 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |
618 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
619 | phase_beacon = numpy.zeros(len(pairsIndexList)) | |
619 | for i in range(nplots): |
|
620 | for i in range(nplots): | |
620 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
621 | pair = dataOut.pairsList[pairsIndexList[i]] | |
621 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
622 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) | |
622 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
623 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) | |
623 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
624 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) | |
624 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
625 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
625 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
626 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
626 |
|
627 | |||
627 | if dataOut.beacon_heiIndexList: |
|
628 | if dataOut.beacon_heiIndexList: | |
628 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
629 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
629 | else: |
|
630 | else: | |
630 | phase_beacon[i] = numpy.average(phase) |
|
631 | phase_beacon[i] = numpy.average(phase) | |
631 |
|
632 | |||
632 | if not self.isConfig: |
|
633 | if not self.isConfig: | |
633 |
|
634 | |||
634 | nplots = len(pairsIndexList) |
|
635 | nplots = len(pairsIndexList) | |
635 |
|
636 | |||
636 | self.setup(id=id, |
|
637 | self.setup(id=id, | |
637 | nplots=nplots, |
|
638 | nplots=nplots, | |
638 | wintitle=wintitle, |
|
639 | wintitle=wintitle, | |
639 | showprofile=showprofile, |
|
640 | showprofile=showprofile, | |
640 | show=show) |
|
641 | show=show) | |
641 |
|
642 | |||
642 | if timerange != None: |
|
643 | if timerange != None: | |
643 | self.timerange = timerange |
|
644 | self.timerange = timerange | |
644 |
|
645 | |||
645 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
646 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
646 |
|
647 | |||
647 | if ymin == None: ymin = 0 |
|
648 | if ymin == None: ymin = 0 | |
648 | if ymax == None: ymax = 360 |
|
649 | if ymax == None: ymax = 360 | |
649 |
|
650 | |||
650 | self.FTP_WEI = ftp_wei |
|
651 | self.FTP_WEI = ftp_wei | |
651 | self.EXP_CODE = exp_code |
|
652 | self.EXP_CODE = exp_code | |
652 | self.SUB_EXP_CODE = sub_exp_code |
|
653 | self.SUB_EXP_CODE = sub_exp_code | |
653 | self.PLOT_POS = plot_pos |
|
654 | self.PLOT_POS = plot_pos | |
654 |
|
655 | |||
655 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
656 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
656 | self.isConfig = True |
|
657 | self.isConfig = True | |
657 | self.figfile = figfile |
|
658 | self.figfile = figfile | |
658 | self.xdata = numpy.array([]) |
|
659 | self.xdata = numpy.array([]) | |
659 | self.ydata = numpy.array([]) |
|
660 | self.ydata = numpy.array([]) | |
660 |
|
661 | |||
661 | update_figfile = True |
|
662 | update_figfile = True | |
662 |
|
663 | |||
663 | #open file beacon phase |
|
664 | #open file beacon phase | |
664 | path = '%s%03d' %(self.PREFIX, self.id) |
|
665 | path = '%s%03d' %(self.PREFIX, self.id) | |
665 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
666 | beacon_file = os.path.join(path,'%s.txt'%self.name) | |
666 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
667 | self.filename_phase = os.path.join(figpath,beacon_file) | |
667 | #self.save_phase(self.filename_phase) |
|
668 | #self.save_phase(self.filename_phase) | |
668 |
|
669 | |||
669 |
|
670 | |||
670 | #store data beacon phase |
|
671 | #store data beacon phase | |
671 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
672 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |
672 |
|
673 | |||
673 | self.setWinTitle(title) |
|
674 | self.setWinTitle(title) | |
674 |
|
675 | |||
675 |
|
676 | |||
676 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
677 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
677 |
|
678 | |||
678 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
679 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] | |
679 |
|
680 | |||
680 | axes = self.axesList[0] |
|
681 | axes = self.axesList[0] | |
681 |
|
682 | |||
682 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
683 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
683 |
|
684 | |||
684 | if len(self.ydata)==0: |
|
685 | if len(self.ydata)==0: | |
685 | self.ydata = phase_beacon.reshape(-1,1) |
|
686 | self.ydata = phase_beacon.reshape(-1,1) | |
686 | else: |
|
687 | else: | |
687 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
688 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) | |
688 |
|
689 | |||
689 |
|
690 | |||
690 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
691 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
691 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
692 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
692 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
693 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
693 | XAxisAsTime=True, grid='both' |
|
694 | XAxisAsTime=True, grid='both' | |
694 | ) |
|
695 | ) | |
695 |
|
696 | |||
696 | self.draw() |
|
697 | self.draw() | |
697 |
|
698 | |||
698 | if dataOut.ltctime >= self.xmax: |
|
699 | if dataOut.ltctime >= self.xmax: | |
699 | self.counter_imagwr = wr_period |
|
700 | self.counter_imagwr = wr_period | |
700 | self.isConfig = False |
|
701 | self.isConfig = False | |
701 | update_figfile = True |
|
702 | update_figfile = True | |
702 |
|
703 | |||
703 | self.save(figpath=figpath, |
|
704 | self.save(figpath=figpath, | |
704 | figfile=figfile, |
|
705 | figfile=figfile, | |
705 | save=save, |
|
706 | save=save, | |
706 | ftp=ftp, |
|
707 | ftp=ftp, | |
707 | wr_period=wr_period, |
|
708 | wr_period=wr_period, | |
708 | thisDatetime=thisDatetime, |
|
709 | thisDatetime=thisDatetime, | |
709 | update_figfile=update_figfile) |
|
710 | update_figfile=update_figfile) | |
710 |
|
711 | |||
711 | return dataOut |
|
712 | return dataOut |
@@ -1,1575 +1,1575 | |||||
1 | """ |
|
1 | """ | |
2 | Created on Jul 2, 2014 |
|
2 | Created on Jul 2, 2014 | |
3 |
|
3 | |||
4 | @author: roj-idl71 |
|
4 | @author: roj-idl71 | |
5 | """ |
|
5 | """ | |
6 | import os |
|
6 | import os | |
7 | import sys |
|
7 | import sys | |
8 | import glob |
|
8 | import glob | |
9 | import time |
|
9 | import time | |
10 | import numpy |
|
10 | import numpy | |
11 | import fnmatch |
|
11 | import fnmatch | |
12 | import inspect |
|
12 | import inspect | |
13 | import time |
|
13 | import time | |
14 | import datetime |
|
14 | import datetime | |
15 | import zmq |
|
15 | import zmq | |
16 |
|
16 | |||
17 | from schainpy.model.proc.jroproc_base import Operation, MPDecorator |
|
17 | from schainpy.model.proc.jroproc_base import Operation, MPDecorator | |
18 | from schainpy.model.data.jroheaderIO import PROCFLAG, BasicHeader, SystemHeader, RadarControllerHeader, ProcessingHeader |
|
18 | from schainpy.model.data.jroheaderIO import PROCFLAG, BasicHeader, SystemHeader, RadarControllerHeader, ProcessingHeader | |
19 | from schainpy.model.data.jroheaderIO import get_dtype_index, get_numpy_dtype, get_procflag_dtype, get_dtype_width |
|
19 | from schainpy.model.data.jroheaderIO import get_dtype_index, get_numpy_dtype, get_procflag_dtype, get_dtype_width | |
20 | from schainpy.utils import log |
|
20 | from schainpy.utils import log | |
21 | import schainpy.admin |
|
21 | import schainpy.admin | |
22 |
|
22 | |||
23 | LOCALTIME = True |
|
23 | LOCALTIME = True | |
24 | DT_DIRECTIVES = { |
|
24 | DT_DIRECTIVES = { | |
25 | '%Y': 4, |
|
25 | '%Y': 4, | |
26 | '%y': 2, |
|
26 | '%y': 2, | |
27 | '%m': 2, |
|
27 | '%m': 2, | |
28 | '%d': 2, |
|
28 | '%d': 2, | |
29 | '%j': 3, |
|
29 | '%j': 3, | |
30 | '%H': 2, |
|
30 | '%H': 2, | |
31 | '%M': 2, |
|
31 | '%M': 2, | |
32 | '%S': 2, |
|
32 | '%S': 2, | |
33 | '%f': 6 |
|
33 | '%f': 6 | |
34 | } |
|
34 | } | |
35 |
|
35 | |||
36 |
|
36 | |||
37 | def isNumber(cad): |
|
37 | def isNumber(cad): | |
38 | """ |
|
38 | """ | |
39 | Chequea si el conjunto de caracteres que componen un string puede ser convertidos a un numero. |
|
39 | Chequea si el conjunto de caracteres que componen un string puede ser convertidos a un numero. | |
40 |
|
40 | |||
41 | Excepciones: |
|
41 | Excepciones: | |
42 | Si un determinado string no puede ser convertido a numero |
|
42 | Si un determinado string no puede ser convertido a numero | |
43 | Input: |
|
43 | Input: | |
44 | str, string al cual se le analiza para determinar si convertible a un numero o no |
|
44 | str, string al cual se le analiza para determinar si convertible a un numero o no | |
45 |
|
45 | |||
46 | Return: |
|
46 | Return: | |
47 | True : si el string es uno numerico |
|
47 | True : si el string es uno numerico | |
48 | False : no es un string numerico |
|
48 | False : no es un string numerico | |
49 | """ |
|
49 | """ | |
50 | try: |
|
50 | try: | |
51 | float(cad) |
|
51 | float(cad) | |
52 | return True |
|
52 | return True | |
53 | except: |
|
53 | except: | |
54 | return False |
|
54 | return False | |
55 |
|
55 | |||
56 |
|
56 | |||
57 | def isFileInEpoch(filename, startUTSeconds, endUTSeconds): |
|
57 | def isFileInEpoch(filename, startUTSeconds, endUTSeconds): | |
58 | """ |
|
58 | """ | |
59 | Esta funcion determina si un archivo de datos se encuentra o no dentro del rango de fecha especificado. |
|
59 | Esta funcion determina si un archivo de datos se encuentra o no dentro del rango de fecha especificado. | |
60 |
|
60 | |||
61 | Inputs: |
|
61 | Inputs: | |
62 | filename : nombre completo del archivo de datos en formato Jicamarca (.r) |
|
62 | filename : nombre completo del archivo de datos en formato Jicamarca (.r) | |
63 |
|
63 | |||
64 | startUTSeconds : fecha inicial del rango seleccionado. La fecha esta dada en |
|
64 | startUTSeconds : fecha inicial del rango seleccionado. La fecha esta dada en | |
65 | segundos contados desde 01/01/1970. |
|
65 | segundos contados desde 01/01/1970. | |
66 | endUTSeconds : fecha final del rango seleccionado. La fecha esta dada en |
|
66 | endUTSeconds : fecha final del rango seleccionado. La fecha esta dada en | |
67 | segundos contados desde 01/01/1970. |
|
67 | segundos contados desde 01/01/1970. | |
68 |
|
68 | |||
69 | Return: |
|
69 | Return: | |
70 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de |
|
70 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de | |
71 | fecha especificado, de lo contrario retorna False. |
|
71 | fecha especificado, de lo contrario retorna False. | |
72 |
|
72 | |||
73 | Excepciones: |
|
73 | Excepciones: | |
74 | Si el archivo no existe o no puede ser abierto |
|
74 | Si el archivo no existe o no puede ser abierto | |
75 | Si la cabecera no puede ser leida. |
|
75 | Si la cabecera no puede ser leida. | |
76 |
|
76 | |||
77 | """ |
|
77 | """ | |
78 | basicHeaderObj = BasicHeader(LOCALTIME) |
|
78 | basicHeaderObj = BasicHeader(LOCALTIME) | |
79 |
|
79 | |||
80 | try: |
|
80 | try: | |
81 | fp = open(filename, 'rb') |
|
81 | fp = open(filename, 'rb') | |
82 | except IOError: |
|
82 | except IOError: | |
83 | print("The file %s can't be opened" % (filename)) |
|
83 | print("The file %s can't be opened" % (filename)) | |
84 | return 0 |
|
84 | return 0 | |
85 |
|
85 | |||
86 | sts = basicHeaderObj.read(fp) |
|
86 | sts = basicHeaderObj.read(fp) | |
87 | fp.close() |
|
87 | fp.close() | |
88 |
|
88 | |||
89 | if not(sts): |
|
89 | if not(sts): | |
90 | print("Skipping the file %s because it has not a valid header" % (filename)) |
|
90 | print("Skipping the file %s because it has not a valid header" % (filename)) | |
91 | return 0 |
|
91 | return 0 | |
92 |
|
92 | |||
93 | if not ((startUTSeconds <= basicHeaderObj.utc) and (endUTSeconds > basicHeaderObj.utc)): |
|
93 | if not ((startUTSeconds <= basicHeaderObj.utc) and (endUTSeconds > basicHeaderObj.utc)): | |
94 | return 0 |
|
94 | return 0 | |
95 |
|
95 | |||
96 | return 1 |
|
96 | return 1 | |
97 |
|
97 | |||
98 |
|
98 | |||
99 | def isTimeInRange(thisTime, startTime, endTime): |
|
99 | def isTimeInRange(thisTime, startTime, endTime): | |
100 | if endTime >= startTime: |
|
100 | if endTime >= startTime: | |
101 | if (thisTime < startTime) or (thisTime > endTime): |
|
101 | if (thisTime < startTime) or (thisTime > endTime): | |
102 | return 0 |
|
102 | return 0 | |
103 | return 1 |
|
103 | return 1 | |
104 | else: |
|
104 | else: | |
105 | if (thisTime < startTime) and (thisTime > endTime): |
|
105 | if (thisTime < startTime) and (thisTime > endTime): | |
106 | return 0 |
|
106 | return 0 | |
107 | return 1 |
|
107 | return 1 | |
108 |
|
108 | |||
109 |
|
109 | |||
110 | def isFileInTimeRange(filename, startDate, endDate, startTime, endTime): |
|
110 | def isFileInTimeRange(filename, startDate, endDate, startTime, endTime): | |
111 | """ |
|
111 | """ | |
112 | Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado. |
|
112 | Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado. | |
113 |
|
113 | |||
114 | Inputs: |
|
114 | Inputs: | |
115 | filename : nombre completo del archivo de datos en formato Jicamarca (.r) |
|
115 | filename : nombre completo del archivo de datos en formato Jicamarca (.r) | |
116 |
|
116 | |||
117 | startDate : fecha inicial del rango seleccionado en formato datetime.date |
|
117 | startDate : fecha inicial del rango seleccionado en formato datetime.date | |
118 |
|
118 | |||
119 | endDate : fecha final del rango seleccionado en formato datetime.date |
|
119 | endDate : fecha final del rango seleccionado en formato datetime.date | |
120 |
|
120 | |||
121 | startTime : tiempo inicial del rango seleccionado en formato datetime.time |
|
121 | startTime : tiempo inicial del rango seleccionado en formato datetime.time | |
122 |
|
122 | |||
123 | endTime : tiempo final del rango seleccionado en formato datetime.time |
|
123 | endTime : tiempo final del rango seleccionado en formato datetime.time | |
124 |
|
124 | |||
125 | Return: |
|
125 | Return: | |
126 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de |
|
126 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de | |
127 | fecha especificado, de lo contrario retorna False. |
|
127 | fecha especificado, de lo contrario retorna False. | |
128 |
|
128 | |||
129 | Excepciones: |
|
129 | Excepciones: | |
130 | Si el archivo no existe o no puede ser abierto |
|
130 | Si el archivo no existe o no puede ser abierto | |
131 | Si la cabecera no puede ser leida. |
|
131 | Si la cabecera no puede ser leida. | |
132 |
|
132 | |||
133 | """ |
|
133 | """ | |
134 |
|
134 | |||
135 | try: |
|
135 | try: | |
136 | fp = open(filename, 'rb') |
|
136 | fp = open(filename, 'rb') | |
137 | except IOError: |
|
137 | except IOError: | |
138 | print("The file %s can't be opened" % (filename)) |
|
138 | print("The file %s can't be opened" % (filename)) | |
139 | return None |
|
139 | return None | |
140 |
|
140 | |||
141 | firstBasicHeaderObj = BasicHeader(LOCALTIME) |
|
141 | firstBasicHeaderObj = BasicHeader(LOCALTIME) | |
142 | systemHeaderObj = SystemHeader() |
|
142 | systemHeaderObj = SystemHeader() | |
143 | radarControllerHeaderObj = RadarControllerHeader() |
|
143 | radarControllerHeaderObj = RadarControllerHeader() | |
144 | processingHeaderObj = ProcessingHeader() |
|
144 | processingHeaderObj = ProcessingHeader() | |
145 |
|
145 | |||
146 | lastBasicHeaderObj = BasicHeader(LOCALTIME) |
|
146 | lastBasicHeaderObj = BasicHeader(LOCALTIME) | |
147 |
|
147 | |||
148 | sts = firstBasicHeaderObj.read(fp) |
|
148 | sts = firstBasicHeaderObj.read(fp) | |
149 |
|
149 | |||
150 | if not(sts): |
|
150 | if not(sts): | |
151 | print("[Reading] Skipping the file %s because it has not a valid header" % (filename)) |
|
151 | print("[Reading] Skipping the file %s because it has not a valid header" % (filename)) | |
152 | return None |
|
152 | return None | |
153 |
|
153 | |||
154 | if not systemHeaderObj.read(fp): |
|
154 | if not systemHeaderObj.read(fp): | |
155 | return None |
|
155 | return None | |
156 |
|
156 | |||
157 | if not radarControllerHeaderObj.read(fp): |
|
157 | if not radarControllerHeaderObj.read(fp): | |
158 | return None |
|
158 | return None | |
159 |
|
159 | |||
160 | if not processingHeaderObj.read(fp): |
|
160 | if not processingHeaderObj.read(fp): | |
161 | return None |
|
161 | return None | |
162 |
|
162 | |||
163 | filesize = os.path.getsize(filename) |
|
163 | filesize = os.path.getsize(filename) | |
164 |
|
164 | |||
165 | offset = processingHeaderObj.blockSize + 24 # header size |
|
165 | offset = processingHeaderObj.blockSize + 24 # header size | |
166 |
|
166 | |||
167 | if filesize <= offset: |
|
167 | if filesize <= offset: | |
168 | print("[Reading] %s: This file has not enough data" % filename) |
|
168 | print("[Reading] %s: This file has not enough data" % filename) | |
169 | return None |
|
169 | return None | |
170 |
|
170 | |||
171 | fp.seek(-offset, 2) |
|
171 | fp.seek(-offset, 2) | |
172 |
|
172 | |||
173 | sts = lastBasicHeaderObj.read(fp) |
|
173 | sts = lastBasicHeaderObj.read(fp) | |
174 |
|
174 | |||
175 | fp.close() |
|
175 | fp.close() | |
176 |
|
176 | |||
177 | thisDatetime = lastBasicHeaderObj.datatime |
|
177 | thisDatetime = lastBasicHeaderObj.datatime | |
178 | thisTime_last_block = thisDatetime.time() |
|
178 | thisTime_last_block = thisDatetime.time() | |
179 |
|
179 | |||
180 | thisDatetime = firstBasicHeaderObj.datatime |
|
180 | thisDatetime = firstBasicHeaderObj.datatime | |
181 | thisDate = thisDatetime.date() |
|
181 | thisDate = thisDatetime.date() | |
182 | thisTime_first_block = thisDatetime.time() |
|
182 | thisTime_first_block = thisDatetime.time() | |
183 |
|
183 | |||
184 | # General case |
|
184 | # General case | |
185 | # o>>>>>>>>>>>>>><<<<<<<<<<<<<<o |
|
185 | # o>>>>>>>>>>>>>><<<<<<<<<<<<<<o | |
186 | #-----------o----------------------------o----------- |
|
186 | #-----------o----------------------------o----------- | |
187 | # startTime endTime |
|
187 | # startTime endTime | |
188 |
|
188 | |||
189 | if endTime >= startTime: |
|
189 | if endTime >= startTime: | |
190 | if (thisTime_last_block < startTime) or (thisTime_first_block > endTime): |
|
190 | if (thisTime_last_block < startTime) or (thisTime_first_block > endTime): | |
191 | return None |
|
191 | return None | |
192 |
|
192 | |||
193 | return thisDatetime |
|
193 | return thisDatetime | |
194 |
|
194 | |||
195 | # If endTime < startTime then endTime belongs to the next day |
|
195 | # If endTime < startTime then endTime belongs to the next day | |
196 |
|
196 | |||
197 | #<<<<<<<<<<<o o>>>>>>>>>>> |
|
197 | #<<<<<<<<<<<o o>>>>>>>>>>> | |
198 | #-----------o----------------------------o----------- |
|
198 | #-----------o----------------------------o----------- | |
199 | # endTime startTime |
|
199 | # endTime startTime | |
200 |
|
200 | |||
201 | if (thisDate == startDate) and (thisTime_last_block < startTime): |
|
201 | if (thisDate == startDate) and (thisTime_last_block < startTime): | |
202 | return None |
|
202 | return None | |
203 |
|
203 | |||
204 | if (thisDate == endDate) and (thisTime_first_block > endTime): |
|
204 | if (thisDate == endDate) and (thisTime_first_block > endTime): | |
205 | return None |
|
205 | return None | |
206 |
|
206 | |||
207 | if (thisTime_last_block < startTime) and (thisTime_first_block > endTime): |
|
207 | if (thisTime_last_block < startTime) and (thisTime_first_block > endTime): | |
208 | return None |
|
208 | return None | |
209 |
|
209 | |||
210 | return thisDatetime |
|
210 | return thisDatetime | |
211 |
|
211 | |||
212 |
|
212 | |||
213 | def isFolderInDateRange(folder, startDate=None, endDate=None): |
|
213 | def isFolderInDateRange(folder, startDate=None, endDate=None): | |
214 | """ |
|
214 | """ | |
215 | Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado. |
|
215 | Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado. | |
216 |
|
216 | |||
217 | Inputs: |
|
217 | Inputs: | |
218 | folder : nombre completo del directorio. |
|
218 | folder : nombre completo del directorio. | |
219 | Su formato deberia ser "/path_root/?YYYYDDD" |
|
219 | Su formato deberia ser "/path_root/?YYYYDDD" | |
220 |
|
220 | |||
221 | siendo: |
|
221 | siendo: | |
222 | YYYY : Anio (ejemplo 2015) |
|
222 | YYYY : Anio (ejemplo 2015) | |
223 | DDD : Dia del anio (ejemplo 305) |
|
223 | DDD : Dia del anio (ejemplo 305) | |
224 |
|
224 | |||
225 | startDate : fecha inicial del rango seleccionado en formato datetime.date |
|
225 | startDate : fecha inicial del rango seleccionado en formato datetime.date | |
226 |
|
226 | |||
227 | endDate : fecha final del rango seleccionado en formato datetime.date |
|
227 | endDate : fecha final del rango seleccionado en formato datetime.date | |
228 |
|
228 | |||
229 | Return: |
|
229 | Return: | |
230 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de |
|
230 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de | |
231 | fecha especificado, de lo contrario retorna False. |
|
231 | fecha especificado, de lo contrario retorna False. | |
232 | Excepciones: |
|
232 | Excepciones: | |
233 | Si el directorio no tiene el formato adecuado |
|
233 | Si el directorio no tiene el formato adecuado | |
234 | """ |
|
234 | """ | |
235 |
|
235 | |||
236 | basename = os.path.basename(folder) |
|
236 | basename = os.path.basename(folder) | |
237 |
|
237 | |||
238 | if not isRadarFolder(basename): |
|
238 | if not isRadarFolder(basename): | |
239 | print("The folder %s has not the rigth format" % folder) |
|
239 | print("The folder %s has not the rigth format" % folder) | |
240 | return 0 |
|
240 | return 0 | |
241 |
|
241 | |||
242 | if startDate and endDate: |
|
242 | if startDate and endDate: | |
243 | thisDate = getDateFromRadarFolder(basename) |
|
243 | thisDate = getDateFromRadarFolder(basename) | |
244 |
|
244 | |||
245 | if thisDate < startDate: |
|
245 | if thisDate < startDate: | |
246 | return 0 |
|
246 | return 0 | |
247 |
|
247 | |||
248 | if thisDate > endDate: |
|
248 | if thisDate > endDate: | |
249 | return 0 |
|
249 | return 0 | |
250 |
|
250 | |||
251 | return 1 |
|
251 | return 1 | |
252 |
|
252 | |||
253 |
|
253 | |||
254 | def isFileInDateRange(filename, startDate=None, endDate=None): |
|
254 | def isFileInDateRange(filename, startDate=None, endDate=None): | |
255 | """ |
|
255 | """ | |
256 | Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado. |
|
256 | Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado. | |
257 |
|
257 | |||
258 | Inputs: |
|
258 | Inputs: | |
259 | filename : nombre completo del archivo de datos en formato Jicamarca (.r) |
|
259 | filename : nombre completo del archivo de datos en formato Jicamarca (.r) | |
260 |
|
260 | |||
261 | Su formato deberia ser "?YYYYDDDsss" |
|
261 | Su formato deberia ser "?YYYYDDDsss" | |
262 |
|
262 | |||
263 | siendo: |
|
263 | siendo: | |
264 | YYYY : Anio (ejemplo 2015) |
|
264 | YYYY : Anio (ejemplo 2015) | |
265 | DDD : Dia del anio (ejemplo 305) |
|
265 | DDD : Dia del anio (ejemplo 305) | |
266 | sss : set |
|
266 | sss : set | |
267 |
|
267 | |||
268 | startDate : fecha inicial del rango seleccionado en formato datetime.date |
|
268 | startDate : fecha inicial del rango seleccionado en formato datetime.date | |
269 |
|
269 | |||
270 | endDate : fecha final del rango seleccionado en formato datetime.date |
|
270 | endDate : fecha final del rango seleccionado en formato datetime.date | |
271 |
|
271 | |||
272 | Return: |
|
272 | Return: | |
273 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de |
|
273 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de | |
274 | fecha especificado, de lo contrario retorna False. |
|
274 | fecha especificado, de lo contrario retorna False. | |
275 | Excepciones: |
|
275 | Excepciones: | |
276 | Si el archivo no tiene el formato adecuado |
|
276 | Si el archivo no tiene el formato adecuado | |
277 | """ |
|
277 | """ | |
278 |
|
278 | |||
279 | basename = os.path.basename(filename) |
|
279 | basename = os.path.basename(filename) | |
280 |
|
280 | |||
281 | if not isRadarFile(basename): |
|
281 | if not isRadarFile(basename): | |
282 | print("The filename %s has not the rigth format" % filename) |
|
282 | print("The filename %s has not the rigth format" % filename) | |
283 | return 0 |
|
283 | return 0 | |
284 |
|
284 | |||
285 | if startDate and endDate: |
|
285 | if startDate and endDate: | |
286 | thisDate = getDateFromRadarFile(basename) |
|
286 | thisDate = getDateFromRadarFile(basename) | |
287 |
|
287 | |||
288 | if thisDate < startDate: |
|
288 | if thisDate < startDate: | |
289 | return 0 |
|
289 | return 0 | |
290 |
|
290 | |||
291 | if thisDate > endDate: |
|
291 | if thisDate > endDate: | |
292 | return 0 |
|
292 | return 0 | |
293 |
|
293 | |||
294 | return 1 |
|
294 | return 1 | |
295 |
|
295 | |||
296 |
|
296 | |||
297 | def getFileFromSet(path, ext, set): |
|
297 | def getFileFromSet(path, ext, set): | |
298 | validFilelist = [] |
|
298 | validFilelist = [] | |
299 | fileList = os.listdir(path) |
|
299 | fileList = os.listdir(path) | |
300 |
|
300 | |||
301 | # 0 1234 567 89A BCDE |
|
301 | # 0 1234 567 89A BCDE | |
302 | # H YYYY DDD SSS .ext |
|
302 | # H YYYY DDD SSS .ext | |
303 |
|
303 | |||
304 | for thisFile in fileList: |
|
304 | for thisFile in fileList: | |
305 | try: |
|
305 | try: | |
306 | year = int(thisFile[1:5]) |
|
306 | year = int(thisFile[1:5]) | |
307 | doy = int(thisFile[5:8]) |
|
307 | doy = int(thisFile[5:8]) | |
308 | except: |
|
308 | except: | |
309 | continue |
|
309 | continue | |
310 |
|
310 | |||
311 | if (os.path.splitext(thisFile)[-1].lower() != ext.lower()): |
|
311 | if (os.path.splitext(thisFile)[-1].lower() != ext.lower()): | |
312 | continue |
|
312 | continue | |
313 |
|
313 | |||
314 | validFilelist.append(thisFile) |
|
314 | validFilelist.append(thisFile) | |
315 |
|
315 | |||
316 | myfile = fnmatch.filter( |
|
316 | myfile = fnmatch.filter( | |
317 | validFilelist, '*%4.4d%3.3d%3.3d*' % (year, doy, set)) |
|
317 | validFilelist, '*%4.4d%3.3d%3.3d*' % (year, doy, set)) | |
318 |
|
318 | |||
319 | if len(myfile) != 0: |
|
319 | if len(myfile) != 0: | |
320 | return myfile[0] |
|
320 | return myfile[0] | |
321 | else: |
|
321 | else: | |
322 | filename = '*%4.4d%3.3d%3.3d%s' % (year, doy, set, ext.lower()) |
|
322 | filename = '*%4.4d%3.3d%3.3d%s' % (year, doy, set, ext.lower()) | |
323 | print('the filename %s does not exist' % filename) |
|
323 | print('the filename %s does not exist' % filename) | |
324 | print('...going to the last file: ') |
|
324 | print('...going to the last file: ') | |
325 |
|
325 | |||
326 | if validFilelist: |
|
326 | if validFilelist: | |
327 | validFilelist = sorted(validFilelist, key=str.lower) |
|
327 | validFilelist = sorted(validFilelist, key=str.lower) | |
328 | return validFilelist[-1] |
|
328 | return validFilelist[-1] | |
329 |
|
329 | |||
330 | return None |
|
330 | return None | |
331 |
|
331 | |||
332 |
|
332 | |||
333 | def getlastFileFromPath(path, ext): |
|
333 | def getlastFileFromPath(path, ext): | |
334 | """ |
|
334 | """ | |
335 | Depura el fileList dejando solo los que cumplan el formato de "PYYYYDDDSSS.ext" |
|
335 | Depura el fileList dejando solo los que cumplan el formato de "PYYYYDDDSSS.ext" | |
336 | al final de la depuracion devuelve el ultimo file de la lista que quedo. |
|
336 | al final de la depuracion devuelve el ultimo file de la lista que quedo. | |
337 |
|
337 | |||
338 | Input: |
|
338 | Input: | |
339 | fileList : lista conteniendo todos los files (sin path) que componen una determinada carpeta |
|
339 | fileList : lista conteniendo todos los files (sin path) que componen una determinada carpeta | |
340 | ext : extension de los files contenidos en una carpeta |
|
340 | ext : extension de los files contenidos en una carpeta | |
341 |
|
341 | |||
342 | Return: |
|
342 | Return: | |
343 | El ultimo file de una determinada carpeta, no se considera el path. |
|
343 | El ultimo file de una determinada carpeta, no se considera el path. | |
344 | """ |
|
344 | """ | |
345 | validFilelist = [] |
|
345 | validFilelist = [] | |
346 | fileList = os.listdir(path) |
|
346 | fileList = os.listdir(path) | |
347 |
|
347 | |||
348 | # 0 1234 567 89A BCDE |
|
348 | # 0 1234 567 89A BCDE | |
349 | # H YYYY DDD SSS .ext |
|
349 | # H YYYY DDD SSS .ext | |
350 |
|
350 | |||
351 | for thisFile in fileList: |
|
351 | for thisFile in fileList: | |
352 |
|
352 | |||
353 | year = thisFile[1:5] |
|
353 | year = thisFile[1:5] | |
354 | if not isNumber(year): |
|
354 | if not isNumber(year): | |
355 | continue |
|
355 | continue | |
356 |
|
356 | |||
357 | doy = thisFile[5:8] |
|
357 | doy = thisFile[5:8] | |
358 | if not isNumber(doy): |
|
358 | if not isNumber(doy): | |
359 | continue |
|
359 | continue | |
360 |
|
360 | |||
361 | year = int(year) |
|
361 | year = int(year) | |
362 | doy = int(doy) |
|
362 | doy = int(doy) | |
363 |
|
363 | |||
364 | if (os.path.splitext(thisFile)[-1].lower() != ext.lower()): |
|
364 | if (os.path.splitext(thisFile)[-1].lower() != ext.lower()): | |
365 | continue |
|
365 | continue | |
366 |
|
366 | |||
367 | validFilelist.append(thisFile) |
|
367 | validFilelist.append(thisFile) | |
368 |
|
368 | |||
369 | if validFilelist: |
|
369 | if validFilelist: | |
370 | validFilelist = sorted(validFilelist, key=str.lower) |
|
370 | validFilelist = sorted(validFilelist, key=str.lower) | |
371 | return validFilelist[-1] |
|
371 | return validFilelist[-1] | |
372 |
|
372 | |||
373 | return None |
|
373 | return None | |
374 |
|
374 | |||
375 |
|
375 | |||
376 | def isRadarFolder(folder): |
|
376 | def isRadarFolder(folder): | |
377 | try: |
|
377 | try: | |
378 | year = int(folder[1:5]) |
|
378 | year = int(folder[1:5]) | |
379 | doy = int(folder[5:8]) |
|
379 | doy = int(folder[5:8]) | |
380 | except: |
|
380 | except: | |
381 | return 0 |
|
381 | return 0 | |
382 |
|
382 | |||
383 | return 1 |
|
383 | return 1 | |
384 |
|
384 | |||
385 |
|
385 | |||
386 | def isRadarFile(file): |
|
386 | def isRadarFile(file): | |
387 | try: |
|
387 | try: | |
388 | year = int(file[1:5]) |
|
388 | year = int(file[1:5]) | |
389 | doy = int(file[5:8]) |
|
389 | doy = int(file[5:8]) | |
390 | set = int(file[8:11]) |
|
390 | set = int(file[8:11]) | |
391 | except: |
|
391 | except: | |
392 | return 0 |
|
392 | return 0 | |
393 |
|
393 | |||
394 | return 1 |
|
394 | return 1 | |
395 |
|
395 | |||
396 |
|
396 | |||
397 | def getDateFromRadarFile(file): |
|
397 | def getDateFromRadarFile(file): | |
398 | try: |
|
398 | try: | |
399 | year = int(file[1:5]) |
|
399 | year = int(file[1:5]) | |
400 | doy = int(file[5:8]) |
|
400 | doy = int(file[5:8]) | |
401 | set = int(file[8:11]) |
|
401 | set = int(file[8:11]) | |
402 | except: |
|
402 | except: | |
403 | return None |
|
403 | return None | |
404 |
|
404 | |||
405 | thisDate = datetime.date(year, 1, 1) + datetime.timedelta(doy - 1) |
|
405 | thisDate = datetime.date(year, 1, 1) + datetime.timedelta(doy - 1) | |
406 | return thisDate |
|
406 | return thisDate | |
407 |
|
407 | |||
408 |
|
408 | |||
409 | def getDateFromRadarFolder(folder): |
|
409 | def getDateFromRadarFolder(folder): | |
410 | try: |
|
410 | try: | |
411 | year = int(folder[1:5]) |
|
411 | year = int(folder[1:5]) | |
412 | doy = int(folder[5:8]) |
|
412 | doy = int(folder[5:8]) | |
413 | except: |
|
413 | except: | |
414 | return None |
|
414 | return None | |
415 |
|
415 | |||
416 | thisDate = datetime.date(year, 1, 1) + datetime.timedelta(doy - 1) |
|
416 | thisDate = datetime.date(year, 1, 1) + datetime.timedelta(doy - 1) | |
417 | return thisDate |
|
417 | return thisDate | |
418 |
|
418 | |||
419 | def parse_format(s, fmt): |
|
419 | def parse_format(s, fmt): | |
420 |
|
420 | |||
421 | for i in range(fmt.count('%')): |
|
421 | for i in range(fmt.count('%')): | |
422 | x = fmt.index('%') |
|
422 | x = fmt.index('%') | |
423 | d = DT_DIRECTIVES[fmt[x:x+2]] |
|
423 | d = DT_DIRECTIVES[fmt[x:x+2]] | |
424 | fmt = fmt.replace(fmt[x:x+2], s[x:x+d]) |
|
424 | fmt = fmt.replace(fmt[x:x+2], s[x:x+d]) | |
425 | return fmt |
|
425 | return fmt | |
426 |
|
426 | |||
427 | class Reader(object): |
|
427 | class Reader(object): | |
428 |
|
428 | |||
429 | c = 3E8 |
|
429 | c = 3E8 | |
430 | isConfig = False |
|
430 | isConfig = False | |
431 | dtype = None |
|
431 | dtype = None | |
432 | pathList = [] |
|
432 | pathList = [] | |
433 | filenameList = [] |
|
433 | filenameList = [] | |
434 | datetimeList = [] |
|
434 | datetimeList = [] | |
435 | filename = None |
|
435 | filename = None | |
436 | ext = None |
|
436 | ext = None | |
437 | flagIsNewFile = 1 |
|
437 | flagIsNewFile = 1 | |
438 | flagDiscontinuousBlock = 0 |
|
438 | flagDiscontinuousBlock = 0 | |
439 | flagIsNewBlock = 0 |
|
439 | flagIsNewBlock = 0 | |
440 | flagNoMoreFiles = 0 |
|
440 | flagNoMoreFiles = 0 | |
441 | fp = None |
|
441 | fp = None | |
442 | firstHeaderSize = 0 |
|
442 | firstHeaderSize = 0 | |
443 | basicHeaderSize = 24 |
|
443 | basicHeaderSize = 24 | |
444 | versionFile = 1103 |
|
444 | versionFile = 1103 | |
445 | fileSize = None |
|
445 | fileSize = None | |
446 | fileSizeByHeader = None |
|
446 | fileSizeByHeader = None | |
447 | fileIndex = -1 |
|
447 | fileIndex = -1 | |
448 | profileIndex = None |
|
448 | profileIndex = None | |
449 | blockIndex = 0 |
|
449 | blockIndex = 0 | |
450 | nTotalBlocks = 0 |
|
450 | nTotalBlocks = 0 | |
451 | maxTimeStep = 30 |
|
451 | maxTimeStep = 30 | |
452 | lastUTTime = None |
|
452 | lastUTTime = None | |
453 | datablock = None |
|
453 | datablock = None | |
454 | dataOut = None |
|
454 | dataOut = None | |
455 | getByBlock = False |
|
455 | getByBlock = False | |
456 | path = None |
|
456 | path = None | |
457 | startDate = None |
|
457 | startDate = None | |
458 | endDate = None |
|
458 | endDate = None | |
459 | startTime = datetime.time(0, 0, 0) |
|
459 | startTime = datetime.time(0, 0, 0) | |
460 | endTime = datetime.time(23, 59, 59) |
|
460 | endTime = datetime.time(23, 59, 59) | |
461 | set = None |
|
461 | set = None | |
462 | expLabel = "" |
|
462 | expLabel = "" | |
463 | online = False |
|
463 | online = False | |
464 | delay = 60 |
|
464 | delay = 60 | |
465 | nTries = 3 # quantity tries |
|
465 | nTries = 3 # quantity tries | |
466 | nFiles = 3 # number of files for searching |
|
466 | nFiles = 3 # number of files for searching | |
467 | walk = True |
|
467 | walk = True | |
468 | getblock = False |
|
468 | getblock = False | |
469 | nTxs = 1 |
|
469 | nTxs = 1 | |
470 | realtime = False |
|
470 | realtime = False | |
471 | blocksize = 0 |
|
471 | blocksize = 0 | |
472 | blocktime = None |
|
472 | blocktime = None | |
473 | warnings = True |
|
473 | warnings = True | |
474 | verbose = True |
|
474 | verbose = True | |
475 | server = None |
|
475 | server = None | |
476 | format = None |
|
476 | format = None | |
477 | oneDDict = None |
|
477 | oneDDict = None | |
478 | twoDDict = None |
|
478 | twoDDict = None | |
479 | independentParam = None |
|
479 | independentParam = None | |
480 | filefmt = None |
|
480 | filefmt = None | |
481 | folderfmt = None |
|
481 | folderfmt = None | |
482 | open_file = open |
|
482 | open_file = open | |
483 | open_mode = 'rb' |
|
483 | open_mode = 'rb' | |
484 |
|
484 | |||
485 | def run(self): |
|
485 | def run(self): | |
486 |
|
486 | |||
487 | raise NotImplementedError |
|
487 | raise NotImplementedError | |
488 |
|
488 | |||
489 | def getAllowedArgs(self): |
|
489 | def getAllowedArgs(self): | |
490 | if hasattr(self, '__attrs__'): |
|
490 | if hasattr(self, '__attrs__'): | |
491 | return self.__attrs__ |
|
491 | return self.__attrs__ | |
492 | else: |
|
492 | else: | |
493 | return inspect.getargspec(self.run).args |
|
493 | return inspect.getargspec(self.run).args | |
494 |
|
494 | |||
495 | def set_kwargs(self, **kwargs): |
|
495 | def set_kwargs(self, **kwargs): | |
496 |
|
496 | |||
497 | for key, value in kwargs.items(): |
|
497 | for key, value in kwargs.items(): | |
498 | setattr(self, key, value) |
|
498 | setattr(self, key, value) | |
499 |
|
499 | |||
500 | def find_folders(self, path, startDate, endDate, folderfmt, last=False): |
|
500 | def find_folders(self, path, startDate, endDate, folderfmt, last=False): | |
501 |
|
501 | |||
502 | folders = [x for f in path.split(',') |
|
502 | folders = [x for f in path.split(',') | |
503 | for x in os.listdir(f) if os.path.isdir(os.path.join(f, x))] |
|
503 | for x in os.listdir(f) if os.path.isdir(os.path.join(f, x))] | |
504 | folders.sort() |
|
504 | folders.sort() | |
505 |
|
505 | |||
506 | if last: |
|
506 | if last: | |
507 | folders = [folders[-1]] |
|
507 | folders = [folders[-1]] | |
508 |
|
508 | |||
509 | for folder in folders: |
|
509 | for folder in folders: | |
510 | try: |
|
510 | try: | |
511 | dt = datetime.datetime.strptime(parse_format(folder, folderfmt), folderfmt).date() |
|
511 | dt = datetime.datetime.strptime(parse_format(folder, folderfmt), folderfmt).date() | |
512 | if dt >= startDate and dt <= endDate: |
|
512 | if dt >= startDate and dt <= endDate: | |
513 | yield os.path.join(path, folder) |
|
513 | yield os.path.join(path, folder) | |
514 | else: |
|
514 | else: | |
515 | log.log('Skiping folder {}'.format(folder), self.name) |
|
515 | log.log('Skiping folder {}'.format(folder), self.name) | |
516 | except Exception as e: |
|
516 | except Exception as e: | |
517 | log.log('Skiping folder {}'.format(folder), self.name) |
|
517 | log.log('Skiping folder {}'.format(folder), self.name) | |
518 | continue |
|
518 | continue | |
519 | return |
|
519 | return | |
520 |
|
520 | |||
521 | def find_files(self, folders, ext, filefmt, startDate=None, endDate=None, |
|
521 | def find_files(self, folders, ext, filefmt, startDate=None, endDate=None, | |
522 | expLabel='', last=False): |
|
522 | expLabel='', last=False): | |
523 |
|
523 | |||
524 | for path in folders: |
|
524 | for path in folders: | |
525 | files = glob.glob1(path, '*{}'.format(ext)) |
|
525 | files = glob.glob1(path, '*{}'.format(ext)) | |
526 | files.sort() |
|
526 | files.sort() | |
527 | if last: |
|
527 | if last: | |
528 | if files: |
|
528 | if files: | |
529 | fo = files[-1] |
|
529 | fo = files[-1] | |
530 | try: |
|
530 | try: | |
531 | dt = datetime.datetime.strptime(parse_format(fo, filefmt), filefmt).date() |
|
531 | dt = datetime.datetime.strptime(parse_format(fo, filefmt), filefmt).date() | |
532 | yield os.path.join(path, expLabel, fo) |
|
532 | yield os.path.join(path, expLabel, fo) | |
533 | except Exception as e: |
|
533 | except Exception as e: | |
534 | pass |
|
534 | pass | |
535 | return |
|
535 | return | |
536 | else: |
|
536 | else: | |
537 | return |
|
537 | return | |
538 |
|
538 | |||
539 | for fo in files: |
|
539 | for fo in files: | |
540 | try: |
|
540 | try: | |
541 | dt = datetime.datetime.strptime(parse_format(fo, filefmt), filefmt).date() |
|
541 | dt = datetime.datetime.strptime(parse_format(fo, filefmt), filefmt).date() | |
542 | if dt >= startDate and dt <= endDate: |
|
542 | if dt >= startDate and dt <= endDate: | |
543 | yield os.path.join(path, expLabel, fo) |
|
543 | yield os.path.join(path, expLabel, fo) | |
544 | else: |
|
544 | else: | |
545 | log.log('Skiping file {}'.format(fo), self.name) |
|
545 | log.log('Skiping file {}'.format(fo), self.name) | |
546 | except Exception as e: |
|
546 | except Exception as e: | |
547 | log.log('Skiping file {}'.format(fo), self.name) |
|
547 | log.log('Skiping file {}'.format(fo), self.name) | |
548 | continue |
|
548 | continue | |
549 |
|
549 | |||
550 | def searchFilesOffLine(self, path, startDate, endDate, |
|
550 | def searchFilesOffLine(self, path, startDate, endDate, | |
551 | expLabel, ext, walk, |
|
551 | expLabel, ext, walk, | |
552 | filefmt, folderfmt): |
|
552 | filefmt, folderfmt): | |
553 | """Search files in offline mode for the given arguments |
|
553 | """Search files in offline mode for the given arguments | |
554 |
|
554 | |||
555 | Return: |
|
555 | Return: | |
556 | Generator of files |
|
556 | Generator of files | |
557 | """ |
|
557 | """ | |
558 |
|
558 | |||
559 | if walk: |
|
559 | if walk: | |
560 | folders = self.find_folders( |
|
560 | folders = self.find_folders( | |
561 | path, startDate, endDate, folderfmt) |
|
561 | path, startDate, endDate, folderfmt) | |
562 | else: |
|
562 | else: | |
563 | folders = path.split(',') |
|
563 | folders = path.split(',') | |
564 |
|
564 | |||
565 | return self.find_files( |
|
565 | return self.find_files( | |
566 | folders, ext, filefmt, startDate, endDate, expLabel) |
|
566 | folders, ext, filefmt, startDate, endDate, expLabel) | |
567 |
|
567 | |||
568 | def searchFilesOnLine(self, path, startDate, endDate, |
|
568 | def searchFilesOnLine(self, path, startDate, endDate, | |
569 | expLabel, ext, walk, |
|
569 | expLabel, ext, walk, | |
570 | filefmt, folderfmt): |
|
570 | filefmt, folderfmt): | |
571 | """Search for the last file of the last folder |
|
571 | """Search for the last file of the last folder | |
572 |
|
572 | |||
573 | Arguments: |
|
573 | Arguments: | |
574 | path : carpeta donde estan contenidos los files que contiene data |
|
574 | path : carpeta donde estan contenidos los files que contiene data | |
575 | expLabel : Nombre del subexperimento (subfolder) |
|
575 | expLabel : Nombre del subexperimento (subfolder) | |
576 | ext : extension de los files |
|
576 | ext : extension de los files | |
577 | walk : Si es habilitado no realiza busquedas dentro de los ubdirectorios (doypath) |
|
577 | walk : Si es habilitado no realiza busquedas dentro de los ubdirectorios (doypath) | |
578 |
|
578 | |||
579 | Return: |
|
579 | Return: | |
580 | generator with the full path of last filename |
|
580 | generator with the full path of last filename | |
581 | """ |
|
581 | """ | |
582 |
|
582 | |||
583 | if walk: |
|
583 | if walk: | |
584 | folders = self.find_folders( |
|
584 | folders = self.find_folders( | |
585 | path, startDate, endDate, folderfmt, last=True) |
|
585 | path, startDate, endDate, folderfmt, last=True) | |
586 | else: |
|
586 | else: | |
587 | folders = path.split(',') |
|
587 | folders = path.split(',') | |
588 |
|
588 | |||
589 | return self.find_files( |
|
589 | return self.find_files( | |
590 | folders, ext, filefmt, startDate, endDate, expLabel, last=True) |
|
590 | folders, ext, filefmt, startDate, endDate, expLabel, last=True) | |
591 |
|
591 | |||
592 | def setNextFile(self): |
|
592 | def setNextFile(self): | |
593 | """Set the next file to be readed open it and parse de file header""" |
|
593 | """Set the next file to be readed open it and parse de file header""" | |
594 |
|
594 | |||
595 | while True: |
|
595 | while True: | |
596 | if self.fp != None: |
|
596 | if self.fp != None: | |
597 | self.fp.close() |
|
597 | self.fp.close() | |
598 |
|
598 | |||
599 | if self.online: |
|
599 | if self.online: | |
600 | newFile = self.setNextFileOnline() |
|
600 | newFile = self.setNextFileOnline() | |
601 | else: |
|
601 | else: | |
602 | newFile = self.setNextFileOffline() |
|
602 | newFile = self.setNextFileOffline() | |
603 |
|
603 | |||
604 | if not(newFile): |
|
604 | if not(newFile): | |
605 | if self.online: |
|
605 | if self.online: | |
606 | raise schainpy.admin.SchainError('Time to wait for new files reach') |
|
606 | raise schainpy.admin.SchainError('Time to wait for new files reach') | |
607 | else: |
|
607 | else: | |
608 | if self.fileIndex == -1: |
|
608 | if self.fileIndex == -1: | |
609 | raise schainpy.admin.SchainWarning('No files found in the given path') |
|
609 | raise schainpy.admin.SchainWarning('No files found in the given path') | |
610 | else: |
|
610 | else: | |
611 | raise schainpy.admin.SchainWarning('No more files to read') |
|
611 | raise schainpy.admin.SchainWarning('No more files to read') | |
612 |
|
612 | |||
613 | if self.verifyFile(self.filename): |
|
613 | if self.verifyFile(self.filename): | |
614 | break |
|
614 | break | |
615 |
|
615 | |||
616 | log.log('Opening file: %s' % self.filename, self.name) |
|
616 | log.log('Opening file: %s' % self.filename, self.name) | |
617 |
|
617 | |||
618 | self.readFirstHeader() |
|
618 | self.readFirstHeader() | |
619 | self.nReadBlocks = 0 |
|
619 | self.nReadBlocks = 0 | |
620 |
|
620 | |||
621 | def setNextFileOnline(self): |
|
621 | def setNextFileOnline(self): | |
622 | """Check for the next file to be readed in online mode. |
|
622 | """Check for the next file to be readed in online mode. | |
623 |
|
623 | |||
624 | Set: |
|
624 | Set: | |
625 | self.filename |
|
625 | self.filename | |
626 | self.fp |
|
626 | self.fp | |
627 | self.filesize |
|
627 | self.filesize | |
628 |
|
628 | |||
629 | Return: |
|
629 | Return: | |
630 | boolean |
|
630 | boolean | |
631 |
|
631 | |||
632 | """ |
|
632 | """ | |
633 | nextFile = True |
|
633 | nextFile = True | |
634 | nextDay = False |
|
634 | nextDay = False | |
635 |
|
635 | |||
636 | for nFiles in range(self.nFiles+1): |
|
636 | for nFiles in range(self.nFiles+1): | |
637 | for nTries in range(self.nTries): |
|
637 | for nTries in range(self.nTries): | |
638 | fullfilename, filename = self.checkForRealPath(nextFile, nextDay) |
|
638 | fullfilename, filename = self.checkForRealPath(nextFile, nextDay) | |
639 | if fullfilename is not None: |
|
639 | if fullfilename is not None: | |
640 | break |
|
640 | break | |
641 | log.warning( |
|
641 | log.warning( | |
642 | "Waiting %0.2f sec for the next file: \"%s\" , try %02d ..." % (self.delay, filename, nTries + 1), |
|
642 | "Waiting %0.2f sec for the next file: \"%s\" , try %02d ..." % (self.delay, filename, nTries + 1), | |
643 | self.name) |
|
643 | self.name) | |
644 | time.sleep(self.delay) |
|
644 | time.sleep(self.delay) | |
645 | nextFile = False |
|
645 | nextFile = False | |
646 | continue |
|
646 | continue | |
647 |
|
647 | |||
648 | if fullfilename is not None: |
|
648 | if fullfilename is not None: | |
649 | break |
|
649 | break | |
650 |
|
650 | |||
651 | self.nTries = 1 |
|
651 | self.nTries = 1 | |
652 | nextFile = True |
|
652 | nextFile = True | |
653 |
|
653 | |||
654 | if nFiles == (self.nFiles - 1): |
|
654 | if nFiles == (self.nFiles - 1): | |
655 | log.log('Trying with next day...', self.name) |
|
655 | log.log('Trying with next day...', self.name) | |
656 | nextDay = True |
|
656 | nextDay = True | |
657 | self.nTries = 3 |
|
657 | self.nTries = 3 | |
658 |
|
658 | |||
659 | if fullfilename: |
|
659 | if fullfilename: | |
660 | self.fileSize = os.path.getsize(fullfilename) |
|
660 | self.fileSize = os.path.getsize(fullfilename) | |
661 | self.filename = fullfilename |
|
661 | self.filename = fullfilename | |
662 | self.flagIsNewFile = 1 |
|
662 | self.flagIsNewFile = 1 | |
663 | if self.fp != None: |
|
663 | if self.fp != None: | |
664 | self.fp.close() |
|
664 | self.fp.close() | |
665 | self.fp = self.open_file(fullfilename, self.open_mode) |
|
665 | self.fp = self.open_file(fullfilename, self.open_mode) | |
666 | self.flagNoMoreFiles = 0 |
|
666 | self.flagNoMoreFiles = 0 | |
667 | self.fileIndex += 1 |
|
667 | self.fileIndex += 1 | |
668 | return 1 |
|
668 | return 1 | |
669 | else: |
|
669 | else: | |
670 | return 0 |
|
670 | return 0 | |
671 |
|
671 | |||
672 | def setNextFileOffline(self): |
|
672 | def setNextFileOffline(self): | |
673 | """Open the next file to be readed in offline mode""" |
|
673 | """Open the next file to be readed in offline mode""" | |
674 |
|
674 | |||
675 | try: |
|
675 | try: | |
676 | filename = next(self.filenameList) |
|
676 | filename = next(self.filenameList) | |
677 | self.fileIndex +=1 |
|
677 | self.fileIndex +=1 | |
678 | except StopIteration: |
|
678 | except StopIteration: | |
679 | self.flagNoMoreFiles = 1 |
|
679 | self.flagNoMoreFiles = 1 | |
680 | return 0 |
|
680 | return 0 | |
681 |
|
681 | |||
682 | self.filename = filename |
|
682 | self.filename = filename | |
683 | self.fileSize = os.path.getsize(filename) |
|
683 | self.fileSize = os.path.getsize(filename) | |
684 | self.fp = self.open_file(filename, self.open_mode) |
|
684 | self.fp = self.open_file(filename, self.open_mode) | |
685 | self.flagIsNewFile = 1 |
|
685 | self.flagIsNewFile = 1 | |
686 |
|
686 | |||
687 | return 1 |
|
687 | return 1 | |
688 |
|
688 | |||
689 | @staticmethod |
|
689 | @staticmethod | |
690 | def isDateTimeInRange(dt, startDate, endDate, startTime, endTime): |
|
690 | def isDateTimeInRange(dt, startDate, endDate, startTime, endTime): | |
691 | """Check if the given datetime is in range""" |
|
691 | """Check if the given datetime is in range""" | |
692 | startDateTime= datetime.datetime.combine(startDate,startTime) |
|
692 | startDateTime= datetime.datetime.combine(startDate,startTime) | |
693 | endDateTime = datetime.datetime.combine(endDate,endTime) |
|
693 | endDateTime = datetime.datetime.combine(endDate,endTime) | |
694 | if startDateTime <= dt <= endDateTime: |
|
694 | if startDateTime <= dt <= endDateTime: | |
695 |
return True |
|
695 | return True | |
696 | return False |
|
696 | return False | |
697 |
|
697 | |||
698 | def verifyFile(self, filename): |
|
698 | def verifyFile(self, filename): | |
699 | """Check for a valid file |
|
699 | """Check for a valid file | |
700 |
|
700 | |||
701 | Arguments: |
|
701 | Arguments: | |
702 | filename -- full path filename |
|
702 | filename -- full path filename | |
703 |
|
703 | |||
704 | Return: |
|
704 | Return: | |
705 | boolean |
|
705 | boolean | |
706 | """ |
|
706 | """ | |
707 |
|
707 | |||
708 | return True |
|
708 | return True | |
709 |
|
709 | |||
710 | def checkForRealPath(self, nextFile, nextDay): |
|
710 | def checkForRealPath(self, nextFile, nextDay): | |
711 | """Check if the next file to be readed exists""" |
|
711 | """Check if the next file to be readed exists""" | |
712 |
|
712 | |||
713 | raise NotImplementedError |
|
713 | raise NotImplementedError | |
714 |
|
714 | |||
715 | def readFirstHeader(self): |
|
715 | def readFirstHeader(self): | |
716 | """Parse the file header""" |
|
716 | """Parse the file header""" | |
717 |
|
717 | |||
718 | pass |
|
718 | pass | |
719 |
|
719 | |||
720 | def waitDataBlock(self, pointer_location, blocksize=None): |
|
720 | def waitDataBlock(self, pointer_location, blocksize=None): | |
721 | """ |
|
721 | """ | |
722 | """ |
|
722 | """ | |
723 |
|
723 | |||
724 | currentPointer = pointer_location |
|
724 | currentPointer = pointer_location | |
725 | if blocksize is None: |
|
725 | if blocksize is None: | |
726 | neededSize = self.processingHeaderObj.blockSize # + self.basicHeaderSize |
|
726 | neededSize = self.processingHeaderObj.blockSize # + self.basicHeaderSize | |
727 | else: |
|
727 | else: | |
728 | neededSize = blocksize |
|
728 | neededSize = blocksize | |
729 |
|
729 | |||
730 | for nTries in range(self.nTries): |
|
730 | for nTries in range(self.nTries): | |
731 | self.fp.close() |
|
731 | self.fp.close() | |
732 | self.fp = open(self.filename, 'rb') |
|
732 | self.fp = open(self.filename, 'rb') | |
733 | self.fp.seek(currentPointer) |
|
733 | self.fp.seek(currentPointer) | |
734 |
|
734 | |||
735 | self.fileSize = os.path.getsize(self.filename) |
|
735 | self.fileSize = os.path.getsize(self.filename) | |
736 | currentSize = self.fileSize - currentPointer |
|
736 | currentSize = self.fileSize - currentPointer | |
737 |
|
737 | |||
738 | if (currentSize >= neededSize): |
|
738 | if (currentSize >= neededSize): | |
739 | return 1 |
|
739 | return 1 | |
740 |
|
740 | |||
741 | log.warning( |
|
741 | log.warning( | |
742 | "Waiting %0.2f seconds for the next block, try %03d ..." % (self.delay, nTries + 1), |
|
742 | "Waiting %0.2f seconds for the next block, try %03d ..." % (self.delay, nTries + 1), | |
743 | self.name |
|
743 | self.name | |
744 | ) |
|
744 | ) | |
745 | time.sleep(self.delay) |
|
745 | time.sleep(self.delay) | |
746 |
|
746 | |||
747 | return 0 |
|
747 | return 0 | |
748 |
|
748 | |||
749 | class JRODataReader(Reader): |
|
749 | class JRODataReader(Reader): | |
750 |
|
750 | |||
751 | utc = 0 |
|
751 | utc = 0 | |
752 | nReadBlocks = 0 |
|
752 | nReadBlocks = 0 | |
753 | foldercounter = 0 |
|
753 | foldercounter = 0 | |
754 | firstHeaderSize = 0 |
|
754 | firstHeaderSize = 0 | |
755 | basicHeaderSize = 24 |
|
755 | basicHeaderSize = 24 | |
756 | __isFirstTimeOnline = 1 |
|
756 | __isFirstTimeOnline = 1 | |
757 | filefmt = "*%Y%j***" |
|
757 | filefmt = "*%Y%j***" | |
758 | folderfmt = "*%Y%j" |
|
758 | folderfmt = "*%Y%j" | |
759 | __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'online', 'delay', 'walk'] |
|
759 | __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'online', 'delay', 'walk'] | |
760 |
|
760 | |||
761 | def getDtypeWidth(self): |
|
761 | def getDtypeWidth(self): | |
762 |
|
762 | |||
763 | dtype_index = get_dtype_index(self.dtype) |
|
763 | dtype_index = get_dtype_index(self.dtype) | |
764 | dtype_width = get_dtype_width(dtype_index) |
|
764 | dtype_width = get_dtype_width(dtype_index) | |
765 |
|
765 | |||
766 | return dtype_width |
|
766 | return dtype_width | |
767 |
|
767 | |||
768 | def checkForRealPath(self, nextFile, nextDay): |
|
768 | def checkForRealPath(self, nextFile, nextDay): | |
769 | """Check if the next file to be readed exists. |
|
769 | """Check if the next file to be readed exists. | |
770 |
|
770 | |||
771 | Example : |
|
771 | Example : | |
772 | nombre correcto del file es .../.../D2009307/P2009307367.ext |
|
772 | nombre correcto del file es .../.../D2009307/P2009307367.ext | |
773 |
|
773 | |||
774 | Entonces la funcion prueba con las siguientes combinaciones |
|
774 | Entonces la funcion prueba con las siguientes combinaciones | |
775 | .../.../y2009307367.ext |
|
775 | .../.../y2009307367.ext | |
776 | .../.../Y2009307367.ext |
|
776 | .../.../Y2009307367.ext | |
777 | .../.../x2009307/y2009307367.ext |
|
777 | .../.../x2009307/y2009307367.ext | |
778 | .../.../x2009307/Y2009307367.ext |
|
778 | .../.../x2009307/Y2009307367.ext | |
779 | .../.../X2009307/y2009307367.ext |
|
779 | .../.../X2009307/y2009307367.ext | |
780 | .../.../X2009307/Y2009307367.ext |
|
780 | .../.../X2009307/Y2009307367.ext | |
781 | siendo para este caso, la ultima combinacion de letras, identica al file buscado |
|
781 | siendo para este caso, la ultima combinacion de letras, identica al file buscado | |
782 |
|
782 | |||
783 | Return: |
|
783 | Return: | |
784 | str -- fullpath of the file |
|
784 | str -- fullpath of the file | |
785 | """ |
|
785 | """ | |
786 |
|
786 | |||
787 |
|
787 | |||
788 | if nextFile: |
|
788 | if nextFile: | |
789 | self.set += 1 |
|
789 | self.set += 1 | |
790 | if nextDay: |
|
790 | if nextDay: | |
791 | self.set = 0 |
|
791 | self.set = 0 | |
792 | self.doy += 1 |
|
792 | self.doy += 1 | |
793 | foldercounter = 0 |
|
793 | foldercounter = 0 | |
794 | prefixDirList = [None, 'd', 'D'] |
|
794 | prefixDirList = [None, 'd', 'D'] | |
795 | if self.ext.lower() == ".r": # voltage |
|
795 | if self.ext.lower() == ".r": # voltage | |
796 | prefixFileList = ['d', 'D'] |
|
796 | prefixFileList = ['d', 'D'] | |
797 | elif self.ext.lower() == ".pdata": # spectra |
|
797 | elif self.ext.lower() == ".pdata": # spectra | |
798 | prefixFileList = ['p', 'P'] |
|
798 | prefixFileList = ['p', 'P'] | |
799 |
|
799 | |||
800 | # barrido por las combinaciones posibles |
|
800 | # barrido por las combinaciones posibles | |
801 | for prefixDir in prefixDirList: |
|
801 | for prefixDir in prefixDirList: | |
802 | thispath = self.path |
|
802 | thispath = self.path | |
803 | if prefixDir != None: |
|
803 | if prefixDir != None: | |
804 | # formo el nombre del directorio xYYYYDDD (x=d o x=D) |
|
804 | # formo el nombre del directorio xYYYYDDD (x=d o x=D) | |
805 | if foldercounter == 0: |
|
805 | if foldercounter == 0: | |
806 | thispath = os.path.join(self.path, "%s%04d%03d" % |
|
806 | thispath = os.path.join(self.path, "%s%04d%03d" % | |
807 | (prefixDir, self.year, self.doy)) |
|
807 | (prefixDir, self.year, self.doy)) | |
808 | else: |
|
808 | else: | |
809 | thispath = os.path.join(self.path, "%s%04d%03d_%02d" % ( |
|
809 | thispath = os.path.join(self.path, "%s%04d%03d_%02d" % ( | |
810 | prefixDir, self.year, self.doy, foldercounter)) |
|
810 | prefixDir, self.year, self.doy, foldercounter)) | |
811 | for prefixFile in prefixFileList: # barrido por las dos combinaciones posibles de "D" |
|
811 | for prefixFile in prefixFileList: # barrido por las dos combinaciones posibles de "D" | |
812 | # formo el nombre del file xYYYYDDDSSS.ext |
|
812 | # formo el nombre del file xYYYYDDDSSS.ext | |
813 | filename = "%s%04d%03d%03d%s" % (prefixFile, self.year, self.doy, self.set, self.ext) |
|
813 | filename = "%s%04d%03d%03d%s" % (prefixFile, self.year, self.doy, self.set, self.ext) | |
814 | fullfilename = os.path.join( |
|
814 | fullfilename = os.path.join( | |
815 | thispath, filename) |
|
815 | thispath, filename) | |
816 |
|
816 | |||
817 | if os.path.exists(fullfilename): |
|
817 | if os.path.exists(fullfilename): | |
818 | return fullfilename, filename |
|
818 | return fullfilename, filename | |
819 |
|
819 | |||
820 | return None, filename |
|
820 | return None, filename | |
821 |
|
821 | |||
822 | def __waitNewBlock(self): |
|
822 | def __waitNewBlock(self): | |
823 | """ |
|
823 | """ | |
824 | Return 1 si se encontro un nuevo bloque de datos, 0 de otra forma. |
|
824 | Return 1 si se encontro un nuevo bloque de datos, 0 de otra forma. | |
825 |
|
825 | |||
826 | Si el modo de lectura es OffLine siempre retorn 0 |
|
826 | Si el modo de lectura es OffLine siempre retorn 0 | |
827 | """ |
|
827 | """ | |
828 | if not self.online: |
|
828 | if not self.online: | |
829 | return 0 |
|
829 | return 0 | |
830 |
|
830 | |||
831 | if (self.nReadBlocks >= self.processingHeaderObj.dataBlocksPerFile): |
|
831 | if (self.nReadBlocks >= self.processingHeaderObj.dataBlocksPerFile): | |
832 | return 0 |
|
832 | return 0 | |
833 |
|
833 | |||
834 | currentPointer = self.fp.tell() |
|
834 | currentPointer = self.fp.tell() | |
835 |
|
835 | |||
836 | neededSize = self.processingHeaderObj.blockSize + self.basicHeaderSize |
|
836 | neededSize = self.processingHeaderObj.blockSize + self.basicHeaderSize | |
837 |
|
837 | |||
838 | for nTries in range(self.nTries): |
|
838 | for nTries in range(self.nTries): | |
839 |
|
839 | |||
840 | self.fp.close() |
|
840 | self.fp.close() | |
841 | self.fp = open(self.filename, 'rb') |
|
841 | self.fp = open(self.filename, 'rb') | |
842 | self.fp.seek(currentPointer) |
|
842 | self.fp.seek(currentPointer) | |
843 |
|
843 | |||
844 | self.fileSize = os.path.getsize(self.filename) |
|
844 | self.fileSize = os.path.getsize(self.filename) | |
845 | currentSize = self.fileSize - currentPointer |
|
845 | currentSize = self.fileSize - currentPointer | |
846 |
|
846 | |||
847 | if (currentSize >= neededSize): |
|
847 | if (currentSize >= neededSize): | |
848 | self.basicHeaderObj.read(self.fp) |
|
848 | self.basicHeaderObj.read(self.fp) | |
849 | return 1 |
|
849 | return 1 | |
850 |
|
850 | |||
851 | if self.fileSize == self.fileSizeByHeader: |
|
851 | if self.fileSize == self.fileSizeByHeader: | |
852 | # self.flagEoF = True |
|
852 | # self.flagEoF = True | |
853 | return 0 |
|
853 | return 0 | |
854 |
|
854 | |||
855 | print("[Reading] Waiting %0.2f seconds for the next block, try %03d ..." % (self.delay, nTries + 1)) |
|
855 | print("[Reading] Waiting %0.2f seconds for the next block, try %03d ..." % (self.delay, nTries + 1)) | |
856 | time.sleep(self.delay) |
|
856 | time.sleep(self.delay) | |
857 |
|
857 | |||
858 | return 0 |
|
858 | return 0 | |
859 |
|
859 | |||
860 | def __setNewBlock(self): |
|
860 | def __setNewBlock(self): | |
861 |
|
861 | |||
862 | if self.fp == None: |
|
862 | if self.fp == None: | |
863 | return 0 |
|
863 | return 0 | |
864 |
|
864 | |||
865 | if self.flagIsNewFile: |
|
865 | if self.flagIsNewFile: | |
866 | self.lastUTTime = self.basicHeaderObj.utc |
|
866 | self.lastUTTime = self.basicHeaderObj.utc | |
867 | return 1 |
|
867 | return 1 | |
868 |
|
868 | |||
869 | if self.realtime: |
|
869 | if self.realtime: | |
870 | self.flagDiscontinuousBlock = 1 |
|
870 | self.flagDiscontinuousBlock = 1 | |
871 | if not(self.setNextFile()): |
|
871 | if not(self.setNextFile()): | |
872 | return 0 |
|
872 | return 0 | |
873 | else: |
|
873 | else: | |
874 | return 1 |
|
874 | return 1 | |
875 |
|
875 | |||
876 | currentSize = self.fileSize - self.fp.tell() |
|
876 | currentSize = self.fileSize - self.fp.tell() | |
877 | neededSize = self.processingHeaderObj.blockSize + self.basicHeaderSize |
|
877 | neededSize = self.processingHeaderObj.blockSize + self.basicHeaderSize | |
878 |
|
878 | |||
879 | if (currentSize >= neededSize): |
|
879 | if (currentSize >= neededSize): | |
880 | self.basicHeaderObj.read(self.fp) |
|
880 | self.basicHeaderObj.read(self.fp) | |
881 | self.lastUTTime = self.basicHeaderObj.utc |
|
881 | self.lastUTTime = self.basicHeaderObj.utc | |
882 | return 1 |
|
882 | return 1 | |
883 |
|
883 | |||
884 | if self.__waitNewBlock(): |
|
884 | if self.__waitNewBlock(): | |
885 | self.lastUTTime = self.basicHeaderObj.utc |
|
885 | self.lastUTTime = self.basicHeaderObj.utc | |
886 | return 1 |
|
886 | return 1 | |
887 |
|
887 | |||
888 | if not(self.setNextFile()): |
|
888 | if not(self.setNextFile()): | |
889 | return 0 |
|
889 | return 0 | |
890 |
|
890 | |||
891 | deltaTime = self.basicHeaderObj.utc - self.lastUTTime |
|
891 | deltaTime = self.basicHeaderObj.utc - self.lastUTTime | |
892 | self.lastUTTime = self.basicHeaderObj.utc |
|
892 | self.lastUTTime = self.basicHeaderObj.utc | |
893 |
|
893 | |||
894 | self.flagDiscontinuousBlock = 0 |
|
894 | self.flagDiscontinuousBlock = 0 | |
895 |
|
895 | |||
896 | if deltaTime > self.maxTimeStep: |
|
896 | if deltaTime > self.maxTimeStep: | |
897 | self.flagDiscontinuousBlock = 1 |
|
897 | self.flagDiscontinuousBlock = 1 | |
898 |
|
898 | |||
899 | return 1 |
|
899 | return 1 | |
900 |
|
900 | |||
901 | def readNextBlock(self): |
|
901 | def readNextBlock(self): | |
902 |
|
902 | |||
903 | while True: |
|
903 | while True: | |
904 | if not(self.__setNewBlock()): |
|
904 | if not(self.__setNewBlock()): | |
905 | continue |
|
905 | continue | |
906 |
|
906 | |||
907 | if not(self.readBlock()): |
|
907 | if not(self.readBlock()): | |
908 | return 0 |
|
908 | return 0 | |
909 |
|
909 | |||
910 | self.getBasicHeader() |
|
910 | self.getBasicHeader() | |
911 |
|
911 | |||
912 | if not self.isDateTimeInRange(self.dataOut.datatime, self.startDate, self.endDate, self.startTime, self.endTime): |
|
912 | if not self.isDateTimeInRange(self.dataOut.datatime, self.startDate, self.endDate, self.startTime, self.endTime): | |
913 | print("[Reading] Block No. %d/%d -> %s [Skipping]" % (self.nReadBlocks, |
|
913 | print("[Reading] Block No. %d/%d -> %s [Skipping]" % (self.nReadBlocks, | |
914 | self.processingHeaderObj.dataBlocksPerFile, |
|
914 | self.processingHeaderObj.dataBlocksPerFile, | |
915 | self.dataOut.datatime.ctime())) |
|
915 | self.dataOut.datatime.ctime())) | |
916 | continue |
|
916 | continue | |
917 |
|
917 | |||
918 | break |
|
918 | break | |
919 |
|
919 | |||
920 | if self.verbose: |
|
920 | if self.verbose: | |
921 | print("[Reading] Block No. %d/%d -> %s" % (self.nReadBlocks, |
|
921 | print("[Reading] Block No. %d/%d -> %s" % (self.nReadBlocks, | |
922 | self.processingHeaderObj.dataBlocksPerFile, |
|
922 | self.processingHeaderObj.dataBlocksPerFile, | |
923 | self.dataOut.datatime.ctime())) |
|
923 | self.dataOut.datatime.ctime())) | |
924 | return 1 |
|
924 | return 1 | |
925 |
|
925 | |||
926 | def readFirstHeader(self): |
|
926 | def readFirstHeader(self): | |
927 |
|
927 | |||
928 | self.basicHeaderObj.read(self.fp) |
|
928 | self.basicHeaderObj.read(self.fp) | |
929 | self.systemHeaderObj.read(self.fp) |
|
929 | self.systemHeaderObj.read(self.fp) | |
930 | self.radarControllerHeaderObj.read(self.fp) |
|
930 | self.radarControllerHeaderObj.read(self.fp) | |
931 | self.processingHeaderObj.read(self.fp) |
|
931 | self.processingHeaderObj.read(self.fp) | |
932 | self.firstHeaderSize = self.basicHeaderObj.size |
|
932 | self.firstHeaderSize = self.basicHeaderObj.size | |
933 |
|
933 | |||
934 | datatype = int(numpy.log2((self.processingHeaderObj.processFlags & |
|
934 | datatype = int(numpy.log2((self.processingHeaderObj.processFlags & | |
935 | PROCFLAG.DATATYPE_MASK)) - numpy.log2(PROCFLAG.DATATYPE_CHAR)) |
|
935 | PROCFLAG.DATATYPE_MASK)) - numpy.log2(PROCFLAG.DATATYPE_CHAR)) | |
936 | if datatype == 0: |
|
936 | if datatype == 0: | |
937 | datatype_str = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
937 | datatype_str = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) | |
938 | elif datatype == 1: |
|
938 | elif datatype == 1: | |
939 | datatype_str = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
939 | datatype_str = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) | |
940 | elif datatype == 2: |
|
940 | elif datatype == 2: | |
941 | datatype_str = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
941 | datatype_str = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) | |
942 | elif datatype == 3: |
|
942 | elif datatype == 3: | |
943 | datatype_str = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
943 | datatype_str = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) | |
944 | elif datatype == 4: |
|
944 | elif datatype == 4: | |
945 | datatype_str = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
945 | datatype_str = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
946 | elif datatype == 5: |
|
946 | elif datatype == 5: | |
947 | datatype_str = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
947 | datatype_str = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) | |
948 | else: |
|
948 | else: | |
949 | raise ValueError('Data type was not defined') |
|
949 | raise ValueError('Data type was not defined') | |
950 |
|
950 | |||
951 | self.dtype = datatype_str |
|
951 | self.dtype = datatype_str | |
952 | #self.ippSeconds = 2 * 1000 * self.radarControllerHeaderObj.ipp / self.c |
|
952 | #self.ippSeconds = 2 * 1000 * self.radarControllerHeaderObj.ipp / self.c | |
953 | self.fileSizeByHeader = self.processingHeaderObj.dataBlocksPerFile * self.processingHeaderObj.blockSize + \ |
|
953 | self.fileSizeByHeader = self.processingHeaderObj.dataBlocksPerFile * self.processingHeaderObj.blockSize + \ | |
954 | self.firstHeaderSize + self.basicHeaderSize * \ |
|
954 | self.firstHeaderSize + self.basicHeaderSize * \ | |
955 | (self.processingHeaderObj.dataBlocksPerFile - 1) |
|
955 | (self.processingHeaderObj.dataBlocksPerFile - 1) | |
956 | # self.dataOut.channelList = numpy.arange(self.systemHeaderObj.numChannels) |
|
956 | # self.dataOut.channelList = numpy.arange(self.systemHeaderObj.numChannels) | |
957 | # self.dataOut.channelIndexList = numpy.arange(self.systemHeaderObj.numChannels) |
|
957 | # self.dataOut.channelIndexList = numpy.arange(self.systemHeaderObj.numChannels) | |
958 | self.getBlockDimension() |
|
958 | self.getBlockDimension() | |
959 |
|
959 | |||
960 | def verifyFile(self, filename): |
|
960 | def verifyFile(self, filename): | |
961 |
|
961 | |||
962 | flag = True |
|
962 | flag = True | |
963 |
|
963 | |||
964 | try: |
|
964 | try: | |
965 | fp = open(filename, 'rb') |
|
965 | fp = open(filename, 'rb') | |
966 | except IOError: |
|
966 | except IOError: | |
967 | log.error("File {} can't be opened".format(filename), self.name) |
|
967 | log.error("File {} can't be opened".format(filename), self.name) | |
968 | return False |
|
968 | return False | |
969 |
|
969 | |||
970 | if self.online and self.waitDataBlock(0): |
|
970 | if self.online and self.waitDataBlock(0): | |
971 | pass |
|
971 | pass | |
972 |
|
972 | |||
973 | basicHeaderObj = BasicHeader(LOCALTIME) |
|
973 | basicHeaderObj = BasicHeader(LOCALTIME) | |
974 | systemHeaderObj = SystemHeader() |
|
974 | systemHeaderObj = SystemHeader() | |
975 | radarControllerHeaderObj = RadarControllerHeader() |
|
975 | radarControllerHeaderObj = RadarControllerHeader() | |
976 | processingHeaderObj = ProcessingHeader() |
|
976 | processingHeaderObj = ProcessingHeader() | |
977 |
|
977 | |||
978 | if not(basicHeaderObj.read(fp)): |
|
978 | if not(basicHeaderObj.read(fp)): | |
979 | flag = False |
|
979 | flag = False | |
980 | if not(systemHeaderObj.read(fp)): |
|
980 | if not(systemHeaderObj.read(fp)): | |
981 | flag = False |
|
981 | flag = False | |
982 | if not(radarControllerHeaderObj.read(fp)): |
|
982 | if not(radarControllerHeaderObj.read(fp)): | |
983 | flag = False |
|
983 | flag = False | |
984 | if not(processingHeaderObj.read(fp)): |
|
984 | if not(processingHeaderObj.read(fp)): | |
985 | flag = False |
|
985 | flag = False | |
986 | if not self.online: |
|
986 | if not self.online: | |
987 | dt1 = basicHeaderObj.datatime |
|
987 | dt1 = basicHeaderObj.datatime | |
988 | pos = self.fileSize-processingHeaderObj.blockSize-24 |
|
988 | pos = self.fileSize-processingHeaderObj.blockSize-24 | |
989 | if pos<0: |
|
989 | if pos<0: | |
990 | flag = False |
|
990 | flag = False | |
991 | log.error('Invalid size for file: {}'.format(self.filename), self.name) |
|
991 | log.error('Invalid size for file: {}'.format(self.filename), self.name) | |
992 | else: |
|
992 | else: | |
993 | fp.seek(pos) |
|
993 | fp.seek(pos) | |
994 | if not(basicHeaderObj.read(fp)): |
|
994 | if not(basicHeaderObj.read(fp)): | |
995 | flag = False |
|
995 | flag = False | |
996 | dt2 = basicHeaderObj.datatime |
|
996 | dt2 = basicHeaderObj.datatime | |
997 | if not self.isDateTimeInRange(dt1, self.startDate, self.endDate, self.startTime, self.endTime) and not \ |
|
997 | if not self.isDateTimeInRange(dt1, self.startDate, self.endDate, self.startTime, self.endTime) and not \ | |
998 | self.isDateTimeInRange(dt2, self.startDate, self.endDate, self.startTime, self.endTime): |
|
998 | self.isDateTimeInRange(dt2, self.startDate, self.endDate, self.startTime, self.endTime): | |
999 | flag = False |
|
999 | flag = False | |
1000 |
|
1000 | |||
1001 | fp.close() |
|
1001 | fp.close() | |
1002 | return flag |
|
1002 | return flag | |
1003 |
|
1003 | |||
1004 | def findDatafiles(self, path, startDate=None, endDate=None, expLabel='', ext='.r', walk=True, include_path=False): |
|
1004 | def findDatafiles(self, path, startDate=None, endDate=None, expLabel='', ext='.r', walk=True, include_path=False): | |
1005 |
|
1005 | |||
1006 | path_empty = True |
|
1006 | path_empty = True | |
1007 |
|
1007 | |||
1008 | dateList = [] |
|
1008 | dateList = [] | |
1009 | pathList = [] |
|
1009 | pathList = [] | |
1010 |
|
1010 | |||
1011 | multi_path = path.split(',') |
|
1011 | multi_path = path.split(',') | |
1012 |
|
1012 | |||
1013 | if not walk: |
|
1013 | if not walk: | |
1014 |
|
1014 | |||
1015 | for single_path in multi_path: |
|
1015 | for single_path in multi_path: | |
1016 |
|
1016 | |||
1017 | if not os.path.isdir(single_path): |
|
1017 | if not os.path.isdir(single_path): | |
1018 | continue |
|
1018 | continue | |
1019 |
|
1019 | |||
1020 | fileList = glob.glob1(single_path, "*" + ext) |
|
1020 | fileList = glob.glob1(single_path, "*" + ext) | |
1021 |
|
1021 | |||
1022 | if not fileList: |
|
1022 | if not fileList: | |
1023 | continue |
|
1023 | continue | |
1024 |
|
1024 | |||
1025 | path_empty = False |
|
1025 | path_empty = False | |
1026 |
|
1026 | |||
1027 | fileList.sort() |
|
1027 | fileList.sort() | |
1028 |
|
1028 | |||
1029 | for thisFile in fileList: |
|
1029 | for thisFile in fileList: | |
1030 |
|
1030 | |||
1031 | if not os.path.isfile(os.path.join(single_path, thisFile)): |
|
1031 | if not os.path.isfile(os.path.join(single_path, thisFile)): | |
1032 | continue |
|
1032 | continue | |
1033 |
|
1033 | |||
1034 | if not isRadarFile(thisFile): |
|
1034 | if not isRadarFile(thisFile): | |
1035 | continue |
|
1035 | continue | |
1036 |
|
1036 | |||
1037 | if not isFileInDateRange(thisFile, startDate, endDate): |
|
1037 | if not isFileInDateRange(thisFile, startDate, endDate): | |
1038 | continue |
|
1038 | continue | |
1039 |
|
1039 | |||
1040 | thisDate = getDateFromRadarFile(thisFile) |
|
1040 | thisDate = getDateFromRadarFile(thisFile) | |
1041 |
|
1041 | |||
1042 | if thisDate in dateList or single_path in pathList: |
|
1042 | if thisDate in dateList or single_path in pathList: | |
1043 | continue |
|
1043 | continue | |
1044 |
|
1044 | |||
1045 | dateList.append(thisDate) |
|
1045 | dateList.append(thisDate) | |
1046 | pathList.append(single_path) |
|
1046 | pathList.append(single_path) | |
1047 |
|
1047 | |||
1048 | else: |
|
1048 | else: | |
1049 | for single_path in multi_path: |
|
1049 | for single_path in multi_path: | |
1050 |
|
1050 | |||
1051 | if not os.path.isdir(single_path): |
|
1051 | if not os.path.isdir(single_path): | |
1052 | continue |
|
1052 | continue | |
1053 |
|
1053 | |||
1054 | dirList = [] |
|
1054 | dirList = [] | |
1055 |
|
1055 | |||
1056 | for thisPath in os.listdir(single_path): |
|
1056 | for thisPath in os.listdir(single_path): | |
1057 |
|
1057 | |||
1058 | if not os.path.isdir(os.path.join(single_path, thisPath)): |
|
1058 | if not os.path.isdir(os.path.join(single_path, thisPath)): | |
1059 | continue |
|
1059 | continue | |
1060 |
|
1060 | |||
1061 | if not isRadarFolder(thisPath): |
|
1061 | if not isRadarFolder(thisPath): | |
1062 | continue |
|
1062 | continue | |
1063 |
|
1063 | |||
1064 | if not isFolderInDateRange(thisPath, startDate, endDate): |
|
1064 | if not isFolderInDateRange(thisPath, startDate, endDate): | |
1065 | continue |
|
1065 | continue | |
1066 |
|
1066 | |||
1067 | dirList.append(thisPath) |
|
1067 | dirList.append(thisPath) | |
1068 |
|
1068 | |||
1069 | if not dirList: |
|
1069 | if not dirList: | |
1070 | continue |
|
1070 | continue | |
1071 |
|
1071 | |||
1072 | dirList.sort() |
|
1072 | dirList.sort() | |
1073 |
|
1073 | |||
1074 | for thisDir in dirList: |
|
1074 | for thisDir in dirList: | |
1075 |
|
1075 | |||
1076 | datapath = os.path.join(single_path, thisDir, expLabel) |
|
1076 | datapath = os.path.join(single_path, thisDir, expLabel) | |
1077 | fileList = glob.glob1(datapath, "*" + ext) |
|
1077 | fileList = glob.glob1(datapath, "*" + ext) | |
1078 |
|
1078 | |||
1079 | if not fileList: |
|
1079 | if not fileList: | |
1080 | continue |
|
1080 | continue | |
1081 |
|
1081 | |||
1082 | path_empty = False |
|
1082 | path_empty = False | |
1083 |
|
1083 | |||
1084 | thisDate = getDateFromRadarFolder(thisDir) |
|
1084 | thisDate = getDateFromRadarFolder(thisDir) | |
1085 |
|
1085 | |||
1086 | pathList.append(datapath) |
|
1086 | pathList.append(datapath) | |
1087 | dateList.append(thisDate) |
|
1087 | dateList.append(thisDate) | |
1088 |
|
1088 | |||
1089 | dateList.sort() |
|
1089 | dateList.sort() | |
1090 |
|
1090 | |||
1091 | if walk: |
|
1091 | if walk: | |
1092 | pattern_path = os.path.join(multi_path[0], "[dYYYYDDD]", expLabel) |
|
1092 | pattern_path = os.path.join(multi_path[0], "[dYYYYDDD]", expLabel) | |
1093 | else: |
|
1093 | else: | |
1094 | pattern_path = multi_path[0] |
|
1094 | pattern_path = multi_path[0] | |
1095 |
|
1095 | |||
1096 | if path_empty: |
|
1096 | if path_empty: | |
1097 | raise schainpy.admin.SchainError("[Reading] No *%s files in %s for %s to %s" % (ext, pattern_path, startDate, endDate)) |
|
1097 | raise schainpy.admin.SchainError("[Reading] No *%s files in %s for %s to %s" % (ext, pattern_path, startDate, endDate)) | |
1098 | else: |
|
1098 | else: | |
1099 | if not dateList: |
|
1099 | if not dateList: | |
1100 | raise schainpy.admin.SchainError("[Reading] Date range selected invalid [%s - %s]: No *%s files in %s)" % (startDate, endDate, ext, path)) |
|
1100 | raise schainpy.admin.SchainError("[Reading] Date range selected invalid [%s - %s]: No *%s files in %s)" % (startDate, endDate, ext, path)) | |
1101 |
|
1101 | |||
1102 | if include_path: |
|
1102 | if include_path: | |
1103 | return dateList, pathList |
|
1103 | return dateList, pathList | |
1104 |
|
1104 | |||
1105 | return dateList |
|
1105 | return dateList | |
1106 |
|
1106 | |||
1107 | def setup(self, **kwargs): |
|
1107 | def setup(self, **kwargs): | |
1108 |
|
1108 | |||
1109 | self.set_kwargs(**kwargs) |
|
1109 | self.set_kwargs(**kwargs) | |
1110 | if not self.ext.startswith('.'): |
|
1110 | if not self.ext.startswith('.'): | |
1111 | self.ext = '.{}'.format(self.ext) |
|
1111 | self.ext = '.{}'.format(self.ext) | |
1112 |
|
1112 | |||
1113 | if self.server is not None: |
|
1113 | if self.server is not None: | |
1114 | if 'tcp://' in self.server: |
|
1114 | if 'tcp://' in self.server: | |
1115 | address = server |
|
1115 | address = server | |
1116 | else: |
|
1116 | else: | |
1117 | address = 'ipc:///tmp/%s' % self.server |
|
1117 | address = 'ipc:///tmp/%s' % self.server | |
1118 | self.server = address |
|
1118 | self.server = address | |
1119 | self.context = zmq.Context() |
|
1119 | self.context = zmq.Context() | |
1120 | self.receiver = self.context.socket(zmq.PULL) |
|
1120 | self.receiver = self.context.socket(zmq.PULL) | |
1121 | self.receiver.connect(self.server) |
|
1121 | self.receiver.connect(self.server) | |
1122 | time.sleep(0.5) |
|
1122 | time.sleep(0.5) | |
1123 | print('[Starting] ReceiverData from {}'.format(self.server)) |
|
1123 | print('[Starting] ReceiverData from {}'.format(self.server)) | |
1124 | else: |
|
1124 | else: | |
1125 | self.server = None |
|
1125 | self.server = None | |
1126 | if self.path == None: |
|
1126 | if self.path == None: | |
1127 | raise ValueError("[Reading] The path is not valid") |
|
1127 | raise ValueError("[Reading] The path is not valid") | |
1128 |
|
1128 | |||
1129 | if self.online: |
|
1129 | if self.online: | |
1130 | log.log("[Reading] Searching files in online mode...", self.name) |
|
1130 | log.log("[Reading] Searching files in online mode...", self.name) | |
1131 |
|
1131 | |||
1132 | for nTries in range(self.nTries): |
|
1132 | for nTries in range(self.nTries): | |
1133 | fullpath = self.searchFilesOnLine(self.path, self.startDate, |
|
1133 | fullpath = self.searchFilesOnLine(self.path, self.startDate, | |
1134 | self.endDate, self.expLabel, self.ext, self.walk, |
|
1134 | self.endDate, self.expLabel, self.ext, self.walk, | |
1135 | self.filefmt, self.folderfmt) |
|
1135 | self.filefmt, self.folderfmt) | |
1136 |
|
1136 | |||
1137 | try: |
|
1137 | try: | |
1138 | fullpath = next(fullpath) |
|
1138 | fullpath = next(fullpath) | |
1139 | except: |
|
1139 | except: | |
1140 | fullpath = None |
|
1140 | fullpath = None | |
1141 |
|
1141 | |||
1142 | if fullpath: |
|
1142 | if fullpath: | |
1143 | break |
|
1143 | break | |
1144 |
|
1144 | |||
1145 | log.warning( |
|
1145 | log.warning( | |
1146 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( |
|
1146 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( | |
1147 | self.delay, self.path, nTries + 1), |
|
1147 | self.delay, self.path, nTries + 1), | |
1148 | self.name) |
|
1148 | self.name) | |
1149 | time.sleep(self.delay) |
|
1149 | time.sleep(self.delay) | |
1150 |
|
1150 | |||
1151 | if not(fullpath): |
|
1151 | if not(fullpath): | |
1152 | raise schainpy.admin.SchainError( |
|
1152 | raise schainpy.admin.SchainError( | |
1153 | 'There isn\'t any valid file in {}'.format(self.path)) |
|
1153 | 'There isn\'t any valid file in {}'.format(self.path)) | |
1154 |
|
1154 | |||
1155 | pathname, filename = os.path.split(fullpath) |
|
1155 | pathname, filename = os.path.split(fullpath) | |
1156 | self.year = int(filename[1:5]) |
|
1156 | self.year = int(filename[1:5]) | |
1157 | self.doy = int(filename[5:8]) |
|
1157 | self.doy = int(filename[5:8]) | |
1158 | self.set = int(filename[8:11]) - 1 |
|
1158 | self.set = int(filename[8:11]) - 1 | |
1159 | else: |
|
1159 | else: | |
1160 | log.log("Searching files in {}".format(self.path), self.name) |
|
1160 | log.log("Searching files in {}".format(self.path), self.name) | |
1161 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, |
|
1161 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, | |
1162 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) |
|
1162 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) | |
1163 |
|
1163 | |||
1164 | self.setNextFile() |
|
1164 | self.setNextFile() | |
1165 |
|
1165 | |||
1166 | return |
|
1166 | return | |
1167 |
|
1167 | |||
1168 | def getBasicHeader(self): |
|
1168 | def getBasicHeader(self): | |
1169 |
|
1169 | |||
1170 | self.dataOut.utctime = self.basicHeaderObj.utc + self.basicHeaderObj.miliSecond / \ |
|
1170 | self.dataOut.utctime = self.basicHeaderObj.utc + self.basicHeaderObj.miliSecond / \ | |
1171 | 1000. + self.profileIndex * self.radarControllerHeaderObj.ippSeconds |
|
1171 | 1000. + self.profileIndex * self.radarControllerHeaderObj.ippSeconds | |
1172 |
|
1172 | |||
1173 | self.dataOut.flagDiscontinuousBlock = self.flagDiscontinuousBlock |
|
1173 | self.dataOut.flagDiscontinuousBlock = self.flagDiscontinuousBlock | |
1174 |
|
1174 | |||
1175 | self.dataOut.timeZone = self.basicHeaderObj.timeZone |
|
1175 | self.dataOut.timeZone = self.basicHeaderObj.timeZone | |
1176 |
|
1176 | |||
1177 | self.dataOut.dstFlag = self.basicHeaderObj.dstFlag |
|
1177 | self.dataOut.dstFlag = self.basicHeaderObj.dstFlag | |
1178 |
|
1178 | |||
1179 | self.dataOut.errorCount = self.basicHeaderObj.errorCount |
|
1179 | self.dataOut.errorCount = self.basicHeaderObj.errorCount | |
1180 |
|
1180 | |||
1181 | self.dataOut.useLocalTime = self.basicHeaderObj.useLocalTime |
|
1181 | self.dataOut.useLocalTime = self.basicHeaderObj.useLocalTime | |
1182 |
|
1182 | |||
1183 | self.dataOut.ippSeconds = self.radarControllerHeaderObj.ippSeconds / self.nTxs |
|
1183 | self.dataOut.ippSeconds = self.radarControllerHeaderObj.ippSeconds / self.nTxs | |
1184 |
|
1184 | |||
1185 | def getFirstHeader(self): |
|
1185 | def getFirstHeader(self): | |
1186 |
|
1186 | |||
1187 | raise NotImplementedError |
|
1187 | raise NotImplementedError | |
1188 |
|
1188 | |||
1189 | def getData(self): |
|
1189 | def getData(self): | |
1190 |
|
1190 | |||
1191 | raise NotImplementedError |
|
1191 | raise NotImplementedError | |
1192 |
|
1192 | |||
1193 | def hasNotDataInBuffer(self): |
|
1193 | def hasNotDataInBuffer(self): | |
1194 |
|
1194 | |||
1195 | raise NotImplementedError |
|
1195 | raise NotImplementedError | |
1196 |
|
1196 | |||
1197 | def readBlock(self): |
|
1197 | def readBlock(self): | |
1198 |
|
1198 | |||
1199 | raise NotImplementedError |
|
1199 | raise NotImplementedError | |
1200 |
|
1200 | |||
1201 | def isEndProcess(self): |
|
1201 | def isEndProcess(self): | |
1202 |
|
1202 | |||
1203 | return self.flagNoMoreFiles |
|
1203 | return self.flagNoMoreFiles | |
1204 |
|
1204 | |||
1205 | def printReadBlocks(self): |
|
1205 | def printReadBlocks(self): | |
1206 |
|
1206 | |||
1207 | print("[Reading] Number of read blocks per file %04d" % self.nReadBlocks) |
|
1207 | print("[Reading] Number of read blocks per file %04d" % self.nReadBlocks) | |
1208 |
|
1208 | |||
1209 | def printTotalBlocks(self): |
|
1209 | def printTotalBlocks(self): | |
1210 |
|
1210 | |||
1211 | print("[Reading] Number of read blocks %04d" % self.nTotalBlocks) |
|
1211 | print("[Reading] Number of read blocks %04d" % self.nTotalBlocks) | |
1212 |
|
1212 | |||
1213 | def run(self, **kwargs): |
|
1213 | def run(self, **kwargs): | |
1214 | """ |
|
1214 | """ | |
1215 |
|
1215 | |||
1216 | Arguments: |
|
1216 | Arguments: | |
1217 | path : |
|
1217 | path : | |
1218 | startDate : |
|
1218 | startDate : | |
1219 | endDate : |
|
1219 | endDate : | |
1220 | startTime : |
|
1220 | startTime : | |
1221 | endTime : |
|
1221 | endTime : | |
1222 | set : |
|
1222 | set : | |
1223 | expLabel : |
|
1223 | expLabel : | |
1224 | ext : |
|
1224 | ext : | |
1225 | online : |
|
1225 | online : | |
1226 | delay : |
|
1226 | delay : | |
1227 | walk : |
|
1227 | walk : | |
1228 | getblock : |
|
1228 | getblock : | |
1229 | nTxs : |
|
1229 | nTxs : | |
1230 | realtime : |
|
1230 | realtime : | |
1231 | blocksize : |
|
1231 | blocksize : | |
1232 | blocktime : |
|
1232 | blocktime : | |
1233 | skip : |
|
1233 | skip : | |
1234 | cursor : |
|
1234 | cursor : | |
1235 | warnings : |
|
1235 | warnings : | |
1236 | server : |
|
1236 | server : | |
1237 | verbose : |
|
1237 | verbose : | |
1238 | format : |
|
1238 | format : | |
1239 | oneDDict : |
|
1239 | oneDDict : | |
1240 | twoDDict : |
|
1240 | twoDDict : | |
1241 | independentParam : |
|
1241 | independentParam : | |
1242 | """ |
|
1242 | """ | |
1243 |
|
1243 | |||
1244 | if not(self.isConfig): |
|
1244 | if not(self.isConfig): | |
1245 | self.setup(**kwargs) |
|
1245 | self.setup(**kwargs) | |
1246 | self.isConfig = True |
|
1246 | self.isConfig = True | |
1247 | if self.server is None: |
|
1247 | if self.server is None: | |
1248 | self.getData() |
|
1248 | self.getData() | |
1249 | else: |
|
1249 | else: | |
1250 | self.getFromServer() |
|
1250 | self.getFromServer() | |
1251 |
|
1251 | |||
1252 |
|
1252 | |||
1253 | class JRODataWriter(Reader): |
|
1253 | class JRODataWriter(Reader): | |
1254 |
|
1254 | |||
1255 | """ |
|
1255 | """ | |
1256 | Esta clase permite escribir datos a archivos procesados (.r o ,pdata). La escritura |
|
1256 | Esta clase permite escribir datos a archivos procesados (.r o ,pdata). La escritura | |
1257 | de los datos siempre se realiza por bloques. |
|
1257 | de los datos siempre se realiza por bloques. | |
1258 | """ |
|
1258 | """ | |
1259 |
|
1259 | |||
1260 | setFile = None |
|
1260 | setFile = None | |
1261 | profilesPerBlock = None |
|
1261 | profilesPerBlock = None | |
1262 | blocksPerFile = None |
|
1262 | blocksPerFile = None | |
1263 | nWriteBlocks = 0 |
|
1263 | nWriteBlocks = 0 | |
1264 | fileDate = None |
|
1264 | fileDate = None | |
1265 |
|
1265 | |||
1266 | def __init__(self, dataOut=None): |
|
1266 | def __init__(self, dataOut=None): | |
1267 | raise NotImplementedError |
|
1267 | raise NotImplementedError | |
1268 |
|
1268 | |||
1269 | def hasAllDataInBuffer(self): |
|
1269 | def hasAllDataInBuffer(self): | |
1270 | raise NotImplementedError |
|
1270 | raise NotImplementedError | |
1271 |
|
1271 | |||
1272 | def setBlockDimension(self): |
|
1272 | def setBlockDimension(self): | |
1273 | raise NotImplementedError |
|
1273 | raise NotImplementedError | |
1274 |
|
1274 | |||
1275 | def writeBlock(self): |
|
1275 | def writeBlock(self): | |
1276 | raise NotImplementedError |
|
1276 | raise NotImplementedError | |
1277 |
|
1277 | |||
1278 | def putData(self): |
|
1278 | def putData(self): | |
1279 | raise NotImplementedError |
|
1279 | raise NotImplementedError | |
1280 |
|
1280 | |||
1281 | def getDtypeWidth(self): |
|
1281 | def getDtypeWidth(self): | |
1282 |
|
1282 | |||
1283 | dtype_index = get_dtype_index(self.dtype) |
|
1283 | dtype_index = get_dtype_index(self.dtype) | |
1284 | dtype_width = get_dtype_width(dtype_index) |
|
1284 | dtype_width = get_dtype_width(dtype_index) | |
1285 |
|
1285 | |||
1286 | return dtype_width |
|
1286 | return dtype_width | |
1287 |
|
1287 | |||
1288 | def getProcessFlags(self): |
|
1288 | def getProcessFlags(self): | |
1289 |
|
1289 | |||
1290 | processFlags = 0 |
|
1290 | processFlags = 0 | |
1291 |
|
1291 | |||
1292 | dtype_index = get_dtype_index(self.dtype) |
|
1292 | dtype_index = get_dtype_index(self.dtype) | |
1293 | procflag_dtype = get_procflag_dtype(dtype_index) |
|
1293 | procflag_dtype = get_procflag_dtype(dtype_index) | |
1294 |
|
1294 | |||
1295 | processFlags += procflag_dtype |
|
1295 | processFlags += procflag_dtype | |
1296 |
|
1296 | |||
1297 | if self.dataOut.flagDecodeData: |
|
1297 | if self.dataOut.flagDecodeData: | |
1298 | processFlags += PROCFLAG.DECODE_DATA |
|
1298 | processFlags += PROCFLAG.DECODE_DATA | |
1299 |
|
1299 | |||
1300 | if self.dataOut.flagDeflipData: |
|
1300 | if self.dataOut.flagDeflipData: | |
1301 | processFlags += PROCFLAG.DEFLIP_DATA |
|
1301 | processFlags += PROCFLAG.DEFLIP_DATA | |
1302 |
|
1302 | |||
1303 | if self.dataOut.code is not None: |
|
1303 | if self.dataOut.code is not None: | |
1304 | processFlags += PROCFLAG.DEFINE_PROCESS_CODE |
|
1304 | processFlags += PROCFLAG.DEFINE_PROCESS_CODE | |
1305 |
|
1305 | |||
1306 | if self.dataOut.nCohInt > 1: |
|
1306 | if self.dataOut.nCohInt > 1: | |
1307 | processFlags += PROCFLAG.COHERENT_INTEGRATION |
|
1307 | processFlags += PROCFLAG.COHERENT_INTEGRATION | |
1308 |
|
1308 | |||
1309 | if self.dataOut.type == "Spectra": |
|
1309 | if self.dataOut.type == "Spectra": | |
1310 | if self.dataOut.nIncohInt > 1: |
|
1310 | if self.dataOut.nIncohInt > 1: | |
1311 | processFlags += PROCFLAG.INCOHERENT_INTEGRATION |
|
1311 | processFlags += PROCFLAG.INCOHERENT_INTEGRATION | |
1312 |
|
1312 | |||
1313 | if self.dataOut.data_dc is not None: |
|
1313 | if self.dataOut.data_dc is not None: | |
1314 | processFlags += PROCFLAG.SAVE_CHANNELS_DC |
|
1314 | processFlags += PROCFLAG.SAVE_CHANNELS_DC | |
1315 |
|
1315 | |||
1316 | if self.dataOut.flagShiftFFT: |
|
1316 | if self.dataOut.flagShiftFFT: | |
1317 | processFlags += PROCFLAG.SHIFT_FFT_DATA |
|
1317 | processFlags += PROCFLAG.SHIFT_FFT_DATA | |
1318 |
|
1318 | |||
1319 | return processFlags |
|
1319 | return processFlags | |
1320 |
|
1320 | |||
1321 | def setBasicHeader(self): |
|
1321 | def setBasicHeader(self): | |
1322 |
|
1322 | |||
1323 | self.basicHeaderObj.size = self.basicHeaderSize # bytes |
|
1323 | self.basicHeaderObj.size = self.basicHeaderSize # bytes | |
1324 | self.basicHeaderObj.version = self.versionFile |
|
1324 | self.basicHeaderObj.version = self.versionFile | |
1325 | self.basicHeaderObj.dataBlock = self.nTotalBlocks |
|
1325 | self.basicHeaderObj.dataBlock = self.nTotalBlocks | |
1326 | utc = numpy.floor(self.dataOut.utctime) |
|
1326 | utc = numpy.floor(self.dataOut.utctime) | |
1327 | milisecond = (self.dataOut.utctime - utc) * 1000.0 |
|
1327 | milisecond = (self.dataOut.utctime - utc) * 1000.0 | |
1328 | self.basicHeaderObj.utc = utc |
|
1328 | self.basicHeaderObj.utc = utc | |
1329 | self.basicHeaderObj.miliSecond = milisecond |
|
1329 | self.basicHeaderObj.miliSecond = milisecond | |
1330 | self.basicHeaderObj.timeZone = self.dataOut.timeZone |
|
1330 | self.basicHeaderObj.timeZone = self.dataOut.timeZone | |
1331 | self.basicHeaderObj.dstFlag = self.dataOut.dstFlag |
|
1331 | self.basicHeaderObj.dstFlag = self.dataOut.dstFlag | |
1332 | self.basicHeaderObj.errorCount = self.dataOut.errorCount |
|
1332 | self.basicHeaderObj.errorCount = self.dataOut.errorCount | |
1333 |
|
1333 | |||
1334 | def setFirstHeader(self): |
|
1334 | def setFirstHeader(self): | |
1335 | """ |
|
1335 | """ | |
1336 | Obtiene una copia del First Header |
|
1336 | Obtiene una copia del First Header | |
1337 |
|
1337 | |||
1338 | Affected: |
|
1338 | Affected: | |
1339 |
|
1339 | |||
1340 | self.basicHeaderObj |
|
1340 | self.basicHeaderObj | |
1341 | self.systemHeaderObj |
|
1341 | self.systemHeaderObj | |
1342 | self.radarControllerHeaderObj |
|
1342 | self.radarControllerHeaderObj | |
1343 | self.processingHeaderObj self. |
|
1343 | self.processingHeaderObj self. | |
1344 |
|
1344 | |||
1345 | Return: |
|
1345 | Return: | |
1346 | None |
|
1346 | None | |
1347 | """ |
|
1347 | """ | |
1348 |
|
1348 | |||
1349 | raise NotImplementedError |
|
1349 | raise NotImplementedError | |
1350 |
|
1350 | |||
1351 | def __writeFirstHeader(self): |
|
1351 | def __writeFirstHeader(self): | |
1352 | """ |
|
1352 | """ | |
1353 | Escribe el primer header del file es decir el Basic header y el Long header (SystemHeader, RadarControllerHeader, ProcessingHeader) |
|
1353 | Escribe el primer header del file es decir el Basic header y el Long header (SystemHeader, RadarControllerHeader, ProcessingHeader) | |
1354 |
|
1354 | |||
1355 | Affected: |
|
1355 | Affected: | |
1356 | __dataType |
|
1356 | __dataType | |
1357 |
|
1357 | |||
1358 | Return: |
|
1358 | Return: | |
1359 | None |
|
1359 | None | |
1360 | """ |
|
1360 | """ | |
1361 |
|
1361 | |||
1362 | # CALCULAR PARAMETROS |
|
1362 | # CALCULAR PARAMETROS | |
1363 |
|
1363 | |||
1364 | sizeLongHeader = self.systemHeaderObj.size + \ |
|
1364 | sizeLongHeader = self.systemHeaderObj.size + \ | |
1365 | self.radarControllerHeaderObj.size + self.processingHeaderObj.size |
|
1365 | self.radarControllerHeaderObj.size + self.processingHeaderObj.size | |
1366 | self.basicHeaderObj.size = self.basicHeaderSize + sizeLongHeader |
|
1366 | self.basicHeaderObj.size = self.basicHeaderSize + sizeLongHeader | |
1367 |
|
1367 | |||
1368 | self.basicHeaderObj.write(self.fp) |
|
1368 | self.basicHeaderObj.write(self.fp) | |
1369 | self.systemHeaderObj.write(self.fp) |
|
1369 | self.systemHeaderObj.write(self.fp) | |
1370 | self.radarControllerHeaderObj.write(self.fp) |
|
1370 | self.radarControllerHeaderObj.write(self.fp) | |
1371 | self.processingHeaderObj.write(self.fp) |
|
1371 | self.processingHeaderObj.write(self.fp) | |
1372 |
|
1372 | |||
1373 | def __setNewBlock(self): |
|
1373 | def __setNewBlock(self): | |
1374 | """ |
|
1374 | """ | |
1375 | Si es un nuevo file escribe el First Header caso contrario escribe solo el Basic Header |
|
1375 | Si es un nuevo file escribe el First Header caso contrario escribe solo el Basic Header | |
1376 |
|
1376 | |||
1377 | Return: |
|
1377 | Return: | |
1378 | 0 : si no pudo escribir nada |
|
1378 | 0 : si no pudo escribir nada | |
1379 | 1 : Si escribio el Basic el First Header |
|
1379 | 1 : Si escribio el Basic el First Header | |
1380 | """ |
|
1380 | """ | |
1381 | if self.fp == None: |
|
1381 | if self.fp == None: | |
1382 | self.setNextFile() |
|
1382 | self.setNextFile() | |
1383 |
|
1383 | |||
1384 | if self.flagIsNewFile: |
|
1384 | if self.flagIsNewFile: | |
1385 | return 1 |
|
1385 | return 1 | |
1386 |
|
1386 | |||
1387 | if self.blockIndex < self.processingHeaderObj.dataBlocksPerFile: |
|
1387 | if self.blockIndex < self.processingHeaderObj.dataBlocksPerFile: | |
1388 | self.basicHeaderObj.write(self.fp) |
|
1388 | self.basicHeaderObj.write(self.fp) | |
1389 | return 1 |
|
1389 | return 1 | |
1390 |
|
1390 | |||
1391 | if not(self.setNextFile()): |
|
1391 | if not(self.setNextFile()): | |
1392 | return 0 |
|
1392 | return 0 | |
1393 |
|
1393 | |||
1394 | return 1 |
|
1394 | return 1 | |
1395 |
|
1395 | |||
1396 | def writeNextBlock(self): |
|
1396 | def writeNextBlock(self): | |
1397 | """ |
|
1397 | """ | |
1398 | Selecciona el bloque siguiente de datos y los escribe en un file |
|
1398 | Selecciona el bloque siguiente de datos y los escribe en un file | |
1399 |
|
1399 | |||
1400 | Return: |
|
1400 | Return: | |
1401 | 0 : Si no hizo pudo escribir el bloque de datos |
|
1401 | 0 : Si no hizo pudo escribir el bloque de datos | |
1402 | 1 : Si no pudo escribir el bloque de datos |
|
1402 | 1 : Si no pudo escribir el bloque de datos | |
1403 | """ |
|
1403 | """ | |
1404 | if not(self.__setNewBlock()): |
|
1404 | if not(self.__setNewBlock()): | |
1405 | return 0 |
|
1405 | return 0 | |
1406 |
|
1406 | |||
1407 | self.writeBlock() |
|
1407 | self.writeBlock() | |
1408 |
|
1408 | |||
1409 | print("[Writing] Block No. %d/%d" % (self.blockIndex, |
|
1409 | print("[Writing] Block No. %d/%d" % (self.blockIndex, | |
1410 | self.processingHeaderObj.dataBlocksPerFile)) |
|
1410 | self.processingHeaderObj.dataBlocksPerFile)) | |
1411 |
|
1411 | |||
1412 | return 1 |
|
1412 | return 1 | |
1413 |
|
1413 | |||
1414 | def setNextFile(self): |
|
1414 | def setNextFile(self): | |
1415 | """Determina el siguiente file que sera escrito |
|
1415 | """Determina el siguiente file que sera escrito | |
1416 |
|
1416 | |||
1417 | Affected: |
|
1417 | Affected: | |
1418 | self.filename |
|
1418 | self.filename | |
1419 | self.subfolder |
|
1419 | self.subfolder | |
1420 | self.fp |
|
1420 | self.fp | |
1421 | self.setFile |
|
1421 | self.setFile | |
1422 | self.flagIsNewFile |
|
1422 | self.flagIsNewFile | |
1423 |
|
1423 | |||
1424 | Return: |
|
1424 | Return: | |
1425 | 0 : Si el archivo no puede ser escrito |
|
1425 | 0 : Si el archivo no puede ser escrito | |
1426 | 1 : Si el archivo esta listo para ser escrito |
|
1426 | 1 : Si el archivo esta listo para ser escrito | |
1427 | """ |
|
1427 | """ | |
1428 | ext = self.ext |
|
1428 | ext = self.ext | |
1429 | path = self.path |
|
1429 | path = self.path | |
1430 |
|
1430 | |||
1431 | if self.fp != None: |
|
1431 | if self.fp != None: | |
1432 | self.fp.close() |
|
1432 | self.fp.close() | |
1433 |
|
1433 | |||
1434 | if not os.path.exists(path): |
|
1434 | if not os.path.exists(path): | |
1435 | os.mkdir(path) |
|
1435 | os.mkdir(path) | |
1436 |
|
1436 | |||
1437 | timeTuple = time.localtime(self.dataOut.utctime) |
|
1437 | timeTuple = time.localtime(self.dataOut.utctime) | |
1438 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year, timeTuple.tm_yday) |
|
1438 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year, timeTuple.tm_yday) | |
1439 |
|
1439 | |||
1440 | fullpath = os.path.join(path, subfolder) |
|
1440 | fullpath = os.path.join(path, subfolder) | |
1441 | setFile = self.setFile |
|
1441 | setFile = self.setFile | |
1442 |
|
1442 | |||
1443 | if not(os.path.exists(fullpath)): |
|
1443 | if not(os.path.exists(fullpath)): | |
1444 | os.mkdir(fullpath) |
|
1444 | os.mkdir(fullpath) | |
1445 | setFile = -1 # inicializo mi contador de seteo |
|
1445 | setFile = -1 # inicializo mi contador de seteo | |
1446 | else: |
|
1446 | else: | |
1447 | filesList = os.listdir(fullpath) |
|
1447 | filesList = os.listdir(fullpath) | |
1448 | if len(filesList) > 0: |
|
1448 | if len(filesList) > 0: | |
1449 | filesList = sorted(filesList, key=str.lower) |
|
1449 | filesList = sorted(filesList, key=str.lower) | |
1450 | filen = filesList[-1] |
|
1450 | filen = filesList[-1] | |
1451 | # el filename debera tener el siguiente formato |
|
1451 | # el filename debera tener el siguiente formato | |
1452 | # 0 1234 567 89A BCDE (hex) |
|
1452 | # 0 1234 567 89A BCDE (hex) | |
1453 | # x YYYY DDD SSS .ext |
|
1453 | # x YYYY DDD SSS .ext | |
1454 | if isNumber(filen[8:11]): |
|
1454 | if isNumber(filen[8:11]): | |
1455 | # inicializo mi contador de seteo al seteo del ultimo file |
|
1455 | # inicializo mi contador de seteo al seteo del ultimo file | |
1456 | setFile = int(filen[8:11]) |
|
1456 | setFile = int(filen[8:11]) | |
1457 | else: |
|
1457 | else: | |
1458 | setFile = -1 |
|
1458 | setFile = -1 | |
1459 | else: |
|
1459 | else: | |
1460 | setFile = -1 # inicializo mi contador de seteo |
|
1460 | setFile = -1 # inicializo mi contador de seteo | |
1461 |
|
1461 | |||
1462 | setFile += 1 |
|
1462 | setFile += 1 | |
1463 |
|
1463 | |||
1464 | # If this is a new day it resets some values |
|
1464 | # If this is a new day it resets some values | |
1465 | if self.dataOut.datatime.date() > self.fileDate: |
|
1465 | if self.dataOut.datatime.date() > self.fileDate: | |
1466 | setFile = 0 |
|
1466 | setFile = 0 | |
1467 | self.nTotalBlocks = 0 |
|
1467 | self.nTotalBlocks = 0 | |
1468 |
|
1468 | |||
1469 | filen = '{}{:04d}{:03d}{:03d}{}'.format( |
|
1469 | filen = '{}{:04d}{:03d}{:03d}{}'.format( | |
1470 | self.optchar, timeTuple.tm_year, timeTuple.tm_yday, setFile, ext) |
|
1470 | self.optchar, timeTuple.tm_year, timeTuple.tm_yday, setFile, ext) | |
1471 |
|
1471 | |||
1472 | filename = os.path.join(path, subfolder, filen) |
|
1472 | filename = os.path.join(path, subfolder, filen) | |
1473 |
|
1473 | |||
1474 | fp = open(filename, 'wb') |
|
1474 | fp = open(filename, 'wb') | |
1475 |
|
1475 | |||
1476 | self.blockIndex = 0 |
|
1476 | self.blockIndex = 0 | |
1477 | self.filename = filename |
|
1477 | self.filename = filename | |
1478 | self.subfolder = subfolder |
|
1478 | self.subfolder = subfolder | |
1479 | self.fp = fp |
|
1479 | self.fp = fp | |
1480 | self.setFile = setFile |
|
1480 | self.setFile = setFile | |
1481 | self.flagIsNewFile = 1 |
|
1481 | self.flagIsNewFile = 1 | |
1482 | self.fileDate = self.dataOut.datatime.date() |
|
1482 | self.fileDate = self.dataOut.datatime.date() | |
1483 | self.setFirstHeader() |
|
1483 | self.setFirstHeader() | |
1484 |
|
1484 | |||
1485 | print('[Writing] Opening file: %s' % self.filename) |
|
1485 | print('[Writing] Opening file: %s' % self.filename) | |
1486 |
|
1486 | |||
1487 | self.__writeFirstHeader() |
|
1487 | self.__writeFirstHeader() | |
1488 |
|
1488 | |||
1489 | return 1 |
|
1489 | return 1 | |
1490 |
|
1490 | |||
1491 | def setup(self, dataOut, path, blocksPerFile, profilesPerBlock=64, set=None, ext=None, datatype=4): |
|
1491 | def setup(self, dataOut, path, blocksPerFile, profilesPerBlock=64, set=None, ext=None, datatype=4): | |
1492 | """ |
|
1492 | """ | |
1493 | Setea el tipo de formato en la cual sera guardada la data y escribe el First Header |
|
1493 | Setea el tipo de formato en la cual sera guardada la data y escribe el First Header | |
1494 |
|
1494 | |||
1495 | Inputs: |
|
1495 | Inputs: | |
1496 | path : directory where data will be saved |
|
1496 | path : directory where data will be saved | |
1497 | profilesPerBlock : number of profiles per block |
|
1497 | profilesPerBlock : number of profiles per block | |
1498 | set : initial file set |
|
1498 | set : initial file set | |
1499 | datatype : An integer number that defines data type: |
|
1499 | datatype : An integer number that defines data type: | |
1500 | 0 : int8 (1 byte) |
|
1500 | 0 : int8 (1 byte) | |
1501 | 1 : int16 (2 bytes) |
|
1501 | 1 : int16 (2 bytes) | |
1502 | 2 : int32 (4 bytes) |
|
1502 | 2 : int32 (4 bytes) | |
1503 | 3 : int64 (8 bytes) |
|
1503 | 3 : int64 (8 bytes) | |
1504 | 4 : float32 (4 bytes) |
|
1504 | 4 : float32 (4 bytes) | |
1505 | 5 : double64 (8 bytes) |
|
1505 | 5 : double64 (8 bytes) | |
1506 |
|
1506 | |||
1507 | Return: |
|
1507 | Return: | |
1508 | 0 : Si no realizo un buen seteo |
|
1508 | 0 : Si no realizo un buen seteo | |
1509 | 1 : Si realizo un buen seteo |
|
1509 | 1 : Si realizo un buen seteo | |
1510 | """ |
|
1510 | """ | |
1511 |
|
1511 | |||
1512 | if ext == None: |
|
1512 | if ext == None: | |
1513 | ext = self.ext |
|
1513 | ext = self.ext | |
1514 |
|
1514 | |||
1515 | self.ext = ext.lower() |
|
1515 | self.ext = ext.lower() | |
1516 |
|
1516 | |||
1517 | self.path = path |
|
1517 | self.path = path | |
1518 |
|
1518 | |||
1519 | if set is None: |
|
1519 | if set is None: | |
1520 | self.setFile = -1 |
|
1520 | self.setFile = -1 | |
1521 | else: |
|
1521 | else: | |
1522 | self.setFile = set - 1 |
|
1522 | self.setFile = set - 1 | |
1523 |
|
1523 | |||
1524 | self.blocksPerFile = blocksPerFile |
|
1524 | self.blocksPerFile = blocksPerFile | |
1525 | self.profilesPerBlock = profilesPerBlock |
|
1525 | self.profilesPerBlock = profilesPerBlock | |
1526 | self.dataOut = dataOut |
|
1526 | self.dataOut = dataOut | |
1527 | self.fileDate = self.dataOut.datatime.date() |
|
1527 | self.fileDate = self.dataOut.datatime.date() | |
1528 | self.dtype = self.dataOut.dtype |
|
1528 | self.dtype = self.dataOut.dtype | |
1529 |
|
1529 | |||
1530 | if datatype is not None: |
|
1530 | if datatype is not None: | |
1531 | self.dtype = get_numpy_dtype(datatype) |
|
1531 | self.dtype = get_numpy_dtype(datatype) | |
1532 |
|
1532 | |||
1533 | if not(self.setNextFile()): |
|
1533 | if not(self.setNextFile()): | |
1534 | print("[Writing] There isn't a next file") |
|
1534 | print("[Writing] There isn't a next file") | |
1535 | return 0 |
|
1535 | return 0 | |
1536 |
|
1536 | |||
1537 | self.setBlockDimension() |
|
1537 | self.setBlockDimension() | |
1538 |
|
1538 | |||
1539 | return 1 |
|
1539 | return 1 | |
1540 |
|
1540 | |||
1541 | def run(self, dataOut, path, blocksPerFile=100, profilesPerBlock=64, set=None, ext=None, datatype=4, **kwargs): |
|
1541 | def run(self, dataOut, path, blocksPerFile=100, profilesPerBlock=64, set=None, ext=None, datatype=4, **kwargs): | |
1542 |
|
1542 | |||
1543 | if not(self.isConfig): |
|
1543 | if not(self.isConfig): | |
1544 |
|
1544 | |||
1545 | self.setup(dataOut, path, blocksPerFile, profilesPerBlock=profilesPerBlock, |
|
1545 | self.setup(dataOut, path, blocksPerFile, profilesPerBlock=profilesPerBlock, | |
1546 | set=set, ext=ext, datatype=datatype, **kwargs) |
|
1546 | set=set, ext=ext, datatype=datatype, **kwargs) | |
1547 | self.isConfig = True |
|
1547 | self.isConfig = True | |
1548 |
|
1548 | |||
1549 | self.dataOut = dataOut |
|
1549 | self.dataOut = dataOut | |
1550 | self.putData() |
|
1550 | self.putData() | |
1551 | return self.dataOut |
|
1551 | return self.dataOut | |
1552 |
|
1552 | |||
1553 | @MPDecorator |
|
1553 | @MPDecorator | |
1554 | class printInfo(Operation): |
|
1554 | class printInfo(Operation): | |
1555 |
|
1555 | |||
1556 | def __init__(self): |
|
1556 | def __init__(self): | |
1557 |
|
1557 | |||
1558 | Operation.__init__(self) |
|
1558 | Operation.__init__(self) | |
1559 | self.__printInfo = True |
|
1559 | self.__printInfo = True | |
1560 |
|
1560 | |||
1561 | def run(self, dataOut, headers = ['systemHeaderObj', 'radarControllerHeaderObj', 'processingHeaderObj']): |
|
1561 | def run(self, dataOut, headers = ['systemHeaderObj', 'radarControllerHeaderObj', 'processingHeaderObj']): | |
1562 | if self.__printInfo == False: |
|
1562 | if self.__printInfo == False: | |
1563 | return |
|
1563 | return | |
1564 |
|
1564 | |||
1565 | for header in headers: |
|
1565 | for header in headers: | |
1566 | if hasattr(dataOut, header): |
|
1566 | if hasattr(dataOut, header): | |
1567 | obj = getattr(dataOut, header) |
|
1567 | obj = getattr(dataOut, header) | |
1568 | if hasattr(obj, 'printInfo'): |
|
1568 | if hasattr(obj, 'printInfo'): | |
1569 | obj.printInfo() |
|
1569 | obj.printInfo() | |
1570 | else: |
|
1570 | else: | |
1571 | print(obj) |
|
1571 | print(obj) | |
1572 | else: |
|
1572 | else: | |
1573 | log.warning('Header {} Not found in object'.format(header)) |
|
1573 | log.warning('Header {} Not found in object'.format(header)) | |
1574 |
|
1574 | |||
1575 | self.__printInfo = False |
|
1575 | self.__printInfo = False |
@@ -1,663 +1,661 | |||||
1 | ''' |
|
1 | ''' | |
2 | Created on Set 9, 2015 |
|
2 | Created on Set 9, 2015 | |
3 |
|
3 | |||
4 | @author: roj-idl71 Karim Kuyeng |
|
4 | @author: roj-idl71 Karim Kuyeng | |
5 |
|
5 | |||
6 | @update: 2021, Joab Apaza |
|
6 | @update: 2021, Joab Apaza | |
7 | ''' |
|
7 | ''' | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import sys |
|
10 | import sys | |
11 | import glob |
|
11 | import glob | |
12 | import fnmatch |
|
12 | import fnmatch | |
13 | import datetime |
|
13 | import datetime | |
14 | import time |
|
14 | import time | |
15 | import re |
|
15 | import re | |
16 | import h5py |
|
16 | import h5py | |
17 | import numpy |
|
17 | import numpy | |
18 |
|
18 | |||
19 | try: |
|
19 | try: | |
20 | from gevent import sleep |
|
20 | from gevent import sleep | |
21 | except: |
|
21 | except: | |
22 | from time import sleep |
|
22 | from time import sleep | |
23 |
|
23 | |||
24 | from schainpy.model.data.jroheaderIO import RadarControllerHeader, SystemHeader |
|
24 | from schainpy.model.data.jroheaderIO import RadarControllerHeader, SystemHeader | |
25 | from schainpy.model.data.jrodata import Voltage |
|
25 | from schainpy.model.data.jrodata import Voltage | |
26 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
26 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
27 | from numpy import imag |
|
27 | from numpy import imag | |
28 |
|
28 | |||
29 |
|
29 | |||
30 | class AMISRReader(ProcessingUnit): |
|
30 | class AMISRReader(ProcessingUnit): | |
31 | ''' |
|
31 | ''' | |
32 | classdocs |
|
32 | classdocs | |
33 | ''' |
|
33 | ''' | |
34 |
|
34 | |||
35 | def __init__(self): |
|
35 | def __init__(self): | |
36 | ''' |
|
36 | ''' | |
37 | Constructor |
|
37 | Constructor | |
38 | ''' |
|
38 | ''' | |
39 |
|
39 | |||
40 | ProcessingUnit.__init__(self) |
|
40 | ProcessingUnit.__init__(self) | |
41 |
|
41 | |||
42 | self.set = None |
|
42 | self.set = None | |
43 | self.subset = None |
|
43 | self.subset = None | |
44 | self.extension_file = '.h5' |
|
44 | self.extension_file = '.h5' | |
45 | self.dtc_str = 'dtc' |
|
45 | self.dtc_str = 'dtc' | |
46 | self.dtc_id = 0 |
|
46 | self.dtc_id = 0 | |
47 | self.status = True |
|
47 | self.status = True | |
48 | self.isConfig = False |
|
48 | self.isConfig = False | |
49 | self.dirnameList = [] |
|
49 | self.dirnameList = [] | |
50 | self.filenameList = [] |
|
50 | self.filenameList = [] | |
51 | self.fileIndex = None |
|
51 | self.fileIndex = None | |
52 | self.flagNoMoreFiles = False |
|
52 | self.flagNoMoreFiles = False | |
53 | self.flagIsNewFile = 0 |
|
53 | self.flagIsNewFile = 0 | |
54 | self.filename = '' |
|
54 | self.filename = '' | |
55 | self.amisrFilePointer = None |
|
55 | self.amisrFilePointer = None | |
56 | self.realBeamCode = [] |
|
56 | self.realBeamCode = [] | |
57 | self.beamCodeMap = None |
|
57 | self.beamCodeMap = None | |
58 | self.azimuthList = [] |
|
58 | self.azimuthList = [] | |
59 | self.elevationList = [] |
|
59 | self.elevationList = [] | |
60 | self.dataShape = None |
|
60 | self.dataShape = None | |
61 |
|
61 | |||
62 |
|
62 | |||
63 |
|
63 | |||
64 | self.profileIndex = 0 |
|
64 | self.profileIndex = 0 | |
65 |
|
65 | |||
66 |
|
66 | |||
67 | self.beamCodeByFrame = None |
|
67 | self.beamCodeByFrame = None | |
68 | self.radacTimeByFrame = None |
|
68 | self.radacTimeByFrame = None | |
69 |
|
69 | |||
70 | self.dataset = None |
|
70 | self.dataset = None | |
71 |
|
71 | |||
72 | self.__firstFile = True |
|
72 | self.__firstFile = True | |
73 |
|
73 | |||
74 | self.buffer = None |
|
74 | self.buffer = None | |
75 |
|
75 | |||
76 | self.timezone = 'ut' |
|
76 | self.timezone = 'ut' | |
77 |
|
77 | |||
78 | self.__waitForNewFile = 20 |
|
78 | self.__waitForNewFile = 20 | |
79 | self.__filename_online = None |
|
79 | self.__filename_online = None | |
80 | #Is really necessary create the output object in the initializer |
|
80 | #Is really necessary create the output object in the initializer | |
81 | self.dataOut = Voltage() |
|
81 | self.dataOut = Voltage() | |
82 | self.dataOut.error=False |
|
82 | self.dataOut.error=False | |
83 |
|
83 | |||
84 |
|
84 | |||
85 | def setup(self,path=None, |
|
85 | def setup(self,path=None, | |
86 | startDate=None, |
|
86 | startDate=None, | |
87 | endDate=None, |
|
87 | endDate=None, | |
88 | startTime=None, |
|
88 | startTime=None, | |
89 | endTime=None, |
|
89 | endTime=None, | |
90 | walk=True, |
|
90 | walk=True, | |
91 | timezone='ut', |
|
91 | timezone='ut', | |
92 | all=0, |
|
92 | all=0, | |
93 | code = None, |
|
93 | code = None, | |
94 | nCode = 0, |
|
94 | nCode = 0, | |
95 | nBaud = 0, |
|
95 | nBaud = 0, | |
96 | online=False): |
|
96 | online=False): | |
97 |
|
97 | |||
98 |
|
98 | |||
99 |
|
99 | |||
100 | self.timezone = timezone |
|
100 | self.timezone = timezone | |
101 | self.all = all |
|
101 | self.all = all | |
102 | self.online = online |
|
102 | self.online = online | |
103 |
|
103 | |||
104 | self.code = code |
|
104 | self.code = code | |
105 | self.nCode = int(nCode) |
|
105 | self.nCode = int(nCode) | |
106 | self.nBaud = int(nBaud) |
|
106 | self.nBaud = int(nBaud) | |
107 |
|
107 | |||
108 |
|
108 | |||
109 |
|
109 | |||
110 | #self.findFiles() |
|
110 | #self.findFiles() | |
111 | if not(online): |
|
111 | if not(online): | |
112 | #Busqueda de archivos offline |
|
112 | #Busqueda de archivos offline | |
113 | self.searchFilesOffLine(path, startDate, endDate, startTime, endTime, walk) |
|
113 | self.searchFilesOffLine(path, startDate, endDate, startTime, endTime, walk) | |
114 | else: |
|
114 | else: | |
115 | self.searchFilesOnLine(path, startDate, endDate, startTime,endTime,walk) |
|
115 | self.searchFilesOnLine(path, startDate, endDate, startTime,endTime,walk) | |
116 |
|
116 | |||
117 | if not(self.filenameList): |
|
117 | if not(self.filenameList): | |
118 | print("There is no files into the folder: %s"%(path)) |
|
118 | print("There is no files into the folder: %s"%(path)) | |
119 | sys.exit() |
|
119 | sys.exit() | |
120 |
|
120 | |||
121 | self.fileIndex = 0 |
|
121 | self.fileIndex = 0 | |
122 |
|
122 | |||
123 | self.readNextFile(online) |
|
123 | self.readNextFile(online) | |
124 |
|
124 | |||
125 | ''' |
|
125 | ''' | |
126 | Add code |
|
126 | Add code | |
127 | ''' |
|
127 | ''' | |
128 | self.isConfig = True |
|
128 | self.isConfig = True | |
129 | # print("Setup Done") |
|
129 | # print("Setup Done") | |
130 | pass |
|
130 | pass | |
131 |
|
131 | |||
132 |
|
132 | |||
133 | def readAMISRHeader(self,fp): |
|
133 | def readAMISRHeader(self,fp): | |
134 |
|
134 | |||
135 | if self.isConfig and (not self.flagNoMoreFiles): |
|
135 | if self.isConfig and (not self.flagNoMoreFiles): | |
136 | newShape = fp.get('Raw11/Data/Samples/Data').shape[1:] |
|
136 | newShape = fp.get('Raw11/Data/Samples/Data').shape[1:] | |
137 | if self.dataShape != newShape and newShape != None: |
|
137 | if self.dataShape != newShape and newShape != None: | |
138 | print("\nNEW FILE HAS A DIFFERENT SHAPE") |
|
138 | print("\nNEW FILE HAS A DIFFERENT SHAPE") | |
139 | print(self.dataShape,newShape,"\n") |
|
139 | print(self.dataShape,newShape,"\n") | |
140 | return 0 |
|
140 | return 0 | |
141 | else: |
|
141 | else: | |
142 | self.dataShape = fp.get('Raw11/Data/Samples/Data').shape[1:] |
|
142 | self.dataShape = fp.get('Raw11/Data/Samples/Data').shape[1:] | |
143 |
|
143 | |||
144 |
|
144 | |||
145 | header = 'Raw11/Data/RadacHeader' |
|
145 | header = 'Raw11/Data/RadacHeader' | |
146 | self.beamCodeByPulse = fp.get(header+'/BeamCode') # LIST OF BEAMS PER PROFILE, TO BE USED ON REARRANGE |
|
146 | self.beamCodeByPulse = fp.get(header+'/BeamCode') # LIST OF BEAMS PER PROFILE, TO BE USED ON REARRANGE | |
147 | if (self.startDate> datetime.date(2021, 7, 15)): #Se cambió la forma de extracción de Apuntes el 17 |
|
147 | if (self.startDate> datetime.date(2021, 7, 15)): #Se cambió la forma de extracción de Apuntes el 17 | |
148 | self.beamcodeFile = fp['Setup/Beamcodefile'][()].decode() |
|
148 | self.beamcodeFile = fp['Setup/Beamcodefile'][()].decode() | |
149 | self.trueBeams = self.beamcodeFile.split("\n") |
|
149 | self.trueBeams = self.beamcodeFile.split("\n") | |
150 | self.trueBeams.pop()#remove last |
|
150 | self.trueBeams.pop()#remove last | |
151 | [self.realBeamCode.append(x) for x in self.trueBeams if x not in self.realBeamCode] |
|
151 | [self.realBeamCode.append(x) for x in self.trueBeams if x not in self.realBeamCode] | |
152 | self.beamCode = [int(x, 16) for x in self.realBeamCode] |
|
152 | self.beamCode = [int(x, 16) for x in self.realBeamCode] | |
153 | else: |
|
153 | else: | |
154 | _beamCode= fp.get('Raw11/Data/Beamcodes') #se usa la manera previa al cambio de apuntes |
|
154 | _beamCode= fp.get('Raw11/Data/Beamcodes') #se usa la manera previa al cambio de apuntes | |
155 | self.beamCode = _beamCode[0,:] |
|
155 | self.beamCode = _beamCode[0,:] | |
156 |
|
156 | |||
157 | if self.beamCodeMap == None: |
|
157 | if self.beamCodeMap == None: | |
158 | self.beamCodeMap = fp['Setup/BeamcodeMap'] |
|
158 | self.beamCodeMap = fp['Setup/BeamcodeMap'] | |
159 | for beam in self.beamCode: |
|
159 | for beam in self.beamCode: | |
160 | beamAziElev = numpy.where(self.beamCodeMap[:,0]==beam) |
|
160 | beamAziElev = numpy.where(self.beamCodeMap[:,0]==beam) | |
161 | beamAziElev = beamAziElev[0].squeeze() |
|
161 | beamAziElev = beamAziElev[0].squeeze() | |
162 | self.azimuthList.append(self.beamCodeMap[beamAziElev,1]) |
|
162 | self.azimuthList.append(self.beamCodeMap[beamAziElev,1]) | |
163 | self.elevationList.append(self.beamCodeMap[beamAziElev,2]) |
|
163 | self.elevationList.append(self.beamCodeMap[beamAziElev,2]) | |
164 | #print("Beamssss: ",self.beamCodeMap[beamAziElev,1],self.beamCodeMap[beamAziElev,2]) |
|
164 | #print("Beamssss: ",self.beamCodeMap[beamAziElev,1],self.beamCodeMap[beamAziElev,2]) | |
165 | #print(self.beamCode) |
|
165 | #print(self.beamCode) | |
166 | #self.code = fp.get(header+'/Code') # NOT USE FOR THIS |
|
166 | #self.code = fp.get(header+'/Code') # NOT USE FOR THIS | |
167 | self.frameCount = fp.get(header+'/FrameCount')# NOT USE FOR THIS |
|
167 | self.frameCount = fp.get(header+'/FrameCount')# NOT USE FOR THIS | |
168 | self.modeGroup = fp.get(header+'/ModeGroup')# NOT USE FOR THIS |
|
168 | self.modeGroup = fp.get(header+'/ModeGroup')# NOT USE FOR THIS | |
169 | self.nsamplesPulse = fp.get(header+'/NSamplesPulse')# TO GET NSA OR USING DATA FOR THAT |
|
169 | self.nsamplesPulse = fp.get(header+'/NSamplesPulse')# TO GET NSA OR USING DATA FOR THAT | |
170 | self.pulseCount = fp.get(header+'/PulseCount')# NOT USE FOR THIS |
|
170 | self.pulseCount = fp.get(header+'/PulseCount')# NOT USE FOR THIS | |
171 | self.radacTime = fp.get(header+'/RadacTime')# 1st TIME ON FILE ANDE CALCULATE THE REST WITH IPP*nindexprofile |
|
171 | self.radacTime = fp.get(header+'/RadacTime')# 1st TIME ON FILE ANDE CALCULATE THE REST WITH IPP*nindexprofile | |
172 | self.timeCount = fp.get(header+'/TimeCount')# NOT USE FOR THIS |
|
172 | self.timeCount = fp.get(header+'/TimeCount')# NOT USE FOR THIS | |
173 | self.timeStatus = fp.get(header+'/TimeStatus')# NOT USE FOR THIS |
|
173 | self.timeStatus = fp.get(header+'/TimeStatus')# NOT USE FOR THIS | |
174 | self.rangeFromFile = fp.get('Raw11/Data/Samples/Range') |
|
174 | self.rangeFromFile = fp.get('Raw11/Data/Samples/Range') | |
175 | self.frequency = fp.get('Rx/Frequency') |
|
175 | self.frequency = fp.get('Rx/Frequency') | |
176 | txAus = fp.get('Raw11/Data/Pulsewidth') |
|
176 | txAus = fp.get('Raw11/Data/Pulsewidth') | |
177 |
|
177 | |||
178 |
|
178 | |||
179 | self.nblocks = self.pulseCount.shape[0] #nblocks |
|
179 | self.nblocks = self.pulseCount.shape[0] #nblocks | |
180 |
|
180 | |||
181 | self.nprofiles = self.pulseCount.shape[1] #nprofile |
|
181 | self.nprofiles = self.pulseCount.shape[1] #nprofile | |
182 | self.nsa = self.nsamplesPulse[0,0] #ngates |
|
182 | self.nsa = self.nsamplesPulse[0,0] #ngates | |
183 | self.nchannels = len(self.beamCode) |
|
183 | self.nchannels = len(self.beamCode) | |
184 | self.ippSeconds = (self.radacTime[0][1] -self.radacTime[0][0]) #Ipp in seconds |
|
184 | self.ippSeconds = (self.radacTime[0][1] -self.radacTime[0][0]) #Ipp in seconds | |
185 | #self.__waitForNewFile = self.nblocks # wait depending on the number of blocks since each block is 1 sec |
|
185 | #self.__waitForNewFile = self.nblocks # wait depending on the number of blocks since each block is 1 sec | |
186 | self.__waitForNewFile = self.nblocks * self.nprofiles * self.ippSeconds # wait until new file is created |
|
186 | self.__waitForNewFile = self.nblocks * self.nprofiles * self.ippSeconds # wait until new file is created | |
187 |
|
187 | |||
188 | #filling radar controller header parameters |
|
188 | #filling radar controller header parameters | |
189 | self.__ippKm = self.ippSeconds *.15*1e6 # in km |
|
189 | self.__ippKm = self.ippSeconds *.15*1e6 # in km | |
190 | self.__txA = (txAus.value)*.15 #(ipp[us]*.15km/1us) in km |
|
190 | self.__txA = (txAus.value)*.15 #(ipp[us]*.15km/1us) in km | |
191 | self.__txB = 0 |
|
191 | self.__txB = 0 | |
192 | nWindows=1 |
|
192 | nWindows=1 | |
193 | self.__nSamples = self.nsa |
|
193 | self.__nSamples = self.nsa | |
194 | self.__firstHeight = self.rangeFromFile[0][0]/1000 #in km |
|
194 | self.__firstHeight = self.rangeFromFile[0][0]/1000 #in km | |
195 | self.__deltaHeight = (self.rangeFromFile[0][1] - self.rangeFromFile[0][0])/1000 |
|
195 | self.__deltaHeight = (self.rangeFromFile[0][1] - self.rangeFromFile[0][0])/1000 | |
196 |
|
196 | |||
197 | #for now until understand why the code saved is different (code included even though code not in tuf file) |
|
197 | #for now until understand why the code saved is different (code included even though code not in tuf file) | |
198 | #self.__codeType = 0 |
|
198 | #self.__codeType = 0 | |
199 | # self.__nCode = None |
|
199 | # self.__nCode = None | |
200 | # self.__nBaud = None |
|
200 | # self.__nBaud = None | |
201 | self.__code = self.code |
|
201 | self.__code = self.code | |
202 | self.__codeType = 0 |
|
202 | self.__codeType = 0 | |
203 | if self.code != None: |
|
203 | if self.code != None: | |
204 | self.__codeType = 1 |
|
204 | self.__codeType = 1 | |
205 | self.__nCode = self.nCode |
|
205 | self.__nCode = self.nCode | |
206 | self.__nBaud = self.nBaud |
|
206 | self.__nBaud = self.nBaud | |
207 | #self.__code = 0 |
|
207 | #self.__code = 0 | |
208 |
|
208 | |||
209 | #filling system header parameters |
|
209 | #filling system header parameters | |
210 | self.__nSamples = self.nsa |
|
210 | self.__nSamples = self.nsa | |
211 | self.newProfiles = self.nprofiles/self.nchannels |
|
211 | self.newProfiles = self.nprofiles/self.nchannels | |
212 | self.__channelList = list(range(self.nchannels)) |
|
212 | self.__channelList = list(range(self.nchannels)) | |
213 |
|
213 | |||
214 | self.__frequency = self.frequency[0][0] |
|
214 | self.__frequency = self.frequency[0][0] | |
215 |
|
215 | |||
216 |
|
216 | |||
217 | return 1 |
|
217 | return 1 | |
218 |
|
218 | |||
219 |
|
219 | |||
220 | def createBuffers(self): |
|
220 | def createBuffers(self): | |
221 |
|
221 | |||
222 | pass |
|
222 | pass | |
223 |
|
223 | |||
224 | def __setParameters(self,path='', startDate='',endDate='',startTime='', endTime='', walk=''): |
|
224 | def __setParameters(self,path='', startDate='',endDate='',startTime='', endTime='', walk=''): | |
225 | self.path = path |
|
225 | self.path = path | |
226 | self.startDate = startDate |
|
226 | self.startDate = startDate | |
227 | self.endDate = endDate |
|
227 | self.endDate = endDate | |
228 | self.startTime = startTime |
|
228 | self.startTime = startTime | |
229 | self.endTime = endTime |
|
229 | self.endTime = endTime | |
230 | self.walk = walk |
|
230 | self.walk = walk | |
231 |
|
231 | |||
232 | def __checkPath(self): |
|
232 | def __checkPath(self): | |
233 | if os.path.exists(self.path): |
|
233 | if os.path.exists(self.path): | |
234 | self.status = 1 |
|
234 | self.status = 1 | |
235 | else: |
|
235 | else: | |
236 | self.status = 0 |
|
236 | self.status = 0 | |
237 | print('Path:%s does not exists'%self.path) |
|
237 | print('Path:%s does not exists'%self.path) | |
238 |
|
238 | |||
239 | return |
|
239 | return | |
240 |
|
240 | |||
241 |
|
241 | |||
242 | def __selDates(self, amisr_dirname_format): |
|
242 | def __selDates(self, amisr_dirname_format): | |
243 | try: |
|
243 | try: | |
244 | year = int(amisr_dirname_format[0:4]) |
|
244 | year = int(amisr_dirname_format[0:4]) | |
245 | month = int(amisr_dirname_format[4:6]) |
|
245 | month = int(amisr_dirname_format[4:6]) | |
246 | dom = int(amisr_dirname_format[6:8]) |
|
246 | dom = int(amisr_dirname_format[6:8]) | |
247 | thisDate = datetime.date(year,month,dom) |
|
247 | thisDate = datetime.date(year,month,dom) | |
248 |
|
248 | |||
249 | if (thisDate>=self.startDate and thisDate <= self.endDate): |
|
249 | if (thisDate>=self.startDate and thisDate <= self.endDate): | |
250 | return amisr_dirname_format |
|
250 | return amisr_dirname_format | |
251 | except: |
|
251 | except: | |
252 | return None |
|
252 | return None | |
253 |
|
253 | |||
254 |
|
254 | |||
255 | def __findDataForDates(self,online=False): |
|
255 | def __findDataForDates(self,online=False): | |
256 |
|
256 | |||
257 | if not(self.status): |
|
257 | if not(self.status): | |
258 | return None |
|
258 | return None | |
259 |
|
259 | |||
260 | pat = '\d+.\d+' |
|
260 | pat = '\d+.\d+' | |
261 | dirnameList = [re.search(pat,x) for x in os.listdir(self.path)] |
|
261 | dirnameList = [re.search(pat,x) for x in os.listdir(self.path)] | |
262 | dirnameList = [x for x in dirnameList if x!=None] |
|
262 | dirnameList = [x for x in dirnameList if x!=None] | |
263 | dirnameList = [x.string for x in dirnameList] |
|
263 | dirnameList = [x.string for x in dirnameList] | |
264 | if not(online): |
|
264 | if not(online): | |
265 | dirnameList = [self.__selDates(x) for x in dirnameList] |
|
265 | dirnameList = [self.__selDates(x) for x in dirnameList] | |
266 | dirnameList = [x for x in dirnameList if x!=None] |
|
266 | dirnameList = [x for x in dirnameList if x!=None] | |
267 | if len(dirnameList)>0: |
|
267 | if len(dirnameList)>0: | |
268 | self.status = 1 |
|
268 | self.status = 1 | |
269 | self.dirnameList = dirnameList |
|
269 | self.dirnameList = dirnameList | |
270 | self.dirnameList.sort() |
|
270 | self.dirnameList.sort() | |
271 | else: |
|
271 | else: | |
272 | self.status = 0 |
|
272 | self.status = 0 | |
273 | return None |
|
273 | return None | |
274 |
|
274 | |||
275 | def __getTimeFromData(self): |
|
275 | def __getTimeFromData(self): | |
276 | startDateTime_Reader = datetime.datetime.combine(self.startDate,self.startTime) |
|
276 | startDateTime_Reader = datetime.datetime.combine(self.startDate,self.startTime) | |
277 | endDateTime_Reader = datetime.datetime.combine(self.endDate,self.endTime) |
|
277 | endDateTime_Reader = datetime.datetime.combine(self.endDate,self.endTime) | |
278 |
|
278 | |||
279 | print('Filtering Files from %s to %s'%(startDateTime_Reader, endDateTime_Reader)) |
|
279 | print('Filtering Files from %s to %s'%(startDateTime_Reader, endDateTime_Reader)) | |
280 | print('........................................') |
|
280 | print('........................................') | |
281 | filter_filenameList = [] |
|
281 | filter_filenameList = [] | |
282 | self.filenameList.sort() |
|
282 | self.filenameList.sort() | |
283 | #for i in range(len(self.filenameList)-1): |
|
283 | #for i in range(len(self.filenameList)-1): | |
284 | for i in range(len(self.filenameList)): |
|
284 | for i in range(len(self.filenameList)): | |
285 | filename = self.filenameList[i] |
|
285 | filename = self.filenameList[i] | |
286 | fp = h5py.File(filename,'r') |
|
286 | fp = h5py.File(filename,'r') | |
287 | time_str = fp.get('Time/RadacTimeString') |
|
287 | time_str = fp.get('Time/RadacTimeString') | |
288 |
|
288 | |||
289 | startDateTimeStr_File = time_str[0][0].decode('UTF-8').split('.')[0] |
|
289 | startDateTimeStr_File = time_str[0][0].decode('UTF-8').split('.')[0] | |
290 | #startDateTimeStr_File = "2019-12-16 09:21:11" |
|
290 | #startDateTimeStr_File = "2019-12-16 09:21:11" | |
291 | junk = time.strptime(startDateTimeStr_File, '%Y-%m-%d %H:%M:%S') |
|
291 | junk = time.strptime(startDateTimeStr_File, '%Y-%m-%d %H:%M:%S') | |
292 | startDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) |
|
292 | startDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) | |
293 |
|
293 | |||
294 | #endDateTimeStr_File = "2019-12-16 11:10:11" |
|
294 | #endDateTimeStr_File = "2019-12-16 11:10:11" | |
295 | endDateTimeStr_File = time_str[-1][-1].decode('UTF-8').split('.')[0] |
|
295 | endDateTimeStr_File = time_str[-1][-1].decode('UTF-8').split('.')[0] | |
296 | junk = time.strptime(endDateTimeStr_File, '%Y-%m-%d %H:%M:%S') |
|
296 | junk = time.strptime(endDateTimeStr_File, '%Y-%m-%d %H:%M:%S') | |
297 | endDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) |
|
297 | endDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) | |
298 |
|
298 | |||
299 | fp.close() |
|
299 | fp.close() | |
300 |
|
300 | |||
301 | #print("check time", startDateTime_File) |
|
301 | #print("check time", startDateTime_File) | |
302 | if self.timezone == 'lt': |
|
302 | if self.timezone == 'lt': | |
303 | startDateTime_File = startDateTime_File - datetime.timedelta(minutes = 300) |
|
303 | startDateTime_File = startDateTime_File - datetime.timedelta(minutes = 300) | |
304 | endDateTime_File = endDateTime_File - datetime.timedelta(minutes = 300) |
|
304 | endDateTime_File = endDateTime_File - datetime.timedelta(minutes = 300) | |
305 | if (endDateTime_File>=startDateTime_Reader and endDateTime_File<=endDateTime_Reader): |
|
305 | if (endDateTime_File>=startDateTime_Reader and endDateTime_File<=endDateTime_Reader): | |
306 | filter_filenameList.append(filename) |
|
306 | filter_filenameList.append(filename) | |
307 |
|
307 | |||
308 | if (endDateTime_File>endDateTime_Reader): |
|
308 | if (endDateTime_File>endDateTime_Reader): | |
309 | break |
|
309 | break | |
310 |
|
310 | |||
311 |
|
311 | |||
312 | filter_filenameList.sort() |
|
312 | filter_filenameList.sort() | |
313 | self.filenameList = filter_filenameList |
|
313 | self.filenameList = filter_filenameList | |
314 | return 1 |
|
314 | return 1 | |
315 |
|
315 | |||
316 | def __filterByGlob1(self, dirName): |
|
316 | def __filterByGlob1(self, dirName): | |
317 | filter_files = glob.glob1(dirName, '*.*%s'%self.extension_file) |
|
317 | filter_files = glob.glob1(dirName, '*.*%s'%self.extension_file) | |
318 | filter_files.sort() |
|
318 | filter_files.sort() | |
319 | filterDict = {} |
|
319 | filterDict = {} | |
320 | filterDict.setdefault(dirName) |
|
320 | filterDict.setdefault(dirName) | |
321 | filterDict[dirName] = filter_files |
|
321 | filterDict[dirName] = filter_files | |
322 | return filterDict |
|
322 | return filterDict | |
323 |
|
323 | |||
324 | def __getFilenameList(self, fileListInKeys, dirList): |
|
324 | def __getFilenameList(self, fileListInKeys, dirList): | |
325 | for value in fileListInKeys: |
|
325 | for value in fileListInKeys: | |
326 | dirName = list(value.keys())[0] |
|
326 | dirName = list(value.keys())[0] | |
327 | for file in value[dirName]: |
|
327 | for file in value[dirName]: | |
328 | filename = os.path.join(dirName, file) |
|
328 | filename = os.path.join(dirName, file) | |
329 | self.filenameList.append(filename) |
|
329 | self.filenameList.append(filename) | |
330 |
|
330 | |||
331 |
|
331 | |||
332 | def __selectDataForTimes(self, online=False): |
|
332 | def __selectDataForTimes(self, online=False): | |
333 | #aun no esta implementado el filtro for tiempo |
|
333 | #aun no esta implementado el filtro for tiempo | |
334 | if not(self.status): |
|
334 | if not(self.status): | |
335 | return None |
|
335 | return None | |
336 |
|
336 | |||
337 | dirList = [os.path.join(self.path,x) for x in self.dirnameList] |
|
337 | dirList = [os.path.join(self.path,x) for x in self.dirnameList] | |
338 |
|
338 | |||
339 | fileListInKeys = [self.__filterByGlob1(x) for x in dirList] |
|
339 | fileListInKeys = [self.__filterByGlob1(x) for x in dirList] | |
340 |
|
340 | |||
341 | self.__getFilenameList(fileListInKeys, dirList) |
|
341 | self.__getFilenameList(fileListInKeys, dirList) | |
342 | if not(online): |
|
342 | if not(online): | |
343 | #filtro por tiempo |
|
343 | #filtro por tiempo | |
344 | if not(self.all): |
|
344 | if not(self.all): | |
345 | self.__getTimeFromData() |
|
345 | self.__getTimeFromData() | |
346 |
|
346 | |||
347 | if len(self.filenameList)>0: |
|
347 | if len(self.filenameList)>0: | |
348 | self.status = 1 |
|
348 | self.status = 1 | |
349 | self.filenameList.sort() |
|
349 | self.filenameList.sort() | |
350 | else: |
|
350 | else: | |
351 | self.status = 0 |
|
351 | self.status = 0 | |
352 | return None |
|
352 | return None | |
353 |
|
353 | |||
354 | else: |
|
354 | else: | |
355 | #get the last file - 1 |
|
355 | #get the last file - 1 | |
356 | self.filenameList = [self.filenameList[-2]] |
|
356 | self.filenameList = [self.filenameList[-2]] | |
357 | new_dirnameList = [] |
|
357 | new_dirnameList = [] | |
358 | for dirname in self.dirnameList: |
|
358 | for dirname in self.dirnameList: | |
359 | junk = numpy.array([dirname in x for x in self.filenameList]) |
|
359 | junk = numpy.array([dirname in x for x in self.filenameList]) | |
360 | junk_sum = junk.sum() |
|
360 | junk_sum = junk.sum() | |
361 | if junk_sum > 0: |
|
361 | if junk_sum > 0: | |
362 | new_dirnameList.append(dirname) |
|
362 | new_dirnameList.append(dirname) | |
363 | self.dirnameList = new_dirnameList |
|
363 | self.dirnameList = new_dirnameList | |
364 | return 1 |
|
364 | return 1 | |
365 |
|
365 | |||
366 | def searchFilesOnLine(self, path, startDate, endDate, startTime=datetime.time(0,0,0), |
|
366 | def searchFilesOnLine(self, path, startDate, endDate, startTime=datetime.time(0,0,0), | |
367 | endTime=datetime.time(23,59,59),walk=True): |
|
367 | endTime=datetime.time(23,59,59),walk=True): | |
368 |
|
368 | |||
369 | if endDate ==None: |
|
369 | if endDate ==None: | |
370 | startDate = datetime.datetime.utcnow().date() |
|
370 | startDate = datetime.datetime.utcnow().date() | |
371 | endDate = datetime.datetime.utcnow().date() |
|
371 | endDate = datetime.datetime.utcnow().date() | |
372 |
|
372 | |||
373 | self.__setParameters(path=path, startDate=startDate, endDate=endDate,startTime = startTime,endTime=endTime, walk=walk) |
|
373 | self.__setParameters(path=path, startDate=startDate, endDate=endDate,startTime = startTime,endTime=endTime, walk=walk) | |
374 |
|
374 | |||
375 | self.__checkPath() |
|
375 | self.__checkPath() | |
376 |
|
376 | |||
377 | self.__findDataForDates(online=True) |
|
377 | self.__findDataForDates(online=True) | |
378 |
|
378 | |||
379 | self.dirnameList = [self.dirnameList[-1]] |
|
379 | self.dirnameList = [self.dirnameList[-1]] | |
380 |
|
380 | |||
381 | self.__selectDataForTimes(online=True) |
|
381 | self.__selectDataForTimes(online=True) | |
382 |
|
382 | |||
383 | return |
|
383 | return | |
384 |
|
384 | |||
385 |
|
385 | |||
386 | def searchFilesOffLine(self, |
|
386 | def searchFilesOffLine(self, | |
387 | path, |
|
387 | path, | |
388 | startDate, |
|
388 | startDate, | |
389 | endDate, |
|
389 | endDate, | |
390 | startTime=datetime.time(0,0,0), |
|
390 | startTime=datetime.time(0,0,0), | |
391 | endTime=datetime.time(23,59,59), |
|
391 | endTime=datetime.time(23,59,59), | |
392 | walk=True): |
|
392 | walk=True): | |
393 |
|
393 | |||
394 | self.__setParameters(path, startDate, endDate, startTime, endTime, walk) |
|
394 | self.__setParameters(path, startDate, endDate, startTime, endTime, walk) | |
395 |
|
395 | |||
396 | self.__checkPath() |
|
396 | self.__checkPath() | |
397 |
|
397 | |||
398 | self.__findDataForDates() |
|
398 | self.__findDataForDates() | |
399 |
|
399 | |||
400 | self.__selectDataForTimes() |
|
400 | self.__selectDataForTimes() | |
401 |
|
401 | |||
402 | for i in range(len(self.filenameList)): |
|
402 | for i in range(len(self.filenameList)): | |
403 | print("%s" %(self.filenameList[i])) |
|
403 | print("%s" %(self.filenameList[i])) | |
404 |
|
404 | |||
405 | return |
|
405 | return | |
406 |
|
406 | |||
407 | def __setNextFileOffline(self): |
|
407 | def __setNextFileOffline(self): | |
408 |
|
408 | |||
409 | try: |
|
409 | try: | |
410 | self.filename = self.filenameList[self.fileIndex] |
|
410 | self.filename = self.filenameList[self.fileIndex] | |
411 | self.amisrFilePointer = h5py.File(self.filename,'r') |
|
411 | self.amisrFilePointer = h5py.File(self.filename,'r') | |
412 | self.fileIndex += 1 |
|
412 | self.fileIndex += 1 | |
413 | except: |
|
413 | except: | |
414 | self.flagNoMoreFiles = 1 |
|
414 | self.flagNoMoreFiles = 1 | |
415 | print("No more Files") |
|
415 | print("No more Files") | |
416 | return 0 |
|
416 | return 0 | |
417 |
|
417 | |||
418 | self.flagIsNewFile = 1 |
|
418 | self.flagIsNewFile = 1 | |
419 | print("Setting the file: %s"%self.filename) |
|
419 | print("Setting the file: %s"%self.filename) | |
420 |
|
420 | |||
421 | return 1 |
|
421 | return 1 | |
422 |
|
422 | |||
423 |
|
423 | |||
424 | def __setNextFileOnline(self): |
|
424 | def __setNextFileOnline(self): | |
425 | filename = self.filenameList[0] |
|
425 | filename = self.filenameList[0] | |
426 | if self.__filename_online != None: |
|
426 | if self.__filename_online != None: | |
427 | self.__selectDataForTimes(online=True) |
|
427 | self.__selectDataForTimes(online=True) | |
428 | filename = self.filenameList[0] |
|
428 | filename = self.filenameList[0] | |
429 | wait = 0 |
|
429 | wait = 0 | |
430 | self.__waitForNewFile=300 ## DEBUG: |
|
430 | self.__waitForNewFile=300 ## DEBUG: | |
431 | while self.__filename_online == filename: |
|
431 | while self.__filename_online == filename: | |
432 | print('waiting %d seconds to get a new file...'%(self.__waitForNewFile)) |
|
432 | print('waiting %d seconds to get a new file...'%(self.__waitForNewFile)) | |
433 | if wait == 5: |
|
433 | if wait == 5: | |
434 | self.flagNoMoreFiles = 1 |
|
434 | self.flagNoMoreFiles = 1 | |
435 | return 0 |
|
435 | return 0 | |
436 | sleep(self.__waitForNewFile) |
|
436 | sleep(self.__waitForNewFile) | |
437 | self.__selectDataForTimes(online=True) |
|
437 | self.__selectDataForTimes(online=True) | |
438 | filename = self.filenameList[0] |
|
438 | filename = self.filenameList[0] | |
439 | wait += 1 |
|
439 | wait += 1 | |
440 |
|
440 | |||
441 | self.__filename_online = filename |
|
441 | self.__filename_online = filename | |
442 |
|
442 | |||
443 | self.amisrFilePointer = h5py.File(filename,'r') |
|
443 | self.amisrFilePointer = h5py.File(filename,'r') | |
444 | self.flagIsNewFile = 1 |
|
444 | self.flagIsNewFile = 1 | |
445 | self.filename = filename |
|
445 | self.filename = filename | |
446 | print("Setting the file: %s"%self.filename) |
|
446 | print("Setting the file: %s"%self.filename) | |
447 | return 1 |
|
447 | return 1 | |
448 |
|
448 | |||
449 |
|
449 | |||
450 | def readData(self): |
|
450 | def readData(self): | |
451 | buffer = self.amisrFilePointer.get('Raw11/Data/Samples/Data') |
|
451 | buffer = self.amisrFilePointer.get('Raw11/Data/Samples/Data') | |
452 | re = buffer[:,:,:,0] |
|
452 | re = buffer[:,:,:,0] | |
453 | im = buffer[:,:,:,1] |
|
453 | im = buffer[:,:,:,1] | |
454 | dataset = re + im*1j |
|
454 | dataset = re + im*1j | |
455 |
|
455 | |||
456 | self.radacTime = self.amisrFilePointer.get('Raw11/Data/RadacHeader/RadacTime') |
|
456 | self.radacTime = self.amisrFilePointer.get('Raw11/Data/RadacHeader/RadacTime') | |
457 | timeset = self.radacTime[:,0] |
|
457 | timeset = self.radacTime[:,0] | |
458 |
|
458 | |||
459 | return dataset,timeset |
|
459 | return dataset,timeset | |
460 |
|
460 | |||
461 | def reshapeData(self): |
|
461 | def reshapeData(self): | |
462 | #self.beamCodeByPulse, self.beamCode, self.nblocks, self.nprofiles, self.nsa, |
|
462 | #self.beamCodeByPulse, self.beamCode, self.nblocks, self.nprofiles, self.nsa, | |
463 | channels = self.beamCodeByPulse[0,:] |
|
463 | channels = self.beamCodeByPulse[0,:] | |
464 | nchan = self.nchannels |
|
464 | nchan = self.nchannels | |
465 | #self.newProfiles = self.nprofiles/nchan #must be defined on filljroheader |
|
465 | #self.newProfiles = self.nprofiles/nchan #must be defined on filljroheader | |
466 | nblocks = self.nblocks |
|
466 | nblocks = self.nblocks | |
467 | nsamples = self.nsa |
|
467 | nsamples = self.nsa | |
468 |
|
468 | |||
469 | #Dimensions : nChannels, nProfiles, nSamples |
|
469 | #Dimensions : nChannels, nProfiles, nSamples | |
470 | new_block = numpy.empty((nblocks, nchan, numpy.int_(self.newProfiles), nsamples), dtype="complex64") |
|
470 | new_block = numpy.empty((nblocks, nchan, numpy.int_(self.newProfiles), nsamples), dtype="complex64") | |
471 | ############################################ |
|
471 | ############################################ | |
472 |
|
472 | |||
473 | for thisChannel in range(nchan): |
|
473 | for thisChannel in range(nchan): | |
474 | new_block[:,thisChannel,:,:] = self.dataset[:,numpy.where(channels==self.beamCode[thisChannel])[0],:] |
|
474 | new_block[:,thisChannel,:,:] = self.dataset[:,numpy.where(channels==self.beamCode[thisChannel])[0],:] | |
475 |
|
475 | |||
476 |
|
476 | |||
477 | new_block = numpy.transpose(new_block, (1,0,2,3)) |
|
477 | new_block = numpy.transpose(new_block, (1,0,2,3)) | |
478 | new_block = numpy.reshape(new_block, (nchan,-1, nsamples)) |
|
478 | new_block = numpy.reshape(new_block, (nchan,-1, nsamples)) | |
479 |
|
479 | |||
480 | return new_block |
|
480 | return new_block | |
481 |
|
481 | |||
482 | def updateIndexes(self): |
|
482 | def updateIndexes(self): | |
483 |
|
483 | |||
484 | pass |
|
484 | pass | |
485 |
|
485 | |||
486 | def fillJROHeader(self): |
|
486 | def fillJROHeader(self): | |
487 |
|
487 | |||
488 | #fill radar controller header |
|
488 | #fill radar controller header | |
489 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader(ipp=self.__ippKm, |
|
489 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader(ipp=self.__ippKm, | |
490 | txA=self.__txA, |
|
490 | txA=self.__txA, | |
491 | txB=0, |
|
491 | txB=0, | |
492 | nWindows=1, |
|
492 | nWindows=1, | |
493 | nHeights=self.__nSamples, |
|
493 | nHeights=self.__nSamples, | |
494 | firstHeight=self.__firstHeight, |
|
494 | firstHeight=self.__firstHeight, | |
495 | deltaHeight=self.__deltaHeight, |
|
495 | deltaHeight=self.__deltaHeight, | |
496 | codeType=self.__codeType, |
|
496 | codeType=self.__codeType, | |
497 | nCode=self.__nCode, nBaud=self.__nBaud, |
|
497 | nCode=self.__nCode, nBaud=self.__nBaud, | |
498 | code = self.__code, |
|
498 | code = self.__code, | |
499 | fClock=1) |
|
499 | fClock=1) | |
500 |
|
500 | |||
501 | #fill system header |
|
501 | #fill system header | |
502 | self.dataOut.systemHeaderObj = SystemHeader(nSamples=self.__nSamples, |
|
502 | self.dataOut.systemHeaderObj = SystemHeader(nSamples=self.__nSamples, | |
503 | nProfiles=self.newProfiles, |
|
503 | nProfiles=self.newProfiles, | |
504 | nChannels=len(self.__channelList), |
|
504 | nChannels=len(self.__channelList), | |
505 | adcResolution=14, |
|
505 | adcResolution=14, | |
506 | pciDioBusWidth=32) |
|
506 | pciDioBusWidth=32) | |
507 |
|
507 | |||
508 | self.dataOut.type = "Voltage" |
|
508 | self.dataOut.type = "Voltage" | |
509 | self.dataOut.data = None |
|
509 | self.dataOut.data = None | |
510 | self.dataOut.dtype = numpy.dtype([('real','<i8'),('imag','<i8')]) |
|
510 | self.dataOut.dtype = numpy.dtype([('real','<i8'),('imag','<i8')]) | |
511 | # self.dataOut.nChannels = 0 |
|
511 | # self.dataOut.nChannels = 0 | |
512 |
|
512 | |||
513 | # self.dataOut.nHeights = 0 |
|
513 | # self.dataOut.nHeights = 0 | |
514 |
|
514 | |||
515 | self.dataOut.nProfiles = self.newProfiles*self.nblocks |
|
515 | self.dataOut.nProfiles = self.newProfiles*self.nblocks | |
516 | #self.dataOut.heightList = self.__firstHeigth + numpy.arange(self.__nSamples, dtype = numpy.float)*self.__deltaHeigth |
|
516 | #self.dataOut.heightList = self.__firstHeigth + numpy.arange(self.__nSamples, dtype = numpy.float)*self.__deltaHeigth | |
517 | ranges = numpy.reshape(self.rangeFromFile.value,(-1)) |
|
517 | ranges = numpy.reshape(self.rangeFromFile.value,(-1)) | |
518 | self.dataOut.heightList = ranges/1000.0 #km |
|
518 | self.dataOut.heightList = ranges/1000.0 #km | |
519 | self.dataOut.channelList = self.__channelList |
|
519 | self.dataOut.channelList = self.__channelList | |
520 | self.dataOut.blocksize = self.dataOut.nChannels * self.dataOut.nHeights |
|
520 | self.dataOut.blocksize = self.dataOut.nChannels * self.dataOut.nHeights | |
521 |
|
521 | |||
522 | # self.dataOut.channelIndexList = None |
|
522 | # self.dataOut.channelIndexList = None | |
523 |
|
523 | |||
524 |
|
524 | |||
525 | self.dataOut.azimuthList = numpy.array(self.azimuthList) |
|
525 | self.dataOut.azimuthList = numpy.array(self.azimuthList) | |
526 | self.dataOut.elevationList = numpy.array(self.elevationList) |
|
526 | self.dataOut.elevationList = numpy.array(self.elevationList) | |
527 | self.dataOut.codeList = numpy.array(self.beamCode) |
|
527 | self.dataOut.codeList = numpy.array(self.beamCode) | |
528 | #print(self.dataOut.elevationList) |
|
528 | #print(self.dataOut.elevationList) | |
529 | self.dataOut.flagNoData = True |
|
529 | self.dataOut.flagNoData = True | |
530 |
|
530 | |||
531 | #Set to TRUE if the data is discontinuous |
|
531 | #Set to TRUE if the data is discontinuous | |
532 | self.dataOut.flagDiscontinuousBlock = False |
|
532 | self.dataOut.flagDiscontinuousBlock = False | |
533 |
|
533 | |||
534 | self.dataOut.utctime = None |
|
534 | self.dataOut.utctime = None | |
535 |
|
535 | |||
536 | #self.dataOut.timeZone = -5 #self.__timezone/60 #timezone like jroheader, difference in minutes between UTC and localtime |
|
536 | #self.dataOut.timeZone = -5 #self.__timezone/60 #timezone like jroheader, difference in minutes between UTC and localtime | |
537 | if self.timezone == 'lt': |
|
537 | if self.timezone == 'lt': | |
538 | self.dataOut.timeZone = time.timezone / 60. #get the timezone in minutes |
|
538 | self.dataOut.timeZone = time.timezone / 60. #get the timezone in minutes | |
539 | else: |
|
539 | else: | |
540 | self.dataOut.timeZone = 0 #by default time is UTC |
|
540 | self.dataOut.timeZone = 0 #by default time is UTC | |
541 |
|
541 | |||
542 | self.dataOut.dstFlag = 0 |
|
542 | self.dataOut.dstFlag = 0 | |
543 | self.dataOut.errorCount = 0 |
|
543 | self.dataOut.errorCount = 0 | |
544 | self.dataOut.nCohInt = 1 |
|
544 | self.dataOut.nCohInt = 1 | |
545 | self.dataOut.flagDecodeData = False #asumo que la data esta decodificada |
|
545 | self.dataOut.flagDecodeData = False #asumo que la data esta decodificada | |
546 | self.dataOut.flagDeflipData = False #asumo que la data esta sin flip |
|
546 | self.dataOut.flagDeflipData = False #asumo que la data esta sin flip | |
547 | self.dataOut.flagShiftFFT = False |
|
547 | self.dataOut.flagShiftFFT = False | |
548 | self.dataOut.ippSeconds = self.ippSeconds |
|
548 | self.dataOut.ippSeconds = self.ippSeconds | |
549 |
|
549 | |||
550 | #Time interval between profiles |
|
550 | #Time interval between profiles | |
551 | #self.dataOut.timeInterval = self.dataOut.ippSeconds * self.dataOut.nCohInt |
|
551 | #self.dataOut.timeInterval = self.dataOut.ippSeconds * self.dataOut.nCohInt | |
552 |
|
552 | |||
553 | self.dataOut.frequency = self.__frequency |
|
553 | self.dataOut.frequency = self.__frequency | |
554 | self.dataOut.realtime = self.online |
|
554 | self.dataOut.realtime = self.online | |
555 | pass |
|
555 | pass | |
556 |
|
556 | |||
557 | def readNextFile(self,online=False): |
|
557 | def readNextFile(self,online=False): | |
558 |
|
558 | |||
559 | if not(online): |
|
559 | if not(online): | |
560 | newFile = self.__setNextFileOffline() |
|
560 | newFile = self.__setNextFileOffline() | |
561 | else: |
|
561 | else: | |
562 | newFile = self.__setNextFileOnline() |
|
562 | newFile = self.__setNextFileOnline() | |
563 |
|
563 | |||
564 | if not(newFile): |
|
564 | if not(newFile): | |
565 | self.dataOut.error = True |
|
565 | self.dataOut.error = True | |
566 | return 0 |
|
566 | return 0 | |
567 |
|
567 | |||
568 | if not self.readAMISRHeader(self.amisrFilePointer): |
|
568 | if not self.readAMISRHeader(self.amisrFilePointer): | |
569 | self.dataOut.error = True |
|
569 | self.dataOut.error = True | |
570 | return 0 |
|
570 | return 0 | |
571 |
|
571 | |||
572 | self.createBuffers() |
|
572 | self.createBuffers() | |
573 | self.fillJROHeader() |
|
573 | self.fillJROHeader() | |
574 |
|
574 | |||
575 | #self.__firstFile = False |
|
575 | #self.__firstFile = False | |
576 |
|
576 | |||
577 |
|
577 | |||
578 |
|
578 | |||
579 | self.dataset,self.timeset = self.readData() |
|
579 | self.dataset,self.timeset = self.readData() | |
580 |
|
580 | |||
581 | if self.endDate!=None: |
|
581 | if self.endDate!=None: | |
582 | endDateTime_Reader = datetime.datetime.combine(self.endDate,self.endTime) |
|
582 | endDateTime_Reader = datetime.datetime.combine(self.endDate,self.endTime) | |
583 | time_str = self.amisrFilePointer.get('Time/RadacTimeString') |
|
583 | time_str = self.amisrFilePointer.get('Time/RadacTimeString') | |
584 | startDateTimeStr_File = time_str[0][0].decode('UTF-8').split('.')[0] |
|
584 | startDateTimeStr_File = time_str[0][0].decode('UTF-8').split('.')[0] | |
585 | junk = time.strptime(startDateTimeStr_File, '%Y-%m-%d %H:%M:%S') |
|
585 | junk = time.strptime(startDateTimeStr_File, '%Y-%m-%d %H:%M:%S') | |
586 | startDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) |
|
586 | startDateTime_File = datetime.datetime(junk.tm_year,junk.tm_mon,junk.tm_mday,junk.tm_hour, junk.tm_min, junk.tm_sec) | |
587 | if self.timezone == 'lt': |
|
587 | if self.timezone == 'lt': | |
588 | startDateTime_File = startDateTime_File - datetime.timedelta(minutes = 300) |
|
588 | startDateTime_File = startDateTime_File - datetime.timedelta(minutes = 300) | |
589 | if (startDateTime_File>endDateTime_Reader): |
|
589 | if (startDateTime_File>endDateTime_Reader): | |
590 | return 0 |
|
590 | return 0 | |
591 |
|
591 | |||
592 | self.jrodataset = self.reshapeData() |
|
592 | self.jrodataset = self.reshapeData() | |
593 | #----self.updateIndexes() |
|
593 | #----self.updateIndexes() | |
594 | self.profileIndex = 0 |
|
594 | self.profileIndex = 0 | |
595 |
|
595 | |||
596 | return 1 |
|
596 | return 1 | |
597 |
|
597 | |||
598 |
|
598 | |||
599 | def __hasNotDataInBuffer(self): |
|
599 | def __hasNotDataInBuffer(self): | |
600 | if self.profileIndex >= (self.newProfiles*self.nblocks): |
|
600 | if self.profileIndex >= (self.newProfiles*self.nblocks): | |
601 | return 1 |
|
601 | return 1 | |
602 | return 0 |
|
602 | return 0 | |
603 |
|
603 | |||
604 |
|
604 | |||
605 | def getData(self): |
|
605 | def getData(self): | |
606 |
|
606 | |||
607 | if self.flagNoMoreFiles: |
|
607 | if self.flagNoMoreFiles: | |
608 | self.dataOut.flagNoData = True |
|
608 | self.dataOut.flagNoData = True | |
609 | return 0 |
|
609 | return 0 | |
610 |
|
610 | |||
611 | if self.__hasNotDataInBuffer(): |
|
611 | if self.__hasNotDataInBuffer(): | |
612 | if not (self.readNextFile(self.online)): |
|
612 | if not (self.readNextFile(self.online)): | |
613 | return 0 |
|
613 | return 0 | |
614 |
|
614 | |||
615 |
|
615 | |||
616 | if self.dataset is None: # setear esta condicion cuando no hayan datos por leer |
|
616 | if self.dataset is None: # setear esta condicion cuando no hayan datos por leer | |
617 | self.dataOut.flagNoData = True |
|
617 | self.dataOut.flagNoData = True | |
618 | return 0 |
|
618 | return 0 | |
619 |
|
619 | |||
620 | #self.dataOut.data = numpy.reshape(self.jrodataset[self.profileIndex,:],(1,-1)) |
|
620 | #self.dataOut.data = numpy.reshape(self.jrodataset[self.profileIndex,:],(1,-1)) | |
621 |
|
621 | |||
622 | self.dataOut.data = self.jrodataset[:,self.profileIndex,:] |
|
622 | self.dataOut.data = self.jrodataset[:,self.profileIndex,:] | |
623 |
|
623 | |||
624 | #print("R_t",self.timeset) |
|
624 | #print("R_t",self.timeset) | |
625 |
|
625 | |||
626 | #self.dataOut.utctime = self.jrotimeset[self.profileIndex] |
|
626 | #self.dataOut.utctime = self.jrotimeset[self.profileIndex] | |
627 | #verificar basic header de jro data y ver si es compatible con este valor |
|
627 | #verificar basic header de jro data y ver si es compatible con este valor | |
628 | #self.dataOut.utctime = self.timeset + (self.profileIndex * self.ippSeconds * self.nchannels) |
|
628 | #self.dataOut.utctime = self.timeset + (self.profileIndex * self.ippSeconds * self.nchannels) | |
629 | indexprof = numpy.mod(self.profileIndex, self.newProfiles) |
|
629 | indexprof = numpy.mod(self.profileIndex, self.newProfiles) | |
630 | indexblock = self.profileIndex/self.newProfiles |
|
630 | indexblock = self.profileIndex/self.newProfiles | |
631 | #print (indexblock, indexprof) |
|
631 | #print (indexblock, indexprof) | |
632 | diffUTC = 1.8e4 #UTC diference from peru in seconds --Joab |
|
632 | diffUTC = 1.8e4 #UTC diference from peru in seconds --Joab | |
633 | diffUTC = 0 |
|
633 | diffUTC = 0 | |
634 | t_comp = (indexprof * self.ippSeconds * self.nchannels) + diffUTC # |
|
634 | t_comp = (indexprof * self.ippSeconds * self.nchannels) + diffUTC # | |
635 |
|
635 | |||
636 | #print("utc :",indexblock," __ ",t_comp) |
|
636 | #print("utc :",indexblock," __ ",t_comp) | |
637 | #print(numpy.shape(self.timeset)) |
|
637 | #print(numpy.shape(self.timeset)) | |
638 | self.dataOut.utctime = self.timeset[numpy.int_(indexblock)] + t_comp |
|
638 | self.dataOut.utctime = self.timeset[numpy.int_(indexblock)] + t_comp | |
639 | #self.dataOut.utctime = self.timeset[self.profileIndex] + t_comp |
|
639 | #self.dataOut.utctime = self.timeset[self.profileIndex] + t_comp | |
640 | #print(self.dataOut.utctime) |
|
640 | #print(self.dataOut.utctime) | |
641 | self.dataOut.profileIndex = self.profileIndex |
|
641 | self.dataOut.profileIndex = self.profileIndex | |
642 | #print("N profile:",self.profileIndex,self.newProfiles,self.nblocks,self.dataOut.utctime) |
|
642 | #print("N profile:",self.profileIndex,self.newProfiles,self.nblocks,self.dataOut.utctime) | |
643 | self.dataOut.flagNoData = False |
|
643 | self.dataOut.flagNoData = False | |
644 | # if indexprof == 0: |
|
644 | # if indexprof == 0: | |
645 | # print self.dataOut.utctime |
|
645 | # print self.dataOut.utctime | |
646 |
|
646 | |||
647 | self.profileIndex += 1 |
|
647 | self.profileIndex += 1 | |
648 |
|
648 | |||
649 |
|
|
649 | return self.dataOut.data | |
650 |
|
650 | |||
651 |
|
651 | |||
652 | def run(self, **kwargs): |
|
652 | def run(self, **kwargs): | |
653 | ''' |
|
653 | ''' | |
654 | This method will be called many times so here you should put all your code |
|
654 | This method will be called many times so here you should put all your code | |
655 | ''' |
|
655 | ''' | |
656 | #print("running kamisr") |
|
656 | #print("running kamisr") | |
657 | if not self.isConfig: |
|
657 | if not self.isConfig: | |
658 | self.setup(**kwargs) |
|
658 | self.setup(**kwargs) | |
659 | self.isConfig = True |
|
659 | self.isConfig = True | |
660 |
|
660 | |||
661 | self.getData() |
|
661 | self.getData() | |
662 | #return(self.dataOut.data) |
|
|||
663 | return(self.dataOut) |
|
@@ -1,626 +1,651 | |||||
1 | import os |
|
1 | import os | |
2 | import time |
|
2 | import time | |
3 | import datetime |
|
3 | import datetime | |
4 |
|
4 | |||
5 | import numpy |
|
5 | import numpy | |
6 | import h5py |
|
6 | import h5py | |
7 |
|
7 | |||
8 | import schainpy.admin |
|
8 | import schainpy.admin | |
9 | from schainpy.model.data.jrodata import * |
|
9 | from schainpy.model.data.jrodata import * | |
10 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
10 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
11 | from schainpy.model.io.jroIO_base import * |
|
11 | from schainpy.model.io.jroIO_base import * | |
12 | from schainpy.utils import log |
|
12 | from schainpy.utils import log | |
13 |
|
13 | |||
14 |
|
14 | |||
15 | class HDFReader(Reader, ProcessingUnit): |
|
15 | class HDFReader(Reader, ProcessingUnit): | |
16 | """Processing unit to read HDF5 format files |
|
16 | """Processing unit to read HDF5 format files | |
17 |
|
17 | |||
18 | This unit reads HDF5 files created with `HDFWriter` operation contains |
|
18 | This unit reads HDF5 files created with `HDFWriter` operation contains | |
19 | by default two groups Data and Metadata all variables would be saved as `dataOut` |
|
19 | by default two groups Data and Metadata all variables would be saved as `dataOut` | |
20 | attributes. |
|
20 | attributes. | |
21 | It is possible to read any HDF5 file by given the structure in the `description` |
|
21 | It is possible to read any HDF5 file by given the structure in the `description` | |
22 | parameter, also you can add extra values to metadata with the parameter `extras`. |
|
22 | parameter, also you can add extra values to metadata with the parameter `extras`. | |
23 |
|
23 | |||
24 | Parameters: |
|
24 | Parameters: | |
25 | ----------- |
|
25 | ----------- | |
26 | path : str |
|
26 | path : str | |
27 | Path where files are located. |
|
27 | Path where files are located. | |
28 | startDate : date |
|
28 | startDate : date | |
29 | Start date of the files |
|
29 | Start date of the files | |
30 | endDate : list |
|
30 | endDate : list | |
31 | End date of the files |
|
31 | End date of the files | |
32 | startTime : time |
|
32 | startTime : time | |
33 | Start time of the files |
|
33 | Start time of the files | |
34 | endTime : time |
|
34 | endTime : time | |
35 | End time of the files |
|
35 | End time of the files | |
36 | description : dict, optional |
|
36 | description : dict, optional | |
37 | Dictionary with the description of the HDF5 file |
|
37 | Dictionary with the description of the HDF5 file | |
38 | extras : dict, optional |
|
38 | extras : dict, optional | |
39 | Dictionary with extra metadata to be be added to `dataOut` |
|
39 | Dictionary with extra metadata to be be added to `dataOut` | |
40 |
|
40 | |||
41 | Examples |
|
41 | Examples | |
42 | -------- |
|
42 | -------- | |
43 |
|
43 | |||
44 | desc = { |
|
44 | desc = { | |
45 | 'Data': { |
|
45 | 'Data': { | |
46 | 'data_output': ['u', 'v', 'w'], |
|
46 | 'data_output': ['u', 'v', 'w'], | |
47 | 'utctime': 'timestamps', |
|
47 | 'utctime': 'timestamps', | |
48 | } , |
|
48 | } , | |
49 | 'Metadata': { |
|
49 | 'Metadata': { | |
50 | 'heightList': 'heights' |
|
50 | 'heightList': 'heights' | |
51 | } |
|
51 | } | |
52 | } |
|
52 | } | |
53 |
|
53 | |||
54 | desc = { |
|
54 | desc = { | |
55 | 'Data': { |
|
55 | 'Data': { | |
56 | 'data_output': 'winds', |
|
56 | 'data_output': 'winds', | |
57 | 'utctime': 'timestamps' |
|
57 | 'utctime': 'timestamps' | |
58 | }, |
|
58 | }, | |
59 | 'Metadata': { |
|
59 | 'Metadata': { | |
60 | 'heightList': 'heights' |
|
60 | 'heightList': 'heights' | |
61 | } |
|
61 | } | |
62 | } |
|
62 | } | |
63 |
|
63 | |||
64 | extras = { |
|
64 | extras = { | |
65 | 'timeZone': 300 |
|
65 | 'timeZone': 300 | |
66 | } |
|
66 | } | |
67 |
|
67 | |||
68 | reader = project.addReadUnit( |
|
68 | reader = project.addReadUnit( | |
69 | name='HDFReader', |
|
69 | name='HDFReader', | |
70 | path='/path/to/files', |
|
70 | path='/path/to/files', | |
71 | startDate='2019/01/01', |
|
71 | startDate='2019/01/01', | |
72 | endDate='2019/01/31', |
|
72 | endDate='2019/01/31', | |
73 | startTime='00:00:00', |
|
73 | startTime='00:00:00', | |
74 | endTime='23:59:59', |
|
74 | endTime='23:59:59', | |
75 | # description=json.dumps(desc), |
|
75 | # description=json.dumps(desc), | |
76 | # extras=json.dumps(extras), |
|
76 | # extras=json.dumps(extras), | |
77 | ) |
|
77 | ) | |
78 |
|
78 | |||
79 | """ |
|
79 | """ | |
80 |
|
80 | |||
81 | __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'description', 'extras'] |
|
81 | __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'description', 'extras'] | |
82 |
|
82 | |||
83 | def __init__(self): |
|
83 | def __init__(self): | |
84 | ProcessingUnit.__init__(self) |
|
84 | ProcessingUnit.__init__(self) | |
85 | self.dataOut = Parameters() |
|
85 | self.dataOut = Parameters() | |
86 | self.ext = ".hdf5" |
|
86 | self.ext = ".hdf5" | |
87 | self.optchar = "D" |
|
87 | self.optchar = "D" | |
88 | self.meta = {} |
|
88 | self.meta = {} | |
89 | self.data = {} |
|
89 | self.data = {} | |
90 | self.open_file = h5py.File |
|
90 | self.open_file = h5py.File | |
91 | self.open_mode = 'r' |
|
91 | self.open_mode = 'r' | |
92 | self.description = {} |
|
92 | self.description = {} | |
93 | self.extras = {} |
|
93 | self.extras = {} | |
94 | self.filefmt = "*%Y%j***" |
|
94 | self.filefmt = "*%Y%j***" | |
95 | self.folderfmt = "*%Y%j" |
|
95 | self.folderfmt = "*%Y%j" | |
96 | self.utcoffset = 0 |
|
96 | self.utcoffset = 0 | |
97 |
|
97 | |||
98 | def setup(self, **kwargs): |
|
98 | def setup(self, **kwargs): | |
99 |
|
99 | |||
100 | self.set_kwargs(**kwargs) |
|
100 | self.set_kwargs(**kwargs) | |
101 | if not self.ext.startswith('.'): |
|
101 | if not self.ext.startswith('.'): | |
102 | self.ext = '.{}'.format(self.ext) |
|
102 | self.ext = '.{}'.format(self.ext) | |
103 |
|
103 | |||
104 | if self.online: |
|
104 | if self.online: | |
105 | log.log("Searching files in online mode...", self.name) |
|
105 | log.log("Searching files in online mode...", self.name) | |
106 |
|
106 | |||
107 | for nTries in range(self.nTries): |
|
107 | for nTries in range(self.nTries): | |
108 | fullpath = self.searchFilesOnLine(self.path, self.startDate, |
|
108 | fullpath = self.searchFilesOnLine(self.path, self.startDate, | |
109 | self.endDate, self.expLabel, self.ext, self.walk, |
|
109 | self.endDate, self.expLabel, self.ext, self.walk, | |
110 | self.filefmt, self.folderfmt) |
|
110 | self.filefmt, self.folderfmt) | |
|
111 | pathname, filename = os.path.split(fullpath) | |||
|
112 | print(pathname,filename) | |||
111 | try: |
|
113 | try: | |
112 | fullpath = next(fullpath) |
|
114 | fullpath = next(fullpath) | |
|
115 | ||||
113 | except: |
|
116 | except: | |
114 | fullpath = None |
|
117 | fullpath = None | |
115 |
|
118 | |||
116 | if fullpath: |
|
119 | if fullpath: | |
117 | break |
|
120 | break | |
118 |
|
121 | |||
119 | log.warning( |
|
122 | log.warning( | |
120 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( |
|
123 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( | |
121 | self.delay, self.path, nTries + 1), |
|
124 | self.delay, self.path, nTries + 1), | |
122 | self.name) |
|
125 | self.name) | |
123 | time.sleep(self.delay) |
|
126 | time.sleep(self.delay) | |
124 |
|
127 | |||
125 | if not(fullpath): |
|
128 | if not(fullpath): | |
126 | raise schainpy.admin.SchainError( |
|
129 | raise schainpy.admin.SchainError( | |
127 | 'There isn\'t any valid file in {}'.format(self.path)) |
|
130 | 'There isn\'t any valid file in {}'.format(self.path)) | |
128 |
|
131 | |||
129 | pathname, filename = os.path.split(fullpath) |
|
132 | pathname, filename = os.path.split(fullpath) | |
130 | self.year = int(filename[1:5]) |
|
133 | self.year = int(filename[1:5]) | |
131 | self.doy = int(filename[5:8]) |
|
134 | self.doy = int(filename[5:8]) | |
132 | self.set = int(filename[8:11]) - 1 |
|
135 | self.set = int(filename[8:11]) - 1 | |
133 | else: |
|
136 | else: | |
134 | log.log("Searching files in {}".format(self.path), self.name) |
|
137 | log.log("Searching files in {}".format(self.path), self.name) | |
135 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, |
|
138 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, | |
136 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) |
|
139 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) | |
137 |
|
140 | |||
138 | self.setNextFile() |
|
141 | self.setNextFile() | |
139 |
|
142 | |||
140 | return |
|
143 | return | |
141 |
|
144 | |||
|
145 | ||||
142 | def readFirstHeader(self): |
|
146 | def readFirstHeader(self): | |
143 | '''Read metadata and data''' |
|
147 | '''Read metadata and data''' | |
144 |
|
148 | |||
145 | self.__readMetadata() |
|
149 | self.__readMetadata() | |
146 | self.__readData() |
|
150 | self.__readData() | |
147 | self.__setBlockList() |
|
151 | self.__setBlockList() | |
148 |
|
152 | |||
149 | if 'type' in self.meta: |
|
153 | if 'type' in self.meta: | |
150 | self.dataOut = eval(self.meta['type'])() |
|
154 | self.dataOut = eval(self.meta['type'])() | |
151 |
|
155 | |||
152 | for attr in self.meta: |
|
156 | for attr in self.meta: | |
|
157 | print("attr: ", attr) | |||
153 | setattr(self.dataOut, attr, self.meta[attr]) |
|
158 | setattr(self.dataOut, attr, self.meta[attr]) | |
154 |
|
159 | |||
|
160 | ||||
155 | self.blockIndex = 0 |
|
161 | self.blockIndex = 0 | |
156 |
|
162 | |||
157 | return |
|
163 | return | |
158 |
|
164 | |||
159 | def __setBlockList(self): |
|
165 | def __setBlockList(self): | |
160 | ''' |
|
166 | ''' | |
161 | Selects the data within the times defined |
|
167 | Selects the data within the times defined | |
162 |
|
168 | |||
163 | self.fp |
|
169 | self.fp | |
164 | self.startTime |
|
170 | self.startTime | |
165 | self.endTime |
|
171 | self.endTime | |
166 | self.blockList |
|
172 | self.blockList | |
167 | self.blocksPerFile |
|
173 | self.blocksPerFile | |
168 |
|
174 | |||
169 | ''' |
|
175 | ''' | |
170 |
|
176 | |||
171 | startTime = self.startTime |
|
177 | startTime = self.startTime | |
172 | endTime = self.endTime |
|
178 | endTime = self.endTime | |
173 | thisUtcTime = self.data['utctime'] + self.utcoffset |
|
179 | thisUtcTime = self.data['utctime'] + self.utcoffset | |
174 | self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1]) |
|
180 | self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1]) | |
175 | thisDatetime = datetime.datetime.utcfromtimestamp(thisUtcTime[0]) |
|
181 | thisDatetime = datetime.datetime.utcfromtimestamp(thisUtcTime[0]) | |
176 |
|
182 | self.startFileDatetime = thisDatetime | ||
|
183 | print("datee ",self.startFileDatetime) | |||
177 | thisDate = thisDatetime.date() |
|
184 | thisDate = thisDatetime.date() | |
178 | thisTime = thisDatetime.time() |
|
185 | thisTime = thisDatetime.time() | |
179 |
|
186 | |||
180 | startUtcTime = (datetime.datetime.combine(thisDate, startTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
187 | startUtcTime = (datetime.datetime.combine(thisDate, startTime) - datetime.datetime(1970, 1, 1)).total_seconds() | |
181 | endUtcTime = (datetime.datetime.combine(thisDate, endTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
188 | endUtcTime = (datetime.datetime.combine(thisDate, endTime) - datetime.datetime(1970, 1, 1)).total_seconds() | |
182 |
|
189 | |||
183 | ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0] |
|
190 | ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0] | |
184 |
|
191 | |||
185 | self.blockList = ind |
|
192 | self.blockList = ind | |
186 | self.blocksPerFile = len(ind) |
|
193 | self.blocksPerFile = len(ind) | |
|
194 | self.blocksPerFile = len(thisUtcTime) | |||
187 | return |
|
195 | return | |
188 |
|
196 | |||
189 | def __readMetadata(self): |
|
197 | def __readMetadata(self): | |
190 | ''' |
|
198 | ''' | |
191 | Reads Metadata |
|
199 | Reads Metadata | |
192 | ''' |
|
200 | ''' | |
193 |
|
201 | |||
194 | meta = {} |
|
202 | meta = {} | |
195 |
|
203 | |||
196 | if self.description: |
|
204 | if self.description: | |
197 | for key, value in self.description['Metadata'].items(): |
|
205 | for key, value in self.description['Metadata'].items(): | |
198 | meta[key] = self.fp[value][()] |
|
206 | meta[key] = self.fp[value][()] | |
199 | else: |
|
207 | else: | |
200 | grp = self.fp['Metadata'] |
|
208 | grp = self.fp['Metadata'] | |
201 | for name in grp: |
|
209 | for name in grp: | |
202 | meta[name] = grp[name][()] |
|
210 | meta[name] = grp[name][()] | |
203 |
|
211 | |||
204 | if self.extras: |
|
212 | if self.extras: | |
205 | for key, value in self.extras.items(): |
|
213 | for key, value in self.extras.items(): | |
206 | meta[key] = value |
|
214 | meta[key] = value | |
207 | self.meta = meta |
|
215 | self.meta = meta | |
208 |
|
216 | |||
209 | return |
|
217 | return | |
210 |
|
218 | |||
|
219 | ||||
|
220 | ||||
|
221 | def checkForRealPath(self, nextFile, nextDay): | |||
|
222 | ||||
|
223 | # print("check FRP") | |||
|
224 | # dt = self.startFileDatetime + datetime.timedelta(1) | |||
|
225 | # filename = '{}.{}{}'.format(self.path, dt.strftime('%Y%m%d'), self.ext) | |||
|
226 | # fullfilename = os.path.join(self.path, filename) | |||
|
227 | # print("check Path ",fullfilename,filename) | |||
|
228 | # if os.path.exists(fullfilename): | |||
|
229 | # return fullfilename, filename | |||
|
230 | # return None, filename | |||
|
231 | return None,None | |||
|
232 | ||||
211 | def __readData(self): |
|
233 | def __readData(self): | |
212 |
|
234 | |||
213 | data = {} |
|
235 | data = {} | |
214 |
|
236 | |||
215 | if self.description: |
|
237 | if self.description: | |
216 | for key, value in self.description['Data'].items(): |
|
238 | for key, value in self.description['Data'].items(): | |
217 | if isinstance(value, str): |
|
239 | if isinstance(value, str): | |
218 | if isinstance(self.fp[value], h5py.Dataset): |
|
240 | if isinstance(self.fp[value], h5py.Dataset): | |
219 | data[key] = self.fp[value][()] |
|
241 | data[key] = self.fp[value][()] | |
220 | elif isinstance(self.fp[value], h5py.Group): |
|
242 | elif isinstance(self.fp[value], h5py.Group): | |
221 | array = [] |
|
243 | array = [] | |
222 | for ch in self.fp[value]: |
|
244 | for ch in self.fp[value]: | |
223 | array.append(self.fp[value][ch][()]) |
|
245 | array.append(self.fp[value][ch][()]) | |
224 | data[key] = numpy.array(array) |
|
246 | data[key] = numpy.array(array) | |
225 | elif isinstance(value, list): |
|
247 | elif isinstance(value, list): | |
226 | array = [] |
|
248 | array = [] | |
227 | for ch in value: |
|
249 | for ch in value: | |
228 | array.append(self.fp[ch][()]) |
|
250 | array.append(self.fp[ch][()]) | |
229 | data[key] = numpy.array(array) |
|
251 | data[key] = numpy.array(array) | |
230 | else: |
|
252 | else: | |
231 | grp = self.fp['Data'] |
|
253 | grp = self.fp['Data'] | |
232 | for name in grp: |
|
254 | for name in grp: | |
233 | if isinstance(grp[name], h5py.Dataset): |
|
255 | if isinstance(grp[name], h5py.Dataset): | |
234 | array = grp[name][()] |
|
256 | array = grp[name][()] | |
235 | elif isinstance(grp[name], h5py.Group): |
|
257 | elif isinstance(grp[name], h5py.Group): | |
236 | array = [] |
|
258 | array = [] | |
237 | for ch in grp[name]: |
|
259 | for ch in grp[name]: | |
238 | array.append(grp[name][ch][()]) |
|
260 | array.append(grp[name][ch][()]) | |
239 | array = numpy.array(array) |
|
261 | array = numpy.array(array) | |
240 | else: |
|
262 | else: | |
241 | log.warning('Unknown type: {}'.format(name)) |
|
263 | log.warning('Unknown type: {}'.format(name)) | |
242 |
|
264 | |||
243 | if name in self.description: |
|
265 | if name in self.description: | |
244 | key = self.description[name] |
|
266 | key = self.description[name] | |
245 | else: |
|
267 | else: | |
246 | key = name |
|
268 | key = name | |
247 | data[key] = array |
|
269 | data[key] = array | |
248 |
|
270 | |||
249 | self.data = data |
|
271 | self.data = data | |
250 | return |
|
272 | return | |
251 |
|
273 | |||
252 | def getData(self): |
|
274 | def getData(self): | |
253 |
|
275 | if not self.isDateTimeInRange(self.startFileDatetime, self.startDate, self.endDate, self.startTime, self.endTime): | ||
|
276 | self.dataOut.flagNoData = True | |||
|
277 | self.dataOut.error = True | |||
|
278 | return | |||
254 | for attr in self.data: |
|
279 | for attr in self.data: | |
255 | if self.data[attr].ndim == 1: |
|
280 | if self.data[attr].ndim == 1: | |
256 | setattr(self.dataOut, attr, self.data[attr][self.blockIndex]) |
|
281 | setattr(self.dataOut, attr, self.data[attr][self.blockIndex]) | |
257 | else: |
|
282 | else: | |
258 | setattr(self.dataOut, attr, self.data[attr][:, self.blockIndex]) |
|
283 | setattr(self.dataOut, attr, self.data[attr][:, self.blockIndex]) | |
259 |
|
284 | |||
260 | self.dataOut.flagNoData = False |
|
285 | self.dataOut.flagNoData = False | |
261 | self.blockIndex += 1 |
|
286 | self.blockIndex += 1 | |
262 |
|
287 | |||
263 | log.log("Block No. {}/{} -> {}".format( |
|
288 | log.log("Block No. {}/{} -> {}".format( | |
264 | self.blockIndex, |
|
289 | self.blockIndex, | |
265 | self.blocksPerFile, |
|
290 | self.blocksPerFile, | |
266 | self.dataOut.datatime.ctime()), self.name) |
|
291 | self.dataOut.datatime.ctime()), self.name) | |
267 |
|
292 | |||
268 | return |
|
293 | return | |
269 |
|
294 | |||
270 | def run(self, **kwargs): |
|
295 | def run(self, **kwargs): | |
271 |
|
296 | |||
272 | if not(self.isConfig): |
|
297 | if not(self.isConfig): | |
273 | self.setup(**kwargs) |
|
298 | self.setup(**kwargs) | |
274 | self.isConfig = True |
|
299 | self.isConfig = True | |
275 |
|
300 | |||
276 | if self.blockIndex == self.blocksPerFile: |
|
301 | if self.blockIndex == self.blocksPerFile: | |
277 | self.setNextFile() |
|
302 | self.setNextFile() | |
278 |
|
303 | |||
279 | self.getData() |
|
304 | self.getData() | |
280 |
|
305 | |||
281 | return |
|
306 | return | |
282 |
|
307 | |||
283 | @MPDecorator |
|
308 | @MPDecorator | |
284 | class HDFWriter(Operation): |
|
309 | class HDFWriter(Operation): | |
285 | """Operation to write HDF5 files. |
|
310 | """Operation to write HDF5 files. | |
286 |
|
311 | |||
287 | The HDF5 file contains by default two groups Data and Metadata where |
|
312 | The HDF5 file contains by default two groups Data and Metadata where | |
288 | you can save any `dataOut` attribute specified by `dataList` and `metadataList` |
|
313 | you can save any `dataOut` attribute specified by `dataList` and `metadataList` | |
289 | parameters, data attributes are normaly time dependent where the metadata |
|
314 | parameters, data attributes are normaly time dependent where the metadata | |
290 | are not. |
|
315 | are not. | |
291 | It is possible to customize the structure of the HDF5 file with the |
|
316 | It is possible to customize the structure of the HDF5 file with the | |
292 | optional description parameter see the examples. |
|
317 | optional description parameter see the examples. | |
293 |
|
318 | |||
294 | Parameters: |
|
319 | Parameters: | |
295 | ----------- |
|
320 | ----------- | |
296 | path : str |
|
321 | path : str | |
297 | Path where files will be saved. |
|
322 | Path where files will be saved. | |
298 | blocksPerFile : int |
|
323 | blocksPerFile : int | |
299 | Number of blocks per file |
|
324 | Number of blocks per file | |
300 | metadataList : list |
|
325 | metadataList : list | |
301 | List of the dataOut attributes that will be saved as metadata |
|
326 | List of the dataOut attributes that will be saved as metadata | |
302 | dataList : int |
|
327 | dataList : int | |
303 | List of the dataOut attributes that will be saved as data |
|
328 | List of the dataOut attributes that will be saved as data | |
304 | setType : bool |
|
329 | setType : bool | |
305 | If True the name of the files corresponds to the timestamp of the data |
|
330 | If True the name of the files corresponds to the timestamp of the data | |
306 | description : dict, optional |
|
331 | description : dict, optional | |
307 | Dictionary with the desired description of the HDF5 file |
|
332 | Dictionary with the desired description of the HDF5 file | |
308 |
|
333 | |||
309 | Examples |
|
334 | Examples | |
310 | -------- |
|
335 | -------- | |
311 |
|
336 | |||
312 | desc = { |
|
337 | desc = { | |
313 | 'data_output': {'winds': ['z', 'w', 'v']}, |
|
338 | 'data_output': {'winds': ['z', 'w', 'v']}, | |
314 | 'utctime': 'timestamps', |
|
339 | 'utctime': 'timestamps', | |
315 | 'heightList': 'heights' |
|
340 | 'heightList': 'heights' | |
316 | } |
|
341 | } | |
317 | desc = { |
|
342 | desc = { | |
318 | 'data_output': ['z', 'w', 'v'], |
|
343 | 'data_output': ['z', 'w', 'v'], | |
319 | 'utctime': 'timestamps', |
|
344 | 'utctime': 'timestamps', | |
320 | 'heightList': 'heights' |
|
345 | 'heightList': 'heights' | |
321 | } |
|
346 | } | |
322 | desc = { |
|
347 | desc = { | |
323 | 'Data': { |
|
348 | 'Data': { | |
324 | 'data_output': 'winds', |
|
349 | 'data_output': 'winds', | |
325 | 'utctime': 'timestamps' |
|
350 | 'utctime': 'timestamps' | |
326 | }, |
|
351 | }, | |
327 | 'Metadata': { |
|
352 | 'Metadata': { | |
328 | 'heightList': 'heights' |
|
353 | 'heightList': 'heights' | |
329 | } |
|
354 | } | |
330 | } |
|
355 | } | |
331 |
|
356 | |||
332 | writer = proc_unit.addOperation(name='HDFWriter') |
|
357 | writer = proc_unit.addOperation(name='HDFWriter') | |
333 | writer.addParameter(name='path', value='/path/to/file') |
|
358 | writer.addParameter(name='path', value='/path/to/file') | |
334 | writer.addParameter(name='blocksPerFile', value='32') |
|
359 | writer.addParameter(name='blocksPerFile', value='32') | |
335 | writer.addParameter(name='metadataList', value='heightList,timeZone') |
|
360 | writer.addParameter(name='metadataList', value='heightList,timeZone') | |
336 | writer.addParameter(name='dataList',value='data_output,utctime') |
|
361 | writer.addParameter(name='dataList',value='data_output,utctime') | |
337 | # writer.addParameter(name='description',value=json.dumps(desc)) |
|
362 | # writer.addParameter(name='description',value=json.dumps(desc)) | |
338 |
|
363 | |||
339 | """ |
|
364 | """ | |
340 |
|
365 | |||
341 | ext = ".hdf5" |
|
366 | ext = ".hdf5" | |
342 | optchar = "D" |
|
367 | optchar = "D" | |
343 | filename = None |
|
368 | filename = None | |
344 | path = None |
|
369 | path = None | |
345 | setFile = None |
|
370 | setFile = None | |
346 | fp = None |
|
371 | fp = None | |
347 | firsttime = True |
|
372 | firsttime = True | |
348 | #Configurations |
|
373 | #Configurations | |
349 | blocksPerFile = None |
|
374 | blocksPerFile = None | |
350 | blockIndex = None |
|
375 | blockIndex = None | |
351 | dataOut = None |
|
376 | dataOut = None | |
352 | #Data Arrays |
|
377 | #Data Arrays | |
353 | dataList = None |
|
378 | dataList = None | |
354 | metadataList = None |
|
379 | metadataList = None | |
355 | currentDay = None |
|
380 | currentDay = None | |
356 | lastTime = None |
|
381 | lastTime = None | |
357 |
|
382 | |||
358 | def __init__(self): |
|
383 | def __init__(self): | |
359 |
|
384 | |||
360 | Operation.__init__(self) |
|
385 | Operation.__init__(self) | |
361 | return |
|
386 | return | |
362 |
|
387 | |||
363 | def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, description=None): |
|
388 | def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, description=None): | |
364 | self.path = path |
|
389 | self.path = path | |
365 | self.blocksPerFile = blocksPerFile |
|
390 | self.blocksPerFile = blocksPerFile | |
366 | self.metadataList = metadataList |
|
391 | self.metadataList = metadataList | |
367 | self.dataList = [s.strip() for s in dataList] |
|
392 | self.dataList = [s.strip() for s in dataList] | |
368 | self.setType = setType |
|
393 | self.setType = setType | |
369 | self.description = description |
|
394 | self.description = description | |
370 |
|
395 | |||
371 | if self.metadataList is None: |
|
396 | if self.metadataList is None: | |
372 | self.metadataList = self.dataOut.metadata_list |
|
397 | self.metadataList = self.dataOut.metadata_list | |
373 |
|
398 | |||
374 | tableList = [] |
|
399 | tableList = [] | |
375 | dsList = [] |
|
400 | dsList = [] | |
376 |
|
401 | |||
377 | for i in range(len(self.dataList)): |
|
402 | for i in range(len(self.dataList)): | |
378 | dsDict = {} |
|
403 | dsDict = {} | |
379 | if hasattr(self.dataOut, self.dataList[i]): |
|
404 | if hasattr(self.dataOut, self.dataList[i]): | |
380 | dataAux = getattr(self.dataOut, self.dataList[i]) |
|
405 | dataAux = getattr(self.dataOut, self.dataList[i]) | |
381 | dsDict['variable'] = self.dataList[i] |
|
406 | dsDict['variable'] = self.dataList[i] | |
382 | else: |
|
407 | else: | |
383 | log.warning('Attribute {} not found in dataOut', self.name) |
|
408 | log.warning('Attribute {} not found in dataOut', self.name) | |
384 | continue |
|
409 | continue | |
385 |
|
410 | |||
386 | if dataAux is None: |
|
411 | if dataAux is None: | |
387 | continue |
|
412 | continue | |
388 | elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)): |
|
413 | elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)): | |
389 | dsDict['nDim'] = 0 |
|
414 | dsDict['nDim'] = 0 | |
390 | else: |
|
415 | else: | |
391 | dsDict['nDim'] = len(dataAux.shape) |
|
416 | dsDict['nDim'] = len(dataAux.shape) | |
392 | dsDict['shape'] = dataAux.shape |
|
417 | dsDict['shape'] = dataAux.shape | |
393 | dsDict['dsNumber'] = dataAux.shape[0] |
|
418 | dsDict['dsNumber'] = dataAux.shape[0] | |
394 | dsDict['dtype'] = dataAux.dtype |
|
419 | dsDict['dtype'] = dataAux.dtype | |
395 |
|
420 | |||
396 | dsList.append(dsDict) |
|
421 | dsList.append(dsDict) | |
397 |
|
422 | |||
398 | self.dsList = dsList |
|
423 | self.dsList = dsList | |
399 | self.currentDay = self.dataOut.datatime.date() |
|
424 | self.currentDay = self.dataOut.datatime.date() | |
400 |
|
425 | |||
401 | def timeFlag(self): |
|
426 | def timeFlag(self): | |
402 | currentTime = self.dataOut.utctime |
|
427 | currentTime = self.dataOut.utctime | |
403 | timeTuple = time.localtime(currentTime) |
|
428 | timeTuple = time.localtime(currentTime) | |
404 | dataDay = timeTuple.tm_yday |
|
429 | dataDay = timeTuple.tm_yday | |
405 |
|
430 | |||
406 | if self.lastTime is None: |
|
431 | if self.lastTime is None: | |
407 | self.lastTime = currentTime |
|
432 | self.lastTime = currentTime | |
408 | self.currentDay = dataDay |
|
433 | self.currentDay = dataDay | |
409 | return False |
|
434 | return False | |
410 |
|
435 | |||
411 | timeDiff = currentTime - self.lastTime |
|
436 | timeDiff = currentTime - self.lastTime | |
412 |
|
437 | |||
413 | #Si el dia es diferente o si la diferencia entre un dato y otro supera la hora |
|
438 | #Si el dia es diferente o si la diferencia entre un dato y otro supera la hora | |
414 | if dataDay != self.currentDay: |
|
439 | if dataDay != self.currentDay: | |
415 | self.currentDay = dataDay |
|
440 | self.currentDay = dataDay | |
416 | return True |
|
441 | return True | |
417 | elif timeDiff > 3*60*60: |
|
442 | elif timeDiff > 3*60*60: | |
418 | self.lastTime = currentTime |
|
443 | self.lastTime = currentTime | |
419 | return True |
|
444 | return True | |
420 | else: |
|
445 | else: | |
421 | self.lastTime = currentTime |
|
446 | self.lastTime = currentTime | |
422 | return False |
|
447 | return False | |
423 |
|
448 | |||
424 | def run(self, dataOut, path, blocksPerFile=10, metadataList=None, |
|
449 | def run(self, dataOut, path, blocksPerFile=10, metadataList=None, | |
425 | dataList=[], setType=None, description={}): |
|
450 | dataList=[], setType=None, description={}): | |
426 |
|
451 | |||
427 | self.dataOut = dataOut |
|
452 | self.dataOut = dataOut | |
428 | if not(self.isConfig): |
|
453 | if not(self.isConfig): | |
429 | self.setup(path=path, blocksPerFile=blocksPerFile, |
|
454 | self.setup(path=path, blocksPerFile=blocksPerFile, | |
430 | metadataList=metadataList, dataList=dataList, |
|
455 | metadataList=metadataList, dataList=dataList, | |
431 | setType=setType, description=description) |
|
456 | setType=setType, description=description) | |
432 |
|
457 | |||
433 | self.isConfig = True |
|
458 | self.isConfig = True | |
434 | self.setNextFile() |
|
459 | self.setNextFile() | |
435 |
|
460 | |||
436 | self.putData() |
|
461 | self.putData() | |
437 | return |
|
462 | return | |
438 |
|
463 | |||
439 | def setNextFile(self): |
|
464 | def setNextFile(self): | |
440 |
|
465 | |||
441 | ext = self.ext |
|
466 | ext = self.ext | |
442 | path = self.path |
|
467 | path = self.path | |
443 | setFile = self.setFile |
|
468 | setFile = self.setFile | |
444 |
|
469 | |||
445 | timeTuple = time.localtime(self.dataOut.utctime) |
|
470 | timeTuple = time.localtime(self.dataOut.utctime) | |
446 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) |
|
471 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) | |
447 | fullpath = os.path.join(path, subfolder) |
|
472 | fullpath = os.path.join(path, subfolder) | |
448 |
|
473 | |||
449 | if os.path.exists(fullpath): |
|
474 | if os.path.exists(fullpath): | |
450 | filesList = os.listdir(fullpath) |
|
475 | filesList = os.listdir(fullpath) | |
451 | filesList = [k for k in filesList if k.startswith(self.optchar)] |
|
476 | filesList = [k for k in filesList if k.startswith(self.optchar)] | |
452 | if len( filesList ) > 0: |
|
477 | if len( filesList ) > 0: | |
453 | filesList = sorted(filesList, key=str.lower) |
|
478 | filesList = sorted(filesList, key=str.lower) | |
454 | filen = filesList[-1] |
|
479 | filen = filesList[-1] | |
455 | # el filename debera tener el siguiente formato |
|
480 | # el filename debera tener el siguiente formato | |
456 | # 0 1234 567 89A BCDE (hex) |
|
481 | # 0 1234 567 89A BCDE (hex) | |
457 | # x YYYY DDD SSS .ext |
|
482 | # x YYYY DDD SSS .ext | |
458 | if isNumber(filen[8:11]): |
|
483 | if isNumber(filen[8:11]): | |
459 | setFile = int(filen[8:11]) #inicializo mi contador de seteo al seteo del ultimo file |
|
484 | setFile = int(filen[8:11]) #inicializo mi contador de seteo al seteo del ultimo file | |
460 | else: |
|
485 | else: | |
461 | setFile = -1 |
|
486 | setFile = -1 | |
462 | else: |
|
487 | else: | |
463 | setFile = -1 #inicializo mi contador de seteo |
|
488 | setFile = -1 #inicializo mi contador de seteo | |
464 | else: |
|
489 | else: | |
465 | os.makedirs(fullpath) |
|
490 | os.makedirs(fullpath) | |
466 | setFile = -1 #inicializo mi contador de seteo |
|
491 | setFile = -1 #inicializo mi contador de seteo | |
467 |
|
492 | |||
468 | if self.setType is None: |
|
493 | if self.setType is None: | |
469 | setFile += 1 |
|
494 | setFile += 1 | |
470 | file = '%s%4.4d%3.3d%03d%s' % (self.optchar, |
|
495 | file = '%s%4.4d%3.3d%03d%s' % (self.optchar, | |
471 | timeTuple.tm_year, |
|
496 | timeTuple.tm_year, | |
472 | timeTuple.tm_yday, |
|
497 | timeTuple.tm_yday, | |
473 | setFile, |
|
498 | setFile, | |
474 | ext ) |
|
499 | ext ) | |
475 | else: |
|
500 | else: | |
476 | setFile = timeTuple.tm_hour*60+timeTuple.tm_min |
|
501 | setFile = timeTuple.tm_hour*60+timeTuple.tm_min | |
477 | file = '%s%4.4d%3.3d%04d%s' % (self.optchar, |
|
502 | file = '%s%4.4d%3.3d%04d%s' % (self.optchar, | |
478 | timeTuple.tm_year, |
|
503 | timeTuple.tm_year, | |
479 | timeTuple.tm_yday, |
|
504 | timeTuple.tm_yday, | |
480 | setFile, |
|
505 | setFile, | |
481 | ext ) |
|
506 | ext ) | |
482 |
|
507 | |||
483 | self.filename = os.path.join( path, subfolder, file ) |
|
508 | self.filename = os.path.join( path, subfolder, file ) | |
484 |
|
509 | |||
485 | #Setting HDF5 File |
|
510 | #Setting HDF5 File | |
486 | self.fp = h5py.File(self.filename, 'w') |
|
511 | self.fp = h5py.File(self.filename, 'w') | |
487 | #write metadata |
|
512 | #write metadata | |
488 | self.writeMetadata(self.fp) |
|
513 | self.writeMetadata(self.fp) | |
489 | #Write data |
|
514 | #Write data | |
490 | self.writeData(self.fp) |
|
515 | self.writeData(self.fp) | |
491 |
|
516 | |||
492 | def getLabel(self, name, x=None): |
|
517 | def getLabel(self, name, x=None): | |
493 |
|
518 | |||
494 | if x is None: |
|
519 | if x is None: | |
495 | if 'Data' in self.description: |
|
520 | if 'Data' in self.description: | |
496 | data = self.description['Data'] |
|
521 | data = self.description['Data'] | |
497 | if 'Metadata' in self.description: |
|
522 | if 'Metadata' in self.description: | |
498 | data.update(self.description['Metadata']) |
|
523 | data.update(self.description['Metadata']) | |
499 | else: |
|
524 | else: | |
500 | data = self.description |
|
525 | data = self.description | |
501 | if name in data: |
|
526 | if name in data: | |
502 | if isinstance(data[name], str): |
|
527 | if isinstance(data[name], str): | |
503 | return data[name] |
|
528 | return data[name] | |
504 | elif isinstance(data[name], list): |
|
529 | elif isinstance(data[name], list): | |
505 | return None |
|
530 | return None | |
506 | elif isinstance(data[name], dict): |
|
531 | elif isinstance(data[name], dict): | |
507 | for key, value in data[name].items(): |
|
532 | for key, value in data[name].items(): | |
508 | return key |
|
533 | return key | |
509 | return name |
|
534 | return name | |
510 | else: |
|
535 | else: | |
511 | if 'Metadata' in self.description: |
|
536 | if 'Metadata' in self.description: | |
512 | meta = self.description['Metadata'] |
|
537 | meta = self.description['Metadata'] | |
513 | else: |
|
538 | else: | |
514 | meta = self.description |
|
539 | meta = self.description | |
515 | if name in meta: |
|
540 | if name in meta: | |
516 | if isinstance(meta[name], list): |
|
541 | if isinstance(meta[name], list): | |
517 | return meta[name][x] |
|
542 | return meta[name][x] | |
518 | elif isinstance(meta[name], dict): |
|
543 | elif isinstance(meta[name], dict): | |
519 | for key, value in meta[name].items(): |
|
544 | for key, value in meta[name].items(): | |
520 | return value[x] |
|
545 | return value[x] | |
521 | if 'cspc' in name: |
|
546 | if 'cspc' in name: | |
522 | return 'pair{:02d}'.format(x) |
|
547 | return 'pair{:02d}'.format(x) | |
523 | else: |
|
548 | else: | |
524 | return 'channel{:02d}'.format(x) |
|
549 | return 'channel{:02d}'.format(x) | |
525 |
|
550 | |||
526 | def writeMetadata(self, fp): |
|
551 | def writeMetadata(self, fp): | |
527 |
|
552 | |||
528 | if self.description: |
|
553 | if self.description: | |
529 | if 'Metadata' in self.description: |
|
554 | if 'Metadata' in self.description: | |
530 | grp = fp.create_group('Metadata') |
|
555 | grp = fp.create_group('Metadata') | |
531 | else: |
|
556 | else: | |
532 | grp = fp |
|
557 | grp = fp | |
533 | else: |
|
558 | else: | |
534 | grp = fp.create_group('Metadata') |
|
559 | grp = fp.create_group('Metadata') | |
535 |
|
560 | |||
536 | for i in range(len(self.metadataList)): |
|
561 | for i in range(len(self.metadataList)): | |
537 | if not hasattr(self.dataOut, self.metadataList[i]): |
|
562 | if not hasattr(self.dataOut, self.metadataList[i]): | |
538 | log.warning('Metadata: `{}` not found'.format(self.metadataList[i]), self.name) |
|
563 | log.warning('Metadata: `{}` not found'.format(self.metadataList[i]), self.name) | |
539 | continue |
|
564 | continue | |
540 | value = getattr(self.dataOut, self.metadataList[i]) |
|
565 | value = getattr(self.dataOut, self.metadataList[i]) | |
541 | if isinstance(value, bool): |
|
566 | if isinstance(value, bool): | |
542 | if value is True: |
|
567 | if value is True: | |
543 | value = 1 |
|
568 | value = 1 | |
544 | else: |
|
569 | else: | |
545 | value = 0 |
|
570 | value = 0 | |
546 | grp.create_dataset(self.getLabel(self.metadataList[i]), data=value) |
|
571 | grp.create_dataset(self.getLabel(self.metadataList[i]), data=value) | |
547 | return |
|
572 | return | |
548 |
|
573 | |||
549 | def writeData(self, fp): |
|
574 | def writeData(self, fp): | |
550 |
|
575 | |||
551 | if self.description: |
|
576 | if self.description: | |
552 | if 'Data' in self.description: |
|
577 | if 'Data' in self.description: | |
553 | grp = fp.create_group('Data') |
|
578 | grp = fp.create_group('Data') | |
554 | else: |
|
579 | else: | |
555 | grp = fp |
|
580 | grp = fp | |
556 | else: |
|
581 | else: | |
557 | grp = fp.create_group('Data') |
|
582 | grp = fp.create_group('Data') | |
558 |
|
583 | |||
559 | dtsets = [] |
|
584 | dtsets = [] | |
560 | data = [] |
|
585 | data = [] | |
561 |
|
586 | |||
562 | for dsInfo in self.dsList: |
|
587 | for dsInfo in self.dsList: | |
563 | if dsInfo['nDim'] == 0: |
|
588 | if dsInfo['nDim'] == 0: | |
564 | ds = grp.create_dataset( |
|
589 | ds = grp.create_dataset( | |
565 | self.getLabel(dsInfo['variable']), |
|
590 | self.getLabel(dsInfo['variable']), | |
566 | (self.blocksPerFile, ), |
|
591 | (self.blocksPerFile, ), | |
567 | chunks=True, |
|
592 | chunks=True, | |
568 | dtype=numpy.float64) |
|
593 | dtype=numpy.float64) | |
569 | dtsets.append(ds) |
|
594 | dtsets.append(ds) | |
570 | data.append((dsInfo['variable'], -1)) |
|
595 | data.append((dsInfo['variable'], -1)) | |
571 | else: |
|
596 | else: | |
572 | label = self.getLabel(dsInfo['variable']) |
|
597 | label = self.getLabel(dsInfo['variable']) | |
573 | if label is not None: |
|
598 | if label is not None: | |
574 | sgrp = grp.create_group(label) |
|
599 | sgrp = grp.create_group(label) | |
575 | else: |
|
600 | else: | |
576 | sgrp = grp |
|
601 | sgrp = grp | |
577 | for i in range(dsInfo['dsNumber']): |
|
602 | for i in range(dsInfo['dsNumber']): | |
578 | ds = sgrp.create_dataset( |
|
603 | ds = sgrp.create_dataset( | |
579 | self.getLabel(dsInfo['variable'], i), |
|
604 | self.getLabel(dsInfo['variable'], i), | |
580 | (self.blocksPerFile, ) + dsInfo['shape'][1:], |
|
605 | (self.blocksPerFile, ) + dsInfo['shape'][1:], | |
581 | chunks=True, |
|
606 | chunks=True, | |
582 | dtype=dsInfo['dtype']) |
|
607 | dtype=dsInfo['dtype']) | |
583 | dtsets.append(ds) |
|
608 | dtsets.append(ds) | |
584 | data.append((dsInfo['variable'], i)) |
|
609 | data.append((dsInfo['variable'], i)) | |
585 | fp.flush() |
|
610 | fp.flush() | |
586 |
|
611 | |||
587 | log.log('Creating file: {}'.format(fp.filename), self.name) |
|
612 | log.log('Creating file: {}'.format(fp.filename), self.name) | |
588 |
|
613 | |||
589 | self.ds = dtsets |
|
614 | self.ds = dtsets | |
590 | self.data = data |
|
615 | self.data = data | |
591 | self.firsttime = True |
|
616 | self.firsttime = True | |
592 | self.blockIndex = 0 |
|
617 | self.blockIndex = 0 | |
593 | return |
|
618 | return | |
594 |
|
619 | |||
595 | def putData(self): |
|
620 | def putData(self): | |
596 |
|
621 | |||
597 | if (self.blockIndex == self.blocksPerFile) or self.timeFlag(): |
|
622 | if (self.blockIndex == self.blocksPerFile) or self.timeFlag(): | |
598 | self.closeFile() |
|
623 | self.closeFile() | |
599 | self.setNextFile() |
|
624 | self.setNextFile() | |
600 |
|
625 | |||
601 | for i, ds in enumerate(self.ds): |
|
626 | for i, ds in enumerate(self.ds): | |
602 | attr, ch = self.data[i] |
|
627 | attr, ch = self.data[i] | |
603 | if ch == -1: |
|
628 | if ch == -1: | |
604 | ds[self.blockIndex] = getattr(self.dataOut, attr) |
|
629 | ds[self.blockIndex] = getattr(self.dataOut, attr) | |
605 | else: |
|
630 | else: | |
606 | ds[self.blockIndex] = getattr(self.dataOut, attr)[ch] |
|
631 | ds[self.blockIndex] = getattr(self.dataOut, attr)[ch] | |
607 |
|
632 | |||
608 | self.fp.flush() |
|
633 | self.fp.flush() | |
609 | self.blockIndex += 1 |
|
634 | self.blockIndex += 1 | |
610 | log.log('Block No. {}/{}'.format(self.blockIndex, self.blocksPerFile), self.name) |
|
635 | log.log('Block No. {}/{}'.format(self.blockIndex, self.blocksPerFile), self.name) | |
611 |
|
636 | |||
612 | return |
|
637 | return | |
613 |
|
638 | |||
614 | def closeFile(self): |
|
639 | def closeFile(self): | |
615 |
|
640 | |||
616 | if self.blockIndex != self.blocksPerFile: |
|
641 | if self.blockIndex != self.blocksPerFile: | |
617 | for ds in self.ds: |
|
642 | for ds in self.ds: | |
618 | ds.resize(self.blockIndex, axis=0) |
|
643 | ds.resize(self.blockIndex, axis=0) | |
619 |
|
644 | |||
620 | if self.fp: |
|
645 | if self.fp: | |
621 | self.fp.flush() |
|
646 | self.fp.flush() | |
622 | self.fp.close() |
|
647 | self.fp.close() | |
623 |
|
648 | |||
624 | def close(self): |
|
649 | def close(self): | |
625 |
|
650 | |||
626 | self.closeFile() |
|
651 | self.closeFile() |
@@ -1,3890 +1,3889 | |||||
1 | import numpy |
|
1 | import numpy | |
2 | import math |
|
2 | import math | |
3 | from scipy import optimize, interpolate, signal, stats, ndimage |
|
3 | from scipy import optimize, interpolate, signal, stats, ndimage | |
4 | import scipy |
|
4 | import scipy | |
5 | import re |
|
5 | import re | |
6 | import datetime |
|
6 | import datetime | |
7 | import copy |
|
7 | import copy | |
8 | import sys |
|
8 | import sys | |
9 | import importlib |
|
9 | import importlib | |
10 | import itertools |
|
10 | import itertools | |
11 | from multiprocessing import Pool, TimeoutError |
|
11 | from multiprocessing import Pool, TimeoutError | |
12 | from multiprocessing.pool import ThreadPool |
|
12 | from multiprocessing.pool import ThreadPool | |
13 | import time |
|
13 | import time | |
14 |
|
14 | |||
15 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters |
|
15 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters | |
16 | from .jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
16 | from .jroproc_base import ProcessingUnit, Operation, MPDecorator | |
17 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon |
|
17 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon | |
18 | from scipy import asarray as ar,exp |
|
18 | from scipy import asarray as ar,exp | |
19 | from scipy.optimize import curve_fit |
|
19 | from scipy.optimize import curve_fit | |
20 | from schainpy.utils import log |
|
20 | from schainpy.utils import log | |
21 | import warnings |
|
21 | import warnings | |
22 | from numpy import NaN |
|
22 | from numpy import NaN | |
23 | from scipy.optimize.optimize import OptimizeWarning |
|
23 | from scipy.optimize.optimize import OptimizeWarning | |
24 | warnings.filterwarnings('ignore') |
|
24 | warnings.filterwarnings('ignore') | |
25 |
|
25 | |||
26 | import matplotlib.pyplot as plt |
|
26 | import matplotlib.pyplot as plt | |
27 |
|
27 | |||
28 | SPEED_OF_LIGHT = 299792458 |
|
28 | SPEED_OF_LIGHT = 299792458 | |
29 |
|
29 | |||
30 | '''solving pickling issue''' |
|
30 | '''solving pickling issue''' | |
31 |
|
31 | |||
32 | def _pickle_method(method): |
|
32 | def _pickle_method(method): | |
33 | func_name = method.__func__.__name__ |
|
33 | func_name = method.__func__.__name__ | |
34 | obj = method.__self__ |
|
34 | obj = method.__self__ | |
35 | cls = method.__self__.__class__ |
|
35 | cls = method.__self__.__class__ | |
36 | return _unpickle_method, (func_name, obj, cls) |
|
36 | return _unpickle_method, (func_name, obj, cls) | |
37 |
|
37 | |||
38 | def _unpickle_method(func_name, obj, cls): |
|
38 | def _unpickle_method(func_name, obj, cls): | |
39 | for cls in cls.mro(): |
|
39 | for cls in cls.mro(): | |
40 | try: |
|
40 | try: | |
41 | func = cls.__dict__[func_name] |
|
41 | func = cls.__dict__[func_name] | |
42 | except KeyError: |
|
42 | except KeyError: | |
43 | pass |
|
43 | pass | |
44 | else: |
|
44 | else: | |
45 | break |
|
45 | break | |
46 | return func.__get__(obj, cls) |
|
46 | return func.__get__(obj, cls) | |
47 |
|
47 | |||
48 |
|
48 | |||
49 | class ParametersProc(ProcessingUnit): |
|
49 | class ParametersProc(ProcessingUnit): | |
50 |
|
50 | |||
51 | METHODS = {} |
|
51 | METHODS = {} | |
52 | nSeconds = None |
|
52 | nSeconds = None | |
53 |
|
53 | |||
54 | def __init__(self): |
|
54 | def __init__(self): | |
55 | ProcessingUnit.__init__(self) |
|
55 | ProcessingUnit.__init__(self) | |
56 |
|
56 | |||
57 | # self.objectDict = {} |
|
57 | # self.objectDict = {} | |
58 | self.buffer = None |
|
58 | self.buffer = None | |
59 | self.firstdatatime = None |
|
59 | self.firstdatatime = None | |
60 | self.profIndex = 0 |
|
60 | self.profIndex = 0 | |
61 | self.dataOut = Parameters() |
|
61 | self.dataOut = Parameters() | |
62 | self.setupReq = False #Agregar a todas las unidades de proc |
|
62 | self.setupReq = False #Agregar a todas las unidades de proc | |
63 |
|
63 | print("INIT PROC") | ||
64 | def __updateObjFromInput(self): |
|
64 | def __updateObjFromInput(self): | |
65 |
|
65 | |||
66 | self.dataOut.inputUnit = self.dataIn.type |
|
66 | self.dataOut.inputUnit = self.dataIn.type | |
67 |
|
67 | |||
68 | self.dataOut.timeZone = self.dataIn.timeZone |
|
68 | self.dataOut.timeZone = self.dataIn.timeZone | |
69 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
69 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
70 | self.dataOut.errorCount = self.dataIn.errorCount |
|
70 | self.dataOut.errorCount = self.dataIn.errorCount | |
71 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
71 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
72 |
|
72 | |||
73 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
73 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
74 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
74 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
75 | self.dataOut.channelList = self.dataIn.channelList |
|
75 | self.dataOut.channelList = self.dataIn.channelList | |
76 | self.dataOut.heightList = self.dataIn.heightList |
|
76 | self.dataOut.heightList = self.dataIn.heightList | |
77 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
77 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
78 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
78 | # self.dataOut.nHeights = self.dataIn.nHeights | |
79 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
79 | # self.dataOut.nChannels = self.dataIn.nChannels | |
80 | # self.dataOut.nBaud = self.dataIn.nBaud |
|
80 | # self.dataOut.nBaud = self.dataIn.nBaud | |
81 | # self.dataOut.nCode = self.dataIn.nCode |
|
81 | # self.dataOut.nCode = self.dataIn.nCode | |
82 | # self.dataOut.code = self.dataIn.code |
|
82 | # self.dataOut.code = self.dataIn.code | |
83 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
83 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
84 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
84 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
85 | # self.dataOut.utctime = self.firstdatatime |
|
85 | # self.dataOut.utctime = self.firstdatatime | |
86 | self.dataOut.utctime = self.dataIn.utctime |
|
86 | self.dataOut.utctime = self.dataIn.utctime | |
87 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
87 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
88 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
88 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
89 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
89 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
90 | # self.dataOut.nIncohInt = 1 |
|
90 | # self.dataOut.nIncohInt = 1 | |
91 | # self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
91 | # self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
92 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
92 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
93 | self.dataOut.timeInterval1 = self.dataIn.timeInterval |
|
93 | self.dataOut.timeInterval1 = self.dataIn.timeInterval | |
94 | self.dataOut.heightList = self.dataIn.heightList |
|
94 | self.dataOut.heightList = self.dataIn.heightList | |
95 | self.dataOut.frequency = self.dataIn.frequency |
|
95 | self.dataOut.frequency = self.dataIn.frequency | |
96 | # self.dataOut.noise = self.dataIn.noise |
|
96 | # self.dataOut.noise = self.dataIn.noise | |
97 | self.dataOut.codeList = self.dataIn.codeList |
|
97 | self.dataOut.codeList = self.dataIn.codeList | |
98 | self.dataOut.azimuthList = self.dataIn.azimuthList |
|
98 | self.dataOut.azimuthList = self.dataIn.azimuthList | |
99 | self.dataOut.elevationList = self.dataIn.elevationList |
|
99 | self.dataOut.elevationList = self.dataIn.elevationList | |
100 |
|
100 | |||
101 | def run(self): |
|
101 | def run(self): | |
102 |
|
102 | print("run proc param") | ||
103 |
|
||||
104 |
|
103 | |||
105 | #---------------------- Voltage Data --------------------------- |
|
104 | #---------------------- Voltage Data --------------------------- | |
106 |
|
105 | |||
107 | if self.dataIn.type == "Voltage": |
|
106 | if self.dataIn.type == "Voltage": | |
108 |
|
107 | |||
109 | self.__updateObjFromInput() |
|
108 | self.__updateObjFromInput() | |
110 | self.dataOut.data_pre = self.dataIn.data.copy() |
|
109 | self.dataOut.data_pre = self.dataIn.data.copy() | |
111 | self.dataOut.flagNoData = False |
|
110 | self.dataOut.flagNoData = False | |
112 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
111 | self.dataOut.utctimeInit = self.dataIn.utctime | |
113 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds |
|
112 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds | |
114 | if hasattr(self.dataIn, 'dataPP_POW'): |
|
113 | if hasattr(self.dataIn, 'dataPP_POW'): | |
115 | self.dataOut.dataPP_POW = self.dataIn.dataPP_POW |
|
114 | self.dataOut.dataPP_POW = self.dataIn.dataPP_POW | |
116 |
|
115 | |||
117 | if hasattr(self.dataIn, 'dataPP_POWER'): |
|
116 | if hasattr(self.dataIn, 'dataPP_POWER'): | |
118 | self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER |
|
117 | self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER | |
119 |
|
118 | |||
120 | if hasattr(self.dataIn, 'dataPP_DOP'): |
|
119 | if hasattr(self.dataIn, 'dataPP_DOP'): | |
121 | self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP |
|
120 | self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP | |
122 |
|
121 | |||
123 | if hasattr(self.dataIn, 'dataPP_SNR'): |
|
122 | if hasattr(self.dataIn, 'dataPP_SNR'): | |
124 | self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR |
|
123 | self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR | |
125 |
|
124 | |||
126 | if hasattr(self.dataIn, 'dataPP_WIDTH'): |
|
125 | if hasattr(self.dataIn, 'dataPP_WIDTH'): | |
127 | self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH |
|
126 | self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH | |
128 | return |
|
127 | return | |
129 |
|
128 | |||
130 | #---------------------- Spectra Data --------------------------- |
|
129 | #---------------------- Spectra Data --------------------------- | |
131 |
|
130 | |||
132 | if self.dataIn.type == "Spectra": |
|
131 | if self.dataIn.type == "Spectra": | |
133 |
|
132 | |||
134 | self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc] |
|
133 | self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc] | |
135 | self.dataOut.data_spc = self.dataIn.data_spc |
|
134 | self.dataOut.data_spc = self.dataIn.data_spc | |
136 | self.dataOut.data_cspc = self.dataIn.data_cspc |
|
135 | self.dataOut.data_cspc = self.dataIn.data_cspc | |
137 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
136 | self.dataOut.nProfiles = self.dataIn.nProfiles | |
138 | self.dataOut.nIncohInt = self.dataIn.nIncohInt |
|
137 | self.dataOut.nIncohInt = self.dataIn.nIncohInt | |
139 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints |
|
138 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints | |
140 | self.dataOut.ippFactor = self.dataIn.ippFactor |
|
139 | self.dataOut.ippFactor = self.dataIn.ippFactor | |
141 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
140 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
142 | self.dataOut.spc_noise = self.dataIn.getNoise() |
|
141 | self.dataOut.spc_noise = self.dataIn.getNoise() | |
143 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) |
|
142 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) | |
144 | # self.dataOut.normFactor = self.dataIn.normFactor |
|
143 | # self.dataOut.normFactor = self.dataIn.normFactor | |
145 | self.dataOut.pairsList = self.dataIn.pairsList |
|
144 | self.dataOut.pairsList = self.dataIn.pairsList | |
146 | self.dataOut.groupList = self.dataIn.pairsList |
|
145 | self.dataOut.groupList = self.dataIn.pairsList | |
147 | self.dataOut.flagNoData = False |
|
146 | self.dataOut.flagNoData = False | |
148 |
|
147 | |||
149 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels |
|
148 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels | |
150 | self.dataOut.ChanDist = self.dataIn.ChanDist |
|
149 | self.dataOut.ChanDist = self.dataIn.ChanDist | |
151 | else: self.dataOut.ChanDist = None |
|
150 | else: self.dataOut.ChanDist = None | |
152 |
|
151 | |||
153 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range |
|
152 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range | |
154 | # self.dataOut.VelRange = self.dataIn.VelRange |
|
153 | # self.dataOut.VelRange = self.dataIn.VelRange | |
155 | #else: self.dataOut.VelRange = None |
|
154 | #else: self.dataOut.VelRange = None | |
156 |
|
155 | |||
157 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant |
|
156 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant | |
158 | self.dataOut.RadarConst = self.dataIn.RadarConst |
|
157 | self.dataOut.RadarConst = self.dataIn.RadarConst | |
159 |
|
158 | |||
160 | if hasattr(self.dataIn, 'NPW'): #NPW |
|
159 | if hasattr(self.dataIn, 'NPW'): #NPW | |
161 | self.dataOut.NPW = self.dataIn.NPW |
|
160 | self.dataOut.NPW = self.dataIn.NPW | |
162 |
|
161 | |||
163 | if hasattr(self.dataIn, 'COFA'): #COFA |
|
162 | if hasattr(self.dataIn, 'COFA'): #COFA | |
164 | self.dataOut.COFA = self.dataIn.COFA |
|
163 | self.dataOut.COFA = self.dataIn.COFA | |
165 |
|
164 | |||
166 |
|
165 | |||
167 |
|
166 | |||
168 | #---------------------- Correlation Data --------------------------- |
|
167 | #---------------------- Correlation Data --------------------------- | |
169 |
|
168 | |||
170 | if self.dataIn.type == "Correlation": |
|
169 | if self.dataIn.type == "Correlation": | |
171 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() |
|
170 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() | |
172 |
|
171 | |||
173 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) |
|
172 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) | |
174 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) |
|
173 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) | |
175 | self.dataOut.groupList = (acf_pairs, ccf_pairs) |
|
174 | self.dataOut.groupList = (acf_pairs, ccf_pairs) | |
176 |
|
175 | |||
177 | self.dataOut.abscissaList = self.dataIn.lagRange |
|
176 | self.dataOut.abscissaList = self.dataIn.lagRange | |
178 | self.dataOut.noise = self.dataIn.noise |
|
177 | self.dataOut.noise = self.dataIn.noise | |
179 | self.dataOut.data_snr = self.dataIn.SNR |
|
178 | self.dataOut.data_snr = self.dataIn.SNR | |
180 | self.dataOut.flagNoData = False |
|
179 | self.dataOut.flagNoData = False | |
181 | self.dataOut.nAvg = self.dataIn.nAvg |
|
180 | self.dataOut.nAvg = self.dataIn.nAvg | |
182 |
|
181 | |||
183 | #---------------------- Parameters Data --------------------------- |
|
182 | #---------------------- Parameters Data --------------------------- | |
184 |
|
183 | |||
185 | if self.dataIn.type == "Parameters": |
|
184 | if self.dataIn.type == "Parameters": | |
186 | self.dataOut.copy(self.dataIn) |
|
185 | self.dataOut.copy(self.dataIn) | |
187 | self.dataOut.flagNoData = False |
|
186 | self.dataOut.flagNoData = False | |
188 |
|
187 | self.prin("DAta In") | ||
189 | return True |
|
188 | return True | |
190 |
|
189 | |||
191 | self.__updateObjFromInput() |
|
190 | self.__updateObjFromInput() | |
192 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
191 | self.dataOut.utctimeInit = self.dataIn.utctime | |
193 | self.dataOut.paramInterval = self.dataIn.timeInterval |
|
192 | self.dataOut.paramInterval = self.dataIn.timeInterval | |
194 |
|
193 | |||
195 | return |
|
194 | return | |
196 |
|
195 | |||
197 |
|
196 | |||
198 | def target(tups): |
|
197 | def target(tups): | |
199 |
|
198 | |||
200 | obj, args = tups |
|
199 | obj, args = tups | |
201 |
|
200 | |||
202 | return obj.FitGau(args) |
|
201 | return obj.FitGau(args) | |
203 |
|
202 | |||
204 | class RemoveWideGC(Operation): |
|
203 | class RemoveWideGC(Operation): | |
205 | ''' This class remove the wide clutter and replace it with a simple interpolation points |
|
204 | ''' This class remove the wide clutter and replace it with a simple interpolation points | |
206 | This mainly applies to CLAIRE radar |
|
205 | This mainly applies to CLAIRE radar | |
207 |
|
206 | |||
208 | ClutterWidth : Width to look for the clutter peak |
|
207 | ClutterWidth : Width to look for the clutter peak | |
209 |
|
208 | |||
210 | Input: |
|
209 | Input: | |
211 |
|
210 | |||
212 | self.dataOut.data_pre : SPC and CSPC |
|
211 | self.dataOut.data_pre : SPC and CSPC | |
213 | self.dataOut.spc_range : To select wind and rainfall velocities |
|
212 | self.dataOut.spc_range : To select wind and rainfall velocities | |
214 |
|
213 | |||
215 | Affected: |
|
214 | Affected: | |
216 |
|
215 | |||
217 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind |
|
216 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind | |
218 |
|
217 | |||
219 | Written by D. Scipión 25.02.2021 |
|
218 | Written by D. Scipión 25.02.2021 | |
220 | ''' |
|
219 | ''' | |
221 | def __init__(self): |
|
220 | def __init__(self): | |
222 | Operation.__init__(self) |
|
221 | Operation.__init__(self) | |
223 | self.i = 0 |
|
222 | self.i = 0 | |
224 | self.ich = 0 |
|
223 | self.ich = 0 | |
225 | self.ir = 0 |
|
224 | self.ir = 0 | |
226 |
|
225 | |||
227 | def run(self, dataOut, ClutterWidth=2.5): |
|
226 | def run(self, dataOut, ClutterWidth=2.5): | |
228 | # print ('Entering RemoveWideGC ... ') |
|
227 | # print ('Entering RemoveWideGC ... ') | |
229 |
|
228 | |||
230 | self.spc = dataOut.data_pre[0].copy() |
|
229 | self.spc = dataOut.data_pre[0].copy() | |
231 | self.spc_out = dataOut.data_pre[0].copy() |
|
230 | self.spc_out = dataOut.data_pre[0].copy() | |
232 | self.Num_Chn = self.spc.shape[0] |
|
231 | self.Num_Chn = self.spc.shape[0] | |
233 | self.Num_Hei = self.spc.shape[2] |
|
232 | self.Num_Hei = self.spc.shape[2] | |
234 | VelRange = dataOut.spc_range[2][:-1] |
|
233 | VelRange = dataOut.spc_range[2][:-1] | |
235 | dv = VelRange[1]-VelRange[0] |
|
234 | dv = VelRange[1]-VelRange[0] | |
236 |
|
235 | |||
237 | # Find the velocities that corresponds to zero |
|
236 | # Find the velocities that corresponds to zero | |
238 | gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth)) |
|
237 | gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth)) | |
239 |
|
238 | |||
240 | # Removing novalid data from the spectra |
|
239 | # Removing novalid data from the spectra | |
241 | for ich in range(self.Num_Chn) : |
|
240 | for ich in range(self.Num_Chn) : | |
242 | for ir in range(self.Num_Hei) : |
|
241 | for ir in range(self.Num_Hei) : | |
243 | # Estimate the noise at each range |
|
242 | # Estimate the noise at each range | |
244 | HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt) |
|
243 | HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt) | |
245 |
|
244 | |||
246 | # Removing the noise floor at each range |
|
245 | # Removing the noise floor at each range | |
247 | novalid = numpy.where(self.spc[ich,:,ir] < HSn) |
|
246 | novalid = numpy.where(self.spc[ich,:,ir] < HSn) | |
248 | self.spc[ich,novalid,ir] = HSn |
|
247 | self.spc[ich,novalid,ir] = HSn | |
249 |
|
248 | |||
250 | junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn) |
|
249 | junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn) | |
251 | j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0)) |
|
250 | j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0)) | |
252 | j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0)) |
|
251 | j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0)) | |
253 | if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) : |
|
252 | if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) : | |
254 | continue |
|
253 | continue | |
255 | junk3 = numpy.squeeze(numpy.diff(j1index)) |
|
254 | junk3 = numpy.squeeze(numpy.diff(j1index)) | |
256 | junk4 = numpy.squeeze(numpy.diff(j2index)) |
|
255 | junk4 = numpy.squeeze(numpy.diff(j2index)) | |
257 |
|
256 | |||
258 | valleyindex = j2index[numpy.where(junk4>1)] |
|
257 | valleyindex = j2index[numpy.where(junk4>1)] | |
259 | peakindex = j1index[numpy.where(junk3>1)] |
|
258 | peakindex = j1index[numpy.where(junk3>1)] | |
260 |
|
259 | |||
261 | isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv)) |
|
260 | isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv)) | |
262 | if numpy.size(isvalid) == 0 : |
|
261 | if numpy.size(isvalid) == 0 : | |
263 | continue |
|
262 | continue | |
264 | if numpy.size(isvalid) >1 : |
|
263 | if numpy.size(isvalid) >1 : | |
265 | vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir]) |
|
264 | vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir]) | |
266 | isvalid = isvalid[vindex] |
|
265 | isvalid = isvalid[vindex] | |
267 |
|
266 | |||
268 | # clutter peak |
|
267 | # clutter peak | |
269 | gcpeak = peakindex[isvalid] |
|
268 | gcpeak = peakindex[isvalid] | |
270 | vl = numpy.where(valleyindex < gcpeak) |
|
269 | vl = numpy.where(valleyindex < gcpeak) | |
271 | if numpy.size(vl) == 0: |
|
270 | if numpy.size(vl) == 0: | |
272 | continue |
|
271 | continue | |
273 | gcvl = valleyindex[vl[0][-1]] |
|
272 | gcvl = valleyindex[vl[0][-1]] | |
274 | vr = numpy.where(valleyindex > gcpeak) |
|
273 | vr = numpy.where(valleyindex > gcpeak) | |
275 | if numpy.size(vr) == 0: |
|
274 | if numpy.size(vr) == 0: | |
276 | continue |
|
275 | continue | |
277 | gcvr = valleyindex[vr[0][0]] |
|
276 | gcvr = valleyindex[vr[0][0]] | |
278 |
|
277 | |||
279 | # Removing the clutter |
|
278 | # Removing the clutter | |
280 | interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]]) |
|
279 | interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]]) | |
281 | gcindex = gc_values[gcvl+1:gcvr-1] |
|
280 | gcindex = gc_values[gcvl+1:gcvr-1] | |
282 | self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir]) |
|
281 | self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir]) | |
283 |
|
282 | |||
284 | dataOut.data_pre[0] = self.spc_out |
|
283 | dataOut.data_pre[0] = self.spc_out | |
285 | #print ('Leaving RemoveWideGC ... ') |
|
284 | #print ('Leaving RemoveWideGC ... ') | |
286 | return dataOut |
|
285 | return dataOut | |
287 |
|
286 | |||
288 | class SpectralFilters(Operation): |
|
287 | class SpectralFilters(Operation): | |
289 | ''' This class allows to replace the novalid values with noise for each channel |
|
288 | ''' This class allows to replace the novalid values with noise for each channel | |
290 | This applies to CLAIRE RADAR |
|
289 | This applies to CLAIRE RADAR | |
291 |
|
290 | |||
292 | PositiveLimit : RightLimit of novalid data |
|
291 | PositiveLimit : RightLimit of novalid data | |
293 | NegativeLimit : LeftLimit of novalid data |
|
292 | NegativeLimit : LeftLimit of novalid data | |
294 |
|
293 | |||
295 | Input: |
|
294 | Input: | |
296 |
|
295 | |||
297 | self.dataOut.data_pre : SPC and CSPC |
|
296 | self.dataOut.data_pre : SPC and CSPC | |
298 | self.dataOut.spc_range : To select wind and rainfall velocities |
|
297 | self.dataOut.spc_range : To select wind and rainfall velocities | |
299 |
|
298 | |||
300 | Affected: |
|
299 | Affected: | |
301 |
|
300 | |||
302 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind |
|
301 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind | |
303 |
|
302 | |||
304 | Written by D. Scipión 29.01.2021 |
|
303 | Written by D. Scipión 29.01.2021 | |
305 | ''' |
|
304 | ''' | |
306 | def __init__(self): |
|
305 | def __init__(self): | |
307 | Operation.__init__(self) |
|
306 | Operation.__init__(self) | |
308 | self.i = 0 |
|
307 | self.i = 0 | |
309 |
|
308 | |||
310 | def run(self, dataOut, ): |
|
309 | def run(self, dataOut, ): | |
311 |
|
310 | |||
312 | self.spc = dataOut.data_pre[0].copy() |
|
311 | self.spc = dataOut.data_pre[0].copy() | |
313 | self.Num_Chn = self.spc.shape[0] |
|
312 | self.Num_Chn = self.spc.shape[0] | |
314 | VelRange = dataOut.spc_range[2] |
|
313 | VelRange = dataOut.spc_range[2] | |
315 |
|
314 | |||
316 | # novalid corresponds to data within the Negative and PositiveLimit |
|
315 | # novalid corresponds to data within the Negative and PositiveLimit | |
317 |
|
316 | |||
318 |
|
317 | |||
319 | # Removing novalid data from the spectra |
|
318 | # Removing novalid data from the spectra | |
320 | for i in range(self.Num_Chn): |
|
319 | for i in range(self.Num_Chn): | |
321 | self.spc[i,novalid,:] = dataOut.noise[i] |
|
320 | self.spc[i,novalid,:] = dataOut.noise[i] | |
322 | dataOut.data_pre[0] = self.spc |
|
321 | dataOut.data_pre[0] = self.spc | |
323 | return dataOut |
|
322 | return dataOut | |
324 |
|
323 | |||
325 | class GaussianFit(Operation): |
|
324 | class GaussianFit(Operation): | |
326 |
|
325 | |||
327 | ''' |
|
326 | ''' | |
328 | Function that fit of one and two generalized gaussians (gg) based |
|
327 | Function that fit of one and two generalized gaussians (gg) based | |
329 | on the PSD shape across an "power band" identified from a cumsum of |
|
328 | on the PSD shape across an "power band" identified from a cumsum of | |
330 | the measured spectrum - noise. |
|
329 | the measured spectrum - noise. | |
331 |
|
330 | |||
332 | Input: |
|
331 | Input: | |
333 | self.dataOut.data_pre : SelfSpectra |
|
332 | self.dataOut.data_pre : SelfSpectra | |
334 |
|
333 | |||
335 | Output: |
|
334 | Output: | |
336 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 |
|
335 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 | |
337 |
|
336 | |||
338 | ''' |
|
337 | ''' | |
339 | def __init__(self): |
|
338 | def __init__(self): | |
340 | Operation.__init__(self) |
|
339 | Operation.__init__(self) | |
341 | self.i=0 |
|
340 | self.i=0 | |
342 |
|
341 | |||
343 |
|
342 | |||
344 | # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points |
|
343 | # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points | |
345 | def run(self, dataOut, SNRdBlimit=-9, method='generalized'): |
|
344 | def run(self, dataOut, SNRdBlimit=-9, method='generalized'): | |
346 | """This routine will find a couple of generalized Gaussians to a power spectrum |
|
345 | """This routine will find a couple of generalized Gaussians to a power spectrum | |
347 | methods: generalized, squared |
|
346 | methods: generalized, squared | |
348 | input: spc |
|
347 | input: spc | |
349 | output: |
|
348 | output: | |
350 | noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1 |
|
349 | noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1 | |
351 | """ |
|
350 | """ | |
352 | print ('Entering ',method,' double Gaussian fit') |
|
351 | print ('Entering ',method,' double Gaussian fit') | |
353 | self.spc = dataOut.data_pre[0].copy() |
|
352 | self.spc = dataOut.data_pre[0].copy() | |
354 | self.Num_Hei = self.spc.shape[2] |
|
353 | self.Num_Hei = self.spc.shape[2] | |
355 | self.Num_Bin = self.spc.shape[1] |
|
354 | self.Num_Bin = self.spc.shape[1] | |
356 | self.Num_Chn = self.spc.shape[0] |
|
355 | self.Num_Chn = self.spc.shape[0] | |
357 |
|
356 | |||
358 | start_time = time.time() |
|
357 | start_time = time.time() | |
359 |
|
358 | |||
360 | pool = Pool(processes=self.Num_Chn) |
|
359 | pool = Pool(processes=self.Num_Chn) | |
361 | args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)] |
|
360 | args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)] | |
362 | objs = [self for __ in range(self.Num_Chn)] |
|
361 | objs = [self for __ in range(self.Num_Chn)] | |
363 | attrs = list(zip(objs, args)) |
|
362 | attrs = list(zip(objs, args)) | |
364 | DGauFitParam = pool.map(target, attrs) |
|
363 | DGauFitParam = pool.map(target, attrs) | |
365 | # Parameters: |
|
364 | # Parameters: | |
366 | # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power |
|
365 | # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power | |
367 | dataOut.DGauFitParams = numpy.asarray(DGauFitParam) |
|
366 | dataOut.DGauFitParams = numpy.asarray(DGauFitParam) | |
368 |
|
367 | |||
369 | # Double Gaussian Curves |
|
368 | # Double Gaussian Curves | |
370 | gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) |
|
369 | gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
371 | gau0[:] = numpy.NaN |
|
370 | gau0[:] = numpy.NaN | |
372 | gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) |
|
371 | gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
373 | gau1[:] = numpy.NaN |
|
372 | gau1[:] = numpy.NaN | |
374 | x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1))) |
|
373 | x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1))) | |
375 | for iCh in range(self.Num_Chn): |
|
374 | for iCh in range(self.Num_Chn): | |
376 | N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin)) |
|
375 | N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin)) | |
377 | N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin)) |
|
376 | N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin)) | |
378 | A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin)) |
|
377 | A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin)) | |
379 | A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin)) |
|
378 | A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin)) | |
380 | v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin)) |
|
379 | v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin)) | |
381 | v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin)) |
|
380 | v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin)) | |
382 | s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin)) |
|
381 | s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin)) | |
383 | s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin)) |
|
382 | s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin)) | |
384 | if method == 'genealized': |
|
383 | if method == 'genealized': | |
385 | p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin)) |
|
384 | p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin)) | |
386 | p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin)) |
|
385 | p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin)) | |
387 | elif method == 'squared': |
|
386 | elif method == 'squared': | |
388 | p0 = 2. |
|
387 | p0 = 2. | |
389 | p1 = 2. |
|
388 | p1 = 2. | |
390 | gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0 |
|
389 | gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0 | |
391 | gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1 |
|
390 | gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1 | |
392 | dataOut.GaussFit0 = gau0 |
|
391 | dataOut.GaussFit0 = gau0 | |
393 | dataOut.GaussFit1 = gau1 |
|
392 | dataOut.GaussFit1 = gau1 | |
394 |
|
393 | |||
395 | print('Leaving ',method ,' double Gaussian fit') |
|
394 | print('Leaving ',method ,' double Gaussian fit') | |
396 | return dataOut |
|
395 | return dataOut | |
397 |
|
396 | |||
398 | def FitGau(self, X): |
|
397 | def FitGau(self, X): | |
399 | # print('Entering FitGau') |
|
398 | # print('Entering FitGau') | |
400 | # Assigning the variables |
|
399 | # Assigning the variables | |
401 | Vrange, ch, wnoise, num_intg, SNRlimit = X |
|
400 | Vrange, ch, wnoise, num_intg, SNRlimit = X | |
402 | # Noise Limits |
|
401 | # Noise Limits | |
403 | noisebl = wnoise * 0.9 |
|
402 | noisebl = wnoise * 0.9 | |
404 | noisebh = wnoise * 1.1 |
|
403 | noisebh = wnoise * 1.1 | |
405 | # Radar Velocity |
|
404 | # Radar Velocity | |
406 | Va = max(Vrange) |
|
405 | Va = max(Vrange) | |
407 | deltav = Vrange[1] - Vrange[0] |
|
406 | deltav = Vrange[1] - Vrange[0] | |
408 | x = numpy.arange(self.Num_Bin) |
|
407 | x = numpy.arange(self.Num_Bin) | |
409 |
|
408 | |||
410 | # print ('stop 0') |
|
409 | # print ('stop 0') | |
411 |
|
410 | |||
412 | # 5 parameters, 2 Gaussians |
|
411 | # 5 parameters, 2 Gaussians | |
413 | DGauFitParam = numpy.zeros([5, self.Num_Hei,2]) |
|
412 | DGauFitParam = numpy.zeros([5, self.Num_Hei,2]) | |
414 | DGauFitParam[:] = numpy.NaN |
|
413 | DGauFitParam[:] = numpy.NaN | |
415 |
|
414 | |||
416 | # SPCparam = [] |
|
415 | # SPCparam = [] | |
417 | # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
416 | # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
418 | # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
417 | # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
419 | # SPC_ch1[:] = 0 #numpy.NaN |
|
418 | # SPC_ch1[:] = 0 #numpy.NaN | |
420 | # SPC_ch2[:] = 0 #numpy.NaN |
|
419 | # SPC_ch2[:] = 0 #numpy.NaN | |
421 | # print ('stop 1') |
|
420 | # print ('stop 1') | |
422 | for ht in range(self.Num_Hei): |
|
421 | for ht in range(self.Num_Hei): | |
423 | # print (ht) |
|
422 | # print (ht) | |
424 | # print ('stop 2') |
|
423 | # print ('stop 2') | |
425 | # Spectra at each range |
|
424 | # Spectra at each range | |
426 | spc = numpy.asarray(self.spc)[ch,:,ht] |
|
425 | spc = numpy.asarray(self.spc)[ch,:,ht] | |
427 | snr = ( spc.mean() - wnoise ) / wnoise |
|
426 | snr = ( spc.mean() - wnoise ) / wnoise | |
428 | snrdB = 10.*numpy.log10(snr) |
|
427 | snrdB = 10.*numpy.log10(snr) | |
429 |
|
428 | |||
430 | #print ('stop 3') |
|
429 | #print ('stop 3') | |
431 | if snrdB < SNRlimit : |
|
430 | if snrdB < SNRlimit : | |
432 | # snr = numpy.NaN |
|
431 | # snr = numpy.NaN | |
433 | # SPC_ch1[:,ht] = 0#numpy.NaN |
|
432 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
434 | # SPC_ch1[:,ht] = 0#numpy.NaN |
|
433 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
435 | # SPCparam = (SPC_ch1,SPC_ch2) |
|
434 | # SPCparam = (SPC_ch1,SPC_ch2) | |
436 | # print ('SNR less than SNRth') |
|
435 | # print ('SNR less than SNRth') | |
437 | continue |
|
436 | continue | |
438 | # wnoise = hildebrand_sekhon(spc,num_intg) |
|
437 | # wnoise = hildebrand_sekhon(spc,num_intg) | |
439 | # print ('stop 2.01') |
|
438 | # print ('stop 2.01') | |
440 | ############################################# |
|
439 | ############################################# | |
441 | # normalizing spc and noise |
|
440 | # normalizing spc and noise | |
442 | # This part differs from gg1 |
|
441 | # This part differs from gg1 | |
443 | # spc_norm_max = max(spc) #commented by D. Scipión 19.03.2021 |
|
442 | # spc_norm_max = max(spc) #commented by D. Scipión 19.03.2021 | |
444 | #spc = spc / spc_norm_max |
|
443 | #spc = spc / spc_norm_max | |
445 | # pnoise = pnoise #/ spc_norm_max #commented by D. Scipión 19.03.2021 |
|
444 | # pnoise = pnoise #/ spc_norm_max #commented by D. Scipión 19.03.2021 | |
446 | ############################################# |
|
445 | ############################################# | |
447 |
|
446 | |||
448 | # print ('stop 2.1') |
|
447 | # print ('stop 2.1') | |
449 | fatspectra=1.0 |
|
448 | fatspectra=1.0 | |
450 | # noise per channel.... we might want to use the noise at each range |
|
449 | # noise per channel.... we might want to use the noise at each range | |
451 |
|
450 | |||
452 | # wnoise = noise_ #/ spc_norm_max #commented by D. Scipión 19.03.2021 |
|
451 | # wnoise = noise_ #/ spc_norm_max #commented by D. Scipión 19.03.2021 | |
453 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used |
|
452 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used | |
454 | #if wnoise>1.1*pnoise: # to be tested later |
|
453 | #if wnoise>1.1*pnoise: # to be tested later | |
455 | # wnoise=pnoise |
|
454 | # wnoise=pnoise | |
456 | # noisebl = wnoise*0.9 |
|
455 | # noisebl = wnoise*0.9 | |
457 | # noisebh = wnoise*1.1 |
|
456 | # noisebh = wnoise*1.1 | |
458 | spc = spc - wnoise # signal |
|
457 | spc = spc - wnoise # signal | |
459 |
|
458 | |||
460 | # print ('stop 2.2') |
|
459 | # print ('stop 2.2') | |
461 | minx = numpy.argmin(spc) |
|
460 | minx = numpy.argmin(spc) | |
462 | #spcs=spc.copy() |
|
461 | #spcs=spc.copy() | |
463 | spcs = numpy.roll(spc,-minx) |
|
462 | spcs = numpy.roll(spc,-minx) | |
464 | cum = numpy.cumsum(spcs) |
|
463 | cum = numpy.cumsum(spcs) | |
465 | # tot_noise = wnoise * self.Num_Bin #64; |
|
464 | # tot_noise = wnoise * self.Num_Bin #64; | |
466 |
|
465 | |||
467 | # print ('stop 2.3') |
|
466 | # print ('stop 2.3') | |
468 | # snr = sum(spcs) / tot_noise |
|
467 | # snr = sum(spcs) / tot_noise | |
469 | # snrdB = 10.*numpy.log10(snr) |
|
468 | # snrdB = 10.*numpy.log10(snr) | |
470 | #print ('stop 3') |
|
469 | #print ('stop 3') | |
471 | # if snrdB < SNRlimit : |
|
470 | # if snrdB < SNRlimit : | |
472 | # snr = numpy.NaN |
|
471 | # snr = numpy.NaN | |
473 | # SPC_ch1[:,ht] = 0#numpy.NaN |
|
472 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
474 | # SPC_ch1[:,ht] = 0#numpy.NaN |
|
473 | # SPC_ch1[:,ht] = 0#numpy.NaN | |
475 | # SPCparam = (SPC_ch1,SPC_ch2) |
|
474 | # SPCparam = (SPC_ch1,SPC_ch2) | |
476 | # print ('SNR less than SNRth') |
|
475 | # print ('SNR less than SNRth') | |
477 | # continue |
|
476 | # continue | |
478 |
|
477 | |||
479 |
|
478 | |||
480 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: |
|
479 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: | |
481 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
480 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
482 | # print ('stop 4') |
|
481 | # print ('stop 4') | |
483 | cummax = max(cum) |
|
482 | cummax = max(cum) | |
484 | epsi = 0.08 * fatspectra # cumsum to narrow down the energy region |
|
483 | epsi = 0.08 * fatspectra # cumsum to narrow down the energy region | |
485 | cumlo = cummax * epsi |
|
484 | cumlo = cummax * epsi | |
486 | cumhi = cummax * (1-epsi) |
|
485 | cumhi = cummax * (1-epsi) | |
487 | powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) |
|
486 | powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |
488 |
|
487 | |||
489 | # print ('stop 5') |
|
488 | # print ('stop 5') | |
490 | if len(powerindex) < 1:# case for powerindex 0 |
|
489 | if len(powerindex) < 1:# case for powerindex 0 | |
491 | # print ('powerindex < 1') |
|
490 | # print ('powerindex < 1') | |
492 | continue |
|
491 | continue | |
493 | powerlo = powerindex[0] |
|
492 | powerlo = powerindex[0] | |
494 | powerhi = powerindex[-1] |
|
493 | powerhi = powerindex[-1] | |
495 | powerwidth = powerhi-powerlo |
|
494 | powerwidth = powerhi-powerlo | |
496 | if powerwidth <= 1: |
|
495 | if powerwidth <= 1: | |
497 | # print('powerwidth <= 1') |
|
496 | # print('powerwidth <= 1') | |
498 | continue |
|
497 | continue | |
499 |
|
498 | |||
500 | # print ('stop 6') |
|
499 | # print ('stop 6') | |
501 | firstpeak = powerlo + powerwidth/10.# first gaussian energy location |
|
500 | firstpeak = powerlo + powerwidth/10.# first gaussian energy location | |
502 | secondpeak = powerhi - powerwidth/10. #second gaussian energy location |
|
501 | secondpeak = powerhi - powerwidth/10. #second gaussian energy location | |
503 | midpeak = (firstpeak + secondpeak)/2. |
|
502 | midpeak = (firstpeak + secondpeak)/2. | |
504 | firstamp = spcs[int(firstpeak)] |
|
503 | firstamp = spcs[int(firstpeak)] | |
505 | secondamp = spcs[int(secondpeak)] |
|
504 | secondamp = spcs[int(secondpeak)] | |
506 | midamp = spcs[int(midpeak)] |
|
505 | midamp = spcs[int(midpeak)] | |
507 |
|
506 | |||
508 | y_data = spc + wnoise |
|
507 | y_data = spc + wnoise | |
509 |
|
508 | |||
510 | ''' single Gaussian ''' |
|
509 | ''' single Gaussian ''' | |
511 | shift0 = numpy.mod(midpeak+minx, self.Num_Bin ) |
|
510 | shift0 = numpy.mod(midpeak+minx, self.Num_Bin ) | |
512 | width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4 |
|
511 | width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4 | |
513 | power0 = 2. |
|
512 | power0 = 2. | |
514 | amplitude0 = midamp |
|
513 | amplitude0 = midamp | |
515 | state0 = [shift0,width0,amplitude0,power0,wnoise] |
|
514 | state0 = [shift0,width0,amplitude0,power0,wnoise] | |
516 | bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
515 | bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |
517 | lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True) |
|
516 | lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True) | |
518 | # print ('stop 7.1') |
|
517 | # print ('stop 7.1') | |
519 | # print (bnds) |
|
518 | # print (bnds) | |
520 |
|
519 | |||
521 | chiSq1=lsq1[1] |
|
520 | chiSq1=lsq1[1] | |
522 |
|
521 | |||
523 | # print ('stop 8') |
|
522 | # print ('stop 8') | |
524 | if fatspectra<1.0 and powerwidth<4: |
|
523 | if fatspectra<1.0 and powerwidth<4: | |
525 | choice=0 |
|
524 | choice=0 | |
526 | Amplitude0=lsq1[0][2] |
|
525 | Amplitude0=lsq1[0][2] | |
527 | shift0=lsq1[0][0] |
|
526 | shift0=lsq1[0][0] | |
528 | width0=lsq1[0][1] |
|
527 | width0=lsq1[0][1] | |
529 | p0=lsq1[0][3] |
|
528 | p0=lsq1[0][3] | |
530 | Amplitude1=0. |
|
529 | Amplitude1=0. | |
531 | shift1=0. |
|
530 | shift1=0. | |
532 | width1=0. |
|
531 | width1=0. | |
533 | p1=0. |
|
532 | p1=0. | |
534 | noise=lsq1[0][4] |
|
533 | noise=lsq1[0][4] | |
535 | #return (numpy.array([shift0,width0,Amplitude0,p0]), |
|
534 | #return (numpy.array([shift0,width0,Amplitude0,p0]), | |
536 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) |
|
535 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) | |
537 |
|
536 | |||
538 | # print ('stop 9') |
|
537 | # print ('stop 9') | |
539 | ''' two Gaussians ''' |
|
538 | ''' two Gaussians ''' | |
540 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) |
|
539 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) | |
541 | shift0 = numpy.mod(firstpeak+minx, self.Num_Bin ) |
|
540 | shift0 = numpy.mod(firstpeak+minx, self.Num_Bin ) | |
542 | shift1 = numpy.mod(secondpeak+minx, self.Num_Bin ) |
|
541 | shift1 = numpy.mod(secondpeak+minx, self.Num_Bin ) | |
543 | width0 = powerwidth/6. |
|
542 | width0 = powerwidth/6. | |
544 | width1 = width0 |
|
543 | width1 = width0 | |
545 | power0 = 2. |
|
544 | power0 = 2. | |
546 | power1 = power0 |
|
545 | power1 = power0 | |
547 | amplitude0 = firstamp |
|
546 | amplitude0 = firstamp | |
548 | amplitude1 = secondamp |
|
547 | amplitude1 = secondamp | |
549 | state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] |
|
548 | state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |
550 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
549 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
551 | bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
550 | bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
552 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) |
|
551 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) | |
553 |
|
552 | |||
554 | # print ('stop 10') |
|
553 | # print ('stop 10') | |
555 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) |
|
554 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) | |
556 |
|
555 | |||
557 | # print ('stop 11') |
|
556 | # print ('stop 11') | |
558 | chiSq2 = lsq2[1] |
|
557 | chiSq2 = lsq2[1] | |
559 |
|
558 | |||
560 | # print ('stop 12') |
|
559 | # print ('stop 12') | |
561 |
|
560 | |||
562 | oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) |
|
561 | oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |
563 |
|
562 | |||
564 | # print ('stop 13') |
|
563 | # print ('stop 13') | |
565 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error |
|
564 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error | |
566 | if oneG: |
|
565 | if oneG: | |
567 | choice = 0 |
|
566 | choice = 0 | |
568 | else: |
|
567 | else: | |
569 | w1 = lsq2[0][1]; w2 = lsq2[0][5] |
|
568 | w1 = lsq2[0][1]; w2 = lsq2[0][5] | |
570 | a1 = lsq2[0][2]; a2 = lsq2[0][6] |
|
569 | a1 = lsq2[0][2]; a2 = lsq2[0][6] | |
571 | p1 = lsq2[0][3]; p2 = lsq2[0][7] |
|
570 | p1 = lsq2[0][3]; p2 = lsq2[0][7] | |
572 | s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1 |
|
571 | s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1 | |
573 | s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2 |
|
572 | s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2 | |
574 | gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling |
|
573 | gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling | |
575 |
|
574 | |||
576 | if gp1>gp2: |
|
575 | if gp1>gp2: | |
577 | if a1>0.7*a2: |
|
576 | if a1>0.7*a2: | |
578 | choice = 1 |
|
577 | choice = 1 | |
579 | else: |
|
578 | else: | |
580 | choice = 2 |
|
579 | choice = 2 | |
581 | elif gp2>gp1: |
|
580 | elif gp2>gp1: | |
582 | if a2>0.7*a1: |
|
581 | if a2>0.7*a1: | |
583 | choice = 2 |
|
582 | choice = 2 | |
584 | else: |
|
583 | else: | |
585 | choice = 1 |
|
584 | choice = 1 | |
586 | else: |
|
585 | else: | |
587 | choice = numpy.argmax([a1,a2])+1 |
|
586 | choice = numpy.argmax([a1,a2])+1 | |
588 | #else: |
|
587 | #else: | |
589 | #choice=argmin([std2a,std2b])+1 |
|
588 | #choice=argmin([std2a,std2b])+1 | |
590 |
|
589 | |||
591 | else: # with low SNR go to the most energetic peak |
|
590 | else: # with low SNR go to the most energetic peak | |
592 | choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) |
|
591 | choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |
593 |
|
592 | |||
594 | # print ('stop 14') |
|
593 | # print ('stop 14') | |
595 | shift0 = lsq2[0][0] |
|
594 | shift0 = lsq2[0][0] | |
596 | vel0 = Vrange[0] + shift0 * deltav |
|
595 | vel0 = Vrange[0] + shift0 * deltav | |
597 | shift1 = lsq2[0][4] |
|
596 | shift1 = lsq2[0][4] | |
598 | # vel1=Vrange[0] + shift1 * deltav |
|
597 | # vel1=Vrange[0] + shift1 * deltav | |
599 |
|
598 | |||
600 | # max_vel = 1.0 |
|
599 | # max_vel = 1.0 | |
601 | # Va = max(Vrange) |
|
600 | # Va = max(Vrange) | |
602 | # deltav = Vrange[1]-Vrange[0] |
|
601 | # deltav = Vrange[1]-Vrange[0] | |
603 | # print ('stop 15') |
|
602 | # print ('stop 15') | |
604 | #first peak will be 0, second peak will be 1 |
|
603 | #first peak will be 0, second peak will be 1 | |
605 | # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.Scipión 19.03.2021 |
|
604 | # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.Scipión 19.03.2021 | |
606 | if vel0 > -Va and vel0 < Va : #first peak is in the correct range |
|
605 | if vel0 > -Va and vel0 < Va : #first peak is in the correct range | |
607 | shift0 = lsq2[0][0] |
|
606 | shift0 = lsq2[0][0] | |
608 | width0 = lsq2[0][1] |
|
607 | width0 = lsq2[0][1] | |
609 | Amplitude0 = lsq2[0][2] |
|
608 | Amplitude0 = lsq2[0][2] | |
610 | p0 = lsq2[0][3] |
|
609 | p0 = lsq2[0][3] | |
611 |
|
610 | |||
612 | shift1 = lsq2[0][4] |
|
611 | shift1 = lsq2[0][4] | |
613 | width1 = lsq2[0][5] |
|
612 | width1 = lsq2[0][5] | |
614 | Amplitude1 = lsq2[0][6] |
|
613 | Amplitude1 = lsq2[0][6] | |
615 | p1 = lsq2[0][7] |
|
614 | p1 = lsq2[0][7] | |
616 | noise = lsq2[0][8] |
|
615 | noise = lsq2[0][8] | |
617 | else: |
|
616 | else: | |
618 | shift1 = lsq2[0][0] |
|
617 | shift1 = lsq2[0][0] | |
619 | width1 = lsq2[0][1] |
|
618 | width1 = lsq2[0][1] | |
620 | Amplitude1 = lsq2[0][2] |
|
619 | Amplitude1 = lsq2[0][2] | |
621 | p1 = lsq2[0][3] |
|
620 | p1 = lsq2[0][3] | |
622 |
|
621 | |||
623 | shift0 = lsq2[0][4] |
|
622 | shift0 = lsq2[0][4] | |
624 | width0 = lsq2[0][5] |
|
623 | width0 = lsq2[0][5] | |
625 | Amplitude0 = lsq2[0][6] |
|
624 | Amplitude0 = lsq2[0][6] | |
626 | p0 = lsq2[0][7] |
|
625 | p0 = lsq2[0][7] | |
627 | noise = lsq2[0][8] |
|
626 | noise = lsq2[0][8] | |
628 |
|
627 | |||
629 | if Amplitude0<0.05: # in case the peak is noise |
|
628 | if Amplitude0<0.05: # in case the peak is noise | |
630 | shift0,width0,Amplitude0,p0 = 4*[numpy.NaN] |
|
629 | shift0,width0,Amplitude0,p0 = 4*[numpy.NaN] | |
631 | if Amplitude1<0.05: |
|
630 | if Amplitude1<0.05: | |
632 | shift1,width1,Amplitude1,p1 = 4*[numpy.NaN] |
|
631 | shift1,width1,Amplitude1,p1 = 4*[numpy.NaN] | |
633 |
|
632 | |||
634 | # print ('stop 16 ') |
|
633 | # print ('stop 16 ') | |
635 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0) |
|
634 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0) | |
636 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1) |
|
635 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1) | |
637 | # SPCparam = (SPC_ch1,SPC_ch2) |
|
636 | # SPCparam = (SPC_ch1,SPC_ch2) | |
638 |
|
637 | |||
639 | DGauFitParam[0,ht,0] = noise |
|
638 | DGauFitParam[0,ht,0] = noise | |
640 | DGauFitParam[0,ht,1] = noise |
|
639 | DGauFitParam[0,ht,1] = noise | |
641 | DGauFitParam[1,ht,0] = Amplitude0 |
|
640 | DGauFitParam[1,ht,0] = Amplitude0 | |
642 | DGauFitParam[1,ht,1] = Amplitude1 |
|
641 | DGauFitParam[1,ht,1] = Amplitude1 | |
643 | DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav |
|
642 | DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav | |
644 | DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav |
|
643 | DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav | |
645 | DGauFitParam[3,ht,0] = width0 * deltav |
|
644 | DGauFitParam[3,ht,0] = width0 * deltav | |
646 | DGauFitParam[3,ht,1] = width1 * deltav |
|
645 | DGauFitParam[3,ht,1] = width1 * deltav | |
647 | DGauFitParam[4,ht,0] = p0 |
|
646 | DGauFitParam[4,ht,0] = p0 | |
648 | DGauFitParam[4,ht,1] = p1 |
|
647 | DGauFitParam[4,ht,1] = p1 | |
649 |
|
648 | |||
650 | # print (DGauFitParam.shape) |
|
649 | # print (DGauFitParam.shape) | |
651 | # print ('Leaving FitGau') |
|
650 | # print ('Leaving FitGau') | |
652 | return DGauFitParam |
|
651 | return DGauFitParam | |
653 | # return SPCparam |
|
652 | # return SPCparam | |
654 | # return GauSPC |
|
653 | # return GauSPC | |
655 |
|
654 | |||
656 | def y_model1(self,x,state): |
|
655 | def y_model1(self,x,state): | |
657 | shift0, width0, amplitude0, power0, noise = state |
|
656 | shift0, width0, amplitude0, power0, noise = state | |
658 | model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0) |
|
657 | model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0) | |
659 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) |
|
658 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) | |
660 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) |
|
659 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) | |
661 | return model0 + model0u + model0d + noise |
|
660 | return model0 + model0u + model0d + noise | |
662 |
|
661 | |||
663 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist |
|
662 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist | |
664 | shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state |
|
663 | shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state | |
665 | model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) |
|
664 | model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
666 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) |
|
665 | model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0) | |
667 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) |
|
666 | model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0) | |
668 |
|
667 | |||
669 | model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1) |
|
668 | model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1) | |
670 | model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1) |
|
669 | model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1) | |
671 | model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1) |
|
670 | model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1) | |
672 | return model0 + model0u + model0d + model1 + model1u + model1d + noise |
|
671 | return model0 + model0u + model0d + model1 + model1u + model1d + noise | |
673 |
|
672 | |||
674 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. |
|
673 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. | |
675 |
|
674 | |||
676 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented |
|
675 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented | |
677 |
|
676 | |||
678 | def misfit2(self,state,y_data,x,num_intg): |
|
677 | def misfit2(self,state,y_data,x,num_intg): | |
679 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) |
|
678 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) | |
680 |
|
679 | |||
681 |
|
680 | |||
682 |
|
681 | |||
683 | class PrecipitationProc(Operation): |
|
682 | class PrecipitationProc(Operation): | |
684 |
|
683 | |||
685 | ''' |
|
684 | ''' | |
686 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) |
|
685 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) | |
687 |
|
686 | |||
688 | Input: |
|
687 | Input: | |
689 | self.dataOut.data_pre : SelfSpectra |
|
688 | self.dataOut.data_pre : SelfSpectra | |
690 |
|
689 | |||
691 | Output: |
|
690 | Output: | |
692 |
|
691 | |||
693 | self.dataOut.data_output : Reflectivity factor, rainfall Rate |
|
692 | self.dataOut.data_output : Reflectivity factor, rainfall Rate | |
694 |
|
693 | |||
695 |
|
694 | |||
696 | Parameters affected: |
|
695 | Parameters affected: | |
697 | ''' |
|
696 | ''' | |
698 |
|
697 | |||
699 | def __init__(self): |
|
698 | def __init__(self): | |
700 | Operation.__init__(self) |
|
699 | Operation.__init__(self) | |
701 | self.i=0 |
|
700 | self.i=0 | |
702 |
|
701 | |||
703 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, |
|
702 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, | |
704 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30): |
|
703 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30): | |
705 |
|
704 | |||
706 | # print ('Entering PrecepitationProc ... ') |
|
705 | # print ('Entering PrecepitationProc ... ') | |
707 |
|
706 | |||
708 | if radar == "MIRA35C" : |
|
707 | if radar == "MIRA35C" : | |
709 |
|
708 | |||
710 | self.spc = dataOut.data_pre[0].copy() |
|
709 | self.spc = dataOut.data_pre[0].copy() | |
711 | self.Num_Hei = self.spc.shape[2] |
|
710 | self.Num_Hei = self.spc.shape[2] | |
712 | self.Num_Bin = self.spc.shape[1] |
|
711 | self.Num_Bin = self.spc.shape[1] | |
713 | self.Num_Chn = self.spc.shape[0] |
|
712 | self.Num_Chn = self.spc.shape[0] | |
714 | Ze = self.dBZeMODE2(dataOut) |
|
713 | Ze = self.dBZeMODE2(dataOut) | |
715 |
|
714 | |||
716 | else: |
|
715 | else: | |
717 |
|
716 | |||
718 | self.spc = dataOut.data_pre[0].copy() |
|
717 | self.spc = dataOut.data_pre[0].copy() | |
719 |
|
718 | |||
720 | #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX |
|
719 | #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX | |
721 | self.spc[:,:,0:7]= numpy.NaN |
|
720 | self.spc[:,:,0:7]= numpy.NaN | |
722 |
|
721 | |||
723 | self.Num_Hei = self.spc.shape[2] |
|
722 | self.Num_Hei = self.spc.shape[2] | |
724 | self.Num_Bin = self.spc.shape[1] |
|
723 | self.Num_Bin = self.spc.shape[1] | |
725 | self.Num_Chn = self.spc.shape[0] |
|
724 | self.Num_Chn = self.spc.shape[0] | |
726 |
|
725 | |||
727 | VelRange = dataOut.spc_range[2] |
|
726 | VelRange = dataOut.spc_range[2] | |
728 |
|
727 | |||
729 | ''' Se obtiene la constante del RADAR ''' |
|
728 | ''' Se obtiene la constante del RADAR ''' | |
730 |
|
729 | |||
731 | self.Pt = Pt |
|
730 | self.Pt = Pt | |
732 | self.Gt = Gt |
|
731 | self.Gt = Gt | |
733 | self.Gr = Gr |
|
732 | self.Gr = Gr | |
734 | self.Lambda = Lambda |
|
733 | self.Lambda = Lambda | |
735 | self.aL = aL |
|
734 | self.aL = aL | |
736 | self.tauW = tauW |
|
735 | self.tauW = tauW | |
737 | self.ThetaT = ThetaT |
|
736 | self.ThetaT = ThetaT | |
738 | self.ThetaR = ThetaR |
|
737 | self.ThetaR = ThetaR | |
739 | self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB |
|
738 | self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB | |
740 | self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB |
|
739 | self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB | |
741 | self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB |
|
740 | self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB | |
742 |
|
741 | |||
743 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
742 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
744 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) |
|
743 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) | |
745 | RadarConstant = 10e-26 * Numerator / Denominator # |
|
744 | RadarConstant = 10e-26 * Numerator / Denominator # | |
746 | ExpConstant = 10**(40/10) #Constante Experimental |
|
745 | ExpConstant = 10**(40/10) #Constante Experimental | |
747 |
|
746 | |||
748 | SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) |
|
747 | SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
749 | for i in range(self.Num_Chn): |
|
748 | for i in range(self.Num_Chn): | |
750 | SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i] |
|
749 | SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i] | |
751 | SignalPower[numpy.where(SignalPower < 0)] = 1e-20 |
|
750 | SignalPower[numpy.where(SignalPower < 0)] = 1e-20 | |
752 |
|
751 | |||
753 | SPCmean = numpy.mean(SignalPower, 0) |
|
752 | SPCmean = numpy.mean(SignalPower, 0) | |
754 | Pr = SPCmean[:,:]/dataOut.normFactor |
|
753 | Pr = SPCmean[:,:]/dataOut.normFactor | |
755 |
|
754 | |||
756 | # Declaring auxiliary variables |
|
755 | # Declaring auxiliary variables | |
757 | Range = dataOut.heightList*1000. #Range in m |
|
756 | Range = dataOut.heightList*1000. #Range in m | |
758 | # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei] |
|
757 | # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei] | |
759 | rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin)) |
|
758 | rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin)) | |
760 | zMtrx = rMtrx+Altitude |
|
759 | zMtrx = rMtrx+Altitude | |
761 | # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei] |
|
760 | # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei] | |
762 | VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1))) |
|
761 | VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1))) | |
763 |
|
762 | |||
764 | # height dependence to air density Foote and Du Toit (1969) |
|
763 | # height dependence to air density Foote and Du Toit (1969) | |
765 | delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2 |
|
764 | delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2 | |
766 | VMtrx = VelMtrx / delv_z #Normalized velocity |
|
765 | VMtrx = VelMtrx / delv_z #Normalized velocity | |
767 | VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN |
|
766 | VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN | |
768 | # Diameter is related to the fall speed of falling drops |
|
767 | # Diameter is related to the fall speed of falling drops | |
769 | D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm] |
|
768 | D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm] | |
770 | # Only valid for D>= 0.16 mm |
|
769 | # Only valid for D>= 0.16 mm | |
771 | D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN |
|
770 | D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN | |
772 |
|
771 | |||
773 | #Calculate Radar Reflectivity ETAn |
|
772 | #Calculate Radar Reflectivity ETAn | |
774 | ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA) |
|
773 | ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA) | |
775 | ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z |
|
774 | ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z | |
776 | # Radar Cross Section |
|
775 | # Radar Cross Section | |
777 | sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4 |
|
776 | sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4 | |
778 | # Drop Size Distribution |
|
777 | # Drop Size Distribution | |
779 | DSD = ETAn / sigmaD |
|
778 | DSD = ETAn / sigmaD | |
780 | # Equivalente Reflectivy |
|
779 | # Equivalente Reflectivy | |
781 | Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0) |
|
780 | Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0) | |
782 | Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3] |
|
781 | Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3] | |
783 | # RainFall Rate |
|
782 | # RainFall Rate | |
784 | RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr |
|
783 | RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr | |
785 |
|
784 | |||
786 | # Censoring the data |
|
785 | # Censoring the data | |
787 | # Removing data with SNRth < 0dB se debe considerar el SNR por canal |
|
786 | # Removing data with SNRth < 0dB se debe considerar el SNR por canal | |
788 | SNRth = 10**(SNRdBlimit/10) #-30dB |
|
787 | SNRth = 10**(SNRdBlimit/10) #-30dB | |
789 | novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better |
|
788 | novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better | |
790 | W = numpy.nanmean(dataOut.data_dop,0) |
|
789 | W = numpy.nanmean(dataOut.data_dop,0) | |
791 | W[novalid] = numpy.NaN |
|
790 | W[novalid] = numpy.NaN | |
792 | Ze_org[novalid] = numpy.NaN |
|
791 | Ze_org[novalid] = numpy.NaN | |
793 | RR[novalid] = numpy.NaN |
|
792 | RR[novalid] = numpy.NaN | |
794 |
|
793 | |||
795 | dataOut.data_output = RR[8] |
|
794 | dataOut.data_output = RR[8] | |
796 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) |
|
795 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) | |
797 | dataOut.channelList = [0,1,2] |
|
796 | dataOut.channelList = [0,1,2] | |
798 |
|
797 | |||
799 | dataOut.data_param[0]=10*numpy.log10(Ze_org) |
|
798 | dataOut.data_param[0]=10*numpy.log10(Ze_org) | |
800 | dataOut.data_param[1]=-W |
|
799 | dataOut.data_param[1]=-W | |
801 | dataOut.data_param[2]=RR |
|
800 | dataOut.data_param[2]=RR | |
802 |
|
801 | |||
803 | # print ('Leaving PrecepitationProc ... ') |
|
802 | # print ('Leaving PrecepitationProc ... ') | |
804 | return dataOut |
|
803 | return dataOut | |
805 |
|
804 | |||
806 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C |
|
805 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C | |
807 |
|
806 | |||
808 | NPW = dataOut.NPW |
|
807 | NPW = dataOut.NPW | |
809 | COFA = dataOut.COFA |
|
808 | COFA = dataOut.COFA | |
810 |
|
809 | |||
811 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) |
|
810 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) | |
812 | RadarConst = dataOut.RadarConst |
|
811 | RadarConst = dataOut.RadarConst | |
813 | #frequency = 34.85*10**9 |
|
812 | #frequency = 34.85*10**9 | |
814 |
|
813 | |||
815 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) |
|
814 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) | |
816 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN |
|
815 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN | |
817 |
|
816 | |||
818 | ETA = numpy.sum(SNR,1) |
|
817 | ETA = numpy.sum(SNR,1) | |
819 |
|
818 | |||
820 | ETA = numpy.where(ETA != 0. , ETA, numpy.NaN) |
|
819 | ETA = numpy.where(ETA != 0. , ETA, numpy.NaN) | |
821 |
|
820 | |||
822 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) |
|
821 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) | |
823 |
|
822 | |||
824 | for r in range(self.Num_Hei): |
|
823 | for r in range(self.Num_Hei): | |
825 |
|
824 | |||
826 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) |
|
825 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) | |
827 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) |
|
826 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) | |
828 |
|
827 | |||
829 | return Ze |
|
828 | return Ze | |
830 |
|
829 | |||
831 | # def GetRadarConstant(self): |
|
830 | # def GetRadarConstant(self): | |
832 | # |
|
831 | # | |
833 | # """ |
|
832 | # """ | |
834 | # Constants: |
|
833 | # Constants: | |
835 | # |
|
834 | # | |
836 | # Pt: Transmission Power dB 5kW 5000 |
|
835 | # Pt: Transmission Power dB 5kW 5000 | |
837 | # Gt: Transmission Gain dB 24.7 dB 295.1209 |
|
836 | # Gt: Transmission Gain dB 24.7 dB 295.1209 | |
838 | # Gr: Reception Gain dB 18.5 dB 70.7945 |
|
837 | # Gr: Reception Gain dB 18.5 dB 70.7945 | |
839 | # Lambda: Wavelenght m 0.6741 m 0.6741 |
|
838 | # Lambda: Wavelenght m 0.6741 m 0.6741 | |
840 | # aL: Attenuation loses dB 4dB 2.5118 |
|
839 | # aL: Attenuation loses dB 4dB 2.5118 | |
841 | # tauW: Width of transmission pulse s 4us 4e-6 |
|
840 | # tauW: Width of transmission pulse s 4us 4e-6 | |
842 | # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 |
|
841 | # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 | |
843 | # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 |
|
842 | # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 | |
844 | # |
|
843 | # | |
845 | # """ |
|
844 | # """ | |
846 | # |
|
845 | # | |
847 | # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
846 | # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
848 | # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) |
|
847 | # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) | |
849 | # RadarConstant = Numerator / Denominator |
|
848 | # RadarConstant = Numerator / Denominator | |
850 | # |
|
849 | # | |
851 | # return RadarConstant |
|
850 | # return RadarConstant | |
852 |
|
851 | |||
853 |
|
852 | |||
854 |
|
853 | |||
855 | class FullSpectralAnalysis(Operation): |
|
854 | class FullSpectralAnalysis(Operation): | |
856 |
|
855 | |||
857 | """ |
|
856 | """ | |
858 | Function that implements Full Spectral Analysis technique. |
|
857 | Function that implements Full Spectral Analysis technique. | |
859 |
|
858 | |||
860 | Input: |
|
859 | Input: | |
861 | self.dataOut.data_pre : SelfSpectra and CrossSpectra data |
|
860 | self.dataOut.data_pre : SelfSpectra and CrossSpectra data | |
862 | self.dataOut.groupList : Pairlist of channels |
|
861 | self.dataOut.groupList : Pairlist of channels | |
863 | self.dataOut.ChanDist : Physical distance between receivers |
|
862 | self.dataOut.ChanDist : Physical distance between receivers | |
864 |
|
863 | |||
865 |
|
864 | |||
866 | Output: |
|
865 | Output: | |
867 |
|
866 | |||
868 | self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind |
|
867 | self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind | |
869 |
|
868 | |||
870 |
|
869 | |||
871 | Parameters affected: Winds, height range, SNR |
|
870 | Parameters affected: Winds, height range, SNR | |
872 |
|
871 | |||
873 | """ |
|
872 | """ | |
874 | def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30, |
|
873 | def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30, | |
875 | minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None): |
|
874 | minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None): | |
876 |
|
875 | |||
877 | spc = dataOut.data_pre[0].copy() |
|
876 | spc = dataOut.data_pre[0].copy() | |
878 | cspc = dataOut.data_pre[1] |
|
877 | cspc = dataOut.data_pre[1] | |
879 | nHeights = spc.shape[2] |
|
878 | nHeights = spc.shape[2] | |
880 |
|
879 | |||
881 | # first_height = 0.75 #km (ref: data header 20170822) |
|
880 | # first_height = 0.75 #km (ref: data header 20170822) | |
882 | # resolution_height = 0.075 #km |
|
881 | # resolution_height = 0.075 #km | |
883 | ''' |
|
882 | ''' | |
884 | finding height range. check this when radar parameters are changed! |
|
883 | finding height range. check this when radar parameters are changed! | |
885 | ''' |
|
884 | ''' | |
886 | if maxheight is not None: |
|
885 | if maxheight is not None: | |
887 | # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical |
|
886 | # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical | |
888 | range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better |
|
887 | range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better | |
889 | else: |
|
888 | else: | |
890 | range_max = nHeights |
|
889 | range_max = nHeights | |
891 | if minheight is not None: |
|
890 | if minheight is not None: | |
892 | # range_min = int((minheight - first_height) / resolution_height) # theoretical |
|
891 | # range_min = int((minheight - first_height) / resolution_height) # theoretical | |
893 | range_min = int(13.26 * minheight - 5) # empirical, works better |
|
892 | range_min = int(13.26 * minheight - 5) # empirical, works better | |
894 | if range_min < 0: |
|
893 | if range_min < 0: | |
895 | range_min = 0 |
|
894 | range_min = 0 | |
896 | else: |
|
895 | else: | |
897 | range_min = 0 |
|
896 | range_min = 0 | |
898 |
|
897 | |||
899 | pairsList = dataOut.groupList |
|
898 | pairsList = dataOut.groupList | |
900 | if dataOut.ChanDist is not None : |
|
899 | if dataOut.ChanDist is not None : | |
901 | ChanDist = dataOut.ChanDist |
|
900 | ChanDist = dataOut.ChanDist | |
902 | else: |
|
901 | else: | |
903 | ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]]) |
|
902 | ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]]) | |
904 |
|
903 | |||
905 | # 4 variables: zonal, meridional, vertical, and average SNR |
|
904 | # 4 variables: zonal, meridional, vertical, and average SNR | |
906 | data_param = numpy.zeros([4,nHeights]) * numpy.NaN |
|
905 | data_param = numpy.zeros([4,nHeights]) * numpy.NaN | |
907 | velocityX = numpy.zeros([nHeights]) * numpy.NaN |
|
906 | velocityX = numpy.zeros([nHeights]) * numpy.NaN | |
908 | velocityY = numpy.zeros([nHeights]) * numpy.NaN |
|
907 | velocityY = numpy.zeros([nHeights]) * numpy.NaN | |
909 | velocityZ = numpy.zeros([nHeights]) * numpy.NaN |
|
908 | velocityZ = numpy.zeros([nHeights]) * numpy.NaN | |
910 |
|
909 | |||
911 | dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0)) |
|
910 | dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0)) | |
912 |
|
911 | |||
913 | '''***********************************************WIND ESTIMATION**************************************''' |
|
912 | '''***********************************************WIND ESTIMATION**************************************''' | |
914 | for Height in range(nHeights): |
|
913 | for Height in range(nHeights): | |
915 |
|
914 | |||
916 | if Height >= range_min and Height < range_max: |
|
915 | if Height >= range_min and Height < range_max: | |
917 | # error_code will be useful in future analysis |
|
916 | # error_code will be useful in future analysis | |
918 | [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, |
|
917 | [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, | |
919 | ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency) |
|
918 | ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency) | |
920 |
|
919 | |||
921 | if abs(Vzon) < 100. and abs(Vmer) < 100.: |
|
920 | if abs(Vzon) < 100. and abs(Vmer) < 100.: | |
922 | velocityX[Height] = Vzon |
|
921 | velocityX[Height] = Vzon | |
923 | velocityY[Height] = -Vmer |
|
922 | velocityY[Height] = -Vmer | |
924 | velocityZ[Height] = Vver |
|
923 | velocityZ[Height] = Vver | |
925 |
|
924 | |||
926 | # Censoring data with SNR threshold |
|
925 | # Censoring data with SNR threshold | |
927 | dbSNR [dbSNR < SNRdBlimit] = numpy.NaN |
|
926 | dbSNR [dbSNR < SNRdBlimit] = numpy.NaN | |
928 |
|
927 | |||
929 | data_param[0] = velocityX |
|
928 | data_param[0] = velocityX | |
930 | data_param[1] = velocityY |
|
929 | data_param[1] = velocityY | |
931 | data_param[2] = velocityZ |
|
930 | data_param[2] = velocityZ | |
932 | data_param[3] = dbSNR |
|
931 | data_param[3] = dbSNR | |
933 | dataOut.data_param = data_param |
|
932 | dataOut.data_param = data_param | |
934 | return dataOut |
|
933 | return dataOut | |
935 |
|
934 | |||
936 | def moving_average(self,x, N=2): |
|
935 | def moving_average(self,x, N=2): | |
937 | """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """ |
|
936 | """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """ | |
938 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] |
|
937 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] | |
939 |
|
938 | |||
940 | def gaus(self,xSamples,Amp,Mu,Sigma): |
|
939 | def gaus(self,xSamples,Amp,Mu,Sigma): | |
941 | return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2) |
|
940 | return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2) | |
942 |
|
941 | |||
943 | def Moments(self, ySamples, xSamples): |
|
942 | def Moments(self, ySamples, xSamples): | |
944 | Power = numpy.nanmean(ySamples) # Power, 0th Moment |
|
943 | Power = numpy.nanmean(ySamples) # Power, 0th Moment | |
945 | yNorm = ySamples / numpy.nansum(ySamples) |
|
944 | yNorm = ySamples / numpy.nansum(ySamples) | |
946 | RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment |
|
945 | RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment | |
947 | Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment |
|
946 | Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment | |
948 | StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral |
|
947 | StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral | |
949 | return numpy.array([Power,RadVel,StdDev]) |
|
948 | return numpy.array([Power,RadVel,StdDev]) | |
950 |
|
949 | |||
951 | def StopWindEstimation(self, error_code): |
|
950 | def StopWindEstimation(self, error_code): | |
952 | Vzon = numpy.NaN |
|
951 | Vzon = numpy.NaN | |
953 | Vmer = numpy.NaN |
|
952 | Vmer = numpy.NaN | |
954 | Vver = numpy.NaN |
|
953 | Vver = numpy.NaN | |
955 | return Vzon, Vmer, Vver, error_code |
|
954 | return Vzon, Vmer, Vver, error_code | |
956 |
|
955 | |||
957 | def AntiAliasing(self, interval, maxstep): |
|
956 | def AntiAliasing(self, interval, maxstep): | |
958 | """ |
|
957 | """ | |
959 | function to prevent errors from aliased values when computing phaseslope |
|
958 | function to prevent errors from aliased values when computing phaseslope | |
960 | """ |
|
959 | """ | |
961 | antialiased = numpy.zeros(len(interval)) |
|
960 | antialiased = numpy.zeros(len(interval)) | |
962 | copyinterval = interval.copy() |
|
961 | copyinterval = interval.copy() | |
963 |
|
962 | |||
964 | antialiased[0] = copyinterval[0] |
|
963 | antialiased[0] = copyinterval[0] | |
965 |
|
964 | |||
966 | for i in range(1,len(antialiased)): |
|
965 | for i in range(1,len(antialiased)): | |
967 | step = interval[i] - interval[i-1] |
|
966 | step = interval[i] - interval[i-1] | |
968 | if step > maxstep: |
|
967 | if step > maxstep: | |
969 | copyinterval -= 2*numpy.pi |
|
968 | copyinterval -= 2*numpy.pi | |
970 | antialiased[i] = copyinterval[i] |
|
969 | antialiased[i] = copyinterval[i] | |
971 | elif step < maxstep*(-1): |
|
970 | elif step < maxstep*(-1): | |
972 | copyinterval += 2*numpy.pi |
|
971 | copyinterval += 2*numpy.pi | |
973 | antialiased[i] = copyinterval[i] |
|
972 | antialiased[i] = copyinterval[i] | |
974 | else: |
|
973 | else: | |
975 | antialiased[i] = copyinterval[i].copy() |
|
974 | antialiased[i] = copyinterval[i].copy() | |
976 |
|
975 | |||
977 | return antialiased |
|
976 | return antialiased | |
978 |
|
977 | |||
979 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq): |
|
978 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq): | |
980 | """ |
|
979 | """ | |
981 | Function that Calculates Zonal, Meridional and Vertical wind velocities. |
|
980 | Function that Calculates Zonal, Meridional and Vertical wind velocities. | |
982 | Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019. |
|
981 | Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019. | |
983 |
|
982 | |||
984 | Input: |
|
983 | Input: | |
985 | spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively. |
|
984 | spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively. | |
986 | pairsList : Pairlist of channels |
|
985 | pairsList : Pairlist of channels | |
987 | ChanDist : array of xi_ij and eta_ij |
|
986 | ChanDist : array of xi_ij and eta_ij | |
988 | Height : height at which data is processed |
|
987 | Height : height at which data is processed | |
989 | noise : noise in [channels] format for specific height |
|
988 | noise : noise in [channels] format for specific height | |
990 | Abbsisarange : range of the frequencies or velocities |
|
989 | Abbsisarange : range of the frequencies or velocities | |
991 | dbSNR, SNRlimit : signal to noise ratio in db, lower limit |
|
990 | dbSNR, SNRlimit : signal to noise ratio in db, lower limit | |
992 |
|
991 | |||
993 | Output: |
|
992 | Output: | |
994 | Vzon, Vmer, Vver : wind velocities |
|
993 | Vzon, Vmer, Vver : wind velocities | |
995 | error_code : int that states where code is terminated |
|
994 | error_code : int that states where code is terminated | |
996 |
|
995 | |||
997 | 0 : no error detected |
|
996 | 0 : no error detected | |
998 | 1 : Gaussian of mean spc exceeds widthlimit |
|
997 | 1 : Gaussian of mean spc exceeds widthlimit | |
999 | 2 : no Gaussian of mean spc found |
|
998 | 2 : no Gaussian of mean spc found | |
1000 | 3 : SNR to low or velocity to high -> prec. e.g. |
|
999 | 3 : SNR to low or velocity to high -> prec. e.g. | |
1001 | 4 : at least one Gaussian of cspc exceeds widthlimit |
|
1000 | 4 : at least one Gaussian of cspc exceeds widthlimit | |
1002 | 5 : zero out of three cspc Gaussian fits converged |
|
1001 | 5 : zero out of three cspc Gaussian fits converged | |
1003 | 6 : phase slope fit could not be found |
|
1002 | 6 : phase slope fit could not be found | |
1004 | 7 : arrays used to fit phase have different length |
|
1003 | 7 : arrays used to fit phase have different length | |
1005 | 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc) |
|
1004 | 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc) | |
1006 |
|
1005 | |||
1007 | """ |
|
1006 | """ | |
1008 |
|
1007 | |||
1009 | error_code = 0 |
|
1008 | error_code = 0 | |
1010 |
|
1009 | |||
1011 | nChan = spc.shape[0] |
|
1010 | nChan = spc.shape[0] | |
1012 | nProf = spc.shape[1] |
|
1011 | nProf = spc.shape[1] | |
1013 | nPair = cspc.shape[0] |
|
1012 | nPair = cspc.shape[0] | |
1014 |
|
1013 | |||
1015 | SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height |
|
1014 | SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height | |
1016 | CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values |
|
1015 | CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values | |
1017 | phase = numpy.zeros([nPair, nProf]) # phase between channels |
|
1016 | phase = numpy.zeros([nPair, nProf]) # phase between channels | |
1018 | PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise |
|
1017 | PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise | |
1019 | PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise |
|
1018 | PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise | |
1020 | xFrec = AbbsisaRange[0][:-1] # frequency range |
|
1019 | xFrec = AbbsisaRange[0][:-1] # frequency range | |
1021 | xVel = AbbsisaRange[2][:-1] # velocity range |
|
1020 | xVel = AbbsisaRange[2][:-1] # velocity range | |
1022 | xSamples = xFrec # the frequency range is taken |
|
1021 | xSamples = xFrec # the frequency range is taken | |
1023 | delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x |
|
1022 | delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x | |
1024 |
|
1023 | |||
1025 | # only consider velocities with in NegativeLimit and PositiveLimit |
|
1024 | # only consider velocities with in NegativeLimit and PositiveLimit | |
1026 | if (NegativeLimit is None): |
|
1025 | if (NegativeLimit is None): | |
1027 | NegativeLimit = numpy.min(xVel) |
|
1026 | NegativeLimit = numpy.min(xVel) | |
1028 | if (PositiveLimit is None): |
|
1027 | if (PositiveLimit is None): | |
1029 | PositiveLimit = numpy.max(xVel) |
|
1028 | PositiveLimit = numpy.max(xVel) | |
1030 | xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit)) |
|
1029 | xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit)) | |
1031 | xSamples_zoom = xSamples[xvalid] |
|
1030 | xSamples_zoom = xSamples[xvalid] | |
1032 |
|
1031 | |||
1033 | '''Getting Eij and Nij''' |
|
1032 | '''Getting Eij and Nij''' | |
1034 | Xi01, Xi02, Xi12 = ChanDist[:,0] |
|
1033 | Xi01, Xi02, Xi12 = ChanDist[:,0] | |
1035 | Eta01, Eta02, Eta12 = ChanDist[:,1] |
|
1034 | Eta01, Eta02, Eta12 = ChanDist[:,1] | |
1036 |
|
1035 | |||
1037 | # spwd limit - updated by D. Scipión 30.03.2021 |
|
1036 | # spwd limit - updated by D. Scipión 30.03.2021 | |
1038 | widthlimit = 10 |
|
1037 | widthlimit = 10 | |
1039 | '''************************* SPC is normalized ********************************''' |
|
1038 | '''************************* SPC is normalized ********************************''' | |
1040 | spc_norm = spc.copy() |
|
1039 | spc_norm = spc.copy() | |
1041 | # For each channel |
|
1040 | # For each channel | |
1042 | for i in range(nChan): |
|
1041 | for i in range(nChan): | |
1043 | spc_sub = spc_norm[i,:] - noise[i] # only the signal power |
|
1042 | spc_sub = spc_norm[i,:] - noise[i] # only the signal power | |
1044 | SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x) |
|
1043 | SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x) | |
1045 |
|
1044 | |||
1046 | '''********************** FITTING MEAN SPC GAUSSIAN **********************''' |
|
1045 | '''********************** FITTING MEAN SPC GAUSSIAN **********************''' | |
1047 |
|
1046 | |||
1048 | """ the gaussian of the mean: first subtract noise, then normalize. this is legal because |
|
1047 | """ the gaussian of the mean: first subtract noise, then normalize. this is legal because | |
1049 | you only fit the curve and don't need the absolute value of height for calculation, |
|
1048 | you only fit the curve and don't need the absolute value of height for calculation, | |
1050 | only for estimation of width. for normalization of cross spectra, you need initial, |
|
1049 | only for estimation of width. for normalization of cross spectra, you need initial, | |
1051 | unnormalized self-spectra With noise. |
|
1050 | unnormalized self-spectra With noise. | |
1052 |
|
1051 | |||
1053 | Technically, you don't even need to normalize the self-spectra, as you only need the |
|
1052 | Technically, you don't even need to normalize the self-spectra, as you only need the | |
1054 | width of the peak. However, it was left this way. Note that the normalization has a flaw: |
|
1053 | width of the peak. However, it was left this way. Note that the normalization has a flaw: | |
1055 | due to subtraction of the noise, some values are below zero. Raw "spc" values should be |
|
1054 | due to subtraction of the noise, some values are below zero. Raw "spc" values should be | |
1056 | >= 0, as it is the modulus squared of the signals (complex * it's conjugate) |
|
1055 | >= 0, as it is the modulus squared of the signals (complex * it's conjugate) | |
1057 | """ |
|
1056 | """ | |
1058 | # initial conditions |
|
1057 | # initial conditions | |
1059 | popt = [1e-10,0,1e-10] |
|
1058 | popt = [1e-10,0,1e-10] | |
1060 | # Spectra average |
|
1059 | # Spectra average | |
1061 | SPCMean = numpy.average(SPC_Samples,0) |
|
1060 | SPCMean = numpy.average(SPC_Samples,0) | |
1062 | # Moments in frequency |
|
1061 | # Moments in frequency | |
1063 | SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom) |
|
1062 | SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom) | |
1064 |
|
1063 | |||
1065 | # Gauss Fit SPC in frequency domain |
|
1064 | # Gauss Fit SPC in frequency domain | |
1066 | if dbSNR > SNRlimit: # only if SNR > SNRth |
|
1065 | if dbSNR > SNRlimit: # only if SNR > SNRth | |
1067 | try: |
|
1066 | try: | |
1068 | popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments) |
|
1067 | popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments) | |
1069 | if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION |
|
1068 | if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION | |
1070 | return self.StopWindEstimation(error_code = 1) |
|
1069 | return self.StopWindEstimation(error_code = 1) | |
1071 | FitGauss = self.gaus(xSamples_zoom,*popt) |
|
1070 | FitGauss = self.gaus(xSamples_zoom,*popt) | |
1072 | except :#RuntimeError: |
|
1071 | except :#RuntimeError: | |
1073 | return self.StopWindEstimation(error_code = 2) |
|
1072 | return self.StopWindEstimation(error_code = 2) | |
1074 | else: |
|
1073 | else: | |
1075 | return self.StopWindEstimation(error_code = 3) |
|
1074 | return self.StopWindEstimation(error_code = 3) | |
1076 |
|
1075 | |||
1077 | '''***************************** CSPC Normalization ************************* |
|
1076 | '''***************************** CSPC Normalization ************************* | |
1078 | The Spc spectra are used to normalize the crossspectra. Peaks from precipitation |
|
1077 | The Spc spectra are used to normalize the crossspectra. Peaks from precipitation | |
1079 | influence the norm which is not desired. First, a range is identified where the |
|
1078 | influence the norm which is not desired. First, a range is identified where the | |
1080 | wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area |
|
1079 | wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area | |
1081 | around it gets cut off and values replaced by mean determined by the boundary |
|
1080 | around it gets cut off and values replaced by mean determined by the boundary | |
1082 | data -> sum_noise (spc is not normalized here, thats why the noise is important) |
|
1081 | data -> sum_noise (spc is not normalized here, thats why the noise is important) | |
1083 |
|
1082 | |||
1084 | The sums are then added and multiplied by range/datapoints, because you need |
|
1083 | The sums are then added and multiplied by range/datapoints, because you need | |
1085 | an integral and not a sum for normalization. |
|
1084 | an integral and not a sum for normalization. | |
1086 |
|
1085 | |||
1087 | A norm is found according to Briggs 92. |
|
1086 | A norm is found according to Briggs 92. | |
1088 | ''' |
|
1087 | ''' | |
1089 | # for each pair |
|
1088 | # for each pair | |
1090 | for i in range(nPair): |
|
1089 | for i in range(nPair): | |
1091 | cspc_norm = cspc[i,:].copy() |
|
1090 | cspc_norm = cspc[i,:].copy() | |
1092 | chan_index0 = pairsList[i][0] |
|
1091 | chan_index0 = pairsList[i][0] | |
1093 | chan_index1 = pairsList[i][1] |
|
1092 | chan_index1 = pairsList[i][1] | |
1094 | CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x) |
|
1093 | CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x) | |
1095 | phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real) |
|
1094 | phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real) | |
1096 |
|
1095 | |||
1097 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom), |
|
1096 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom), | |
1098 | self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom), |
|
1097 | self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom), | |
1099 | self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)]) |
|
1098 | self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)]) | |
1100 |
|
1099 | |||
1101 | popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10] |
|
1100 | popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10] | |
1102 | FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)) |
|
1101 | FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)) | |
1103 |
|
1102 | |||
1104 | '''*******************************FIT GAUSS CSPC************************************''' |
|
1103 | '''*******************************FIT GAUSS CSPC************************************''' | |
1105 | try: |
|
1104 | try: | |
1106 | popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0]) |
|
1105 | popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0]) | |
1107 | if popt01[2] > widthlimit: # CONDITION |
|
1106 | if popt01[2] > widthlimit: # CONDITION | |
1108 | return self.StopWindEstimation(error_code = 4) |
|
1107 | return self.StopWindEstimation(error_code = 4) | |
1109 | popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1]) |
|
1108 | popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1]) | |
1110 | if popt02[2] > widthlimit: # CONDITION |
|
1109 | if popt02[2] > widthlimit: # CONDITION | |
1111 | return self.StopWindEstimation(error_code = 4) |
|
1110 | return self.StopWindEstimation(error_code = 4) | |
1112 | popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2]) |
|
1111 | popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2]) | |
1113 | if popt12[2] > widthlimit: # CONDITION |
|
1112 | if popt12[2] > widthlimit: # CONDITION | |
1114 | return self.StopWindEstimation(error_code = 4) |
|
1113 | return self.StopWindEstimation(error_code = 4) | |
1115 |
|
1114 | |||
1116 | FitGauss01 = self.gaus(xSamples_zoom, *popt01) |
|
1115 | FitGauss01 = self.gaus(xSamples_zoom, *popt01) | |
1117 | FitGauss02 = self.gaus(xSamples_zoom, *popt02) |
|
1116 | FitGauss02 = self.gaus(xSamples_zoom, *popt02) | |
1118 | FitGauss12 = self.gaus(xSamples_zoom, *popt12) |
|
1117 | FitGauss12 = self.gaus(xSamples_zoom, *popt12) | |
1119 | except: |
|
1118 | except: | |
1120 | return self.StopWindEstimation(error_code = 5) |
|
1119 | return self.StopWindEstimation(error_code = 5) | |
1121 |
|
1120 | |||
1122 |
|
1121 | |||
1123 | '''************* Getting Fij ***************''' |
|
1122 | '''************* Getting Fij ***************''' | |
1124 | # x-axis point of the gaussian where the center is located from GaussFit of spectra |
|
1123 | # x-axis point of the gaussian where the center is located from GaussFit of spectra | |
1125 | GaussCenter = popt[1] |
|
1124 | GaussCenter = popt[1] | |
1126 | ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()] |
|
1125 | ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()] | |
1127 | PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0] |
|
1126 | PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0] | |
1128 |
|
1127 | |||
1129 | # Point where e^-1 is located in the gaussian |
|
1128 | # Point where e^-1 is located in the gaussian | |
1130 | PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1) |
|
1129 | PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1) | |
1131 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss" |
|
1130 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss" | |
1132 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] |
|
1131 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] | |
1133 | Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter]) |
|
1132 | Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter]) | |
1134 |
|
1133 | |||
1135 | '''********** Taking frequency ranges from mean SPCs **********''' |
|
1134 | '''********** Taking frequency ranges from mean SPCs **********''' | |
1136 | GauWidth = popt[2] * 3/2 # Bandwidth of Gau01 |
|
1135 | GauWidth = popt[2] * 3/2 # Bandwidth of Gau01 | |
1137 | Range = numpy.empty(2) |
|
1136 | Range = numpy.empty(2) | |
1138 | Range[0] = GaussCenter - GauWidth |
|
1137 | Range[0] = GaussCenter - GauWidth | |
1139 | Range[1] = GaussCenter + GauWidth |
|
1138 | Range[1] = GaussCenter + GauWidth | |
1140 | # Point in x-axis where the bandwidth is located (min:max) |
|
1139 | # Point in x-axis where the bandwidth is located (min:max) | |
1141 | ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()] |
|
1140 | ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()] | |
1142 | ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()] |
|
1141 | ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()] | |
1143 | PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0] |
|
1142 | PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0] | |
1144 | PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0] |
|
1143 | PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0] | |
1145 | Range = numpy.array([ PointRangeMin, PointRangeMax ]) |
|
1144 | Range = numpy.array([ PointRangeMin, PointRangeMax ]) | |
1146 | FrecRange = xSamples_zoom[ Range[0] : Range[1] ] |
|
1145 | FrecRange = xSamples_zoom[ Range[0] : Range[1] ] | |
1147 |
|
1146 | |||
1148 | '''************************** Getting Phase Slope ***************************''' |
|
1147 | '''************************** Getting Phase Slope ***************************''' | |
1149 | for i in range(nPair): |
|
1148 | for i in range(nPair): | |
1150 | if len(FrecRange) > 5: |
|
1149 | if len(FrecRange) > 5: | |
1151 | PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy() |
|
1150 | PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy() | |
1152 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) |
|
1151 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) | |
1153 | if len(FrecRange) == len(PhaseRange): |
|
1152 | if len(FrecRange) == len(PhaseRange): | |
1154 | try: |
|
1153 | try: | |
1155 | slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5)) |
|
1154 | slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5)) | |
1156 | PhaseSlope[i] = slope |
|
1155 | PhaseSlope[i] = slope | |
1157 | PhaseInter[i] = intercept |
|
1156 | PhaseInter[i] = intercept | |
1158 | except: |
|
1157 | except: | |
1159 | return self.StopWindEstimation(error_code = 6) |
|
1158 | return self.StopWindEstimation(error_code = 6) | |
1160 | else: |
|
1159 | else: | |
1161 | return self.StopWindEstimation(error_code = 7) |
|
1160 | return self.StopWindEstimation(error_code = 7) | |
1162 | else: |
|
1161 | else: | |
1163 | return self.StopWindEstimation(error_code = 8) |
|
1162 | return self.StopWindEstimation(error_code = 8) | |
1164 |
|
1163 | |||
1165 | '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***''' |
|
1164 | '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***''' | |
1166 |
|
1165 | |||
1167 | '''Getting constant C''' |
|
1166 | '''Getting constant C''' | |
1168 | cC=(Fij*numpy.pi)**2 |
|
1167 | cC=(Fij*numpy.pi)**2 | |
1169 |
|
1168 | |||
1170 | '''****** Getting constants F and G ******''' |
|
1169 | '''****** Getting constants F and G ******''' | |
1171 | MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]]) |
|
1170 | MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]]) | |
1172 | # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]]) |
|
1171 | # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]]) | |
1173 | # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi) |
|
1172 | # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi) | |
1174 | MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi) |
|
1173 | MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi) | |
1175 | MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi) |
|
1174 | MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi) | |
1176 | # MijResults = numpy.array([MijResult0, MijResult1, MijResult2]) |
|
1175 | # MijResults = numpy.array([MijResult0, MijResult1, MijResult2]) | |
1177 | MijResults = numpy.array([MijResult1, MijResult2]) |
|
1176 | MijResults = numpy.array([MijResult1, MijResult2]) | |
1178 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) |
|
1177 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | |
1179 |
|
1178 | |||
1180 | '''****** Getting constants A, B and H ******''' |
|
1179 | '''****** Getting constants A, B and H ******''' | |
1181 | W01 = numpy.nanmax( FitGauss01 ) |
|
1180 | W01 = numpy.nanmax( FitGauss01 ) | |
1182 | W02 = numpy.nanmax( FitGauss02 ) |
|
1181 | W02 = numpy.nanmax( FitGauss02 ) | |
1183 | W12 = numpy.nanmax( FitGauss12 ) |
|
1182 | W12 = numpy.nanmax( FitGauss12 ) | |
1184 |
|
1183 | |||
1185 | WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC)) |
|
1184 | WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC)) | |
1186 | WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC)) |
|
1185 | WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC)) | |
1187 | WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC)) |
|
1186 | WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC)) | |
1188 | WijResults = numpy.array([WijResult01, WijResult02, WijResult12]) |
|
1187 | WijResults = numpy.array([WijResult01, WijResult02, WijResult12]) | |
1189 |
|
1188 | |||
1190 | WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) |
|
1189 | WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) | |
1191 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) |
|
1190 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) | |
1192 |
|
1191 | |||
1193 | VxVy = numpy.array([[cA,cH],[cH,cB]]) |
|
1192 | VxVy = numpy.array([[cA,cH],[cH,cB]]) | |
1194 | VxVyResults = numpy.array([-cF,-cG]) |
|
1193 | VxVyResults = numpy.array([-cF,-cG]) | |
1195 | (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults) |
|
1194 | (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults) | |
1196 | Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq) |
|
1195 | Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq) | |
1197 | error_code = 0 |
|
1196 | error_code = 0 | |
1198 |
|
1197 | |||
1199 | return Vzon, Vmer, Vver, error_code |
|
1198 | return Vzon, Vmer, Vver, error_code | |
1200 |
|
1199 | |||
1201 | class SpectralMoments(Operation): |
|
1200 | class SpectralMoments(Operation): | |
1202 |
|
1201 | |||
1203 | ''' |
|
1202 | ''' | |
1204 | Function SpectralMoments() |
|
1203 | Function SpectralMoments() | |
1205 |
|
1204 | |||
1206 | Calculates moments (power, mean, standard deviation) and SNR of the signal |
|
1205 | Calculates moments (power, mean, standard deviation) and SNR of the signal | |
1207 |
|
1206 | |||
1208 | Type of dataIn: Spectra |
|
1207 | Type of dataIn: Spectra | |
1209 |
|
1208 | |||
1210 | Configuration Parameters: |
|
1209 | Configuration Parameters: | |
1211 |
|
1210 | |||
1212 | dirCosx : Cosine director in X axis |
|
1211 | dirCosx : Cosine director in X axis | |
1213 | dirCosy : Cosine director in Y axis |
|
1212 | dirCosy : Cosine director in Y axis | |
1214 |
|
1213 | |||
1215 | elevation : |
|
1214 | elevation : | |
1216 | azimuth : |
|
1215 | azimuth : | |
1217 |
|
1216 | |||
1218 | Input: |
|
1217 | Input: | |
1219 | channelList : simple channel list to select e.g. [2,3,7] |
|
1218 | channelList : simple channel list to select e.g. [2,3,7] | |
1220 | self.dataOut.data_pre : Spectral data |
|
1219 | self.dataOut.data_pre : Spectral data | |
1221 | self.dataOut.abscissaList : List of frequencies |
|
1220 | self.dataOut.abscissaList : List of frequencies | |
1222 | self.dataOut.noise : Noise level per channel |
|
1221 | self.dataOut.noise : Noise level per channel | |
1223 |
|
1222 | |||
1224 | Affected: |
|
1223 | Affected: | |
1225 | self.dataOut.moments : Parameters per channel |
|
1224 | self.dataOut.moments : Parameters per channel | |
1226 | self.dataOut.data_snr : SNR per channel |
|
1225 | self.dataOut.data_snr : SNR per channel | |
1227 |
|
1226 | |||
1228 | ''' |
|
1227 | ''' | |
1229 |
|
1228 | |||
1230 | def run(self, dataOut): |
|
1229 | def run(self, dataOut): | |
1231 |
|
1230 | |||
1232 | data = dataOut.data_pre[0] |
|
1231 | data = dataOut.data_pre[0] | |
1233 | absc = dataOut.abscissaList[:-1] |
|
1232 | absc = dataOut.abscissaList[:-1] | |
1234 | noise = dataOut.noise |
|
1233 | noise = dataOut.noise | |
1235 | nChannel = data.shape[0] |
|
1234 | nChannel = data.shape[0] | |
1236 | data_param = numpy.zeros((nChannel, 4, data.shape[2])) |
|
1235 | data_param = numpy.zeros((nChannel, 4, data.shape[2])) | |
1237 |
|
1236 | |||
1238 | for ind in range(nChannel): |
|
1237 | for ind in range(nChannel): | |
1239 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) |
|
1238 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) | |
1240 |
|
1239 | |||
1241 | dataOut.moments = data_param[:,1:,:] |
|
1240 | dataOut.moments = data_param[:,1:,:] | |
1242 | dataOut.data_snr = data_param[:,0] |
|
1241 | dataOut.data_snr = data_param[:,0] | |
1243 | dataOut.data_pow = data_param[:,1] |
|
1242 | dataOut.data_pow = data_param[:,1] | |
1244 | dataOut.data_dop = data_param[:,2] |
|
1243 | dataOut.data_dop = data_param[:,2] | |
1245 | dataOut.data_width = data_param[:,3] |
|
1244 | dataOut.data_width = data_param[:,3] | |
1246 |
|
1245 | |||
1247 | return dataOut |
|
1246 | return dataOut | |
1248 |
|
1247 | |||
1249 | def __calculateMoments(self, oldspec, oldfreq, n0, |
|
1248 | def __calculateMoments(self, oldspec, oldfreq, n0, | |
1250 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): |
|
1249 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |
1251 |
|
1250 | |||
1252 | if (nicoh is None): nicoh = 1 |
|
1251 | if (nicoh is None): nicoh = 1 | |
1253 | if (graph is None): graph = 0 |
|
1252 | if (graph is None): graph = 0 | |
1254 | if (smooth is None): smooth = 0 |
|
1253 | if (smooth is None): smooth = 0 | |
1255 | elif (self.smooth < 3): smooth = 0 |
|
1254 | elif (self.smooth < 3): smooth = 0 | |
1256 |
|
1255 | |||
1257 | if (type1 is None): type1 = 0 |
|
1256 | if (type1 is None): type1 = 0 | |
1258 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 |
|
1257 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 | |
1259 | if (snrth is None): snrth = -3 |
|
1258 | if (snrth is None): snrth = -3 | |
1260 | if (dc is None): dc = 0 |
|
1259 | if (dc is None): dc = 0 | |
1261 | if (aliasing is None): aliasing = 0 |
|
1260 | if (aliasing is None): aliasing = 0 | |
1262 | if (oldfd is None): oldfd = 0 |
|
1261 | if (oldfd is None): oldfd = 0 | |
1263 | if (wwauto is None): wwauto = 0 |
|
1262 | if (wwauto is None): wwauto = 0 | |
1264 |
|
1263 | |||
1265 | if (n0 < 1.e-20): n0 = 1.e-20 |
|
1264 | if (n0 < 1.e-20): n0 = 1.e-20 | |
1266 |
|
1265 | |||
1267 | freq = oldfreq |
|
1266 | freq = oldfreq | |
1268 | vec_power = numpy.zeros(oldspec.shape[1]) |
|
1267 | vec_power = numpy.zeros(oldspec.shape[1]) | |
1269 | vec_fd = numpy.zeros(oldspec.shape[1]) |
|
1268 | vec_fd = numpy.zeros(oldspec.shape[1]) | |
1270 | vec_w = numpy.zeros(oldspec.shape[1]) |
|
1269 | vec_w = numpy.zeros(oldspec.shape[1]) | |
1271 | vec_snr = numpy.zeros(oldspec.shape[1]) |
|
1270 | vec_snr = numpy.zeros(oldspec.shape[1]) | |
1272 |
|
1271 | |||
1273 | # oldspec = numpy.ma.masked_invalid(oldspec) |
|
1272 | # oldspec = numpy.ma.masked_invalid(oldspec) | |
1274 |
|
1273 | |||
1275 | for ind in range(oldspec.shape[1]): |
|
1274 | for ind in range(oldspec.shape[1]): | |
1276 |
|
1275 | |||
1277 | spec = oldspec[:,ind] |
|
1276 | spec = oldspec[:,ind] | |
1278 | aux = spec*fwindow |
|
1277 | aux = spec*fwindow | |
1279 | max_spec = aux.max() |
|
1278 | max_spec = aux.max() | |
1280 | m = aux.tolist().index(max_spec) |
|
1279 | m = aux.tolist().index(max_spec) | |
1281 |
|
1280 | |||
1282 | # Smooth |
|
1281 | # Smooth | |
1283 | if (smooth == 0): |
|
1282 | if (smooth == 0): | |
1284 | spec2 = spec |
|
1283 | spec2 = spec | |
1285 | else: |
|
1284 | else: | |
1286 | spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) |
|
1285 | spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |
1287 |
|
1286 | |||
1288 | # Moments Estimation |
|
1287 | # Moments Estimation | |
1289 | bb = spec2[numpy.arange(m,spec2.size)] |
|
1288 | bb = spec2[numpy.arange(m,spec2.size)] | |
1290 | bb = (bb<n0).nonzero() |
|
1289 | bb = (bb<n0).nonzero() | |
1291 | bb = bb[0] |
|
1290 | bb = bb[0] | |
1292 |
|
1291 | |||
1293 | ss = spec2[numpy.arange(0,m + 1)] |
|
1292 | ss = spec2[numpy.arange(0,m + 1)] | |
1294 | ss = (ss<n0).nonzero() |
|
1293 | ss = (ss<n0).nonzero() | |
1295 | ss = ss[0] |
|
1294 | ss = ss[0] | |
1296 |
|
1295 | |||
1297 | if (bb.size == 0): |
|
1296 | if (bb.size == 0): | |
1298 | bb0 = spec.size - 1 - m |
|
1297 | bb0 = spec.size - 1 - m | |
1299 | else: |
|
1298 | else: | |
1300 | bb0 = bb[0] - 1 |
|
1299 | bb0 = bb[0] - 1 | |
1301 | if (bb0 < 0): |
|
1300 | if (bb0 < 0): | |
1302 | bb0 = 0 |
|
1301 | bb0 = 0 | |
1303 |
|
1302 | |||
1304 | if (ss.size == 0): |
|
1303 | if (ss.size == 0): | |
1305 | ss1 = 1 |
|
1304 | ss1 = 1 | |
1306 | else: |
|
1305 | else: | |
1307 | ss1 = max(ss) + 1 |
|
1306 | ss1 = max(ss) + 1 | |
1308 |
|
1307 | |||
1309 | if (ss1 > m): |
|
1308 | if (ss1 > m): | |
1310 | ss1 = m |
|
1309 | ss1 = m | |
1311 |
|
1310 | |||
1312 | valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1 |
|
1311 | valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1 | |
1313 |
|
1312 | |||
1314 | signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. Scipión added with correct definition |
|
1313 | signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. Scipión added with correct definition | |
1315 | total_power = (spec2[valid] * fwindow[valid]).mean() # D. Scipión added with correct definition |
|
1314 | total_power = (spec2[valid] * fwindow[valid]).mean() # D. Scipión added with correct definition | |
1316 | power = ((spec2[valid] - n0) * fwindow[valid]).sum() |
|
1315 | power = ((spec2[valid] - n0) * fwindow[valid]).sum() | |
1317 | fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power |
|
1316 | fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power | |
1318 | w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power) |
|
1317 | w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power) | |
1319 | snr = (spec2.mean()-n0)/n0 |
|
1318 | snr = (spec2.mean()-n0)/n0 | |
1320 | if (snr < 1.e-20) : |
|
1319 | if (snr < 1.e-20) : | |
1321 | snr = 1.e-20 |
|
1320 | snr = 1.e-20 | |
1322 |
|
1321 | |||
1323 | # vec_power[ind] = power #D. Scipión replaced with the line below |
|
1322 | # vec_power[ind] = power #D. Scipión replaced with the line below | |
1324 | vec_power[ind] = total_power |
|
1323 | vec_power[ind] = total_power | |
1325 | vec_fd[ind] = fd |
|
1324 | vec_fd[ind] = fd | |
1326 | vec_w[ind] = w |
|
1325 | vec_w[ind] = w | |
1327 | vec_snr[ind] = snr |
|
1326 | vec_snr[ind] = snr | |
1328 |
|
1327 | |||
1329 | return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) |
|
1328 | return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |
1330 |
|
1329 | |||
1331 | #------------------ Get SA Parameters -------------------------- |
|
1330 | #------------------ Get SA Parameters -------------------------- | |
1332 |
|
1331 | |||
1333 | def GetSAParameters(self): |
|
1332 | def GetSAParameters(self): | |
1334 | #SA en frecuencia |
|
1333 | #SA en frecuencia | |
1335 | pairslist = self.dataOut.groupList |
|
1334 | pairslist = self.dataOut.groupList | |
1336 | num_pairs = len(pairslist) |
|
1335 | num_pairs = len(pairslist) | |
1337 |
|
1336 | |||
1338 | vel = self.dataOut.abscissaList |
|
1337 | vel = self.dataOut.abscissaList | |
1339 | spectra = self.dataOut.data_pre |
|
1338 | spectra = self.dataOut.data_pre | |
1340 | cspectra = self.dataIn.data_cspc |
|
1339 | cspectra = self.dataIn.data_cspc | |
1341 | delta_v = vel[1] - vel[0] |
|
1340 | delta_v = vel[1] - vel[0] | |
1342 |
|
1341 | |||
1343 | #Calculating the power spectrum |
|
1342 | #Calculating the power spectrum | |
1344 | spc_pow = numpy.sum(spectra, 3)*delta_v |
|
1343 | spc_pow = numpy.sum(spectra, 3)*delta_v | |
1345 | #Normalizing Spectra |
|
1344 | #Normalizing Spectra | |
1346 | norm_spectra = spectra/spc_pow |
|
1345 | norm_spectra = spectra/spc_pow | |
1347 | #Calculating the norm_spectra at peak |
|
1346 | #Calculating the norm_spectra at peak | |
1348 | max_spectra = numpy.max(norm_spectra, 3) |
|
1347 | max_spectra = numpy.max(norm_spectra, 3) | |
1349 |
|
1348 | |||
1350 | #Normalizing Cross Spectra |
|
1349 | #Normalizing Cross Spectra | |
1351 | norm_cspectra = numpy.zeros(cspectra.shape) |
|
1350 | norm_cspectra = numpy.zeros(cspectra.shape) | |
1352 |
|
1351 | |||
1353 | for i in range(num_chan): |
|
1352 | for i in range(num_chan): | |
1354 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) |
|
1353 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) | |
1355 |
|
1354 | |||
1356 | max_cspectra = numpy.max(norm_cspectra,2) |
|
1355 | max_cspectra = numpy.max(norm_cspectra,2) | |
1357 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) |
|
1356 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) | |
1358 |
|
1357 | |||
1359 | for i in range(num_pairs): |
|
1358 | for i in range(num_pairs): | |
1360 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) |
|
1359 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) | |
1361 | #------------------- Get Lags ---------------------------------- |
|
1360 | #------------------- Get Lags ---------------------------------- | |
1362 |
|
1361 | |||
1363 | class SALags(Operation): |
|
1362 | class SALags(Operation): | |
1364 | ''' |
|
1363 | ''' | |
1365 | Function GetMoments() |
|
1364 | Function GetMoments() | |
1366 |
|
1365 | |||
1367 | Input: |
|
1366 | Input: | |
1368 | self.dataOut.data_pre |
|
1367 | self.dataOut.data_pre | |
1369 | self.dataOut.abscissaList |
|
1368 | self.dataOut.abscissaList | |
1370 | self.dataOut.noise |
|
1369 | self.dataOut.noise | |
1371 | self.dataOut.normFactor |
|
1370 | self.dataOut.normFactor | |
1372 | self.dataOut.data_snr |
|
1371 | self.dataOut.data_snr | |
1373 | self.dataOut.groupList |
|
1372 | self.dataOut.groupList | |
1374 | self.dataOut.nChannels |
|
1373 | self.dataOut.nChannels | |
1375 |
|
1374 | |||
1376 | Affected: |
|
1375 | Affected: | |
1377 | self.dataOut.data_param |
|
1376 | self.dataOut.data_param | |
1378 |
|
1377 | |||
1379 | ''' |
|
1378 | ''' | |
1380 | def run(self, dataOut): |
|
1379 | def run(self, dataOut): | |
1381 | data_acf = dataOut.data_pre[0] |
|
1380 | data_acf = dataOut.data_pre[0] | |
1382 | data_ccf = dataOut.data_pre[1] |
|
1381 | data_ccf = dataOut.data_pre[1] | |
1383 | normFactor_acf = dataOut.normFactor[0] |
|
1382 | normFactor_acf = dataOut.normFactor[0] | |
1384 | normFactor_ccf = dataOut.normFactor[1] |
|
1383 | normFactor_ccf = dataOut.normFactor[1] | |
1385 | pairs_acf = dataOut.groupList[0] |
|
1384 | pairs_acf = dataOut.groupList[0] | |
1386 | pairs_ccf = dataOut.groupList[1] |
|
1385 | pairs_ccf = dataOut.groupList[1] | |
1387 |
|
1386 | |||
1388 | nHeights = dataOut.nHeights |
|
1387 | nHeights = dataOut.nHeights | |
1389 | absc = dataOut.abscissaList |
|
1388 | absc = dataOut.abscissaList | |
1390 | noise = dataOut.noise |
|
1389 | noise = dataOut.noise | |
1391 | SNR = dataOut.data_snr |
|
1390 | SNR = dataOut.data_snr | |
1392 | nChannels = dataOut.nChannels |
|
1391 | nChannels = dataOut.nChannels | |
1393 | # pairsList = dataOut.groupList |
|
1392 | # pairsList = dataOut.groupList | |
1394 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) |
|
1393 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |
1395 |
|
1394 | |||
1396 | for l in range(len(pairs_acf)): |
|
1395 | for l in range(len(pairs_acf)): | |
1397 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] |
|
1396 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] | |
1398 |
|
1397 | |||
1399 | for l in range(len(pairs_ccf)): |
|
1398 | for l in range(len(pairs_ccf)): | |
1400 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] |
|
1399 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] | |
1401 |
|
1400 | |||
1402 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) |
|
1401 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) | |
1403 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) |
|
1402 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) | |
1404 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) |
|
1403 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) | |
1405 | return |
|
1404 | return | |
1406 |
|
1405 | |||
1407 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
1406 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
1408 | # |
|
1407 | # | |
1409 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
1408 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
1410 | # |
|
1409 | # | |
1411 | # for l in range(len(pairsList)): |
|
1410 | # for l in range(len(pairsList)): | |
1412 | # firstChannel = pairsList[l][0] |
|
1411 | # firstChannel = pairsList[l][0] | |
1413 | # secondChannel = pairsList[l][1] |
|
1412 | # secondChannel = pairsList[l][1] | |
1414 | # |
|
1413 | # | |
1415 | # #Obteniendo pares de Autocorrelacion |
|
1414 | # #Obteniendo pares de Autocorrelacion | |
1416 | # if firstChannel == secondChannel: |
|
1415 | # if firstChannel == secondChannel: | |
1417 | # pairsAutoCorr[firstChannel] = int(l) |
|
1416 | # pairsAutoCorr[firstChannel] = int(l) | |
1418 | # |
|
1417 | # | |
1419 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
1418 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
1420 | # |
|
1419 | # | |
1421 | # pairsCrossCorr = range(len(pairsList)) |
|
1420 | # pairsCrossCorr = range(len(pairsList)) | |
1422 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
1421 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
1423 | # |
|
1422 | # | |
1424 | # return pairsAutoCorr, pairsCrossCorr |
|
1423 | # return pairsAutoCorr, pairsCrossCorr | |
1425 |
|
1424 | |||
1426 | def __calculateTaus(self, data_acf, data_ccf, lagRange): |
|
1425 | def __calculateTaus(self, data_acf, data_ccf, lagRange): | |
1427 |
|
1426 | |||
1428 | lag0 = data_acf.shape[1]/2 |
|
1427 | lag0 = data_acf.shape[1]/2 | |
1429 | #Funcion de Autocorrelacion |
|
1428 | #Funcion de Autocorrelacion | |
1430 | mean_acf = stats.nanmean(data_acf, axis = 0) |
|
1429 | mean_acf = stats.nanmean(data_acf, axis = 0) | |
1431 |
|
1430 | |||
1432 | #Obtencion Indice de TauCross |
|
1431 | #Obtencion Indice de TauCross | |
1433 | ind_ccf = data_ccf.argmax(axis = 1) |
|
1432 | ind_ccf = data_ccf.argmax(axis = 1) | |
1434 | #Obtencion Indice de TauAuto |
|
1433 | #Obtencion Indice de TauAuto | |
1435 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') |
|
1434 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') | |
1436 | ccf_lag0 = data_ccf[:,lag0,:] |
|
1435 | ccf_lag0 = data_ccf[:,lag0,:] | |
1437 |
|
1436 | |||
1438 | for i in range(ccf_lag0.shape[0]): |
|
1437 | for i in range(ccf_lag0.shape[0]): | |
1439 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) |
|
1438 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) | |
1440 |
|
1439 | |||
1441 | #Obtencion de TauCross y TauAuto |
|
1440 | #Obtencion de TauCross y TauAuto | |
1442 | tau_ccf = lagRange[ind_ccf] |
|
1441 | tau_ccf = lagRange[ind_ccf] | |
1443 | tau_acf = lagRange[ind_acf] |
|
1442 | tau_acf = lagRange[ind_acf] | |
1444 |
|
1443 | |||
1445 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) |
|
1444 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) | |
1446 |
|
1445 | |||
1447 | tau_ccf[Nan1,Nan2] = numpy.nan |
|
1446 | tau_ccf[Nan1,Nan2] = numpy.nan | |
1448 | tau_acf[Nan1,Nan2] = numpy.nan |
|
1447 | tau_acf[Nan1,Nan2] = numpy.nan | |
1449 | tau = numpy.vstack((tau_ccf,tau_acf)) |
|
1448 | tau = numpy.vstack((tau_ccf,tau_acf)) | |
1450 |
|
1449 | |||
1451 | return tau |
|
1450 | return tau | |
1452 |
|
1451 | |||
1453 | def __calculateLag1Phase(self, data, lagTRange): |
|
1452 | def __calculateLag1Phase(self, data, lagTRange): | |
1454 | data1 = stats.nanmean(data, axis = 0) |
|
1453 | data1 = stats.nanmean(data, axis = 0) | |
1455 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 |
|
1454 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 | |
1456 |
|
1455 | |||
1457 | phase = numpy.angle(data1[lag1,:]) |
|
1456 | phase = numpy.angle(data1[lag1,:]) | |
1458 |
|
1457 | |||
1459 | return phase |
|
1458 | return phase | |
1460 |
|
1459 | |||
1461 | class SpectralFitting(Operation): |
|
1460 | class SpectralFitting(Operation): | |
1462 | ''' |
|
1461 | ''' | |
1463 | Function GetMoments() |
|
1462 | Function GetMoments() | |
1464 |
|
1463 | |||
1465 | Input: |
|
1464 | Input: | |
1466 | Output: |
|
1465 | Output: | |
1467 | Variables modified: |
|
1466 | Variables modified: | |
1468 | ''' |
|
1467 | ''' | |
1469 |
|
1468 | |||
1470 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): |
|
1469 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): | |
1471 |
|
1470 | |||
1472 |
|
1471 | |||
1473 | if path != None: |
|
1472 | if path != None: | |
1474 | sys.path.append(path) |
|
1473 | sys.path.append(path) | |
1475 | self.dataOut.library = importlib.import_module(file) |
|
1474 | self.dataOut.library = importlib.import_module(file) | |
1476 |
|
1475 | |||
1477 | #To be inserted as a parameter |
|
1476 | #To be inserted as a parameter | |
1478 | groupArray = numpy.array(groupList) |
|
1477 | groupArray = numpy.array(groupList) | |
1479 | # groupArray = numpy.array([[0,1],[2,3]]) |
|
1478 | # groupArray = numpy.array([[0,1],[2,3]]) | |
1480 | self.dataOut.groupList = groupArray |
|
1479 | self.dataOut.groupList = groupArray | |
1481 |
|
1480 | |||
1482 | nGroups = groupArray.shape[0] |
|
1481 | nGroups = groupArray.shape[0] | |
1483 | nChannels = self.dataIn.nChannels |
|
1482 | nChannels = self.dataIn.nChannels | |
1484 | nHeights=self.dataIn.heightList.size |
|
1483 | nHeights=self.dataIn.heightList.size | |
1485 |
|
1484 | |||
1486 | #Parameters Array |
|
1485 | #Parameters Array | |
1487 | self.dataOut.data_param = None |
|
1486 | self.dataOut.data_param = None | |
1488 |
|
1487 | |||
1489 | #Set constants |
|
1488 | #Set constants | |
1490 | constants = self.dataOut.library.setConstants(self.dataIn) |
|
1489 | constants = self.dataOut.library.setConstants(self.dataIn) | |
1491 | self.dataOut.constants = constants |
|
1490 | self.dataOut.constants = constants | |
1492 | M = self.dataIn.normFactor |
|
1491 | M = self.dataIn.normFactor | |
1493 | N = self.dataIn.nFFTPoints |
|
1492 | N = self.dataIn.nFFTPoints | |
1494 | ippSeconds = self.dataIn.ippSeconds |
|
1493 | ippSeconds = self.dataIn.ippSeconds | |
1495 | K = self.dataIn.nIncohInt |
|
1494 | K = self.dataIn.nIncohInt | |
1496 | pairsArray = numpy.array(self.dataIn.pairsList) |
|
1495 | pairsArray = numpy.array(self.dataIn.pairsList) | |
1497 |
|
1496 | |||
1498 | #List of possible combinations |
|
1497 | #List of possible combinations | |
1499 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) |
|
1498 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |
1500 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') |
|
1499 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |
1501 |
|
1500 | |||
1502 | if getSNR: |
|
1501 | if getSNR: | |
1503 | listChannels = groupArray.reshape((groupArray.size)) |
|
1502 | listChannels = groupArray.reshape((groupArray.size)) | |
1504 | listChannels.sort() |
|
1503 | listChannels.sort() | |
1505 | noise = self.dataIn.getNoise() |
|
1504 | noise = self.dataIn.getNoise() | |
1506 | self.dataOut.data_snr = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) |
|
1505 | self.dataOut.data_snr = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) | |
1507 |
|
1506 | |||
1508 | for i in range(nGroups): |
|
1507 | for i in range(nGroups): | |
1509 | coord = groupArray[i,:] |
|
1508 | coord = groupArray[i,:] | |
1510 |
|
1509 | |||
1511 | #Input data array |
|
1510 | #Input data array | |
1512 | data = self.dataIn.data_spc[coord,:,:]/(M*N) |
|
1511 | data = self.dataIn.data_spc[coord,:,:]/(M*N) | |
1513 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) |
|
1512 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) | |
1514 |
|
1513 | |||
1515 | #Cross Spectra data array for Covariance Matrixes |
|
1514 | #Cross Spectra data array for Covariance Matrixes | |
1516 | ind = 0 |
|
1515 | ind = 0 | |
1517 | for pairs in listComb: |
|
1516 | for pairs in listComb: | |
1518 | pairsSel = numpy.array([coord[x],coord[y]]) |
|
1517 | pairsSel = numpy.array([coord[x],coord[y]]) | |
1519 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) |
|
1518 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) | |
1520 | ind += 1 |
|
1519 | ind += 1 | |
1521 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) |
|
1520 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) | |
1522 | dataCross = dataCross**2/K |
|
1521 | dataCross = dataCross**2/K | |
1523 |
|
1522 | |||
1524 | for h in range(nHeights): |
|
1523 | for h in range(nHeights): | |
1525 |
|
1524 | |||
1526 | #Input |
|
1525 | #Input | |
1527 | d = data[:,h] |
|
1526 | d = data[:,h] | |
1528 |
|
1527 | |||
1529 | #Covariance Matrix |
|
1528 | #Covariance Matrix | |
1530 | D = numpy.diag(d**2/K) |
|
1529 | D = numpy.diag(d**2/K) | |
1531 | ind = 0 |
|
1530 | ind = 0 | |
1532 | for pairs in listComb: |
|
1531 | for pairs in listComb: | |
1533 | #Coordinates in Covariance Matrix |
|
1532 | #Coordinates in Covariance Matrix | |
1534 | x = pairs[0] |
|
1533 | x = pairs[0] | |
1535 | y = pairs[1] |
|
1534 | y = pairs[1] | |
1536 | #Channel Index |
|
1535 | #Channel Index | |
1537 | S12 = dataCross[ind,:,h] |
|
1536 | S12 = dataCross[ind,:,h] | |
1538 | D12 = numpy.diag(S12) |
|
1537 | D12 = numpy.diag(S12) | |
1539 | #Completing Covariance Matrix with Cross Spectras |
|
1538 | #Completing Covariance Matrix with Cross Spectras | |
1540 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 |
|
1539 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 | |
1541 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 |
|
1540 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 | |
1542 | ind += 1 |
|
1541 | ind += 1 | |
1543 | Dinv=numpy.linalg.inv(D) |
|
1542 | Dinv=numpy.linalg.inv(D) | |
1544 | L=numpy.linalg.cholesky(Dinv) |
|
1543 | L=numpy.linalg.cholesky(Dinv) | |
1545 | LT=L.T |
|
1544 | LT=L.T | |
1546 |
|
1545 | |||
1547 | dp = numpy.dot(LT,d) |
|
1546 | dp = numpy.dot(LT,d) | |
1548 |
|
1547 | |||
1549 | #Initial values |
|
1548 | #Initial values | |
1550 | data_spc = self.dataIn.data_spc[coord,:,h] |
|
1549 | data_spc = self.dataIn.data_spc[coord,:,h] | |
1551 |
|
1550 | |||
1552 | if (h>0)and(error1[3]<5): |
|
1551 | if (h>0)and(error1[3]<5): | |
1553 | p0 = self.dataOut.data_param[i,:,h-1] |
|
1552 | p0 = self.dataOut.data_param[i,:,h-1] | |
1554 | else: |
|
1553 | else: | |
1555 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) |
|
1554 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) | |
1556 |
|
1555 | |||
1557 | try: |
|
1556 | try: | |
1558 | #Least Squares |
|
1557 | #Least Squares | |
1559 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) |
|
1558 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) | |
1560 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) |
|
1559 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) | |
1561 | #Chi square error |
|
1560 | #Chi square error | |
1562 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) |
|
1561 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) | |
1563 | #Error with Jacobian |
|
1562 | #Error with Jacobian | |
1564 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) |
|
1563 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) | |
1565 | except: |
|
1564 | except: | |
1566 | minp = p0*numpy.nan |
|
1565 | minp = p0*numpy.nan | |
1567 | error0 = numpy.nan |
|
1566 | error0 = numpy.nan | |
1568 | error1 = p0*numpy.nan |
|
1567 | error1 = p0*numpy.nan | |
1569 |
|
1568 | |||
1570 | #Save |
|
1569 | #Save | |
1571 | if self.dataOut.data_param is None: |
|
1570 | if self.dataOut.data_param is None: | |
1572 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan |
|
1571 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan | |
1573 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan |
|
1572 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan | |
1574 |
|
1573 | |||
1575 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) |
|
1574 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) | |
1576 | self.dataOut.data_param[i,:,h] = minp |
|
1575 | self.dataOut.data_param[i,:,h] = minp | |
1577 | return |
|
1576 | return | |
1578 |
|
1577 | |||
1579 | def __residFunction(self, p, dp, LT, constants): |
|
1578 | def __residFunction(self, p, dp, LT, constants): | |
1580 |
|
1579 | |||
1581 | fm = self.dataOut.library.modelFunction(p, constants) |
|
1580 | fm = self.dataOut.library.modelFunction(p, constants) | |
1582 | fmp=numpy.dot(LT,fm) |
|
1581 | fmp=numpy.dot(LT,fm) | |
1583 |
|
1582 | |||
1584 | return dp-fmp |
|
1583 | return dp-fmp | |
1585 |
|
1584 | |||
1586 | def __getSNR(self, z, noise): |
|
1585 | def __getSNR(self, z, noise): | |
1587 |
|
1586 | |||
1588 | avg = numpy.average(z, axis=1) |
|
1587 | avg = numpy.average(z, axis=1) | |
1589 | SNR = (avg.T-noise)/noise |
|
1588 | SNR = (avg.T-noise)/noise | |
1590 | SNR = SNR.T |
|
1589 | SNR = SNR.T | |
1591 | return SNR |
|
1590 | return SNR | |
1592 |
|
1591 | |||
1593 | def __chisq(p,chindex,hindex): |
|
1592 | def __chisq(p,chindex,hindex): | |
1594 | #similar to Resid but calculates CHI**2 |
|
1593 | #similar to Resid but calculates CHI**2 | |
1595 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) |
|
1594 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) | |
1596 | dp=numpy.dot(LT,d) |
|
1595 | dp=numpy.dot(LT,d) | |
1597 | fmp=numpy.dot(LT,fm) |
|
1596 | fmp=numpy.dot(LT,fm) | |
1598 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) |
|
1597 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) | |
1599 | return chisq |
|
1598 | return chisq | |
1600 |
|
1599 | |||
1601 | class WindProfiler(Operation): |
|
1600 | class WindProfiler(Operation): | |
1602 |
|
1601 | |||
1603 | __isConfig = False |
|
1602 | __isConfig = False | |
1604 |
|
1603 | |||
1605 | __initime = None |
|
1604 | __initime = None | |
1606 | __lastdatatime = None |
|
1605 | __lastdatatime = None | |
1607 | __integrationtime = None |
|
1606 | __integrationtime = None | |
1608 |
|
1607 | |||
1609 | __buffer = None |
|
1608 | __buffer = None | |
1610 |
|
1609 | |||
1611 | __dataReady = False |
|
1610 | __dataReady = False | |
1612 |
|
1611 | |||
1613 | __firstdata = None |
|
1612 | __firstdata = None | |
1614 |
|
1613 | |||
1615 | n = None |
|
1614 | n = None | |
1616 |
|
1615 | |||
1617 | def __init__(self): |
|
1616 | def __init__(self): | |
1618 | Operation.__init__(self) |
|
1617 | Operation.__init__(self) | |
1619 |
|
1618 | |||
1620 | def __calculateCosDir(self, elev, azim): |
|
1619 | def __calculateCosDir(self, elev, azim): | |
1621 | zen = (90 - elev)*numpy.pi/180 |
|
1620 | zen = (90 - elev)*numpy.pi/180 | |
1622 | azim = azim*numpy.pi/180 |
|
1621 | azim = azim*numpy.pi/180 | |
1623 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) |
|
1622 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) | |
1624 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) |
|
1623 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) | |
1625 |
|
1624 | |||
1626 | signX = numpy.sign(numpy.cos(azim)) |
|
1625 | signX = numpy.sign(numpy.cos(azim)) | |
1627 | signY = numpy.sign(numpy.sin(azim)) |
|
1626 | signY = numpy.sign(numpy.sin(azim)) | |
1628 |
|
1627 | |||
1629 | cosDirX = numpy.copysign(cosDirX, signX) |
|
1628 | cosDirX = numpy.copysign(cosDirX, signX) | |
1630 | cosDirY = numpy.copysign(cosDirY, signY) |
|
1629 | cosDirY = numpy.copysign(cosDirY, signY) | |
1631 | return cosDirX, cosDirY |
|
1630 | return cosDirX, cosDirY | |
1632 |
|
1631 | |||
1633 | def __calculateAngles(self, theta_x, theta_y, azimuth): |
|
1632 | def __calculateAngles(self, theta_x, theta_y, azimuth): | |
1634 |
|
1633 | |||
1635 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) |
|
1634 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) | |
1636 | zenith_arr = numpy.arccos(dir_cosw) |
|
1635 | zenith_arr = numpy.arccos(dir_cosw) | |
1637 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 |
|
1636 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 | |
1638 |
|
1637 | |||
1639 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) |
|
1638 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) | |
1640 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) |
|
1639 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) | |
1641 |
|
1640 | |||
1642 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw |
|
1641 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw | |
1643 |
|
1642 | |||
1644 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): |
|
1643 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): | |
1645 |
|
1644 | |||
1646 | # |
|
1645 | # | |
1647 | if horOnly: |
|
1646 | if horOnly: | |
1648 | A = numpy.c_[dir_cosu,dir_cosv] |
|
1647 | A = numpy.c_[dir_cosu,dir_cosv] | |
1649 | else: |
|
1648 | else: | |
1650 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] |
|
1649 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] | |
1651 | A = numpy.asmatrix(A) |
|
1650 | A = numpy.asmatrix(A) | |
1652 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() |
|
1651 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() | |
1653 |
|
1652 | |||
1654 | return A1 |
|
1653 | return A1 | |
1655 |
|
1654 | |||
1656 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
1655 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
1657 | listPhi = phi.tolist() |
|
1656 | listPhi = phi.tolist() | |
1658 | maxid = listPhi.index(max(listPhi)) |
|
1657 | maxid = listPhi.index(max(listPhi)) | |
1659 | minid = listPhi.index(min(listPhi)) |
|
1658 | minid = listPhi.index(min(listPhi)) | |
1660 |
|
1659 | |||
1661 | rango = list(range(len(phi))) |
|
1660 | rango = list(range(len(phi))) | |
1662 | # rango = numpy.delete(rango,maxid) |
|
1661 | # rango = numpy.delete(rango,maxid) | |
1663 |
|
1662 | |||
1664 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
1663 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
1665 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
1664 | heiRangAux = heiRang*math.cos(phi[minid]) | |
1666 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
1665 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
1667 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
1666 | heiRang1 = numpy.delete(heiRang1,indOut) | |
1668 |
|
1667 | |||
1669 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1668 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1670 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1669 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1671 |
|
1670 | |||
1672 | for i in rango: |
|
1671 | for i in rango: | |
1673 | x = heiRang*math.cos(phi[i]) |
|
1672 | x = heiRang*math.cos(phi[i]) | |
1674 | y1 = velRadial[i,:] |
|
1673 | y1 = velRadial[i,:] | |
1675 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
1674 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
1676 |
|
1675 | |||
1677 | x1 = heiRang1 |
|
1676 | x1 = heiRang1 | |
1678 | y11 = f1(x1) |
|
1677 | y11 = f1(x1) | |
1679 |
|
1678 | |||
1680 | y2 = SNR[i,:] |
|
1679 | y2 = SNR[i,:] | |
1681 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
1680 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
1682 | y21 = f2(x1) |
|
1681 | y21 = f2(x1) | |
1683 |
|
1682 | |||
1684 | velRadial1[i,:] = y11 |
|
1683 | velRadial1[i,:] = y11 | |
1685 | SNR1[i,:] = y21 |
|
1684 | SNR1[i,:] = y21 | |
1686 |
|
1685 | |||
1687 | return heiRang1, velRadial1, SNR1 |
|
1686 | return heiRang1, velRadial1, SNR1 | |
1688 |
|
1687 | |||
1689 | def __calculateVelUVW(self, A, velRadial): |
|
1688 | def __calculateVelUVW(self, A, velRadial): | |
1690 |
|
1689 | |||
1691 | #Operacion Matricial |
|
1690 | #Operacion Matricial | |
1692 | # velUVW = numpy.zeros((velRadial.shape[1],3)) |
|
1691 | # velUVW = numpy.zeros((velRadial.shape[1],3)) | |
1693 | # for ind in range(velRadial.shape[1]): |
|
1692 | # for ind in range(velRadial.shape[1]): | |
1694 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) |
|
1693 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) | |
1695 | # velUVW = velUVW.transpose() |
|
1694 | # velUVW = velUVW.transpose() | |
1696 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) |
|
1695 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) | |
1697 | velUVW[:,:] = numpy.dot(A,velRadial) |
|
1696 | velUVW[:,:] = numpy.dot(A,velRadial) | |
1698 |
|
1697 | |||
1699 |
|
1698 | |||
1700 | return velUVW |
|
1699 | return velUVW | |
1701 |
|
1700 | |||
1702 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): |
|
1701 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): | |
1703 |
|
1702 | |||
1704 | def techniqueDBS(self, kwargs): |
|
1703 | def techniqueDBS(self, kwargs): | |
1705 | """ |
|
1704 | """ | |
1706 | Function that implements Doppler Beam Swinging (DBS) technique. |
|
1705 | Function that implements Doppler Beam Swinging (DBS) technique. | |
1707 |
|
1706 | |||
1708 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1707 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1709 | Direction correction (if necessary), Ranges and SNR |
|
1708 | Direction correction (if necessary), Ranges and SNR | |
1710 |
|
1709 | |||
1711 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1710 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1712 |
|
1711 | |||
1713 | Parameters affected: Winds, height range, SNR |
|
1712 | Parameters affected: Winds, height range, SNR | |
1714 | """ |
|
1713 | """ | |
1715 | velRadial0 = kwargs['velRadial'] |
|
1714 | velRadial0 = kwargs['velRadial'] | |
1716 | heiRang = kwargs['heightList'] |
|
1715 | heiRang = kwargs['heightList'] | |
1717 | SNR0 = kwargs['SNR'] |
|
1716 | SNR0 = kwargs['SNR'] | |
1718 |
|
1717 | |||
1719 | if 'dirCosx' in kwargs and 'dirCosy' in kwargs: |
|
1718 | if 'dirCosx' in kwargs and 'dirCosy' in kwargs: | |
1720 | theta_x = numpy.array(kwargs['dirCosx']) |
|
1719 | theta_x = numpy.array(kwargs['dirCosx']) | |
1721 | theta_y = numpy.array(kwargs['dirCosy']) |
|
1720 | theta_y = numpy.array(kwargs['dirCosy']) | |
1722 | else: |
|
1721 | else: | |
1723 | elev = numpy.array(kwargs['elevation']) |
|
1722 | elev = numpy.array(kwargs['elevation']) | |
1724 | azim = numpy.array(kwargs['azimuth']) |
|
1723 | azim = numpy.array(kwargs['azimuth']) | |
1725 | theta_x, theta_y = self.__calculateCosDir(elev, azim) |
|
1724 | theta_x, theta_y = self.__calculateCosDir(elev, azim) | |
1726 | azimuth = kwargs['correctAzimuth'] |
|
1725 | azimuth = kwargs['correctAzimuth'] | |
1727 | if 'horizontalOnly' in kwargs: |
|
1726 | if 'horizontalOnly' in kwargs: | |
1728 | horizontalOnly = kwargs['horizontalOnly'] |
|
1727 | horizontalOnly = kwargs['horizontalOnly'] | |
1729 | else: horizontalOnly = False |
|
1728 | else: horizontalOnly = False | |
1730 | if 'correctFactor' in kwargs: |
|
1729 | if 'correctFactor' in kwargs: | |
1731 | correctFactor = kwargs['correctFactor'] |
|
1730 | correctFactor = kwargs['correctFactor'] | |
1732 | else: correctFactor = 1 |
|
1731 | else: correctFactor = 1 | |
1733 | if 'channelList' in kwargs: |
|
1732 | if 'channelList' in kwargs: | |
1734 | channelList = kwargs['channelList'] |
|
1733 | channelList = kwargs['channelList'] | |
1735 | if len(channelList) == 2: |
|
1734 | if len(channelList) == 2: | |
1736 | horizontalOnly = True |
|
1735 | horizontalOnly = True | |
1737 | arrayChannel = numpy.array(channelList) |
|
1736 | arrayChannel = numpy.array(channelList) | |
1738 | param = param[arrayChannel,:,:] |
|
1737 | param = param[arrayChannel,:,:] | |
1739 | theta_x = theta_x[arrayChannel] |
|
1738 | theta_x = theta_x[arrayChannel] | |
1740 | theta_y = theta_y[arrayChannel] |
|
1739 | theta_y = theta_y[arrayChannel] | |
1741 |
|
1740 | |||
1742 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) |
|
1741 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |
1743 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) |
|
1742 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) | |
1744 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) |
|
1743 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) | |
1745 |
|
1744 | |||
1746 | #Calculo de Componentes de la velocidad con DBS |
|
1745 | #Calculo de Componentes de la velocidad con DBS | |
1747 | winds = self.__calculateVelUVW(A,velRadial1) |
|
1746 | winds = self.__calculateVelUVW(A,velRadial1) | |
1748 |
|
1747 | |||
1749 | return winds, heiRang1, SNR1 |
|
1748 | return winds, heiRang1, SNR1 | |
1750 |
|
1749 | |||
1751 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): |
|
1750 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): | |
1752 |
|
1751 | |||
1753 | nPairs = len(pairs_ccf) |
|
1752 | nPairs = len(pairs_ccf) | |
1754 | posx = numpy.asarray(posx) |
|
1753 | posx = numpy.asarray(posx) | |
1755 | posy = numpy.asarray(posy) |
|
1754 | posy = numpy.asarray(posy) | |
1756 |
|
1755 | |||
1757 | #Rotacion Inversa para alinear con el azimuth |
|
1756 | #Rotacion Inversa para alinear con el azimuth | |
1758 | if azimuth!= None: |
|
1757 | if azimuth!= None: | |
1759 | azimuth = azimuth*math.pi/180 |
|
1758 | azimuth = azimuth*math.pi/180 | |
1760 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) |
|
1759 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) | |
1761 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) |
|
1760 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) | |
1762 | else: |
|
1761 | else: | |
1763 | posx1 = posx |
|
1762 | posx1 = posx | |
1764 | posy1 = posy |
|
1763 | posy1 = posy | |
1765 |
|
1764 | |||
1766 | #Calculo de Distancias |
|
1765 | #Calculo de Distancias | |
1767 | distx = numpy.zeros(nPairs) |
|
1766 | distx = numpy.zeros(nPairs) | |
1768 | disty = numpy.zeros(nPairs) |
|
1767 | disty = numpy.zeros(nPairs) | |
1769 | dist = numpy.zeros(nPairs) |
|
1768 | dist = numpy.zeros(nPairs) | |
1770 | ang = numpy.zeros(nPairs) |
|
1769 | ang = numpy.zeros(nPairs) | |
1771 |
|
1770 | |||
1772 | for i in range(nPairs): |
|
1771 | for i in range(nPairs): | |
1773 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] |
|
1772 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] | |
1774 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] |
|
1773 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] | |
1775 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) |
|
1774 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) | |
1776 | ang[i] = numpy.arctan2(disty[i],distx[i]) |
|
1775 | ang[i] = numpy.arctan2(disty[i],distx[i]) | |
1777 |
|
1776 | |||
1778 | return distx, disty, dist, ang |
|
1777 | return distx, disty, dist, ang | |
1779 | #Calculo de Matrices |
|
1778 | #Calculo de Matrices | |
1780 | # nPairs = len(pairs) |
|
1779 | # nPairs = len(pairs) | |
1781 | # ang1 = numpy.zeros((nPairs, 2, 1)) |
|
1780 | # ang1 = numpy.zeros((nPairs, 2, 1)) | |
1782 | # dist1 = numpy.zeros((nPairs, 2, 1)) |
|
1781 | # dist1 = numpy.zeros((nPairs, 2, 1)) | |
1783 | # |
|
1782 | # | |
1784 | # for j in range(nPairs): |
|
1783 | # for j in range(nPairs): | |
1785 | # dist1[j,0,0] = dist[pairs[j][0]] |
|
1784 | # dist1[j,0,0] = dist[pairs[j][0]] | |
1786 | # dist1[j,1,0] = dist[pairs[j][1]] |
|
1785 | # dist1[j,1,0] = dist[pairs[j][1]] | |
1787 | # ang1[j,0,0] = ang[pairs[j][0]] |
|
1786 | # ang1[j,0,0] = ang[pairs[j][0]] | |
1788 | # ang1[j,1,0] = ang[pairs[j][1]] |
|
1787 | # ang1[j,1,0] = ang[pairs[j][1]] | |
1789 | # |
|
1788 | # | |
1790 | # return distx,disty, dist1,ang1 |
|
1789 | # return distx,disty, dist1,ang1 | |
1791 |
|
1790 | |||
1792 |
|
1791 | |||
1793 | def __calculateVelVer(self, phase, lagTRange, _lambda): |
|
1792 | def __calculateVelVer(self, phase, lagTRange, _lambda): | |
1794 |
|
1793 | |||
1795 | Ts = lagTRange[1] - lagTRange[0] |
|
1794 | Ts = lagTRange[1] - lagTRange[0] | |
1796 | velW = -_lambda*phase/(4*math.pi*Ts) |
|
1795 | velW = -_lambda*phase/(4*math.pi*Ts) | |
1797 |
|
1796 | |||
1798 | return velW |
|
1797 | return velW | |
1799 |
|
1798 | |||
1800 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): |
|
1799 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): | |
1801 | nPairs = tau1.shape[0] |
|
1800 | nPairs = tau1.shape[0] | |
1802 | nHeights = tau1.shape[1] |
|
1801 | nHeights = tau1.shape[1] | |
1803 | vel = numpy.zeros((nPairs,3,nHeights)) |
|
1802 | vel = numpy.zeros((nPairs,3,nHeights)) | |
1804 | dist1 = numpy.reshape(dist, (dist.size,1)) |
|
1803 | dist1 = numpy.reshape(dist, (dist.size,1)) | |
1805 |
|
1804 | |||
1806 | angCos = numpy.cos(ang) |
|
1805 | angCos = numpy.cos(ang) | |
1807 | angSin = numpy.sin(ang) |
|
1806 | angSin = numpy.sin(ang) | |
1808 |
|
1807 | |||
1809 | vel0 = dist1*tau1/(2*tau2**2) |
|
1808 | vel0 = dist1*tau1/(2*tau2**2) | |
1810 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) |
|
1809 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) | |
1811 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) |
|
1810 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) | |
1812 |
|
1811 | |||
1813 | ind = numpy.where(numpy.isinf(vel)) |
|
1812 | ind = numpy.where(numpy.isinf(vel)) | |
1814 | vel[ind] = numpy.nan |
|
1813 | vel[ind] = numpy.nan | |
1815 |
|
1814 | |||
1816 | return vel |
|
1815 | return vel | |
1817 |
|
1816 | |||
1818 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
1817 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
1819 | # |
|
1818 | # | |
1820 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
1819 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
1821 | # |
|
1820 | # | |
1822 | # for l in range(len(pairsList)): |
|
1821 | # for l in range(len(pairsList)): | |
1823 | # firstChannel = pairsList[l][0] |
|
1822 | # firstChannel = pairsList[l][0] | |
1824 | # secondChannel = pairsList[l][1] |
|
1823 | # secondChannel = pairsList[l][1] | |
1825 | # |
|
1824 | # | |
1826 | # #Obteniendo pares de Autocorrelacion |
|
1825 | # #Obteniendo pares de Autocorrelacion | |
1827 | # if firstChannel == secondChannel: |
|
1826 | # if firstChannel == secondChannel: | |
1828 | # pairsAutoCorr[firstChannel] = int(l) |
|
1827 | # pairsAutoCorr[firstChannel] = int(l) | |
1829 | # |
|
1828 | # | |
1830 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
1829 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
1831 | # |
|
1830 | # | |
1832 | # pairsCrossCorr = range(len(pairsList)) |
|
1831 | # pairsCrossCorr = range(len(pairsList)) | |
1833 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
1832 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
1834 | # |
|
1833 | # | |
1835 | # return pairsAutoCorr, pairsCrossCorr |
|
1834 | # return pairsAutoCorr, pairsCrossCorr | |
1836 |
|
1835 | |||
1837 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): |
|
1836 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): | |
1838 | def techniqueSA(self, kwargs): |
|
1837 | def techniqueSA(self, kwargs): | |
1839 |
|
1838 | |||
1840 | """ |
|
1839 | """ | |
1841 | Function that implements Spaced Antenna (SA) technique. |
|
1840 | Function that implements Spaced Antenna (SA) technique. | |
1842 |
|
1841 | |||
1843 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1842 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1844 | Direction correction (if necessary), Ranges and SNR |
|
1843 | Direction correction (if necessary), Ranges and SNR | |
1845 |
|
1844 | |||
1846 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1845 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1847 |
|
1846 | |||
1848 | Parameters affected: Winds |
|
1847 | Parameters affected: Winds | |
1849 | """ |
|
1848 | """ | |
1850 | position_x = kwargs['positionX'] |
|
1849 | position_x = kwargs['positionX'] | |
1851 | position_y = kwargs['positionY'] |
|
1850 | position_y = kwargs['positionY'] | |
1852 | azimuth = kwargs['azimuth'] |
|
1851 | azimuth = kwargs['azimuth'] | |
1853 |
|
1852 | |||
1854 | if 'correctFactor' in kwargs: |
|
1853 | if 'correctFactor' in kwargs: | |
1855 | correctFactor = kwargs['correctFactor'] |
|
1854 | correctFactor = kwargs['correctFactor'] | |
1856 | else: |
|
1855 | else: | |
1857 | correctFactor = 1 |
|
1856 | correctFactor = 1 | |
1858 |
|
1857 | |||
1859 | groupList = kwargs['groupList'] |
|
1858 | groupList = kwargs['groupList'] | |
1860 | pairs_ccf = groupList[1] |
|
1859 | pairs_ccf = groupList[1] | |
1861 | tau = kwargs['tau'] |
|
1860 | tau = kwargs['tau'] | |
1862 | _lambda = kwargs['_lambda'] |
|
1861 | _lambda = kwargs['_lambda'] | |
1863 |
|
1862 | |||
1864 | #Cross Correlation pairs obtained |
|
1863 | #Cross Correlation pairs obtained | |
1865 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) |
|
1864 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) | |
1866 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] |
|
1865 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] | |
1867 | # pairsSelArray = numpy.array(pairsSelected) |
|
1866 | # pairsSelArray = numpy.array(pairsSelected) | |
1868 | # pairs = [] |
|
1867 | # pairs = [] | |
1869 | # |
|
1868 | # | |
1870 | # #Wind estimation pairs obtained |
|
1869 | # #Wind estimation pairs obtained | |
1871 | # for i in range(pairsSelArray.shape[0]/2): |
|
1870 | # for i in range(pairsSelArray.shape[0]/2): | |
1872 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] |
|
1871 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] | |
1873 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] |
|
1872 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] | |
1874 | # pairs.append((ind1,ind2)) |
|
1873 | # pairs.append((ind1,ind2)) | |
1875 |
|
1874 | |||
1876 | indtau = tau.shape[0]/2 |
|
1875 | indtau = tau.shape[0]/2 | |
1877 | tau1 = tau[:indtau,:] |
|
1876 | tau1 = tau[:indtau,:] | |
1878 | tau2 = tau[indtau:-1,:] |
|
1877 | tau2 = tau[indtau:-1,:] | |
1879 | # tau1 = tau1[pairs,:] |
|
1878 | # tau1 = tau1[pairs,:] | |
1880 | # tau2 = tau2[pairs,:] |
|
1879 | # tau2 = tau2[pairs,:] | |
1881 | phase1 = tau[-1,:] |
|
1880 | phase1 = tau[-1,:] | |
1882 |
|
1881 | |||
1883 | #--------------------------------------------------------------------- |
|
1882 | #--------------------------------------------------------------------- | |
1884 | #Metodo Directo |
|
1883 | #Metodo Directo | |
1885 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) |
|
1884 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) | |
1886 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) |
|
1885 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) | |
1887 | winds = stats.nanmean(winds, axis=0) |
|
1886 | winds = stats.nanmean(winds, axis=0) | |
1888 | #--------------------------------------------------------------------- |
|
1887 | #--------------------------------------------------------------------- | |
1889 | #Metodo General |
|
1888 | #Metodo General | |
1890 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) |
|
1889 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) | |
1891 | # #Calculo Coeficientes de Funcion de Correlacion |
|
1890 | # #Calculo Coeficientes de Funcion de Correlacion | |
1892 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) |
|
1891 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) | |
1893 | # #Calculo de Velocidades |
|
1892 | # #Calculo de Velocidades | |
1894 | # winds = self.calculateVelUV(F,G,A,B,H) |
|
1893 | # winds = self.calculateVelUV(F,G,A,B,H) | |
1895 |
|
1894 | |||
1896 | #--------------------------------------------------------------------- |
|
1895 | #--------------------------------------------------------------------- | |
1897 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) |
|
1896 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) | |
1898 | winds = correctFactor*winds |
|
1897 | winds = correctFactor*winds | |
1899 | return winds |
|
1898 | return winds | |
1900 |
|
1899 | |||
1901 | def __checkTime(self, currentTime, paramInterval, outputInterval): |
|
1900 | def __checkTime(self, currentTime, paramInterval, outputInterval): | |
1902 |
|
1901 | |||
1903 | dataTime = currentTime + paramInterval |
|
1902 | dataTime = currentTime + paramInterval | |
1904 | deltaTime = dataTime - self.__initime |
|
1903 | deltaTime = dataTime - self.__initime | |
1905 |
|
1904 | |||
1906 | if deltaTime >= outputInterval or deltaTime < 0: |
|
1905 | if deltaTime >= outputInterval or deltaTime < 0: | |
1907 | self.__dataReady = True |
|
1906 | self.__dataReady = True | |
1908 | return |
|
1907 | return | |
1909 |
|
1908 | |||
1910 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): |
|
1909 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): | |
1911 | ''' |
|
1910 | ''' | |
1912 | Function that implements winds estimation technique with detected meteors. |
|
1911 | Function that implements winds estimation technique with detected meteors. | |
1913 |
|
1912 | |||
1914 | Input: Detected meteors, Minimum meteor quantity to wind estimation |
|
1913 | Input: Detected meteors, Minimum meteor quantity to wind estimation | |
1915 |
|
1914 | |||
1916 | Output: Winds estimation (Zonal and Meridional) |
|
1915 | Output: Winds estimation (Zonal and Meridional) | |
1917 |
|
1916 | |||
1918 | Parameters affected: Winds |
|
1917 | Parameters affected: Winds | |
1919 | ''' |
|
1918 | ''' | |
1920 | #Settings |
|
1919 | #Settings | |
1921 | nInt = (heightMax - heightMin)/2 |
|
1920 | nInt = (heightMax - heightMin)/2 | |
1922 | nInt = int(nInt) |
|
1921 | nInt = int(nInt) | |
1923 | winds = numpy.zeros((2,nInt))*numpy.nan |
|
1922 | winds = numpy.zeros((2,nInt))*numpy.nan | |
1924 |
|
1923 | |||
1925 | #Filter errors |
|
1924 | #Filter errors | |
1926 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] |
|
1925 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] | |
1927 | finalMeteor = arrayMeteor[error,:] |
|
1926 | finalMeteor = arrayMeteor[error,:] | |
1928 |
|
1927 | |||
1929 | #Meteor Histogram |
|
1928 | #Meteor Histogram | |
1930 | finalHeights = finalMeteor[:,2] |
|
1929 | finalHeights = finalMeteor[:,2] | |
1931 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) |
|
1930 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) | |
1932 | nMeteorsPerI = hist[0] |
|
1931 | nMeteorsPerI = hist[0] | |
1933 | heightPerI = hist[1] |
|
1932 | heightPerI = hist[1] | |
1934 |
|
1933 | |||
1935 | #Sort of meteors |
|
1934 | #Sort of meteors | |
1936 | indSort = finalHeights.argsort() |
|
1935 | indSort = finalHeights.argsort() | |
1937 | finalMeteor2 = finalMeteor[indSort,:] |
|
1936 | finalMeteor2 = finalMeteor[indSort,:] | |
1938 |
|
1937 | |||
1939 | # Calculating winds |
|
1938 | # Calculating winds | |
1940 | ind1 = 0 |
|
1939 | ind1 = 0 | |
1941 | ind2 = 0 |
|
1940 | ind2 = 0 | |
1942 |
|
1941 | |||
1943 | for i in range(nInt): |
|
1942 | for i in range(nInt): | |
1944 | nMet = nMeteorsPerI[i] |
|
1943 | nMet = nMeteorsPerI[i] | |
1945 | ind1 = ind2 |
|
1944 | ind1 = ind2 | |
1946 | ind2 = ind1 + nMet |
|
1945 | ind2 = ind1 + nMet | |
1947 |
|
1946 | |||
1948 | meteorAux = finalMeteor2[ind1:ind2,:] |
|
1947 | meteorAux = finalMeteor2[ind1:ind2,:] | |
1949 |
|
1948 | |||
1950 | if meteorAux.shape[0] >= meteorThresh: |
|
1949 | if meteorAux.shape[0] >= meteorThresh: | |
1951 | vel = meteorAux[:, 6] |
|
1950 | vel = meteorAux[:, 6] | |
1952 | zen = meteorAux[:, 4]*numpy.pi/180 |
|
1951 | zen = meteorAux[:, 4]*numpy.pi/180 | |
1953 | azim = meteorAux[:, 3]*numpy.pi/180 |
|
1952 | azim = meteorAux[:, 3]*numpy.pi/180 | |
1954 |
|
1953 | |||
1955 | n = numpy.cos(zen) |
|
1954 | n = numpy.cos(zen) | |
1956 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) |
|
1955 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) | |
1957 | # l = m*numpy.tan(azim) |
|
1956 | # l = m*numpy.tan(azim) | |
1958 | l = numpy.sin(zen)*numpy.sin(azim) |
|
1957 | l = numpy.sin(zen)*numpy.sin(azim) | |
1959 | m = numpy.sin(zen)*numpy.cos(azim) |
|
1958 | m = numpy.sin(zen)*numpy.cos(azim) | |
1960 |
|
1959 | |||
1961 | A = numpy.vstack((l, m)).transpose() |
|
1960 | A = numpy.vstack((l, m)).transpose() | |
1962 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) |
|
1961 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) | |
1963 | windsAux = numpy.dot(A1, vel) |
|
1962 | windsAux = numpy.dot(A1, vel) | |
1964 |
|
1963 | |||
1965 | winds[0,i] = windsAux[0] |
|
1964 | winds[0,i] = windsAux[0] | |
1966 | winds[1,i] = windsAux[1] |
|
1965 | winds[1,i] = windsAux[1] | |
1967 |
|
1966 | |||
1968 | return winds, heightPerI[:-1] |
|
1967 | return winds, heightPerI[:-1] | |
1969 |
|
1968 | |||
1970 | def techniqueNSM_SA(self, **kwargs): |
|
1969 | def techniqueNSM_SA(self, **kwargs): | |
1971 | metArray = kwargs['metArray'] |
|
1970 | metArray = kwargs['metArray'] | |
1972 | heightList = kwargs['heightList'] |
|
1971 | heightList = kwargs['heightList'] | |
1973 | timeList = kwargs['timeList'] |
|
1972 | timeList = kwargs['timeList'] | |
1974 |
|
1973 | |||
1975 | rx_location = kwargs['rx_location'] |
|
1974 | rx_location = kwargs['rx_location'] | |
1976 | groupList = kwargs['groupList'] |
|
1975 | groupList = kwargs['groupList'] | |
1977 | azimuth = kwargs['azimuth'] |
|
1976 | azimuth = kwargs['azimuth'] | |
1978 | dfactor = kwargs['dfactor'] |
|
1977 | dfactor = kwargs['dfactor'] | |
1979 | k = kwargs['k'] |
|
1978 | k = kwargs['k'] | |
1980 |
|
1979 | |||
1981 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) |
|
1980 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) | |
1982 | d = dist*dfactor |
|
1981 | d = dist*dfactor | |
1983 | #Phase calculation |
|
1982 | #Phase calculation | |
1984 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) |
|
1983 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) | |
1985 |
|
1984 | |||
1986 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities |
|
1985 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities | |
1987 |
|
1986 | |||
1988 | velEst = numpy.zeros((heightList.size,2))*numpy.nan |
|
1987 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |
1989 | azimuth1 = azimuth1*numpy.pi/180 |
|
1988 | azimuth1 = azimuth1*numpy.pi/180 | |
1990 |
|
1989 | |||
1991 | for i in range(heightList.size): |
|
1990 | for i in range(heightList.size): | |
1992 | h = heightList[i] |
|
1991 | h = heightList[i] | |
1993 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] |
|
1992 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] | |
1994 | metHeight = metArray1[indH,:] |
|
1993 | metHeight = metArray1[indH,:] | |
1995 | if metHeight.shape[0] >= 2: |
|
1994 | if metHeight.shape[0] >= 2: | |
1996 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities |
|
1995 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities | |
1997 | iazim = metHeight[:,1].astype(int) |
|
1996 | iazim = metHeight[:,1].astype(int) | |
1998 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths |
|
1997 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths | |
1999 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) |
|
1998 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) | |
2000 | A = numpy.asmatrix(A) |
|
1999 | A = numpy.asmatrix(A) | |
2001 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() |
|
2000 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() | |
2002 | velHor = numpy.dot(A1,velAux) |
|
2001 | velHor = numpy.dot(A1,velAux) | |
2003 |
|
2002 | |||
2004 | velEst[i,:] = numpy.squeeze(velHor) |
|
2003 | velEst[i,:] = numpy.squeeze(velHor) | |
2005 | return velEst |
|
2004 | return velEst | |
2006 |
|
2005 | |||
2007 | def __getPhaseSlope(self, metArray, heightList, timeList): |
|
2006 | def __getPhaseSlope(self, metArray, heightList, timeList): | |
2008 | meteorList = [] |
|
2007 | meteorList = [] | |
2009 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 |
|
2008 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 | |
2010 | #Putting back together the meteor matrix |
|
2009 | #Putting back together the meteor matrix | |
2011 | utctime = metArray[:,0] |
|
2010 | utctime = metArray[:,0] | |
2012 | uniqueTime = numpy.unique(utctime) |
|
2011 | uniqueTime = numpy.unique(utctime) | |
2013 |
|
2012 | |||
2014 | phaseDerThresh = 0.5 |
|
2013 | phaseDerThresh = 0.5 | |
2015 | ippSeconds = timeList[1] - timeList[0] |
|
2014 | ippSeconds = timeList[1] - timeList[0] | |
2016 | sec = numpy.where(timeList>1)[0][0] |
|
2015 | sec = numpy.where(timeList>1)[0][0] | |
2017 | nPairs = metArray.shape[1] - 6 |
|
2016 | nPairs = metArray.shape[1] - 6 | |
2018 | nHeights = len(heightList) |
|
2017 | nHeights = len(heightList) | |
2019 |
|
2018 | |||
2020 | for t in uniqueTime: |
|
2019 | for t in uniqueTime: | |
2021 | metArray1 = metArray[utctime==t,:] |
|
2020 | metArray1 = metArray[utctime==t,:] | |
2022 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh |
|
2021 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh | |
2023 | tmet = metArray1[:,1].astype(int) |
|
2022 | tmet = metArray1[:,1].astype(int) | |
2024 | hmet = metArray1[:,2].astype(int) |
|
2023 | hmet = metArray1[:,2].astype(int) | |
2025 |
|
2024 | |||
2026 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) |
|
2025 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) | |
2027 | metPhase[:,:] = numpy.nan |
|
2026 | metPhase[:,:] = numpy.nan | |
2028 | metPhase[:,hmet,tmet] = metArray1[:,6:].T |
|
2027 | metPhase[:,hmet,tmet] = metArray1[:,6:].T | |
2029 |
|
2028 | |||
2030 | #Delete short trails |
|
2029 | #Delete short trails | |
2031 | metBool = ~numpy.isnan(metPhase[0,:,:]) |
|
2030 | metBool = ~numpy.isnan(metPhase[0,:,:]) | |
2032 | heightVect = numpy.sum(metBool, axis = 1) |
|
2031 | heightVect = numpy.sum(metBool, axis = 1) | |
2033 | metBool[heightVect<sec,:] = False |
|
2032 | metBool[heightVect<sec,:] = False | |
2034 | metPhase[:,heightVect<sec,:] = numpy.nan |
|
2033 | metPhase[:,heightVect<sec,:] = numpy.nan | |
2035 |
|
2034 | |||
2036 | #Derivative |
|
2035 | #Derivative | |
2037 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) |
|
2036 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) | |
2038 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) |
|
2037 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) | |
2039 | metPhase[phDerAux] = numpy.nan |
|
2038 | metPhase[phDerAux] = numpy.nan | |
2040 |
|
2039 | |||
2041 | #--------------------------METEOR DETECTION ----------------------------------------- |
|
2040 | #--------------------------METEOR DETECTION ----------------------------------------- | |
2042 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] |
|
2041 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] | |
2043 |
|
2042 | |||
2044 | for p in numpy.arange(nPairs): |
|
2043 | for p in numpy.arange(nPairs): | |
2045 | phase = metPhase[p,:,:] |
|
2044 | phase = metPhase[p,:,:] | |
2046 | phDer = metDer[p,:,:] |
|
2045 | phDer = metDer[p,:,:] | |
2047 |
|
2046 | |||
2048 | for h in indMet: |
|
2047 | for h in indMet: | |
2049 | height = heightList[h] |
|
2048 | height = heightList[h] | |
2050 | phase1 = phase[h,:] #82 |
|
2049 | phase1 = phase[h,:] #82 | |
2051 | phDer1 = phDer[h,:] |
|
2050 | phDer1 = phDer[h,:] | |
2052 |
|
2051 | |||
2053 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap |
|
2052 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap | |
2054 |
|
2053 | |||
2055 | indValid = numpy.where(~numpy.isnan(phase1))[0] |
|
2054 | indValid = numpy.where(~numpy.isnan(phase1))[0] | |
2056 | initMet = indValid[0] |
|
2055 | initMet = indValid[0] | |
2057 | endMet = 0 |
|
2056 | endMet = 0 | |
2058 |
|
2057 | |||
2059 | for i in range(len(indValid)-1): |
|
2058 | for i in range(len(indValid)-1): | |
2060 |
|
2059 | |||
2061 | #Time difference |
|
2060 | #Time difference | |
2062 | inow = indValid[i] |
|
2061 | inow = indValid[i] | |
2063 | inext = indValid[i+1] |
|
2062 | inext = indValid[i+1] | |
2064 | idiff = inext - inow |
|
2063 | idiff = inext - inow | |
2065 | #Phase difference |
|
2064 | #Phase difference | |
2066 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) |
|
2065 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) | |
2067 |
|
2066 | |||
2068 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor |
|
2067 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor | |
2069 | sizeTrail = inow - initMet + 1 |
|
2068 | sizeTrail = inow - initMet + 1 | |
2070 | if sizeTrail>3*sec: #Too short meteors |
|
2069 | if sizeTrail>3*sec: #Too short meteors | |
2071 | x = numpy.arange(initMet,inow+1)*ippSeconds |
|
2070 | x = numpy.arange(initMet,inow+1)*ippSeconds | |
2072 | y = phase1[initMet:inow+1] |
|
2071 | y = phase1[initMet:inow+1] | |
2073 | ynnan = ~numpy.isnan(y) |
|
2072 | ynnan = ~numpy.isnan(y) | |
2074 | x = x[ynnan] |
|
2073 | x = x[ynnan] | |
2075 | y = y[ynnan] |
|
2074 | y = y[ynnan] | |
2076 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) |
|
2075 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) | |
2077 | ylin = x*slope + intercept |
|
2076 | ylin = x*slope + intercept | |
2078 | rsq = r_value**2 |
|
2077 | rsq = r_value**2 | |
2079 | if rsq > 0.5: |
|
2078 | if rsq > 0.5: | |
2080 | vel = slope#*height*1000/(k*d) |
|
2079 | vel = slope#*height*1000/(k*d) | |
2081 | estAux = numpy.array([utctime,p,height, vel, rsq]) |
|
2080 | estAux = numpy.array([utctime,p,height, vel, rsq]) | |
2082 | meteorList.append(estAux) |
|
2081 | meteorList.append(estAux) | |
2083 | initMet = inext |
|
2082 | initMet = inext | |
2084 | metArray2 = numpy.array(meteorList) |
|
2083 | metArray2 = numpy.array(meteorList) | |
2085 |
|
2084 | |||
2086 | return metArray2 |
|
2085 | return metArray2 | |
2087 |
|
2086 | |||
2088 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): |
|
2087 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): | |
2089 |
|
2088 | |||
2090 | azimuth1 = numpy.zeros(len(pairslist)) |
|
2089 | azimuth1 = numpy.zeros(len(pairslist)) | |
2091 | dist = numpy.zeros(len(pairslist)) |
|
2090 | dist = numpy.zeros(len(pairslist)) | |
2092 |
|
2091 | |||
2093 | for i in range(len(rx_location)): |
|
2092 | for i in range(len(rx_location)): | |
2094 | ch0 = pairslist[i][0] |
|
2093 | ch0 = pairslist[i][0] | |
2095 | ch1 = pairslist[i][1] |
|
2094 | ch1 = pairslist[i][1] | |
2096 |
|
2095 | |||
2097 | diffX = rx_location[ch0][0] - rx_location[ch1][0] |
|
2096 | diffX = rx_location[ch0][0] - rx_location[ch1][0] | |
2098 | diffY = rx_location[ch0][1] - rx_location[ch1][1] |
|
2097 | diffY = rx_location[ch0][1] - rx_location[ch1][1] | |
2099 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi |
|
2098 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi | |
2100 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) |
|
2099 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) | |
2101 |
|
2100 | |||
2102 | azimuth1 -= azimuth0 |
|
2101 | azimuth1 -= azimuth0 | |
2103 | return azimuth1, dist |
|
2102 | return azimuth1, dist | |
2104 |
|
2103 | |||
2105 | def techniqueNSM_DBS(self, **kwargs): |
|
2104 | def techniqueNSM_DBS(self, **kwargs): | |
2106 | metArray = kwargs['metArray'] |
|
2105 | metArray = kwargs['metArray'] | |
2107 | heightList = kwargs['heightList'] |
|
2106 | heightList = kwargs['heightList'] | |
2108 | timeList = kwargs['timeList'] |
|
2107 | timeList = kwargs['timeList'] | |
2109 | azimuth = kwargs['azimuth'] |
|
2108 | azimuth = kwargs['azimuth'] | |
2110 | theta_x = numpy.array(kwargs['theta_x']) |
|
2109 | theta_x = numpy.array(kwargs['theta_x']) | |
2111 | theta_y = numpy.array(kwargs['theta_y']) |
|
2110 | theta_y = numpy.array(kwargs['theta_y']) | |
2112 |
|
2111 | |||
2113 | utctime = metArray[:,0] |
|
2112 | utctime = metArray[:,0] | |
2114 | cmet = metArray[:,1].astype(int) |
|
2113 | cmet = metArray[:,1].astype(int) | |
2115 | hmet = metArray[:,3].astype(int) |
|
2114 | hmet = metArray[:,3].astype(int) | |
2116 | SNRmet = metArray[:,4] |
|
2115 | SNRmet = metArray[:,4] | |
2117 | vmet = metArray[:,5] |
|
2116 | vmet = metArray[:,5] | |
2118 | spcmet = metArray[:,6] |
|
2117 | spcmet = metArray[:,6] | |
2119 |
|
2118 | |||
2120 | nChan = numpy.max(cmet) + 1 |
|
2119 | nChan = numpy.max(cmet) + 1 | |
2121 | nHeights = len(heightList) |
|
2120 | nHeights = len(heightList) | |
2122 |
|
2121 | |||
2123 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) |
|
2122 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |
2124 | hmet = heightList[hmet] |
|
2123 | hmet = heightList[hmet] | |
2125 | h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights |
|
2124 | h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights | |
2126 |
|
2125 | |||
2127 | velEst = numpy.zeros((heightList.size,2))*numpy.nan |
|
2126 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |
2128 |
|
2127 | |||
2129 | for i in range(nHeights - 1): |
|
2128 | for i in range(nHeights - 1): | |
2130 | hmin = heightList[i] |
|
2129 | hmin = heightList[i] | |
2131 | hmax = heightList[i + 1] |
|
2130 | hmax = heightList[i + 1] | |
2132 |
|
2131 | |||
2133 | thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10) |
|
2132 | thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10) | |
2134 | indthisH = numpy.where(thisH) |
|
2133 | indthisH = numpy.where(thisH) | |
2135 |
|
2134 | |||
2136 | if numpy.size(indthisH) > 3: |
|
2135 | if numpy.size(indthisH) > 3: | |
2137 |
|
2136 | |||
2138 | vel_aux = vmet[thisH] |
|
2137 | vel_aux = vmet[thisH] | |
2139 | chan_aux = cmet[thisH] |
|
2138 | chan_aux = cmet[thisH] | |
2140 | cosu_aux = dir_cosu[chan_aux] |
|
2139 | cosu_aux = dir_cosu[chan_aux] | |
2141 | cosv_aux = dir_cosv[chan_aux] |
|
2140 | cosv_aux = dir_cosv[chan_aux] | |
2142 | cosw_aux = dir_cosw[chan_aux] |
|
2141 | cosw_aux = dir_cosw[chan_aux] | |
2143 |
|
2142 | |||
2144 | nch = numpy.size(numpy.unique(chan_aux)) |
|
2143 | nch = numpy.size(numpy.unique(chan_aux)) | |
2145 | if nch > 1: |
|
2144 | if nch > 1: | |
2146 | A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True) |
|
2145 | A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True) | |
2147 | velEst[i,:] = numpy.dot(A,vel_aux) |
|
2146 | velEst[i,:] = numpy.dot(A,vel_aux) | |
2148 |
|
2147 | |||
2149 | return velEst |
|
2148 | return velEst | |
2150 |
|
2149 | |||
2151 | def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs): |
|
2150 | def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs): | |
2152 |
|
2151 | |||
2153 | param = dataOut.data_param |
|
2152 | param = dataOut.data_param | |
2154 | if dataOut.abscissaList.any(): |
|
2153 | if dataOut.abscissaList.any(): | |
2155 | #if dataOut.abscissaList != None: |
|
2154 | #if dataOut.abscissaList != None: | |
2156 | absc = dataOut.abscissaList[:-1] |
|
2155 | absc = dataOut.abscissaList[:-1] | |
2157 | # noise = dataOut.noise |
|
2156 | # noise = dataOut.noise | |
2158 | heightList = dataOut.heightList |
|
2157 | heightList = dataOut.heightList | |
2159 | SNR = dataOut.data_snr |
|
2158 | SNR = dataOut.data_snr | |
2160 |
|
2159 | |||
2161 | if technique == 'DBS': |
|
2160 | if technique == 'DBS': | |
2162 |
|
2161 | |||
2163 | kwargs['velRadial'] = param[:,1,:] #Radial velocity |
|
2162 | kwargs['velRadial'] = param[:,1,:] #Radial velocity | |
2164 | kwargs['heightList'] = heightList |
|
2163 | kwargs['heightList'] = heightList | |
2165 | kwargs['SNR'] = SNR |
|
2164 | kwargs['SNR'] = SNR | |
2166 |
|
2165 | |||
2167 | dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function |
|
2166 | dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function | |
2168 | dataOut.utctimeInit = dataOut.utctime |
|
2167 | dataOut.utctimeInit = dataOut.utctime | |
2169 | dataOut.outputInterval = dataOut.paramInterval |
|
2168 | dataOut.outputInterval = dataOut.paramInterval | |
2170 |
|
2169 | |||
2171 | elif technique == 'SA': |
|
2170 | elif technique == 'SA': | |
2172 |
|
2171 | |||
2173 | #Parameters |
|
2172 | #Parameters | |
2174 | # position_x = kwargs['positionX'] |
|
2173 | # position_x = kwargs['positionX'] | |
2175 | # position_y = kwargs['positionY'] |
|
2174 | # position_y = kwargs['positionY'] | |
2176 | # azimuth = kwargs['azimuth'] |
|
2175 | # azimuth = kwargs['azimuth'] | |
2177 | # |
|
2176 | # | |
2178 | # if kwargs.has_key('crosspairsList'): |
|
2177 | # if kwargs.has_key('crosspairsList'): | |
2179 | # pairs = kwargs['crosspairsList'] |
|
2178 | # pairs = kwargs['crosspairsList'] | |
2180 | # else: |
|
2179 | # else: | |
2181 | # pairs = None |
|
2180 | # pairs = None | |
2182 | # |
|
2181 | # | |
2183 | # if kwargs.has_key('correctFactor'): |
|
2182 | # if kwargs.has_key('correctFactor'): | |
2184 | # correctFactor = kwargs['correctFactor'] |
|
2183 | # correctFactor = kwargs['correctFactor'] | |
2185 | # else: |
|
2184 | # else: | |
2186 | # correctFactor = 1 |
|
2185 | # correctFactor = 1 | |
2187 |
|
2186 | |||
2188 | # tau = dataOut.data_param |
|
2187 | # tau = dataOut.data_param | |
2189 | # _lambda = dataOut.C/dataOut.frequency |
|
2188 | # _lambda = dataOut.C/dataOut.frequency | |
2190 | # pairsList = dataOut.groupList |
|
2189 | # pairsList = dataOut.groupList | |
2191 | # nChannels = dataOut.nChannels |
|
2190 | # nChannels = dataOut.nChannels | |
2192 |
|
2191 | |||
2193 | kwargs['groupList'] = dataOut.groupList |
|
2192 | kwargs['groupList'] = dataOut.groupList | |
2194 | kwargs['tau'] = dataOut.data_param |
|
2193 | kwargs['tau'] = dataOut.data_param | |
2195 | kwargs['_lambda'] = dataOut.C/dataOut.frequency |
|
2194 | kwargs['_lambda'] = dataOut.C/dataOut.frequency | |
2196 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) |
|
2195 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) | |
2197 | dataOut.data_output = self.techniqueSA(kwargs) |
|
2196 | dataOut.data_output = self.techniqueSA(kwargs) | |
2198 | dataOut.utctimeInit = dataOut.utctime |
|
2197 | dataOut.utctimeInit = dataOut.utctime | |
2199 | dataOut.outputInterval = dataOut.timeInterval |
|
2198 | dataOut.outputInterval = dataOut.timeInterval | |
2200 |
|
2199 | |||
2201 | elif technique == 'Meteors': |
|
2200 | elif technique == 'Meteors': | |
2202 | dataOut.flagNoData = True |
|
2201 | dataOut.flagNoData = True | |
2203 | self.__dataReady = False |
|
2202 | self.__dataReady = False | |
2204 |
|
2203 | |||
2205 | if 'nHours' in kwargs: |
|
2204 | if 'nHours' in kwargs: | |
2206 | nHours = kwargs['nHours'] |
|
2205 | nHours = kwargs['nHours'] | |
2207 | else: |
|
2206 | else: | |
2208 | nHours = 1 |
|
2207 | nHours = 1 | |
2209 |
|
2208 | |||
2210 | if 'meteorsPerBin' in kwargs: |
|
2209 | if 'meteorsPerBin' in kwargs: | |
2211 | meteorThresh = kwargs['meteorsPerBin'] |
|
2210 | meteorThresh = kwargs['meteorsPerBin'] | |
2212 | else: |
|
2211 | else: | |
2213 | meteorThresh = 6 |
|
2212 | meteorThresh = 6 | |
2214 |
|
2213 | |||
2215 | if 'hmin' in kwargs: |
|
2214 | if 'hmin' in kwargs: | |
2216 | hmin = kwargs['hmin'] |
|
2215 | hmin = kwargs['hmin'] | |
2217 | else: hmin = 70 |
|
2216 | else: hmin = 70 | |
2218 | if 'hmax' in kwargs: |
|
2217 | if 'hmax' in kwargs: | |
2219 | hmax = kwargs['hmax'] |
|
2218 | hmax = kwargs['hmax'] | |
2220 | else: hmax = 110 |
|
2219 | else: hmax = 110 | |
2221 |
|
2220 | |||
2222 | dataOut.outputInterval = nHours*3600 |
|
2221 | dataOut.outputInterval = nHours*3600 | |
2223 |
|
2222 | |||
2224 | if self.__isConfig == False: |
|
2223 | if self.__isConfig == False: | |
2225 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2224 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2226 | #Get Initial LTC time |
|
2225 | #Get Initial LTC time | |
2227 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
2226 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
2228 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2227 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2229 |
|
2228 | |||
2230 | self.__isConfig = True |
|
2229 | self.__isConfig = True | |
2231 |
|
2230 | |||
2232 | if self.__buffer is None: |
|
2231 | if self.__buffer is None: | |
2233 | self.__buffer = dataOut.data_param |
|
2232 | self.__buffer = dataOut.data_param | |
2234 | self.__firstdata = copy.copy(dataOut) |
|
2233 | self.__firstdata = copy.copy(dataOut) | |
2235 |
|
2234 | |||
2236 | else: |
|
2235 | else: | |
2237 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2236 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2238 |
|
2237 | |||
2239 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2238 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2240 |
|
2239 | |||
2241 | if self.__dataReady: |
|
2240 | if self.__dataReady: | |
2242 | dataOut.utctimeInit = self.__initime |
|
2241 | dataOut.utctimeInit = self.__initime | |
2243 |
|
2242 | |||
2244 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2243 | self.__initime += dataOut.outputInterval #to erase time offset | |
2245 |
|
2244 | |||
2246 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) |
|
2245 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) | |
2247 | dataOut.flagNoData = False |
|
2246 | dataOut.flagNoData = False | |
2248 | self.__buffer = None |
|
2247 | self.__buffer = None | |
2249 |
|
2248 | |||
2250 | elif technique == 'Meteors1': |
|
2249 | elif technique == 'Meteors1': | |
2251 | dataOut.flagNoData = True |
|
2250 | dataOut.flagNoData = True | |
2252 | self.__dataReady = False |
|
2251 | self.__dataReady = False | |
2253 |
|
2252 | |||
2254 | if 'nMins' in kwargs: |
|
2253 | if 'nMins' in kwargs: | |
2255 | nMins = kwargs['nMins'] |
|
2254 | nMins = kwargs['nMins'] | |
2256 | else: nMins = 20 |
|
2255 | else: nMins = 20 | |
2257 | if 'rx_location' in kwargs: |
|
2256 | if 'rx_location' in kwargs: | |
2258 | rx_location = kwargs['rx_location'] |
|
2257 | rx_location = kwargs['rx_location'] | |
2259 | else: rx_location = [(0,1),(1,1),(1,0)] |
|
2258 | else: rx_location = [(0,1),(1,1),(1,0)] | |
2260 | if 'azimuth' in kwargs: |
|
2259 | if 'azimuth' in kwargs: | |
2261 | azimuth = kwargs['azimuth'] |
|
2260 | azimuth = kwargs['azimuth'] | |
2262 | else: azimuth = 51.06 |
|
2261 | else: azimuth = 51.06 | |
2263 | if 'dfactor' in kwargs: |
|
2262 | if 'dfactor' in kwargs: | |
2264 | dfactor = kwargs['dfactor'] |
|
2263 | dfactor = kwargs['dfactor'] | |
2265 | if 'mode' in kwargs: |
|
2264 | if 'mode' in kwargs: | |
2266 | mode = kwargs['mode'] |
|
2265 | mode = kwargs['mode'] | |
2267 | if 'theta_x' in kwargs: |
|
2266 | if 'theta_x' in kwargs: | |
2268 | theta_x = kwargs['theta_x'] |
|
2267 | theta_x = kwargs['theta_x'] | |
2269 | if 'theta_y' in kwargs: |
|
2268 | if 'theta_y' in kwargs: | |
2270 | theta_y = kwargs['theta_y'] |
|
2269 | theta_y = kwargs['theta_y'] | |
2271 | else: mode = 'SA' |
|
2270 | else: mode = 'SA' | |
2272 |
|
2271 | |||
2273 | #Borrar luego esto |
|
2272 | #Borrar luego esto | |
2274 | if dataOut.groupList is None: |
|
2273 | if dataOut.groupList is None: | |
2275 | dataOut.groupList = [(0,1),(0,2),(1,2)] |
|
2274 | dataOut.groupList = [(0,1),(0,2),(1,2)] | |
2276 | groupList = dataOut.groupList |
|
2275 | groupList = dataOut.groupList | |
2277 | C = 3e8 |
|
2276 | C = 3e8 | |
2278 | freq = 50e6 |
|
2277 | freq = 50e6 | |
2279 | lamb = C/freq |
|
2278 | lamb = C/freq | |
2280 | k = 2*numpy.pi/lamb |
|
2279 | k = 2*numpy.pi/lamb | |
2281 |
|
2280 | |||
2282 | timeList = dataOut.abscissaList |
|
2281 | timeList = dataOut.abscissaList | |
2283 | heightList = dataOut.heightList |
|
2282 | heightList = dataOut.heightList | |
2284 |
|
2283 | |||
2285 | if self.__isConfig == False: |
|
2284 | if self.__isConfig == False: | |
2286 | dataOut.outputInterval = nMins*60 |
|
2285 | dataOut.outputInterval = nMins*60 | |
2287 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2286 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2288 | #Get Initial LTC time |
|
2287 | #Get Initial LTC time | |
2289 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
2288 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
2290 | minuteAux = initime.minute |
|
2289 | minuteAux = initime.minute | |
2291 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) |
|
2290 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) | |
2292 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2291 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2293 |
|
2292 | |||
2294 | self.__isConfig = True |
|
2293 | self.__isConfig = True | |
2295 |
|
2294 | |||
2296 | if self.__buffer is None: |
|
2295 | if self.__buffer is None: | |
2297 | self.__buffer = dataOut.data_param |
|
2296 | self.__buffer = dataOut.data_param | |
2298 | self.__firstdata = copy.copy(dataOut) |
|
2297 | self.__firstdata = copy.copy(dataOut) | |
2299 |
|
2298 | |||
2300 | else: |
|
2299 | else: | |
2301 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2300 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2302 |
|
2301 | |||
2303 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2302 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2304 |
|
2303 | |||
2305 | if self.__dataReady: |
|
2304 | if self.__dataReady: | |
2306 | dataOut.utctimeInit = self.__initime |
|
2305 | dataOut.utctimeInit = self.__initime | |
2307 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2306 | self.__initime += dataOut.outputInterval #to erase time offset | |
2308 |
|
2307 | |||
2309 | metArray = self.__buffer |
|
2308 | metArray = self.__buffer | |
2310 | if mode == 'SA': |
|
2309 | if mode == 'SA': | |
2311 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) |
|
2310 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) | |
2312 | elif mode == 'DBS': |
|
2311 | elif mode == 'DBS': | |
2313 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y) |
|
2312 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y) | |
2314 | dataOut.data_output = dataOut.data_output.T |
|
2313 | dataOut.data_output = dataOut.data_output.T | |
2315 | dataOut.flagNoData = False |
|
2314 | dataOut.flagNoData = False | |
2316 | self.__buffer = None |
|
2315 | self.__buffer = None | |
2317 |
|
2316 | |||
2318 | return |
|
2317 | return | |
2319 |
|
2318 | |||
2320 | class EWDriftsEstimation(Operation): |
|
2319 | class EWDriftsEstimation(Operation): | |
2321 |
|
2320 | |||
2322 | def __init__(self): |
|
2321 | def __init__(self): | |
2323 | Operation.__init__(self) |
|
2322 | Operation.__init__(self) | |
2324 |
|
2323 | |||
2325 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
2324 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
2326 | listPhi = phi.tolist() |
|
2325 | listPhi = phi.tolist() | |
2327 | maxid = listPhi.index(max(listPhi)) |
|
2326 | maxid = listPhi.index(max(listPhi)) | |
2328 | minid = listPhi.index(min(listPhi)) |
|
2327 | minid = listPhi.index(min(listPhi)) | |
2329 |
|
2328 | |||
2330 | rango = list(range(len(phi))) |
|
2329 | rango = list(range(len(phi))) | |
2331 | # rango = numpy.delete(rango,maxid) |
|
2330 | # rango = numpy.delete(rango,maxid) | |
2332 |
|
2331 | |||
2333 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
2332 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
2334 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
2333 | heiRangAux = heiRang*math.cos(phi[minid]) | |
2335 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
2334 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
2336 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
2335 | heiRang1 = numpy.delete(heiRang1,indOut) | |
2337 |
|
2336 | |||
2338 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2337 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
2339 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2338 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
2340 |
|
2339 | |||
2341 | for i in rango: |
|
2340 | for i in rango: | |
2342 | x = heiRang*math.cos(phi[i]) |
|
2341 | x = heiRang*math.cos(phi[i]) | |
2343 | y1 = velRadial[i,:] |
|
2342 | y1 = velRadial[i,:] | |
2344 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
2343 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
2345 |
|
2344 | |||
2346 | x1 = heiRang1 |
|
2345 | x1 = heiRang1 | |
2347 | y11 = f1(x1) |
|
2346 | y11 = f1(x1) | |
2348 |
|
2347 | |||
2349 | y2 = SNR[i,:] |
|
2348 | y2 = SNR[i,:] | |
2350 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
2349 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
2351 | y21 = f2(x1) |
|
2350 | y21 = f2(x1) | |
2352 |
|
2351 | |||
2353 | velRadial1[i,:] = y11 |
|
2352 | velRadial1[i,:] = y11 | |
2354 | SNR1[i,:] = y21 |
|
2353 | SNR1[i,:] = y21 | |
2355 |
|
2354 | |||
2356 | return heiRang1, velRadial1, SNR1 |
|
2355 | return heiRang1, velRadial1, SNR1 | |
2357 |
|
2356 | |||
2358 | def run(self, dataOut, zenith, zenithCorrection): |
|
2357 | def run(self, dataOut, zenith, zenithCorrection): | |
2359 | heiRang = dataOut.heightList |
|
2358 | heiRang = dataOut.heightList | |
2360 | velRadial = dataOut.data_param[:,3,:] |
|
2359 | velRadial = dataOut.data_param[:,3,:] | |
2361 | SNR = dataOut.data_snr |
|
2360 | SNR = dataOut.data_snr | |
2362 |
|
2361 | |||
2363 | zenith = numpy.array(zenith) |
|
2362 | zenith = numpy.array(zenith) | |
2364 | zenith -= zenithCorrection |
|
2363 | zenith -= zenithCorrection | |
2365 | zenith *= numpy.pi/180 |
|
2364 | zenith *= numpy.pi/180 | |
2366 |
|
2365 | |||
2367 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) |
|
2366 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) | |
2368 |
|
2367 | |||
2369 | alp = zenith[0] |
|
2368 | alp = zenith[0] | |
2370 | bet = zenith[1] |
|
2369 | bet = zenith[1] | |
2371 |
|
2370 | |||
2372 | w_w = velRadial1[0,:] |
|
2371 | w_w = velRadial1[0,:] | |
2373 | w_e = velRadial1[1,:] |
|
2372 | w_e = velRadial1[1,:] | |
2374 |
|
2373 | |||
2375 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) |
|
2374 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) | |
2376 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) |
|
2375 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) | |
2377 |
|
2376 | |||
2378 | winds = numpy.vstack((u,w)) |
|
2377 | winds = numpy.vstack((u,w)) | |
2379 |
|
2378 | |||
2380 | dataOut.heightList = heiRang1 |
|
2379 | dataOut.heightList = heiRang1 | |
2381 | dataOut.data_output = winds |
|
2380 | dataOut.data_output = winds | |
2382 | dataOut.data_snr = SNR1 |
|
2381 | dataOut.data_snr = SNR1 | |
2383 |
|
2382 | |||
2384 | dataOut.utctimeInit = dataOut.utctime |
|
2383 | dataOut.utctimeInit = dataOut.utctime | |
2385 | dataOut.outputInterval = dataOut.timeInterval |
|
2384 | dataOut.outputInterval = dataOut.timeInterval | |
2386 | return |
|
2385 | return | |
2387 |
|
2386 | |||
2388 | #--------------- Non Specular Meteor ---------------- |
|
2387 | #--------------- Non Specular Meteor ---------------- | |
2389 |
|
2388 | |||
2390 | class NonSpecularMeteorDetection(Operation): |
|
2389 | class NonSpecularMeteorDetection(Operation): | |
2391 |
|
2390 | |||
2392 | def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): |
|
2391 | def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): | |
2393 | data_acf = dataOut.data_pre[0] |
|
2392 | data_acf = dataOut.data_pre[0] | |
2394 | data_ccf = dataOut.data_pre[1] |
|
2393 | data_ccf = dataOut.data_pre[1] | |
2395 | pairsList = dataOut.groupList[1] |
|
2394 | pairsList = dataOut.groupList[1] | |
2396 |
|
2395 | |||
2397 | lamb = dataOut.C/dataOut.frequency |
|
2396 | lamb = dataOut.C/dataOut.frequency | |
2398 | tSamp = dataOut.ippSeconds*dataOut.nCohInt |
|
2397 | tSamp = dataOut.ippSeconds*dataOut.nCohInt | |
2399 | paramInterval = dataOut.paramInterval |
|
2398 | paramInterval = dataOut.paramInterval | |
2400 |
|
2399 | |||
2401 | nChannels = data_acf.shape[0] |
|
2400 | nChannels = data_acf.shape[0] | |
2402 | nLags = data_acf.shape[1] |
|
2401 | nLags = data_acf.shape[1] | |
2403 | nProfiles = data_acf.shape[2] |
|
2402 | nProfiles = data_acf.shape[2] | |
2404 | nHeights = dataOut.nHeights |
|
2403 | nHeights = dataOut.nHeights | |
2405 | nCohInt = dataOut.nCohInt |
|
2404 | nCohInt = dataOut.nCohInt | |
2406 | sec = numpy.round(nProfiles/dataOut.paramInterval) |
|
2405 | sec = numpy.round(nProfiles/dataOut.paramInterval) | |
2407 | heightList = dataOut.heightList |
|
2406 | heightList = dataOut.heightList | |
2408 | ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg |
|
2407 | ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg | |
2409 | utctime = dataOut.utctime |
|
2408 | utctime = dataOut.utctime | |
2410 |
|
2409 | |||
2411 | dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) |
|
2410 | dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) | |
2412 |
|
2411 | |||
2413 | #------------------------ SNR -------------------------------------- |
|
2412 | #------------------------ SNR -------------------------------------- | |
2414 | power = data_acf[:,0,:,:].real |
|
2413 | power = data_acf[:,0,:,:].real | |
2415 | noise = numpy.zeros(nChannels) |
|
2414 | noise = numpy.zeros(nChannels) | |
2416 | SNR = numpy.zeros(power.shape) |
|
2415 | SNR = numpy.zeros(power.shape) | |
2417 | for i in range(nChannels): |
|
2416 | for i in range(nChannels): | |
2418 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) |
|
2417 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) | |
2419 | SNR[i] = (power[i]-noise[i])/noise[i] |
|
2418 | SNR[i] = (power[i]-noise[i])/noise[i] | |
2420 | SNRm = numpy.nanmean(SNR, axis = 0) |
|
2419 | SNRm = numpy.nanmean(SNR, axis = 0) | |
2421 | SNRdB = 10*numpy.log10(SNR) |
|
2420 | SNRdB = 10*numpy.log10(SNR) | |
2422 |
|
2421 | |||
2423 | if mode == 'SA': |
|
2422 | if mode == 'SA': | |
2424 | dataOut.groupList = dataOut.groupList[1] |
|
2423 | dataOut.groupList = dataOut.groupList[1] | |
2425 | nPairs = data_ccf.shape[0] |
|
2424 | nPairs = data_ccf.shape[0] | |
2426 | #---------------------- Coherence and Phase -------------------------- |
|
2425 | #---------------------- Coherence and Phase -------------------------- | |
2427 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
2426 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) | |
2428 | # phase1 = numpy.copy(phase) |
|
2427 | # phase1 = numpy.copy(phase) | |
2429 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
2428 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) | |
2430 |
|
2429 | |||
2431 | for p in range(nPairs): |
|
2430 | for p in range(nPairs): | |
2432 | ch0 = pairsList[p][0] |
|
2431 | ch0 = pairsList[p][0] | |
2433 | ch1 = pairsList[p][1] |
|
2432 | ch1 = pairsList[p][1] | |
2434 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) |
|
2433 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) | |
2435 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter |
|
2434 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter | |
2436 | # phase1[p,:,:] = numpy.angle(ccf) #median filter |
|
2435 | # phase1[p,:,:] = numpy.angle(ccf) #median filter | |
2437 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter |
|
2436 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter | |
2438 | # coh1[p,:,:] = numpy.abs(ccf) #median filter |
|
2437 | # coh1[p,:,:] = numpy.abs(ccf) #median filter | |
2439 | coh = numpy.nanmax(coh1, axis = 0) |
|
2438 | coh = numpy.nanmax(coh1, axis = 0) | |
2440 | # struc = numpy.ones((5,1)) |
|
2439 | # struc = numpy.ones((5,1)) | |
2441 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) |
|
2440 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) | |
2442 | #---------------------- Radial Velocity ---------------------------- |
|
2441 | #---------------------- Radial Velocity ---------------------------- | |
2443 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) |
|
2442 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) | |
2444 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) |
|
2443 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) | |
2445 |
|
2444 | |||
2446 | if allData: |
|
2445 | if allData: | |
2447 | boolMetFin = ~numpy.isnan(SNRm) |
|
2446 | boolMetFin = ~numpy.isnan(SNRm) | |
2448 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
2447 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
2449 | else: |
|
2448 | else: | |
2450 | #------------------------ Meteor mask --------------------------------- |
|
2449 | #------------------------ Meteor mask --------------------------------- | |
2451 | # #SNR mask |
|
2450 | # #SNR mask | |
2452 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) |
|
2451 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) | |
2453 | # |
|
2452 | # | |
2454 | # #Erase small objects |
|
2453 | # #Erase small objects | |
2455 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) |
|
2454 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) | |
2456 | # |
|
2455 | # | |
2457 | # auxEEJ = numpy.sum(boolMet1,axis=0) |
|
2456 | # auxEEJ = numpy.sum(boolMet1,axis=0) | |
2458 | # indOver = auxEEJ>nProfiles*0.8 #Use this later |
|
2457 | # indOver = auxEEJ>nProfiles*0.8 #Use this later | |
2459 | # indEEJ = numpy.where(indOver)[0] |
|
2458 | # indEEJ = numpy.where(indOver)[0] | |
2460 | # indNEEJ = numpy.where(~indOver)[0] |
|
2459 | # indNEEJ = numpy.where(~indOver)[0] | |
2461 | # |
|
2460 | # | |
2462 | # boolMetFin = boolMet1 |
|
2461 | # boolMetFin = boolMet1 | |
2463 | # |
|
2462 | # | |
2464 | # if indEEJ.size > 0: |
|
2463 | # if indEEJ.size > 0: | |
2465 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ |
|
2464 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ | |
2466 | # |
|
2465 | # | |
2467 | # boolMet2 = coh > cohThresh |
|
2466 | # boolMet2 = coh > cohThresh | |
2468 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) |
|
2467 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) | |
2469 | # |
|
2468 | # | |
2470 | # #Final Meteor mask |
|
2469 | # #Final Meteor mask | |
2471 | # boolMetFin = boolMet1|boolMet2 |
|
2470 | # boolMetFin = boolMet1|boolMet2 | |
2472 |
|
2471 | |||
2473 | #Coherence mask |
|
2472 | #Coherence mask | |
2474 | boolMet1 = coh > 0.75 |
|
2473 | boolMet1 = coh > 0.75 | |
2475 | struc = numpy.ones((30,1)) |
|
2474 | struc = numpy.ones((30,1)) | |
2476 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) |
|
2475 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) | |
2477 |
|
2476 | |||
2478 | #Derivative mask |
|
2477 | #Derivative mask | |
2479 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
2478 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
2480 | boolMet2 = derPhase < 0.2 |
|
2479 | boolMet2 = derPhase < 0.2 | |
2481 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) |
|
2480 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) | |
2482 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) |
|
2481 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) | |
2483 | boolMet2 = ndimage.median_filter(boolMet2,size=5) |
|
2482 | boolMet2 = ndimage.median_filter(boolMet2,size=5) | |
2484 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) |
|
2483 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) | |
2485 | # #Final mask |
|
2484 | # #Final mask | |
2486 | # boolMetFin = boolMet2 |
|
2485 | # boolMetFin = boolMet2 | |
2487 | boolMetFin = boolMet1&boolMet2 |
|
2486 | boolMetFin = boolMet1&boolMet2 | |
2488 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) |
|
2487 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) | |
2489 | #Creating data_param |
|
2488 | #Creating data_param | |
2490 | coordMet = numpy.where(boolMetFin) |
|
2489 | coordMet = numpy.where(boolMetFin) | |
2491 |
|
2490 | |||
2492 | tmet = coordMet[0] |
|
2491 | tmet = coordMet[0] | |
2493 | hmet = coordMet[1] |
|
2492 | hmet = coordMet[1] | |
2494 |
|
2493 | |||
2495 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) |
|
2494 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) | |
2496 | data_param[:,0] = utctime |
|
2495 | data_param[:,0] = utctime | |
2497 | data_param[:,1] = tmet |
|
2496 | data_param[:,1] = tmet | |
2498 | data_param[:,2] = hmet |
|
2497 | data_param[:,2] = hmet | |
2499 | data_param[:,3] = SNRm[tmet,hmet] |
|
2498 | data_param[:,3] = SNRm[tmet,hmet] | |
2500 | data_param[:,4] = velRad[tmet,hmet] |
|
2499 | data_param[:,4] = velRad[tmet,hmet] | |
2501 | data_param[:,5] = coh[tmet,hmet] |
|
2500 | data_param[:,5] = coh[tmet,hmet] | |
2502 | data_param[:,6:] = phase[:,tmet,hmet].T |
|
2501 | data_param[:,6:] = phase[:,tmet,hmet].T | |
2503 |
|
2502 | |||
2504 | elif mode == 'DBS': |
|
2503 | elif mode == 'DBS': | |
2505 | dataOut.groupList = numpy.arange(nChannels) |
|
2504 | dataOut.groupList = numpy.arange(nChannels) | |
2506 |
|
2505 | |||
2507 | #Radial Velocities |
|
2506 | #Radial Velocities | |
2508 | phase = numpy.angle(data_acf[:,1,:,:]) |
|
2507 | phase = numpy.angle(data_acf[:,1,:,:]) | |
2509 | # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) |
|
2508 | # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) | |
2510 | velRad = phase*lamb/(4*numpy.pi*tSamp) |
|
2509 | velRad = phase*lamb/(4*numpy.pi*tSamp) | |
2511 |
|
2510 | |||
2512 | #Spectral width |
|
2511 | #Spectral width | |
2513 | # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) |
|
2512 | # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) | |
2514 | # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) |
|
2513 | # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) | |
2515 | acf1 = data_acf[:,1,:,:] |
|
2514 | acf1 = data_acf[:,1,:,:] | |
2516 | acf2 = data_acf[:,2,:,:] |
|
2515 | acf2 = data_acf[:,2,:,:] | |
2517 |
|
2516 | |||
2518 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) |
|
2517 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) | |
2519 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) |
|
2518 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) | |
2520 | if allData: |
|
2519 | if allData: | |
2521 | boolMetFin = ~numpy.isnan(SNRdB) |
|
2520 | boolMetFin = ~numpy.isnan(SNRdB) | |
2522 | else: |
|
2521 | else: | |
2523 | #SNR |
|
2522 | #SNR | |
2524 | boolMet1 = (SNRdB>SNRthresh) #SNR mask |
|
2523 | boolMet1 = (SNRdB>SNRthresh) #SNR mask | |
2525 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) |
|
2524 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) | |
2526 |
|
2525 | |||
2527 | #Radial velocity |
|
2526 | #Radial velocity | |
2528 | boolMet2 = numpy.abs(velRad) < 20 |
|
2527 | boolMet2 = numpy.abs(velRad) < 20 | |
2529 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) |
|
2528 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) | |
2530 |
|
2529 | |||
2531 | #Spectral Width |
|
2530 | #Spectral Width | |
2532 | boolMet3 = spcWidth < 30 |
|
2531 | boolMet3 = spcWidth < 30 | |
2533 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) |
|
2532 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) | |
2534 | # boolMetFin = self.__erase_small(boolMet1, 10,5) |
|
2533 | # boolMetFin = self.__erase_small(boolMet1, 10,5) | |
2535 | boolMetFin = boolMet1&boolMet2&boolMet3 |
|
2534 | boolMetFin = boolMet1&boolMet2&boolMet3 | |
2536 |
|
2535 | |||
2537 | #Creating data_param |
|
2536 | #Creating data_param | |
2538 | coordMet = numpy.where(boolMetFin) |
|
2537 | coordMet = numpy.where(boolMetFin) | |
2539 |
|
2538 | |||
2540 | cmet = coordMet[0] |
|
2539 | cmet = coordMet[0] | |
2541 | tmet = coordMet[1] |
|
2540 | tmet = coordMet[1] | |
2542 | hmet = coordMet[2] |
|
2541 | hmet = coordMet[2] | |
2543 |
|
2542 | |||
2544 | data_param = numpy.zeros((tmet.size, 7)) |
|
2543 | data_param = numpy.zeros((tmet.size, 7)) | |
2545 | data_param[:,0] = utctime |
|
2544 | data_param[:,0] = utctime | |
2546 | data_param[:,1] = cmet |
|
2545 | data_param[:,1] = cmet | |
2547 | data_param[:,2] = tmet |
|
2546 | data_param[:,2] = tmet | |
2548 | data_param[:,3] = hmet |
|
2547 | data_param[:,3] = hmet | |
2549 | data_param[:,4] = SNR[cmet,tmet,hmet].T |
|
2548 | data_param[:,4] = SNR[cmet,tmet,hmet].T | |
2550 | data_param[:,5] = velRad[cmet,tmet,hmet].T |
|
2549 | data_param[:,5] = velRad[cmet,tmet,hmet].T | |
2551 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T |
|
2550 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T | |
2552 |
|
2551 | |||
2553 | # self.dataOut.data_param = data_int |
|
2552 | # self.dataOut.data_param = data_int | |
2554 | if len(data_param) == 0: |
|
2553 | if len(data_param) == 0: | |
2555 | dataOut.flagNoData = True |
|
2554 | dataOut.flagNoData = True | |
2556 | else: |
|
2555 | else: | |
2557 | dataOut.data_param = data_param |
|
2556 | dataOut.data_param = data_param | |
2558 |
|
2557 | |||
2559 | def __erase_small(self, binArray, threshX, threshY): |
|
2558 | def __erase_small(self, binArray, threshX, threshY): | |
2560 | labarray, numfeat = ndimage.measurements.label(binArray) |
|
2559 | labarray, numfeat = ndimage.measurements.label(binArray) | |
2561 | binArray1 = numpy.copy(binArray) |
|
2560 | binArray1 = numpy.copy(binArray) | |
2562 |
|
2561 | |||
2563 | for i in range(1,numfeat + 1): |
|
2562 | for i in range(1,numfeat + 1): | |
2564 | auxBin = (labarray==i) |
|
2563 | auxBin = (labarray==i) | |
2565 | auxSize = auxBin.sum() |
|
2564 | auxSize = auxBin.sum() | |
2566 |
|
2565 | |||
2567 | x,y = numpy.where(auxBin) |
|
2566 | x,y = numpy.where(auxBin) | |
2568 | widthX = x.max() - x.min() |
|
2567 | widthX = x.max() - x.min() | |
2569 | widthY = y.max() - y.min() |
|
2568 | widthY = y.max() - y.min() | |
2570 |
|
2569 | |||
2571 | #width X: 3 seg -> 12.5*3 |
|
2570 | #width X: 3 seg -> 12.5*3 | |
2572 | #width Y: |
|
2571 | #width Y: | |
2573 |
|
2572 | |||
2574 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): |
|
2573 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): | |
2575 | binArray1[auxBin] = False |
|
2574 | binArray1[auxBin] = False | |
2576 |
|
2575 | |||
2577 | return binArray1 |
|
2576 | return binArray1 | |
2578 |
|
2577 | |||
2579 | #--------------- Specular Meteor ---------------- |
|
2578 | #--------------- Specular Meteor ---------------- | |
2580 |
|
2579 | |||
2581 | class SMDetection(Operation): |
|
2580 | class SMDetection(Operation): | |
2582 | ''' |
|
2581 | ''' | |
2583 | Function DetectMeteors() |
|
2582 | Function DetectMeteors() | |
2584 | Project developed with paper: |
|
2583 | Project developed with paper: | |
2585 | HOLDSWORTH ET AL. 2004 |
|
2584 | HOLDSWORTH ET AL. 2004 | |
2586 |
|
2585 | |||
2587 | Input: |
|
2586 | Input: | |
2588 | self.dataOut.data_pre |
|
2587 | self.dataOut.data_pre | |
2589 |
|
2588 | |||
2590 | centerReceiverIndex: From the channels, which is the center receiver |
|
2589 | centerReceiverIndex: From the channels, which is the center receiver | |
2591 |
|
2590 | |||
2592 | hei_ref: Height reference for the Beacon signal extraction |
|
2591 | hei_ref: Height reference for the Beacon signal extraction | |
2593 | tauindex: |
|
2592 | tauindex: | |
2594 | predefinedPhaseShifts: Predefined phase offset for the voltge signals |
|
2593 | predefinedPhaseShifts: Predefined phase offset for the voltge signals | |
2595 |
|
2594 | |||
2596 | cohDetection: Whether to user Coherent detection or not |
|
2595 | cohDetection: Whether to user Coherent detection or not | |
2597 | cohDet_timeStep: Coherent Detection calculation time step |
|
2596 | cohDet_timeStep: Coherent Detection calculation time step | |
2598 | cohDet_thresh: Coherent Detection phase threshold to correct phases |
|
2597 | cohDet_thresh: Coherent Detection phase threshold to correct phases | |
2599 |
|
2598 | |||
2600 | noise_timeStep: Noise calculation time step |
|
2599 | noise_timeStep: Noise calculation time step | |
2601 | noise_multiple: Noise multiple to define signal threshold |
|
2600 | noise_multiple: Noise multiple to define signal threshold | |
2602 |
|
2601 | |||
2603 | multDet_timeLimit: Multiple Detection Removal time limit in seconds |
|
2602 | multDet_timeLimit: Multiple Detection Removal time limit in seconds | |
2604 | multDet_rangeLimit: Multiple Detection Removal range limit in km |
|
2603 | multDet_rangeLimit: Multiple Detection Removal range limit in km | |
2605 |
|
2604 | |||
2606 | phaseThresh: Maximum phase difference between receiver to be consider a meteor |
|
2605 | phaseThresh: Maximum phase difference between receiver to be consider a meteor | |
2607 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor |
|
2606 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor | |
2608 |
|
2607 | |||
2609 | hmin: Minimum Height of the meteor to use it in the further wind estimations |
|
2608 | hmin: Minimum Height of the meteor to use it in the further wind estimations | |
2610 | hmax: Maximum Height of the meteor to use it in the further wind estimations |
|
2609 | hmax: Maximum Height of the meteor to use it in the further wind estimations | |
2611 | azimuth: Azimuth angle correction |
|
2610 | azimuth: Azimuth angle correction | |
2612 |
|
2611 | |||
2613 | Affected: |
|
2612 | Affected: | |
2614 | self.dataOut.data_param |
|
2613 | self.dataOut.data_param | |
2615 |
|
2614 | |||
2616 | Rejection Criteria (Errors): |
|
2615 | Rejection Criteria (Errors): | |
2617 | 0: No error; analysis OK |
|
2616 | 0: No error; analysis OK | |
2618 | 1: SNR < SNR threshold |
|
2617 | 1: SNR < SNR threshold | |
2619 | 2: angle of arrival (AOA) ambiguously determined |
|
2618 | 2: angle of arrival (AOA) ambiguously determined | |
2620 | 3: AOA estimate not feasible |
|
2619 | 3: AOA estimate not feasible | |
2621 | 4: Large difference in AOAs obtained from different antenna baselines |
|
2620 | 4: Large difference in AOAs obtained from different antenna baselines | |
2622 | 5: echo at start or end of time series |
|
2621 | 5: echo at start or end of time series | |
2623 | 6: echo less than 5 examples long; too short for analysis |
|
2622 | 6: echo less than 5 examples long; too short for analysis | |
2624 | 7: echo rise exceeds 0.3s |
|
2623 | 7: echo rise exceeds 0.3s | |
2625 | 8: echo decay time less than twice rise time |
|
2624 | 8: echo decay time less than twice rise time | |
2626 | 9: large power level before echo |
|
2625 | 9: large power level before echo | |
2627 | 10: large power level after echo |
|
2626 | 10: large power level after echo | |
2628 | 11: poor fit to amplitude for estimation of decay time |
|
2627 | 11: poor fit to amplitude for estimation of decay time | |
2629 | 12: poor fit to CCF phase variation for estimation of radial drift velocity |
|
2628 | 12: poor fit to CCF phase variation for estimation of radial drift velocity | |
2630 | 13: height unresolvable echo: not valid height within 70 to 110 km |
|
2629 | 13: height unresolvable echo: not valid height within 70 to 110 km | |
2631 | 14: height ambiguous echo: more then one possible height within 70 to 110 km |
|
2630 | 14: height ambiguous echo: more then one possible height within 70 to 110 km | |
2632 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s |
|
2631 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s | |
2633 | 16: oscilatory echo, indicating event most likely not an underdense echo |
|
2632 | 16: oscilatory echo, indicating event most likely not an underdense echo | |
2634 |
|
2633 | |||
2635 | 17: phase difference in meteor Reestimation |
|
2634 | 17: phase difference in meteor Reestimation | |
2636 |
|
2635 | |||
2637 | Data Storage: |
|
2636 | Data Storage: | |
2638 | Meteors for Wind Estimation (8): |
|
2637 | Meteors for Wind Estimation (8): | |
2639 | Utc Time | Range Height |
|
2638 | Utc Time | Range Height | |
2640 | Azimuth Zenith errorCosDir |
|
2639 | Azimuth Zenith errorCosDir | |
2641 | VelRad errorVelRad |
|
2640 | VelRad errorVelRad | |
2642 | Phase0 Phase1 Phase2 Phase3 |
|
2641 | Phase0 Phase1 Phase2 Phase3 | |
2643 | TypeError |
|
2642 | TypeError | |
2644 |
|
2643 | |||
2645 | ''' |
|
2644 | ''' | |
2646 |
|
2645 | |||
2647 | def run(self, dataOut, hei_ref = None, tauindex = 0, |
|
2646 | def run(self, dataOut, hei_ref = None, tauindex = 0, | |
2648 | phaseOffsets = None, |
|
2647 | phaseOffsets = None, | |
2649 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, |
|
2648 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, | |
2650 | noise_timeStep = 4, noise_multiple = 4, |
|
2649 | noise_timeStep = 4, noise_multiple = 4, | |
2651 | multDet_timeLimit = 1, multDet_rangeLimit = 3, |
|
2650 | multDet_timeLimit = 1, multDet_rangeLimit = 3, | |
2652 | phaseThresh = 20, SNRThresh = 5, |
|
2651 | phaseThresh = 20, SNRThresh = 5, | |
2653 | hmin = 50, hmax=150, azimuth = 0, |
|
2652 | hmin = 50, hmax=150, azimuth = 0, | |
2654 | channelPositions = None) : |
|
2653 | channelPositions = None) : | |
2655 |
|
2654 | |||
2656 |
|
2655 | |||
2657 | #Getting Pairslist |
|
2656 | #Getting Pairslist | |
2658 | if channelPositions is None: |
|
2657 | if channelPositions is None: | |
2659 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
2658 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
2660 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
2659 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
2661 | meteorOps = SMOperations() |
|
2660 | meteorOps = SMOperations() | |
2662 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
2661 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
2663 | heiRang = dataOut.heightList |
|
2662 | heiRang = dataOut.heightList | |
2664 | #Get Beacon signal - No Beacon signal anymore |
|
2663 | #Get Beacon signal - No Beacon signal anymore | |
2665 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
2664 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
2666 | # |
|
2665 | # | |
2667 | # if hei_ref != None: |
|
2666 | # if hei_ref != None: | |
2668 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
2667 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) | |
2669 | # |
|
2668 | # | |
2670 |
|
2669 | |||
2671 |
|
2670 | |||
2672 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** |
|
2671 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** | |
2673 | # see if the user put in pre defined phase shifts |
|
2672 | # see if the user put in pre defined phase shifts | |
2674 | voltsPShift = dataOut.data_pre.copy() |
|
2673 | voltsPShift = dataOut.data_pre.copy() | |
2675 |
|
2674 | |||
2676 | # if predefinedPhaseShifts != None: |
|
2675 | # if predefinedPhaseShifts != None: | |
2677 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 |
|
2676 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 | |
2678 | # |
|
2677 | # | |
2679 | # # elif beaconPhaseShifts: |
|
2678 | # # elif beaconPhaseShifts: | |
2680 | # # #get hardware phase shifts using beacon signal |
|
2679 | # # #get hardware phase shifts using beacon signal | |
2681 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) |
|
2680 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) | |
2682 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) |
|
2681 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) | |
2683 | # |
|
2682 | # | |
2684 | # else: |
|
2683 | # else: | |
2685 | # hardwarePhaseShifts = numpy.zeros(5) |
|
2684 | # hardwarePhaseShifts = numpy.zeros(5) | |
2686 | # |
|
2685 | # | |
2687 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') |
|
2686 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') | |
2688 | # for i in range(self.dataOut.data_pre.shape[0]): |
|
2687 | # for i in range(self.dataOut.data_pre.shape[0]): | |
2689 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) |
|
2688 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) | |
2690 |
|
2689 | |||
2691 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* |
|
2690 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* | |
2692 |
|
2691 | |||
2693 | #Remove DC |
|
2692 | #Remove DC | |
2694 | voltsDC = numpy.mean(voltsPShift,1) |
|
2693 | voltsDC = numpy.mean(voltsPShift,1) | |
2695 | voltsDC = numpy.mean(voltsDC,1) |
|
2694 | voltsDC = numpy.mean(voltsDC,1) | |
2696 | for i in range(voltsDC.shape[0]): |
|
2695 | for i in range(voltsDC.shape[0]): | |
2697 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] |
|
2696 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] | |
2698 |
|
2697 | |||
2699 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift |
|
2698 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift | |
2700 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] |
|
2699 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] | |
2701 |
|
2700 | |||
2702 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** |
|
2701 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** | |
2703 | #Coherent Detection |
|
2702 | #Coherent Detection | |
2704 | if cohDetection: |
|
2703 | if cohDetection: | |
2705 | #use coherent detection to get the net power |
|
2704 | #use coherent detection to get the net power | |
2706 | cohDet_thresh = cohDet_thresh*numpy.pi/180 |
|
2705 | cohDet_thresh = cohDet_thresh*numpy.pi/180 | |
2707 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) |
|
2706 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) | |
2708 |
|
2707 | |||
2709 | #Non-coherent detection! |
|
2708 | #Non-coherent detection! | |
2710 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) |
|
2709 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) | |
2711 | #********** END OF COH/NON-COH POWER CALCULATION********************** |
|
2710 | #********** END OF COH/NON-COH POWER CALCULATION********************** | |
2712 |
|
2711 | |||
2713 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** |
|
2712 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** | |
2714 | #Get noise |
|
2713 | #Get noise | |
2715 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) |
|
2714 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) | |
2716 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) |
|
2715 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) | |
2717 | #Get signal threshold |
|
2716 | #Get signal threshold | |
2718 | signalThresh = noise_multiple*noise |
|
2717 | signalThresh = noise_multiple*noise | |
2719 | #Meteor echoes detection |
|
2718 | #Meteor echoes detection | |
2720 | listMeteors = self.__findMeteors(powerNet, signalThresh) |
|
2719 | listMeteors = self.__findMeteors(powerNet, signalThresh) | |
2721 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** |
|
2720 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** | |
2722 |
|
2721 | |||
2723 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** |
|
2722 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** | |
2724 | #Parameters |
|
2723 | #Parameters | |
2725 | heiRange = dataOut.heightList |
|
2724 | heiRange = dataOut.heightList | |
2726 | rangeInterval = heiRange[1] - heiRange[0] |
|
2725 | rangeInterval = heiRange[1] - heiRange[0] | |
2727 | rangeLimit = multDet_rangeLimit/rangeInterval |
|
2726 | rangeLimit = multDet_rangeLimit/rangeInterval | |
2728 | timeLimit = multDet_timeLimit/dataOut.timeInterval |
|
2727 | timeLimit = multDet_timeLimit/dataOut.timeInterval | |
2729 | #Multiple detection removals |
|
2728 | #Multiple detection removals | |
2730 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) |
|
2729 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) | |
2731 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** |
|
2730 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** | |
2732 |
|
2731 | |||
2733 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** |
|
2732 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** | |
2734 | #Parameters |
|
2733 | #Parameters | |
2735 | phaseThresh = phaseThresh*numpy.pi/180 |
|
2734 | phaseThresh = phaseThresh*numpy.pi/180 | |
2736 | thresh = [phaseThresh, noise_multiple, SNRThresh] |
|
2735 | thresh = [phaseThresh, noise_multiple, SNRThresh] | |
2737 | #Meteor reestimation (Errors N 1, 6, 12, 17) |
|
2736 | #Meteor reestimation (Errors N 1, 6, 12, 17) | |
2738 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) |
|
2737 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) | |
2739 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) |
|
2738 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) | |
2740 | #Estimation of decay times (Errors N 7, 8, 11) |
|
2739 | #Estimation of decay times (Errors N 7, 8, 11) | |
2741 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) |
|
2740 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) | |
2742 | #******************* END OF METEOR REESTIMATION ******************* |
|
2741 | #******************* END OF METEOR REESTIMATION ******************* | |
2743 |
|
2742 | |||
2744 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** |
|
2743 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** | |
2745 | #Calculating Radial Velocity (Error N 15) |
|
2744 | #Calculating Radial Velocity (Error N 15) | |
2746 | radialStdThresh = 10 |
|
2745 | radialStdThresh = 10 | |
2747 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) |
|
2746 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) | |
2748 |
|
2747 | |||
2749 | if len(listMeteors4) > 0: |
|
2748 | if len(listMeteors4) > 0: | |
2750 | #Setting New Array |
|
2749 | #Setting New Array | |
2751 | date = dataOut.utctime |
|
2750 | date = dataOut.utctime | |
2752 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) |
|
2751 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) | |
2753 |
|
2752 | |||
2754 | #Correcting phase offset |
|
2753 | #Correcting phase offset | |
2755 | if phaseOffsets != None: |
|
2754 | if phaseOffsets != None: | |
2756 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
2755 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
2757 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
2756 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
2758 |
|
2757 | |||
2759 | #Second Pairslist |
|
2758 | #Second Pairslist | |
2760 | pairsList = [] |
|
2759 | pairsList = [] | |
2761 | pairx = (0,1) |
|
2760 | pairx = (0,1) | |
2762 | pairy = (2,3) |
|
2761 | pairy = (2,3) | |
2763 | pairsList.append(pairx) |
|
2762 | pairsList.append(pairx) | |
2764 | pairsList.append(pairy) |
|
2763 | pairsList.append(pairy) | |
2765 |
|
2764 | |||
2766 | jph = numpy.array([0,0,0,0]) |
|
2765 | jph = numpy.array([0,0,0,0]) | |
2767 | h = (hmin,hmax) |
|
2766 | h = (hmin,hmax) | |
2768 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
2767 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
2769 |
|
2768 | |||
2770 | # #Calculate AOA (Error N 3, 4) |
|
2769 | # #Calculate AOA (Error N 3, 4) | |
2771 | # #JONES ET AL. 1998 |
|
2770 | # #JONES ET AL. 1998 | |
2772 | # error = arrayParameters[:,-1] |
|
2771 | # error = arrayParameters[:,-1] | |
2773 | # AOAthresh = numpy.pi/8 |
|
2772 | # AOAthresh = numpy.pi/8 | |
2774 | # phases = -arrayParameters[:,9:13] |
|
2773 | # phases = -arrayParameters[:,9:13] | |
2775 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) |
|
2774 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) | |
2776 | # |
|
2775 | # | |
2777 | # #Calculate Heights (Error N 13 and 14) |
|
2776 | # #Calculate Heights (Error N 13 and 14) | |
2778 | # error = arrayParameters[:,-1] |
|
2777 | # error = arrayParameters[:,-1] | |
2779 | # Ranges = arrayParameters[:,2] |
|
2778 | # Ranges = arrayParameters[:,2] | |
2780 | # zenith = arrayParameters[:,5] |
|
2779 | # zenith = arrayParameters[:,5] | |
2781 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) |
|
2780 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) | |
2782 | # error = arrayParameters[:,-1] |
|
2781 | # error = arrayParameters[:,-1] | |
2783 | #********************* END OF PARAMETERS CALCULATION ************************** |
|
2782 | #********************* END OF PARAMETERS CALCULATION ************************** | |
2784 |
|
2783 | |||
2785 | #***************************+ PASS DATA TO NEXT STEP ********************** |
|
2784 | #***************************+ PASS DATA TO NEXT STEP ********************** | |
2786 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) |
|
2785 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) | |
2787 | dataOut.data_param = arrayParameters |
|
2786 | dataOut.data_param = arrayParameters | |
2788 |
|
2787 | |||
2789 | if arrayParameters is None: |
|
2788 | if arrayParameters is None: | |
2790 | dataOut.flagNoData = True |
|
2789 | dataOut.flagNoData = True | |
2791 | else: |
|
2790 | else: | |
2792 | dataOut.flagNoData = True |
|
2791 | dataOut.flagNoData = True | |
2793 |
|
2792 | |||
2794 | return |
|
2793 | return | |
2795 |
|
2794 | |||
2796 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): |
|
2795 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): | |
2797 |
|
2796 | |||
2798 | minIndex = min(newheis[0]) |
|
2797 | minIndex = min(newheis[0]) | |
2799 | maxIndex = max(newheis[0]) |
|
2798 | maxIndex = max(newheis[0]) | |
2800 |
|
2799 | |||
2801 | voltage = voltage0[:,:,minIndex:maxIndex+1] |
|
2800 | voltage = voltage0[:,:,minIndex:maxIndex+1] | |
2802 | nLength = voltage.shape[1]/n |
|
2801 | nLength = voltage.shape[1]/n | |
2803 | nMin = 0 |
|
2802 | nMin = 0 | |
2804 | nMax = 0 |
|
2803 | nMax = 0 | |
2805 | phaseOffset = numpy.zeros((len(pairslist),n)) |
|
2804 | phaseOffset = numpy.zeros((len(pairslist),n)) | |
2806 |
|
2805 | |||
2807 | for i in range(n): |
|
2806 | for i in range(n): | |
2808 | nMax += nLength |
|
2807 | nMax += nLength | |
2809 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) |
|
2808 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) | |
2810 | phaseCCF = numpy.mean(phaseCCF, axis = 2) |
|
2809 | phaseCCF = numpy.mean(phaseCCF, axis = 2) | |
2811 | phaseOffset[:,i] = phaseCCF.transpose() |
|
2810 | phaseOffset[:,i] = phaseCCF.transpose() | |
2812 | nMin = nMax |
|
2811 | nMin = nMax | |
2813 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) |
|
2812 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) | |
2814 |
|
2813 | |||
2815 | #Remove Outliers |
|
2814 | #Remove Outliers | |
2816 | factor = 2 |
|
2815 | factor = 2 | |
2817 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) |
|
2816 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) | |
2818 | dw = numpy.std(wt,axis = 1) |
|
2817 | dw = numpy.std(wt,axis = 1) | |
2819 | dw = dw.reshape((dw.size,1)) |
|
2818 | dw = dw.reshape((dw.size,1)) | |
2820 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) |
|
2819 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) | |
2821 | phaseOffset[ind] = numpy.nan |
|
2820 | phaseOffset[ind] = numpy.nan | |
2822 | phaseOffset = stats.nanmean(phaseOffset, axis=1) |
|
2821 | phaseOffset = stats.nanmean(phaseOffset, axis=1) | |
2823 |
|
2822 | |||
2824 | return phaseOffset |
|
2823 | return phaseOffset | |
2825 |
|
2824 | |||
2826 | def __shiftPhase(self, data, phaseShift): |
|
2825 | def __shiftPhase(self, data, phaseShift): | |
2827 | #this will shift the phase of a complex number |
|
2826 | #this will shift the phase of a complex number | |
2828 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) |
|
2827 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) | |
2829 | return dataShifted |
|
2828 | return dataShifted | |
2830 |
|
2829 | |||
2831 | def __estimatePhaseDifference(self, array, pairslist): |
|
2830 | def __estimatePhaseDifference(self, array, pairslist): | |
2832 | nChannel = array.shape[0] |
|
2831 | nChannel = array.shape[0] | |
2833 | nHeights = array.shape[2] |
|
2832 | nHeights = array.shape[2] | |
2834 | numPairs = len(pairslist) |
|
2833 | numPairs = len(pairslist) | |
2835 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) |
|
2834 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) | |
2836 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) |
|
2835 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) | |
2837 |
|
2836 | |||
2838 | #Correct phases |
|
2837 | #Correct phases | |
2839 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] |
|
2838 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] | |
2840 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
2839 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
2841 |
|
2840 | |||
2842 | if indDer[0].shape[0] > 0: |
|
2841 | if indDer[0].shape[0] > 0: | |
2843 | for i in range(indDer[0].shape[0]): |
|
2842 | for i in range(indDer[0].shape[0]): | |
2844 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) |
|
2843 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) | |
2845 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi |
|
2844 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi | |
2846 |
|
2845 | |||
2847 | # for j in range(numSides): |
|
2846 | # for j in range(numSides): | |
2848 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) |
|
2847 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) | |
2849 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) |
|
2848 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) | |
2850 | # |
|
2849 | # | |
2851 | #Linear |
|
2850 | #Linear | |
2852 | phaseInt = numpy.zeros((numPairs,1)) |
|
2851 | phaseInt = numpy.zeros((numPairs,1)) | |
2853 | angAllCCF = phaseCCF[:,[0,1,3,4],0] |
|
2852 | angAllCCF = phaseCCF[:,[0,1,3,4],0] | |
2854 | for j in range(numPairs): |
|
2853 | for j in range(numPairs): | |
2855 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) |
|
2854 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) | |
2856 | phaseInt[j] = fit[1] |
|
2855 | phaseInt[j] = fit[1] | |
2857 | #Phase Differences |
|
2856 | #Phase Differences | |
2858 | phaseDiff = phaseInt - phaseCCF[:,2,:] |
|
2857 | phaseDiff = phaseInt - phaseCCF[:,2,:] | |
2859 | phaseArrival = phaseInt.reshape(phaseInt.size) |
|
2858 | phaseArrival = phaseInt.reshape(phaseInt.size) | |
2860 |
|
2859 | |||
2861 | #Dealias |
|
2860 | #Dealias | |
2862 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) |
|
2861 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) | |
2863 | # indAlias = numpy.where(phaseArrival > numpy.pi) |
|
2862 | # indAlias = numpy.where(phaseArrival > numpy.pi) | |
2864 | # phaseArrival[indAlias] -= 2*numpy.pi |
|
2863 | # phaseArrival[indAlias] -= 2*numpy.pi | |
2865 | # indAlias = numpy.where(phaseArrival < -numpy.pi) |
|
2864 | # indAlias = numpy.where(phaseArrival < -numpy.pi) | |
2866 | # phaseArrival[indAlias] += 2*numpy.pi |
|
2865 | # phaseArrival[indAlias] += 2*numpy.pi | |
2867 |
|
2866 | |||
2868 | return phaseDiff, phaseArrival |
|
2867 | return phaseDiff, phaseArrival | |
2869 |
|
2868 | |||
2870 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): |
|
2869 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): | |
2871 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power |
|
2870 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power | |
2872 | #find the phase shifts of each channel over 1 second intervals |
|
2871 | #find the phase shifts of each channel over 1 second intervals | |
2873 | #only look at ranges below the beacon signal |
|
2872 | #only look at ranges below the beacon signal | |
2874 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
2873 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
2875 | numBlocks = int(volts.shape[1]/numProfPerBlock) |
|
2874 | numBlocks = int(volts.shape[1]/numProfPerBlock) | |
2876 | numHeights = volts.shape[2] |
|
2875 | numHeights = volts.shape[2] | |
2877 | nChannel = volts.shape[0] |
|
2876 | nChannel = volts.shape[0] | |
2878 | voltsCohDet = volts.copy() |
|
2877 | voltsCohDet = volts.copy() | |
2879 |
|
2878 | |||
2880 | pairsarray = numpy.array(pairslist) |
|
2879 | pairsarray = numpy.array(pairslist) | |
2881 | indSides = pairsarray[:,1] |
|
2880 | indSides = pairsarray[:,1] | |
2882 | # indSides = numpy.array(range(nChannel)) |
|
2881 | # indSides = numpy.array(range(nChannel)) | |
2883 | # indSides = numpy.delete(indSides, indCenter) |
|
2882 | # indSides = numpy.delete(indSides, indCenter) | |
2884 | # |
|
2883 | # | |
2885 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) |
|
2884 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) | |
2886 | listBlocks = numpy.array_split(volts, numBlocks, 1) |
|
2885 | listBlocks = numpy.array_split(volts, numBlocks, 1) | |
2887 |
|
2886 | |||
2888 | startInd = 0 |
|
2887 | startInd = 0 | |
2889 | endInd = 0 |
|
2888 | endInd = 0 | |
2890 |
|
2889 | |||
2891 | for i in range(numBlocks): |
|
2890 | for i in range(numBlocks): | |
2892 | startInd = endInd |
|
2891 | startInd = endInd | |
2893 | endInd = endInd + listBlocks[i].shape[1] |
|
2892 | endInd = endInd + listBlocks[i].shape[1] | |
2894 |
|
2893 | |||
2895 | arrayBlock = listBlocks[i] |
|
2894 | arrayBlock = listBlocks[i] | |
2896 | # arrayBlockCenter = listCenter[i] |
|
2895 | # arrayBlockCenter = listCenter[i] | |
2897 |
|
2896 | |||
2898 | #Estimate the Phase Difference |
|
2897 | #Estimate the Phase Difference | |
2899 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) |
|
2898 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) | |
2900 | #Phase Difference RMS |
|
2899 | #Phase Difference RMS | |
2901 | arrayPhaseRMS = numpy.abs(phaseDiff) |
|
2900 | arrayPhaseRMS = numpy.abs(phaseDiff) | |
2902 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) |
|
2901 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) | |
2903 | indPhase = numpy.where(phaseRMSaux==4) |
|
2902 | indPhase = numpy.where(phaseRMSaux==4) | |
2904 | #Shifting |
|
2903 | #Shifting | |
2905 | if indPhase[0].shape[0] > 0: |
|
2904 | if indPhase[0].shape[0] > 0: | |
2906 | for j in range(indSides.size): |
|
2905 | for j in range(indSides.size): | |
2907 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) |
|
2906 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) | |
2908 | voltsCohDet[:,startInd:endInd,:] = arrayBlock |
|
2907 | voltsCohDet[:,startInd:endInd,:] = arrayBlock | |
2909 |
|
2908 | |||
2910 | return voltsCohDet |
|
2909 | return voltsCohDet | |
2911 |
|
2910 | |||
2912 | def __calculateCCF(self, volts, pairslist ,laglist): |
|
2911 | def __calculateCCF(self, volts, pairslist ,laglist): | |
2913 |
|
2912 | |||
2914 | nHeights = volts.shape[2] |
|
2913 | nHeights = volts.shape[2] | |
2915 | nPoints = volts.shape[1] |
|
2914 | nPoints = volts.shape[1] | |
2916 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') |
|
2915 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') | |
2917 |
|
2916 | |||
2918 | for i in range(len(pairslist)): |
|
2917 | for i in range(len(pairslist)): | |
2919 | volts1 = volts[pairslist[i][0]] |
|
2918 | volts1 = volts[pairslist[i][0]] | |
2920 | volts2 = volts[pairslist[i][1]] |
|
2919 | volts2 = volts[pairslist[i][1]] | |
2921 |
|
2920 | |||
2922 | for t in range(len(laglist)): |
|
2921 | for t in range(len(laglist)): | |
2923 | idxT = laglist[t] |
|
2922 | idxT = laglist[t] | |
2924 | if idxT >= 0: |
|
2923 | if idxT >= 0: | |
2925 | vStacked = numpy.vstack((volts2[idxT:,:], |
|
2924 | vStacked = numpy.vstack((volts2[idxT:,:], | |
2926 | numpy.zeros((idxT, nHeights),dtype='complex'))) |
|
2925 | numpy.zeros((idxT, nHeights),dtype='complex'))) | |
2927 | else: |
|
2926 | else: | |
2928 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), |
|
2927 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), | |
2929 | volts2[:(nPoints + idxT),:])) |
|
2928 | volts2[:(nPoints + idxT),:])) | |
2930 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) |
|
2929 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) | |
2931 |
|
2930 | |||
2932 | vStacked = None |
|
2931 | vStacked = None | |
2933 | return voltsCCF |
|
2932 | return voltsCCF | |
2934 |
|
2933 | |||
2935 | def __getNoise(self, power, timeSegment, timeInterval): |
|
2934 | def __getNoise(self, power, timeSegment, timeInterval): | |
2936 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
2935 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
2937 | numBlocks = int(power.shape[0]/numProfPerBlock) |
|
2936 | numBlocks = int(power.shape[0]/numProfPerBlock) | |
2938 | numHeights = power.shape[1] |
|
2937 | numHeights = power.shape[1] | |
2939 |
|
2938 | |||
2940 | listPower = numpy.array_split(power, numBlocks, 0) |
|
2939 | listPower = numpy.array_split(power, numBlocks, 0) | |
2941 | noise = numpy.zeros((power.shape[0], power.shape[1])) |
|
2940 | noise = numpy.zeros((power.shape[0], power.shape[1])) | |
2942 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) |
|
2941 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) | |
2943 |
|
2942 | |||
2944 | startInd = 0 |
|
2943 | startInd = 0 | |
2945 | endInd = 0 |
|
2944 | endInd = 0 | |
2946 |
|
2945 | |||
2947 | for i in range(numBlocks): #split por canal |
|
2946 | for i in range(numBlocks): #split por canal | |
2948 | startInd = endInd |
|
2947 | startInd = endInd | |
2949 | endInd = endInd + listPower[i].shape[0] |
|
2948 | endInd = endInd + listPower[i].shape[0] | |
2950 |
|
2949 | |||
2951 | arrayBlock = listPower[i] |
|
2950 | arrayBlock = listPower[i] | |
2952 | noiseAux = numpy.mean(arrayBlock, 0) |
|
2951 | noiseAux = numpy.mean(arrayBlock, 0) | |
2953 | # noiseAux = numpy.median(noiseAux) |
|
2952 | # noiseAux = numpy.median(noiseAux) | |
2954 | # noiseAux = numpy.mean(arrayBlock) |
|
2953 | # noiseAux = numpy.mean(arrayBlock) | |
2955 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux |
|
2954 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux | |
2956 |
|
2955 | |||
2957 | noiseAux1 = numpy.mean(arrayBlock) |
|
2956 | noiseAux1 = numpy.mean(arrayBlock) | |
2958 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 |
|
2957 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 | |
2959 |
|
2958 | |||
2960 | return noise, noise1 |
|
2959 | return noise, noise1 | |
2961 |
|
2960 | |||
2962 | def __findMeteors(self, power, thresh): |
|
2961 | def __findMeteors(self, power, thresh): | |
2963 | nProf = power.shape[0] |
|
2962 | nProf = power.shape[0] | |
2964 | nHeights = power.shape[1] |
|
2963 | nHeights = power.shape[1] | |
2965 | listMeteors = [] |
|
2964 | listMeteors = [] | |
2966 |
|
2965 | |||
2967 | for i in range(nHeights): |
|
2966 | for i in range(nHeights): | |
2968 | powerAux = power[:,i] |
|
2967 | powerAux = power[:,i] | |
2969 | threshAux = thresh[:,i] |
|
2968 | threshAux = thresh[:,i] | |
2970 |
|
2969 | |||
2971 | indUPthresh = numpy.where(powerAux > threshAux)[0] |
|
2970 | indUPthresh = numpy.where(powerAux > threshAux)[0] | |
2972 | indDNthresh = numpy.where(powerAux <= threshAux)[0] |
|
2971 | indDNthresh = numpy.where(powerAux <= threshAux)[0] | |
2973 |
|
2972 | |||
2974 | j = 0 |
|
2973 | j = 0 | |
2975 |
|
2974 | |||
2976 | while (j < indUPthresh.size - 2): |
|
2975 | while (j < indUPthresh.size - 2): | |
2977 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): |
|
2976 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): | |
2978 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) |
|
2977 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) | |
2979 | indDNthresh = indDNthresh[indDNAux] |
|
2978 | indDNthresh = indDNthresh[indDNAux] | |
2980 |
|
2979 | |||
2981 | if (indDNthresh.size > 0): |
|
2980 | if (indDNthresh.size > 0): | |
2982 | indEnd = indDNthresh[0] - 1 |
|
2981 | indEnd = indDNthresh[0] - 1 | |
2983 | indInit = indUPthresh[j] |
|
2982 | indInit = indUPthresh[j] | |
2984 |
|
2983 | |||
2985 | meteor = powerAux[indInit:indEnd + 1] |
|
2984 | meteor = powerAux[indInit:indEnd + 1] | |
2986 | indPeak = meteor.argmax() + indInit |
|
2985 | indPeak = meteor.argmax() + indInit | |
2987 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) |
|
2986 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) | |
2988 |
|
2987 | |||
2989 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! |
|
2988 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! | |
2990 | j = numpy.where(indUPthresh == indEnd)[0] + 1 |
|
2989 | j = numpy.where(indUPthresh == indEnd)[0] + 1 | |
2991 | else: j+=1 |
|
2990 | else: j+=1 | |
2992 | else: j+=1 |
|
2991 | else: j+=1 | |
2993 |
|
2992 | |||
2994 | return listMeteors |
|
2993 | return listMeteors | |
2995 |
|
2994 | |||
2996 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): |
|
2995 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): | |
2997 |
|
2996 | |||
2998 | arrayMeteors = numpy.asarray(listMeteors) |
|
2997 | arrayMeteors = numpy.asarray(listMeteors) | |
2999 | listMeteors1 = [] |
|
2998 | listMeteors1 = [] | |
3000 |
|
2999 | |||
3001 | while arrayMeteors.shape[0] > 0: |
|
3000 | while arrayMeteors.shape[0] > 0: | |
3002 | FLAs = arrayMeteors[:,4] |
|
3001 | FLAs = arrayMeteors[:,4] | |
3003 | maxFLA = FLAs.argmax() |
|
3002 | maxFLA = FLAs.argmax() | |
3004 | listMeteors1.append(arrayMeteors[maxFLA,:]) |
|
3003 | listMeteors1.append(arrayMeteors[maxFLA,:]) | |
3005 |
|
3004 | |||
3006 | MeteorInitTime = arrayMeteors[maxFLA,1] |
|
3005 | MeteorInitTime = arrayMeteors[maxFLA,1] | |
3007 | MeteorEndTime = arrayMeteors[maxFLA,3] |
|
3006 | MeteorEndTime = arrayMeteors[maxFLA,3] | |
3008 | MeteorHeight = arrayMeteors[maxFLA,0] |
|
3007 | MeteorHeight = arrayMeteors[maxFLA,0] | |
3009 |
|
3008 | |||
3010 | #Check neighborhood |
|
3009 | #Check neighborhood | |
3011 | maxHeightIndex = MeteorHeight + rangeLimit |
|
3010 | maxHeightIndex = MeteorHeight + rangeLimit | |
3012 | minHeightIndex = MeteorHeight - rangeLimit |
|
3011 | minHeightIndex = MeteorHeight - rangeLimit | |
3013 | minTimeIndex = MeteorInitTime - timeLimit |
|
3012 | minTimeIndex = MeteorInitTime - timeLimit | |
3014 | maxTimeIndex = MeteorEndTime + timeLimit |
|
3013 | maxTimeIndex = MeteorEndTime + timeLimit | |
3015 |
|
3014 | |||
3016 | #Check Heights |
|
3015 | #Check Heights | |
3017 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) |
|
3016 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) | |
3018 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) |
|
3017 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) | |
3019 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) |
|
3018 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) | |
3020 |
|
3019 | |||
3021 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) |
|
3020 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) | |
3022 |
|
3021 | |||
3023 | return listMeteors1 |
|
3022 | return listMeteors1 | |
3024 |
|
3023 | |||
3025 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): |
|
3024 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): | |
3026 | numHeights = volts.shape[2] |
|
3025 | numHeights = volts.shape[2] | |
3027 | nChannel = volts.shape[0] |
|
3026 | nChannel = volts.shape[0] | |
3028 |
|
3027 | |||
3029 | thresholdPhase = thresh[0] |
|
3028 | thresholdPhase = thresh[0] | |
3030 | thresholdNoise = thresh[1] |
|
3029 | thresholdNoise = thresh[1] | |
3031 | thresholdDB = float(thresh[2]) |
|
3030 | thresholdDB = float(thresh[2]) | |
3032 |
|
3031 | |||
3033 | thresholdDB1 = 10**(thresholdDB/10) |
|
3032 | thresholdDB1 = 10**(thresholdDB/10) | |
3034 | pairsarray = numpy.array(pairslist) |
|
3033 | pairsarray = numpy.array(pairslist) | |
3035 | indSides = pairsarray[:,1] |
|
3034 | indSides = pairsarray[:,1] | |
3036 |
|
3035 | |||
3037 | pairslist1 = list(pairslist) |
|
3036 | pairslist1 = list(pairslist) | |
3038 | pairslist1.append((0,1)) |
|
3037 | pairslist1.append((0,1)) | |
3039 | pairslist1.append((3,4)) |
|
3038 | pairslist1.append((3,4)) | |
3040 |
|
3039 | |||
3041 | listMeteors1 = [] |
|
3040 | listMeteors1 = [] | |
3042 | listPowerSeries = [] |
|
3041 | listPowerSeries = [] | |
3043 | listVoltageSeries = [] |
|
3042 | listVoltageSeries = [] | |
3044 | #volts has the war data |
|
3043 | #volts has the war data | |
3045 |
|
3044 | |||
3046 | if frequency == 30e6: |
|
3045 | if frequency == 30e6: | |
3047 | timeLag = 45*10**-3 |
|
3046 | timeLag = 45*10**-3 | |
3048 | else: |
|
3047 | else: | |
3049 | timeLag = 15*10**-3 |
|
3048 | timeLag = 15*10**-3 | |
3050 | lag = numpy.ceil(timeLag/timeInterval) |
|
3049 | lag = numpy.ceil(timeLag/timeInterval) | |
3051 |
|
3050 | |||
3052 | for i in range(len(listMeteors)): |
|
3051 | for i in range(len(listMeteors)): | |
3053 |
|
3052 | |||
3054 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### |
|
3053 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### | |
3055 | meteorAux = numpy.zeros(16) |
|
3054 | meteorAux = numpy.zeros(16) | |
3056 |
|
3055 | |||
3057 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) |
|
3056 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) | |
3058 | mHeight = listMeteors[i][0] |
|
3057 | mHeight = listMeteors[i][0] | |
3059 | mStart = listMeteors[i][1] |
|
3058 | mStart = listMeteors[i][1] | |
3060 | mPeak = listMeteors[i][2] |
|
3059 | mPeak = listMeteors[i][2] | |
3061 | mEnd = listMeteors[i][3] |
|
3060 | mEnd = listMeteors[i][3] | |
3062 |
|
3061 | |||
3063 | #get the volt data between the start and end times of the meteor |
|
3062 | #get the volt data between the start and end times of the meteor | |
3064 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] |
|
3063 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] | |
3065 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
3064 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
3066 |
|
3065 | |||
3067 | #3.6. Phase Difference estimation |
|
3066 | #3.6. Phase Difference estimation | |
3068 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) |
|
3067 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) | |
3069 |
|
3068 | |||
3070 | #3.7. Phase difference removal & meteor start, peak and end times reestimated |
|
3069 | #3.7. Phase difference removal & meteor start, peak and end times reestimated | |
3071 | #meteorVolts0.- all Channels, all Profiles |
|
3070 | #meteorVolts0.- all Channels, all Profiles | |
3072 | meteorVolts0 = volts[:,:,mHeight] |
|
3071 | meteorVolts0 = volts[:,:,mHeight] | |
3073 | meteorThresh = noise[:,mHeight]*thresholdNoise |
|
3072 | meteorThresh = noise[:,mHeight]*thresholdNoise | |
3074 | meteorNoise = noise[:,mHeight] |
|
3073 | meteorNoise = noise[:,mHeight] | |
3075 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting |
|
3074 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting | |
3076 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power |
|
3075 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power | |
3077 |
|
3076 | |||
3078 | #Times reestimation |
|
3077 | #Times reestimation | |
3079 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] |
|
3078 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] | |
3080 | if mStart1.size > 0: |
|
3079 | if mStart1.size > 0: | |
3081 | mStart1 = mStart1[-1] + 1 |
|
3080 | mStart1 = mStart1[-1] + 1 | |
3082 |
|
3081 | |||
3083 | else: |
|
3082 | else: | |
3084 | mStart1 = mPeak |
|
3083 | mStart1 = mPeak | |
3085 |
|
3084 | |||
3086 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 |
|
3085 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 | |
3087 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] |
|
3086 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] | |
3088 | if mEndDecayTime1.size == 0: |
|
3087 | if mEndDecayTime1.size == 0: | |
3089 | mEndDecayTime1 = powerNet0.size |
|
3088 | mEndDecayTime1 = powerNet0.size | |
3090 | else: |
|
3089 | else: | |
3091 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 |
|
3090 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 | |
3092 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() |
|
3091 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() | |
3093 |
|
3092 | |||
3094 | #meteorVolts1.- all Channels, from start to end |
|
3093 | #meteorVolts1.- all Channels, from start to end | |
3095 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] |
|
3094 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] | |
3096 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] |
|
3095 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] | |
3097 | if meteorVolts2.shape[1] == 0: |
|
3096 | if meteorVolts2.shape[1] == 0: | |
3098 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] |
|
3097 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] | |
3099 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) |
|
3098 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) | |
3100 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) |
|
3099 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) | |
3101 | ##################### END PARAMETERS REESTIMATION ######################### |
|
3100 | ##################### END PARAMETERS REESTIMATION ######################### | |
3102 |
|
3101 | |||
3103 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## |
|
3102 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## | |
3104 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis |
|
3103 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis | |
3105 | if meteorVolts2.shape[1] > 0: |
|
3104 | if meteorVolts2.shape[1] > 0: | |
3106 | #Phase Difference re-estimation |
|
3105 | #Phase Difference re-estimation | |
3107 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation |
|
3106 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation | |
3108 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) |
|
3107 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) | |
3109 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) |
|
3108 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) | |
3110 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) |
|
3109 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) | |
3111 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting |
|
3110 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting | |
3112 |
|
3111 | |||
3113 | #Phase Difference RMS |
|
3112 | #Phase Difference RMS | |
3114 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) |
|
3113 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) | |
3115 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) |
|
3114 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) | |
3116 | #Data from Meteor |
|
3115 | #Data from Meteor | |
3117 | mPeak1 = powerNet1.argmax() + mStart1 |
|
3116 | mPeak1 = powerNet1.argmax() + mStart1 | |
3118 | mPeakPower1 = powerNet1.max() |
|
3117 | mPeakPower1 = powerNet1.max() | |
3119 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) |
|
3118 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) | |
3120 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux |
|
3119 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux | |
3121 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) |
|
3120 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) | |
3122 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) |
|
3121 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) | |
3123 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] |
|
3122 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] | |
3124 | #Vectorize |
|
3123 | #Vectorize | |
3125 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] |
|
3124 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] | |
3126 | meteorAux[7:11] = phaseDiffint[0:4] |
|
3125 | meteorAux[7:11] = phaseDiffint[0:4] | |
3127 |
|
3126 | |||
3128 | #Rejection Criterions |
|
3127 | #Rejection Criterions | |
3129 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation |
|
3128 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation | |
3130 | meteorAux[-1] = 17 |
|
3129 | meteorAux[-1] = 17 | |
3131 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB |
|
3130 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB | |
3132 | meteorAux[-1] = 1 |
|
3131 | meteorAux[-1] = 1 | |
3133 |
|
3132 | |||
3134 |
|
3133 | |||
3135 | else: |
|
3134 | else: | |
3136 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] |
|
3135 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] | |
3137 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis |
|
3136 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis | |
3138 | PowerSeries = 0 |
|
3137 | PowerSeries = 0 | |
3139 |
|
3138 | |||
3140 | listMeteors1.append(meteorAux) |
|
3139 | listMeteors1.append(meteorAux) | |
3141 | listPowerSeries.append(PowerSeries) |
|
3140 | listPowerSeries.append(PowerSeries) | |
3142 | listVoltageSeries.append(meteorVolts1) |
|
3141 | listVoltageSeries.append(meteorVolts1) | |
3143 |
|
3142 | |||
3144 | return listMeteors1, listPowerSeries, listVoltageSeries |
|
3143 | return listMeteors1, listPowerSeries, listVoltageSeries | |
3145 |
|
3144 | |||
3146 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): |
|
3145 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): | |
3147 |
|
3146 | |||
3148 | threshError = 10 |
|
3147 | threshError = 10 | |
3149 | #Depending if it is 30 or 50 MHz |
|
3148 | #Depending if it is 30 or 50 MHz | |
3150 | if frequency == 30e6: |
|
3149 | if frequency == 30e6: | |
3151 | timeLag = 45*10**-3 |
|
3150 | timeLag = 45*10**-3 | |
3152 | else: |
|
3151 | else: | |
3153 | timeLag = 15*10**-3 |
|
3152 | timeLag = 15*10**-3 | |
3154 | lag = numpy.ceil(timeLag/timeInterval) |
|
3153 | lag = numpy.ceil(timeLag/timeInterval) | |
3155 |
|
3154 | |||
3156 | listMeteors1 = [] |
|
3155 | listMeteors1 = [] | |
3157 |
|
3156 | |||
3158 | for i in range(len(listMeteors)): |
|
3157 | for i in range(len(listMeteors)): | |
3159 | meteorPower = listPower[i] |
|
3158 | meteorPower = listPower[i] | |
3160 | meteorAux = listMeteors[i] |
|
3159 | meteorAux = listMeteors[i] | |
3161 |
|
3160 | |||
3162 | if meteorAux[-1] == 0: |
|
3161 | if meteorAux[-1] == 0: | |
3163 |
|
3162 | |||
3164 | try: |
|
3163 | try: | |
3165 | indmax = meteorPower.argmax() |
|
3164 | indmax = meteorPower.argmax() | |
3166 | indlag = indmax + lag |
|
3165 | indlag = indmax + lag | |
3167 |
|
3166 | |||
3168 | y = meteorPower[indlag:] |
|
3167 | y = meteorPower[indlag:] | |
3169 | x = numpy.arange(0, y.size)*timeLag |
|
3168 | x = numpy.arange(0, y.size)*timeLag | |
3170 |
|
3169 | |||
3171 | #first guess |
|
3170 | #first guess | |
3172 | a = y[0] |
|
3171 | a = y[0] | |
3173 | tau = timeLag |
|
3172 | tau = timeLag | |
3174 | #exponential fit |
|
3173 | #exponential fit | |
3175 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) |
|
3174 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) | |
3176 | y1 = self.__exponential_function(x, *popt) |
|
3175 | y1 = self.__exponential_function(x, *popt) | |
3177 | #error estimation |
|
3176 | #error estimation | |
3178 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) |
|
3177 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) | |
3179 |
|
3178 | |||
3180 | decayTime = popt[1] |
|
3179 | decayTime = popt[1] | |
3181 | riseTime = indmax*timeInterval |
|
3180 | riseTime = indmax*timeInterval | |
3182 | meteorAux[11:13] = [decayTime, error] |
|
3181 | meteorAux[11:13] = [decayTime, error] | |
3183 |
|
3182 | |||
3184 | #Table items 7, 8 and 11 |
|
3183 | #Table items 7, 8 and 11 | |
3185 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s |
|
3184 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s | |
3186 | meteorAux[-1] = 7 |
|
3185 | meteorAux[-1] = 7 | |
3187 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time |
|
3186 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time | |
3188 | meteorAux[-1] = 8 |
|
3187 | meteorAux[-1] = 8 | |
3189 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time |
|
3188 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time | |
3190 | meteorAux[-1] = 11 |
|
3189 | meteorAux[-1] = 11 | |
3191 |
|
3190 | |||
3192 |
|
3191 | |||
3193 | except: |
|
3192 | except: | |
3194 | meteorAux[-1] = 11 |
|
3193 | meteorAux[-1] = 11 | |
3195 |
|
3194 | |||
3196 |
|
3195 | |||
3197 | listMeteors1.append(meteorAux) |
|
3196 | listMeteors1.append(meteorAux) | |
3198 |
|
3197 | |||
3199 | return listMeteors1 |
|
3198 | return listMeteors1 | |
3200 |
|
3199 | |||
3201 | #Exponential Function |
|
3200 | #Exponential Function | |
3202 |
|
3201 | |||
3203 | def __exponential_function(self, x, a, tau): |
|
3202 | def __exponential_function(self, x, a, tau): | |
3204 | y = a*numpy.exp(-x/tau) |
|
3203 | y = a*numpy.exp(-x/tau) | |
3205 | return y |
|
3204 | return y | |
3206 |
|
3205 | |||
3207 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): |
|
3206 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): | |
3208 |
|
3207 | |||
3209 | pairslist1 = list(pairslist) |
|
3208 | pairslist1 = list(pairslist) | |
3210 | pairslist1.append((0,1)) |
|
3209 | pairslist1.append((0,1)) | |
3211 | pairslist1.append((3,4)) |
|
3210 | pairslist1.append((3,4)) | |
3212 | numPairs = len(pairslist1) |
|
3211 | numPairs = len(pairslist1) | |
3213 | #Time Lag |
|
3212 | #Time Lag | |
3214 | timeLag = 45*10**-3 |
|
3213 | timeLag = 45*10**-3 | |
3215 | c = 3e8 |
|
3214 | c = 3e8 | |
3216 | lag = numpy.ceil(timeLag/timeInterval) |
|
3215 | lag = numpy.ceil(timeLag/timeInterval) | |
3217 | freq = 30e6 |
|
3216 | freq = 30e6 | |
3218 |
|
3217 | |||
3219 | listMeteors1 = [] |
|
3218 | listMeteors1 = [] | |
3220 |
|
3219 | |||
3221 | for i in range(len(listMeteors)): |
|
3220 | for i in range(len(listMeteors)): | |
3222 | meteorAux = listMeteors[i] |
|
3221 | meteorAux = listMeteors[i] | |
3223 | if meteorAux[-1] == 0: |
|
3222 | if meteorAux[-1] == 0: | |
3224 | mStart = listMeteors[i][1] |
|
3223 | mStart = listMeteors[i][1] | |
3225 | mPeak = listMeteors[i][2] |
|
3224 | mPeak = listMeteors[i][2] | |
3226 | mLag = mPeak - mStart + lag |
|
3225 | mLag = mPeak - mStart + lag | |
3227 |
|
3226 | |||
3228 | #get the volt data between the start and end times of the meteor |
|
3227 | #get the volt data between the start and end times of the meteor | |
3229 | meteorVolts = listVolts[i] |
|
3228 | meteorVolts = listVolts[i] | |
3230 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
3229 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
3231 |
|
3230 | |||
3232 | #Get CCF |
|
3231 | #Get CCF | |
3233 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) |
|
3232 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) | |
3234 |
|
3233 | |||
3235 | #Method 2 |
|
3234 | #Method 2 | |
3236 | slopes = numpy.zeros(numPairs) |
|
3235 | slopes = numpy.zeros(numPairs) | |
3237 | time = numpy.array([-2,-1,1,2])*timeInterval |
|
3236 | time = numpy.array([-2,-1,1,2])*timeInterval | |
3238 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) |
|
3237 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) | |
3239 |
|
3238 | |||
3240 | #Correct phases |
|
3239 | #Correct phases | |
3241 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] |
|
3240 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] | |
3242 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
3241 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
3243 |
|
3242 | |||
3244 | if indDer[0].shape[0] > 0: |
|
3243 | if indDer[0].shape[0] > 0: | |
3245 | for i in range(indDer[0].shape[0]): |
|
3244 | for i in range(indDer[0].shape[0]): | |
3246 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) |
|
3245 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) | |
3247 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi |
|
3246 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi | |
3248 |
|
3247 | |||
3249 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) |
|
3248 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) | |
3250 | for j in range(numPairs): |
|
3249 | for j in range(numPairs): | |
3251 | fit = stats.linregress(time, angAllCCF[j,:]) |
|
3250 | fit = stats.linregress(time, angAllCCF[j,:]) | |
3252 | slopes[j] = fit[0] |
|
3251 | slopes[j] = fit[0] | |
3253 |
|
3252 | |||
3254 | #Remove Outlier |
|
3253 | #Remove Outlier | |
3255 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
3254 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
3256 | # slopes = numpy.delete(slopes,indOut) |
|
3255 | # slopes = numpy.delete(slopes,indOut) | |
3257 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
3256 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
3258 | # slopes = numpy.delete(slopes,indOut) |
|
3257 | # slopes = numpy.delete(slopes,indOut) | |
3259 |
|
3258 | |||
3260 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) |
|
3259 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) | |
3261 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) |
|
3260 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) | |
3262 | meteorAux[-2] = radialError |
|
3261 | meteorAux[-2] = radialError | |
3263 | meteorAux[-3] = radialVelocity |
|
3262 | meteorAux[-3] = radialVelocity | |
3264 |
|
3263 | |||
3265 | #Setting Error |
|
3264 | #Setting Error | |
3266 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s |
|
3265 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s | |
3267 | if numpy.abs(radialVelocity) > 200: |
|
3266 | if numpy.abs(radialVelocity) > 200: | |
3268 | meteorAux[-1] = 15 |
|
3267 | meteorAux[-1] = 15 | |
3269 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity |
|
3268 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity | |
3270 | elif radialError > radialStdThresh: |
|
3269 | elif radialError > radialStdThresh: | |
3271 | meteorAux[-1] = 12 |
|
3270 | meteorAux[-1] = 12 | |
3272 |
|
3271 | |||
3273 | listMeteors1.append(meteorAux) |
|
3272 | listMeteors1.append(meteorAux) | |
3274 | return listMeteors1 |
|
3273 | return listMeteors1 | |
3275 |
|
3274 | |||
3276 | def __setNewArrays(self, listMeteors, date, heiRang): |
|
3275 | def __setNewArrays(self, listMeteors, date, heiRang): | |
3277 |
|
3276 | |||
3278 | #New arrays |
|
3277 | #New arrays | |
3279 | arrayMeteors = numpy.array(listMeteors) |
|
3278 | arrayMeteors = numpy.array(listMeteors) | |
3280 | arrayParameters = numpy.zeros((len(listMeteors), 13)) |
|
3279 | arrayParameters = numpy.zeros((len(listMeteors), 13)) | |
3281 |
|
3280 | |||
3282 | #Date inclusion |
|
3281 | #Date inclusion | |
3283 | # date = re.findall(r'\((.*?)\)', date) |
|
3282 | # date = re.findall(r'\((.*?)\)', date) | |
3284 | # date = date[0].split(',') |
|
3283 | # date = date[0].split(',') | |
3285 | # date = map(int, date) |
|
3284 | # date = map(int, date) | |
3286 | # |
|
3285 | # | |
3287 | # if len(date)<6: |
|
3286 | # if len(date)<6: | |
3288 | # date.append(0) |
|
3287 | # date.append(0) | |
3289 | # |
|
3288 | # | |
3290 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] |
|
3289 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] | |
3291 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) |
|
3290 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) | |
3292 | arrayDate = numpy.tile(date, (len(listMeteors))) |
|
3291 | arrayDate = numpy.tile(date, (len(listMeteors))) | |
3293 |
|
3292 | |||
3294 | #Meteor array |
|
3293 | #Meteor array | |
3295 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] |
|
3294 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] | |
3296 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) |
|
3295 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) | |
3297 |
|
3296 | |||
3298 | #Parameters Array |
|
3297 | #Parameters Array | |
3299 | arrayParameters[:,0] = arrayDate #Date |
|
3298 | arrayParameters[:,0] = arrayDate #Date | |
3300 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range |
|
3299 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range | |
3301 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error |
|
3300 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error | |
3302 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases |
|
3301 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases | |
3303 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error |
|
3302 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error | |
3304 |
|
3303 | |||
3305 |
|
3304 | |||
3306 | return arrayParameters |
|
3305 | return arrayParameters | |
3307 |
|
3306 | |||
3308 | class CorrectSMPhases(Operation): |
|
3307 | class CorrectSMPhases(Operation): | |
3309 |
|
3308 | |||
3310 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): |
|
3309 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): | |
3311 |
|
3310 | |||
3312 | arrayParameters = dataOut.data_param |
|
3311 | arrayParameters = dataOut.data_param | |
3313 | pairsList = [] |
|
3312 | pairsList = [] | |
3314 | pairx = (0,1) |
|
3313 | pairx = (0,1) | |
3315 | pairy = (2,3) |
|
3314 | pairy = (2,3) | |
3316 | pairsList.append(pairx) |
|
3315 | pairsList.append(pairx) | |
3317 | pairsList.append(pairy) |
|
3316 | pairsList.append(pairy) | |
3318 | jph = numpy.zeros(4) |
|
3317 | jph = numpy.zeros(4) | |
3319 |
|
3318 | |||
3320 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
3319 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
3321 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
3320 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
3322 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) |
|
3321 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) | |
3323 |
|
3322 | |||
3324 | meteorOps = SMOperations() |
|
3323 | meteorOps = SMOperations() | |
3325 | if channelPositions is None: |
|
3324 | if channelPositions is None: | |
3326 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
3325 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
3327 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
3326 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
3328 |
|
3327 | |||
3329 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
3328 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
3330 | h = (hmin,hmax) |
|
3329 | h = (hmin,hmax) | |
3331 |
|
3330 | |||
3332 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
3331 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
3333 |
|
3332 | |||
3334 | dataOut.data_param = arrayParameters |
|
3333 | dataOut.data_param = arrayParameters | |
3335 | return |
|
3334 | return | |
3336 |
|
3335 | |||
3337 | class SMPhaseCalibration(Operation): |
|
3336 | class SMPhaseCalibration(Operation): | |
3338 |
|
3337 | |||
3339 | __buffer = None |
|
3338 | __buffer = None | |
3340 |
|
3339 | |||
3341 | __initime = None |
|
3340 | __initime = None | |
3342 |
|
3341 | |||
3343 | __dataReady = False |
|
3342 | __dataReady = False | |
3344 |
|
3343 | |||
3345 | __isConfig = False |
|
3344 | __isConfig = False | |
3346 |
|
3345 | |||
3347 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): |
|
3346 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): | |
3348 |
|
3347 | |||
3349 | dataTime = currentTime + paramInterval |
|
3348 | dataTime = currentTime + paramInterval | |
3350 | deltaTime = dataTime - initTime |
|
3349 | deltaTime = dataTime - initTime | |
3351 |
|
3350 | |||
3352 | if deltaTime >= outputInterval or deltaTime < 0: |
|
3351 | if deltaTime >= outputInterval or deltaTime < 0: | |
3353 | return True |
|
3352 | return True | |
3354 |
|
3353 | |||
3355 | return False |
|
3354 | return False | |
3356 |
|
3355 | |||
3357 | def __getGammas(self, pairs, d, phases): |
|
3356 | def __getGammas(self, pairs, d, phases): | |
3358 | gammas = numpy.zeros(2) |
|
3357 | gammas = numpy.zeros(2) | |
3359 |
|
3358 | |||
3360 | for i in range(len(pairs)): |
|
3359 | for i in range(len(pairs)): | |
3361 |
|
3360 | |||
3362 | pairi = pairs[i] |
|
3361 | pairi = pairs[i] | |
3363 |
|
3362 | |||
3364 | phip3 = phases[:,pairi[0]] |
|
3363 | phip3 = phases[:,pairi[0]] | |
3365 | d3 = d[pairi[0]] |
|
3364 | d3 = d[pairi[0]] | |
3366 | phip2 = phases[:,pairi[1]] |
|
3365 | phip2 = phases[:,pairi[1]] | |
3367 | d2 = d[pairi[1]] |
|
3366 | d2 = d[pairi[1]] | |
3368 | #Calculating gamma |
|
3367 | #Calculating gamma | |
3369 | # jdcos = alp1/(k*d1) |
|
3368 | # jdcos = alp1/(k*d1) | |
3370 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) |
|
3369 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) | |
3371 | jgamma = -phip2*d3/d2 - phip3 |
|
3370 | jgamma = -phip2*d3/d2 - phip3 | |
3372 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) |
|
3371 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) | |
3373 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi |
|
3372 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi | |
3374 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi |
|
3373 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi | |
3375 |
|
3374 | |||
3376 | #Revised distribution |
|
3375 | #Revised distribution | |
3377 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) |
|
3376 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) | |
3378 |
|
3377 | |||
3379 | #Histogram |
|
3378 | #Histogram | |
3380 | nBins = 64 |
|
3379 | nBins = 64 | |
3381 | rmin = -0.5*numpy.pi |
|
3380 | rmin = -0.5*numpy.pi | |
3382 | rmax = 0.5*numpy.pi |
|
3381 | rmax = 0.5*numpy.pi | |
3383 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) |
|
3382 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) | |
3384 |
|
3383 | |||
3385 | meteorsY = phaseHisto[0] |
|
3384 | meteorsY = phaseHisto[0] | |
3386 | phasesX = phaseHisto[1][:-1] |
|
3385 | phasesX = phaseHisto[1][:-1] | |
3387 | width = phasesX[1] - phasesX[0] |
|
3386 | width = phasesX[1] - phasesX[0] | |
3388 | phasesX += width/2 |
|
3387 | phasesX += width/2 | |
3389 |
|
3388 | |||
3390 | #Gaussian aproximation |
|
3389 | #Gaussian aproximation | |
3391 | bpeak = meteorsY.argmax() |
|
3390 | bpeak = meteorsY.argmax() | |
3392 | peak = meteorsY.max() |
|
3391 | peak = meteorsY.max() | |
3393 | jmin = bpeak - 5 |
|
3392 | jmin = bpeak - 5 | |
3394 | jmax = bpeak + 5 + 1 |
|
3393 | jmax = bpeak + 5 + 1 | |
3395 |
|
3394 | |||
3396 | if jmin<0: |
|
3395 | if jmin<0: | |
3397 | jmin = 0 |
|
3396 | jmin = 0 | |
3398 | jmax = 6 |
|
3397 | jmax = 6 | |
3399 | elif jmax > meteorsY.size: |
|
3398 | elif jmax > meteorsY.size: | |
3400 | jmin = meteorsY.size - 6 |
|
3399 | jmin = meteorsY.size - 6 | |
3401 | jmax = meteorsY.size |
|
3400 | jmax = meteorsY.size | |
3402 |
|
3401 | |||
3403 | x0 = numpy.array([peak,bpeak,50]) |
|
3402 | x0 = numpy.array([peak,bpeak,50]) | |
3404 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) |
|
3403 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) | |
3405 |
|
3404 | |||
3406 | #Gammas |
|
3405 | #Gammas | |
3407 | gammas[i] = coeff[0][1] |
|
3406 | gammas[i] = coeff[0][1] | |
3408 |
|
3407 | |||
3409 | return gammas |
|
3408 | return gammas | |
3410 |
|
3409 | |||
3411 | def __residualFunction(self, coeffs, y, t): |
|
3410 | def __residualFunction(self, coeffs, y, t): | |
3412 |
|
3411 | |||
3413 | return y - self.__gauss_function(t, coeffs) |
|
3412 | return y - self.__gauss_function(t, coeffs) | |
3414 |
|
3413 | |||
3415 | def __gauss_function(self, t, coeffs): |
|
3414 | def __gauss_function(self, t, coeffs): | |
3416 |
|
3415 | |||
3417 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) |
|
3416 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) | |
3418 |
|
3417 | |||
3419 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): |
|
3418 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): | |
3420 | meteorOps = SMOperations() |
|
3419 | meteorOps = SMOperations() | |
3421 | nchan = 4 |
|
3420 | nchan = 4 | |
3422 | pairx = pairsList[0] #x es 0 |
|
3421 | pairx = pairsList[0] #x es 0 | |
3423 | pairy = pairsList[1] #y es 1 |
|
3422 | pairy = pairsList[1] #y es 1 | |
3424 | center_xangle = 0 |
|
3423 | center_xangle = 0 | |
3425 | center_yangle = 0 |
|
3424 | center_yangle = 0 | |
3426 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) |
|
3425 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) | |
3427 | ntimes = len(range_angle) |
|
3426 | ntimes = len(range_angle) | |
3428 |
|
3427 | |||
3429 | nstepsx = 20 |
|
3428 | nstepsx = 20 | |
3430 | nstepsy = 20 |
|
3429 | nstepsy = 20 | |
3431 |
|
3430 | |||
3432 | for iz in range(ntimes): |
|
3431 | for iz in range(ntimes): | |
3433 | min_xangle = -range_angle[iz]/2 + center_xangle |
|
3432 | min_xangle = -range_angle[iz]/2 + center_xangle | |
3434 | max_xangle = range_angle[iz]/2 + center_xangle |
|
3433 | max_xangle = range_angle[iz]/2 + center_xangle | |
3435 | min_yangle = -range_angle[iz]/2 + center_yangle |
|
3434 | min_yangle = -range_angle[iz]/2 + center_yangle | |
3436 | max_yangle = range_angle[iz]/2 + center_yangle |
|
3435 | max_yangle = range_angle[iz]/2 + center_yangle | |
3437 |
|
3436 | |||
3438 | inc_x = (max_xangle-min_xangle)/nstepsx |
|
3437 | inc_x = (max_xangle-min_xangle)/nstepsx | |
3439 | inc_y = (max_yangle-min_yangle)/nstepsy |
|
3438 | inc_y = (max_yangle-min_yangle)/nstepsy | |
3440 |
|
3439 | |||
3441 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle |
|
3440 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle | |
3442 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle |
|
3441 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle | |
3443 | penalty = numpy.zeros((nstepsx,nstepsy)) |
|
3442 | penalty = numpy.zeros((nstepsx,nstepsy)) | |
3444 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) |
|
3443 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) | |
3445 | jph = numpy.zeros(nchan) |
|
3444 | jph = numpy.zeros(nchan) | |
3446 |
|
3445 | |||
3447 | # Iterations looking for the offset |
|
3446 | # Iterations looking for the offset | |
3448 | for iy in range(int(nstepsy)): |
|
3447 | for iy in range(int(nstepsy)): | |
3449 | for ix in range(int(nstepsx)): |
|
3448 | for ix in range(int(nstepsx)): | |
3450 | d3 = d[pairsList[1][0]] |
|
3449 | d3 = d[pairsList[1][0]] | |
3451 | d2 = d[pairsList[1][1]] |
|
3450 | d2 = d[pairsList[1][1]] | |
3452 | d5 = d[pairsList[0][0]] |
|
3451 | d5 = d[pairsList[0][0]] | |
3453 | d4 = d[pairsList[0][1]] |
|
3452 | d4 = d[pairsList[0][1]] | |
3454 |
|
3453 | |||
3455 | alp2 = alpha_y[iy] #gamma 1 |
|
3454 | alp2 = alpha_y[iy] #gamma 1 | |
3456 | alp4 = alpha_x[ix] #gamma 0 |
|
3455 | alp4 = alpha_x[ix] #gamma 0 | |
3457 |
|
3456 | |||
3458 | alp3 = -alp2*d3/d2 - gammas[1] |
|
3457 | alp3 = -alp2*d3/d2 - gammas[1] | |
3459 | alp5 = -alp4*d5/d4 - gammas[0] |
|
3458 | alp5 = -alp4*d5/d4 - gammas[0] | |
3460 | # jph[pairy[1]] = alpha_y[iy] |
|
3459 | # jph[pairy[1]] = alpha_y[iy] | |
3461 | # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] |
|
3460 | # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] | |
3462 |
|
3461 | |||
3463 | # jph[pairx[1]] = alpha_x[ix] |
|
3462 | # jph[pairx[1]] = alpha_x[ix] | |
3464 | # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] |
|
3463 | # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] | |
3465 | jph[pairsList[0][1]] = alp4 |
|
3464 | jph[pairsList[0][1]] = alp4 | |
3466 | jph[pairsList[0][0]] = alp5 |
|
3465 | jph[pairsList[0][0]] = alp5 | |
3467 | jph[pairsList[1][0]] = alp3 |
|
3466 | jph[pairsList[1][0]] = alp3 | |
3468 | jph[pairsList[1][1]] = alp2 |
|
3467 | jph[pairsList[1][1]] = alp2 | |
3469 | jph_array[:,ix,iy] = jph |
|
3468 | jph_array[:,ix,iy] = jph | |
3470 | # d = [2.0,2.5,2.5,2.0] |
|
3469 | # d = [2.0,2.5,2.5,2.0] | |
3471 | #falta chequear si va a leer bien los meteoros |
|
3470 | #falta chequear si va a leer bien los meteoros | |
3472 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) |
|
3471 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) | |
3473 | error = meteorsArray1[:,-1] |
|
3472 | error = meteorsArray1[:,-1] | |
3474 | ind1 = numpy.where(error==0)[0] |
|
3473 | ind1 = numpy.where(error==0)[0] | |
3475 | penalty[ix,iy] = ind1.size |
|
3474 | penalty[ix,iy] = ind1.size | |
3476 |
|
3475 | |||
3477 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) |
|
3476 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) | |
3478 | phOffset = jph_array[:,i,j] |
|
3477 | phOffset = jph_array[:,i,j] | |
3479 |
|
3478 | |||
3480 | center_xangle = phOffset[pairx[1]] |
|
3479 | center_xangle = phOffset[pairx[1]] | |
3481 | center_yangle = phOffset[pairy[1]] |
|
3480 | center_yangle = phOffset[pairy[1]] | |
3482 |
|
3481 | |||
3483 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) |
|
3482 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) | |
3484 | phOffset = phOffset*180/numpy.pi |
|
3483 | phOffset = phOffset*180/numpy.pi | |
3485 | return phOffset |
|
3484 | return phOffset | |
3486 |
|
3485 | |||
3487 |
|
3486 | |||
3488 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): |
|
3487 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): | |
3489 |
|
3488 | |||
3490 | dataOut.flagNoData = True |
|
3489 | dataOut.flagNoData = True | |
3491 | self.__dataReady = False |
|
3490 | self.__dataReady = False | |
3492 | dataOut.outputInterval = nHours*3600 |
|
3491 | dataOut.outputInterval = nHours*3600 | |
3493 |
|
3492 | |||
3494 | if self.__isConfig == False: |
|
3493 | if self.__isConfig == False: | |
3495 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
3494 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
3496 | #Get Initial LTC time |
|
3495 | #Get Initial LTC time | |
3497 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
3496 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
3498 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
3497 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
3499 |
|
3498 | |||
3500 | self.__isConfig = True |
|
3499 | self.__isConfig = True | |
3501 |
|
3500 | |||
3502 | if self.__buffer is None: |
|
3501 | if self.__buffer is None: | |
3503 | self.__buffer = dataOut.data_param.copy() |
|
3502 | self.__buffer = dataOut.data_param.copy() | |
3504 |
|
3503 | |||
3505 | else: |
|
3504 | else: | |
3506 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
3505 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
3507 |
|
3506 | |||
3508 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
3507 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
3509 |
|
3508 | |||
3510 | if self.__dataReady: |
|
3509 | if self.__dataReady: | |
3511 | dataOut.utctimeInit = self.__initime |
|
3510 | dataOut.utctimeInit = self.__initime | |
3512 | self.__initime += dataOut.outputInterval #to erase time offset |
|
3511 | self.__initime += dataOut.outputInterval #to erase time offset | |
3513 |
|
3512 | |||
3514 | freq = dataOut.frequency |
|
3513 | freq = dataOut.frequency | |
3515 | c = dataOut.C #m/s |
|
3514 | c = dataOut.C #m/s | |
3516 | lamb = c/freq |
|
3515 | lamb = c/freq | |
3517 | k = 2*numpy.pi/lamb |
|
3516 | k = 2*numpy.pi/lamb | |
3518 | azimuth = 0 |
|
3517 | azimuth = 0 | |
3519 | h = (hmin, hmax) |
|
3518 | h = (hmin, hmax) | |
3520 | # pairs = ((0,1),(2,3)) #Estrella |
|
3519 | # pairs = ((0,1),(2,3)) #Estrella | |
3521 | # pairs = ((1,0),(2,3)) #T |
|
3520 | # pairs = ((1,0),(2,3)) #T | |
3522 |
|
3521 | |||
3523 | if channelPositions is None: |
|
3522 | if channelPositions is None: | |
3524 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
3523 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
3525 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
3524 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
3526 | meteorOps = SMOperations() |
|
3525 | meteorOps = SMOperations() | |
3527 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
3526 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
3528 |
|
3527 | |||
3529 | #Checking correct order of pairs |
|
3528 | #Checking correct order of pairs | |
3530 | pairs = [] |
|
3529 | pairs = [] | |
3531 | if distances[1] > distances[0]: |
|
3530 | if distances[1] > distances[0]: | |
3532 | pairs.append((1,0)) |
|
3531 | pairs.append((1,0)) | |
3533 | else: |
|
3532 | else: | |
3534 | pairs.append((0,1)) |
|
3533 | pairs.append((0,1)) | |
3535 |
|
3534 | |||
3536 | if distances[3] > distances[2]: |
|
3535 | if distances[3] > distances[2]: | |
3537 | pairs.append((3,2)) |
|
3536 | pairs.append((3,2)) | |
3538 | else: |
|
3537 | else: | |
3539 | pairs.append((2,3)) |
|
3538 | pairs.append((2,3)) | |
3540 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] |
|
3539 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] | |
3541 |
|
3540 | |||
3542 | meteorsArray = self.__buffer |
|
3541 | meteorsArray = self.__buffer | |
3543 | error = meteorsArray[:,-1] |
|
3542 | error = meteorsArray[:,-1] | |
3544 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) |
|
3543 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) | |
3545 | ind1 = numpy.where(boolError)[0] |
|
3544 | ind1 = numpy.where(boolError)[0] | |
3546 | meteorsArray = meteorsArray[ind1,:] |
|
3545 | meteorsArray = meteorsArray[ind1,:] | |
3547 | meteorsArray[:,-1] = 0 |
|
3546 | meteorsArray[:,-1] = 0 | |
3548 | phases = meteorsArray[:,8:12] |
|
3547 | phases = meteorsArray[:,8:12] | |
3549 |
|
3548 | |||
3550 | #Calculate Gammas |
|
3549 | #Calculate Gammas | |
3551 | gammas = self.__getGammas(pairs, distances, phases) |
|
3550 | gammas = self.__getGammas(pairs, distances, phases) | |
3552 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 |
|
3551 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 | |
3553 | #Calculate Phases |
|
3552 | #Calculate Phases | |
3554 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) |
|
3553 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) | |
3555 | phasesOff = phasesOff.reshape((1,phasesOff.size)) |
|
3554 | phasesOff = phasesOff.reshape((1,phasesOff.size)) | |
3556 | dataOut.data_output = -phasesOff |
|
3555 | dataOut.data_output = -phasesOff | |
3557 | dataOut.flagNoData = False |
|
3556 | dataOut.flagNoData = False | |
3558 | self.__buffer = None |
|
3557 | self.__buffer = None | |
3559 |
|
3558 | |||
3560 |
|
3559 | |||
3561 | return |
|
3560 | return | |
3562 |
|
3561 | |||
3563 | class SMOperations(): |
|
3562 | class SMOperations(): | |
3564 |
|
3563 | |||
3565 | def __init__(self): |
|
3564 | def __init__(self): | |
3566 |
|
3565 | |||
3567 | return |
|
3566 | return | |
3568 |
|
3567 | |||
3569 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): |
|
3568 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): | |
3570 |
|
3569 | |||
3571 | arrayParameters = arrayParameters0.copy() |
|
3570 | arrayParameters = arrayParameters0.copy() | |
3572 | hmin = h[0] |
|
3571 | hmin = h[0] | |
3573 | hmax = h[1] |
|
3572 | hmax = h[1] | |
3574 |
|
3573 | |||
3575 | #Calculate AOA (Error N 3, 4) |
|
3574 | #Calculate AOA (Error N 3, 4) | |
3576 | #JONES ET AL. 1998 |
|
3575 | #JONES ET AL. 1998 | |
3577 | AOAthresh = numpy.pi/8 |
|
3576 | AOAthresh = numpy.pi/8 | |
3578 | error = arrayParameters[:,-1] |
|
3577 | error = arrayParameters[:,-1] | |
3579 | phases = -arrayParameters[:,8:12] + jph |
|
3578 | phases = -arrayParameters[:,8:12] + jph | |
3580 | # phases = numpy.unwrap(phases) |
|
3579 | # phases = numpy.unwrap(phases) | |
3581 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) |
|
3580 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) | |
3582 |
|
3581 | |||
3583 | #Calculate Heights (Error N 13 and 14) |
|
3582 | #Calculate Heights (Error N 13 and 14) | |
3584 | error = arrayParameters[:,-1] |
|
3583 | error = arrayParameters[:,-1] | |
3585 | Ranges = arrayParameters[:,1] |
|
3584 | Ranges = arrayParameters[:,1] | |
3586 | zenith = arrayParameters[:,4] |
|
3585 | zenith = arrayParameters[:,4] | |
3587 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) |
|
3586 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) | |
3588 |
|
3587 | |||
3589 | #----------------------- Get Final data ------------------------------------ |
|
3588 | #----------------------- Get Final data ------------------------------------ | |
3590 | # error = arrayParameters[:,-1] |
|
3589 | # error = arrayParameters[:,-1] | |
3591 | # ind1 = numpy.where(error==0)[0] |
|
3590 | # ind1 = numpy.where(error==0)[0] | |
3592 | # arrayParameters = arrayParameters[ind1,:] |
|
3591 | # arrayParameters = arrayParameters[ind1,:] | |
3593 |
|
3592 | |||
3594 | return arrayParameters |
|
3593 | return arrayParameters | |
3595 |
|
3594 | |||
3596 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): |
|
3595 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): | |
3597 |
|
3596 | |||
3598 | arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
3597 | arrayAOA = numpy.zeros((phases.shape[0],3)) | |
3599 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) |
|
3598 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) | |
3600 |
|
3599 | |||
3601 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
3600 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
3602 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
3601 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
3603 | arrayAOA[:,2] = cosDirError |
|
3602 | arrayAOA[:,2] = cosDirError | |
3604 |
|
3603 | |||
3605 | azimuthAngle = arrayAOA[:,0] |
|
3604 | azimuthAngle = arrayAOA[:,0] | |
3606 | zenithAngle = arrayAOA[:,1] |
|
3605 | zenithAngle = arrayAOA[:,1] | |
3607 |
|
3606 | |||
3608 | #Setting Error |
|
3607 | #Setting Error | |
3609 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] |
|
3608 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] | |
3610 | error[indError] = 0 |
|
3609 | error[indError] = 0 | |
3611 | #Number 3: AOA not fesible |
|
3610 | #Number 3: AOA not fesible | |
3612 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
3611 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
3613 | error[indInvalid] = 3 |
|
3612 | error[indInvalid] = 3 | |
3614 | #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
3613 | #Number 4: Large difference in AOAs obtained from different antenna baselines | |
3615 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
3614 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
3616 | error[indInvalid] = 4 |
|
3615 | error[indInvalid] = 4 | |
3617 | return arrayAOA, error |
|
3616 | return arrayAOA, error | |
3618 |
|
3617 | |||
3619 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): |
|
3618 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): | |
3620 |
|
3619 | |||
3621 | #Initializing some variables |
|
3620 | #Initializing some variables | |
3622 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
3621 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
3623 | ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
3622 | ang_aux = ang_aux.reshape(1,ang_aux.size) | |
3624 |
|
3623 | |||
3625 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
3624 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
3626 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
3625 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
3627 |
|
3626 | |||
3628 |
|
3627 | |||
3629 | for i in range(2): |
|
3628 | for i in range(2): | |
3630 | ph0 = arrayPhase[:,pairsList[i][0]] |
|
3629 | ph0 = arrayPhase[:,pairsList[i][0]] | |
3631 | ph1 = arrayPhase[:,pairsList[i][1]] |
|
3630 | ph1 = arrayPhase[:,pairsList[i][1]] | |
3632 | d0 = distances[pairsList[i][0]] |
|
3631 | d0 = distances[pairsList[i][0]] | |
3633 | d1 = distances[pairsList[i][1]] |
|
3632 | d1 = distances[pairsList[i][1]] | |
3634 |
|
3633 | |||
3635 | ph0_aux = ph0 + ph1 |
|
3634 | ph0_aux = ph0 + ph1 | |
3636 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) |
|
3635 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) | |
3637 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi |
|
3636 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi | |
3638 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi |
|
3637 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi | |
3639 | #First Estimation |
|
3638 | #First Estimation | |
3640 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) |
|
3639 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) | |
3641 |
|
3640 | |||
3642 | #Most-Accurate Second Estimation |
|
3641 | #Most-Accurate Second Estimation | |
3643 | phi1_aux = ph0 - ph1 |
|
3642 | phi1_aux = ph0 - ph1 | |
3644 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
3643 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
3645 | #Direction Cosine 1 |
|
3644 | #Direction Cosine 1 | |
3646 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) |
|
3645 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) | |
3647 |
|
3646 | |||
3648 | #Searching the correct Direction Cosine |
|
3647 | #Searching the correct Direction Cosine | |
3649 | cosdir0_aux = cosdir0[:,i] |
|
3648 | cosdir0_aux = cosdir0[:,i] | |
3650 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
3649 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
3651 | #Minimum Distance |
|
3650 | #Minimum Distance | |
3652 | cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
3651 | cosDiff = (cosdir1 - cosdir0_aux)**2 | |
3653 | indcos = cosDiff.argmin(axis = 1) |
|
3652 | indcos = cosDiff.argmin(axis = 1) | |
3654 | #Saving Value obtained |
|
3653 | #Saving Value obtained | |
3655 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
3654 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
3656 |
|
3655 | |||
3657 | return cosdir0, cosdir |
|
3656 | return cosdir0, cosdir | |
3658 |
|
3657 | |||
3659 | def __calculateAOA(self, cosdir, azimuth): |
|
3658 | def __calculateAOA(self, cosdir, azimuth): | |
3660 | cosdirX = cosdir[:,0] |
|
3659 | cosdirX = cosdir[:,0] | |
3661 | cosdirY = cosdir[:,1] |
|
3660 | cosdirY = cosdir[:,1] | |
3662 |
|
3661 | |||
3663 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
3662 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
3664 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east |
|
3663 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east | |
3665 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
3664 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
3666 |
|
3665 | |||
3667 | return angles |
|
3666 | return angles | |
3668 |
|
3667 | |||
3669 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
3668 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
3670 |
|
3669 | |||
3671 | Ramb = 375 #Ramb = c/(2*PRF) |
|
3670 | Ramb = 375 #Ramb = c/(2*PRF) | |
3672 | Re = 6371 #Earth Radius |
|
3671 | Re = 6371 #Earth Radius | |
3673 | heights = numpy.zeros(Ranges.shape) |
|
3672 | heights = numpy.zeros(Ranges.shape) | |
3674 |
|
3673 | |||
3675 | R_aux = numpy.array([0,1,2])*Ramb |
|
3674 | R_aux = numpy.array([0,1,2])*Ramb | |
3676 | R_aux = R_aux.reshape(1,R_aux.size) |
|
3675 | R_aux = R_aux.reshape(1,R_aux.size) | |
3677 |
|
3676 | |||
3678 | Ranges = Ranges.reshape(Ranges.size,1) |
|
3677 | Ranges = Ranges.reshape(Ranges.size,1) | |
3679 |
|
3678 | |||
3680 | Ri = Ranges + R_aux |
|
3679 | Ri = Ranges + R_aux | |
3681 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
3680 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
3682 |
|
3681 | |||
3683 | #Check if there is a height between 70 and 110 km |
|
3682 | #Check if there is a height between 70 and 110 km | |
3684 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
3683 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
3685 | ind_h = numpy.where(h_bool == 1)[0] |
|
3684 | ind_h = numpy.where(h_bool == 1)[0] | |
3686 |
|
3685 | |||
3687 | hCorr = hi[ind_h, :] |
|
3686 | hCorr = hi[ind_h, :] | |
3688 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
3687 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
3689 |
|
3688 | |||
3690 | hCorr = hi[ind_hCorr][:len(ind_h)] |
|
3689 | hCorr = hi[ind_hCorr][:len(ind_h)] | |
3691 | heights[ind_h] = hCorr |
|
3690 | heights[ind_h] = hCorr | |
3692 |
|
3691 | |||
3693 | #Setting Error |
|
3692 | #Setting Error | |
3694 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
3693 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
3695 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
3694 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
3696 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] |
|
3695 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] | |
3697 | error[indError] = 0 |
|
3696 | error[indError] = 0 | |
3698 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
3697 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
3699 | error[indInvalid2] = 14 |
|
3698 | error[indInvalid2] = 14 | |
3700 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
3699 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
3701 | error[indInvalid1] = 13 |
|
3700 | error[indInvalid1] = 13 | |
3702 |
|
3701 | |||
3703 | return heights, error |
|
3702 | return heights, error | |
3704 |
|
3703 | |||
3705 | def getPhasePairs(self, channelPositions): |
|
3704 | def getPhasePairs(self, channelPositions): | |
3706 | chanPos = numpy.array(channelPositions) |
|
3705 | chanPos = numpy.array(channelPositions) | |
3707 | listOper = list(itertools.combinations(list(range(5)),2)) |
|
3706 | listOper = list(itertools.combinations(list(range(5)),2)) | |
3708 |
|
3707 | |||
3709 | distances = numpy.zeros(4) |
|
3708 | distances = numpy.zeros(4) | |
3710 | axisX = [] |
|
3709 | axisX = [] | |
3711 | axisY = [] |
|
3710 | axisY = [] | |
3712 | distX = numpy.zeros(3) |
|
3711 | distX = numpy.zeros(3) | |
3713 | distY = numpy.zeros(3) |
|
3712 | distY = numpy.zeros(3) | |
3714 | ix = 0 |
|
3713 | ix = 0 | |
3715 | iy = 0 |
|
3714 | iy = 0 | |
3716 |
|
3715 | |||
3717 | pairX = numpy.zeros((2,2)) |
|
3716 | pairX = numpy.zeros((2,2)) | |
3718 | pairY = numpy.zeros((2,2)) |
|
3717 | pairY = numpy.zeros((2,2)) | |
3719 |
|
3718 | |||
3720 | for i in range(len(listOper)): |
|
3719 | for i in range(len(listOper)): | |
3721 | pairi = listOper[i] |
|
3720 | pairi = listOper[i] | |
3722 |
|
3721 | |||
3723 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) |
|
3722 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) | |
3724 |
|
3723 | |||
3725 | if posDif[0] == 0: |
|
3724 | if posDif[0] == 0: | |
3726 | axisY.append(pairi) |
|
3725 | axisY.append(pairi) | |
3727 | distY[iy] = posDif[1] |
|
3726 | distY[iy] = posDif[1] | |
3728 | iy += 1 |
|
3727 | iy += 1 | |
3729 | elif posDif[1] == 0: |
|
3728 | elif posDif[1] == 0: | |
3730 | axisX.append(pairi) |
|
3729 | axisX.append(pairi) | |
3731 | distX[ix] = posDif[0] |
|
3730 | distX[ix] = posDif[0] | |
3732 | ix += 1 |
|
3731 | ix += 1 | |
3733 |
|
3732 | |||
3734 | for i in range(2): |
|
3733 | for i in range(2): | |
3735 | if i==0: |
|
3734 | if i==0: | |
3736 | dist0 = distX |
|
3735 | dist0 = distX | |
3737 | axis0 = axisX |
|
3736 | axis0 = axisX | |
3738 | else: |
|
3737 | else: | |
3739 | dist0 = distY |
|
3738 | dist0 = distY | |
3740 | axis0 = axisY |
|
3739 | axis0 = axisY | |
3741 |
|
3740 | |||
3742 | side = numpy.argsort(dist0)[:-1] |
|
3741 | side = numpy.argsort(dist0)[:-1] | |
3743 | axis0 = numpy.array(axis0)[side,:] |
|
3742 | axis0 = numpy.array(axis0)[side,:] | |
3744 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) |
|
3743 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) | |
3745 | axis1 = numpy.unique(numpy.reshape(axis0,4)) |
|
3744 | axis1 = numpy.unique(numpy.reshape(axis0,4)) | |
3746 | side = axis1[axis1 != chanC] |
|
3745 | side = axis1[axis1 != chanC] | |
3747 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] |
|
3746 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] | |
3748 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] |
|
3747 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] | |
3749 | if diff1<0: |
|
3748 | if diff1<0: | |
3750 | chan2 = side[0] |
|
3749 | chan2 = side[0] | |
3751 | d2 = numpy.abs(diff1) |
|
3750 | d2 = numpy.abs(diff1) | |
3752 | chan1 = side[1] |
|
3751 | chan1 = side[1] | |
3753 | d1 = numpy.abs(diff2) |
|
3752 | d1 = numpy.abs(diff2) | |
3754 | else: |
|
3753 | else: | |
3755 | chan2 = side[1] |
|
3754 | chan2 = side[1] | |
3756 | d2 = numpy.abs(diff2) |
|
3755 | d2 = numpy.abs(diff2) | |
3757 | chan1 = side[0] |
|
3756 | chan1 = side[0] | |
3758 | d1 = numpy.abs(diff1) |
|
3757 | d1 = numpy.abs(diff1) | |
3759 |
|
3758 | |||
3760 | if i==0: |
|
3759 | if i==0: | |
3761 | chanCX = chanC |
|
3760 | chanCX = chanC | |
3762 | chan1X = chan1 |
|
3761 | chan1X = chan1 | |
3763 | chan2X = chan2 |
|
3762 | chan2X = chan2 | |
3764 | distances[0:2] = numpy.array([d1,d2]) |
|
3763 | distances[0:2] = numpy.array([d1,d2]) | |
3765 | else: |
|
3764 | else: | |
3766 | chanCY = chanC |
|
3765 | chanCY = chanC | |
3767 | chan1Y = chan1 |
|
3766 | chan1Y = chan1 | |
3768 | chan2Y = chan2 |
|
3767 | chan2Y = chan2 | |
3769 | distances[2:4] = numpy.array([d1,d2]) |
|
3768 | distances[2:4] = numpy.array([d1,d2]) | |
3770 | # axisXsides = numpy.reshape(axisX[ix,:],4) |
|
3769 | # axisXsides = numpy.reshape(axisX[ix,:],4) | |
3771 | # |
|
3770 | # | |
3772 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) |
|
3771 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) | |
3773 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) |
|
3772 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) | |
3774 | # |
|
3773 | # | |
3775 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] |
|
3774 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] | |
3776 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] |
|
3775 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] | |
3777 | # channel25X = int(pairX[0,ind25X]) |
|
3776 | # channel25X = int(pairX[0,ind25X]) | |
3778 | # channel20X = int(pairX[1,ind20X]) |
|
3777 | # channel20X = int(pairX[1,ind20X]) | |
3779 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] |
|
3778 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] | |
3780 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] |
|
3779 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] | |
3781 | # channel25Y = int(pairY[0,ind25Y]) |
|
3780 | # channel25Y = int(pairY[0,ind25Y]) | |
3782 | # channel20Y = int(pairY[1,ind20Y]) |
|
3781 | # channel20Y = int(pairY[1,ind20Y]) | |
3783 |
|
3782 | |||
3784 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] |
|
3783 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] | |
3785 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] |
|
3784 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] | |
3786 |
|
3785 | |||
3787 | return pairslist, distances |
|
3786 | return pairslist, distances | |
3788 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): |
|
3787 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): | |
3789 | # |
|
3788 | # | |
3790 | # arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
3789 | # arrayAOA = numpy.zeros((phases.shape[0],3)) | |
3791 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) |
|
3790 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) | |
3792 | # |
|
3791 | # | |
3793 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
3792 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
3794 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
3793 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
3795 | # arrayAOA[:,2] = cosDirError |
|
3794 | # arrayAOA[:,2] = cosDirError | |
3796 | # |
|
3795 | # | |
3797 | # azimuthAngle = arrayAOA[:,0] |
|
3796 | # azimuthAngle = arrayAOA[:,0] | |
3798 | # zenithAngle = arrayAOA[:,1] |
|
3797 | # zenithAngle = arrayAOA[:,1] | |
3799 | # |
|
3798 | # | |
3800 | # #Setting Error |
|
3799 | # #Setting Error | |
3801 | # #Number 3: AOA not fesible |
|
3800 | # #Number 3: AOA not fesible | |
3802 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
3801 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
3803 | # error[indInvalid] = 3 |
|
3802 | # error[indInvalid] = 3 | |
3804 | # #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
3803 | # #Number 4: Large difference in AOAs obtained from different antenna baselines | |
3805 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
3804 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
3806 | # error[indInvalid] = 4 |
|
3805 | # error[indInvalid] = 4 | |
3807 | # return arrayAOA, error |
|
3806 | # return arrayAOA, error | |
3808 | # |
|
3807 | # | |
3809 | # def __getDirectionCosines(self, arrayPhase, pairsList): |
|
3808 | # def __getDirectionCosines(self, arrayPhase, pairsList): | |
3810 | # |
|
3809 | # | |
3811 | # #Initializing some variables |
|
3810 | # #Initializing some variables | |
3812 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
3811 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
3813 | # ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
3812 | # ang_aux = ang_aux.reshape(1,ang_aux.size) | |
3814 | # |
|
3813 | # | |
3815 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
3814 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
3816 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
3815 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
3817 | # |
|
3816 | # | |
3818 | # |
|
3817 | # | |
3819 | # for i in range(2): |
|
3818 | # for i in range(2): | |
3820 | # #First Estimation |
|
3819 | # #First Estimation | |
3821 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] |
|
3820 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] | |
3822 | # #Dealias |
|
3821 | # #Dealias | |
3823 | # indcsi = numpy.where(phi0_aux > numpy.pi) |
|
3822 | # indcsi = numpy.where(phi0_aux > numpy.pi) | |
3824 | # phi0_aux[indcsi] -= 2*numpy.pi |
|
3823 | # phi0_aux[indcsi] -= 2*numpy.pi | |
3825 | # indcsi = numpy.where(phi0_aux < -numpy.pi) |
|
3824 | # indcsi = numpy.where(phi0_aux < -numpy.pi) | |
3826 | # phi0_aux[indcsi] += 2*numpy.pi |
|
3825 | # phi0_aux[indcsi] += 2*numpy.pi | |
3827 | # #Direction Cosine 0 |
|
3826 | # #Direction Cosine 0 | |
3828 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) |
|
3827 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) | |
3829 | # |
|
3828 | # | |
3830 | # #Most-Accurate Second Estimation |
|
3829 | # #Most-Accurate Second Estimation | |
3831 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] |
|
3830 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] | |
3832 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
3831 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
3833 | # #Direction Cosine 1 |
|
3832 | # #Direction Cosine 1 | |
3834 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) |
|
3833 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) | |
3835 | # |
|
3834 | # | |
3836 | # #Searching the correct Direction Cosine |
|
3835 | # #Searching the correct Direction Cosine | |
3837 | # cosdir0_aux = cosdir0[:,i] |
|
3836 | # cosdir0_aux = cosdir0[:,i] | |
3838 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
3837 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
3839 | # #Minimum Distance |
|
3838 | # #Minimum Distance | |
3840 | # cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
3839 | # cosDiff = (cosdir1 - cosdir0_aux)**2 | |
3841 | # indcos = cosDiff.argmin(axis = 1) |
|
3840 | # indcos = cosDiff.argmin(axis = 1) | |
3842 | # #Saving Value obtained |
|
3841 | # #Saving Value obtained | |
3843 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
3842 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
3844 | # |
|
3843 | # | |
3845 | # return cosdir0, cosdir |
|
3844 | # return cosdir0, cosdir | |
3846 | # |
|
3845 | # | |
3847 | # def __calculateAOA(self, cosdir, azimuth): |
|
3846 | # def __calculateAOA(self, cosdir, azimuth): | |
3848 | # cosdirX = cosdir[:,0] |
|
3847 | # cosdirX = cosdir[:,0] | |
3849 | # cosdirY = cosdir[:,1] |
|
3848 | # cosdirY = cosdir[:,1] | |
3850 | # |
|
3849 | # | |
3851 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
3850 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
3852 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east |
|
3851 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east | |
3853 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
3852 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
3854 | # |
|
3853 | # | |
3855 | # return angles |
|
3854 | # return angles | |
3856 | # |
|
3855 | # | |
3857 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
3856 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
3858 | # |
|
3857 | # | |
3859 | # Ramb = 375 #Ramb = c/(2*PRF) |
|
3858 | # Ramb = 375 #Ramb = c/(2*PRF) | |
3860 | # Re = 6371 #Earth Radius |
|
3859 | # Re = 6371 #Earth Radius | |
3861 | # heights = numpy.zeros(Ranges.shape) |
|
3860 | # heights = numpy.zeros(Ranges.shape) | |
3862 | # |
|
3861 | # | |
3863 | # R_aux = numpy.array([0,1,2])*Ramb |
|
3862 | # R_aux = numpy.array([0,1,2])*Ramb | |
3864 | # R_aux = R_aux.reshape(1,R_aux.size) |
|
3863 | # R_aux = R_aux.reshape(1,R_aux.size) | |
3865 | # |
|
3864 | # | |
3866 | # Ranges = Ranges.reshape(Ranges.size,1) |
|
3865 | # Ranges = Ranges.reshape(Ranges.size,1) | |
3867 | # |
|
3866 | # | |
3868 | # Ri = Ranges + R_aux |
|
3867 | # Ri = Ranges + R_aux | |
3869 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
3868 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
3870 | # |
|
3869 | # | |
3871 | # #Check if there is a height between 70 and 110 km |
|
3870 | # #Check if there is a height between 70 and 110 km | |
3872 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
3871 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
3873 | # ind_h = numpy.where(h_bool == 1)[0] |
|
3872 | # ind_h = numpy.where(h_bool == 1)[0] | |
3874 | # |
|
3873 | # | |
3875 | # hCorr = hi[ind_h, :] |
|
3874 | # hCorr = hi[ind_h, :] | |
3876 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
3875 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
3877 | # |
|
3876 | # | |
3878 | # hCorr = hi[ind_hCorr] |
|
3877 | # hCorr = hi[ind_hCorr] | |
3879 | # heights[ind_h] = hCorr |
|
3878 | # heights[ind_h] = hCorr | |
3880 | # |
|
3879 | # | |
3881 | # #Setting Error |
|
3880 | # #Setting Error | |
3882 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
3881 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
3883 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
3882 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
3884 | # |
|
3883 | # | |
3885 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
3884 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
3886 | # error[indInvalid2] = 14 |
|
3885 | # error[indInvalid2] = 14 | |
3887 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
3886 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
3888 | # error[indInvalid1] = 13 |
|
3887 | # error[indInvalid1] = 13 | |
3889 | # |
|
3888 | # | |
3890 | # return heights, error |
|
3889 | # return heights, error |
@@ -1,1411 +1,1411 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Spectra processing Unit and operations |
|
5 | """Spectra processing Unit and operations | |
6 |
|
6 | |||
7 | Here you will find the processing unit `SpectraProc` and several operations |
|
7 | Here you will find the processing unit `SpectraProc` and several operations | |
8 | to work with Spectra data type |
|
8 | to work with Spectra data type | |
9 | """ |
|
9 | """ | |
10 |
|
10 | |||
11 | import time |
|
11 | import time | |
12 | import itertools |
|
12 | import itertools | |
13 |
|
13 | |||
14 | import numpy |
|
14 | import numpy | |
15 | import math |
|
15 | import math | |
16 |
|
16 | |||
17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation | |
18 | from schainpy.model.data.jrodata import Spectra |
|
18 | from schainpy.model.data.jrodata import Spectra | |
19 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
19 | from schainpy.model.data.jrodata import hildebrand_sekhon | |
20 | from schainpy.utils import log |
|
20 | from schainpy.utils import log | |
21 |
|
21 | |||
22 | from scipy.optimize import curve_fit |
|
22 | from scipy.optimize import curve_fit | |
23 |
|
23 | |||
24 |
|
24 | |||
25 | class SpectraProc(ProcessingUnit): |
|
25 | class SpectraProc(ProcessingUnit): | |
26 |
|
26 | |||
27 | def __init__(self): |
|
27 | def __init__(self): | |
28 |
|
28 | |||
29 | ProcessingUnit.__init__(self) |
|
29 | ProcessingUnit.__init__(self) | |
30 |
|
30 | |||
31 | self.buffer = None |
|
31 | self.buffer = None | |
32 | self.firstdatatime = None |
|
32 | self.firstdatatime = None | |
33 | self.profIndex = 0 |
|
33 | self.profIndex = 0 | |
34 | self.dataOut = Spectra() |
|
34 | self.dataOut = Spectra() | |
35 | self.id_min = None |
|
35 | self.id_min = None | |
36 | self.id_max = None |
|
36 | self.id_max = None | |
37 | self.setupReq = False #Agregar a todas las unidades de proc |
|
37 | self.setupReq = False #Agregar a todas las unidades de proc | |
38 |
|
38 | |||
39 | def __updateSpecFromVoltage(self): |
|
39 | def __updateSpecFromVoltage(self): | |
40 |
|
40 | |||
41 | self.dataOut.timeZone = self.dataIn.timeZone |
|
41 | self.dataOut.timeZone = self.dataIn.timeZone | |
42 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
42 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
43 | self.dataOut.errorCount = self.dataIn.errorCount |
|
43 | self.dataOut.errorCount = self.dataIn.errorCount | |
44 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
44 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
45 | try: |
|
45 | try: | |
46 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
46 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() | |
47 | except: |
|
47 | except: | |
48 | pass |
|
48 | pass | |
49 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
49 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
50 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
50 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
51 | self.dataOut.channelList = self.dataIn.channelList |
|
51 | self.dataOut.channelList = self.dataIn.channelList | |
52 | self.dataOut.heightList = self.dataIn.heightList |
|
52 | self.dataOut.heightList = self.dataIn.heightList | |
53 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
53 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
54 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
54 | self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
55 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
55 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
56 | self.dataOut.utctime = self.firstdatatime |
|
56 | self.dataOut.utctime = self.firstdatatime | |
57 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
57 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData | |
58 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
58 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData | |
59 | self.dataOut.flagShiftFFT = False |
|
59 | self.dataOut.flagShiftFFT = False | |
60 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
60 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
61 | self.dataOut.nIncohInt = 1 |
|
61 | self.dataOut.nIncohInt = 1 | |
62 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
62 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
63 | self.dataOut.frequency = self.dataIn.frequency |
|
63 | self.dataOut.frequency = self.dataIn.frequency | |
64 | self.dataOut.realtime = self.dataIn.realtime |
|
64 | self.dataOut.realtime = self.dataIn.realtime | |
65 | self.dataOut.azimuth = self.dataIn.azimuth |
|
65 | self.dataOut.azimuth = self.dataIn.azimuth | |
66 | self.dataOut.zenith = self.dataIn.zenith |
|
66 | self.dataOut.zenith = self.dataIn.zenith | |
67 | self.dataOut.codeList = self.dataIn.codeList |
|
67 | self.dataOut.codeList = self.dataIn.codeList | |
68 | self.dataOut.azimuthList = self.dataIn.azimuthList |
|
68 | self.dataOut.azimuthList = self.dataIn.azimuthList | |
69 | self.dataOut.elevationList = self.dataIn.elevationList |
|
69 | self.dataOut.elevationList = self.dataIn.elevationList | |
70 |
|
70 | |||
71 | def __getFft(self): |
|
71 | def __getFft(self): | |
72 | """ |
|
72 | """ | |
73 | Convierte valores de Voltaje a Spectra |
|
73 | Convierte valores de Voltaje a Spectra | |
74 |
|
74 | |||
75 | Affected: |
|
75 | Affected: | |
76 | self.dataOut.data_spc |
|
76 | self.dataOut.data_spc | |
77 | self.dataOut.data_cspc |
|
77 | self.dataOut.data_cspc | |
78 | self.dataOut.data_dc |
|
78 | self.dataOut.data_dc | |
79 | self.dataOut.heightList |
|
79 | self.dataOut.heightList | |
80 | self.profIndex |
|
80 | self.profIndex | |
81 | self.buffer |
|
81 | self.buffer | |
82 | self.dataOut.flagNoData |
|
82 | self.dataOut.flagNoData | |
83 | """ |
|
83 | """ | |
84 | fft_volt = numpy.fft.fft( |
|
84 | fft_volt = numpy.fft.fft( | |
85 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
85 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) | |
86 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
86 | fft_volt = fft_volt.astype(numpy.dtype('complex')) | |
87 | dc = fft_volt[:, 0, :] |
|
87 | dc = fft_volt[:, 0, :] | |
88 |
|
88 | |||
89 | # calculo de self-spectra |
|
89 | # calculo de self-spectra | |
90 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
90 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) | |
91 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
91 | spc = fft_volt * numpy.conjugate(fft_volt) | |
92 | spc = spc.real |
|
92 | spc = spc.real | |
93 |
|
93 | |||
94 | blocksize = 0 |
|
94 | blocksize = 0 | |
95 | blocksize += dc.size |
|
95 | blocksize += dc.size | |
96 | blocksize += spc.size |
|
96 | blocksize += spc.size | |
97 |
|
97 | |||
98 | cspc = None |
|
98 | cspc = None | |
99 | pairIndex = 0 |
|
99 | pairIndex = 0 | |
100 | if self.dataOut.pairsList != None: |
|
100 | if self.dataOut.pairsList != None: | |
101 | # calculo de cross-spectra |
|
101 | # calculo de cross-spectra | |
102 | cspc = numpy.zeros( |
|
102 | cspc = numpy.zeros( | |
103 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
103 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') | |
104 | for pair in self.dataOut.pairsList: |
|
104 | for pair in self.dataOut.pairsList: | |
105 | if pair[0] not in self.dataOut.channelList: |
|
105 | if pair[0] not in self.dataOut.channelList: | |
106 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
106 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( | |
107 | str(pair), str(self.dataOut.channelList))) |
|
107 | str(pair), str(self.dataOut.channelList))) | |
108 | if pair[1] not in self.dataOut.channelList: |
|
108 | if pair[1] not in self.dataOut.channelList: | |
109 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
109 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( | |
110 | str(pair), str(self.dataOut.channelList))) |
|
110 | str(pair), str(self.dataOut.channelList))) | |
111 |
|
111 | |||
112 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
112 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ | |
113 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
113 | numpy.conjugate(fft_volt[pair[1], :, :]) | |
114 | pairIndex += 1 |
|
114 | pairIndex += 1 | |
115 | blocksize += cspc.size |
|
115 | blocksize += cspc.size | |
116 |
|
116 | |||
117 | self.dataOut.data_spc = spc |
|
117 | self.dataOut.data_spc = spc | |
118 | self.dataOut.data_cspc = cspc |
|
118 | self.dataOut.data_cspc = cspc | |
119 | self.dataOut.data_dc = dc |
|
119 | self.dataOut.data_dc = dc | |
120 | self.dataOut.blockSize = blocksize |
|
120 | self.dataOut.blockSize = blocksize | |
121 | self.dataOut.flagShiftFFT = False |
|
121 | self.dataOut.flagShiftFFT = False | |
122 |
|
122 | |||
123 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False): |
|
123 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False): | |
124 |
|
124 | |||
125 | if self.dataIn.type == "Spectra": |
|
125 | if self.dataIn.type == "Spectra": | |
126 | self.dataOut.copy(self.dataIn) |
|
126 | self.dataOut.copy(self.dataIn) | |
127 | if shift_fft: |
|
127 | if shift_fft: | |
128 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
128 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
129 | shift = int(self.dataOut.nFFTPoints/2) |
|
129 | shift = int(self.dataOut.nFFTPoints/2) | |
130 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
130 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) | |
131 |
|
131 | |||
132 | if self.dataOut.data_cspc is not None: |
|
132 | if self.dataOut.data_cspc is not None: | |
133 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
133 | #desplaza a la derecha en el eje 2 determinadas posiciones | |
134 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
134 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) | |
135 | if pairsList: |
|
135 | if pairsList: | |
136 | self.__selectPairs(pairsList) |
|
136 | self.__selectPairs(pairsList) | |
137 |
|
137 | |||
138 | elif self.dataIn.type == "Voltage": |
|
138 | elif self.dataIn.type == "Voltage": | |
139 |
|
139 | |||
140 | self.dataOut.flagNoData = True |
|
140 | self.dataOut.flagNoData = True | |
141 |
|
141 | |||
142 | if nFFTPoints == None: |
|
142 | if nFFTPoints == None: | |
143 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
143 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") | |
144 |
|
144 | |||
145 | if nProfiles == None: |
|
145 | if nProfiles == None: | |
146 | nProfiles = nFFTPoints |
|
146 | nProfiles = nFFTPoints | |
147 |
|
147 | |||
148 | if ippFactor == None: |
|
148 | if ippFactor == None: | |
149 | self.dataOut.ippFactor = 1 |
|
149 | self.dataOut.ippFactor = 1 | |
150 |
|
150 | |||
151 | self.dataOut.nFFTPoints = nFFTPoints |
|
151 | self.dataOut.nFFTPoints = nFFTPoints | |
152 |
|
152 | |||
153 | if self.buffer is None: |
|
153 | if self.buffer is None: | |
154 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
154 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |
155 | nProfiles, |
|
155 | nProfiles, | |
156 | self.dataIn.nHeights), |
|
156 | self.dataIn.nHeights), | |
157 | dtype='complex') |
|
157 | dtype='complex') | |
158 |
|
158 | |||
159 | if self.dataIn.flagDataAsBlock: |
|
159 | if self.dataIn.flagDataAsBlock: | |
160 | nVoltProfiles = self.dataIn.data.shape[1] |
|
160 | nVoltProfiles = self.dataIn.data.shape[1] | |
161 |
|
161 | |||
162 | if nVoltProfiles == nProfiles: |
|
162 | if nVoltProfiles == nProfiles: | |
163 | self.buffer = self.dataIn.data.copy() |
|
163 | self.buffer = self.dataIn.data.copy() | |
164 | self.profIndex = nVoltProfiles |
|
164 | self.profIndex = nVoltProfiles | |
165 |
|
165 | |||
166 | elif nVoltProfiles < nProfiles: |
|
166 | elif nVoltProfiles < nProfiles: | |
167 |
|
167 | |||
168 | if self.profIndex == 0: |
|
168 | if self.profIndex == 0: | |
169 | self.id_min = 0 |
|
169 | self.id_min = 0 | |
170 | self.id_max = nVoltProfiles |
|
170 | self.id_max = nVoltProfiles | |
171 |
|
171 | |||
172 | self.buffer[:, self.id_min:self.id_max, |
|
172 | self.buffer[:, self.id_min:self.id_max, | |
173 | :] = self.dataIn.data |
|
173 | :] = self.dataIn.data | |
174 | self.profIndex += nVoltProfiles |
|
174 | self.profIndex += nVoltProfiles | |
175 | self.id_min += nVoltProfiles |
|
175 | self.id_min += nVoltProfiles | |
176 | self.id_max += nVoltProfiles |
|
176 | self.id_max += nVoltProfiles | |
177 | else: |
|
177 | else: | |
178 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
178 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( | |
179 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
179 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) | |
180 | self.dataOut.flagNoData = True |
|
180 | self.dataOut.flagNoData = True | |
181 | else: |
|
181 | else: | |
182 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
182 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() | |
183 | self.profIndex += 1 |
|
183 | self.profIndex += 1 | |
184 |
|
184 | |||
185 | if self.firstdatatime == None: |
|
185 | if self.firstdatatime == None: | |
186 | self.firstdatatime = self.dataIn.utctime |
|
186 | self.firstdatatime = self.dataIn.utctime | |
187 |
|
187 | |||
188 | if self.profIndex == nProfiles: |
|
188 | if self.profIndex == nProfiles: | |
189 | self.__updateSpecFromVoltage() |
|
189 | self.__updateSpecFromVoltage() | |
190 | if pairsList == None: |
|
190 | if pairsList == None: | |
191 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] |
|
191 | self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] | |
192 | else: |
|
192 | else: | |
193 | self.dataOut.pairsList = pairsList |
|
193 | self.dataOut.pairsList = pairsList | |
194 | self.__getFft() |
|
194 | self.__getFft() | |
195 | self.dataOut.flagNoData = False |
|
195 | self.dataOut.flagNoData = False | |
196 | self.firstdatatime = None |
|
196 | self.firstdatatime = None | |
197 | self.profIndex = 0 |
|
197 | self.profIndex = 0 | |
198 | else: |
|
198 | else: | |
199 | raise ValueError("The type of input object '%s' is not valid".format( |
|
199 | raise ValueError("The type of input object '%s' is not valid".format( | |
200 | self.dataIn.type)) |
|
200 | self.dataIn.type)) | |
201 |
|
201 | |||
202 | def __selectPairs(self, pairsList): |
|
202 | def __selectPairs(self, pairsList): | |
203 |
|
203 | |||
204 | if not pairsList: |
|
204 | if not pairsList: | |
205 | return |
|
205 | return | |
206 |
|
206 | |||
207 | pairs = [] |
|
207 | pairs = [] | |
208 | pairsIndex = [] |
|
208 | pairsIndex = [] | |
209 |
|
209 | |||
210 | for pair in pairsList: |
|
210 | for pair in pairsList: | |
211 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
211 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: | |
212 | continue |
|
212 | continue | |
213 | pairs.append(pair) |
|
213 | pairs.append(pair) | |
214 | pairsIndex.append(pairs.index(pair)) |
|
214 | pairsIndex.append(pairs.index(pair)) | |
215 |
|
215 | |||
216 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
216 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] | |
217 | self.dataOut.pairsList = pairs |
|
217 | self.dataOut.pairsList = pairs | |
218 |
|
218 | |||
219 | return |
|
219 | return | |
220 |
|
220 | |||
221 | def selectFFTs(self, minFFT, maxFFT ): |
|
221 | def selectFFTs(self, minFFT, maxFFT ): | |
222 | """ |
|
222 | """ | |
223 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
223 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango | |
224 | minFFT<= FFT <= maxFFT |
|
224 | minFFT<= FFT <= maxFFT | |
225 | """ |
|
225 | """ | |
226 |
|
226 | |||
227 | if (minFFT > maxFFT): |
|
227 | if (minFFT > maxFFT): | |
228 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
228 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) | |
229 |
|
229 | |||
230 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
230 | if (minFFT < self.dataOut.getFreqRange()[0]): | |
231 | minFFT = self.dataOut.getFreqRange()[0] |
|
231 | minFFT = self.dataOut.getFreqRange()[0] | |
232 |
|
232 | |||
233 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
233 | if (maxFFT > self.dataOut.getFreqRange()[-1]): | |
234 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
234 | maxFFT = self.dataOut.getFreqRange()[-1] | |
235 |
|
235 | |||
236 | minIndex = 0 |
|
236 | minIndex = 0 | |
237 | maxIndex = 0 |
|
237 | maxIndex = 0 | |
238 | FFTs = self.dataOut.getFreqRange() |
|
238 | FFTs = self.dataOut.getFreqRange() | |
239 |
|
239 | |||
240 | inda = numpy.where(FFTs >= minFFT) |
|
240 | inda = numpy.where(FFTs >= minFFT) | |
241 | indb = numpy.where(FFTs <= maxFFT) |
|
241 | indb = numpy.where(FFTs <= maxFFT) | |
242 |
|
242 | |||
243 | try: |
|
243 | try: | |
244 | minIndex = inda[0][0] |
|
244 | minIndex = inda[0][0] | |
245 | except: |
|
245 | except: | |
246 | minIndex = 0 |
|
246 | minIndex = 0 | |
247 |
|
247 | |||
248 | try: |
|
248 | try: | |
249 | maxIndex = indb[0][-1] |
|
249 | maxIndex = indb[0][-1] | |
250 | except: |
|
250 | except: | |
251 | maxIndex = len(FFTs) |
|
251 | maxIndex = len(FFTs) | |
252 |
|
252 | |||
253 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
253 | self.selectFFTsByIndex(minIndex, maxIndex) | |
254 |
|
254 | |||
255 | return 1 |
|
255 | return 1 | |
256 |
|
256 | |||
257 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
257 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): | |
258 | newheis = numpy.where( |
|
258 | newheis = numpy.where( | |
259 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
259 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
260 |
|
260 | |||
261 | if hei_ref != None: |
|
261 | if hei_ref != None: | |
262 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
262 | newheis = numpy.where(self.dataOut.heightList > hei_ref) | |
263 |
|
263 | |||
264 | minIndex = min(newheis[0]) |
|
264 | minIndex = min(newheis[0]) | |
265 | maxIndex = max(newheis[0]) |
|
265 | maxIndex = max(newheis[0]) | |
266 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
266 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |
267 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
267 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |
268 |
|
268 | |||
269 | # determina indices |
|
269 | # determina indices | |
270 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
270 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / | |
271 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
271 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) | |
272 | avg_dB = 10 * \ |
|
272 | avg_dB = 10 * \ | |
273 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
273 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) | |
274 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
274 | beacon_dB = numpy.sort(avg_dB)[-nheis:] | |
275 | beacon_heiIndexList = [] |
|
275 | beacon_heiIndexList = [] | |
276 | for val in avg_dB.tolist(): |
|
276 | for val in avg_dB.tolist(): | |
277 | if val >= beacon_dB[0]: |
|
277 | if val >= beacon_dB[0]: | |
278 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
278 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) | |
279 |
|
279 | |||
280 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
280 | #data_spc = data_spc[:,:,beacon_heiIndexList] | |
281 | data_cspc = None |
|
281 | data_cspc = None | |
282 | if self.dataOut.data_cspc is not None: |
|
282 | if self.dataOut.data_cspc is not None: | |
283 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
283 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |
284 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
284 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] | |
285 |
|
285 | |||
286 | data_dc = None |
|
286 | data_dc = None | |
287 | if self.dataOut.data_dc is not None: |
|
287 | if self.dataOut.data_dc is not None: | |
288 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
288 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |
289 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
289 | #data_dc = data_dc[:,beacon_heiIndexList] | |
290 |
|
290 | |||
291 | self.dataOut.data_spc = data_spc |
|
291 | self.dataOut.data_spc = data_spc | |
292 | self.dataOut.data_cspc = data_cspc |
|
292 | self.dataOut.data_cspc = data_cspc | |
293 | self.dataOut.data_dc = data_dc |
|
293 | self.dataOut.data_dc = data_dc | |
294 | self.dataOut.heightList = heightList |
|
294 | self.dataOut.heightList = heightList | |
295 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
295 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList | |
296 |
|
296 | |||
297 | return 1 |
|
297 | return 1 | |
298 |
|
298 | |||
299 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
299 | def selectFFTsByIndex(self, minIndex, maxIndex): | |
300 | """ |
|
300 | """ | |
301 |
|
301 | |||
302 | """ |
|
302 | """ | |
303 |
|
303 | |||
304 | if (minIndex < 0) or (minIndex > maxIndex): |
|
304 | if (minIndex < 0) or (minIndex > maxIndex): | |
305 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
305 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |
306 |
|
306 | |||
307 | if (maxIndex >= self.dataOut.nProfiles): |
|
307 | if (maxIndex >= self.dataOut.nProfiles): | |
308 | maxIndex = self.dataOut.nProfiles-1 |
|
308 | maxIndex = self.dataOut.nProfiles-1 | |
309 |
|
309 | |||
310 | #Spectra |
|
310 | #Spectra | |
311 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
311 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] | |
312 |
|
312 | |||
313 | data_cspc = None |
|
313 | data_cspc = None | |
314 | if self.dataOut.data_cspc is not None: |
|
314 | if self.dataOut.data_cspc is not None: | |
315 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
315 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] | |
316 |
|
316 | |||
317 | data_dc = None |
|
317 | data_dc = None | |
318 | if self.dataOut.data_dc is not None: |
|
318 | if self.dataOut.data_dc is not None: | |
319 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
319 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] | |
320 |
|
320 | |||
321 | self.dataOut.data_spc = data_spc |
|
321 | self.dataOut.data_spc = data_spc | |
322 | self.dataOut.data_cspc = data_cspc |
|
322 | self.dataOut.data_cspc = data_cspc | |
323 | self.dataOut.data_dc = data_dc |
|
323 | self.dataOut.data_dc = data_dc | |
324 |
|
324 | |||
325 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
325 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) | |
326 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
326 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] | |
327 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
327 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] | |
328 |
|
328 | |||
329 | return 1 |
|
329 | return 1 | |
330 |
|
330 | |||
331 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
331 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): | |
332 | # validacion de rango |
|
332 | # validacion de rango | |
333 | if minHei == None: |
|
333 | if minHei == None: | |
334 | minHei = self.dataOut.heightList[0] |
|
334 | minHei = self.dataOut.heightList[0] | |
335 |
|
335 | |||
336 | if maxHei == None: |
|
336 | if maxHei == None: | |
337 | maxHei = self.dataOut.heightList[-1] |
|
337 | maxHei = self.dataOut.heightList[-1] | |
338 |
|
338 | |||
339 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
339 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): | |
340 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
340 | print('minHei: %.2f is out of the heights range' % (minHei)) | |
341 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
341 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) | |
342 | minHei = self.dataOut.heightList[0] |
|
342 | minHei = self.dataOut.heightList[0] | |
343 |
|
343 | |||
344 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
344 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): | |
345 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
345 | print('maxHei: %.2f is out of the heights range' % (maxHei)) | |
346 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
346 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) | |
347 | maxHei = self.dataOut.heightList[-1] |
|
347 | maxHei = self.dataOut.heightList[-1] | |
348 |
|
348 | |||
349 | # validacion de velocidades |
|
349 | # validacion de velocidades | |
350 | velrange = self.dataOut.getVelRange(1) |
|
350 | velrange = self.dataOut.getVelRange(1) | |
351 |
|
351 | |||
352 | if minVel == None: |
|
352 | if minVel == None: | |
353 | minVel = velrange[0] |
|
353 | minVel = velrange[0] | |
354 |
|
354 | |||
355 | if maxVel == None: |
|
355 | if maxVel == None: | |
356 | maxVel = velrange[-1] |
|
356 | maxVel = velrange[-1] | |
357 |
|
357 | |||
358 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
358 | if (minVel < velrange[0]) or (minVel > maxVel): | |
359 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
359 | print('minVel: %.2f is out of the velocity range' % (minVel)) | |
360 | print('minVel is setting to %.2f' % (velrange[0])) |
|
360 | print('minVel is setting to %.2f' % (velrange[0])) | |
361 | minVel = velrange[0] |
|
361 | minVel = velrange[0] | |
362 |
|
362 | |||
363 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
363 | if (maxVel > velrange[-1]) or (maxVel < minVel): | |
364 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
364 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) | |
365 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
365 | print('maxVel is setting to %.2f' % (velrange[-1])) | |
366 | maxVel = velrange[-1] |
|
366 | maxVel = velrange[-1] | |
367 |
|
367 | |||
368 | # seleccion de indices para rango |
|
368 | # seleccion de indices para rango | |
369 | minIndex = 0 |
|
369 | minIndex = 0 | |
370 | maxIndex = 0 |
|
370 | maxIndex = 0 | |
371 | heights = self.dataOut.heightList |
|
371 | heights = self.dataOut.heightList | |
372 |
|
372 | |||
373 | inda = numpy.where(heights >= minHei) |
|
373 | inda = numpy.where(heights >= minHei) | |
374 | indb = numpy.where(heights <= maxHei) |
|
374 | indb = numpy.where(heights <= maxHei) | |
375 |
|
375 | |||
376 | try: |
|
376 | try: | |
377 | minIndex = inda[0][0] |
|
377 | minIndex = inda[0][0] | |
378 | except: |
|
378 | except: | |
379 | minIndex = 0 |
|
379 | minIndex = 0 | |
380 |
|
380 | |||
381 | try: |
|
381 | try: | |
382 | maxIndex = indb[0][-1] |
|
382 | maxIndex = indb[0][-1] | |
383 | except: |
|
383 | except: | |
384 | maxIndex = len(heights) |
|
384 | maxIndex = len(heights) | |
385 |
|
385 | |||
386 | if (minIndex < 0) or (minIndex > maxIndex): |
|
386 | if (minIndex < 0) or (minIndex > maxIndex): | |
387 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
387 | raise ValueError("some value in (%d,%d) is not valid" % ( | |
388 | minIndex, maxIndex)) |
|
388 | minIndex, maxIndex)) | |
389 |
|
389 | |||
390 | if (maxIndex >= self.dataOut.nHeights): |
|
390 | if (maxIndex >= self.dataOut.nHeights): | |
391 | maxIndex = self.dataOut.nHeights - 1 |
|
391 | maxIndex = self.dataOut.nHeights - 1 | |
392 |
|
392 | |||
393 | # seleccion de indices para velocidades |
|
393 | # seleccion de indices para velocidades | |
394 | indminvel = numpy.where(velrange >= minVel) |
|
394 | indminvel = numpy.where(velrange >= minVel) | |
395 | indmaxvel = numpy.where(velrange <= maxVel) |
|
395 | indmaxvel = numpy.where(velrange <= maxVel) | |
396 | try: |
|
396 | try: | |
397 | minIndexVel = indminvel[0][0] |
|
397 | minIndexVel = indminvel[0][0] | |
398 | except: |
|
398 | except: | |
399 | minIndexVel = 0 |
|
399 | minIndexVel = 0 | |
400 |
|
400 | |||
401 | try: |
|
401 | try: | |
402 | maxIndexVel = indmaxvel[0][-1] |
|
402 | maxIndexVel = indmaxvel[0][-1] | |
403 | except: |
|
403 | except: | |
404 | maxIndexVel = len(velrange) |
|
404 | maxIndexVel = len(velrange) | |
405 |
|
405 | |||
406 | # seleccion del espectro |
|
406 | # seleccion del espectro | |
407 | data_spc = self.dataOut.data_spc[:, |
|
407 | data_spc = self.dataOut.data_spc[:, | |
408 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
408 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] | |
409 | # estimacion de ruido |
|
409 | # estimacion de ruido | |
410 | noise = numpy.zeros(self.dataOut.nChannels) |
|
410 | noise = numpy.zeros(self.dataOut.nChannels) | |
411 |
|
411 | |||
412 | for channel in range(self.dataOut.nChannels): |
|
412 | for channel in range(self.dataOut.nChannels): | |
413 | daux = data_spc[channel, :, :] |
|
413 | daux = data_spc[channel, :, :] | |
414 | sortdata = numpy.sort(daux, axis=None) |
|
414 | sortdata = numpy.sort(daux, axis=None) | |
415 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) |
|
415 | noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) | |
416 |
|
416 | |||
417 | self.dataOut.noise_estimation = noise.copy() |
|
417 | self.dataOut.noise_estimation = noise.copy() | |
418 |
|
418 | |||
419 | return 1 |
|
419 | return 1 | |
420 |
|
420 | |||
421 | class removeDC(Operation): |
|
421 | class removeDC(Operation): | |
422 |
|
422 | |||
423 | def run(self, dataOut, mode=2): |
|
423 | def run(self, dataOut, mode=2): | |
424 | self.dataOut = dataOut |
|
424 | self.dataOut = dataOut | |
425 | jspectra = self.dataOut.data_spc |
|
425 | jspectra = self.dataOut.data_spc | |
426 | jcspectra = self.dataOut.data_cspc |
|
426 | jcspectra = self.dataOut.data_cspc | |
427 |
|
427 | |||
428 | num_chan = jspectra.shape[0] |
|
428 | num_chan = jspectra.shape[0] | |
429 | num_hei = jspectra.shape[2] |
|
429 | num_hei = jspectra.shape[2] | |
430 |
|
430 | |||
431 | if jcspectra is not None: |
|
431 | if jcspectra is not None: | |
432 | jcspectraExist = True |
|
432 | jcspectraExist = True | |
433 | num_pairs = jcspectra.shape[0] |
|
433 | num_pairs = jcspectra.shape[0] | |
434 | else: |
|
434 | else: | |
435 | jcspectraExist = False |
|
435 | jcspectraExist = False | |
436 |
|
436 | |||
437 | freq_dc = int(jspectra.shape[1] / 2) |
|
437 | freq_dc = int(jspectra.shape[1] / 2) | |
438 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
438 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
439 | ind_vel = ind_vel.astype(int) |
|
439 | ind_vel = ind_vel.astype(int) | |
440 |
|
440 | |||
441 | if ind_vel[0] < 0: |
|
441 | if ind_vel[0] < 0: | |
442 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
442 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof | |
443 |
|
443 | |||
444 | if mode == 1: |
|
444 | if mode == 1: | |
445 | jspectra[:, freq_dc, :] = ( |
|
445 | jspectra[:, freq_dc, :] = ( | |
446 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
446 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |
447 |
|
447 | |||
448 | if jcspectraExist: |
|
448 | if jcspectraExist: | |
449 | jcspectra[:, freq_dc, :] = ( |
|
449 | jcspectra[:, freq_dc, :] = ( | |
450 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
450 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 | |
451 |
|
451 | |||
452 | if mode == 2: |
|
452 | if mode == 2: | |
453 |
|
453 | |||
454 | vel = numpy.array([-2, -1, 1, 2]) |
|
454 | vel = numpy.array([-2, -1, 1, 2]) | |
455 | xx = numpy.zeros([4, 4]) |
|
455 | xx = numpy.zeros([4, 4]) | |
456 |
|
456 | |||
457 | for fil in range(4): |
|
457 | for fil in range(4): | |
458 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
458 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |
459 |
|
459 | |||
460 | xx_inv = numpy.linalg.inv(xx) |
|
460 | xx_inv = numpy.linalg.inv(xx) | |
461 | xx_aux = xx_inv[0, :] |
|
461 | xx_aux = xx_inv[0, :] | |
462 |
|
462 | |||
463 | for ich in range(num_chan): |
|
463 | for ich in range(num_chan): | |
464 | yy = jspectra[ich, ind_vel, :] |
|
464 | yy = jspectra[ich, ind_vel, :] | |
465 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
465 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |
466 |
|
466 | |||
467 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
467 | junkid = jspectra[ich, freq_dc, :] <= 0 | |
468 | cjunkid = sum(junkid) |
|
468 | cjunkid = sum(junkid) | |
469 |
|
469 | |||
470 | if cjunkid.any(): |
|
470 | if cjunkid.any(): | |
471 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
471 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |
472 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
472 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |
473 |
|
473 | |||
474 | if jcspectraExist: |
|
474 | if jcspectraExist: | |
475 | for ip in range(num_pairs): |
|
475 | for ip in range(num_pairs): | |
476 | yy = jcspectra[ip, ind_vel, :] |
|
476 | yy = jcspectra[ip, ind_vel, :] | |
477 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
477 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) | |
478 |
|
478 | |||
479 | self.dataOut.data_spc = jspectra |
|
479 | self.dataOut.data_spc = jspectra | |
480 | self.dataOut.data_cspc = jcspectra |
|
480 | self.dataOut.data_cspc = jcspectra | |
481 |
|
481 | |||
482 | return self.dataOut |
|
482 | return self.dataOut | |
483 |
|
483 | |||
484 | # import matplotlib.pyplot as plt |
|
484 | # import matplotlib.pyplot as plt | |
485 |
|
485 | |||
486 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): |
|
486 | def fit_func( x, a0, a1, a2): #, a3, a4, a5): | |
487 | z = (x - a1) / a2 |
|
487 | z = (x - a1) / a2 | |
488 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 |
|
488 | y = a0 * numpy.exp(-z**2 / a2) #+ a3 + a4 * x + a5 * x**2 | |
489 | return y |
|
489 | return y | |
490 | class CleanRayleigh(Operation): |
|
490 | class CleanRayleigh(Operation): | |
491 |
|
491 | |||
492 | def __init__(self): |
|
492 | def __init__(self): | |
493 |
|
493 | |||
494 | Operation.__init__(self) |
|
494 | Operation.__init__(self) | |
495 | self.i=0 |
|
495 | self.i=0 | |
496 | self.isConfig = False |
|
496 | self.isConfig = False | |
497 | self.__dataReady = False |
|
497 | self.__dataReady = False | |
498 | self.__profIndex = 0 |
|
498 | self.__profIndex = 0 | |
499 | self.byTime = False |
|
499 | self.byTime = False | |
500 | self.byProfiles = False |
|
500 | self.byProfiles = False | |
501 |
|
501 | |||
502 | self.bloques = None |
|
502 | self.bloques = None | |
503 | self.bloque0 = None |
|
503 | self.bloque0 = None | |
504 |
|
504 | |||
505 | self.index = 0 |
|
505 | self.index = 0 | |
506 |
|
506 | |||
507 | self.buffer = 0 |
|
507 | self.buffer = 0 | |
508 | self.buffer2 = 0 |
|
508 | self.buffer2 = 0 | |
509 | self.buffer3 = 0 |
|
509 | self.buffer3 = 0 | |
510 |
|
510 | |||
511 |
|
511 | |||
512 | def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): |
|
512 | def setup(self,dataOut,min_hei,max_hei,n, timeInterval,factor_stdv): | |
513 |
|
513 | |||
514 | self.nChannels = dataOut.nChannels |
|
514 | self.nChannels = dataOut.nChannels | |
515 | self.nProf = dataOut.nProfiles |
|
515 | self.nProf = dataOut.nProfiles | |
516 | self.nPairs = dataOut.data_cspc.shape[0] |
|
516 | self.nPairs = dataOut.data_cspc.shape[0] | |
517 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
517 | self.pairsArray = numpy.array(dataOut.pairsList) | |
518 | self.spectra = dataOut.data_spc |
|
518 | self.spectra = dataOut.data_spc | |
519 | self.cspectra = dataOut.data_cspc |
|
519 | self.cspectra = dataOut.data_cspc | |
520 | self.heights = dataOut.heightList #alturas totales |
|
520 | self.heights = dataOut.heightList #alturas totales | |
521 | self.nHeights = len(self.heights) |
|
521 | self.nHeights = len(self.heights) | |
522 | self.min_hei = min_hei |
|
522 | self.min_hei = min_hei | |
523 | self.max_hei = max_hei |
|
523 | self.max_hei = max_hei | |
524 | if (self.min_hei == None): |
|
524 | if (self.min_hei == None): | |
525 | self.min_hei = 0 |
|
525 | self.min_hei = 0 | |
526 | if (self.max_hei == None): |
|
526 | if (self.max_hei == None): | |
527 | self.max_hei = dataOut.heightList[-1] |
|
527 | self.max_hei = dataOut.heightList[-1] | |
528 | self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() |
|
528 | self.hval = ((self.max_hei>=self.heights) & (self.heights >= self.min_hei)).nonzero() | |
529 | self.heightsClean = self.heights[self.hval] #alturas filtradas |
|
529 | self.heightsClean = self.heights[self.hval] #alturas filtradas | |
530 | self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas |
|
530 | self.hval = self.hval[0] # forma (N,), an solo N elementos -> Indices de alturas | |
531 | self.nHeightsClean = len(self.heightsClean) |
|
531 | self.nHeightsClean = len(self.heightsClean) | |
532 | self.channels = dataOut.channelList |
|
532 | self.channels = dataOut.channelList | |
533 | self.nChan = len(self.channels) |
|
533 | self.nChan = len(self.channels) | |
534 | self.nIncohInt = dataOut.nIncohInt |
|
534 | self.nIncohInt = dataOut.nIncohInt | |
535 | self.__initime = dataOut.utctime |
|
535 | self.__initime = dataOut.utctime | |
536 | self.maxAltInd = self.hval[-1]+1 |
|
536 | self.maxAltInd = self.hval[-1]+1 | |
537 | self.minAltInd = self.hval[0] |
|
537 | self.minAltInd = self.hval[0] | |
538 |
|
538 | |||
539 | self.crosspairs = dataOut.pairsList |
|
539 | self.crosspairs = dataOut.pairsList | |
540 | self.nPairs = len(self.crosspairs) |
|
540 | self.nPairs = len(self.crosspairs) | |
541 | self.normFactor = dataOut.normFactor |
|
541 | self.normFactor = dataOut.normFactor | |
542 | self.nFFTPoints = dataOut.nFFTPoints |
|
542 | self.nFFTPoints = dataOut.nFFTPoints | |
543 | self.ippSeconds = dataOut.ippSeconds |
|
543 | self.ippSeconds = dataOut.ippSeconds | |
544 | self.currentTime = self.__initime |
|
544 | self.currentTime = self.__initime | |
545 | self.pairsArray = numpy.array(dataOut.pairsList) |
|
545 | self.pairsArray = numpy.array(dataOut.pairsList) | |
546 | self.factor_stdv = factor_stdv |
|
546 | self.factor_stdv = factor_stdv | |
547 | print("CHANNELS: ",[x for x in self.channels]) |
|
547 | #print("CHANNELS: ",[x for x in self.channels]) | |
548 |
|
548 | |||
549 | if n != None : |
|
549 | if n != None : | |
550 | self.byProfiles = True |
|
550 | self.byProfiles = True | |
551 | self.nIntProfiles = n |
|
551 | self.nIntProfiles = n | |
552 | else: |
|
552 | else: | |
553 | self.__integrationtime = timeInterval |
|
553 | self.__integrationtime = timeInterval | |
554 |
|
554 | |||
555 | self.__dataReady = False |
|
555 | self.__dataReady = False | |
556 | self.isConfig = True |
|
556 | self.isConfig = True | |
557 |
|
557 | |||
558 |
|
558 | |||
559 |
|
559 | |||
560 | def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): |
|
560 | def run(self, dataOut,min_hei=None,max_hei=None, n=None, timeInterval=10,factor_stdv=2.5): | |
561 | #print (dataOut.utctime) |
|
561 | #print (dataOut.utctime) | |
562 | if not self.isConfig : |
|
562 | if not self.isConfig : | |
563 | #print("Setting config") |
|
563 | #print("Setting config") | |
564 | self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) |
|
564 | self.setup(dataOut, min_hei,max_hei,n,timeInterval,factor_stdv) | |
565 | #print("Config Done") |
|
565 | #print("Config Done") | |
566 | tini=dataOut.utctime |
|
566 | tini=dataOut.utctime | |
567 |
|
567 | |||
568 | if self.byProfiles: |
|
568 | if self.byProfiles: | |
569 | if self.__profIndex == self.nIntProfiles: |
|
569 | if self.__profIndex == self.nIntProfiles: | |
570 | self.__dataReady = True |
|
570 | self.__dataReady = True | |
571 | else: |
|
571 | else: | |
572 | if (tini - self.__initime) >= self.__integrationtime: |
|
572 | if (tini - self.__initime) >= self.__integrationtime: | |
573 | #print(tini - self.__initime,self.__profIndex) |
|
573 | #print(tini - self.__initime,self.__profIndex) | |
574 | self.__dataReady = True |
|
574 | self.__dataReady = True | |
575 | self.__initime = tini |
|
575 | self.__initime = tini | |
576 |
|
576 | |||
577 | #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): |
|
577 | #if (tini.tm_min % 2) == 0 and (tini.tm_sec < 5 and self.fint==0): | |
578 |
|
578 | |||
579 | if self.__dataReady: |
|
579 | if self.__dataReady: | |
580 | print("Data ready",self.__profIndex) |
|
580 | #print("Data ready",self.__profIndex) | |
581 | self.__profIndex = 0 |
|
581 | self.__profIndex = 0 | |
582 | jspc = self.buffer |
|
582 | jspc = self.buffer | |
583 | jcspc = self.buffer2 |
|
583 | jcspc = self.buffer2 | |
584 | #jnoise = self.buffer3 |
|
584 | #jnoise = self.buffer3 | |
585 | self.buffer = dataOut.data_spc |
|
585 | self.buffer = dataOut.data_spc | |
586 | self.buffer2 = dataOut.data_cspc |
|
586 | self.buffer2 = dataOut.data_cspc | |
587 | #self.buffer3 = dataOut.noise |
|
587 | #self.buffer3 = dataOut.noise | |
588 | self.currentTime = dataOut.utctime |
|
588 | self.currentTime = dataOut.utctime | |
589 | if numpy.any(jspc) : |
|
589 | if numpy.any(jspc) : | |
590 | #print( jspc.shape, jcspc.shape) |
|
590 | #print( jspc.shape, jcspc.shape) | |
591 | jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) |
|
591 | jspc = numpy.reshape(jspc,(int(len(jspc)/self.nChannels),self.nChannels,self.nFFTPoints,self.nHeights)) | |
592 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) |
|
592 | jcspc= numpy.reshape(jcspc,(int(len(jcspc)/self.nPairs),self.nPairs,self.nFFTPoints,self.nHeights)) | |
593 | self.__dataReady = False |
|
593 | self.__dataReady = False | |
594 | #print( jspc.shape, jcspc.shape) |
|
594 | #print( jspc.shape, jcspc.shape) | |
595 | dataOut.flagNoData = False |
|
595 | dataOut.flagNoData = False | |
596 | else: |
|
596 | else: | |
597 | dataOut.flagNoData = True |
|
597 | dataOut.flagNoData = True | |
598 | self.__dataReady = False |
|
598 | self.__dataReady = False | |
599 | return dataOut |
|
599 | return dataOut | |
600 | else: |
|
600 | else: | |
601 | #print( len(self.buffer)) |
|
601 | #print( len(self.buffer)) | |
602 | if numpy.any(self.buffer): |
|
602 | if numpy.any(self.buffer): | |
603 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) |
|
603 | self.buffer = numpy.concatenate((self.buffer,dataOut.data_spc), axis=0) | |
604 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) |
|
604 | self.buffer2 = numpy.concatenate((self.buffer2,dataOut.data_cspc), axis=0) | |
605 | self.buffer3 += dataOut.data_dc |
|
605 | self.buffer3 += dataOut.data_dc | |
606 | else: |
|
606 | else: | |
607 | self.buffer = dataOut.data_spc |
|
607 | self.buffer = dataOut.data_spc | |
608 | self.buffer2 = dataOut.data_cspc |
|
608 | self.buffer2 = dataOut.data_cspc | |
609 | self.buffer3 = dataOut.data_dc |
|
609 | self.buffer3 = dataOut.data_dc | |
610 | #print self.index, self.fint |
|
610 | #print self.index, self.fint | |
611 | #print self.buffer2.shape |
|
611 | #print self.buffer2.shape | |
612 | dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO |
|
612 | dataOut.flagNoData = True ## NOTE: ?? revisar LUEGO | |
613 | self.__profIndex += 1 |
|
613 | self.__profIndex += 1 | |
614 | return dataOut ## NOTE: REV |
|
614 | return dataOut ## NOTE: REV | |
615 |
|
615 | |||
616 |
|
616 | |||
617 | #index = tini.tm_hour*12+tini.tm_min/5 |
|
617 | #index = tini.tm_hour*12+tini.tm_min/5 | |
618 | '''REVISAR''' |
|
618 | '''REVISAR''' | |
619 | # jspc = jspc/self.nFFTPoints/self.normFactor |
|
619 | # jspc = jspc/self.nFFTPoints/self.normFactor | |
620 | # jcspc = jcspc/self.nFFTPoints/self.normFactor |
|
620 | # jcspc = jcspc/self.nFFTPoints/self.normFactor | |
621 |
|
621 | |||
622 |
|
622 | |||
623 | #dataOut.data_spc,dataOut.data_cspc = self.CleanRayleigh(dataOut,jspc,jcspc,crosspairs,heights,channels,nProf,nHei,nChan,nPairs,nIncohInt,nBlocks=nBlocks) |
|
|||
624 | #tmp_spectra,tmp_cspectra,sat_spectra,sat_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.min_hei,self.max_hei) |
|
|||
625 | tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) |
|
|||
626 | #jspectra = tmp_spectra*len(jspc[:,0,0,0]) |
|
|||
627 | #jcspectra = tmp_cspectra*len(jspc[:,0,0,0]) |
|
|||
628 |
|
623 | |||
|
624 | tmp_spectra,tmp_cspectra = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) | |||
629 | dataOut.data_spc = tmp_spectra |
|
625 | dataOut.data_spc = tmp_spectra | |
630 | dataOut.data_cspc = tmp_cspectra |
|
626 | dataOut.data_cspc = tmp_cspectra | |
|
627 | ||||
|
628 | #dataOut.data_spc,dataOut.data_cspc = self.cleanRayleigh(dataOut,jspc,jcspc,self.factor_stdv) | |||
|
629 | ||||
631 | dataOut.data_dc = self.buffer3 |
|
630 | dataOut.data_dc = self.buffer3 | |
632 | dataOut.nIncohInt *= self.nIntProfiles |
|
631 | dataOut.nIncohInt *= self.nIntProfiles | |
633 | dataOut.utctime = self.currentTime #tiempo promediado |
|
632 | dataOut.utctime = self.currentTime #tiempo promediado | |
634 | #print("Time: ",time.localtime(dataOut.utctime)) |
|
633 | #print("Time: ",time.localtime(dataOut.utctime)) | |
635 | # dataOut.data_spc = sat_spectra |
|
634 | # dataOut.data_spc = sat_spectra | |
636 | # dataOut.data_cspc = sat_cspectra |
|
635 | # dataOut.data_cspc = sat_cspectra | |
637 | self.buffer = 0 |
|
636 | self.buffer = 0 | |
638 | self.buffer2 = 0 |
|
637 | self.buffer2 = 0 | |
639 | self.buffer3 = 0 |
|
638 | self.buffer3 = 0 | |
640 |
|
639 | |||
641 | return dataOut |
|
640 | return dataOut | |
642 |
|
641 | |||
643 | def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): |
|
642 | def cleanRayleigh(self,dataOut,spectra,cspectra,factor_stdv): | |
644 | print("OP cleanRayleigh") |
|
643 | #print("OP cleanRayleigh") | |
645 | #import matplotlib.pyplot as plt |
|
644 | #import matplotlib.pyplot as plt | |
646 | #for k in range(149): |
|
645 | #for k in range(149): | |
647 |
|
646 | |||
648 | rfunc = cspectra.copy() #self.bloques |
|
647 | rfunc = cspectra.copy() #self.bloques | |
649 | val_spc = spectra*0.0 #self.bloque0*0.0 |
|
648 | #rfunc = cspectra | |
650 |
val_ |
|
649 | #val_spc = spectra*0.0 #self.bloque0*0.0 | |
651 |
|
|
650 | #val_cspc = cspectra*0.0 #self.bloques*0.0 | |
652 |
in_sat_ |
|
651 | #in_sat_spectra = spectra.copy() #self.bloque0 | |
|
652 | #in_sat_cspectra = cspectra.copy() #self.bloques | |||
653 |
|
653 | |||
654 | raxs = math.ceil(math.sqrt(self.nPairs)) |
|
654 | #raxs = math.ceil(math.sqrt(self.nPairs)) | |
655 | caxs = math.ceil(self.nPairs/raxs) |
|
655 | #caxs = math.ceil(self.nPairs/raxs) | |
656 |
|
656 | |||
657 | #print(self.hval) |
|
657 | #print(self.hval) | |
658 | #print numpy.absolute(rfunc[:,0,0,14]) |
|
658 | #print numpy.absolute(rfunc[:,0,0,14]) | |
|
659 | gauss_fit, covariance = None, None | |||
659 | for ih in range(self.minAltInd,self.maxAltInd): |
|
660 | for ih in range(self.minAltInd,self.maxAltInd): | |
660 | for ifreq in range(self.nFFTPoints): |
|
661 | for ifreq in range(self.nFFTPoints): | |
661 | # fig, axs = plt.subplots(raxs, caxs) |
|
662 | # fig, axs = plt.subplots(raxs, caxs) | |
662 | # fig2, axs2 = plt.subplots(raxs, caxs) |
|
663 | # fig2, axs2 = plt.subplots(raxs, caxs) | |
663 | col_ax = 0 |
|
664 | # col_ax = 0 | |
664 | row_ax = 0 |
|
665 | # row_ax = 0 | |
|
666 | #print(len(self.nPairs)) | |||
665 | for ii in range(self.nPairs): #PARES DE CANALES SELF y CROSS |
|
667 | for ii in range(self.nPairs): #PARES DE CANALES SELF y CROSS | |
666 | #print("ii: ",ii) |
|
668 | #print("ii: ",ii) | |
667 | if (col_ax%caxs==0 and col_ax!=0): |
|
669 | # if (col_ax%caxs==0 and col_ax!=0): | |
668 | col_ax = 0 |
|
670 | # col_ax = 0 | |
669 | row_ax += 1 |
|
671 | # row_ax += 1 | |
670 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? |
|
672 | func2clean = 10*numpy.log10(numpy.absolute(rfunc[:,ii,ifreq,ih])) #Potencia? | |
671 | #print(func2clean.shape) |
|
673 | #print(func2clean.shape) | |
672 | val = (numpy.isfinite(func2clean)==True).nonzero() |
|
674 | val = (numpy.isfinite(func2clean)==True).nonzero() | |
673 |
|
675 | |||
674 | if len(val)>0: #limitador |
|
676 | if len(val)>0: #limitador | |
675 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) |
|
677 | min_val = numpy.around(numpy.amin(func2clean)-2) #> (-40) | |
676 | if min_val <= -40 : |
|
678 | if min_val <= -40 : | |
677 | min_val = -40 |
|
679 | min_val = -40 | |
678 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 |
|
680 | max_val = numpy.around(numpy.amax(func2clean)+2) #< 200 | |
679 | if max_val >= 200 : |
|
681 | if max_val >= 200 : | |
680 | max_val = 200 |
|
682 | max_val = 200 | |
681 | #print min_val, max_val |
|
683 | #print min_val, max_val | |
682 | step = 1 |
|
684 | step = 1 | |
683 | #print("Getting bins and the histogram") |
|
685 | #print("Getting bins and the histogram") | |
684 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step |
|
686 | x_dist = min_val + numpy.arange(1 + ((max_val-(min_val))/step))*step | |
685 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
687 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |
686 | #print(len(y_dist),len(binstep[:-1])) |
|
688 | #print(len(y_dist),len(binstep[:-1])) | |
687 | #print(row_ax,col_ax, " ..") |
|
689 | #print(row_ax,col_ax, " ..") | |
688 | #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) |
|
690 | #print(self.pairsArray[ii][0],self.pairsArray[ii][1]) | |
689 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) |
|
691 | mean = numpy.sum(x_dist * y_dist) / numpy.sum(y_dist) | |
690 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) |
|
692 | sigma = numpy.sqrt(numpy.sum(y_dist * (x_dist - mean)**2) / numpy.sum(y_dist)) | |
691 | parg = [numpy.amax(y_dist),mean,sigma] |
|
693 | parg = [numpy.amax(y_dist),mean,sigma] | |
692 | gauss_fit, covariance = None, None |
|
694 | ||
693 | newY = None |
|
695 | #newY = None | |
|
696 | ||||
694 | try : |
|
697 | try : | |
695 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) |
|
698 | gauss_fit, covariance = curve_fit(fit_func, x_dist, y_dist,p0=parg) | |
696 | mode = gauss_fit[1] |
|
699 | mode = gauss_fit[1] | |
697 | stdv = gauss_fit[2] |
|
700 | stdv = gauss_fit[2] | |
698 | #print(" FIT OK",gauss_fit) |
|
701 | #print(" FIT OK",gauss_fit) | |
699 | ''' |
|
702 | ''' | |
700 | newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) |
|
703 | newY = fit_func(x_dist,gauss_fit[0],gauss_fit[1],gauss_fit[2]) | |
701 | axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
704 | axs[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') | |
702 | axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
705 | axs[row_ax,col_ax].plot(binstep[:-1],newY,color='red') | |
703 | axs[row_ax,col_ax].set_title("Pair "+str(self.crosspairs[ii]))''' |
|
706 | axs[row_ax,col_ax].set_title("Pair "+str(self.crosspairs[ii]))''' | |
704 | except: |
|
707 | except: | |
705 | mode = mean |
|
708 | mode = mean | |
706 | stdv = sigma |
|
709 | stdv = sigma | |
707 | #print("FIT FAIL") |
|
710 | #print("FIT FAIL") | |
708 |
|
711 | |||
709 |
|
712 | |||
710 | #print(mode,stdv) |
|
713 | #print(mode,stdv) | |
711 |
#Removing echoes greater than mode + |
|
714 | #Removing echoes greater than mode + std_factor*stdv | |
712 | #factor_stdv = 2 |
|
|||
713 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() |
|
715 | noval = (abs(func2clean - mode)>=(factor_stdv*stdv)).nonzero() | |
714 | #noval tiene los indices que se van a remover |
|
716 | #noval tiene los indices que se van a remover | |
715 | #print("Pair ",ii," novals: ",len(noval[0])) |
|
717 | #print("Pair ",ii," novals: ",len(noval[0])) | |
716 | if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) |
|
718 | if len(noval[0]) > 0: #forma de array (N,) es igual a longitud (N) | |
717 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() |
|
719 | novall = ((func2clean - mode) >= (factor_stdv*stdv)).nonzero() | |
718 | #print(novall) |
|
720 | #print(novall) | |
719 | #print(" ",self.pairsArray[ii]) |
|
721 | #print(" ",self.pairsArray[ii]) | |
720 | cross_pairs = self.pairsArray[ii] |
|
722 | cross_pairs = self.pairsArray[ii] | |
721 | #Getting coherent echoes which are removed. |
|
723 | #Getting coherent echoes which are removed. | |
722 | # if len(novall[0]) > 0: |
|
724 | # if len(novall[0]) > 0: | |
723 | # |
|
725 | # | |
724 | # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 |
|
726 | # val_spc[novall[0],cross_pairs[0],ifreq,ih] = 1 | |
725 | # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 |
|
727 | # val_spc[novall[0],cross_pairs[1],ifreq,ih] = 1 | |
726 | # val_cspc[novall[0],ii,ifreq,ih] = 1 |
|
728 | # val_cspc[novall[0],ii,ifreq,ih] = 1 | |
727 | #print("OUT NOVALL 1") |
|
729 | #print("OUT NOVALL 1") | |
728 | #Removing coherent from ISR data |
|
730 | #Removing coherent from ISR data | |
729 | chA = self.channels.index(cross_pairs[0]) |
|
731 | chA = self.channels.index(cross_pairs[0]) | |
730 | chB = self.channels.index(cross_pairs[1]) |
|
732 | chB = self.channels.index(cross_pairs[1]) | |
731 |
|
733 | |||
732 | new_a = numpy.delete(cspectra[:,ii,ifreq,ih], noval[0]) |
|
734 | new_a = numpy.delete(cspectra[:,ii,ifreq,ih], noval[0]) | |
733 |
|
|
735 | cspectra[noval,ii,ifreq,ih] = numpy.mean(new_a) #mean CrossSpectra | |
734 | new_b = numpy.delete(spectra[:,chA,ifreq,ih], noval[0]) |
|
736 | new_b = numpy.delete(spectra[:,chA,ifreq,ih], noval[0]) | |
735 |
|
|
737 | spectra[noval,chA,ifreq,ih] = numpy.mean(new_b) #mean Spectra Pair A | |
736 | new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) |
|
738 | new_c = numpy.delete(spectra[:,chB,ifreq,ih], noval[0]) | |
737 |
|
|
739 | spectra[noval,chB,ifreq,ih] = numpy.mean(new_c) #mean Spectra Pair B | |
738 | spectra[noval,chA,ifreq,ih] = mean_spc0 |
|
740 | ||
739 | spectra[noval,chB,ifreq,ih] = mean_spc1 |
|
|||
740 | cspectra[noval,ii,ifreq,ih] = mean_cspc |
|
|||
741 |
|
741 | |||
742 | ''' |
|
742 | ''' | |
743 | func2clean = 10*numpy.log10(numpy.absolute(cspectra[:,ii,ifreq,ih])) |
|
743 | func2clean = 10*numpy.log10(numpy.absolute(cspectra[:,ii,ifreq,ih])) | |
744 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) |
|
744 | y_dist,binstep = numpy.histogram(func2clean,bins=range(int(min_val),int(max_val+2),step)) | |
745 | axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') |
|
745 | axs2[row_ax,col_ax].plot(binstep[:-1],newY,color='red') | |
746 | axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') |
|
746 | axs2[row_ax,col_ax].plot(binstep[:-1],y_dist,color='green') | |
747 | axs2[row_ax,col_ax].set_title("Pair "+str(self.crosspairs[ii])) |
|
747 | axs2[row_ax,col_ax].set_title("Pair "+str(self.crosspairs[ii])) | |
748 | ''' |
|
748 | ''' | |
749 |
|
749 | |||
750 | col_ax += 1 #contador de ploteo columnas |
|
750 | #col_ax += 1 #contador de ploteo columnas | |
751 | ##print(col_ax) |
|
751 | ##print(col_ax) | |
752 | ''' |
|
752 | ''' | |
753 | title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" |
|
753 | title = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km" | |
754 | title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" |
|
754 | title2 = str(dataOut.datatime)+" nFFT: "+str(ifreq)+" Alt: "+str(self.heights[ih])+ " km CLEANED" | |
755 | fig.suptitle(title) |
|
755 | fig.suptitle(title) | |
756 | fig2.suptitle(title2) |
|
756 | fig2.suptitle(title2) | |
757 | plt.show()''' |
|
757 | plt.show()''' | |
758 |
|
758 | |||
759 | ''' channels = channels |
|
759 | ''' channels = channels | |
760 | cross_pairs = cross_pairs |
|
760 | cross_pairs = cross_pairs | |
761 | #print("OUT NOVALL 2") |
|
761 | #print("OUT NOVALL 2") | |
762 |
|
762 | |||
763 | vcross0 = (cross_pairs[0] == channels[ii]).nonzero() |
|
763 | vcross0 = (cross_pairs[0] == channels[ii]).nonzero() | |
764 | vcross1 = (cross_pairs[1] == channels[ii]).nonzero() |
|
764 | vcross1 = (cross_pairs[1] == channels[ii]).nonzero() | |
765 | vcross = numpy.concatenate((vcross0,vcross1),axis=None) |
|
765 | vcross = numpy.concatenate((vcross0,vcross1),axis=None) | |
766 | #print('vcros =', vcross) |
|
766 | #print('vcros =', vcross) | |
767 |
|
767 | |||
768 | #Getting coherent echoes which are removed. |
|
768 | #Getting coherent echoes which are removed. | |
769 | if len(novall) > 0: |
|
769 | if len(novall) > 0: | |
770 | #val_spc[novall,ii,ifreq,ih] = 1 |
|
770 | #val_spc[novall,ii,ifreq,ih] = 1 | |
771 | val_spc[ii,ifreq,ih,novall] = 1 |
|
771 | val_spc[ii,ifreq,ih,novall] = 1 | |
772 | if len(vcross) > 0: |
|
772 | if len(vcross) > 0: | |
773 | val_cspc[vcross,ifreq,ih,novall] = 1 |
|
773 | val_cspc[vcross,ifreq,ih,novall] = 1 | |
774 |
|
774 | |||
775 | #Removing coherent from ISR data. |
|
775 | #Removing coherent from ISR data. | |
776 | self.bloque0[ii,ifreq,ih,noval] = numpy.nan |
|
776 | self.bloque0[ii,ifreq,ih,noval] = numpy.nan | |
777 | if len(vcross) > 0: |
|
777 | if len(vcross) > 0: | |
778 | self.bloques[vcross,ifreq,ih,noval] = numpy.nan |
|
778 | self.bloques[vcross,ifreq,ih,noval] = numpy.nan | |
779 | ''' |
|
779 | ''' | |
780 |
|
780 | |||
781 | print("Getting average of the spectra and cross-spectra from incoherent echoes.") |
|
781 | #print("Getting average of the spectra and cross-spectra from incoherent echoes.") | |
782 | out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan |
|
782 | out_spectra = numpy.zeros([self.nChan,self.nFFTPoints,self.nHeights], dtype=float) #+numpy.nan | |
783 | out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan |
|
783 | out_cspectra = numpy.zeros([self.nPairs,self.nFFTPoints,self.nHeights], dtype=complex) #+numpy.nan | |
784 | for ih in range(self.nHeights): |
|
784 | for ih in range(self.nHeights): | |
785 | for ifreq in range(self.nFFTPoints): |
|
785 | for ifreq in range(self.nFFTPoints): | |
786 | for ich in range(self.nChan): |
|
786 | for ich in range(self.nChan): | |
787 | tmp = spectra[:,ich,ifreq,ih] |
|
787 | tmp = spectra[:,ich,ifreq,ih] | |
788 | valid = (numpy.isfinite(tmp[:])==True).nonzero() |
|
788 | valid = (numpy.isfinite(tmp[:])==True).nonzero() | |
789 | # if ich == 0 and ifreq == 0 and ih == 17 : |
|
789 | # if ich == 0 and ifreq == 0 and ih == 17 : | |
790 | # print tmp |
|
790 | # print tmp | |
791 | # print valid |
|
791 | # print valid | |
792 | # print len(valid[0]) |
|
792 | # print len(valid[0]) | |
793 | #print('TMP',tmp) |
|
793 | #print('TMP',tmp) | |
794 | if len(valid[0]) >0 : |
|
794 | if len(valid[0]) >0 : | |
795 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
795 | out_spectra[ich,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) | |
796 | #for icr in range(nPairs): |
|
796 | #for icr in range(nPairs): | |
797 | for icr in range(self.nPairs): |
|
797 | for icr in range(self.nPairs): | |
798 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) |
|
798 | tmp = numpy.squeeze(cspectra[:,icr,ifreq,ih]) | |
799 | valid = (numpy.isfinite(tmp)==True).nonzero() |
|
799 | valid = (numpy.isfinite(tmp)==True).nonzero() | |
800 | if len(valid[0]) > 0: |
|
800 | if len(valid[0]) > 0: | |
801 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) |
|
801 | out_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)#/len(valid[0]) | |
802 | ''' |
|
802 | ''' | |
803 | # print('##########################################################') |
|
803 | # print('##########################################################') | |
804 | print("Removing fake coherent echoes (at least 4 points around the point)") |
|
804 | print("Removing fake coherent echoes (at least 4 points around the point)") | |
805 |
|
805 | |||
806 | val_spectra = numpy.sum(val_spc,0) |
|
806 | val_spectra = numpy.sum(val_spc,0) | |
807 | val_cspectra = numpy.sum(val_cspc,0) |
|
807 | val_cspectra = numpy.sum(val_cspc,0) | |
808 |
|
808 | |||
809 | val_spectra = self.REM_ISOLATED_POINTS(val_spectra,4) |
|
809 | val_spectra = self.REM_ISOLATED_POINTS(val_spectra,4) | |
810 | val_cspectra = self.REM_ISOLATED_POINTS(val_cspectra,4) |
|
810 | val_cspectra = self.REM_ISOLATED_POINTS(val_cspectra,4) | |
811 |
|
811 | |||
812 | for i in range(nChan): |
|
812 | for i in range(nChan): | |
813 | for j in range(nProf): |
|
813 | for j in range(nProf): | |
814 | for k in range(nHeights): |
|
814 | for k in range(nHeights): | |
815 | if numpy.isfinite(val_spectra[i,j,k]) and val_spectra[i,j,k] < 1 : |
|
815 | if numpy.isfinite(val_spectra[i,j,k]) and val_spectra[i,j,k] < 1 : | |
816 | val_spc[:,i,j,k] = 0.0 |
|
816 | val_spc[:,i,j,k] = 0.0 | |
817 | for i in range(nPairs): |
|
817 | for i in range(nPairs): | |
818 | for j in range(nProf): |
|
818 | for j in range(nProf): | |
819 | for k in range(nHeights): |
|
819 | for k in range(nHeights): | |
820 | if numpy.isfinite(val_cspectra[i,j,k]) and val_cspectra[i,j,k] < 1 : |
|
820 | if numpy.isfinite(val_cspectra[i,j,k]) and val_cspectra[i,j,k] < 1 : | |
821 | val_cspc[:,i,j,k] = 0.0 |
|
821 | val_cspc[:,i,j,k] = 0.0 | |
822 |
|
822 | |||
823 | # val_spc = numpy.reshape(val_spc, (len(spectra[:,0,0,0]),nProf*nHeights*nChan)) |
|
823 | # val_spc = numpy.reshape(val_spc, (len(spectra[:,0,0,0]),nProf*nHeights*nChan)) | |
824 | # if numpy.isfinite(val_spectra)==str(True): |
|
824 | # if numpy.isfinite(val_spectra)==str(True): | |
825 | # noval = (val_spectra<1).nonzero() |
|
825 | # noval = (val_spectra<1).nonzero() | |
826 | # if len(noval) > 0: |
|
826 | # if len(noval) > 0: | |
827 | # val_spc[:,noval] = 0.0 |
|
827 | # val_spc[:,noval] = 0.0 | |
828 | # val_spc = numpy.reshape(val_spc, (149,nChan,nProf,nHeights)) |
|
828 | # val_spc = numpy.reshape(val_spc, (149,nChan,nProf,nHeights)) | |
829 |
|
829 | |||
830 | #val_cspc = numpy.reshape(val_spc, (149,nChan*nHeights*nProf)) |
|
830 | #val_cspc = numpy.reshape(val_spc, (149,nChan*nHeights*nProf)) | |
831 | #if numpy.isfinite(val_cspectra)==str(True): |
|
831 | #if numpy.isfinite(val_cspectra)==str(True): | |
832 | # noval = (val_cspectra<1).nonzero() |
|
832 | # noval = (val_cspectra<1).nonzero() | |
833 | # if len(noval) > 0: |
|
833 | # if len(noval) > 0: | |
834 | # val_cspc[:,noval] = 0.0 |
|
834 | # val_cspc[:,noval] = 0.0 | |
835 | # val_cspc = numpy.reshape(val_cspc, (149,nChan,nProf,nHeights)) |
|
835 | # val_cspc = numpy.reshape(val_cspc, (149,nChan,nProf,nHeights)) | |
836 | tmp_sat_spectra = spectra.copy() |
|
836 | tmp_sat_spectra = spectra.copy() | |
837 | tmp_sat_spectra = tmp_sat_spectra*numpy.nan |
|
837 | tmp_sat_spectra = tmp_sat_spectra*numpy.nan | |
838 | tmp_sat_cspectra = cspectra.copy() |
|
838 | tmp_sat_cspectra = cspectra.copy() | |
839 | tmp_sat_cspectra = tmp_sat_cspectra*numpy.nan |
|
839 | tmp_sat_cspectra = tmp_sat_cspectra*numpy.nan | |
840 | ''' |
|
840 | ''' | |
841 | # fig = plt.figure(figsize=(6,5)) |
|
841 | # fig = plt.figure(figsize=(6,5)) | |
842 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
842 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
843 | # ax = fig.add_axes([left, bottom, width, height]) |
|
843 | # ax = fig.add_axes([left, bottom, width, height]) | |
844 | # cp = ax.contour(10*numpy.log10(numpy.absolute(spectra[0,0,:,:]))) |
|
844 | # cp = ax.contour(10*numpy.log10(numpy.absolute(spectra[0,0,:,:]))) | |
845 | # ax.clabel(cp, inline=True,fontsize=10) |
|
845 | # ax.clabel(cp, inline=True,fontsize=10) | |
846 | # plt.show() |
|
846 | # plt.show() | |
847 | ''' |
|
847 | ''' | |
848 | val = (val_spc > 0).nonzero() |
|
848 | val = (val_spc > 0).nonzero() | |
849 | if len(val[0]) > 0: |
|
849 | if len(val[0]) > 0: | |
850 | tmp_sat_spectra[val] = in_sat_spectra[val] |
|
850 | tmp_sat_spectra[val] = in_sat_spectra[val] | |
851 | val = (val_cspc > 0).nonzero() |
|
851 | val = (val_cspc > 0).nonzero() | |
852 | if len(val[0]) > 0: |
|
852 | if len(val[0]) > 0: | |
853 | tmp_sat_cspectra[val] = in_sat_cspectra[val] |
|
853 | tmp_sat_cspectra[val] = in_sat_cspectra[val] | |
854 |
|
854 | |||
855 | print("Getting average of the spectra and cross-spectra from incoherent echoes 2") |
|
855 | print("Getting average of the spectra and cross-spectra from incoherent echoes 2") | |
856 | sat_spectra = numpy.zeros((nChan,nProf,nHeights), dtype=float) |
|
856 | sat_spectra = numpy.zeros((nChan,nProf,nHeights), dtype=float) | |
857 | sat_cspectra = numpy.zeros((nPairs,nProf,nHeights), dtype=complex) |
|
857 | sat_cspectra = numpy.zeros((nPairs,nProf,nHeights), dtype=complex) | |
858 | for ih in range(nHeights): |
|
858 | for ih in range(nHeights): | |
859 | for ifreq in range(nProf): |
|
859 | for ifreq in range(nProf): | |
860 | for ich in range(nChan): |
|
860 | for ich in range(nChan): | |
861 | tmp = numpy.squeeze(tmp_sat_spectra[:,ich,ifreq,ih]) |
|
861 | tmp = numpy.squeeze(tmp_sat_spectra[:,ich,ifreq,ih]) | |
862 | valid = (numpy.isfinite(tmp)).nonzero() |
|
862 | valid = (numpy.isfinite(tmp)).nonzero() | |
863 | if len(valid[0]) > 0: |
|
863 | if len(valid[0]) > 0: | |
864 | sat_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) |
|
864 | sat_spectra[ich,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |
865 |
|
865 | |||
866 | for icr in range(nPairs): |
|
866 | for icr in range(nPairs): | |
867 | tmp = numpy.squeeze(tmp_sat_cspectra[:,icr,ifreq,ih]) |
|
867 | tmp = numpy.squeeze(tmp_sat_cspectra[:,icr,ifreq,ih]) | |
868 | valid = (numpy.isfinite(tmp)).nonzero() |
|
868 | valid = (numpy.isfinite(tmp)).nonzero() | |
869 | if len(valid[0]) > 0: |
|
869 | if len(valid[0]) > 0: | |
870 | sat_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) |
|
870 | sat_cspectra[icr,ifreq,ih] = numpy.nansum(tmp)/len(valid[0]) | |
871 | ''' |
|
871 | ''' | |
872 | #self.__dataReady= True |
|
872 | #self.__dataReady= True | |
873 | #sat_spectra, sat_cspectra= sat_spectra, sat_cspectra |
|
873 | #sat_spectra, sat_cspectra= sat_spectra, sat_cspectra | |
874 | #if not self.__dataReady: |
|
874 | #if not self.__dataReady: | |
875 | #return None, None |
|
875 | #return None, None | |
876 | #return out_spectra, out_cspectra ,sat_spectra,sat_cspectra |
|
876 | #return out_spectra, out_cspectra ,sat_spectra,sat_cspectra | |
877 | return out_spectra, out_cspectra |
|
877 | return out_spectra, out_cspectra | |
878 |
|
878 | |||
879 | def REM_ISOLATED_POINTS(self,array,rth): |
|
879 | def REM_ISOLATED_POINTS(self,array,rth): | |
880 | # import matplotlib.pyplot as plt |
|
880 | # import matplotlib.pyplot as plt | |
881 | if rth == None : |
|
881 | if rth == None : | |
882 | rth = 4 |
|
882 | rth = 4 | |
883 | print("REM ISO") |
|
883 | print("REM ISO") | |
884 | num_prof = len(array[0,:,0]) |
|
884 | num_prof = len(array[0,:,0]) | |
885 | num_hei = len(array[0,0,:]) |
|
885 | num_hei = len(array[0,0,:]) | |
886 | n2d = len(array[:,0,0]) |
|
886 | n2d = len(array[:,0,0]) | |
887 |
|
887 | |||
888 | for ii in range(n2d) : |
|
888 | for ii in range(n2d) : | |
889 | #print ii,n2d |
|
889 | #print ii,n2d | |
890 | tmp = array[ii,:,:] |
|
890 | tmp = array[ii,:,:] | |
891 | #print tmp.shape, array[ii,101,:],array[ii,102,:] |
|
891 | #print tmp.shape, array[ii,101,:],array[ii,102,:] | |
892 |
|
892 | |||
893 | # fig = plt.figure(figsize=(6,5)) |
|
893 | # fig = plt.figure(figsize=(6,5)) | |
894 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
894 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
895 | # ax = fig.add_axes([left, bottom, width, height]) |
|
895 | # ax = fig.add_axes([left, bottom, width, height]) | |
896 | # x = range(num_prof) |
|
896 | # x = range(num_prof) | |
897 | # y = range(num_hei) |
|
897 | # y = range(num_hei) | |
898 | # cp = ax.contour(y,x,tmp) |
|
898 | # cp = ax.contour(y,x,tmp) | |
899 | # ax.clabel(cp, inline=True,fontsize=10) |
|
899 | # ax.clabel(cp, inline=True,fontsize=10) | |
900 | # plt.show() |
|
900 | # plt.show() | |
901 |
|
901 | |||
902 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) |
|
902 | #indxs = WHERE(FINITE(tmp) AND tmp GT 0,cindxs) | |
903 | tmp = numpy.reshape(tmp,num_prof*num_hei) |
|
903 | tmp = numpy.reshape(tmp,num_prof*num_hei) | |
904 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() |
|
904 | indxs1 = (numpy.isfinite(tmp)==True).nonzero() | |
905 | indxs2 = (tmp > 0).nonzero() |
|
905 | indxs2 = (tmp > 0).nonzero() | |
906 |
|
906 | |||
907 | indxs1 = (indxs1[0]) |
|
907 | indxs1 = (indxs1[0]) | |
908 | indxs2 = indxs2[0] |
|
908 | indxs2 = indxs2[0] | |
909 | #indxs1 = numpy.array(indxs1[0]) |
|
909 | #indxs1 = numpy.array(indxs1[0]) | |
910 | #indxs2 = numpy.array(indxs2[0]) |
|
910 | #indxs2 = numpy.array(indxs2[0]) | |
911 | indxs = None |
|
911 | indxs = None | |
912 | #print indxs1 , indxs2 |
|
912 | #print indxs1 , indxs2 | |
913 | for iv in range(len(indxs2)): |
|
913 | for iv in range(len(indxs2)): | |
914 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) |
|
914 | indv = numpy.array((indxs1 == indxs2[iv]).nonzero()) | |
915 | #print len(indxs2), indv |
|
915 | #print len(indxs2), indv | |
916 | if len(indv[0]) > 0 : |
|
916 | if len(indv[0]) > 0 : | |
917 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) |
|
917 | indxs = numpy.concatenate((indxs,indxs2[iv]), axis=None) | |
918 | # print indxs |
|
918 | # print indxs | |
919 | indxs = indxs[1:] |
|
919 | indxs = indxs[1:] | |
920 | #print(indxs, len(indxs)) |
|
920 | #print(indxs, len(indxs)) | |
921 | if len(indxs) < 4 : |
|
921 | if len(indxs) < 4 : | |
922 | array[ii,:,:] = 0. |
|
922 | array[ii,:,:] = 0. | |
923 | return |
|
923 | return | |
924 |
|
924 | |||
925 | xpos = numpy.mod(indxs ,num_hei) |
|
925 | xpos = numpy.mod(indxs ,num_hei) | |
926 | ypos = (indxs / num_hei) |
|
926 | ypos = (indxs / num_hei) | |
927 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) |
|
927 | sx = numpy.argsort(xpos) # Ordering respect to "x" (time) | |
928 | #print sx |
|
928 | #print sx | |
929 | xpos = xpos[sx] |
|
929 | xpos = xpos[sx] | |
930 | ypos = ypos[sx] |
|
930 | ypos = ypos[sx] | |
931 |
|
931 | |||
932 | # *********************************** Cleaning isolated points ********************************** |
|
932 | # *********************************** Cleaning isolated points ********************************** | |
933 | ic = 0 |
|
933 | ic = 0 | |
934 | while True : |
|
934 | while True : | |
935 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) |
|
935 | r = numpy.sqrt(list(numpy.power((xpos[ic]-xpos),2)+ numpy.power((ypos[ic]-ypos),2))) | |
936 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) |
|
936 | #no_coh = WHERE(FINITE(r) AND (r LE rth),cno_coh) | |
937 | #plt.plot(r) |
|
937 | #plt.plot(r) | |
938 | #plt.show() |
|
938 | #plt.show() | |
939 | no_coh1 = (numpy.isfinite(r)==True).nonzero() |
|
939 | no_coh1 = (numpy.isfinite(r)==True).nonzero() | |
940 | no_coh2 = (r <= rth).nonzero() |
|
940 | no_coh2 = (r <= rth).nonzero() | |
941 | #print r, no_coh1, no_coh2 |
|
941 | #print r, no_coh1, no_coh2 | |
942 | no_coh1 = numpy.array(no_coh1[0]) |
|
942 | no_coh1 = numpy.array(no_coh1[0]) | |
943 | no_coh2 = numpy.array(no_coh2[0]) |
|
943 | no_coh2 = numpy.array(no_coh2[0]) | |
944 | no_coh = None |
|
944 | no_coh = None | |
945 | #print valid1 , valid2 |
|
945 | #print valid1 , valid2 | |
946 | for iv in range(len(no_coh2)): |
|
946 | for iv in range(len(no_coh2)): | |
947 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) |
|
947 | indv = numpy.array((no_coh1 == no_coh2[iv]).nonzero()) | |
948 | if len(indv[0]) > 0 : |
|
948 | if len(indv[0]) > 0 : | |
949 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) |
|
949 | no_coh = numpy.concatenate((no_coh,no_coh2[iv]), axis=None) | |
950 | no_coh = no_coh[1:] |
|
950 | no_coh = no_coh[1:] | |
951 | #print len(no_coh), no_coh |
|
951 | #print len(no_coh), no_coh | |
952 | if len(no_coh) < 4 : |
|
952 | if len(no_coh) < 4 : | |
953 | #print xpos[ic], ypos[ic], ic |
|
953 | #print xpos[ic], ypos[ic], ic | |
954 | # plt.plot(r) |
|
954 | # plt.plot(r) | |
955 | # plt.show() |
|
955 | # plt.show() | |
956 | xpos[ic] = numpy.nan |
|
956 | xpos[ic] = numpy.nan | |
957 | ypos[ic] = numpy.nan |
|
957 | ypos[ic] = numpy.nan | |
958 |
|
958 | |||
959 | ic = ic + 1 |
|
959 | ic = ic + 1 | |
960 | if (ic == len(indxs)) : |
|
960 | if (ic == len(indxs)) : | |
961 | break |
|
961 | break | |
962 | #print( xpos, ypos) |
|
962 | #print( xpos, ypos) | |
963 |
|
963 | |||
964 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() |
|
964 | indxs = (numpy.isfinite(list(xpos))==True).nonzero() | |
965 | #print indxs[0] |
|
965 | #print indxs[0] | |
966 | if len(indxs[0]) < 4 : |
|
966 | if len(indxs[0]) < 4 : | |
967 | array[ii,:,:] = 0. |
|
967 | array[ii,:,:] = 0. | |
968 | return |
|
968 | return | |
969 |
|
969 | |||
970 | xpos = xpos[indxs[0]] |
|
970 | xpos = xpos[indxs[0]] | |
971 | ypos = ypos[indxs[0]] |
|
971 | ypos = ypos[indxs[0]] | |
972 | for i in range(0,len(ypos)): |
|
972 | for i in range(0,len(ypos)): | |
973 | ypos[i]=int(ypos[i]) |
|
973 | ypos[i]=int(ypos[i]) | |
974 | junk = tmp |
|
974 | junk = tmp | |
975 | tmp = junk*0.0 |
|
975 | tmp = junk*0.0 | |
976 |
|
976 | |||
977 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] |
|
977 | tmp[list(xpos + (ypos*num_hei))] = junk[list(xpos + (ypos*num_hei))] | |
978 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) |
|
978 | array[ii,:,:] = numpy.reshape(tmp,(num_prof,num_hei)) | |
979 |
|
979 | |||
980 | #print array.shape |
|
980 | #print array.shape | |
981 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) |
|
981 | #tmp = numpy.reshape(tmp,(num_prof,num_hei)) | |
982 | #print tmp.shape |
|
982 | #print tmp.shape | |
983 |
|
983 | |||
984 | # fig = plt.figure(figsize=(6,5)) |
|
984 | # fig = plt.figure(figsize=(6,5)) | |
985 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 |
|
985 | # left, bottom, width, height = 0.1, 0.1, 0.8, 0.8 | |
986 | # ax = fig.add_axes([left, bottom, width, height]) |
|
986 | # ax = fig.add_axes([left, bottom, width, height]) | |
987 | # x = range(num_prof) |
|
987 | # x = range(num_prof) | |
988 | # y = range(num_hei) |
|
988 | # y = range(num_hei) | |
989 | # cp = ax.contour(y,x,array[ii,:,:]) |
|
989 | # cp = ax.contour(y,x,array[ii,:,:]) | |
990 | # ax.clabel(cp, inline=True,fontsize=10) |
|
990 | # ax.clabel(cp, inline=True,fontsize=10) | |
991 | # plt.show() |
|
991 | # plt.show() | |
992 | return array |
|
992 | return array | |
993 |
|
993 | |||
994 | class removeInterference(Operation): |
|
994 | class removeInterference(Operation): | |
995 |
|
995 | |||
996 | def removeInterference2(self): |
|
996 | def removeInterference2(self): | |
997 |
|
997 | |||
998 | cspc = self.dataOut.data_cspc |
|
998 | cspc = self.dataOut.data_cspc | |
999 | spc = self.dataOut.data_spc |
|
999 | spc = self.dataOut.data_spc | |
1000 | Heights = numpy.arange(cspc.shape[2]) |
|
1000 | Heights = numpy.arange(cspc.shape[2]) | |
1001 | realCspc = numpy.abs(cspc) |
|
1001 | realCspc = numpy.abs(cspc) | |
1002 |
|
1002 | |||
1003 | for i in range(cspc.shape[0]): |
|
1003 | for i in range(cspc.shape[0]): | |
1004 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
1004 | LinePower= numpy.sum(realCspc[i], axis=0) | |
1005 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
1005 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] | |
1006 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
1006 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] | |
1007 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
1007 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) | |
1008 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
1008 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] | |
1009 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
1009 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] | |
1010 |
|
1010 | |||
1011 |
|
1011 | |||
1012 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
1012 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) | |
1013 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
1013 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) | |
1014 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
1014 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): | |
1015 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
1015 | cspc[i,InterferenceRange,:] = numpy.NaN | |
1016 |
|
1016 | |||
1017 | self.dataOut.data_cspc = cspc |
|
1017 | self.dataOut.data_cspc = cspc | |
1018 |
|
1018 | |||
1019 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
1019 | def removeInterference(self, interf = 2, hei_interf = None, nhei_interf = None, offhei_interf = None): | |
1020 |
|
1020 | |||
1021 | jspectra = self.dataOut.data_spc |
|
1021 | jspectra = self.dataOut.data_spc | |
1022 | jcspectra = self.dataOut.data_cspc |
|
1022 | jcspectra = self.dataOut.data_cspc | |
1023 | jnoise = self.dataOut.getNoise() |
|
1023 | jnoise = self.dataOut.getNoise() | |
1024 | num_incoh = self.dataOut.nIncohInt |
|
1024 | num_incoh = self.dataOut.nIncohInt | |
1025 |
|
1025 | |||
1026 | num_channel = jspectra.shape[0] |
|
1026 | num_channel = jspectra.shape[0] | |
1027 | num_prof = jspectra.shape[1] |
|
1027 | num_prof = jspectra.shape[1] | |
1028 | num_hei = jspectra.shape[2] |
|
1028 | num_hei = jspectra.shape[2] | |
1029 |
|
1029 | |||
1030 | # hei_interf |
|
1030 | # hei_interf | |
1031 | if hei_interf is None: |
|
1031 | if hei_interf is None: | |
1032 | count_hei = int(num_hei / 2) |
|
1032 | count_hei = int(num_hei / 2) | |
1033 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
1033 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei | |
1034 | hei_interf = numpy.asarray(hei_interf)[0] |
|
1034 | hei_interf = numpy.asarray(hei_interf)[0] | |
1035 | # nhei_interf |
|
1035 | # nhei_interf | |
1036 | if (nhei_interf == None): |
|
1036 | if (nhei_interf == None): | |
1037 | nhei_interf = 5 |
|
1037 | nhei_interf = 5 | |
1038 | if (nhei_interf < 1): |
|
1038 | if (nhei_interf < 1): | |
1039 | nhei_interf = 1 |
|
1039 | nhei_interf = 1 | |
1040 | if (nhei_interf > count_hei): |
|
1040 | if (nhei_interf > count_hei): | |
1041 | nhei_interf = count_hei |
|
1041 | nhei_interf = count_hei | |
1042 | if (offhei_interf == None): |
|
1042 | if (offhei_interf == None): | |
1043 | offhei_interf = 0 |
|
1043 | offhei_interf = 0 | |
1044 |
|
1044 | |||
1045 | ind_hei = list(range(num_hei)) |
|
1045 | ind_hei = list(range(num_hei)) | |
1046 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
1046 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 | |
1047 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
1047 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 | |
1048 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
1048 | mask_prof = numpy.asarray(list(range(num_prof))) | |
1049 | num_mask_prof = mask_prof.size |
|
1049 | num_mask_prof = mask_prof.size | |
1050 | comp_mask_prof = [0, num_prof / 2] |
|
1050 | comp_mask_prof = [0, num_prof / 2] | |
1051 |
|
1051 | |||
1052 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
1052 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal | |
1053 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
1053 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): | |
1054 | jnoise = numpy.nan |
|
1054 | jnoise = numpy.nan | |
1055 | noise_exist = jnoise[0] < numpy.Inf |
|
1055 | noise_exist = jnoise[0] < numpy.Inf | |
1056 |
|
1056 | |||
1057 | # Subrutina de Remocion de la Interferencia |
|
1057 | # Subrutina de Remocion de la Interferencia | |
1058 | for ich in range(num_channel): |
|
1058 | for ich in range(num_channel): | |
1059 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
1059 | # Se ordena los espectros segun su potencia (menor a mayor) | |
1060 | power = jspectra[ich, mask_prof, :] |
|
1060 | power = jspectra[ich, mask_prof, :] | |
1061 | power = power[:, hei_interf] |
|
1061 | power = power[:, hei_interf] | |
1062 | power = power.sum(axis=0) |
|
1062 | power = power.sum(axis=0) | |
1063 | psort = power.ravel().argsort() |
|
1063 | psort = power.ravel().argsort() | |
1064 |
|
1064 | |||
1065 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
1065 | # Se estima la interferencia promedio en los Espectros de Potencia empleando | |
1066 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
1066 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( | |
1067 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1067 | offhei_interf, nhei_interf + offhei_interf))]]] | |
1068 |
|
1068 | |||
1069 | if noise_exist: |
|
1069 | if noise_exist: | |
1070 | # tmp_noise = jnoise[ich] / num_prof |
|
1070 | # tmp_noise = jnoise[ich] / num_prof | |
1071 | tmp_noise = jnoise[ich] |
|
1071 | tmp_noise = jnoise[ich] | |
1072 | junkspc_interf = junkspc_interf - tmp_noise |
|
1072 | junkspc_interf = junkspc_interf - tmp_noise | |
1073 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
1073 | #junkspc_interf[:,comp_mask_prof] = 0 | |
1074 |
|
1074 | |||
1075 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
1075 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf | |
1076 | jspc_interf = jspc_interf.transpose() |
|
1076 | jspc_interf = jspc_interf.transpose() | |
1077 | # Calculando el espectro de interferencia promedio |
|
1077 | # Calculando el espectro de interferencia promedio | |
1078 | noiseid = numpy.where( |
|
1078 | noiseid = numpy.where( | |
1079 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
1079 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) | |
1080 | noiseid = noiseid[0] |
|
1080 | noiseid = noiseid[0] | |
1081 | cnoiseid = noiseid.size |
|
1081 | cnoiseid = noiseid.size | |
1082 | interfid = numpy.where( |
|
1082 | interfid = numpy.where( | |
1083 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
1083 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) | |
1084 | interfid = interfid[0] |
|
1084 | interfid = interfid[0] | |
1085 | cinterfid = interfid.size |
|
1085 | cinterfid = interfid.size | |
1086 |
|
1086 | |||
1087 | if (cnoiseid > 0): |
|
1087 | if (cnoiseid > 0): | |
1088 | jspc_interf[noiseid] = 0 |
|
1088 | jspc_interf[noiseid] = 0 | |
1089 |
|
1089 | |||
1090 | # Expandiendo los perfiles a limpiar |
|
1090 | # Expandiendo los perfiles a limpiar | |
1091 | if (cinterfid > 0): |
|
1091 | if (cinterfid > 0): | |
1092 | new_interfid = ( |
|
1092 | new_interfid = ( | |
1093 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
1093 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof | |
1094 | new_interfid = numpy.asarray(new_interfid) |
|
1094 | new_interfid = numpy.asarray(new_interfid) | |
1095 | new_interfid = {x for x in new_interfid} |
|
1095 | new_interfid = {x for x in new_interfid} | |
1096 | new_interfid = numpy.array(list(new_interfid)) |
|
1096 | new_interfid = numpy.array(list(new_interfid)) | |
1097 | new_cinterfid = new_interfid.size |
|
1097 | new_cinterfid = new_interfid.size | |
1098 | else: |
|
1098 | else: | |
1099 | new_cinterfid = 0 |
|
1099 | new_cinterfid = 0 | |
1100 |
|
1100 | |||
1101 | for ip in range(new_cinterfid): |
|
1101 | for ip in range(new_cinterfid): | |
1102 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
1102 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() | |
1103 | jspc_interf[new_interfid[ip] |
|
1103 | jspc_interf[new_interfid[ip] | |
1104 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
1104 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] | |
1105 |
|
1105 | |||
1106 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
1106 | jspectra[ich, :, ind_hei] = jspectra[ich, :, | |
1107 | ind_hei] - jspc_interf # Corregir indices |
|
1107 | ind_hei] - jspc_interf # Corregir indices | |
1108 |
|
1108 | |||
1109 | # Removiendo la interferencia del punto de mayor interferencia |
|
1109 | # Removiendo la interferencia del punto de mayor interferencia | |
1110 | ListAux = jspc_interf[mask_prof].tolist() |
|
1110 | ListAux = jspc_interf[mask_prof].tolist() | |
1111 | maxid = ListAux.index(max(ListAux)) |
|
1111 | maxid = ListAux.index(max(ListAux)) | |
1112 |
|
1112 | |||
1113 | if cinterfid > 0: |
|
1113 | if cinterfid > 0: | |
1114 | for ip in range(cinterfid * (interf == 2) - 1): |
|
1114 | for ip in range(cinterfid * (interf == 2) - 1): | |
1115 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
1115 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * | |
1116 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1116 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() | |
1117 | cind = len(ind) |
|
1117 | cind = len(ind) | |
1118 |
|
1118 | |||
1119 | if (cind > 0): |
|
1119 | if (cind > 0): | |
1120 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
1120 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ | |
1121 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
1121 | (1 + (numpy.random.uniform(cind) - 0.5) / | |
1122 | numpy.sqrt(num_incoh)) |
|
1122 | numpy.sqrt(num_incoh)) | |
1123 |
|
1123 | |||
1124 | ind = numpy.array([-2, -1, 1, 2]) |
|
1124 | ind = numpy.array([-2, -1, 1, 2]) | |
1125 | xx = numpy.zeros([4, 4]) |
|
1125 | xx = numpy.zeros([4, 4]) | |
1126 |
|
1126 | |||
1127 | for id1 in range(4): |
|
1127 | for id1 in range(4): | |
1128 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1128 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
1129 |
|
1129 | |||
1130 | xx_inv = numpy.linalg.inv(xx) |
|
1130 | xx_inv = numpy.linalg.inv(xx) | |
1131 | xx = xx_inv[:, 0] |
|
1131 | xx = xx_inv[:, 0] | |
1132 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1132 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
1133 | yy = jspectra[ich, mask_prof[ind], :] |
|
1133 | yy = jspectra[ich, mask_prof[ind], :] | |
1134 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
1134 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( | |
1135 | yy.transpose(), xx) |
|
1135 | yy.transpose(), xx) | |
1136 |
|
1136 | |||
1137 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
1137 | indAux = (jspectra[ich, :, :] < tmp_noise * | |
1138 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
1138 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() | |
1139 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
1139 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ | |
1140 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
1140 | (1 - 1 / numpy.sqrt(num_incoh)) | |
1141 |
|
1141 | |||
1142 | # Remocion de Interferencia en el Cross Spectra |
|
1142 | # Remocion de Interferencia en el Cross Spectra | |
1143 | if jcspectra is None: |
|
1143 | if jcspectra is None: | |
1144 | return jspectra, jcspectra |
|
1144 | return jspectra, jcspectra | |
1145 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
1145 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) | |
1146 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
1146 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) | |
1147 |
|
1147 | |||
1148 | for ip in range(num_pairs): |
|
1148 | for ip in range(num_pairs): | |
1149 |
|
1149 | |||
1150 | #------------------------------------------- |
|
1150 | #------------------------------------------- | |
1151 |
|
1151 | |||
1152 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
1152 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) | |
1153 | cspower = cspower[:, hei_interf] |
|
1153 | cspower = cspower[:, hei_interf] | |
1154 | cspower = cspower.sum(axis=0) |
|
1154 | cspower = cspower.sum(axis=0) | |
1155 |
|
1155 | |||
1156 | cspsort = cspower.ravel().argsort() |
|
1156 | cspsort = cspower.ravel().argsort() | |
1157 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
1157 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( | |
1158 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
1158 | offhei_interf, nhei_interf + offhei_interf))]]] | |
1159 | junkcspc_interf = junkcspc_interf.transpose() |
|
1159 | junkcspc_interf = junkcspc_interf.transpose() | |
1160 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
1160 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf | |
1161 |
|
1161 | |||
1162 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
1162 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() | |
1163 |
|
1163 | |||
1164 | median_real = int(numpy.median(numpy.real( |
|
1164 | median_real = int(numpy.median(numpy.real( | |
1165 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1165 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
1166 | median_imag = int(numpy.median(numpy.imag( |
|
1166 | median_imag = int(numpy.median(numpy.imag( | |
1167 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
1167 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) | |
1168 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
1168 | comp_mask_prof = [int(e) for e in comp_mask_prof] | |
1169 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
1169 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( | |
1170 | median_real, median_imag) |
|
1170 | median_real, median_imag) | |
1171 |
|
1171 | |||
1172 | for iprof in range(num_prof): |
|
1172 | for iprof in range(num_prof): | |
1173 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
1173 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() | |
1174 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
1174 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] | |
1175 |
|
1175 | |||
1176 | # Removiendo la Interferencia |
|
1176 | # Removiendo la Interferencia | |
1177 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
1177 | jcspectra[ip, :, ind_hei] = jcspectra[ip, | |
1178 | :, ind_hei] - jcspc_interf |
|
1178 | :, ind_hei] - jcspc_interf | |
1179 |
|
1179 | |||
1180 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
1180 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() | |
1181 | maxid = ListAux.index(max(ListAux)) |
|
1181 | maxid = ListAux.index(max(ListAux)) | |
1182 |
|
1182 | |||
1183 | ind = numpy.array([-2, -1, 1, 2]) |
|
1183 | ind = numpy.array([-2, -1, 1, 2]) | |
1184 | xx = numpy.zeros([4, 4]) |
|
1184 | xx = numpy.zeros([4, 4]) | |
1185 |
|
1185 | |||
1186 | for id1 in range(4): |
|
1186 | for id1 in range(4): | |
1187 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
1187 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) | |
1188 |
|
1188 | |||
1189 | xx_inv = numpy.linalg.inv(xx) |
|
1189 | xx_inv = numpy.linalg.inv(xx) | |
1190 | xx = xx_inv[:, 0] |
|
1190 | xx = xx_inv[:, 0] | |
1191 |
|
1191 | |||
1192 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
1192 | ind = (ind + maxid + num_mask_prof) % num_mask_prof | |
1193 | yy = jcspectra[ip, mask_prof[ind], :] |
|
1193 | yy = jcspectra[ip, mask_prof[ind], :] | |
1194 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
1194 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) | |
1195 |
|
1195 | |||
1196 | # Guardar Resultados |
|
1196 | # Guardar Resultados | |
1197 | self.dataOut.data_spc = jspectra |
|
1197 | self.dataOut.data_spc = jspectra | |
1198 | self.dataOut.data_cspc = jcspectra |
|
1198 | self.dataOut.data_cspc = jcspectra | |
1199 |
|
1199 | |||
1200 | return 1 |
|
1200 | return 1 | |
1201 |
|
1201 | |||
1202 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): |
|
1202 | def run(self, dataOut, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None, mode=1): | |
1203 |
|
1203 | |||
1204 | self.dataOut = dataOut |
|
1204 | self.dataOut = dataOut | |
1205 |
|
1205 | |||
1206 | if mode == 1: |
|
1206 | if mode == 1: | |
1207 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) |
|
1207 | self.removeInterference(interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None) | |
1208 | elif mode == 2: |
|
1208 | elif mode == 2: | |
1209 | self.removeInterference2() |
|
1209 | self.removeInterference2() | |
1210 |
|
1210 | |||
1211 | return self.dataOut |
|
1211 | return self.dataOut | |
1212 |
|
1212 | |||
1213 |
|
1213 | |||
1214 | class IncohInt(Operation): |
|
1214 | class IncohInt(Operation): | |
1215 |
|
1215 | |||
1216 | __profIndex = 0 |
|
1216 | __profIndex = 0 | |
1217 | __withOverapping = False |
|
1217 | __withOverapping = False | |
1218 |
|
1218 | |||
1219 | __byTime = False |
|
1219 | __byTime = False | |
1220 | __initime = None |
|
1220 | __initime = None | |
1221 | __lastdatatime = None |
|
1221 | __lastdatatime = None | |
1222 | __integrationtime = None |
|
1222 | __integrationtime = None | |
1223 |
|
1223 | |||
1224 | __buffer_spc = None |
|
1224 | __buffer_spc = None | |
1225 | __buffer_cspc = None |
|
1225 | __buffer_cspc = None | |
1226 | __buffer_dc = None |
|
1226 | __buffer_dc = None | |
1227 |
|
1227 | |||
1228 | __dataReady = False |
|
1228 | __dataReady = False | |
1229 |
|
1229 | |||
1230 | __timeInterval = None |
|
1230 | __timeInterval = None | |
1231 |
|
1231 | |||
1232 | n = None |
|
1232 | n = None | |
1233 |
|
1233 | |||
1234 | def __init__(self): |
|
1234 | def __init__(self): | |
1235 |
|
1235 | |||
1236 | Operation.__init__(self) |
|
1236 | Operation.__init__(self) | |
1237 |
|
1237 | |||
1238 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
1238 | def setup(self, n=None, timeInterval=None, overlapping=False): | |
1239 | """ |
|
1239 | """ | |
1240 | Set the parameters of the integration class. |
|
1240 | Set the parameters of the integration class. | |
1241 |
|
1241 | |||
1242 | Inputs: |
|
1242 | Inputs: | |
1243 |
|
1243 | |||
1244 | n : Number of coherent integrations |
|
1244 | n : Number of coherent integrations | |
1245 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
1245 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
1246 | overlapping : |
|
1246 | overlapping : | |
1247 |
|
1247 | |||
1248 | """ |
|
1248 | """ | |
1249 |
|
1249 | |||
1250 | self.__initime = None |
|
1250 | self.__initime = None | |
1251 | self.__lastdatatime = 0 |
|
1251 | self.__lastdatatime = 0 | |
1252 |
|
1252 | |||
1253 | self.__buffer_spc = 0 |
|
1253 | self.__buffer_spc = 0 | |
1254 | self.__buffer_cspc = 0 |
|
1254 | self.__buffer_cspc = 0 | |
1255 | self.__buffer_dc = 0 |
|
1255 | self.__buffer_dc = 0 | |
1256 |
|
1256 | |||
1257 | self.__profIndex = 0 |
|
1257 | self.__profIndex = 0 | |
1258 | self.__dataReady = False |
|
1258 | self.__dataReady = False | |
1259 | self.__byTime = False |
|
1259 | self.__byTime = False | |
1260 |
|
1260 | |||
1261 | if n is None and timeInterval is None: |
|
1261 | if n is None and timeInterval is None: | |
1262 | raise ValueError("n or timeInterval should be specified ...") |
|
1262 | raise ValueError("n or timeInterval should be specified ...") | |
1263 |
|
1263 | |||
1264 | if n is not None: |
|
1264 | if n is not None: | |
1265 | self.n = int(n) |
|
1265 | self.n = int(n) | |
1266 | else: |
|
1266 | else: | |
1267 |
|
1267 | |||
1268 | self.__integrationtime = int(timeInterval) |
|
1268 | self.__integrationtime = int(timeInterval) | |
1269 | self.n = None |
|
1269 | self.n = None | |
1270 | self.__byTime = True |
|
1270 | self.__byTime = True | |
1271 |
|
1271 | |||
1272 | def putData(self, data_spc, data_cspc, data_dc): |
|
1272 | def putData(self, data_spc, data_cspc, data_dc): | |
1273 | """ |
|
1273 | """ | |
1274 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
1274 | Add a profile to the __buffer_spc and increase in one the __profileIndex | |
1275 |
|
1275 | |||
1276 | """ |
|
1276 | """ | |
1277 |
|
1277 | |||
1278 | self.__buffer_spc += data_spc |
|
1278 | self.__buffer_spc += data_spc | |
1279 |
|
1279 | |||
1280 | if data_cspc is None: |
|
1280 | if data_cspc is None: | |
1281 | self.__buffer_cspc = None |
|
1281 | self.__buffer_cspc = None | |
1282 | else: |
|
1282 | else: | |
1283 | self.__buffer_cspc += data_cspc |
|
1283 | self.__buffer_cspc += data_cspc | |
1284 |
|
1284 | |||
1285 | if data_dc is None: |
|
1285 | if data_dc is None: | |
1286 | self.__buffer_dc = None |
|
1286 | self.__buffer_dc = None | |
1287 | else: |
|
1287 | else: | |
1288 | self.__buffer_dc += data_dc |
|
1288 | self.__buffer_dc += data_dc | |
1289 |
|
1289 | |||
1290 | self.__profIndex += 1 |
|
1290 | self.__profIndex += 1 | |
1291 |
|
1291 | |||
1292 | return |
|
1292 | return | |
1293 |
|
1293 | |||
1294 | def pushData(self): |
|
1294 | def pushData(self): | |
1295 | """ |
|
1295 | """ | |
1296 | Return the sum of the last profiles and the profiles used in the sum. |
|
1296 | Return the sum of the last profiles and the profiles used in the sum. | |
1297 |
|
1297 | |||
1298 | Affected: |
|
1298 | Affected: | |
1299 |
|
1299 | |||
1300 | self.__profileIndex |
|
1300 | self.__profileIndex | |
1301 |
|
1301 | |||
1302 | """ |
|
1302 | """ | |
1303 |
|
1303 | |||
1304 | data_spc = self.__buffer_spc |
|
1304 | data_spc = self.__buffer_spc | |
1305 | data_cspc = self.__buffer_cspc |
|
1305 | data_cspc = self.__buffer_cspc | |
1306 | data_dc = self.__buffer_dc |
|
1306 | data_dc = self.__buffer_dc | |
1307 | n = self.__profIndex |
|
1307 | n = self.__profIndex | |
1308 |
|
1308 | |||
1309 | self.__buffer_spc = 0 |
|
1309 | self.__buffer_spc = 0 | |
1310 | self.__buffer_cspc = 0 |
|
1310 | self.__buffer_cspc = 0 | |
1311 | self.__buffer_dc = 0 |
|
1311 | self.__buffer_dc = 0 | |
1312 | self.__profIndex = 0 |
|
1312 | self.__profIndex = 0 | |
1313 |
|
1313 | |||
1314 | return data_spc, data_cspc, data_dc, n |
|
1314 | return data_spc, data_cspc, data_dc, n | |
1315 |
|
1315 | |||
1316 | def byProfiles(self, *args): |
|
1316 | def byProfiles(self, *args): | |
1317 |
|
1317 | |||
1318 | self.__dataReady = False |
|
1318 | self.__dataReady = False | |
1319 | avgdata_spc = None |
|
1319 | avgdata_spc = None | |
1320 | avgdata_cspc = None |
|
1320 | avgdata_cspc = None | |
1321 | avgdata_dc = None |
|
1321 | avgdata_dc = None | |
1322 |
|
1322 | |||
1323 | self.putData(*args) |
|
1323 | self.putData(*args) | |
1324 |
|
1324 | |||
1325 | if self.__profIndex == self.n: |
|
1325 | if self.__profIndex == self.n: | |
1326 |
|
1326 | |||
1327 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1327 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1328 | self.n = n |
|
1328 | self.n = n | |
1329 | self.__dataReady = True |
|
1329 | self.__dataReady = True | |
1330 |
|
1330 | |||
1331 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1331 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1332 |
|
1332 | |||
1333 | def byTime(self, datatime, *args): |
|
1333 | def byTime(self, datatime, *args): | |
1334 |
|
1334 | |||
1335 | self.__dataReady = False |
|
1335 | self.__dataReady = False | |
1336 | avgdata_spc = None |
|
1336 | avgdata_spc = None | |
1337 | avgdata_cspc = None |
|
1337 | avgdata_cspc = None | |
1338 | avgdata_dc = None |
|
1338 | avgdata_dc = None | |
1339 |
|
1339 | |||
1340 | self.putData(*args) |
|
1340 | self.putData(*args) | |
1341 |
|
1341 | |||
1342 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1342 | if (datatime - self.__initime) >= self.__integrationtime: | |
1343 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1343 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() | |
1344 | self.n = n |
|
1344 | self.n = n | |
1345 | self.__dataReady = True |
|
1345 | self.__dataReady = True | |
1346 |
|
1346 | |||
1347 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1347 | return avgdata_spc, avgdata_cspc, avgdata_dc | |
1348 |
|
1348 | |||
1349 | def integrate(self, datatime, *args): |
|
1349 | def integrate(self, datatime, *args): | |
1350 |
|
1350 | |||
1351 | if self.__profIndex == 0: |
|
1351 | if self.__profIndex == 0: | |
1352 | self.__initime = datatime |
|
1352 | self.__initime = datatime | |
1353 |
|
1353 | |||
1354 | if self.__byTime: |
|
1354 | if self.__byTime: | |
1355 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1355 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( | |
1356 | datatime, *args) |
|
1356 | datatime, *args) | |
1357 | else: |
|
1357 | else: | |
1358 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1358 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) | |
1359 |
|
1359 | |||
1360 | if not self.__dataReady: |
|
1360 | if not self.__dataReady: | |
1361 | return None, None, None, None |
|
1361 | return None, None, None, None | |
1362 |
|
1362 | |||
1363 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1363 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc | |
1364 |
|
1364 | |||
1365 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1365 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): | |
1366 | if n == 1: |
|
1366 | if n == 1: | |
1367 | return dataOut |
|
1367 | return dataOut | |
1368 |
|
1368 | |||
1369 | dataOut.flagNoData = True |
|
1369 | dataOut.flagNoData = True | |
1370 |
|
1370 | |||
1371 | if not self.isConfig: |
|
1371 | if not self.isConfig: | |
1372 | self.setup(n, timeInterval, overlapping) |
|
1372 | self.setup(n, timeInterval, overlapping) | |
1373 | self.isConfig = True |
|
1373 | self.isConfig = True | |
1374 |
|
1374 | |||
1375 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1375 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, | |
1376 | dataOut.data_spc, |
|
1376 | dataOut.data_spc, | |
1377 | dataOut.data_cspc, |
|
1377 | dataOut.data_cspc, | |
1378 | dataOut.data_dc) |
|
1378 | dataOut.data_dc) | |
1379 |
|
1379 | |||
1380 | if self.__dataReady: |
|
1380 | if self.__dataReady: | |
1381 |
|
1381 | |||
1382 | dataOut.data_spc = avgdata_spc |
|
1382 | dataOut.data_spc = avgdata_spc | |
1383 | dataOut.data_cspc = avgdata_cspc |
|
1383 | dataOut.data_cspc = avgdata_cspc | |
1384 | dataOut.data_dc = avgdata_dc |
|
1384 | dataOut.data_dc = avgdata_dc | |
1385 | dataOut.nIncohInt *= self.n |
|
1385 | dataOut.nIncohInt *= self.n | |
1386 | dataOut.utctime = avgdatatime |
|
1386 | dataOut.utctime = avgdatatime | |
1387 | dataOut.flagNoData = False |
|
1387 | dataOut.flagNoData = False | |
1388 |
|
1388 | |||
1389 | return dataOut |
|
1389 | return dataOut | |
1390 |
|
1390 | |||
1391 | class dopplerFlip(Operation): |
|
1391 | class dopplerFlip(Operation): | |
1392 |
|
1392 | |||
1393 | def run(self, dataOut): |
|
1393 | def run(self, dataOut): | |
1394 | # arreglo 1: (num_chan, num_profiles, num_heights) |
|
1394 | # arreglo 1: (num_chan, num_profiles, num_heights) | |
1395 | self.dataOut = dataOut |
|
1395 | self.dataOut = dataOut | |
1396 | # JULIA-oblicua, indice 2 |
|
1396 | # JULIA-oblicua, indice 2 | |
1397 | # arreglo 2: (num_profiles, num_heights) |
|
1397 | # arreglo 2: (num_profiles, num_heights) | |
1398 | jspectra = self.dataOut.data_spc[2] |
|
1398 | jspectra = self.dataOut.data_spc[2] | |
1399 | jspectra_tmp = numpy.zeros(jspectra.shape) |
|
1399 | jspectra_tmp = numpy.zeros(jspectra.shape) | |
1400 | num_profiles = jspectra.shape[0] |
|
1400 | num_profiles = jspectra.shape[0] | |
1401 | freq_dc = int(num_profiles / 2) |
|
1401 | freq_dc = int(num_profiles / 2) | |
1402 | # Flip con for |
|
1402 | # Flip con for | |
1403 | for j in range(num_profiles): |
|
1403 | for j in range(num_profiles): | |
1404 | jspectra_tmp[num_profiles-j-1]= jspectra[j] |
|
1404 | jspectra_tmp[num_profiles-j-1]= jspectra[j] | |
1405 | # Intercambio perfil de DC con perfil inmediato anterior |
|
1405 | # Intercambio perfil de DC con perfil inmediato anterior | |
1406 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] |
|
1406 | jspectra_tmp[freq_dc-1]= jspectra[freq_dc-1] | |
1407 | jspectra_tmp[freq_dc]= jspectra[freq_dc] |
|
1407 | jspectra_tmp[freq_dc]= jspectra[freq_dc] | |
1408 | # canal modificado es re-escrito en el arreglo de canales |
|
1408 | # canal modificado es re-escrito en el arreglo de canales | |
1409 | self.dataOut.data_spc[2] = jspectra_tmp |
|
1409 | self.dataOut.data_spc[2] = jspectra_tmp | |
1410 |
|
1410 | |||
1411 | return self.dataOut |
|
1411 | return self.dataOut |
General Comments 0
You need to be logged in to leave comments.
Login now