##// END OF EJS Templates
New RHI Plot and Block 360 stores more parameters
rflores -
r1442:f9eef645eb53
parent child
Show More
@@ -1,707 +1,714
1 # Copyright (c) 2012-2020 Jicamarca Radio Observatory
1 # Copyright (c) 2012-2020 Jicamarca Radio Observatory
2 # All rights reserved.
2 # All rights reserved.
3 #
3 #
4 # Distributed under the terms of the BSD 3-clause license.
4 # Distributed under the terms of the BSD 3-clause license.
5 """Base class to create plot operations
5 """Base class to create plot operations
6
6
7 """
7 """
8
8
9 import os
9 import os
10 import sys
10 import sys
11 import zmq
11 import zmq
12 import time
12 import time
13 import numpy
13 import numpy
14 import datetime
14 import datetime
15 from collections import deque
15 from collections import deque
16 from functools import wraps
16 from functools import wraps
17 from threading import Thread
17 from threading import Thread
18 import matplotlib
18 import matplotlib
19
19
20 if 'BACKEND' in os.environ:
20 if 'BACKEND' in os.environ:
21 matplotlib.use(os.environ['BACKEND'])
21 matplotlib.use(os.environ['BACKEND'])
22 elif 'linux' in sys.platform:
22 elif 'linux' in sys.platform:
23 matplotlib.use("TkAgg")
23 matplotlib.use("TkAgg")
24 elif 'darwin' in sys.platform:
24 elif 'darwin' in sys.platform:
25 matplotlib.use('MacOSX')
25 matplotlib.use('MacOSX')
26 else:
26 else:
27 from schainpy.utils import log
27 from schainpy.utils import log
28 log.warning('Using default Backend="Agg"', 'INFO')
28 log.warning('Using default Backend="Agg"', 'INFO')
29 matplotlib.use('Agg')
29 matplotlib.use('Agg')
30
30
31 import matplotlib.pyplot as plt
31 import matplotlib.pyplot as plt
32 from matplotlib.patches import Polygon
32 from matplotlib.patches import Polygon
33 from mpl_toolkits.axes_grid1 import make_axes_locatable
33 from mpl_toolkits.axes_grid1 import make_axes_locatable
34 from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator
34 from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator
35
35
36 from schainpy.model.data.jrodata import PlotterData
36 from schainpy.model.data.jrodata import PlotterData
37 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
37 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
38 from schainpy.utils import log
38 from schainpy.utils import log
39
39
40 jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90]
40 jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90]
41 blu_values = matplotlib.pyplot.get_cmap(
41 blu_values = matplotlib.pyplot.get_cmap(
42 'seismic_r', 20)(numpy.arange(20))[10:15]
42 'seismic_r', 20)(numpy.arange(20))[10:15]
43 ncmap = matplotlib.colors.LinearSegmentedColormap.from_list(
43 ncmap = matplotlib.colors.LinearSegmentedColormap.from_list(
44 'jro', numpy.vstack((blu_values, jet_values)))
44 'jro', numpy.vstack((blu_values, jet_values)))
45 matplotlib.pyplot.register_cmap(cmap=ncmap)
45 matplotlib.pyplot.register_cmap(cmap=ncmap)
46
46
47 CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis',
47 CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis',
48 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')]
48 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')]
49
49
50 EARTH_RADIUS = 6.3710e3
50 EARTH_RADIUS = 6.3710e3
51
51
52 def ll2xy(lat1, lon1, lat2, lon2):
52 def ll2xy(lat1, lon1, lat2, lon2):
53
53
54 p = 0.017453292519943295
54 p = 0.017453292519943295
55 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
55 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
56 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
56 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
57 r = 12742 * numpy.arcsin(numpy.sqrt(a))
57 r = 12742 * numpy.arcsin(numpy.sqrt(a))
58 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
58 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
59 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
59 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
60 theta = -theta + numpy.pi/2
60 theta = -theta + numpy.pi/2
61 return r*numpy.cos(theta), r*numpy.sin(theta)
61 return r*numpy.cos(theta), r*numpy.sin(theta)
62
62
63
63
64 def km2deg(km):
64 def km2deg(km):
65 '''
65 '''
66 Convert distance in km to degrees
66 Convert distance in km to degrees
67 '''
67 '''
68
68
69 return numpy.rad2deg(km/EARTH_RADIUS)
69 return numpy.rad2deg(km/EARTH_RADIUS)
70
70
71
71
72 def figpause(interval):
72 def figpause(interval):
73 backend = plt.rcParams['backend']
73 backend = plt.rcParams['backend']
74 if backend in matplotlib.rcsetup.interactive_bk:
74 if backend in matplotlib.rcsetup.interactive_bk:
75 figManager = matplotlib._pylab_helpers.Gcf.get_active()
75 figManager = matplotlib._pylab_helpers.Gcf.get_active()
76 if figManager is not None:
76 if figManager is not None:
77 canvas = figManager.canvas
77 canvas = figManager.canvas
78 if canvas.figure.stale:
78 if canvas.figure.stale:
79 canvas.draw()
79 canvas.draw()
80 try:
80 try:
81 canvas.start_event_loop(interval)
81 canvas.start_event_loop(interval)
82 except:
82 except:
83 pass
83 pass
84 return
84 return
85
85
86 def popup(message):
86 def popup(message):
87 '''
87 '''
88 '''
88 '''
89
89
90 fig = plt.figure(figsize=(12, 8), facecolor='r')
90 fig = plt.figure(figsize=(12, 8), facecolor='r')
91 text = '\n'.join([s.strip() for s in message.split(':')])
91 text = '\n'.join([s.strip() for s in message.split(':')])
92 fig.text(0.01, 0.5, text, ha='left', va='center',
92 fig.text(0.01, 0.5, text, ha='left', va='center',
93 size='20', weight='heavy', color='w')
93 size='20', weight='heavy', color='w')
94 fig.show()
94 fig.show()
95 figpause(1000)
95 figpause(1000)
96
96
97
97
98 class Throttle(object):
98 class Throttle(object):
99 '''
99 '''
100 Decorator that prevents a function from being called more than once every
100 Decorator that prevents a function from being called more than once every
101 time period.
101 time period.
102 To create a function that cannot be called more than once a minute, but
102 To create a function that cannot be called more than once a minute, but
103 will sleep until it can be called:
103 will sleep until it can be called:
104 @Throttle(minutes=1)
104 @Throttle(minutes=1)
105 def foo():
105 def foo():
106 pass
106 pass
107
107
108 for i in range(10):
108 for i in range(10):
109 foo()
109 foo()
110 print "This function has run %s times." % i
110 print "This function has run %s times." % i
111 '''
111 '''
112
112
113 def __init__(self, seconds=0, minutes=0, hours=0):
113 def __init__(self, seconds=0, minutes=0, hours=0):
114 self.throttle_period = datetime.timedelta(
114 self.throttle_period = datetime.timedelta(
115 seconds=seconds, minutes=minutes, hours=hours
115 seconds=seconds, minutes=minutes, hours=hours
116 )
116 )
117
117
118 self.time_of_last_call = datetime.datetime.min
118 self.time_of_last_call = datetime.datetime.min
119
119
120 def __call__(self, fn):
120 def __call__(self, fn):
121 @wraps(fn)
121 @wraps(fn)
122 def wrapper(*args, **kwargs):
122 def wrapper(*args, **kwargs):
123 coerce = kwargs.pop('coerce', None)
123 coerce = kwargs.pop('coerce', None)
124 if coerce:
124 if coerce:
125 self.time_of_last_call = datetime.datetime.now()
125 self.time_of_last_call = datetime.datetime.now()
126 return fn(*args, **kwargs)
126 return fn(*args, **kwargs)
127 else:
127 else:
128 now = datetime.datetime.now()
128 now = datetime.datetime.now()
129 time_since_last_call = now - self.time_of_last_call
129 time_since_last_call = now - self.time_of_last_call
130 time_left = self.throttle_period - time_since_last_call
130 time_left = self.throttle_period - time_since_last_call
131
131
132 if time_left > datetime.timedelta(seconds=0):
132 if time_left > datetime.timedelta(seconds=0):
133 return
133 return
134
134
135 self.time_of_last_call = datetime.datetime.now()
135 self.time_of_last_call = datetime.datetime.now()
136 return fn(*args, **kwargs)
136 return fn(*args, **kwargs)
137
137
138 return wrapper
138 return wrapper
139
139
140 def apply_throttle(value):
140 def apply_throttle(value):
141
141
142 @Throttle(seconds=value)
142 @Throttle(seconds=value)
143 def fnThrottled(fn):
143 def fnThrottled(fn):
144 fn()
144 fn()
145
145
146 return fnThrottled
146 return fnThrottled
147
147
148
148
149 @MPDecorator
149 @MPDecorator
150 class Plot(Operation):
150 class Plot(Operation):
151 """Base class for Schain plotting operations
151 """Base class for Schain plotting operations
152
152
153 This class should never be use directtly you must subclass a new operation,
153 This class should never be use directtly you must subclass a new operation,
154 children classes must be defined as follow:
154 children classes must be defined as follow:
155
155
156 ExamplePlot(Plot):
156 ExamplePlot(Plot):
157
157
158 CODE = 'code'
158 CODE = 'code'
159 colormap = 'jet'
159 colormap = 'jet'
160 plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer')
160 plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer')
161
161
162 def setup(self):
162 def setup(self):
163 pass
163 pass
164
164
165 def plot(self):
165 def plot(self):
166 pass
166 pass
167
167
168 """
168 """
169
169
170 CODE = 'Figure'
170 CODE = 'Figure'
171 colormap = 'jet'
171 colormap = 'jet'
172 bgcolor = 'white'
172 bgcolor = 'white'
173 buffering = True
173 buffering = True
174 __missing = 1E30
174 __missing = 1E30
175
175
176 __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title',
176 __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title',
177 'showprofile']
177 'showprofile']
178
178
179 def __init__(self):
179 def __init__(self):
180
180
181 Operation.__init__(self)
181 Operation.__init__(self)
182 self.isConfig = False
182 self.isConfig = False
183 self.isPlotConfig = False
183 self.isPlotConfig = False
184 self.save_time = 0
184 self.save_time = 0
185 self.sender_time = 0
185 self.sender_time = 0
186 self.data = None
186 self.data = None
187 self.firsttime = True
187 self.firsttime = True
188 self.sender_queue = deque(maxlen=10)
188 self.sender_queue = deque(maxlen=10)
189 self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2}
189 self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2}
190
190
191 def __fmtTime(self, x, pos):
191 def __fmtTime(self, x, pos):
192 '''
192 '''
193 '''
193 '''
194
194
195 return '{}'.format(self.getDateTime(x).strftime('%H:%M'))
195 return '{}'.format(self.getDateTime(x).strftime('%H:%M'))
196
196
197 def __setup(self, **kwargs):
197 def __setup(self, **kwargs):
198 '''
198 '''
199 Initialize variables
199 Initialize variables
200 '''
200 '''
201
201
202 self.figures = []
202 self.figures = []
203 self.axes = []
203 self.axes = []
204 self.cb_axes = []
204 self.cb_axes = []
205 self.localtime = kwargs.pop('localtime', True)
205 self.localtime = kwargs.pop('localtime', True)
206 self.show = kwargs.get('show', True)
206 self.show = kwargs.get('show', True)
207 self.save = kwargs.get('save', False)
207 self.save = kwargs.get('save', False)
208 self.save_period = kwargs.get('save_period', 0)
208 self.save_period = kwargs.get('save_period', 0)
209 self.colormap = kwargs.get('colormap', self.colormap)
209 self.colormap = kwargs.get('colormap', self.colormap)
210 self.colormap_coh = kwargs.get('colormap_coh', 'jet')
210 self.colormap_coh = kwargs.get('colormap_coh', 'jet')
211 self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r')
211 self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r')
212 self.colormaps = kwargs.get('colormaps', None)
212 self.colormaps = kwargs.get('colormaps', None)
213 self.bgcolor = kwargs.get('bgcolor', self.bgcolor)
213 self.bgcolor = kwargs.get('bgcolor', self.bgcolor)
214 self.showprofile = kwargs.get('showprofile', False)
214 self.showprofile = kwargs.get('showprofile', False)
215 self.title = kwargs.get('wintitle', self.CODE.upper())
215 self.title = kwargs.get('wintitle', self.CODE.upper())
216 self.cb_label = kwargs.get('cb_label', None)
216 self.cb_label = kwargs.get('cb_label', None)
217 self.cb_labels = kwargs.get('cb_labels', None)
217 self.cb_labels = kwargs.get('cb_labels', None)
218 self.labels = kwargs.get('labels', None)
218 self.labels = kwargs.get('labels', None)
219 self.xaxis = kwargs.get('xaxis', 'frequency')
219 self.xaxis = kwargs.get('xaxis', 'frequency')
220 self.zmin = kwargs.get('zmin', None)
220 self.zmin = kwargs.get('zmin', None)
221 self.zmax = kwargs.get('zmax', None)
221 self.zmax = kwargs.get('zmax', None)
222 self.zlimits = kwargs.get('zlimits', None)
222 self.zlimits = kwargs.get('zlimits', None)
223 self.xmin = kwargs.get('xmin', None)
223 self.xmin = kwargs.get('xmin', None)
224 self.xmax = kwargs.get('xmax', None)
224 self.xmax = kwargs.get('xmax', None)
225 self.xrange = kwargs.get('xrange', 12)
225 self.xrange = kwargs.get('xrange', 12)
226 self.xscale = kwargs.get('xscale', None)
226 self.xscale = kwargs.get('xscale', None)
227 self.ymin = kwargs.get('ymin', None)
227 self.ymin = kwargs.get('ymin', None)
228 self.ymax = kwargs.get('ymax', None)
228 self.ymax = kwargs.get('ymax', None)
229 self.yscale = kwargs.get('yscale', None)
229 self.yscale = kwargs.get('yscale', None)
230 self.xlabel = kwargs.get('xlabel', None)
230 self.xlabel = kwargs.get('xlabel', None)
231 self.attr_time = kwargs.get('attr_time', 'utctime')
231 self.attr_time = kwargs.get('attr_time', 'utctime')
232 self.attr_data = kwargs.get('attr_data', 'data_param')
232 self.attr_data = kwargs.get('attr_data', 'data_param')
233 self.decimation = kwargs.get('decimation', None)
233 self.decimation = kwargs.get('decimation', None)
234 self.oneFigure = kwargs.get('oneFigure', True)
234 self.oneFigure = kwargs.get('oneFigure', True)
235 self.width = kwargs.get('width', None)
235 self.width = kwargs.get('width', None)
236 self.height = kwargs.get('height', None)
236 self.height = kwargs.get('height', None)
237 self.colorbar = kwargs.get('colorbar', True)
237 self.colorbar = kwargs.get('colorbar', True)
238 self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1])
238 self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1])
239 self.channels = kwargs.get('channels', None)
239 self.channels = kwargs.get('channels', None)
240 self.titles = kwargs.get('titles', [])
240 self.titles = kwargs.get('titles', [])
241 self.polar = False
241 self.polar = False
242 self.type = kwargs.get('type', 'iq')
242 self.type = kwargs.get('type', 'iq')
243 self.grid = kwargs.get('grid', False)
243 self.grid = kwargs.get('grid', False)
244 self.pause = kwargs.get('pause', False)
244 self.pause = kwargs.get('pause', False)
245 self.save_code = kwargs.get('save_code', self.CODE)
245 self.save_code = kwargs.get('save_code', self.CODE)
246 self.throttle = kwargs.get('throttle', 0)
246 self.throttle = kwargs.get('throttle', 0)
247 self.exp_code = kwargs.get('exp_code', None)
247 self.exp_code = kwargs.get('exp_code', None)
248 self.server = kwargs.get('server', False)
248 self.server = kwargs.get('server', False)
249 self.sender_period = kwargs.get('sender_period', 60)
249 self.sender_period = kwargs.get('sender_period', 60)
250 self.tag = kwargs.get('tag', '')
250 self.tag = kwargs.get('tag', '')
251 self.height_index = kwargs.get('height_index', None)
251 self.height_index = kwargs.get('height_index', None)
252 self.__throttle_plot = apply_throttle(self.throttle)
252 self.__throttle_plot = apply_throttle(self.throttle)
253 code = self.attr_data if self.attr_data else self.CODE
253 code = self.attr_data if self.attr_data else self.CODE
254 self.data = PlotterData(self.CODE, self.exp_code, self.localtime)
254 self.data = PlotterData(self.CODE, self.exp_code, self.localtime)
255 self.ang_min = kwargs.get('ang_min', None)
255 self.ang_min = kwargs.get('ang_min', None)
256 self.ang_max = kwargs.get('ang_max', None)
256 self.ang_max = kwargs.get('ang_max', None)
257 self.mode = kwargs.get('mode', None)
257
258
258
259
259 if self.server:
260 if self.server:
260 if not self.server.startswith('tcp://'):
261 if not self.server.startswith('tcp://'):
261 self.server = 'tcp://{}'.format(self.server)
262 self.server = 'tcp://{}'.format(self.server)
262 log.success(
263 log.success(
263 'Sending to server: {}'.format(self.server),
264 'Sending to server: {}'.format(self.server),
264 self.name
265 self.name
265 )
266 )
266
267
267 if isinstance(self.attr_data, str):
268 if isinstance(self.attr_data, str):
268 self.attr_data = [self.attr_data]
269 self.attr_data = [self.attr_data]
269
270
270 def __setup_plot(self):
271 def __setup_plot(self):
271 '''
272 '''
272 Common setup for all figures, here figures and axes are created
273 Common setup for all figures, here figures and axes are created
273 '''
274 '''
274
275
275 self.setup()
276 self.setup()
276
277
277 self.time_label = 'LT' if self.localtime else 'UTC'
278 self.time_label = 'LT' if self.localtime else 'UTC'
278
279
279 if self.width is None:
280 if self.width is None:
280 self.width = 8
281 self.width = 8
281
282
282 self.figures = []
283 self.figures = []
283 self.axes = []
284 self.axes = []
284 self.cb_axes = []
285 self.cb_axes = []
285 self.pf_axes = []
286 self.pf_axes = []
286 self.cmaps = []
287 self.cmaps = []
287
288
288 size = '15%' if self.ncols == 1 else '30%'
289 size = '15%' if self.ncols == 1 else '30%'
289 pad = '4%' if self.ncols == 1 else '8%'
290 pad = '4%' if self.ncols == 1 else '8%'
290
291
291 if self.oneFigure:
292 if self.oneFigure:
292 if self.height is None:
293 if self.height is None:
293 self.height = 1.4 * self.nrows + 1
294 self.height = 1.4 * self.nrows + 1
294 fig = plt.figure(figsize=(self.width, self.height),
295 fig = plt.figure(figsize=(self.width, self.height),
295 edgecolor='k',
296 edgecolor='k',
296 facecolor='w')
297 facecolor='w')
297 self.figures.append(fig)
298 self.figures.append(fig)
298 for n in range(self.nplots):
299 for n in range(self.nplots):
299 ax = fig.add_subplot(self.nrows, self.ncols,
300 ax = fig.add_subplot(self.nrows, self.ncols,
300 n + 1, polar=self.polar)
301 n + 1, polar=self.polar)
301 ax.tick_params(labelsize=8)
302 ax.tick_params(labelsize=8)
302 ax.firsttime = True
303 ax.firsttime = True
303 ax.index = 0
304 ax.index = 0
304 ax.press = None
305 ax.press = None
305 self.axes.append(ax)
306 self.axes.append(ax)
306 if self.showprofile:
307 if self.showprofile:
307 cax = self.__add_axes(ax, size=size, pad=pad)
308 cax = self.__add_axes(ax, size=size, pad=pad)
308 cax.tick_params(labelsize=8)
309 cax.tick_params(labelsize=8)
309 self.pf_axes.append(cax)
310 self.pf_axes.append(cax)
310 else:
311 else:
311 if self.height is None:
312 if self.height is None:
312 self.height = 3
313 self.height = 3
313 for n in range(self.nplots):
314 for n in range(self.nplots):
314 fig = plt.figure(figsize=(self.width, self.height),
315 fig = plt.figure(figsize=(self.width, self.height),
315 edgecolor='k',
316 edgecolor='k',
316 facecolor='w')
317 facecolor='w')
317 ax = fig.add_subplot(1, 1, 1, polar=self.polar)
318 ax = fig.add_subplot(1, 1, 1, polar=self.polar)
318 ax.tick_params(labelsize=8)
319 ax.tick_params(labelsize=8)
319 ax.firsttime = True
320 ax.firsttime = True
320 ax.index = 0
321 ax.index = 0
321 ax.press = None
322 ax.press = None
322 self.figures.append(fig)
323 self.figures.append(fig)
323 self.axes.append(ax)
324 self.axes.append(ax)
324 if self.showprofile:
325 if self.showprofile:
325 cax = self.__add_axes(ax, size=size, pad=pad)
326 cax = self.__add_axes(ax, size=size, pad=pad)
326 cax.tick_params(labelsize=8)
327 cax.tick_params(labelsize=8)
327 self.pf_axes.append(cax)
328 self.pf_axes.append(cax)
328
329
329 for n in range(self.nrows):
330 for n in range(self.nrows):
330 if self.colormaps is not None:
331 if self.colormaps is not None:
331 cmap = plt.get_cmap(self.colormaps[n])
332 cmap = plt.get_cmap(self.colormaps[n])
332 else:
333 else:
333 cmap = plt.get_cmap(self.colormap)
334 cmap = plt.get_cmap(self.colormap)
334 cmap.set_bad(self.bgcolor, 1.)
335 cmap.set_bad(self.bgcolor, 1.)
335 self.cmaps.append(cmap)
336 self.cmaps.append(cmap)
336
337
337 def __add_axes(self, ax, size='30%', pad='8%'):
338 def __add_axes(self, ax, size='30%', pad='8%'):
338 '''
339 '''
339 Add new axes to the given figure
340 Add new axes to the given figure
340 '''
341 '''
341 divider = make_axes_locatable(ax)
342 divider = make_axes_locatable(ax)
342 nax = divider.new_horizontal(size=size, pad=pad)
343 nax = divider.new_horizontal(size=size, pad=pad)
343 ax.figure.add_axes(nax)
344 ax.figure.add_axes(nax)
344 return nax
345 return nax
345
346
346 def fill_gaps(self, x_buffer, y_buffer, z_buffer):
347 def fill_gaps(self, x_buffer, y_buffer, z_buffer):
347 '''
348 '''
348 Create a masked array for missing data
349 Create a masked array for missing data
349 '''
350 '''
350 if x_buffer.shape[0] < 2:
351 if x_buffer.shape[0] < 2:
351 return x_buffer, y_buffer, z_buffer
352 return x_buffer, y_buffer, z_buffer
352
353
353 deltas = x_buffer[1:] - x_buffer[0:-1]
354 deltas = x_buffer[1:] - x_buffer[0:-1]
354 x_median = numpy.median(deltas)
355 x_median = numpy.median(deltas)
355
356
356 index = numpy.where(deltas > 5 * x_median)
357 index = numpy.where(deltas > 5 * x_median)
357
358
358 if len(index[0]) != 0:
359 if len(index[0]) != 0:
359 z_buffer[::, index[0], ::] = self.__missing
360 z_buffer[::, index[0], ::] = self.__missing
360 z_buffer = numpy.ma.masked_inside(z_buffer,
361 z_buffer = numpy.ma.masked_inside(z_buffer,
361 0.99 * self.__missing,
362 0.99 * self.__missing,
362 1.01 * self.__missing)
363 1.01 * self.__missing)
363
364
364 return x_buffer, y_buffer, z_buffer
365 return x_buffer, y_buffer, z_buffer
365
366
366 def decimate(self):
367 def decimate(self):
367
368
368 # dx = int(len(self.x)/self.__MAXNUMX) + 1
369 # dx = int(len(self.x)/self.__MAXNUMX) + 1
369 dy = int(len(self.y) / self.decimation) + 1
370 dy = int(len(self.y) / self.decimation) + 1
370
371
371 # x = self.x[::dx]
372 # x = self.x[::dx]
372 x = self.x
373 x = self.x
373 y = self.y[::dy]
374 y = self.y[::dy]
374 z = self.z[::, ::, ::dy]
375 z = self.z[::, ::, ::dy]
375
376
376 return x, y, z
377 return x, y, z
377
378
378 def format(self):
379 def format(self):
379 '''
380 '''
380 Set min and max values, labels, ticks and titles
381 Set min and max values, labels, ticks and titles
381 '''
382 '''
382
383
383 for n, ax in enumerate(self.axes):
384 for n, ax in enumerate(self.axes):
384 if ax.firsttime:
385 if ax.firsttime:
385 if self.xaxis != 'time':
386 if self.xaxis != 'time':
386 xmin = self.xmin
387 xmin = self.xmin
387 xmax = self.xmax
388 xmax = self.xmax
388 else:
389 else:
389 xmin = self.tmin
390 xmin = self.tmin
390 xmax = self.tmin + self.xrange*60*60
391 xmax = self.tmin + self.xrange*60*60
391 ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime))
392 ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime))
392 ax.xaxis.set_major_locator(LinearLocator(9))
393 ax.xaxis.set_major_locator(LinearLocator(9))
393 ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)])
394 ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)])
394 ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)])
395 ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)])
395 ax.set_facecolor(self.bgcolor)
396 ax.set_facecolor(self.bgcolor)
396 if self.xscale:
397 if self.xscale:
397 ax.xaxis.set_major_formatter(FuncFormatter(
398 ax.xaxis.set_major_formatter(FuncFormatter(
398 lambda x, pos: '{0:g}'.format(x*self.xscale)))
399 lambda x, pos: '{0:g}'.format(x*self.xscale)))
399 if self.yscale:
400 if self.yscale:
400 ax.yaxis.set_major_formatter(FuncFormatter(
401 ax.yaxis.set_major_formatter(FuncFormatter(
401 lambda x, pos: '{0:g}'.format(x*self.yscale)))
402 lambda x, pos: '{0:g}'.format(x*self.yscale)))
402 if self.xlabel is not None:
403 if self.xlabel is not None:
403 ax.set_xlabel(self.xlabel)
404 ax.set_xlabel(self.xlabel)
404 if self.ylabel is not None:
405 if self.ylabel is not None:
405 ax.set_ylabel(self.ylabel)
406 ax.set_ylabel(self.ylabel)
406 if self.showprofile:
407 if self.showprofile:
407 self.pf_axes[n].set_ylim(ymin, ymax)
408 self.pf_axes[n].set_ylim(ymin, ymax)
408 self.pf_axes[n].set_xlim(self.zmin, self.zmax)
409 self.pf_axes[n].set_xlim(self.zmin, self.zmax)
409 self.pf_axes[n].set_xlabel('dB')
410 self.pf_axes[n].set_xlabel('dB')
410 self.pf_axes[n].grid(b=True, axis='x')
411 self.pf_axes[n].grid(b=True, axis='x')
411 [tick.set_visible(False)
412 [tick.set_visible(False)
412 for tick in self.pf_axes[n].get_yticklabels()]
413 for tick in self.pf_axes[n].get_yticklabels()]
413 if self.colorbar:
414 if self.colorbar:
414 ax.cbar = plt.colorbar(
415 ax.cbar = plt.colorbar(
415 ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10)
416 ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10)
416 ax.cbar.ax.tick_params(labelsize=8)
417 ax.cbar.ax.tick_params(labelsize=8)
417 ax.cbar.ax.press = None
418 ax.cbar.ax.press = None
418 if self.cb_label:
419 if self.cb_label:
419 ax.cbar.set_label(self.cb_label, size=8)
420 ax.cbar.set_label(self.cb_label, size=8)
420 elif self.cb_labels:
421 elif self.cb_labels:
421 ax.cbar.set_label(self.cb_labels[n], size=8)
422 ax.cbar.set_label(self.cb_labels[n], size=8)
422 else:
423 else:
423 ax.cbar = None
424 ax.cbar = None
424 ax.set_xlim(xmin, xmax)
425 ax.set_xlim(xmin, xmax)
425 ax.set_ylim(ymin, ymax)
426 ax.set_ylim(ymin, ymax)
426 ax.firsttime = False
427 ax.firsttime = False
427 if self.grid:
428 if self.grid:
428 ax.grid(True)
429 ax.grid(True)
429 if not self.polar:
430 if not self.polar:
430 ax.set_title('{} {} {}'.format(
431 ax.set_title('{} {} {}'.format(
431 self.titles[n],
432 self.titles[n],
432 self.getDateTime(self.data.max_time).strftime(
433 self.getDateTime(self.data.max_time).strftime(
433 '%Y-%m-%d %H:%M:%S'),
434 '%Y-%m-%d %H:%M:%S'),
434 self.time_label),
435 self.time_label),
435 size=8)
436 size=8)
436 else:
437 else:
437 ax.set_title('{}'.format(self.titles[n]), size=8)
438 #ax.set_title('{}'.format(self.titles[n]), size=8)
438 ax.set_ylim(0, 90)
439 ax.set_title('{} {} {}'.format(
439 ax.set_yticks(numpy.arange(0, 90, 20))
440 self.titles[n],
441 self.getDateTime(self.data.max_time).strftime(
442 '%Y-%m-%d %H:%M:%S'),
443 self.time_label),
444 size=8)
445 ax.set_ylim(0, self.ymax)
446 #ax.set_yticks(numpy.arange(0, self.ymax, 20))
440 ax.yaxis.labelpad = 40
447 ax.yaxis.labelpad = 40
441
448
442 if self.firsttime:
449 if self.firsttime:
443 for n, fig in enumerate(self.figures):
450 for n, fig in enumerate(self.figures):
444 fig.subplots_adjust(**self.plots_adjust)
451 fig.subplots_adjust(**self.plots_adjust)
445 self.firsttime = False
452 self.firsttime = False
446
453
447 def clear_figures(self):
454 def clear_figures(self):
448 '''
455 '''
449 Reset axes for redraw plots
456 Reset axes for redraw plots
450 '''
457 '''
451
458
452 for ax in self.axes+self.pf_axes+self.cb_axes:
459 for ax in self.axes+self.pf_axes+self.cb_axes:
453 ax.clear()
460 ax.clear()
454 ax.firsttime = True
461 ax.firsttime = True
455 if hasattr(ax, 'cbar') and ax.cbar:
462 if hasattr(ax, 'cbar') and ax.cbar:
456 ax.cbar.remove()
463 ax.cbar.remove()
457
464
458 def __plot(self):
465 def __plot(self):
459 '''
466 '''
460 Main function to plot, format and save figures
467 Main function to plot, format and save figures
461 '''
468 '''
462
469
463 self.plot()
470 self.plot()
464 self.format()
471 self.format()
465
472
466 for n, fig in enumerate(self.figures):
473 for n, fig in enumerate(self.figures):
467 if self.nrows == 0 or self.nplots == 0:
474 if self.nrows == 0 or self.nplots == 0:
468 log.warning('No data', self.name)
475 log.warning('No data', self.name)
469 fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center')
476 fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center')
470 fig.canvas.manager.set_window_title(self.CODE)
477 fig.canvas.manager.set_window_title(self.CODE)
471 continue
478 continue
472
479
473 fig.canvas.manager.set_window_title('{} - {}'.format(self.title,
480 fig.canvas.manager.set_window_title('{} - {}'.format(self.title,
474 self.getDateTime(self.data.max_time).strftime('%Y/%m/%d')))
481 self.getDateTime(self.data.max_time).strftime('%Y/%m/%d')))
475 fig.canvas.draw()
482 fig.canvas.draw()
476 if self.show:
483 if self.show:
477 fig.show()
484 fig.show()
478 figpause(0.01)
485 figpause(0.01)
479
486
480 if self.save:
487 if self.save:
481 self.save_figure(n)
488 self.save_figure(n)
482
489
483 if self.server:
490 if self.server:
484 self.send_to_server()
491 self.send_to_server()
485
492
486 def __update(self, dataOut, timestamp):
493 def __update(self, dataOut, timestamp):
487 '''
494 '''
488 '''
495 '''
489
496
490 metadata = {
497 metadata = {
491 'yrange': dataOut.heightList,
498 'yrange': dataOut.heightList,
492 'interval': dataOut.timeInterval,
499 'interval': dataOut.timeInterval,
493 'channels': dataOut.channelList
500 'channels': dataOut.channelList
494 }
501 }
495
502
496 data, meta = self.update(dataOut)
503 data, meta = self.update(dataOut)
497 metadata.update(meta)
504 metadata.update(meta)
498 self.data.update(data, timestamp, metadata)
505 self.data.update(data, timestamp, metadata)
499
506
500 def save_figure(self, n):
507 def save_figure(self, n):
501 '''
508 '''
502 '''
509 '''
503 if self.oneFigure:
510 if self.oneFigure:
504 if (self.data.max_time - self.save_time) <= self.save_period:
511 if (self.data.max_time - self.save_time) <= self.save_period:
505 return
512 return
506
513
507 self.save_time = self.data.max_time
514 self.save_time = self.data.max_time
508
515
509 fig = self.figures[n]
516 fig = self.figures[n]
510 if self.throttle == 0:
517 if self.throttle == 0:
511 if self.oneFigure:
518 if self.oneFigure:
512 figname = os.path.join(
519 figname = os.path.join(
513 self.save,
520 self.save,
514 self.save_code,
521 self.save_code,
515 '{}_{}.png'.format(
522 '{}_{}.png'.format(
516 self.save_code,
523 self.save_code,
517 self.getDateTime(self.data.max_time).strftime(
524 self.getDateTime(self.data.max_time).strftime(
518 '%Y%m%d_%H%M%S'
525 '%Y%m%d_%H%M%S'
519 ),
526 ),
520 )
527 )
521 )
528 )
522 else:
529 else:
523 figname = os.path.join(
530 figname = os.path.join(
524 self.save,
531 self.save,
525 self.save_code,
532 self.save_code,
526 '{}_ch{}_{}.png'.format(
533 '{}_ch{}_{}.png'.format(
527 self.save_code,n,
534 self.save_code,n,
528 self.getDateTime(self.data.max_time).strftime(
535 self.getDateTime(self.data.max_time).strftime(
529 '%Y%m%d_%H%M%S'
536 '%Y%m%d_%H%M%S'
530 ),
537 ),
531 )
538 )
532 )
539 )
533 log.log('Saving figure: {}'.format(figname), self.name)
540 log.log('Saving figure: {}'.format(figname), self.name)
534 if not os.path.isdir(os.path.dirname(figname)):
541 if not os.path.isdir(os.path.dirname(figname)):
535 os.makedirs(os.path.dirname(figname))
542 os.makedirs(os.path.dirname(figname))
536 fig.savefig(figname)
543 fig.savefig(figname)
537
544
538 figname = os.path.join(
545 figname = os.path.join(
539 self.save,
546 self.save,
540 '{}_{}.png'.format(
547 '{}_{}.png'.format(
541 self.save_code,
548 self.save_code,
542 self.getDateTime(self.data.min_time).strftime(
549 self.getDateTime(self.data.min_time).strftime(
543 '%Y%m%d'
550 '%Y%m%d'
544 ),
551 ),
545 )
552 )
546 )
553 )
547
554
548 log.log('Saving figure: {}'.format(figname), self.name)
555 log.log('Saving figure: {}'.format(figname), self.name)
549 if not os.path.isdir(os.path.dirname(figname)):
556 if not os.path.isdir(os.path.dirname(figname)):
550 os.makedirs(os.path.dirname(figname))
557 os.makedirs(os.path.dirname(figname))
551 fig.savefig(figname)
558 fig.savefig(figname)
552
559
553 def send_to_server(self):
560 def send_to_server(self):
554 '''
561 '''
555 '''
562 '''
556
563
557 if self.exp_code == None:
564 if self.exp_code == None:
558 log.warning('Missing `exp_code` skipping sending to server...')
565 log.warning('Missing `exp_code` skipping sending to server...')
559
566
560 last_time = self.data.max_time
567 last_time = self.data.max_time
561 interval = last_time - self.sender_time
568 interval = last_time - self.sender_time
562 if interval < self.sender_period:
569 if interval < self.sender_period:
563 return
570 return
564
571
565 self.sender_time = last_time
572 self.sender_time = last_time
566
573
567 attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax']
574 attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax']
568 for attr in attrs:
575 for attr in attrs:
569 value = getattr(self, attr)
576 value = getattr(self, attr)
570 if value:
577 if value:
571 if isinstance(value, (numpy.float32, numpy.float64)):
578 if isinstance(value, (numpy.float32, numpy.float64)):
572 value = round(float(value), 2)
579 value = round(float(value), 2)
573 self.data.meta[attr] = value
580 self.data.meta[attr] = value
574 if self.colormap == 'jet':
581 if self.colormap == 'jet':
575 self.data.meta['colormap'] = 'Jet'
582 self.data.meta['colormap'] = 'Jet'
576 elif 'RdBu' in self.colormap:
583 elif 'RdBu' in self.colormap:
577 self.data.meta['colormap'] = 'RdBu'
584 self.data.meta['colormap'] = 'RdBu'
578 else:
585 else:
579 self.data.meta['colormap'] = 'Viridis'
586 self.data.meta['colormap'] = 'Viridis'
580 self.data.meta['interval'] = int(interval)
587 self.data.meta['interval'] = int(interval)
581
588
582 self.sender_queue.append(last_time)
589 self.sender_queue.append(last_time)
583
590
584 while True:
591 while True:
585 try:
592 try:
586 tm = self.sender_queue.popleft()
593 tm = self.sender_queue.popleft()
587 except IndexError:
594 except IndexError:
588 break
595 break
589 msg = self.data.jsonify(tm, self.save_code, self.plot_type)
596 msg = self.data.jsonify(tm, self.save_code, self.plot_type)
590 self.socket.send_string(msg)
597 self.socket.send_string(msg)
591 socks = dict(self.poll.poll(2000))
598 socks = dict(self.poll.poll(2000))
592 if socks.get(self.socket) == zmq.POLLIN:
599 if socks.get(self.socket) == zmq.POLLIN:
593 reply = self.socket.recv_string()
600 reply = self.socket.recv_string()
594 if reply == 'ok':
601 if reply == 'ok':
595 log.log("Response from server ok", self.name)
602 log.log("Response from server ok", self.name)
596 time.sleep(0.1)
603 time.sleep(0.1)
597 continue
604 continue
598 else:
605 else:
599 log.warning(
606 log.warning(
600 "Malformed reply from server: {}".format(reply), self.name)
607 "Malformed reply from server: {}".format(reply), self.name)
601 else:
608 else:
602 log.warning(
609 log.warning(
603 "No response from server, retrying...", self.name)
610 "No response from server, retrying...", self.name)
604 self.sender_queue.appendleft(tm)
611 self.sender_queue.appendleft(tm)
605 self.socket.setsockopt(zmq.LINGER, 0)
612 self.socket.setsockopt(zmq.LINGER, 0)
606 self.socket.close()
613 self.socket.close()
607 self.poll.unregister(self.socket)
614 self.poll.unregister(self.socket)
608 self.socket = self.context.socket(zmq.REQ)
615 self.socket = self.context.socket(zmq.REQ)
609 self.socket.connect(self.server)
616 self.socket.connect(self.server)
610 self.poll.register(self.socket, zmq.POLLIN)
617 self.poll.register(self.socket, zmq.POLLIN)
611 break
618 break
612
619
613 def setup(self):
620 def setup(self):
614 '''
621 '''
615 This method should be implemented in the child class, the following
622 This method should be implemented in the child class, the following
616 attributes should be set:
623 attributes should be set:
617
624
618 self.nrows: number of rows
625 self.nrows: number of rows
619 self.ncols: number of cols
626 self.ncols: number of cols
620 self.nplots: number of plots (channels or pairs)
627 self.nplots: number of plots (channels or pairs)
621 self.ylabel: label for Y axes
628 self.ylabel: label for Y axes
622 self.titles: list of axes title
629 self.titles: list of axes title
623
630
624 '''
631 '''
625 raise NotImplementedError
632 raise NotImplementedError
626
633
627 def plot(self):
634 def plot(self):
628 '''
635 '''
629 Must be defined in the child class, the actual plotting method
636 Must be defined in the child class, the actual plotting method
630 '''
637 '''
631 raise NotImplementedError
638 raise NotImplementedError
632
639
633 def update(self, dataOut):
640 def update(self, dataOut):
634 '''
641 '''
635 Must be defined in the child class, update self.data with new data
642 Must be defined in the child class, update self.data with new data
636 '''
643 '''
637
644
638 data = {
645 data = {
639 self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE))
646 self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE))
640 }
647 }
641 meta = {}
648 meta = {}
642
649
643 return data, meta
650 return data, meta
644
651
645 def run(self, dataOut, **kwargs):
652 def run(self, dataOut, **kwargs):
646 '''
653 '''
647 Main plotting routine
654 Main plotting routine
648 '''
655 '''
649
656
650 if self.isConfig is False:
657 if self.isConfig is False:
651 self.__setup(**kwargs)
658 self.__setup(**kwargs)
652
659
653 if self.localtime:
660 if self.localtime:
654 self.getDateTime = datetime.datetime.fromtimestamp
661 self.getDateTime = datetime.datetime.fromtimestamp
655 else:
662 else:
656 self.getDateTime = datetime.datetime.utcfromtimestamp
663 self.getDateTime = datetime.datetime.utcfromtimestamp
657
664
658 self.data.setup()
665 self.data.setup()
659 self.isConfig = True
666 self.isConfig = True
660 if self.server:
667 if self.server:
661 self.context = zmq.Context()
668 self.context = zmq.Context()
662 self.socket = self.context.socket(zmq.REQ)
669 self.socket = self.context.socket(zmq.REQ)
663 self.socket.connect(self.server)
670 self.socket.connect(self.server)
664 self.poll = zmq.Poller()
671 self.poll = zmq.Poller()
665 self.poll.register(self.socket, zmq.POLLIN)
672 self.poll.register(self.socket, zmq.POLLIN)
666
673
667 tm = getattr(dataOut, self.attr_time)
674 tm = getattr(dataOut, self.attr_time)
668
675
669 if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60:
676 if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60:
670 self.save_time = tm
677 self.save_time = tm
671 self.__plot()
678 self.__plot()
672 self.tmin += self.xrange*60*60
679 self.tmin += self.xrange*60*60
673 self.data.setup()
680 self.data.setup()
674 self.clear_figures()
681 self.clear_figures()
675
682
676 self.__update(dataOut, tm)
683 self.__update(dataOut, tm)
677
684
678 if self.isPlotConfig is False:
685 if self.isPlotConfig is False:
679 self.__setup_plot()
686 self.__setup_plot()
680 self.isPlotConfig = True
687 self.isPlotConfig = True
681 if self.xaxis == 'time':
688 if self.xaxis == 'time':
682 dt = self.getDateTime(tm)
689 dt = self.getDateTime(tm)
683 if self.xmin is None:
690 if self.xmin is None:
684 self.tmin = tm
691 self.tmin = tm
685 self.xmin = dt.hour
692 self.xmin = dt.hour
686 minutes = (self.xmin-int(self.xmin)) * 60
693 minutes = (self.xmin-int(self.xmin)) * 60
687 seconds = (minutes - int(minutes)) * 60
694 seconds = (minutes - int(minutes)) * 60
688 self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) -
695 self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) -
689 datetime.datetime(1970, 1, 1)).total_seconds()
696 datetime.datetime(1970, 1, 1)).total_seconds()
690 if self.localtime:
697 if self.localtime:
691 self.tmin += time.timezone
698 self.tmin += time.timezone
692
699
693 if self.xmin is not None and self.xmax is not None:
700 if self.xmin is not None and self.xmax is not None:
694 self.xrange = self.xmax - self.xmin
701 self.xrange = self.xmax - self.xmin
695
702
696 if self.throttle == 0:
703 if self.throttle == 0:
697 self.__plot()
704 self.__plot()
698 else:
705 else:
699 self.__throttle_plot(self.__plot)#, coerce=coerce)
706 self.__throttle_plot(self.__plot)#, coerce=coerce)
700
707
701 def close(self):
708 def close(self):
702
709
703 if self.data and not self.data.flagNoData:
710 if self.data and not self.data.flagNoData:
704 self.save_time = 0
711 self.save_time = 0
705 self.__plot()
712 self.__plot()
706 if self.data and not self.data.flagNoData and self.pause:
713 if self.data and not self.data.flagNoData and self.pause:
707 figpause(10)
714 figpause(10)
@@ -1,2378 +1,2522
1 import os
1 import os
2 import datetime
2 import datetime
3 import numpy
3 import numpy
4 from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter
4 from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter
5
5
6 from schainpy.model.graphics.jroplot_base import Plot, plt
6 from schainpy.model.graphics.jroplot_base import Plot, plt
7 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
7 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
8 from schainpy.utils import log
8 from schainpy.utils import log
9 # libreria wradlib
9 # libreria wradlib
10 import wradlib as wrl
10 import wradlib as wrl
11
11
12 EARTH_RADIUS = 6.3710e3
12 EARTH_RADIUS = 6.3710e3
13
13
14
14
15 def ll2xy(lat1, lon1, lat2, lon2):
15 def ll2xy(lat1, lon1, lat2, lon2):
16
16
17 p = 0.017453292519943295
17 p = 0.017453292519943295
18 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
18 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
19 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
19 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
20 r = 12742 * numpy.arcsin(numpy.sqrt(a))
20 r = 12742 * numpy.arcsin(numpy.sqrt(a))
21 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
21 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
22 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
22 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
23 theta = -theta + numpy.pi/2
23 theta = -theta + numpy.pi/2
24 return r*numpy.cos(theta), r*numpy.sin(theta)
24 return r*numpy.cos(theta), r*numpy.sin(theta)
25
25
26
26
27 def km2deg(km):
27 def km2deg(km):
28 '''
28 '''
29 Convert distance in km to degrees
29 Convert distance in km to degrees
30 '''
30 '''
31
31
32 return numpy.rad2deg(km/EARTH_RADIUS)
32 return numpy.rad2deg(km/EARTH_RADIUS)
33
33
34
34
35
35
36 class SpectralMomentsPlot(SpectraPlot):
36 class SpectralMomentsPlot(SpectraPlot):
37 '''
37 '''
38 Plot for Spectral Moments
38 Plot for Spectral Moments
39 '''
39 '''
40 CODE = 'spc_moments'
40 CODE = 'spc_moments'
41 # colormap = 'jet'
41 # colormap = 'jet'
42 # plot_type = 'pcolor'
42 # plot_type = 'pcolor'
43
43
44 class DobleGaussianPlot(SpectraPlot):
44 class DobleGaussianPlot(SpectraPlot):
45 '''
45 '''
46 Plot for Double Gaussian Plot
46 Plot for Double Gaussian Plot
47 '''
47 '''
48 CODE = 'gaussian_fit'
48 CODE = 'gaussian_fit'
49 # colormap = 'jet'
49 # colormap = 'jet'
50 # plot_type = 'pcolor'
50 # plot_type = 'pcolor'
51
51
52 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
52 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
53 '''
53 '''
54 Plot SpectraCut with Double Gaussian Fit
54 Plot SpectraCut with Double Gaussian Fit
55 '''
55 '''
56 CODE = 'cut_gaussian_fit'
56 CODE = 'cut_gaussian_fit'
57
57
58 class SnrPlot(RTIPlot):
58 class SnrPlot(RTIPlot):
59 '''
59 '''
60 Plot for SNR Data
60 Plot for SNR Data
61 '''
61 '''
62
62
63 CODE = 'snr'
63 CODE = 'snr'
64 colormap = 'jet'
64 colormap = 'jet'
65
65
66 def update(self, dataOut):
66 def update(self, dataOut):
67
67
68 data = {
68 data = {
69 'snr': 10*numpy.log10(dataOut.data_snr)
69 'snr': 10*numpy.log10(dataOut.data_snr)
70 }
70 }
71
71
72 return data, {}
72 return data, {}
73
73
74 class DopplerPlot(RTIPlot):
74 class DopplerPlot(RTIPlot):
75 '''
75 '''
76 Plot for DOPPLER Data (1st moment)
76 Plot for DOPPLER Data (1st moment)
77 '''
77 '''
78
78
79 CODE = 'dop'
79 CODE = 'dop'
80 colormap = 'jet'
80 colormap = 'jet'
81
81
82 def update(self, dataOut):
82 def update(self, dataOut):
83
83
84 data = {
84 data = {
85 'dop': 10*numpy.log10(dataOut.data_dop)
85 'dop': 10*numpy.log10(dataOut.data_dop)
86 }
86 }
87
87
88 return data, {}
88 return data, {}
89
89
90 class PowerPlot(RTIPlot):
90 class PowerPlot(RTIPlot):
91 '''
91 '''
92 Plot for Power Data (0 moment)
92 Plot for Power Data (0 moment)
93 '''
93 '''
94
94
95 CODE = 'pow'
95 CODE = 'pow'
96 colormap = 'jet'
96 colormap = 'jet'
97
97
98 def update(self, dataOut):
98 def update(self, dataOut):
99 data = {
99 data = {
100 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
100 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
101 }
101 }
102 return data, {}
102 return data, {}
103
103
104 class SpectralWidthPlot(RTIPlot):
104 class SpectralWidthPlot(RTIPlot):
105 '''
105 '''
106 Plot for Spectral Width Data (2nd moment)
106 Plot for Spectral Width Data (2nd moment)
107 '''
107 '''
108
108
109 CODE = 'width'
109 CODE = 'width'
110 colormap = 'jet'
110 colormap = 'jet'
111
111
112 def update(self, dataOut):
112 def update(self, dataOut):
113
113
114 data = {
114 data = {
115 'width': dataOut.data_width
115 'width': dataOut.data_width
116 }
116 }
117
117
118 return data, {}
118 return data, {}
119
119
120 class SkyMapPlot(Plot):
120 class SkyMapPlot(Plot):
121 '''
121 '''
122 Plot for meteors detection data
122 Plot for meteors detection data
123 '''
123 '''
124
124
125 CODE = 'param'
125 CODE = 'param'
126
126
127 def setup(self):
127 def setup(self):
128
128
129 self.ncols = 1
129 self.ncols = 1
130 self.nrows = 1
130 self.nrows = 1
131 self.width = 7.2
131 self.width = 7.2
132 self.height = 7.2
132 self.height = 7.2
133 self.nplots = 1
133 self.nplots = 1
134 self.xlabel = 'Zonal Zenith Angle (deg)'
134 self.xlabel = 'Zonal Zenith Angle (deg)'
135 self.ylabel = 'Meridional Zenith Angle (deg)'
135 self.ylabel = 'Meridional Zenith Angle (deg)'
136 self.polar = True
136 self.polar = True
137 self.ymin = -180
137 self.ymin = -180
138 self.ymax = 180
138 self.ymax = 180
139 self.colorbar = False
139 self.colorbar = False
140
140
141 def plot(self):
141 def plot(self):
142
142
143 arrayParameters = numpy.concatenate(self.data['param'])
143 arrayParameters = numpy.concatenate(self.data['param'])
144 error = arrayParameters[:, -1]
144 error = arrayParameters[:, -1]
145 indValid = numpy.where(error == 0)[0]
145 indValid = numpy.where(error == 0)[0]
146 finalMeteor = arrayParameters[indValid, :]
146 finalMeteor = arrayParameters[indValid, :]
147 finalAzimuth = finalMeteor[:, 3]
147 finalAzimuth = finalMeteor[:, 3]
148 finalZenith = finalMeteor[:, 4]
148 finalZenith = finalMeteor[:, 4]
149
149
150 x = finalAzimuth * numpy.pi / 180
150 x = finalAzimuth * numpy.pi / 180
151 y = finalZenith
151 y = finalZenith
152
152
153 ax = self.axes[0]
153 ax = self.axes[0]
154
154
155 if ax.firsttime:
155 if ax.firsttime:
156 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
156 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
157 else:
157 else:
158 ax.plot.set_data(x, y)
158 ax.plot.set_data(x, y)
159
159
160 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
160 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
161 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
161 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
162 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
162 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
163 dt2,
163 dt2,
164 len(x))
164 len(x))
165 self.titles[0] = title
165 self.titles[0] = title
166
166
167
167
168 class GenericRTIPlot(Plot):
168 class GenericRTIPlot(Plot):
169 '''
169 '''
170 Plot for data_xxxx object
170 Plot for data_xxxx object
171 '''
171 '''
172
172
173 CODE = 'param'
173 CODE = 'param'
174 colormap = 'viridis'
174 colormap = 'viridis'
175 plot_type = 'pcolorbuffer'
175 plot_type = 'pcolorbuffer'
176
176
177 def setup(self):
177 def setup(self):
178 self.xaxis = 'time'
178 self.xaxis = 'time'
179 self.ncols = 1
179 self.ncols = 1
180 self.nrows = self.data.shape('param')[0]
180 self.nrows = self.data.shape('param')[0]
181 self.nplots = self.nrows
181 self.nplots = self.nrows
182 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
182 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
183
183
184 if not self.xlabel:
184 if not self.xlabel:
185 self.xlabel = 'Time'
185 self.xlabel = 'Time'
186
186
187 self.ylabel = 'Range [km]'
187 self.ylabel = 'Range [km]'
188 if not self.titles:
188 if not self.titles:
189 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
189 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
190
190
191 def update(self, dataOut):
191 def update(self, dataOut):
192
192
193 data = {
193 data = {
194 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
194 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
195 }
195 }
196
196
197 meta = {}
197 meta = {}
198
198
199 return data, meta
199 return data, meta
200
200
201 def plot(self):
201 def plot(self):
202 # self.data.normalize_heights()
202 # self.data.normalize_heights()
203 self.x = self.data.times
203 self.x = self.data.times
204 self.y = self.data.yrange
204 self.y = self.data.yrange
205 self.z = self.data['param']
205 self.z = self.data['param']
206 self.z = 10*numpy.log10(self.z)
206 self.z = 10*numpy.log10(self.z)
207 self.z = numpy.ma.masked_invalid(self.z)
207 self.z = numpy.ma.masked_invalid(self.z)
208
208
209 if self.decimation is None:
209 if self.decimation is None:
210 x, y, z = self.fill_gaps(self.x, self.y, self.z)
210 x, y, z = self.fill_gaps(self.x, self.y, self.z)
211 else:
211 else:
212 x, y, z = self.fill_gaps(*self.decimate())
212 x, y, z = self.fill_gaps(*self.decimate())
213
213
214 for n, ax in enumerate(self.axes):
214 for n, ax in enumerate(self.axes):
215
215
216 self.zmax = self.zmax if self.zmax is not None else numpy.max(
216 self.zmax = self.zmax if self.zmax is not None else numpy.max(
217 self.z[n])
217 self.z[n])
218 self.zmin = self.zmin if self.zmin is not None else numpy.min(
218 self.zmin = self.zmin if self.zmin is not None else numpy.min(
219 self.z[n])
219 self.z[n])
220
220
221 if ax.firsttime:
221 if ax.firsttime:
222 if self.zlimits is not None:
222 if self.zlimits is not None:
223 self.zmin, self.zmax = self.zlimits[n]
223 self.zmin, self.zmax = self.zlimits[n]
224
224
225 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
225 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
226 vmin=self.zmin,
226 vmin=self.zmin,
227 vmax=self.zmax,
227 vmax=self.zmax,
228 cmap=self.cmaps[n]
228 cmap=self.cmaps[n]
229 )
229 )
230 else:
230 else:
231 if self.zlimits is not None:
231 if self.zlimits is not None:
232 self.zmin, self.zmax = self.zlimits[n]
232 self.zmin, self.zmax = self.zlimits[n]
233 ax.collections.remove(ax.collections[0])
233 ax.collections.remove(ax.collections[0])
234 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
234 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
235 vmin=self.zmin,
235 vmin=self.zmin,
236 vmax=self.zmax,
236 vmax=self.zmax,
237 cmap=self.cmaps[n]
237 cmap=self.cmaps[n]
238 )
238 )
239
239
240
240
241 class PolarMapPlot(Plot):
241 class PolarMapPlot(Plot):
242 '''
242 '''
243 Plot for weather radar
243 Plot for weather radar
244 '''
244 '''
245
245
246 CODE = 'param'
246 CODE = 'param'
247 colormap = 'seismic'
247 colormap = 'seismic'
248
248
249 def setup(self):
249 def setup(self):
250 self.ncols = 1
250 self.ncols = 1
251 self.nrows = 1
251 self.nrows = 1
252 self.width = 9
252 self.width = 9
253 self.height = 8
253 self.height = 8
254 self.mode = self.data.meta['mode']
254 self.mode = self.data.meta['mode']
255 if self.channels is not None:
255 if self.channels is not None:
256 self.nplots = len(self.channels)
256 self.nplots = len(self.channels)
257 self.nrows = len(self.channels)
257 self.nrows = len(self.channels)
258 else:
258 else:
259 self.nplots = self.data.shape(self.CODE)[0]
259 self.nplots = self.data.shape(self.CODE)[0]
260 self.nrows = self.nplots
260 self.nrows = self.nplots
261 self.channels = list(range(self.nplots))
261 self.channels = list(range(self.nplots))
262 if self.mode == 'E':
262 if self.mode == 'E':
263 self.xlabel = 'Longitude'
263 self.xlabel = 'Longitude'
264 self.ylabel = 'Latitude'
264 self.ylabel = 'Latitude'
265 else:
265 else:
266 self.xlabel = 'Range (km)'
266 self.xlabel = 'Range (km)'
267 self.ylabel = 'Height (km)'
267 self.ylabel = 'Height (km)'
268 self.bgcolor = 'white'
268 self.bgcolor = 'white'
269 self.cb_labels = self.data.meta['units']
269 self.cb_labels = self.data.meta['units']
270 self.lat = self.data.meta['latitude']
270 self.lat = self.data.meta['latitude']
271 self.lon = self.data.meta['longitude']
271 self.lon = self.data.meta['longitude']
272 self.xmin, self.xmax = float(
272 self.xmin, self.xmax = float(
273 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
273 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
274 self.ymin, self.ymax = float(
274 self.ymin, self.ymax = float(
275 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
275 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
276 # self.polar = True
276 # self.polar = True
277
277
278 def plot(self):
278 def plot(self):
279
279
280 for n, ax in enumerate(self.axes):
280 for n, ax in enumerate(self.axes):
281 data = self.data['param'][self.channels[n]]
281 data = self.data['param'][self.channels[n]]
282
282
283 zeniths = numpy.linspace(
283 zeniths = numpy.linspace(
284 0, self.data.meta['max_range'], data.shape[1])
284 0, self.data.meta['max_range'], data.shape[1])
285 if self.mode == 'E':
285 if self.mode == 'E':
286 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
286 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
287 r, theta = numpy.meshgrid(zeniths, azimuths)
287 r, theta = numpy.meshgrid(zeniths, azimuths)
288 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
288 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
289 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
289 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
290 x = km2deg(x) + self.lon
290 x = km2deg(x) + self.lon
291 y = km2deg(y) + self.lat
291 y = km2deg(y) + self.lat
292 else:
292 else:
293 azimuths = numpy.radians(self.data.yrange)
293 azimuths = numpy.radians(self.data.yrange)
294 r, theta = numpy.meshgrid(zeniths, azimuths)
294 r, theta = numpy.meshgrid(zeniths, azimuths)
295 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
295 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
296 self.y = zeniths
296 self.y = zeniths
297
297
298 if ax.firsttime:
298 if ax.firsttime:
299 if self.zlimits is not None:
299 if self.zlimits is not None:
300 self.zmin, self.zmax = self.zlimits[n]
300 self.zmin, self.zmax = self.zlimits[n]
301 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
301 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
302 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
302 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
303 vmin=self.zmin,
303 vmin=self.zmin,
304 vmax=self.zmax,
304 vmax=self.zmax,
305 cmap=self.cmaps[n])
305 cmap=self.cmaps[n])
306 else:
306 else:
307 if self.zlimits is not None:
307 if self.zlimits is not None:
308 self.zmin, self.zmax = self.zlimits[n]
308 self.zmin, self.zmax = self.zlimits[n]
309 ax.collections.remove(ax.collections[0])
309 ax.collections.remove(ax.collections[0])
310 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
310 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
311 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
311 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
312 vmin=self.zmin,
312 vmin=self.zmin,
313 vmax=self.zmax,
313 vmax=self.zmax,
314 cmap=self.cmaps[n])
314 cmap=self.cmaps[n])
315
315
316 if self.mode == 'A':
316 if self.mode == 'A':
317 continue
317 continue
318
318
319 # plot district names
319 # plot district names
320 f = open('/data/workspace/schain_scripts/distrito.csv')
320 f = open('/data/workspace/schain_scripts/distrito.csv')
321 for line in f:
321 for line in f:
322 label, lon, lat = [s.strip() for s in line.split(',') if s]
322 label, lon, lat = [s.strip() for s in line.split(',') if s]
323 lat = float(lat)
323 lat = float(lat)
324 lon = float(lon)
324 lon = float(lon)
325 # ax.plot(lon, lat, '.b', ms=2)
325 # ax.plot(lon, lat, '.b', ms=2)
326 ax.text(lon, lat, label.decode('utf8'), ha='center',
326 ax.text(lon, lat, label.decode('utf8'), ha='center',
327 va='bottom', size='8', color='black')
327 va='bottom', size='8', color='black')
328
328
329 # plot limites
329 # plot limites
330 limites = []
330 limites = []
331 tmp = []
331 tmp = []
332 for line in open('/data/workspace/schain_scripts/lima.csv'):
332 for line in open('/data/workspace/schain_scripts/lima.csv'):
333 if '#' in line:
333 if '#' in line:
334 if tmp:
334 if tmp:
335 limites.append(tmp)
335 limites.append(tmp)
336 tmp = []
336 tmp = []
337 continue
337 continue
338 values = line.strip().split(',')
338 values = line.strip().split(',')
339 tmp.append((float(values[0]), float(values[1])))
339 tmp.append((float(values[0]), float(values[1])))
340 for points in limites:
340 for points in limites:
341 ax.add_patch(
341 ax.add_patch(
342 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
342 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
343
343
344 # plot Cuencas
344 # plot Cuencas
345 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
345 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
346 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
346 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
347 values = [line.strip().split(',') for line in f]
347 values = [line.strip().split(',') for line in f]
348 points = [(float(s[0]), float(s[1])) for s in values]
348 points = [(float(s[0]), float(s[1])) for s in values]
349 ax.add_patch(Polygon(points, ec='b', fc='none'))
349 ax.add_patch(Polygon(points, ec='b', fc='none'))
350
350
351 # plot grid
351 # plot grid
352 for r in (15, 30, 45, 60):
352 for r in (15, 30, 45, 60):
353 ax.add_artist(plt.Circle((self.lon, self.lat),
353 ax.add_artist(plt.Circle((self.lon, self.lat),
354 km2deg(r), color='0.6', fill=False, lw=0.2))
354 km2deg(r), color='0.6', fill=False, lw=0.2))
355 ax.text(
355 ax.text(
356 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
356 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
357 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
357 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
358 '{}km'.format(r),
358 '{}km'.format(r),
359 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
359 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
360
360
361 if self.mode == 'E':
361 if self.mode == 'E':
362 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
362 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
363 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
363 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
364 else:
364 else:
365 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
365 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
366 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
366 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
367
367
368 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
368 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
369 self.titles = ['{} {}'.format(
369 self.titles = ['{} {}'.format(
370 self.data.parameters[x], title) for x in self.channels]
370 self.data.parameters[x], title) for x in self.channels]
371
371
372 class WeatherPlot(Plot):
372 class WeatherPlot(Plot):
373 CODE = 'weather'
373 CODE = 'weather'
374 plot_name = 'weather'
374 plot_name = 'weather'
375 plot_type = 'ppistyle'
375 plot_type = 'ppistyle'
376 buffering = False
376 buffering = False
377
377
378 def setup(self):
378 def setup(self):
379 self.ncols = 1
379 self.ncols = 1
380 self.nrows = 1
380 self.nrows = 1
381 self.width =8
381 self.width =8
382 self.height =8
382 self.height =8
383 self.nplots= 1
383 self.nplots= 1
384 self.ylabel= 'Range [Km]'
384 self.ylabel= 'Range [Km]'
385 self.titles= ['Weather']
385 self.titles= ['Weather']
386 self.colorbar=False
386 self.colorbar=False
387 self.ini =0
387 self.ini =0
388 self.len_azi =0
388 self.len_azi =0
389 self.buffer_ini = None
389 self.buffer_ini = None
390 self.buffer_azi = None
390 self.buffer_azi = None
391 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
391 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
392 self.flag =0
392 self.flag =0
393 self.indicador= 0
393 self.indicador= 0
394 self.last_data_azi = None
394 self.last_data_azi = None
395 self.val_mean = None
395 self.val_mean = None
396
396
397 def update(self, dataOut):
397 def update(self, dataOut):
398
398
399 data = {}
399 data = {}
400 meta = {}
400 meta = {}
401 if hasattr(dataOut, 'dataPP_POWER'):
401 if hasattr(dataOut, 'dataPP_POWER'):
402 factor = 1
402 factor = 1
403 if hasattr(dataOut, 'nFFTPoints'):
403 if hasattr(dataOut, 'nFFTPoints'):
404 factor = dataOut.normFactor
404 factor = dataOut.normFactor
405 #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape)
405 #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape)
406 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
406 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
407 data['azi'] = dataOut.data_azi
407 data['azi'] = dataOut.data_azi
408 data['ele'] = dataOut.data_ele
408 data['ele'] = dataOut.data_ele
409 return data, meta
409 return data, meta
410
410
411 def get2List(self,angulos):
411 def get2List(self,angulos):
412 list1=[]
412 list1=[]
413 list2=[]
413 list2=[]
414 for i in reversed(range(len(angulos))):
414 for i in reversed(range(len(angulos))):
415 diff_ = angulos[i]-angulos[i-1]
415 diff_ = angulos[i]-angulos[i-1]
416 if diff_ >1.5:
416 if diff_ >1.5:
417 list1.append(i-1)
417 list1.append(i-1)
418 list2.append(diff_)
418 list2.append(diff_)
419 return list(reversed(list1)),list(reversed(list2))
419 return list(reversed(list1)),list(reversed(list2))
420
420
421 def fixData360(self,list_,ang_):
421 def fixData360(self,list_,ang_):
422 if list_[0]==-1:
422 if list_[0]==-1:
423 vec = numpy.where(ang_<ang_[0])
423 vec = numpy.where(ang_<ang_[0])
424 ang_[vec] = ang_[vec]+360
424 ang_[vec] = ang_[vec]+360
425 return ang_
425 return ang_
426 return ang_
426 return ang_
427
427
428 def fixData360HL(self,angulos):
428 def fixData360HL(self,angulos):
429 vec = numpy.where(angulos>=360)
429 vec = numpy.where(angulos>=360)
430 angulos[vec]=angulos[vec]-360
430 angulos[vec]=angulos[vec]-360
431 return angulos
431 return angulos
432
432
433 def search_pos(self,pos,list_):
433 def search_pos(self,pos,list_):
434 for i in range(len(list_)):
434 for i in range(len(list_)):
435 if pos == list_[i]:
435 if pos == list_[i]:
436 return True,i
436 return True,i
437 i=None
437 i=None
438 return False,i
438 return False,i
439
439
440 def fixDataComp(self,ang_,list1_,list2_):
440 def fixDataComp(self,ang_,list1_,list2_):
441 size = len(ang_)
441 size = len(ang_)
442 size2 = 0
442 size2 = 0
443 for i in range(len(list2_)):
443 for i in range(len(list2_)):
444 size2=size2+round(list2_[i])-1
444 size2=size2+round(list2_[i])-1
445 new_size= size+size2
445 new_size= size+size2
446 ang_new = numpy.zeros(new_size)
446 ang_new = numpy.zeros(new_size)
447 ang_new2 = numpy.zeros(new_size)
447 ang_new2 = numpy.zeros(new_size)
448
448
449 tmp = 0
449 tmp = 0
450 c = 0
450 c = 0
451 for i in range(len(ang_)):
451 for i in range(len(ang_)):
452 ang_new[tmp +c] = ang_[i]
452 ang_new[tmp +c] = ang_[i]
453 ang_new2[tmp+c] = ang_[i]
453 ang_new2[tmp+c] = ang_[i]
454 condition , value = self.search_pos(i,list1_)
454 condition , value = self.search_pos(i,list1_)
455 if condition:
455 if condition:
456 pos = tmp + c + 1
456 pos = tmp + c + 1
457 for k in range(round(list2_[value])-1):
457 for k in range(round(list2_[value])-1):
458 ang_new[pos+k] = ang_new[pos+k-1]+1
458 ang_new[pos+k] = ang_new[pos+k-1]+1
459 ang_new2[pos+k] = numpy.nan
459 ang_new2[pos+k] = numpy.nan
460 tmp = pos +k
460 tmp = pos +k
461 c = 0
461 c = 0
462 c=c+1
462 c=c+1
463 return ang_new,ang_new2
463 return ang_new,ang_new2
464
464
465 def globalCheckPED(self,angulos):
465 def globalCheckPED(self,angulos):
466 l1,l2 = self.get2List(angulos)
466 l1,l2 = self.get2List(angulos)
467 if len(l1)>0:
467 if len(l1)>0:
468 angulos2 = self.fixData360(list_=l1,ang_=angulos)
468 angulos2 = self.fixData360(list_=l1,ang_=angulos)
469 l1,l2 = self.get2List(angulos2)
469 l1,l2 = self.get2List(angulos2)
470
470
471 ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2)
471 ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2)
472 ang1_ = self.fixData360HL(ang1_)
472 ang1_ = self.fixData360HL(ang1_)
473 ang2_ = self.fixData360HL(ang2_)
473 ang2_ = self.fixData360HL(ang2_)
474 else:
474 else:
475 ang1_= angulos
475 ang1_= angulos
476 ang2_= angulos
476 ang2_= angulos
477 return ang1_,ang2_
477 return ang1_,ang2_
478
478
479 def analizeDATA(self,data_azi):
479 def analizeDATA(self,data_azi):
480 list1 = []
480 list1 = []
481 list2 = []
481 list2 = []
482 dat = data_azi
482 dat = data_azi
483 for i in reversed(range(1,len(dat))):
483 for i in reversed(range(1,len(dat))):
484 if dat[i]>dat[i-1]:
484 if dat[i]>dat[i-1]:
485 diff = int(dat[i])-int(dat[i-1])
485 diff = int(dat[i])-int(dat[i-1])
486 else:
486 else:
487 diff = 360+int(dat[i])-int(dat[i-1])
487 diff = 360+int(dat[i])-int(dat[i-1])
488 if diff > 1:
488 if diff > 1:
489 list1.append(i-1)
489 list1.append(i-1)
490 list2.append(diff-1)
490 list2.append(diff-1)
491 return list1,list2
491 return list1,list2
492
492
493 def fixDATANEW(self,data_azi,data_weather):
493 def fixDATANEW(self,data_azi,data_weather):
494 list1,list2 = self.analizeDATA(data_azi)
494 list1,list2 = self.analizeDATA(data_azi)
495 if len(list1)== 0:
495 if len(list1)== 0:
496 return data_azi,data_weather
496 return data_azi,data_weather
497 else:
497 else:
498 resize = 0
498 resize = 0
499 for i in range(len(list2)):
499 for i in range(len(list2)):
500 resize= resize + list2[i]
500 resize= resize + list2[i]
501 new_data_azi = numpy.resize(data_azi,resize)
501 new_data_azi = numpy.resize(data_azi,resize)
502 new_data_weather= numpy.resize(date_weather,resize)
502 new_data_weather= numpy.resize(date_weather,resize)
503
503
504 for i in range(len(list2)):
504 for i in range(len(list2)):
505 j=0
505 j=0
506 position=list1[i]+1
506 position=list1[i]+1
507 for j in range(list2[i]):
507 for j in range(list2[i]):
508 new_data_azi[position+j]=new_data_azi[position+j-1]+1
508 new_data_azi[position+j]=new_data_azi[position+j-1]+1
509 return new_data_azi
509 return new_data_azi
510
510
511 def fixDATA(self,data_azi):
511 def fixDATA(self,data_azi):
512 data=data_azi
512 data=data_azi
513 for i in range(len(data)):
513 for i in range(len(data)):
514 if numpy.isnan(data[i]):
514 if numpy.isnan(data[i]):
515 data[i]=data[i-1]+1
515 data[i]=data[i-1]+1
516 return data
516 return data
517
517
518 def replaceNAN(self,data_weather,data_azi,val):
518 def replaceNAN(self,data_weather,data_azi,val):
519 data= data_azi
519 data= data_azi
520 data_T= data_weather
520 data_T= data_weather
521 if data.shape[0]> data_T.shape[0]:
521 if data.shape[0]> data_T.shape[0]:
522 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
522 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
523 c = 0
523 c = 0
524 for i in range(len(data)):
524 for i in range(len(data)):
525 if numpy.isnan(data[i]):
525 if numpy.isnan(data[i]):
526 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
526 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
527 else:
527 else:
528 data_N[i,:]=data_T[c,:]
528 data_N[i,:]=data_T[c,:]
529 c=c+1
529 c=c+1
530 return data_N
530 return data_N
531 else:
531 else:
532 for i in range(len(data)):
532 for i in range(len(data)):
533 if numpy.isnan(data[i]):
533 if numpy.isnan(data[i]):
534 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
534 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
535 return data_T
535 return data_T
536
536
537 def const_ploteo(self,data_weather,data_azi,step,res):
537 def const_ploteo(self,data_weather,data_azi,step,res):
538 if self.ini==0:
538 if self.ini==0:
539 #-------
539 #-------
540 n = (360/res)-len(data_azi)
540 n = (360/res)-len(data_azi)
541 #--------------------- new -------------------------
541 #--------------------- new -------------------------
542 data_azi_new ,data_azi_old= self.globalCheckPED(data_azi)
542 data_azi_new ,data_azi_old= self.globalCheckPED(data_azi)
543 #------------------------
543 #------------------------
544 start = data_azi_new[-1] + res
544 start = data_azi_new[-1] + res
545 end = data_azi_new[0] - res
545 end = data_azi_new[0] - res
546 #------ new
546 #------ new
547 self.last_data_azi = end
547 self.last_data_azi = end
548 if start>end:
548 if start>end:
549 end = end + 360
549 end = end + 360
550 azi_vacia = numpy.linspace(start,end,int(n))
550 azi_vacia = numpy.linspace(start,end,int(n))
551 azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
551 azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
552 data_azi = numpy.hstack((data_azi_new,azi_vacia))
552 data_azi = numpy.hstack((data_azi_new,azi_vacia))
553 # RADAR
553 # RADAR
554 val_mean = numpy.mean(data_weather[:,-1])
554 val_mean = numpy.mean(data_weather[:,-1])
555 self.val_mean = val_mean
555 self.val_mean = val_mean
556 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
556 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
557 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
557 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
558 data_weather = numpy.vstack((data_weather,data_weather_cmp))
558 data_weather = numpy.vstack((data_weather,data_weather_cmp))
559 else:
559 else:
560 # azimuth
560 # azimuth
561 flag=0
561 flag=0
562 start_azi = self.res_azi[0]
562 start_azi = self.res_azi[0]
563 #-----------new------------
563 #-----------new------------
564 data_azi ,data_azi_old= self.globalCheckPED(data_azi)
564 data_azi ,data_azi_old= self.globalCheckPED(data_azi)
565 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
565 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
566 #--------------------------
566 #--------------------------
567 start = data_azi[0]
567 start = data_azi[0]
568 end = data_azi[-1]
568 end = data_azi[-1]
569 self.last_data_azi= end
569 self.last_data_azi= end
570 if start< start_azi:
570 if start< start_azi:
571 start = start +360
571 start = start +360
572 if end <start_azi:
572 if end <start_azi:
573 end = end +360
573 end = end +360
574
574
575 pos_ini = int((start-start_azi)/res)
575 pos_ini = int((start-start_azi)/res)
576 len_azi = len(data_azi)
576 len_azi = len(data_azi)
577 if (360-pos_ini)<len_azi:
577 if (360-pos_ini)<len_azi:
578 if pos_ini+1==360:
578 if pos_ini+1==360:
579 pos_ini=0
579 pos_ini=0
580 else:
580 else:
581 flag=1
581 flag=1
582 dif= 360-pos_ini
582 dif= 360-pos_ini
583 comp= len_azi-dif
583 comp= len_azi-dif
584 #-----------------
584 #-----------------
585 if flag==0:
585 if flag==0:
586 # AZIMUTH
586 # AZIMUTH
587 self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
587 self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
588 # RADAR
588 # RADAR
589 self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
589 self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
590 else:
590 else:
591 # AZIMUTH
591 # AZIMUTH
592 self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
592 self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
593 self.res_azi[0:comp] = data_azi[dif:]
593 self.res_azi[0:comp] = data_azi[dif:]
594 # RADAR
594 # RADAR
595 self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
595 self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
596 self.res_weather[0:comp,:] = data_weather[dif:,:]
596 self.res_weather[0:comp,:] = data_weather[dif:,:]
597 flag=0
597 flag=0
598 data_azi = self.res_azi
598 data_azi = self.res_azi
599 data_weather = self.res_weather
599 data_weather = self.res_weather
600
600
601 return data_weather,data_azi
601 return data_weather,data_azi
602
602
603 def plot(self):
603 def plot(self):
604 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
604 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
605 data = self.data[-1]
605 data = self.data[-1]
606 r = self.data.yrange
606 r = self.data.yrange
607 delta_height = r[1]-r[0]
607 delta_height = r[1]-r[0]
608 r_mask = numpy.where(r>=0)[0]
608 r_mask = numpy.where(r>=0)[0]
609 r = numpy.arange(len(r_mask))*delta_height
609 r = numpy.arange(len(r_mask))*delta_height
610 self.y = 2*r
610 self.y = 2*r
611 # RADAR
611 # RADAR
612 #data_weather = data['weather']
612 #data_weather = data['weather']
613 # PEDESTAL
613 # PEDESTAL
614 #data_azi = data['azi']
614 #data_azi = data['azi']
615 res = 1
615 res = 1
616 # STEP
616 # STEP
617 step = (360/(res*data['weather'].shape[0]))
617 step = (360/(res*data['weather'].shape[0]))
618
618
619 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res)
619 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res)
620 self.res_ele = numpy.mean(data['ele'])
620 self.res_ele = numpy.mean(data['ele'])
621 ################# PLOTEO ###################
621 ################# PLOTEO ###################
622 for i,ax in enumerate(self.axes):
622 for i,ax in enumerate(self.axes):
623 if ax.firsttime:
623 if ax.firsttime:
624 plt.clf()
624 plt.clf()
625 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
625 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
626 else:
626 else:
627 plt.clf()
627 plt.clf()
628 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
628 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
629 caax = cgax.parasites[0]
629 caax = cgax.parasites[0]
630 paax = cgax.parasites[1]
630 paax = cgax.parasites[1]
631 cbar = plt.gcf().colorbar(pm, pad=0.075)
631 cbar = plt.gcf().colorbar(pm, pad=0.075)
632 caax.set_xlabel('x_range [km]')
632 caax.set_xlabel('x_range [km]')
633 caax.set_ylabel('y_range [km]')
633 caax.set_ylabel('y_range [km]')
634 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right')
634 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right')
635
635
636 self.ini= self.ini+1
636 self.ini= self.ini+1
637
637
638
638
639 class WeatherRHIPlot(Plot):
639 class WeatherRHIPlot(Plot):
640 CODE = 'weather'
640 CODE = 'weather'
641 plot_name = 'weather'
641 plot_name = 'weather'
642 plot_type = 'rhistyle'
642 plot_type = 'rhistyle'
643 buffering = False
643 buffering = False
644 data_ele_tmp = None
644 data_ele_tmp = None
645
645
646 def setup(self):
646 def setup(self):
647 print("********************")
647 print("********************")
648 print("********************")
648 print("********************")
649 print("********************")
649 print("********************")
650 print("SETUP WEATHER PLOT")
650 print("SETUP WEATHER PLOT")
651 self.ncols = 1
651 self.ncols = 1
652 self.nrows = 1
652 self.nrows = 1
653 self.nplots= 1
653 self.nplots= 1
654 self.ylabel= 'Range [Km]'
654 self.ylabel= 'Range [Km]'
655 self.titles= ['Weather']
655 self.titles= ['Weather']
656 if self.channels is not None:
656 if self.channels is not None:
657 self.nplots = len(self.channels)
657 self.nplots = len(self.channels)
658 self.nrows = len(self.channels)
658 self.nrows = len(self.channels)
659 else:
659 else:
660 self.nplots = self.data.shape(self.CODE)[0]
660 self.nplots = self.data.shape(self.CODE)[0]
661 self.nrows = self.nplots
661 self.nrows = self.nplots
662 self.channels = list(range(self.nplots))
662 self.channels = list(range(self.nplots))
663 print("channels",self.channels)
663 print("channels",self.channels)
664 print("que saldra", self.data.shape(self.CODE)[0])
664 print("que saldra", self.data.shape(self.CODE)[0])
665 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
665 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
666 print("self.titles",self.titles)
666 print("self.titles",self.titles)
667 self.colorbar=False
667 self.colorbar=False
668 self.width =8
668 self.width =8
669 self.height =8
669 self.height =8
670 self.ini =0
670 self.ini =0
671 self.len_azi =0
671 self.len_azi =0
672 self.buffer_ini = None
672 self.buffer_ini = None
673 self.buffer_ele = None
673 self.buffer_ele = None
674 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
674 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
675 self.flag =0
675 self.flag =0
676 self.indicador= 0
676 self.indicador= 0
677 self.last_data_ele = None
677 self.last_data_ele = None
678 self.val_mean = None
678 self.val_mean = None
679
679
680 def update(self, dataOut):
680 def update(self, dataOut):
681
681
682 data = {}
682 data = {}
683 meta = {}
683 meta = {}
684 if hasattr(dataOut, 'dataPP_POWER'):
684 if hasattr(dataOut, 'dataPP_POWER'):
685 factor = 1
685 factor = 1
686 if hasattr(dataOut, 'nFFTPoints'):
686 if hasattr(dataOut, 'nFFTPoints'):
687 factor = dataOut.normFactor
687 factor = dataOut.normFactor
688 print("dataOut",dataOut.data_360.shape)
688 print("dataOut",dataOut.data_360.shape)
689 #
689 #
690 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
690 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
691 #
691 #
692 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
692 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
693 data['azi'] = dataOut.data_azi
693 data['azi'] = dataOut.data_azi
694 data['ele'] = dataOut.data_ele
694 data['ele'] = dataOut.data_ele
695 #print("UPDATE")
695 #print("UPDATE")
696 #print("data[weather]",data['weather'].shape)
696 #print("data[weather]",data['weather'].shape)
697 #print("data[azi]",data['azi'])
697 #print("data[azi]",data['azi'])
698 return data, meta
698 return data, meta
699
699
700 def get2List(self,angulos):
700 def get2List(self,angulos):
701 list1=[]
701 list1=[]
702 list2=[]
702 list2=[]
703 for i in reversed(range(len(angulos))):
703 for i in reversed(range(len(angulos))):
704 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
704 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
705 diff_ = angulos[i]-angulos[i-1]
705 diff_ = angulos[i]-angulos[i-1]
706 if abs(diff_) >1.5:
706 if abs(diff_) >1.5:
707 list1.append(i-1)
707 list1.append(i-1)
708 list2.append(diff_)
708 list2.append(diff_)
709 return list(reversed(list1)),list(reversed(list2))
709 return list(reversed(list1)),list(reversed(list2))
710
710
711 def fixData90(self,list_,ang_):
711 def fixData90(self,list_,ang_):
712 if list_[0]==-1:
712 if list_[0]==-1:
713 vec = numpy.where(ang_<ang_[0])
713 vec = numpy.where(ang_<ang_[0])
714 ang_[vec] = ang_[vec]+90
714 ang_[vec] = ang_[vec]+90
715 return ang_
715 return ang_
716 return ang_
716 return ang_
717
717
718 def fixData90HL(self,angulos):
718 def fixData90HL(self,angulos):
719 vec = numpy.where(angulos>=90)
719 vec = numpy.where(angulos>=90)
720 angulos[vec]=angulos[vec]-90
720 angulos[vec]=angulos[vec]-90
721 return angulos
721 return angulos
722
722
723
723
724 def search_pos(self,pos,list_):
724 def search_pos(self,pos,list_):
725 for i in range(len(list_)):
725 for i in range(len(list_)):
726 if pos == list_[i]:
726 if pos == list_[i]:
727 return True,i
727 return True,i
728 i=None
728 i=None
729 return False,i
729 return False,i
730
730
731 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
731 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
732 size = len(ang_)
732 size = len(ang_)
733 size2 = 0
733 size2 = 0
734 for i in range(len(list2_)):
734 for i in range(len(list2_)):
735 size2=size2+round(abs(list2_[i]))-1
735 size2=size2+round(abs(list2_[i]))-1
736 new_size= size+size2
736 new_size= size+size2
737 ang_new = numpy.zeros(new_size)
737 ang_new = numpy.zeros(new_size)
738 ang_new2 = numpy.zeros(new_size)
738 ang_new2 = numpy.zeros(new_size)
739
739
740 tmp = 0
740 tmp = 0
741 c = 0
741 c = 0
742 for i in range(len(ang_)):
742 for i in range(len(ang_)):
743 ang_new[tmp +c] = ang_[i]
743 ang_new[tmp +c] = ang_[i]
744 ang_new2[tmp+c] = ang_[i]
744 ang_new2[tmp+c] = ang_[i]
745 condition , value = self.search_pos(i,list1_)
745 condition , value = self.search_pos(i,list1_)
746 if condition:
746 if condition:
747 pos = tmp + c + 1
747 pos = tmp + c + 1
748 for k in range(round(abs(list2_[value]))-1):
748 for k in range(round(abs(list2_[value]))-1):
749 if tipo_case==0 or tipo_case==3:#subida
749 if tipo_case==0 or tipo_case==3:#subida
750 ang_new[pos+k] = ang_new[pos+k-1]+1
750 ang_new[pos+k] = ang_new[pos+k-1]+1
751 ang_new2[pos+k] = numpy.nan
751 ang_new2[pos+k] = numpy.nan
752 elif tipo_case==1 or tipo_case==2:#bajada
752 elif tipo_case==1 or tipo_case==2:#bajada
753 ang_new[pos+k] = ang_new[pos+k-1]-1
753 ang_new[pos+k] = ang_new[pos+k-1]-1
754 ang_new2[pos+k] = numpy.nan
754 ang_new2[pos+k] = numpy.nan
755
755
756 tmp = pos +k
756 tmp = pos +k
757 c = 0
757 c = 0
758 c=c+1
758 c=c+1
759 return ang_new,ang_new2
759 return ang_new,ang_new2
760
760
761 def globalCheckPED(self,angulos,tipo_case):
761 def globalCheckPED(self,angulos,tipo_case):
762 l1,l2 = self.get2List(angulos)
762 l1,l2 = self.get2List(angulos)
763 ##print("l1",l1)
763 ##print("l1",l1)
764 ##print("l2",l2)
764 ##print("l2",l2)
765 if len(l1)>0:
765 if len(l1)>0:
766 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
766 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
767 #l1,l2 = self.get2List(angulos2)
767 #l1,l2 = self.get2List(angulos2)
768 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
768 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
769 #ang1_ = self.fixData90HL(ang1_)
769 #ang1_ = self.fixData90HL(ang1_)
770 #ang2_ = self.fixData90HL(ang2_)
770 #ang2_ = self.fixData90HL(ang2_)
771 else:
771 else:
772 ang1_= angulos
772 ang1_= angulos
773 ang2_= angulos
773 ang2_= angulos
774 return ang1_,ang2_
774 return ang1_,ang2_
775
775
776
776
777 def replaceNAN(self,data_weather,data_ele,val):
777 def replaceNAN(self,data_weather,data_ele,val):
778 data= data_ele
778 data= data_ele
779 data_T= data_weather
779 data_T= data_weather
780 if data.shape[0]> data_T.shape[0]:
780 if data.shape[0]> data_T.shape[0]:
781 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
781 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
782 c = 0
782 c = 0
783 for i in range(len(data)):
783 for i in range(len(data)):
784 if numpy.isnan(data[i]):
784 if numpy.isnan(data[i]):
785 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
785 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
786 else:
786 else:
787 data_N[i,:]=data_T[c,:]
787 data_N[i,:]=data_T[c,:]
788 c=c+1
788 c=c+1
789 return data_N
789 return data_N
790 else:
790 else:
791 for i in range(len(data)):
791 for i in range(len(data)):
792 if numpy.isnan(data[i]):
792 if numpy.isnan(data[i]):
793 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
793 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
794 return data_T
794 return data_T
795
795
796 def check_case(self,data_ele,ang_max,ang_min):
796 def check_case(self,data_ele,ang_max,ang_min):
797 start = data_ele[0]
797 start = data_ele[0]
798 end = data_ele[-1]
798 end = data_ele[-1]
799 number = (end-start)
799 number = (end-start)
800 len_ang=len(data_ele)
800 len_ang=len(data_ele)
801 print("start",start)
801 print("start",start)
802 print("end",end)
802 print("end",end)
803 print("number",number)
803 print("number",number)
804
804
805 print("len_ang",len_ang)
805 print("len_ang",len_ang)
806
806
807 #exit(1)
807 #exit(1)
808
808
809 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
809 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
810 return 0
810 return 0
811 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
811 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
812 # return 1
812 # return 1
813 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
813 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
814 return 1
814 return 1
815 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
815 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
816 return 2
816 return 2
817 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
817 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
818 return 3
818 return 3
819
819
820
820
821 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min):
821 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min):
822 ang_max= ang_max
822 ang_max= ang_max
823 ang_min= ang_min
823 ang_min= ang_min
824 data_weather=data_weather
824 data_weather=data_weather
825 val_ch=val_ch
825 val_ch=val_ch
826 ##print("*********************DATA WEATHER**************************************")
826 ##print("*********************DATA WEATHER**************************************")
827 ##print(data_weather)
827 ##print(data_weather)
828 if self.ini==0:
828 if self.ini==0:
829 '''
829 '''
830 print("**********************************************")
830 print("**********************************************")
831 print("**********************************************")
831 print("**********************************************")
832 print("***************ini**************")
832 print("***************ini**************")
833 print("**********************************************")
833 print("**********************************************")
834 print("**********************************************")
834 print("**********************************************")
835 '''
835 '''
836 #print("data_ele",data_ele)
836 #print("data_ele",data_ele)
837 #----------------------------------------------------------
837 #----------------------------------------------------------
838 tipo_case = self.check_case(data_ele,ang_max,ang_min)
838 tipo_case = self.check_case(data_ele,ang_max,ang_min)
839 print("check_case",tipo_case)
839 print("check_case",tipo_case)
840 #exit(1)
840 #exit(1)
841 #--------------------- new -------------------------
841 #--------------------- new -------------------------
842 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
842 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
843
843
844 #-------------------------CAMBIOS RHI---------------------------------
844 #-------------------------CAMBIOS RHI---------------------------------
845 start= ang_min
845 start= ang_min
846 end = ang_max
846 end = ang_max
847 n= (ang_max-ang_min)/res
847 n= (ang_max-ang_min)/res
848 #------ new
848 #------ new
849 self.start_data_ele = data_ele_new[0]
849 self.start_data_ele = data_ele_new[0]
850 self.end_data_ele = data_ele_new[-1]
850 self.end_data_ele = data_ele_new[-1]
851 if tipo_case==0 or tipo_case==3: # SUBIDA
851 if tipo_case==0 or tipo_case==3: # SUBIDA
852 n1= round(self.start_data_ele)- start
852 n1= round(self.start_data_ele)- start
853 n2= end - round(self.end_data_ele)
853 n2= end - round(self.end_data_ele)
854 print(self.start_data_ele)
854 print(self.start_data_ele)
855 print(self.end_data_ele)
855 print(self.end_data_ele)
856 if n1>0:
856 if n1>0:
857 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
857 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
858 ele1_nan= numpy.ones(n1)*numpy.nan
858 ele1_nan= numpy.ones(n1)*numpy.nan
859 data_ele = numpy.hstack((ele1,data_ele_new))
859 data_ele = numpy.hstack((ele1,data_ele_new))
860 print("ele1_nan",ele1_nan.shape)
860 print("ele1_nan",ele1_nan.shape)
861 print("data_ele_old",data_ele_old.shape)
861 print("data_ele_old",data_ele_old.shape)
862 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
862 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
863 if n2>0:
863 if n2>0:
864 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
864 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
865 ele2_nan= numpy.ones(n2)*numpy.nan
865 ele2_nan= numpy.ones(n2)*numpy.nan
866 data_ele = numpy.hstack((data_ele,ele2))
866 data_ele = numpy.hstack((data_ele,ele2))
867 print("ele2_nan",ele2_nan.shape)
867 print("ele2_nan",ele2_nan.shape)
868 print("data_ele_old",data_ele_old.shape)
868 print("data_ele_old",data_ele_old.shape)
869 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
869 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
870
870
871 if tipo_case==1 or tipo_case==2: # BAJADA
871 if tipo_case==1 or tipo_case==2: # BAJADA
872 data_ele_new = data_ele_new[::-1] # reversa
872 data_ele_new = data_ele_new[::-1] # reversa
873 data_ele_old = data_ele_old[::-1]# reversa
873 data_ele_old = data_ele_old[::-1]# reversa
874 data_weather = data_weather[::-1,:]# reversa
874 data_weather = data_weather[::-1,:]# reversa
875 vec= numpy.where(data_ele_new<ang_max)
875 vec= numpy.where(data_ele_new<ang_max)
876 data_ele_new = data_ele_new[vec]
876 data_ele_new = data_ele_new[vec]
877 data_ele_old = data_ele_old[vec]
877 data_ele_old = data_ele_old[vec]
878 data_weather = data_weather[vec[0]]
878 data_weather = data_weather[vec[0]]
879 vec2= numpy.where(0<data_ele_new)
879 vec2= numpy.where(0<data_ele_new)
880 data_ele_new = data_ele_new[vec2]
880 data_ele_new = data_ele_new[vec2]
881 data_ele_old = data_ele_old[vec2]
881 data_ele_old = data_ele_old[vec2]
882 data_weather = data_weather[vec2[0]]
882 data_weather = data_weather[vec2[0]]
883 self.start_data_ele = data_ele_new[0]
883 self.start_data_ele = data_ele_new[0]
884 self.end_data_ele = data_ele_new[-1]
884 self.end_data_ele = data_ele_new[-1]
885
885
886 n1= round(self.start_data_ele)- start
886 n1= round(self.start_data_ele)- start
887 n2= end - round(self.end_data_ele)-1
887 n2= end - round(self.end_data_ele)-1
888 print(self.start_data_ele)
888 print(self.start_data_ele)
889 print(self.end_data_ele)
889 print(self.end_data_ele)
890 if n1>0:
890 if n1>0:
891 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
891 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
892 ele1_nan= numpy.ones(n1)*numpy.nan
892 ele1_nan= numpy.ones(n1)*numpy.nan
893 data_ele = numpy.hstack((ele1,data_ele_new))
893 data_ele = numpy.hstack((ele1,data_ele_new))
894 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
894 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
895 if n2>0:
895 if n2>0:
896 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
896 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
897 ele2_nan= numpy.ones(n2)*numpy.nan
897 ele2_nan= numpy.ones(n2)*numpy.nan
898 data_ele = numpy.hstack((data_ele,ele2))
898 data_ele = numpy.hstack((data_ele,ele2))
899 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
899 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
900 # RADAR
900 # RADAR
901 # NOTA data_ele y data_weather es la variable que retorna
901 # NOTA data_ele y data_weather es la variable que retorna
902 val_mean = numpy.mean(data_weather[:,-1])
902 val_mean = numpy.mean(data_weather[:,-1])
903 self.val_mean = val_mean
903 self.val_mean = val_mean
904 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
904 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
905 self.data_ele_tmp[val_ch]= data_ele_old
905 self.data_ele_tmp[val_ch]= data_ele_old
906 else:
906 else:
907 #print("**********************************************")
907 #print("**********************************************")
908 #print("****************VARIABLE**********************")
908 #print("****************VARIABLE**********************")
909 #-------------------------CAMBIOS RHI---------------------------------
909 #-------------------------CAMBIOS RHI---------------------------------
910 #---------------------------------------------------------------------
910 #---------------------------------------------------------------------
911 ##print("INPUT data_ele",data_ele)
911 ##print("INPUT data_ele",data_ele)
912 flag=0
912 flag=0
913 start_ele = self.res_ele[0]
913 start_ele = self.res_ele[0]
914 tipo_case = self.check_case(data_ele,ang_max,ang_min)
914 tipo_case = self.check_case(data_ele,ang_max,ang_min)
915 #print("TIPO DE DATA",tipo_case)
915 #print("TIPO DE DATA",tipo_case)
916 #-----------new------------
916 #-----------new------------
917 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
917 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
918 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
918 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
919
919
920 #-------------------------------NEW RHI ITERATIVO-------------------------
920 #-------------------------------NEW RHI ITERATIVO-------------------------
921
921
922 if tipo_case==0 : # SUBIDA
922 if tipo_case==0 : # SUBIDA
923 vec = numpy.where(data_ele<ang_max)
923 vec = numpy.where(data_ele<ang_max)
924 data_ele = data_ele[vec]
924 data_ele = data_ele[vec]
925 data_ele_old = data_ele_old[vec]
925 data_ele_old = data_ele_old[vec]
926 data_weather = data_weather[vec[0]]
926 data_weather = data_weather[vec[0]]
927
927
928 vec2 = numpy.where(0<data_ele)
928 vec2 = numpy.where(0<data_ele)
929 data_ele= data_ele[vec2]
929 data_ele= data_ele[vec2]
930 data_ele_old= data_ele_old[vec2]
930 data_ele_old= data_ele_old[vec2]
931 ##print(data_ele_new)
931 ##print(data_ele_new)
932 data_weather= data_weather[vec2[0]]
932 data_weather= data_weather[vec2[0]]
933
933
934 new_i_ele = int(round(data_ele[0]))
934 new_i_ele = int(round(data_ele[0]))
935 new_f_ele = int(round(data_ele[-1]))
935 new_f_ele = int(round(data_ele[-1]))
936 #print(new_i_ele)
936 #print(new_i_ele)
937 #print(new_f_ele)
937 #print(new_f_ele)
938 #print(data_ele,len(data_ele))
938 #print(data_ele,len(data_ele))
939 #print(data_ele_old,len(data_ele_old))
939 #print(data_ele_old,len(data_ele_old))
940 if new_i_ele< 2:
940 if new_i_ele< 2:
941 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
941 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
942 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
942 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
943 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
943 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
944 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
944 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
945 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
945 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
946 data_ele = self.res_ele
946 data_ele = self.res_ele
947 data_weather = self.res_weather[val_ch]
947 data_weather = self.res_weather[val_ch]
948
948
949 elif tipo_case==1 : #BAJADA
949 elif tipo_case==1 : #BAJADA
950 data_ele = data_ele[::-1] # reversa
950 data_ele = data_ele[::-1] # reversa
951 data_ele_old = data_ele_old[::-1]# reversa
951 data_ele_old = data_ele_old[::-1]# reversa
952 data_weather = data_weather[::-1,:]# reversa
952 data_weather = data_weather[::-1,:]# reversa
953 vec= numpy.where(data_ele<ang_max)
953 vec= numpy.where(data_ele<ang_max)
954 data_ele = data_ele[vec]
954 data_ele = data_ele[vec]
955 data_ele_old = data_ele_old[vec]
955 data_ele_old = data_ele_old[vec]
956 data_weather = data_weather[vec[0]]
956 data_weather = data_weather[vec[0]]
957 vec2= numpy.where(0<data_ele)
957 vec2= numpy.where(0<data_ele)
958 data_ele = data_ele[vec2]
958 data_ele = data_ele[vec2]
959 data_ele_old = data_ele_old[vec2]
959 data_ele_old = data_ele_old[vec2]
960 data_weather = data_weather[vec2[0]]
960 data_weather = data_weather[vec2[0]]
961
961
962
962
963 new_i_ele = int(round(data_ele[0]))
963 new_i_ele = int(round(data_ele[0]))
964 new_f_ele = int(round(data_ele[-1]))
964 new_f_ele = int(round(data_ele[-1]))
965 #print(data_ele)
965 #print(data_ele)
966 #print(ang_max)
966 #print(ang_max)
967 #print(data_ele_old)
967 #print(data_ele_old)
968 if new_i_ele <= 1:
968 if new_i_ele <= 1:
969 new_i_ele = 1
969 new_i_ele = 1
970 if round(data_ele[-1])>=ang_max-1:
970 if round(data_ele[-1])>=ang_max-1:
971 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
971 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
972 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
972 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
973 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
973 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
974 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
974 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
975 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
975 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
976 data_ele = self.res_ele
976 data_ele = self.res_ele
977 data_weather = self.res_weather[val_ch]
977 data_weather = self.res_weather[val_ch]
978
978
979 elif tipo_case==2: #bajada
979 elif tipo_case==2: #bajada
980 vec = numpy.where(data_ele<ang_max)
980 vec = numpy.where(data_ele<ang_max)
981 data_ele = data_ele[vec]
981 data_ele = data_ele[vec]
982 data_weather= data_weather[vec[0]]
982 data_weather= data_weather[vec[0]]
983
983
984 len_vec = len(vec)
984 len_vec = len(vec)
985 data_ele_new = data_ele[::-1] # reversa
985 data_ele_new = data_ele[::-1] # reversa
986 data_weather = data_weather[::-1,:]
986 data_weather = data_weather[::-1,:]
987 new_i_ele = int(data_ele_new[0])
987 new_i_ele = int(data_ele_new[0])
988 new_f_ele = int(data_ele_new[-1])
988 new_f_ele = int(data_ele_new[-1])
989
989
990 n1= new_i_ele- ang_min
990 n1= new_i_ele- ang_min
991 n2= ang_max - new_f_ele-1
991 n2= ang_max - new_f_ele-1
992 if n1>0:
992 if n1>0:
993 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
993 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
994 ele1_nan= numpy.ones(n1)*numpy.nan
994 ele1_nan= numpy.ones(n1)*numpy.nan
995 data_ele = numpy.hstack((ele1,data_ele_new))
995 data_ele = numpy.hstack((ele1,data_ele_new))
996 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
996 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
997 if n2>0:
997 if n2>0:
998 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
998 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
999 ele2_nan= numpy.ones(n2)*numpy.nan
999 ele2_nan= numpy.ones(n2)*numpy.nan
1000 data_ele = numpy.hstack((data_ele,ele2))
1000 data_ele = numpy.hstack((data_ele,ele2))
1001 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1001 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1002
1002
1003 self.data_ele_tmp[val_ch] = data_ele_old
1003 self.data_ele_tmp[val_ch] = data_ele_old
1004 self.res_ele = data_ele
1004 self.res_ele = data_ele
1005 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1005 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1006 data_ele = self.res_ele
1006 data_ele = self.res_ele
1007 data_weather = self.res_weather[val_ch]
1007 data_weather = self.res_weather[val_ch]
1008
1008
1009 elif tipo_case==3:#subida
1009 elif tipo_case==3:#subida
1010 vec = numpy.where(0<data_ele)
1010 vec = numpy.where(0<data_ele)
1011 data_ele= data_ele[vec]
1011 data_ele= data_ele[vec]
1012 data_ele_new = data_ele
1012 data_ele_new = data_ele
1013 data_ele_old= data_ele_old[vec]
1013 data_ele_old= data_ele_old[vec]
1014 data_weather= data_weather[vec[0]]
1014 data_weather= data_weather[vec[0]]
1015 pos_ini = numpy.argmin(data_ele)
1015 pos_ini = numpy.argmin(data_ele)
1016 if pos_ini>0:
1016 if pos_ini>0:
1017 len_vec= len(data_ele)
1017 len_vec= len(data_ele)
1018 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1018 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1019 #print(vec3)
1019 #print(vec3)
1020 data_ele= data_ele[vec3]
1020 data_ele= data_ele[vec3]
1021 data_ele_new = data_ele
1021 data_ele_new = data_ele
1022 data_ele_old= data_ele_old[vec3]
1022 data_ele_old= data_ele_old[vec3]
1023 data_weather= data_weather[vec3]
1023 data_weather= data_weather[vec3]
1024
1024
1025 new_i_ele = int(data_ele_new[0])
1025 new_i_ele = int(data_ele_new[0])
1026 new_f_ele = int(data_ele_new[-1])
1026 new_f_ele = int(data_ele_new[-1])
1027 n1= new_i_ele- ang_min
1027 n1= new_i_ele- ang_min
1028 n2= ang_max - new_f_ele-1
1028 n2= ang_max - new_f_ele-1
1029 if n1>0:
1029 if n1>0:
1030 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1030 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1031 ele1_nan= numpy.ones(n1)*numpy.nan
1031 ele1_nan= numpy.ones(n1)*numpy.nan
1032 data_ele = numpy.hstack((ele1,data_ele_new))
1032 data_ele = numpy.hstack((ele1,data_ele_new))
1033 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1033 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1034 if n2>0:
1034 if n2>0:
1035 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1035 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1036 ele2_nan= numpy.ones(n2)*numpy.nan
1036 ele2_nan= numpy.ones(n2)*numpy.nan
1037 data_ele = numpy.hstack((data_ele,ele2))
1037 data_ele = numpy.hstack((data_ele,ele2))
1038 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1038 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1039
1039
1040 self.data_ele_tmp[val_ch] = data_ele_old
1040 self.data_ele_tmp[val_ch] = data_ele_old
1041 self.res_ele = data_ele
1041 self.res_ele = data_ele
1042 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1042 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1043 data_ele = self.res_ele
1043 data_ele = self.res_ele
1044 data_weather = self.res_weather[val_ch]
1044 data_weather = self.res_weather[val_ch]
1045 #print("self.data_ele_tmp",self.data_ele_tmp)
1045 #print("self.data_ele_tmp",self.data_ele_tmp)
1046 return data_weather,data_ele
1046 return data_weather,data_ele
1047
1047
1048
1048
1049 def plot(self):
1049 def plot(self):
1050 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1050 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1051 data = self.data[-1]
1051 data = self.data[-1]
1052 r = self.data.yrange
1052 r = self.data.yrange
1053 delta_height = r[1]-r[0]
1053 delta_height = r[1]-r[0]
1054 r_mask = numpy.where(r>=0)[0]
1054 r_mask = numpy.where(r>=0)[0]
1055 ##print("delta_height",delta_height)
1055 ##print("delta_height",delta_height)
1056 #print("r_mask",r_mask,len(r_mask))
1056 #print("r_mask",r_mask,len(r_mask))
1057 r = numpy.arange(len(r_mask))*delta_height
1057 r = numpy.arange(len(r_mask))*delta_height
1058 self.y = 2*r
1058 self.y = 2*r
1059 res = 1
1059 res = 1
1060 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1060 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1061 ang_max = self.ang_max
1061 ang_max = self.ang_max
1062 ang_min = self.ang_min
1062 ang_min = self.ang_min
1063 var_ang =ang_max - ang_min
1063 var_ang =ang_max - ang_min
1064 step = (int(var_ang)/(res*data['weather'].shape[0]))
1064 step = (int(var_ang)/(res*data['weather'].shape[0]))
1065 ###print("step",step)
1065 ###print("step",step)
1066 #--------------------------------------------------------
1066 #--------------------------------------------------------
1067 ##print('weather',data['weather'].shape)
1067 ##print('weather',data['weather'].shape)
1068 ##print('ele',data['ele'].shape)
1068 ##print('ele',data['ele'].shape)
1069
1069
1070 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1070 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1071 ###self.res_azi = numpy.mean(data['azi'])
1071 ###self.res_azi = numpy.mean(data['azi'])
1072 ###print("self.res_ele",self.res_ele)
1072 ###print("self.res_ele",self.res_ele)
1073 plt.clf()
1073 plt.clf()
1074 subplots = [121, 122]
1074 subplots = [121, 122]
1075 if self.ini==0:
1075 if self.ini==0:
1076 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1076 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1077 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1077 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1078 print("SHAPE",self.data_ele_tmp.shape)
1078 print("SHAPE",self.data_ele_tmp.shape)
1079
1079
1080 for i,ax in enumerate(self.axes):
1080 for i,ax in enumerate(self.axes):
1081 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1081 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1082 self.res_azi = numpy.mean(data['azi'])
1082 self.res_azi = numpy.mean(data['azi'])
1083 if i==0:
1083 if i==0:
1084 print("*****************************************************************************to plot**************************",self.res_weather[i].shape)
1084 print("*****************************************************************************to plot**************************",self.res_weather[i].shape)
1085 if ax.firsttime:
1085 if ax.firsttime:
1086 #plt.clf()
1086 #plt.clf()
1087 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1087 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1088 #fig=self.figures[0]
1088 #fig=self.figures[0]
1089 else:
1089 else:
1090 #plt.clf()
1090 #plt.clf()
1091 if i==0:
1091 if i==0:
1092 print(self.res_weather[i])
1092 print(self.res_weather[i])
1093 print(self.res_ele)
1093 print(self.res_ele)
1094 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1094 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1095 caax = cgax.parasites[0]
1095 caax = cgax.parasites[0]
1096 paax = cgax.parasites[1]
1096 paax = cgax.parasites[1]
1097 cbar = plt.gcf().colorbar(pm, pad=0.075)
1097 cbar = plt.gcf().colorbar(pm, pad=0.075)
1098 caax.set_xlabel('x_range [km]')
1098 caax.set_xlabel('x_range [km]')
1099 caax.set_ylabel('y_range [km]')
1099 caax.set_ylabel('y_range [km]')
1100 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1100 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1101 print("***************************self.ini****************************",self.ini)
1101 print("***************************self.ini****************************",self.ini)
1102 self.ini= self.ini+1
1102 self.ini= self.ini+1
1103
1103
1104 class WeatherRHI_vRF2_Plot(Plot):
1104 class WeatherRHI_vRF2_Plot(Plot):
1105 CODE = 'weather'
1105 CODE = 'weather'
1106 plot_name = 'weather'
1106 plot_name = 'weather'
1107 plot_type = 'rhistyle'
1107 plot_type = 'rhistyle'
1108 buffering = False
1108 buffering = False
1109 data_ele_tmp = None
1109 data_ele_tmp = None
1110
1110
1111 def setup(self):
1111 def setup(self):
1112 print("********************")
1112 print("********************")
1113 print("********************")
1113 print("********************")
1114 print("********************")
1114 print("********************")
1115 print("SETUP WEATHER PLOT")
1115 print("SETUP WEATHER PLOT")
1116 self.ncols = 1
1116 self.ncols = 1
1117 self.nrows = 1
1117 self.nrows = 1
1118 self.nplots= 1
1118 self.nplots= 1
1119 self.ylabel= 'Range [Km]'
1119 self.ylabel= 'Range [Km]'
1120 self.titles= ['Weather']
1120 self.titles= ['Weather']
1121 if self.channels is not None:
1121 if self.channels is not None:
1122 self.nplots = len(self.channels)
1122 self.nplots = len(self.channels)
1123 self.nrows = len(self.channels)
1123 self.nrows = len(self.channels)
1124 else:
1124 else:
1125 self.nplots = self.data.shape(self.CODE)[0]
1125 self.nplots = self.data.shape(self.CODE)[0]
1126 self.nrows = self.nplots
1126 self.nrows = self.nplots
1127 self.channels = list(range(self.nplots))
1127 self.channels = list(range(self.nplots))
1128 print("channels",self.channels)
1128 print("channels",self.channels)
1129 print("que saldra", self.data.shape(self.CODE)[0])
1129 print("que saldra", self.data.shape(self.CODE)[0])
1130 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1130 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1131 print("self.titles",self.titles)
1131 print("self.titles",self.titles)
1132 self.colorbar=False
1132 self.colorbar=False
1133 self.width =8
1133 self.width =8
1134 self.height =8
1134 self.height =8
1135 self.ini =0
1135 self.ini =0
1136 self.len_azi =0
1136 self.len_azi =0
1137 self.buffer_ini = None
1137 self.buffer_ini = None
1138 self.buffer_ele = None
1138 self.buffer_ele = None
1139 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1139 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1140 self.flag =0
1140 self.flag =0
1141 self.indicador= 0
1141 self.indicador= 0
1142 self.last_data_ele = None
1142 self.last_data_ele = None
1143 self.val_mean = None
1143 self.val_mean = None
1144
1144
1145 def update(self, dataOut):
1145 def update(self, dataOut):
1146
1146
1147 data = {}
1147 data = {}
1148 meta = {}
1148 meta = {}
1149 if hasattr(dataOut, 'dataPP_POWER'):
1149 if hasattr(dataOut, 'dataPP_POWER'):
1150 factor = 1
1150 factor = 1
1151 if hasattr(dataOut, 'nFFTPoints'):
1151 if hasattr(dataOut, 'nFFTPoints'):
1152 factor = dataOut.normFactor
1152 factor = dataOut.normFactor
1153 print("dataOut",dataOut.data_360.shape)
1153 print("dataOut",dataOut.data_360.shape)
1154 #
1154 #
1155 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1155 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1156 #
1156 #
1157 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1157 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1158 data['azi'] = dataOut.data_azi
1158 data['azi'] = dataOut.data_azi
1159 data['ele'] = dataOut.data_ele
1159 data['ele'] = dataOut.data_ele
1160 data['case_flag'] = dataOut.case_flag
1160 data['case_flag'] = dataOut.case_flag
1161 #print("UPDATE")
1161 #print("UPDATE")
1162 #print("data[weather]",data['weather'].shape)
1162 #print("data[weather]",data['weather'].shape)
1163 #print("data[azi]",data['azi'])
1163 #print("data[azi]",data['azi'])
1164 return data, meta
1164 return data, meta
1165
1165
1166 def get2List(self,angulos):
1166 def get2List(self,angulos):
1167 list1=[]
1167 list1=[]
1168 list2=[]
1168 list2=[]
1169 for i in reversed(range(len(angulos))):
1169 for i in reversed(range(len(angulos))):
1170 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1170 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1171 diff_ = angulos[i]-angulos[i-1]
1171 diff_ = angulos[i]-angulos[i-1]
1172 if abs(diff_) >1.5:
1172 if abs(diff_) >1.5:
1173 list1.append(i-1)
1173 list1.append(i-1)
1174 list2.append(diff_)
1174 list2.append(diff_)
1175 return list(reversed(list1)),list(reversed(list2))
1175 return list(reversed(list1)),list(reversed(list2))
1176
1176
1177 def fixData90(self,list_,ang_):
1177 def fixData90(self,list_,ang_):
1178 if list_[0]==-1:
1178 if list_[0]==-1:
1179 vec = numpy.where(ang_<ang_[0])
1179 vec = numpy.where(ang_<ang_[0])
1180 ang_[vec] = ang_[vec]+90
1180 ang_[vec] = ang_[vec]+90
1181 return ang_
1181 return ang_
1182 return ang_
1182 return ang_
1183
1183
1184 def fixData90HL(self,angulos):
1184 def fixData90HL(self,angulos):
1185 vec = numpy.where(angulos>=90)
1185 vec = numpy.where(angulos>=90)
1186 angulos[vec]=angulos[vec]-90
1186 angulos[vec]=angulos[vec]-90
1187 return angulos
1187 return angulos
1188
1188
1189
1189
1190 def search_pos(self,pos,list_):
1190 def search_pos(self,pos,list_):
1191 for i in range(len(list_)):
1191 for i in range(len(list_)):
1192 if pos == list_[i]:
1192 if pos == list_[i]:
1193 return True,i
1193 return True,i
1194 i=None
1194 i=None
1195 return False,i
1195 return False,i
1196
1196
1197 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1197 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1198 size = len(ang_)
1198 size = len(ang_)
1199 size2 = 0
1199 size2 = 0
1200 for i in range(len(list2_)):
1200 for i in range(len(list2_)):
1201 size2=size2+round(abs(list2_[i]))-1
1201 size2=size2+round(abs(list2_[i]))-1
1202 new_size= size+size2
1202 new_size= size+size2
1203 ang_new = numpy.zeros(new_size)
1203 ang_new = numpy.zeros(new_size)
1204 ang_new2 = numpy.zeros(new_size)
1204 ang_new2 = numpy.zeros(new_size)
1205
1205
1206 tmp = 0
1206 tmp = 0
1207 c = 0
1207 c = 0
1208 for i in range(len(ang_)):
1208 for i in range(len(ang_)):
1209 ang_new[tmp +c] = ang_[i]
1209 ang_new[tmp +c] = ang_[i]
1210 ang_new2[tmp+c] = ang_[i]
1210 ang_new2[tmp+c] = ang_[i]
1211 condition , value = self.search_pos(i,list1_)
1211 condition , value = self.search_pos(i,list1_)
1212 if condition:
1212 if condition:
1213 pos = tmp + c + 1
1213 pos = tmp + c + 1
1214 for k in range(round(abs(list2_[value]))-1):
1214 for k in range(round(abs(list2_[value]))-1):
1215 if tipo_case==0 or tipo_case==3:#subida
1215 if tipo_case==0 or tipo_case==3:#subida
1216 ang_new[pos+k] = ang_new[pos+k-1]+1
1216 ang_new[pos+k] = ang_new[pos+k-1]+1
1217 ang_new2[pos+k] = numpy.nan
1217 ang_new2[pos+k] = numpy.nan
1218 elif tipo_case==1 or tipo_case==2:#bajada
1218 elif tipo_case==1 or tipo_case==2:#bajada
1219 ang_new[pos+k] = ang_new[pos+k-1]-1
1219 ang_new[pos+k] = ang_new[pos+k-1]-1
1220 ang_new2[pos+k] = numpy.nan
1220 ang_new2[pos+k] = numpy.nan
1221
1221
1222 tmp = pos +k
1222 tmp = pos +k
1223 c = 0
1223 c = 0
1224 c=c+1
1224 c=c+1
1225 return ang_new,ang_new2
1225 return ang_new,ang_new2
1226
1226
1227 def globalCheckPED(self,angulos,tipo_case):
1227 def globalCheckPED(self,angulos,tipo_case):
1228 l1,l2 = self.get2List(angulos)
1228 l1,l2 = self.get2List(angulos)
1229 ##print("l1",l1)
1229 ##print("l1",l1)
1230 ##print("l2",l2)
1230 ##print("l2",l2)
1231 if len(l1)>0:
1231 if len(l1)>0:
1232 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1232 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1233 #l1,l2 = self.get2List(angulos2)
1233 #l1,l2 = self.get2List(angulos2)
1234 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1234 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1235 #ang1_ = self.fixData90HL(ang1_)
1235 #ang1_ = self.fixData90HL(ang1_)
1236 #ang2_ = self.fixData90HL(ang2_)
1236 #ang2_ = self.fixData90HL(ang2_)
1237 else:
1237 else:
1238 ang1_= angulos
1238 ang1_= angulos
1239 ang2_= angulos
1239 ang2_= angulos
1240 return ang1_,ang2_
1240 return ang1_,ang2_
1241
1241
1242
1242
1243 def replaceNAN(self,data_weather,data_ele,val):
1243 def replaceNAN(self,data_weather,data_ele,val):
1244 data= data_ele
1244 data= data_ele
1245 data_T= data_weather
1245 data_T= data_weather
1246 if data.shape[0]> data_T.shape[0]:
1246 if data.shape[0]> data_T.shape[0]:
1247 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1247 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1248 c = 0
1248 c = 0
1249 for i in range(len(data)):
1249 for i in range(len(data)):
1250 if numpy.isnan(data[i]):
1250 if numpy.isnan(data[i]):
1251 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1251 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1252 else:
1252 else:
1253 data_N[i,:]=data_T[c,:]
1253 data_N[i,:]=data_T[c,:]
1254 c=c+1
1254 c=c+1
1255 return data_N
1255 return data_N
1256 else:
1256 else:
1257 for i in range(len(data)):
1257 for i in range(len(data)):
1258 if numpy.isnan(data[i]):
1258 if numpy.isnan(data[i]):
1259 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1259 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1260 return data_T
1260 return data_T
1261
1261
1262 def check_case(self,data_ele,ang_max,ang_min):
1262 def check_case(self,data_ele,ang_max,ang_min):
1263 start = data_ele[0]
1263 start = data_ele[0]
1264 end = data_ele[-1]
1264 end = data_ele[-1]
1265 number = (end-start)
1265 number = (end-start)
1266 len_ang=len(data_ele)
1266 len_ang=len(data_ele)
1267 print("start",start)
1267 print("start",start)
1268 print("end",end)
1268 print("end",end)
1269 print("number",number)
1269 print("number",number)
1270
1270
1271 print("len_ang",len_ang)
1271 print("len_ang",len_ang)
1272
1272
1273 #exit(1)
1273 #exit(1)
1274
1274
1275 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
1275 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
1276 return 0
1276 return 0
1277 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
1277 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
1278 # return 1
1278 # return 1
1279 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
1279 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
1280 return 1
1280 return 1
1281 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
1281 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
1282 return 2
1282 return 2
1283 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
1283 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
1284 return 3
1284 return 3
1285
1285
1286
1286
1287 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1287 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1288 ang_max= ang_max
1288 ang_max= ang_max
1289 ang_min= ang_min
1289 ang_min= ang_min
1290 data_weather=data_weather
1290 data_weather=data_weather
1291 val_ch=val_ch
1291 val_ch=val_ch
1292 ##print("*********************DATA WEATHER**************************************")
1292 ##print("*********************DATA WEATHER**************************************")
1293 ##print(data_weather)
1293 ##print(data_weather)
1294 if self.ini==0:
1294 if self.ini==0:
1295 '''
1295 '''
1296 print("**********************************************")
1296 print("**********************************************")
1297 print("**********************************************")
1297 print("**********************************************")
1298 print("***************ini**************")
1298 print("***************ini**************")
1299 print("**********************************************")
1299 print("**********************************************")
1300 print("**********************************************")
1300 print("**********************************************")
1301 '''
1301 '''
1302 #print("data_ele",data_ele)
1302 #print("data_ele",data_ele)
1303 #----------------------------------------------------------
1303 #----------------------------------------------------------
1304 tipo_case = case_flag[-1]
1304 tipo_case = case_flag[-1]
1305 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1305 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1306 print("check_case",tipo_case)
1306 print("check_case",tipo_case)
1307 #exit(1)
1307 #exit(1)
1308 #--------------------- new -------------------------
1308 #--------------------- new -------------------------
1309 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1309 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1310
1310
1311 #-------------------------CAMBIOS RHI---------------------------------
1311 #-------------------------CAMBIOS RHI---------------------------------
1312 start= ang_min
1312 start= ang_min
1313 end = ang_max
1313 end = ang_max
1314 n= (ang_max-ang_min)/res
1314 n= (ang_max-ang_min)/res
1315 #------ new
1315 #------ new
1316 self.start_data_ele = data_ele_new[0]
1316 self.start_data_ele = data_ele_new[0]
1317 self.end_data_ele = data_ele_new[-1]
1317 self.end_data_ele = data_ele_new[-1]
1318 if tipo_case==0 or tipo_case==3: # SUBIDA
1318 if tipo_case==0 or tipo_case==3: # SUBIDA
1319 n1= round(self.start_data_ele)- start
1319 n1= round(self.start_data_ele)- start
1320 n2= end - round(self.end_data_ele)
1320 n2= end - round(self.end_data_ele)
1321 print(self.start_data_ele)
1321 print(self.start_data_ele)
1322 print(self.end_data_ele)
1322 print(self.end_data_ele)
1323 if n1>0:
1323 if n1>0:
1324 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1324 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1325 ele1_nan= numpy.ones(n1)*numpy.nan
1325 ele1_nan= numpy.ones(n1)*numpy.nan
1326 data_ele = numpy.hstack((ele1,data_ele_new))
1326 data_ele = numpy.hstack((ele1,data_ele_new))
1327 print("ele1_nan",ele1_nan.shape)
1327 print("ele1_nan",ele1_nan.shape)
1328 print("data_ele_old",data_ele_old.shape)
1328 print("data_ele_old",data_ele_old.shape)
1329 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1329 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1330 if n2>0:
1330 if n2>0:
1331 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1331 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1332 ele2_nan= numpy.ones(n2)*numpy.nan
1332 ele2_nan= numpy.ones(n2)*numpy.nan
1333 data_ele = numpy.hstack((data_ele,ele2))
1333 data_ele = numpy.hstack((data_ele,ele2))
1334 print("ele2_nan",ele2_nan.shape)
1334 print("ele2_nan",ele2_nan.shape)
1335 print("data_ele_old",data_ele_old.shape)
1335 print("data_ele_old",data_ele_old.shape)
1336 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1336 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1337
1337
1338 if tipo_case==1 or tipo_case==2: # BAJADA
1338 if tipo_case==1 or tipo_case==2: # BAJADA
1339 data_ele_new = data_ele_new[::-1] # reversa
1339 data_ele_new = data_ele_new[::-1] # reversa
1340 data_ele_old = data_ele_old[::-1]# reversa
1340 data_ele_old = data_ele_old[::-1]# reversa
1341 data_weather = data_weather[::-1,:]# reversa
1341 data_weather = data_weather[::-1,:]# reversa
1342 vec= numpy.where(data_ele_new<ang_max)
1342 vec= numpy.where(data_ele_new<ang_max)
1343 data_ele_new = data_ele_new[vec]
1343 data_ele_new = data_ele_new[vec]
1344 data_ele_old = data_ele_old[vec]
1344 data_ele_old = data_ele_old[vec]
1345 data_weather = data_weather[vec[0]]
1345 data_weather = data_weather[vec[0]]
1346 vec2= numpy.where(0<data_ele_new)
1346 vec2= numpy.where(0<data_ele_new)
1347 data_ele_new = data_ele_new[vec2]
1347 data_ele_new = data_ele_new[vec2]
1348 data_ele_old = data_ele_old[vec2]
1348 data_ele_old = data_ele_old[vec2]
1349 data_weather = data_weather[vec2[0]]
1349 data_weather = data_weather[vec2[0]]
1350 self.start_data_ele = data_ele_new[0]
1350 self.start_data_ele = data_ele_new[0]
1351 self.end_data_ele = data_ele_new[-1]
1351 self.end_data_ele = data_ele_new[-1]
1352
1352
1353 n1= round(self.start_data_ele)- start
1353 n1= round(self.start_data_ele)- start
1354 n2= end - round(self.end_data_ele)-1
1354 n2= end - round(self.end_data_ele)-1
1355 print(self.start_data_ele)
1355 print(self.start_data_ele)
1356 print(self.end_data_ele)
1356 print(self.end_data_ele)
1357 if n1>0:
1357 if n1>0:
1358 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1358 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1359 ele1_nan= numpy.ones(n1)*numpy.nan
1359 ele1_nan= numpy.ones(n1)*numpy.nan
1360 data_ele = numpy.hstack((ele1,data_ele_new))
1360 data_ele = numpy.hstack((ele1,data_ele_new))
1361 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1361 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1362 if n2>0:
1362 if n2>0:
1363 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1363 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1364 ele2_nan= numpy.ones(n2)*numpy.nan
1364 ele2_nan= numpy.ones(n2)*numpy.nan
1365 data_ele = numpy.hstack((data_ele,ele2))
1365 data_ele = numpy.hstack((data_ele,ele2))
1366 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1366 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1367 # RADAR
1367 # RADAR
1368 # NOTA data_ele y data_weather es la variable que retorna
1368 # NOTA data_ele y data_weather es la variable que retorna
1369 val_mean = numpy.mean(data_weather[:,-1])
1369 val_mean = numpy.mean(data_weather[:,-1])
1370 self.val_mean = val_mean
1370 self.val_mean = val_mean
1371 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1371 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1372 print("eleold",data_ele_old)
1372 print("eleold",data_ele_old)
1373 print(self.data_ele_tmp[val_ch])
1373 print(self.data_ele_tmp[val_ch])
1374 print(data_ele_old.shape[0])
1374 print(data_ele_old.shape[0])
1375 print(self.data_ele_tmp[val_ch].shape[0])
1375 print(self.data_ele_tmp[val_ch].shape[0])
1376 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
1376 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
1377 import sys
1377 import sys
1378 print("EXIT",self.ini)
1378 print("EXIT",self.ini)
1379
1379
1380 sys.exit(1)
1380 sys.exit(1)
1381 self.data_ele_tmp[val_ch]= data_ele_old
1381 self.data_ele_tmp[val_ch]= data_ele_old
1382 else:
1382 else:
1383 #print("**********************************************")
1383 #print("**********************************************")
1384 #print("****************VARIABLE**********************")
1384 #print("****************VARIABLE**********************")
1385 #-------------------------CAMBIOS RHI---------------------------------
1385 #-------------------------CAMBIOS RHI---------------------------------
1386 #---------------------------------------------------------------------
1386 #---------------------------------------------------------------------
1387 ##print("INPUT data_ele",data_ele)
1387 ##print("INPUT data_ele",data_ele)
1388 flag=0
1388 flag=0
1389 start_ele = self.res_ele[0]
1389 start_ele = self.res_ele[0]
1390 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1390 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1391 tipo_case = case_flag[-1]
1391 tipo_case = case_flag[-1]
1392 #print("TIPO DE DATA",tipo_case)
1392 #print("TIPO DE DATA",tipo_case)
1393 #-----------new------------
1393 #-----------new------------
1394 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
1394 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
1395 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1395 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1396
1396
1397 #-------------------------------NEW RHI ITERATIVO-------------------------
1397 #-------------------------------NEW RHI ITERATIVO-------------------------
1398
1398
1399 if tipo_case==0 : # SUBIDA
1399 if tipo_case==0 : # SUBIDA
1400 vec = numpy.where(data_ele<ang_max)
1400 vec = numpy.where(data_ele<ang_max)
1401 data_ele = data_ele[vec]
1401 data_ele = data_ele[vec]
1402 data_ele_old = data_ele_old[vec]
1402 data_ele_old = data_ele_old[vec]
1403 data_weather = data_weather[vec[0]]
1403 data_weather = data_weather[vec[0]]
1404
1404
1405 vec2 = numpy.where(0<data_ele)
1405 vec2 = numpy.where(0<data_ele)
1406 data_ele= data_ele[vec2]
1406 data_ele= data_ele[vec2]
1407 data_ele_old= data_ele_old[vec2]
1407 data_ele_old= data_ele_old[vec2]
1408 ##print(data_ele_new)
1408 ##print(data_ele_new)
1409 data_weather= data_weather[vec2[0]]
1409 data_weather= data_weather[vec2[0]]
1410
1410
1411 new_i_ele = int(round(data_ele[0]))
1411 new_i_ele = int(round(data_ele[0]))
1412 new_f_ele = int(round(data_ele[-1]))
1412 new_f_ele = int(round(data_ele[-1]))
1413 #print(new_i_ele)
1413 #print(new_i_ele)
1414 #print(new_f_ele)
1414 #print(new_f_ele)
1415 #print(data_ele,len(data_ele))
1415 #print(data_ele,len(data_ele))
1416 #print(data_ele_old,len(data_ele_old))
1416 #print(data_ele_old,len(data_ele_old))
1417 if new_i_ele< 2:
1417 if new_i_ele< 2:
1418 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1418 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1419 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1419 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1420 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
1420 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
1421 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
1421 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
1422 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
1422 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
1423 data_ele = self.res_ele
1423 data_ele = self.res_ele
1424 data_weather = self.res_weather[val_ch]
1424 data_weather = self.res_weather[val_ch]
1425
1425
1426 elif tipo_case==1 : #BAJADA
1426 elif tipo_case==1 : #BAJADA
1427 data_ele = data_ele[::-1] # reversa
1427 data_ele = data_ele[::-1] # reversa
1428 data_ele_old = data_ele_old[::-1]# reversa
1428 data_ele_old = data_ele_old[::-1]# reversa
1429 data_weather = data_weather[::-1,:]# reversa
1429 data_weather = data_weather[::-1,:]# reversa
1430 vec= numpy.where(data_ele<ang_max)
1430 vec= numpy.where(data_ele<ang_max)
1431 data_ele = data_ele[vec]
1431 data_ele = data_ele[vec]
1432 data_ele_old = data_ele_old[vec]
1432 data_ele_old = data_ele_old[vec]
1433 data_weather = data_weather[vec[0]]
1433 data_weather = data_weather[vec[0]]
1434 vec2= numpy.where(0<data_ele)
1434 vec2= numpy.where(0<data_ele)
1435 data_ele = data_ele[vec2]
1435 data_ele = data_ele[vec2]
1436 data_ele_old = data_ele_old[vec2]
1436 data_ele_old = data_ele_old[vec2]
1437 data_weather = data_weather[vec2[0]]
1437 data_weather = data_weather[vec2[0]]
1438
1438
1439
1439
1440 new_i_ele = int(round(data_ele[0]))
1440 new_i_ele = int(round(data_ele[0]))
1441 new_f_ele = int(round(data_ele[-1]))
1441 new_f_ele = int(round(data_ele[-1]))
1442 #print(data_ele)
1442 #print(data_ele)
1443 #print(ang_max)
1443 #print(ang_max)
1444 #print(data_ele_old)
1444 #print(data_ele_old)
1445 if new_i_ele <= 1:
1445 if new_i_ele <= 1:
1446 new_i_ele = 1
1446 new_i_ele = 1
1447 if round(data_ele[-1])>=ang_max-1:
1447 if round(data_ele[-1])>=ang_max-1:
1448 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1448 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1449 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1449 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1450 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
1450 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
1451 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
1451 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
1452 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
1452 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
1453 data_ele = self.res_ele
1453 data_ele = self.res_ele
1454 data_weather = self.res_weather[val_ch]
1454 data_weather = self.res_weather[val_ch]
1455
1455
1456 elif tipo_case==2: #bajada
1456 elif tipo_case==2: #bajada
1457 vec = numpy.where(data_ele<ang_max)
1457 vec = numpy.where(data_ele<ang_max)
1458 data_ele = data_ele[vec]
1458 data_ele = data_ele[vec]
1459 data_weather= data_weather[vec[0]]
1459 data_weather= data_weather[vec[0]]
1460
1460
1461 len_vec = len(vec)
1461 len_vec = len(vec)
1462 data_ele_new = data_ele[::-1] # reversa
1462 data_ele_new = data_ele[::-1] # reversa
1463 data_weather = data_weather[::-1,:]
1463 data_weather = data_weather[::-1,:]
1464 new_i_ele = int(data_ele_new[0])
1464 new_i_ele = int(data_ele_new[0])
1465 new_f_ele = int(data_ele_new[-1])
1465 new_f_ele = int(data_ele_new[-1])
1466
1466
1467 n1= new_i_ele- ang_min
1467 n1= new_i_ele- ang_min
1468 n2= ang_max - new_f_ele-1
1468 n2= ang_max - new_f_ele-1
1469 if n1>0:
1469 if n1>0:
1470 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1470 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1471 ele1_nan= numpy.ones(n1)*numpy.nan
1471 ele1_nan= numpy.ones(n1)*numpy.nan
1472 data_ele = numpy.hstack((ele1,data_ele_new))
1472 data_ele = numpy.hstack((ele1,data_ele_new))
1473 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1473 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1474 if n2>0:
1474 if n2>0:
1475 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1475 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1476 ele2_nan= numpy.ones(n2)*numpy.nan
1476 ele2_nan= numpy.ones(n2)*numpy.nan
1477 data_ele = numpy.hstack((data_ele,ele2))
1477 data_ele = numpy.hstack((data_ele,ele2))
1478 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1478 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1479
1479
1480 self.data_ele_tmp[val_ch] = data_ele_old
1480 self.data_ele_tmp[val_ch] = data_ele_old
1481 self.res_ele = data_ele
1481 self.res_ele = data_ele
1482 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1482 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1483 data_ele = self.res_ele
1483 data_ele = self.res_ele
1484 data_weather = self.res_weather[val_ch]
1484 data_weather = self.res_weather[val_ch]
1485
1485
1486 elif tipo_case==3:#subida
1486 elif tipo_case==3:#subida
1487 vec = numpy.where(0<data_ele)
1487 vec = numpy.where(0<data_ele)
1488 data_ele= data_ele[vec]
1488 data_ele= data_ele[vec]
1489 data_ele_new = data_ele
1489 data_ele_new = data_ele
1490 data_ele_old= data_ele_old[vec]
1490 data_ele_old= data_ele_old[vec]
1491 data_weather= data_weather[vec[0]]
1491 data_weather= data_weather[vec[0]]
1492 pos_ini = numpy.argmin(data_ele)
1492 pos_ini = numpy.argmin(data_ele)
1493 if pos_ini>0:
1493 if pos_ini>0:
1494 len_vec= len(data_ele)
1494 len_vec= len(data_ele)
1495 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1495 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1496 #print(vec3)
1496 #print(vec3)
1497 data_ele= data_ele[vec3]
1497 data_ele= data_ele[vec3]
1498 data_ele_new = data_ele
1498 data_ele_new = data_ele
1499 data_ele_old= data_ele_old[vec3]
1499 data_ele_old= data_ele_old[vec3]
1500 data_weather= data_weather[vec3]
1500 data_weather= data_weather[vec3]
1501
1501
1502 new_i_ele = int(data_ele_new[0])
1502 new_i_ele = int(data_ele_new[0])
1503 new_f_ele = int(data_ele_new[-1])
1503 new_f_ele = int(data_ele_new[-1])
1504 n1= new_i_ele- ang_min
1504 n1= new_i_ele- ang_min
1505 n2= ang_max - new_f_ele-1
1505 n2= ang_max - new_f_ele-1
1506 if n1>0:
1506 if n1>0:
1507 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1507 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1508 ele1_nan= numpy.ones(n1)*numpy.nan
1508 ele1_nan= numpy.ones(n1)*numpy.nan
1509 data_ele = numpy.hstack((ele1,data_ele_new))
1509 data_ele = numpy.hstack((ele1,data_ele_new))
1510 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1510 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1511 if n2>0:
1511 if n2>0:
1512 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1512 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1513 ele2_nan= numpy.ones(n2)*numpy.nan
1513 ele2_nan= numpy.ones(n2)*numpy.nan
1514 data_ele = numpy.hstack((data_ele,ele2))
1514 data_ele = numpy.hstack((data_ele,ele2))
1515 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1515 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1516
1516
1517 self.data_ele_tmp[val_ch] = data_ele_old
1517 self.data_ele_tmp[val_ch] = data_ele_old
1518 self.res_ele = data_ele
1518 self.res_ele = data_ele
1519 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1519 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1520 data_ele = self.res_ele
1520 data_ele = self.res_ele
1521 data_weather = self.res_weather[val_ch]
1521 data_weather = self.res_weather[val_ch]
1522 #print("self.data_ele_tmp",self.data_ele_tmp)
1522 #print("self.data_ele_tmp",self.data_ele_tmp)
1523 return data_weather,data_ele
1523 return data_weather,data_ele
1524
1524
1525
1525
1526 def plot(self):
1526 def plot(self):
1527 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1527 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1528 data = self.data[-1]
1528 data = self.data[-1]
1529 r = self.data.yrange
1529 r = self.data.yrange
1530 delta_height = r[1]-r[0]
1530 delta_height = r[1]-r[0]
1531 r_mask = numpy.where(r>=0)[0]
1531 r_mask = numpy.where(r>=0)[0]
1532 ##print("delta_height",delta_height)
1532 ##print("delta_height",delta_height)
1533 #print("r_mask",r_mask,len(r_mask))
1533 #print("r_mask",r_mask,len(r_mask))
1534 r = numpy.arange(len(r_mask))*delta_height
1534 r = numpy.arange(len(r_mask))*delta_height
1535 self.y = 2*r
1535 self.y = 2*r
1536 res = 1
1536 res = 1
1537 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1537 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1538 ang_max = self.ang_max
1538 ang_max = self.ang_max
1539 ang_min = self.ang_min
1539 ang_min = self.ang_min
1540 var_ang =ang_max - ang_min
1540 var_ang =ang_max - ang_min
1541 step = (int(var_ang)/(res*data['weather'].shape[0]))
1541 step = (int(var_ang)/(res*data['weather'].shape[0]))
1542 ###print("step",step)
1542 ###print("step",step)
1543 #--------------------------------------------------------
1543 #--------------------------------------------------------
1544 ##print('weather',data['weather'].shape)
1544 ##print('weather',data['weather'].shape)
1545 ##print('ele',data['ele'].shape)
1545 ##print('ele',data['ele'].shape)
1546
1546
1547 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1547 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1548 ###self.res_azi = numpy.mean(data['azi'])
1548 ###self.res_azi = numpy.mean(data['azi'])
1549 ###print("self.res_ele",self.res_ele)
1549 ###print("self.res_ele",self.res_ele)
1550 plt.clf()
1550 plt.clf()
1551 subplots = [121, 122]
1551 subplots = [121, 122]
1552 try:
1552 try:
1553 if self.data[-2]['ele'].max()<data['ele'].max():
1553 if self.data[-2]['ele'].max()<data['ele'].max():
1554 self.ini=0
1554 self.ini=0
1555 except:
1555 except:
1556 pass
1556 pass
1557 if self.ini==0:
1557 if self.ini==0:
1558 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1558 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1559 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1559 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1560 print("SHAPE",self.data_ele_tmp.shape)
1560 print("SHAPE",self.data_ele_tmp.shape)
1561
1561
1562 for i,ax in enumerate(self.axes):
1562 for i,ax in enumerate(self.axes):
1563 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1563 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1564 self.res_azi = numpy.mean(data['azi'])
1564 self.res_azi = numpy.mean(data['azi'])
1565
1565
1566 if ax.firsttime:
1566 if ax.firsttime:
1567 #plt.clf()
1567 #plt.clf()
1568 print("Frist Plot")
1568 print("Frist Plot")
1569 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1569 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1570 #fig=self.figures[0]
1570 #fig=self.figures[0]
1571 else:
1571 else:
1572 #plt.clf()
1572 #plt.clf()
1573 print("ELSE PLOT")
1573 print("ELSE PLOT")
1574 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1574 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1575 caax = cgax.parasites[0]
1575 caax = cgax.parasites[0]
1576 paax = cgax.parasites[1]
1576 paax = cgax.parasites[1]
1577 cbar = plt.gcf().colorbar(pm, pad=0.075)
1577 cbar = plt.gcf().colorbar(pm, pad=0.075)
1578 caax.set_xlabel('x_range [km]')
1578 caax.set_xlabel('x_range [km]')
1579 caax.set_ylabel('y_range [km]')
1579 caax.set_ylabel('y_range [km]')
1580 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1580 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1581 print("***************************self.ini****************************",self.ini)
1581 print("***************************self.ini****************************",self.ini)
1582 self.ini= self.ini+1
1582 self.ini= self.ini+1
1583
1583
1584 class WeatherRHI_vRF_Plot(Plot):
1584 class WeatherRHI_vRF_Plot(Plot):
1585 CODE = 'weather'
1585 CODE = 'weather'
1586 plot_name = 'weather'
1586 plot_name = 'weather'
1587 plot_type = 'rhistyle'
1587 plot_type = 'rhistyle'
1588 buffering = False
1588 buffering = False
1589 data_ele_tmp = None
1589 data_ele_tmp = None
1590
1590
1591 def setup(self):
1591 def setup(self):
1592 print("********************")
1592 print("********************")
1593 print("********************")
1593 print("********************")
1594 print("********************")
1594 print("********************")
1595 print("SETUP WEATHER PLOT")
1595 print("SETUP WEATHER PLOT")
1596 self.ncols = 1
1596 self.ncols = 1
1597 self.nrows = 1
1597 self.nrows = 1
1598 self.nplots= 1
1598 self.nplots= 1
1599 self.ylabel= 'Range [Km]'
1599 self.ylabel= 'Range [Km]'
1600 self.titles= ['Weather']
1600 self.titles= ['Weather']
1601 if self.channels is not None:
1601 if self.channels is not None:
1602 self.nplots = len(self.channels)
1602 self.nplots = len(self.channels)
1603 self.nrows = len(self.channels)
1603 self.nrows = len(self.channels)
1604 else:
1604 else:
1605 self.nplots = self.data.shape(self.CODE)[0]
1605 self.nplots = self.data.shape(self.CODE)[0]
1606 self.nrows = self.nplots
1606 self.nrows = self.nplots
1607 self.channels = list(range(self.nplots))
1607 self.channels = list(range(self.nplots))
1608 print("channels",self.channels)
1608 print("channels",self.channels)
1609 print("que saldra", self.data.shape(self.CODE)[0])
1609 print("que saldra", self.data.shape(self.CODE)[0])
1610 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1610 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1611 print("self.titles",self.titles)
1611 print("self.titles",self.titles)
1612 self.colorbar=False
1612 self.colorbar=False
1613 self.width =8
1613 self.width =8
1614 self.height =8
1614 self.height =8
1615 self.ini =0
1615 self.ini =0
1616 self.len_azi =0
1616 self.len_azi =0
1617 self.buffer_ini = None
1617 self.buffer_ini = None
1618 self.buffer_ele = None
1618 self.buffer_ele = None
1619 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1619 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1620 self.flag =0
1620 self.flag =0
1621 self.indicador= 0
1621 self.indicador= 0
1622 self.last_data_ele = None
1622 self.last_data_ele = None
1623 self.val_mean = None
1623 self.val_mean = None
1624
1624
1625 def update(self, dataOut):
1625 def update(self, dataOut):
1626
1626
1627 data = {}
1627 data = {}
1628 meta = {}
1628 meta = {}
1629 if hasattr(dataOut, 'dataPP_POWER'):
1629 if hasattr(dataOut, 'dataPP_POWER'):
1630 factor = 1
1630 factor = 1
1631 if hasattr(dataOut, 'nFFTPoints'):
1631 if hasattr(dataOut, 'nFFTPoints'):
1632 factor = dataOut.normFactor
1632 factor = dataOut.normFactor
1633 print("dataOut",dataOut.data_360.shape)
1633 print("dataOut",dataOut.data_360.shape)
1634 #
1634 #
1635 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1635 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1636 #
1636 #
1637 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1637 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1638 data['azi'] = dataOut.data_azi
1638 data['azi'] = dataOut.data_azi
1639 data['ele'] = dataOut.data_ele
1639 data['ele'] = dataOut.data_ele
1640 data['case_flag'] = dataOut.case_flag
1640 data['case_flag'] = dataOut.case_flag
1641 #print("UPDATE")
1641 #print("UPDATE")
1642 #print("data[weather]",data['weather'].shape)
1642 #print("data[weather]",data['weather'].shape)
1643 #print("data[azi]",data['azi'])
1643 #print("data[azi]",data['azi'])
1644 return data, meta
1644 return data, meta
1645
1645
1646 def get2List(self,angulos):
1646 def get2List(self,angulos):
1647 list1=[]
1647 list1=[]
1648 list2=[]
1648 list2=[]
1649 #print(angulos)
1649 #print(angulos)
1650 #exit(1)
1650 #exit(1)
1651 for i in reversed(range(len(angulos))):
1651 for i in reversed(range(len(angulos))):
1652 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1652 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1653 diff_ = angulos[i]-angulos[i-1]
1653 diff_ = angulos[i]-angulos[i-1]
1654 if abs(diff_) >1.5:
1654 if abs(diff_) >1.5:
1655 list1.append(i-1)
1655 list1.append(i-1)
1656 list2.append(diff_)
1656 list2.append(diff_)
1657 return list(reversed(list1)),list(reversed(list2))
1657 return list(reversed(list1)),list(reversed(list2))
1658
1658
1659 def fixData90(self,list_,ang_):
1659 def fixData90(self,list_,ang_):
1660 if list_[0]==-1:
1660 if list_[0]==-1:
1661 vec = numpy.where(ang_<ang_[0])
1661 vec = numpy.where(ang_<ang_[0])
1662 ang_[vec] = ang_[vec]+90
1662 ang_[vec] = ang_[vec]+90
1663 return ang_
1663 return ang_
1664 return ang_
1664 return ang_
1665
1665
1666 def fixData90HL(self,angulos):
1666 def fixData90HL(self,angulos):
1667 vec = numpy.where(angulos>=90)
1667 vec = numpy.where(angulos>=90)
1668 angulos[vec]=angulos[vec]-90
1668 angulos[vec]=angulos[vec]-90
1669 return angulos
1669 return angulos
1670
1670
1671
1671
1672 def search_pos(self,pos,list_):
1672 def search_pos(self,pos,list_):
1673 for i in range(len(list_)):
1673 for i in range(len(list_)):
1674 if pos == list_[i]:
1674 if pos == list_[i]:
1675 return True,i
1675 return True,i
1676 i=None
1676 i=None
1677 return False,i
1677 return False,i
1678
1678
1679 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1679 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1680 size = len(ang_)
1680 size = len(ang_)
1681 size2 = 0
1681 size2 = 0
1682 for i in range(len(list2_)):
1682 for i in range(len(list2_)):
1683 size2=size2+round(abs(list2_[i]))-1
1683 size2=size2+round(abs(list2_[i]))-1
1684 new_size= size+size2
1684 new_size= size+size2
1685 ang_new = numpy.zeros(new_size)
1685 ang_new = numpy.zeros(new_size)
1686 ang_new2 = numpy.zeros(new_size)
1686 ang_new2 = numpy.zeros(new_size)
1687
1687
1688 tmp = 0
1688 tmp = 0
1689 c = 0
1689 c = 0
1690 for i in range(len(ang_)):
1690 for i in range(len(ang_)):
1691 ang_new[tmp +c] = ang_[i]
1691 ang_new[tmp +c] = ang_[i]
1692 ang_new2[tmp+c] = ang_[i]
1692 ang_new2[tmp+c] = ang_[i]
1693 condition , value = self.search_pos(i,list1_)
1693 condition , value = self.search_pos(i,list1_)
1694 if condition:
1694 if condition:
1695 pos = tmp + c + 1
1695 pos = tmp + c + 1
1696 for k in range(round(abs(list2_[value]))-1):
1696 for k in range(round(abs(list2_[value]))-1):
1697 if tipo_case==0 or tipo_case==3:#subida
1697 if tipo_case==0 or tipo_case==3:#subida
1698 ang_new[pos+k] = ang_new[pos+k-1]+1
1698 ang_new[pos+k] = ang_new[pos+k-1]+1
1699 ang_new2[pos+k] = numpy.nan
1699 ang_new2[pos+k] = numpy.nan
1700 elif tipo_case==1 or tipo_case==2:#bajada
1700 elif tipo_case==1 or tipo_case==2:#bajada
1701 ang_new[pos+k] = ang_new[pos+k-1]-1
1701 ang_new[pos+k] = ang_new[pos+k-1]-1
1702 ang_new2[pos+k] = numpy.nan
1702 ang_new2[pos+k] = numpy.nan
1703
1703
1704 tmp = pos +k
1704 tmp = pos +k
1705 c = 0
1705 c = 0
1706 c=c+1
1706 c=c+1
1707 return ang_new,ang_new2
1707 return ang_new,ang_new2
1708
1708
1709 def globalCheckPED(self,angulos,tipo_case):
1709 def globalCheckPED(self,angulos,tipo_case):
1710 l1,l2 = self.get2List(angulos)
1710 l1,l2 = self.get2List(angulos)
1711 print("l1",l1)
1711 print("l1",l1)
1712 print("l2",l2)
1712 print("l2",l2)
1713 if len(l1)>0:
1713 if len(l1)>0:
1714 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1714 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1715 #l1,l2 = self.get2List(angulos2)
1715 #l1,l2 = self.get2List(angulos2)
1716 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1716 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1717 #ang1_ = self.fixData90HL(ang1_)
1717 #ang1_ = self.fixData90HL(ang1_)
1718 #ang2_ = self.fixData90HL(ang2_)
1718 #ang2_ = self.fixData90HL(ang2_)
1719 else:
1719 else:
1720 ang1_= angulos
1720 ang1_= angulos
1721 ang2_= angulos
1721 ang2_= angulos
1722 return ang1_,ang2_
1722 return ang1_,ang2_
1723
1723
1724
1724
1725 def replaceNAN(self,data_weather,data_ele,val):
1725 def replaceNAN(self,data_weather,data_ele,val):
1726 data= data_ele
1726 data= data_ele
1727 data_T= data_weather
1727 data_T= data_weather
1728 #print(data.shape[0])
1728 #print(data.shape[0])
1729 #print(data_T.shape[0])
1729 #print(data_T.shape[0])
1730 #exit(1)
1730 #exit(1)
1731 if data.shape[0]> data_T.shape[0]:
1731 if data.shape[0]> data_T.shape[0]:
1732 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1732 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1733 c = 0
1733 c = 0
1734 for i in range(len(data)):
1734 for i in range(len(data)):
1735 if numpy.isnan(data[i]):
1735 if numpy.isnan(data[i]):
1736 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1736 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1737 else:
1737 else:
1738 data_N[i,:]=data_T[c,:]
1738 data_N[i,:]=data_T[c,:]
1739 c=c+1
1739 c=c+1
1740 return data_N
1740 return data_N
1741 else:
1741 else:
1742 for i in range(len(data)):
1742 for i in range(len(data)):
1743 if numpy.isnan(data[i]):
1743 if numpy.isnan(data[i]):
1744 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1744 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1745 return data_T
1745 return data_T
1746
1746
1747
1747
1748 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1748 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1749 ang_max= ang_max
1749 ang_max= ang_max
1750 ang_min= ang_min
1750 ang_min= ang_min
1751 data_weather=data_weather
1751 data_weather=data_weather
1752 val_ch=val_ch
1752 val_ch=val_ch
1753 ##print("*********************DATA WEATHER**************************************")
1753 ##print("*********************DATA WEATHER**************************************")
1754 ##print(data_weather)
1754 ##print(data_weather)
1755
1755
1756 '''
1756 '''
1757 print("**********************************************")
1757 print("**********************************************")
1758 print("**********************************************")
1758 print("**********************************************")
1759 print("***************ini**************")
1759 print("***************ini**************")
1760 print("**********************************************")
1760 print("**********************************************")
1761 print("**********************************************")
1761 print("**********************************************")
1762 '''
1762 '''
1763 #print("data_ele",data_ele)
1763 #print("data_ele",data_ele)
1764 #----------------------------------------------------------
1764 #----------------------------------------------------------
1765
1765
1766 #exit(1)
1766 #exit(1)
1767 tipo_case = case_flag[-1]
1767 tipo_case = case_flag[-1]
1768 print("tipo_case",tipo_case)
1768 print("tipo_case",tipo_case)
1769 #--------------------- new -------------------------
1769 #--------------------- new -------------------------
1770 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1770 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1771
1771
1772 #-------------------------CAMBIOS RHI---------------------------------
1772 #-------------------------CAMBIOS RHI---------------------------------
1773
1773
1774 vec = numpy.where(data_ele<ang_max)
1774 vec = numpy.where(data_ele<ang_max)
1775 data_ele = data_ele[vec]
1775 data_ele = data_ele[vec]
1776 data_weather= data_weather[vec[0]]
1776 data_weather= data_weather[vec[0]]
1777
1777
1778 len_vec = len(vec)
1778 len_vec = len(vec)
1779 data_ele_new = data_ele[::-1] # reversa
1779 data_ele_new = data_ele[::-1] # reversa
1780 data_weather = data_weather[::-1,:]
1780 data_weather = data_weather[::-1,:]
1781 new_i_ele = int(data_ele_new[0])
1781 new_i_ele = int(data_ele_new[0])
1782 new_f_ele = int(data_ele_new[-1])
1782 new_f_ele = int(data_ele_new[-1])
1783
1783
1784 n1= new_i_ele- ang_min
1784 n1= new_i_ele- ang_min
1785 n2= ang_max - new_f_ele-1
1785 n2= ang_max - new_f_ele-1
1786 if n1>0:
1786 if n1>0:
1787 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1787 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1788 ele1_nan= numpy.ones(n1)*numpy.nan
1788 ele1_nan= numpy.ones(n1)*numpy.nan
1789 data_ele = numpy.hstack((ele1,data_ele_new))
1789 data_ele = numpy.hstack((ele1,data_ele_new))
1790 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1790 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1791 if n2>0:
1791 if n2>0:
1792 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1792 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1793 ele2_nan= numpy.ones(n2)*numpy.nan
1793 ele2_nan= numpy.ones(n2)*numpy.nan
1794 data_ele = numpy.hstack((data_ele,ele2))
1794 data_ele = numpy.hstack((data_ele,ele2))
1795 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1795 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1796
1796
1797
1797
1798 print("ele shape",data_ele.shape)
1798 print("ele shape",data_ele.shape)
1799 print(data_ele)
1799 print(data_ele)
1800
1800
1801 #print("self.data_ele_tmp",self.data_ele_tmp)
1801 #print("self.data_ele_tmp",self.data_ele_tmp)
1802 val_mean = numpy.mean(data_weather[:,-1])
1802 val_mean = numpy.mean(data_weather[:,-1])
1803 self.val_mean = val_mean
1803 self.val_mean = val_mean
1804 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1804 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1805 self.data_ele_tmp[val_ch]= data_ele_old
1805 self.data_ele_tmp[val_ch]= data_ele_old
1806
1806
1807
1807
1808 print("data_weather shape",data_weather.shape)
1808 print("data_weather shape",data_weather.shape)
1809 print(data_weather)
1809 print(data_weather)
1810 #exit(1)
1810 #exit(1)
1811 return data_weather,data_ele
1811 return data_weather,data_ele
1812
1812
1813
1813
1814 def plot(self):
1814 def plot(self):
1815 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1815 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1816 data = self.data[-1]
1816 data = self.data[-1]
1817 r = self.data.yrange
1817 r = self.data.yrange
1818 delta_height = r[1]-r[0]
1818 delta_height = r[1]-r[0]
1819 r_mask = numpy.where(r>=0)[0]
1819 r_mask = numpy.where(r>=0)[0]
1820 ##print("delta_height",delta_height)
1820 ##print("delta_height",delta_height)
1821 #print("r_mask",r_mask,len(r_mask))
1821 #print("r_mask",r_mask,len(r_mask))
1822 r = numpy.arange(len(r_mask))*delta_height
1822 r = numpy.arange(len(r_mask))*delta_height
1823 self.y = 2*r
1823 self.y = 2*r
1824 res = 1
1824 res = 1
1825 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1825 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1826 ang_max = self.ang_max
1826 ang_max = self.ang_max
1827 ang_min = self.ang_min
1827 ang_min = self.ang_min
1828 var_ang =ang_max - ang_min
1828 var_ang =ang_max - ang_min
1829 step = (int(var_ang)/(res*data['weather'].shape[0]))
1829 step = (int(var_ang)/(res*data['weather'].shape[0]))
1830 ###print("step",step)
1830 ###print("step",step)
1831 #--------------------------------------------------------
1831 #--------------------------------------------------------
1832 ##print('weather',data['weather'].shape)
1832 ##print('weather',data['weather'].shape)
1833 ##print('ele',data['ele'].shape)
1833 ##print('ele',data['ele'].shape)
1834
1834
1835 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1835 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1836 ###self.res_azi = numpy.mean(data['azi'])
1836 ###self.res_azi = numpy.mean(data['azi'])
1837 ###print("self.res_ele",self.res_ele)
1837 ###print("self.res_ele",self.res_ele)
1838 plt.clf()
1838 plt.clf()
1839 subplots = [121, 122]
1839 subplots = [121, 122]
1840 if self.ini==0:
1840 if self.ini==0:
1841 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1841 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1842 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1842 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1843 print("SHAPE",self.data_ele_tmp.shape)
1843 print("SHAPE",self.data_ele_tmp.shape)
1844
1844
1845 for i,ax in enumerate(self.axes):
1845 for i,ax in enumerate(self.axes):
1846 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1846 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1847 self.res_azi = numpy.mean(data['azi'])
1847 self.res_azi = numpy.mean(data['azi'])
1848
1848
1849 print(self.res_ele)
1849 print(self.res_ele)
1850 #exit(1)
1850 #exit(1)
1851 if ax.firsttime:
1851 if ax.firsttime:
1852 #plt.clf()
1852 #plt.clf()
1853 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1853 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1854 #fig=self.figures[0]
1854 #fig=self.figures[0]
1855 else:
1855 else:
1856
1856
1857 #plt.clf()
1857 #plt.clf()
1858 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1858 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1859 caax = cgax.parasites[0]
1859 caax = cgax.parasites[0]
1860 paax = cgax.parasites[1]
1860 paax = cgax.parasites[1]
1861 cbar = plt.gcf().colorbar(pm, pad=0.075)
1861 cbar = plt.gcf().colorbar(pm, pad=0.075)
1862 caax.set_xlabel('x_range [km]')
1862 caax.set_xlabel('x_range [km]')
1863 caax.set_ylabel('y_range [km]')
1863 caax.set_ylabel('y_range [km]')
1864 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1864 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1865 print("***************************self.ini****************************",self.ini)
1865 print("***************************self.ini****************************",self.ini)
1866 self.ini= self.ini+1
1866 self.ini= self.ini+1
1867
1867
1868 class WeatherRHI_vRF3_Plot(Plot):
1868 class WeatherRHI_vRF3_Plot(Plot):
1869 CODE = 'weather'
1869 CODE = 'weather'
1870 plot_name = 'weather'
1870 plot_name = 'weather'
1871 plot_type = 'rhistyle'
1871 plot_type = 'rhistyle'
1872 buffering = False
1872 buffering = False
1873 data_ele_tmp = None
1873 data_ele_tmp = None
1874
1874
1875 def setup(self):
1875 def setup(self):
1876 print("********************")
1876 print("********************")
1877 print("********************")
1877 print("********************")
1878 print("********************")
1878 print("********************")
1879 print("SETUP WEATHER PLOT")
1879 print("SETUP WEATHER PLOT")
1880 self.ncols = 1
1880 self.ncols = 1
1881 self.nrows = 1
1881 self.nrows = 1
1882 self.nplots= 1
1882 self.nplots= 1
1883 self.ylabel= 'Range [Km]'
1883 self.ylabel= 'Range [Km]'
1884 self.titles= ['Weather']
1884 self.titles= ['Weather']
1885 if self.channels is not None:
1885 if self.channels is not None:
1886 self.nplots = len(self.channels)
1886 self.nplots = len(self.channels)
1887 self.nrows = len(self.channels)
1887 self.nrows = len(self.channels)
1888 else:
1888 else:
1889 self.nplots = self.data.shape(self.CODE)[0]
1889 self.nplots = self.data.shape(self.CODE)[0]
1890 self.nrows = self.nplots
1890 self.nrows = self.nplots
1891 self.channels = list(range(self.nplots))
1891 self.channels = list(range(self.nplots))
1892 print("channels",self.channels)
1892 print("channels",self.channels)
1893 print("que saldra", self.data.shape(self.CODE)[0])
1893 print("que saldra", self.data.shape(self.CODE)[0])
1894 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1894 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1895 print("self.titles",self.titles)
1895 print("self.titles",self.titles)
1896 self.colorbar=False
1896 self.colorbar=False
1897 self.width =8
1897 self.width =8
1898 self.height =8
1898 self.height =8
1899 self.ini =0
1899 self.ini =0
1900 self.len_azi =0
1900 self.len_azi =0
1901 self.buffer_ini = None
1901 self.buffer_ini = None
1902 self.buffer_ele = None
1902 self.buffer_ele = None
1903 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1903 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1904 self.flag =0
1904 self.flag =0
1905 self.indicador= 0
1905 self.indicador= 0
1906 self.last_data_ele = None
1906 self.last_data_ele = None
1907 self.val_mean = None
1907 self.val_mean = None
1908
1908
1909 def update(self, dataOut):
1909 def update(self, dataOut):
1910
1910
1911 data = {}
1911 data = {}
1912 meta = {}
1912 meta = {}
1913 if hasattr(dataOut, 'dataPP_POWER'):
1913 if hasattr(dataOut, 'dataPP_POWER'):
1914 factor = 1
1914 factor = 1
1915 if hasattr(dataOut, 'nFFTPoints'):
1915 if hasattr(dataOut, 'nFFTPoints'):
1916 factor = dataOut.normFactor
1916 factor = dataOut.normFactor
1917 print("dataOut",dataOut.data_360.shape)
1917 print("dataOut",dataOut.data_360.shape)
1918 #
1918 #
1919 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1919 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1920 #
1920 #
1921 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1921 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1922 data['azi'] = dataOut.data_azi
1922 data['azi'] = dataOut.data_azi
1923 data['ele'] = dataOut.data_ele
1923 data['ele'] = dataOut.data_ele
1924 #data['case_flag'] = dataOut.case_flag
1924 #data['case_flag'] = dataOut.case_flag
1925 #print("UPDATE")
1925 #print("UPDATE")
1926 #print("data[weather]",data['weather'].shape)
1926 #print("data[weather]",data['weather'].shape)
1927 #print("data[azi]",data['azi'])
1927 #print("data[azi]",data['azi'])
1928 return data, meta
1928 return data, meta
1929
1929
1930 def get2List(self,angulos):
1930 def get2List(self,angulos):
1931 list1=[]
1931 list1=[]
1932 list2=[]
1932 list2=[]
1933 for i in reversed(range(len(angulos))):
1933 for i in reversed(range(len(angulos))):
1934 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1934 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1935 diff_ = angulos[i]-angulos[i-1]
1935 diff_ = angulos[i]-angulos[i-1]
1936 if abs(diff_) >1.5:
1936 if abs(diff_) >1.5:
1937 list1.append(i-1)
1937 list1.append(i-1)
1938 list2.append(diff_)
1938 list2.append(diff_)
1939 return list(reversed(list1)),list(reversed(list2))
1939 return list(reversed(list1)),list(reversed(list2))
1940
1940
1941 def fixData90(self,list_,ang_):
1941 def fixData90(self,list_,ang_):
1942 if list_[0]==-1:
1942 if list_[0]==-1:
1943 vec = numpy.where(ang_<ang_[0])
1943 vec = numpy.where(ang_<ang_[0])
1944 ang_[vec] = ang_[vec]+90
1944 ang_[vec] = ang_[vec]+90
1945 return ang_
1945 return ang_
1946 return ang_
1946 return ang_
1947
1947
1948 def fixData90HL(self,angulos):
1948 def fixData90HL(self,angulos):
1949 vec = numpy.where(angulos>=90)
1949 vec = numpy.where(angulos>=90)
1950 angulos[vec]=angulos[vec]-90
1950 angulos[vec]=angulos[vec]-90
1951 return angulos
1951 return angulos
1952
1952
1953
1953
1954 def search_pos(self,pos,list_):
1954 def search_pos(self,pos,list_):
1955 for i in range(len(list_)):
1955 for i in range(len(list_)):
1956 if pos == list_[i]:
1956 if pos == list_[i]:
1957 return True,i
1957 return True,i
1958 i=None
1958 i=None
1959 return False,i
1959 return False,i
1960
1960
1961 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1961 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1962 size = len(ang_)
1962 size = len(ang_)
1963 size2 = 0
1963 size2 = 0
1964 for i in range(len(list2_)):
1964 for i in range(len(list2_)):
1965 size2=size2+round(abs(list2_[i]))-1
1965 size2=size2+round(abs(list2_[i]))-1
1966 new_size= size+size2
1966 new_size= size+size2
1967 ang_new = numpy.zeros(new_size)
1967 ang_new = numpy.zeros(new_size)
1968 ang_new2 = numpy.zeros(new_size)
1968 ang_new2 = numpy.zeros(new_size)
1969
1969
1970 tmp = 0
1970 tmp = 0
1971 c = 0
1971 c = 0
1972 for i in range(len(ang_)):
1972 for i in range(len(ang_)):
1973 ang_new[tmp +c] = ang_[i]
1973 ang_new[tmp +c] = ang_[i]
1974 ang_new2[tmp+c] = ang_[i]
1974 ang_new2[tmp+c] = ang_[i]
1975 condition , value = self.search_pos(i,list1_)
1975 condition , value = self.search_pos(i,list1_)
1976 if condition:
1976 if condition:
1977 pos = tmp + c + 1
1977 pos = tmp + c + 1
1978 for k in range(round(abs(list2_[value]))-1):
1978 for k in range(round(abs(list2_[value]))-1):
1979 if tipo_case==0 or tipo_case==3:#subida
1979 if tipo_case==0 or tipo_case==3:#subida
1980 ang_new[pos+k] = ang_new[pos+k-1]+1
1980 ang_new[pos+k] = ang_new[pos+k-1]+1
1981 ang_new2[pos+k] = numpy.nan
1981 ang_new2[pos+k] = numpy.nan
1982 elif tipo_case==1 or tipo_case==2:#bajada
1982 elif tipo_case==1 or tipo_case==2:#bajada
1983 ang_new[pos+k] = ang_new[pos+k-1]-1
1983 ang_new[pos+k] = ang_new[pos+k-1]-1
1984 ang_new2[pos+k] = numpy.nan
1984 ang_new2[pos+k] = numpy.nan
1985
1985
1986 tmp = pos +k
1986 tmp = pos +k
1987 c = 0
1987 c = 0
1988 c=c+1
1988 c=c+1
1989 return ang_new,ang_new2
1989 return ang_new,ang_new2
1990
1990
1991 def globalCheckPED(self,angulos,tipo_case):
1991 def globalCheckPED(self,angulos,tipo_case):
1992 l1,l2 = self.get2List(angulos)
1992 l1,l2 = self.get2List(angulos)
1993 ##print("l1",l1)
1993 ##print("l1",l1)
1994 ##print("l2",l2)
1994 ##print("l2",l2)
1995 if len(l1)>0:
1995 if len(l1)>0:
1996 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1996 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1997 #l1,l2 = self.get2List(angulos2)
1997 #l1,l2 = self.get2List(angulos2)
1998 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1998 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1999 #ang1_ = self.fixData90HL(ang1_)
1999 #ang1_ = self.fixData90HL(ang1_)
2000 #ang2_ = self.fixData90HL(ang2_)
2000 #ang2_ = self.fixData90HL(ang2_)
2001 else:
2001 else:
2002 ang1_= angulos
2002 ang1_= angulos
2003 ang2_= angulos
2003 ang2_= angulos
2004 return ang1_,ang2_
2004 return ang1_,ang2_
2005
2005
2006
2006
2007 def replaceNAN(self,data_weather,data_ele,val):
2007 def replaceNAN(self,data_weather,data_ele,val):
2008 data= data_ele
2008 data= data_ele
2009 data_T= data_weather
2009 data_T= data_weather
2010
2010
2011 if data.shape[0]> data_T.shape[0]:
2011 if data.shape[0]> data_T.shape[0]:
2012 print("IF")
2012 print("IF")
2013 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
2013 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
2014 c = 0
2014 c = 0
2015 for i in range(len(data)):
2015 for i in range(len(data)):
2016 if numpy.isnan(data[i]):
2016 if numpy.isnan(data[i]):
2017 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2017 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2018 else:
2018 else:
2019 data_N[i,:]=data_T[c,:]
2019 data_N[i,:]=data_T[c,:]
2020 c=c+1
2020 c=c+1
2021 return data_N
2021 return data_N
2022 else:
2022 else:
2023 print("else")
2023 print("else")
2024 for i in range(len(data)):
2024 for i in range(len(data)):
2025 if numpy.isnan(data[i]):
2025 if numpy.isnan(data[i]):
2026 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2026 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2027 return data_T
2027 return data_T
2028
2028
2029 def check_case(self,data_ele,ang_max,ang_min):
2029 def check_case(self,data_ele,ang_max,ang_min):
2030 start = data_ele[0]
2030 start = data_ele[0]
2031 end = data_ele[-1]
2031 end = data_ele[-1]
2032 number = (end-start)
2032 number = (end-start)
2033 len_ang=len(data_ele)
2033 len_ang=len(data_ele)
2034 print("start",start)
2034 print("start",start)
2035 print("end",end)
2035 print("end",end)
2036 print("number",number)
2036 print("number",number)
2037
2037
2038 print("len_ang",len_ang)
2038 print("len_ang",len_ang)
2039
2039
2040 #exit(1)
2040 #exit(1)
2041
2041
2042 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
2042 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
2043 return 0
2043 return 0
2044 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
2044 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
2045 # return 1
2045 # return 1
2046 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
2046 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
2047 return 1
2047 return 1
2048 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
2048 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
2049 return 2
2049 return 2
2050 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
2050 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
2051 return 3
2051 return 3
2052
2052
2053
2053
2054 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
2054 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
2055 ang_max= ang_max
2055 ang_max= ang_max
2056 ang_min= ang_min
2056 ang_min= ang_min
2057 data_weather=data_weather
2057 data_weather=data_weather
2058 val_ch=val_ch
2058 val_ch=val_ch
2059 ##print("*********************DATA WEATHER**************************************")
2059 ##print("*********************DATA WEATHER**************************************")
2060 ##print(data_weather)
2060 ##print(data_weather)
2061 if self.ini==0:
2061 if self.ini==0:
2062
2062
2063 #--------------------- new -------------------------
2063 #--------------------- new -------------------------
2064 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
2064 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
2065
2065
2066 #-------------------------CAMBIOS RHI---------------------------------
2066 #-------------------------CAMBIOS RHI---------------------------------
2067 start= ang_min
2067 start= ang_min
2068 end = ang_max
2068 end = ang_max
2069 n= (ang_max-ang_min)/res
2069 n= (ang_max-ang_min)/res
2070 #------ new
2070 #------ new
2071 self.start_data_ele = data_ele_new[0]
2071 self.start_data_ele = data_ele_new[0]
2072 self.end_data_ele = data_ele_new[-1]
2072 self.end_data_ele = data_ele_new[-1]
2073 if tipo_case==0 or tipo_case==3: # SUBIDA
2073 if tipo_case==0 or tipo_case==3: # SUBIDA
2074 n1= round(self.start_data_ele)- start
2074 n1= round(self.start_data_ele)- start
2075 n2= end - round(self.end_data_ele)
2075 n2= end - round(self.end_data_ele)
2076 print(self.start_data_ele)
2076 print(self.start_data_ele)
2077 print(self.end_data_ele)
2077 print(self.end_data_ele)
2078 if n1>0:
2078 if n1>0:
2079 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2079 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2080 ele1_nan= numpy.ones(n1)*numpy.nan
2080 ele1_nan= numpy.ones(n1)*numpy.nan
2081 data_ele = numpy.hstack((ele1,data_ele_new))
2081 data_ele = numpy.hstack((ele1,data_ele_new))
2082 print("ele1_nan",ele1_nan.shape)
2082 print("ele1_nan",ele1_nan.shape)
2083 print("data_ele_old",data_ele_old.shape)
2083 print("data_ele_old",data_ele_old.shape)
2084 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2084 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2085 if n2>0:
2085 if n2>0:
2086 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2086 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2087 ele2_nan= numpy.ones(n2)*numpy.nan
2087 ele2_nan= numpy.ones(n2)*numpy.nan
2088 data_ele = numpy.hstack((data_ele,ele2))
2088 data_ele = numpy.hstack((data_ele,ele2))
2089 print("ele2_nan",ele2_nan.shape)
2089 print("ele2_nan",ele2_nan.shape)
2090 print("data_ele_old",data_ele_old.shape)
2090 print("data_ele_old",data_ele_old.shape)
2091 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2091 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2092
2092
2093 if tipo_case==1 or tipo_case==2: # BAJADA
2093 if tipo_case==1 or tipo_case==2: # BAJADA
2094 data_ele_new = data_ele_new[::-1] # reversa
2094 data_ele_new = data_ele_new[::-1] # reversa
2095 data_ele_old = data_ele_old[::-1]# reversa
2095 data_ele_old = data_ele_old[::-1]# reversa
2096 data_weather = data_weather[::-1,:]# reversa
2096 data_weather = data_weather[::-1,:]# reversa
2097 vec= numpy.where(data_ele_new<ang_max)
2097 vec= numpy.where(data_ele_new<ang_max)
2098 data_ele_new = data_ele_new[vec]
2098 data_ele_new = data_ele_new[vec]
2099 data_ele_old = data_ele_old[vec]
2099 data_ele_old = data_ele_old[vec]
2100 data_weather = data_weather[vec[0]]
2100 data_weather = data_weather[vec[0]]
2101 vec2= numpy.where(0<data_ele_new)
2101 vec2= numpy.where(0<data_ele_new)
2102 data_ele_new = data_ele_new[vec2]
2102 data_ele_new = data_ele_new[vec2]
2103 data_ele_old = data_ele_old[vec2]
2103 data_ele_old = data_ele_old[vec2]
2104 data_weather = data_weather[vec2[0]]
2104 data_weather = data_weather[vec2[0]]
2105 self.start_data_ele = data_ele_new[0]
2105 self.start_data_ele = data_ele_new[0]
2106 self.end_data_ele = data_ele_new[-1]
2106 self.end_data_ele = data_ele_new[-1]
2107
2107
2108 n1= round(self.start_data_ele)- start
2108 n1= round(self.start_data_ele)- start
2109 n2= end - round(self.end_data_ele)-1
2109 n2= end - round(self.end_data_ele)-1
2110 print(self.start_data_ele)
2110 print(self.start_data_ele)
2111 print(self.end_data_ele)
2111 print(self.end_data_ele)
2112 if n1>0:
2112 if n1>0:
2113 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2113 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2114 ele1_nan= numpy.ones(n1)*numpy.nan
2114 ele1_nan= numpy.ones(n1)*numpy.nan
2115 data_ele = numpy.hstack((ele1,data_ele_new))
2115 data_ele = numpy.hstack((ele1,data_ele_new))
2116 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2116 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2117 if n2>0:
2117 if n2>0:
2118 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2118 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2119 ele2_nan= numpy.ones(n2)*numpy.nan
2119 ele2_nan= numpy.ones(n2)*numpy.nan
2120 data_ele = numpy.hstack((data_ele,ele2))
2120 data_ele = numpy.hstack((data_ele,ele2))
2121 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2121 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2122 # RADAR
2122 # RADAR
2123 # NOTA data_ele y data_weather es la variable que retorna
2123 # NOTA data_ele y data_weather es la variable que retorna
2124 val_mean = numpy.mean(data_weather[:,-1])
2124 val_mean = numpy.mean(data_weather[:,-1])
2125 self.val_mean = val_mean
2125 self.val_mean = val_mean
2126 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2126 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2127 print("eleold",data_ele_old)
2127 print("eleold",data_ele_old)
2128 print(self.data_ele_tmp[val_ch])
2128 print(self.data_ele_tmp[val_ch])
2129 print(data_ele_old.shape[0])
2129 print(data_ele_old.shape[0])
2130 print(self.data_ele_tmp[val_ch].shape[0])
2130 print(self.data_ele_tmp[val_ch].shape[0])
2131 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
2131 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
2132 import sys
2132 import sys
2133 print("EXIT",self.ini)
2133 print("EXIT",self.ini)
2134
2134
2135 sys.exit(1)
2135 sys.exit(1)
2136 self.data_ele_tmp[val_ch]= data_ele_old
2136 self.data_ele_tmp[val_ch]= data_ele_old
2137 else:
2137 else:
2138 #print("**********************************************")
2138 #print("**********************************************")
2139 #print("****************VARIABLE**********************")
2139 #print("****************VARIABLE**********************")
2140 #-------------------------CAMBIOS RHI---------------------------------
2140 #-------------------------CAMBIOS RHI---------------------------------
2141 #---------------------------------------------------------------------
2141 #---------------------------------------------------------------------
2142 ##print("INPUT data_ele",data_ele)
2142 ##print("INPUT data_ele",data_ele)
2143 flag=0
2143 flag=0
2144 start_ele = self.res_ele[0]
2144 start_ele = self.res_ele[0]
2145 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
2145 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
2146 tipo_case = case_flag[-1]
2146 tipo_case = case_flag[-1]
2147 #print("TIPO DE DATA",tipo_case)
2147 #print("TIPO DE DATA",tipo_case)
2148 #-----------new------------
2148 #-----------new------------
2149 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
2149 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
2150 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2150 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2151
2151
2152 #-------------------------------NEW RHI ITERATIVO-------------------------
2152 #-------------------------------NEW RHI ITERATIVO-------------------------
2153
2153
2154 if tipo_case==0 : # SUBIDA
2154 if tipo_case==0 : # SUBIDA
2155 vec = numpy.where(data_ele<ang_max)
2155 vec = numpy.where(data_ele<ang_max)
2156 data_ele = data_ele[vec]
2156 data_ele = data_ele[vec]
2157 data_ele_old = data_ele_old[vec]
2157 data_ele_old = data_ele_old[vec]
2158 data_weather = data_weather[vec[0]]
2158 data_weather = data_weather[vec[0]]
2159
2159
2160 vec2 = numpy.where(0<data_ele)
2160 vec2 = numpy.where(0<data_ele)
2161 data_ele= data_ele[vec2]
2161 data_ele= data_ele[vec2]
2162 data_ele_old= data_ele_old[vec2]
2162 data_ele_old= data_ele_old[vec2]
2163 ##print(data_ele_new)
2163 ##print(data_ele_new)
2164 data_weather= data_weather[vec2[0]]
2164 data_weather= data_weather[vec2[0]]
2165
2165
2166 new_i_ele = int(round(data_ele[0]))
2166 new_i_ele = int(round(data_ele[0]))
2167 new_f_ele = int(round(data_ele[-1]))
2167 new_f_ele = int(round(data_ele[-1]))
2168 #print(new_i_ele)
2168 #print(new_i_ele)
2169 #print(new_f_ele)
2169 #print(new_f_ele)
2170 #print(data_ele,len(data_ele))
2170 #print(data_ele,len(data_ele))
2171 #print(data_ele_old,len(data_ele_old))
2171 #print(data_ele_old,len(data_ele_old))
2172 if new_i_ele< 2:
2172 if new_i_ele< 2:
2173 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2173 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2174 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2174 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2175 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
2175 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
2176 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
2176 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
2177 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
2177 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
2178 data_ele = self.res_ele
2178 data_ele = self.res_ele
2179 data_weather = self.res_weather[val_ch]
2179 data_weather = self.res_weather[val_ch]
2180
2180
2181 elif tipo_case==1 : #BAJADA
2181 elif tipo_case==1 : #BAJADA
2182 data_ele = data_ele[::-1] # reversa
2182 data_ele = data_ele[::-1] # reversa
2183 data_ele_old = data_ele_old[::-1]# reversa
2183 data_ele_old = data_ele_old[::-1]# reversa
2184 data_weather = data_weather[::-1,:]# reversa
2184 data_weather = data_weather[::-1,:]# reversa
2185 vec= numpy.where(data_ele<ang_max)
2185 vec= numpy.where(data_ele<ang_max)
2186 data_ele = data_ele[vec]
2186 data_ele = data_ele[vec]
2187 data_ele_old = data_ele_old[vec]
2187 data_ele_old = data_ele_old[vec]
2188 data_weather = data_weather[vec[0]]
2188 data_weather = data_weather[vec[0]]
2189 vec2= numpy.where(0<data_ele)
2189 vec2= numpy.where(0<data_ele)
2190 data_ele = data_ele[vec2]
2190 data_ele = data_ele[vec2]
2191 data_ele_old = data_ele_old[vec2]
2191 data_ele_old = data_ele_old[vec2]
2192 data_weather = data_weather[vec2[0]]
2192 data_weather = data_weather[vec2[0]]
2193
2193
2194
2194
2195 new_i_ele = int(round(data_ele[0]))
2195 new_i_ele = int(round(data_ele[0]))
2196 new_f_ele = int(round(data_ele[-1]))
2196 new_f_ele = int(round(data_ele[-1]))
2197 #print(data_ele)
2197 #print(data_ele)
2198 #print(ang_max)
2198 #print(ang_max)
2199 #print(data_ele_old)
2199 #print(data_ele_old)
2200 if new_i_ele <= 1:
2200 if new_i_ele <= 1:
2201 new_i_ele = 1
2201 new_i_ele = 1
2202 if round(data_ele[-1])>=ang_max-1:
2202 if round(data_ele[-1])>=ang_max-1:
2203 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2203 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2204 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2204 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2205 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
2205 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
2206 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
2206 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
2207 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
2207 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
2208 data_ele = self.res_ele
2208 data_ele = self.res_ele
2209 data_weather = self.res_weather[val_ch]
2209 data_weather = self.res_weather[val_ch]
2210
2210
2211 elif tipo_case==2: #bajada
2211 elif tipo_case==2: #bajada
2212 vec = numpy.where(data_ele<ang_max)
2212 vec = numpy.where(data_ele<ang_max)
2213 data_ele = data_ele[vec]
2213 data_ele = data_ele[vec]
2214 data_weather= data_weather[vec[0]]
2214 data_weather= data_weather[vec[0]]
2215
2215
2216 len_vec = len(vec)
2216 len_vec = len(vec)
2217 data_ele_new = data_ele[::-1] # reversa
2217 data_ele_new = data_ele[::-1] # reversa
2218 data_weather = data_weather[::-1,:]
2218 data_weather = data_weather[::-1,:]
2219 new_i_ele = int(data_ele_new[0])
2219 new_i_ele = int(data_ele_new[0])
2220 new_f_ele = int(data_ele_new[-1])
2220 new_f_ele = int(data_ele_new[-1])
2221
2221
2222 n1= new_i_ele- ang_min
2222 n1= new_i_ele- ang_min
2223 n2= ang_max - new_f_ele-1
2223 n2= ang_max - new_f_ele-1
2224 if n1>0:
2224 if n1>0:
2225 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2225 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2226 ele1_nan= numpy.ones(n1)*numpy.nan
2226 ele1_nan= numpy.ones(n1)*numpy.nan
2227 data_ele = numpy.hstack((ele1,data_ele_new))
2227 data_ele = numpy.hstack((ele1,data_ele_new))
2228 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2228 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2229 if n2>0:
2229 if n2>0:
2230 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2230 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2231 ele2_nan= numpy.ones(n2)*numpy.nan
2231 ele2_nan= numpy.ones(n2)*numpy.nan
2232 data_ele = numpy.hstack((data_ele,ele2))
2232 data_ele = numpy.hstack((data_ele,ele2))
2233 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2233 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2234
2234
2235 self.data_ele_tmp[val_ch] = data_ele_old
2235 self.data_ele_tmp[val_ch] = data_ele_old
2236 self.res_ele = data_ele
2236 self.res_ele = data_ele
2237 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2237 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2238 data_ele = self.res_ele
2238 data_ele = self.res_ele
2239 data_weather = self.res_weather[val_ch]
2239 data_weather = self.res_weather[val_ch]
2240
2240
2241 elif tipo_case==3:#subida
2241 elif tipo_case==3:#subida
2242 vec = numpy.where(0<data_ele)
2242 vec = numpy.where(0<data_ele)
2243 data_ele= data_ele[vec]
2243 data_ele= data_ele[vec]
2244 data_ele_new = data_ele
2244 data_ele_new = data_ele
2245 data_ele_old= data_ele_old[vec]
2245 data_ele_old= data_ele_old[vec]
2246 data_weather= data_weather[vec[0]]
2246 data_weather= data_weather[vec[0]]
2247 pos_ini = numpy.argmin(data_ele)
2247 pos_ini = numpy.argmin(data_ele)
2248 if pos_ini>0:
2248 if pos_ini>0:
2249 len_vec= len(data_ele)
2249 len_vec= len(data_ele)
2250 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
2250 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
2251 #print(vec3)
2251 #print(vec3)
2252 data_ele= data_ele[vec3]
2252 data_ele= data_ele[vec3]
2253 data_ele_new = data_ele
2253 data_ele_new = data_ele
2254 data_ele_old= data_ele_old[vec3]
2254 data_ele_old= data_ele_old[vec3]
2255 data_weather= data_weather[vec3]
2255 data_weather= data_weather[vec3]
2256
2256
2257 new_i_ele = int(data_ele_new[0])
2257 new_i_ele = int(data_ele_new[0])
2258 new_f_ele = int(data_ele_new[-1])
2258 new_f_ele = int(data_ele_new[-1])
2259 n1= new_i_ele- ang_min
2259 n1= new_i_ele- ang_min
2260 n2= ang_max - new_f_ele-1
2260 n2= ang_max - new_f_ele-1
2261 if n1>0:
2261 if n1>0:
2262 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2262 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2263 ele1_nan= numpy.ones(n1)*numpy.nan
2263 ele1_nan= numpy.ones(n1)*numpy.nan
2264 data_ele = numpy.hstack((ele1,data_ele_new))
2264 data_ele = numpy.hstack((ele1,data_ele_new))
2265 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2265 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2266 if n2>0:
2266 if n2>0:
2267 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2267 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2268 ele2_nan= numpy.ones(n2)*numpy.nan
2268 ele2_nan= numpy.ones(n2)*numpy.nan
2269 data_ele = numpy.hstack((data_ele,ele2))
2269 data_ele = numpy.hstack((data_ele,ele2))
2270 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2270 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2271
2271
2272 self.data_ele_tmp[val_ch] = data_ele_old
2272 self.data_ele_tmp[val_ch] = data_ele_old
2273 self.res_ele = data_ele
2273 self.res_ele = data_ele
2274 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2274 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2275 data_ele = self.res_ele
2275 data_ele = self.res_ele
2276 data_weather = self.res_weather[val_ch]
2276 data_weather = self.res_weather[val_ch]
2277 #print("self.data_ele_tmp",self.data_ele_tmp)
2277 #print("self.data_ele_tmp",self.data_ele_tmp)
2278 return data_weather,data_ele
2278 return data_weather,data_ele
2279
2279
2280 def const_ploteo_vRF(self,val_ch,data_weather,data_ele,res,ang_max,ang_min):
2280 def const_ploteo_vRF(self,val_ch,data_weather,data_ele,res,ang_max,ang_min):
2281
2281
2282 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,1)
2282 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,1)
2283
2283
2284 data_ele = data_ele_old.copy()
2284 data_ele = data_ele_old.copy()
2285
2285
2286 diff_1 = ang_max - data_ele[0]
2286 diff_1 = ang_max - data_ele[0]
2287 angles_1_nan = numpy.linspace(ang_max,data_ele[0]+1,int(diff_1)-1)#*numpy.nan
2287 angles_1_nan = numpy.linspace(ang_max,data_ele[0]+1,int(diff_1)-1)#*numpy.nan
2288
2288
2289 diff_2 = data_ele[-1]-ang_min
2289 diff_2 = data_ele[-1]-ang_min
2290 angles_2_nan = numpy.linspace(data_ele[-1]-1,ang_min,int(diff_2)-1)#*numpy.nan
2290 angles_2_nan = numpy.linspace(data_ele[-1]-1,ang_min,int(diff_2)-1)#*numpy.nan
2291
2291
2292 angles_filled = numpy.concatenate((angles_1_nan,data_ele,angles_2_nan))
2292 angles_filled = numpy.concatenate((angles_1_nan,data_ele,angles_2_nan))
2293
2293
2294 print(angles_filled)
2294 print(angles_filled)
2295
2295
2296 data_1_nan = numpy.ones([angles_1_nan.shape[0],len(self.r_mask)])*numpy.nan
2296 data_1_nan = numpy.ones([angles_1_nan.shape[0],len(self.r_mask)])*numpy.nan
2297 data_2_nan = numpy.ones([angles_2_nan.shape[0],len(self.r_mask)])*numpy.nan
2297 data_2_nan = numpy.ones([angles_2_nan.shape[0],len(self.r_mask)])*numpy.nan
2298
2298
2299 data_filled = numpy.concatenate((data_1_nan,data_weather,data_2_nan),axis=0)
2299 data_filled = numpy.concatenate((data_1_nan,data_weather,data_2_nan),axis=0)
2300 #val_mean = numpy.mean(data_weather[:,-1])
2300 #val_mean = numpy.mean(data_weather[:,-1])
2301 #self.val_mean = val_mean
2301 #self.val_mean = val_mean
2302 print(data_filled)
2302 print(data_filled)
2303 data_filled = self.replaceNAN(data_weather=data_filled,data_ele=angles_filled,val=numpy.nan)
2303 data_filled = self.replaceNAN(data_weather=data_filled,data_ele=angles_filled,val=numpy.nan)
2304
2304
2305 print(data_filled)
2305 print(data_filled)
2306 print(data_filled.shape)
2306 print(data_filled.shape)
2307 print(angles_filled.shape)
2307 print(angles_filled.shape)
2308
2308
2309 return data_filled,angles_filled
2309 return data_filled,angles_filled
2310
2310
2311 def plot(self):
2311 def plot(self):
2312 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
2312 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
2313 data = self.data[-1]
2313 data = self.data[-1]
2314 r = self.data.yrange
2314 r = self.data.yrange
2315 delta_height = r[1]-r[0]
2315 delta_height = r[1]-r[0]
2316 r_mask = numpy.where(r>=0)[0]
2316 r_mask = numpy.where(r>=0)[0]
2317 self.r_mask =r_mask
2317 self.r_mask =r_mask
2318 ##print("delta_height",delta_height)
2318 ##print("delta_height",delta_height)
2319 #print("r_mask",r_mask,len(r_mask))
2319 #print("r_mask",r_mask,len(r_mask))
2320 r = numpy.arange(len(r_mask))*delta_height
2320 r = numpy.arange(len(r_mask))*delta_height
2321 self.y = 2*r
2321 self.y = 2*r
2322 res = 1
2322 res = 1
2323 ###print("data['weather'].shape[0]",data['weather'].shape[0])
2323 ###print("data['weather'].shape[0]",data['weather'].shape[0])
2324 ang_max = self.ang_max
2324 ang_max = self.ang_max
2325 ang_min = self.ang_min
2325 ang_min = self.ang_min
2326 var_ang =ang_max - ang_min
2326 var_ang =ang_max - ang_min
2327 step = (int(var_ang)/(res*data['weather'].shape[0]))
2327 step = (int(var_ang)/(res*data['weather'].shape[0]))
2328 ###print("step",step)
2328 ###print("step",step)
2329 #--------------------------------------------------------
2329 #--------------------------------------------------------
2330 ##print('weather',data['weather'].shape)
2330 ##print('weather',data['weather'].shape)
2331 ##print('ele',data['ele'].shape)
2331 ##print('ele',data['ele'].shape)
2332
2332
2333 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
2333 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
2334 ###self.res_azi = numpy.mean(data['azi'])
2334 ###self.res_azi = numpy.mean(data['azi'])
2335 ###print("self.res_ele",self.res_ele)
2335 ###print("self.res_ele",self.res_ele)
2336
2336
2337 plt.clf()
2337 plt.clf()
2338 subplots = [121, 122]
2338 subplots = [121, 122]
2339 #if self.ini==0:
2339 #if self.ini==0:
2340 #self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
2340 #self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
2341 #print("SHAPE",self.data_ele_tmp.shape)
2341 #print("SHAPE",self.data_ele_tmp.shape)
2342
2342
2343 for i,ax in enumerate(self.axes):
2343 for i,ax in enumerate(self.axes):
2344 res_weather, self.res_ele = self.const_ploteo_vRF(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],res=res,ang_max=ang_max,ang_min=ang_min)
2344 res_weather, self.res_ele = self.const_ploteo_vRF(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],res=res,ang_max=ang_max,ang_min=ang_min)
2345 self.res_azi = numpy.mean(data['azi'])
2345 self.res_azi = numpy.mean(data['azi'])
2346
2346
2347 if ax.firsttime:
2347 if ax.firsttime:
2348 #plt.clf()
2348 #plt.clf()
2349 print("Frist Plot")
2349 print("Frist Plot")
2350 print(data['weather'][i][:,r_mask].shape)
2350 print(data['weather'][i][:,r_mask].shape)
2351 print(data['ele'].shape)
2351 print(data['ele'].shape)
2352 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2352 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2353 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2353 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2354 gh = cgax.get_grid_helper()
2354 gh = cgax.get_grid_helper()
2355 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2355 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2356 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2356 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2357 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2357 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2358
2358
2359
2359
2360 #fig=self.figures[0]
2360 #fig=self.figures[0]
2361 else:
2361 else:
2362 #plt.clf()
2362 #plt.clf()
2363 print("ELSE PLOT")
2363 print("ELSE PLOT")
2364 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2364 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2365 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2365 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2366 gh = cgax.get_grid_helper()
2366 gh = cgax.get_grid_helper()
2367 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2367 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2368 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2368 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2369 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2369 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2370
2370
2371 caax = cgax.parasites[0]
2371 caax = cgax.parasites[0]
2372 paax = cgax.parasites[1]
2372 paax = cgax.parasites[1]
2373 cbar = plt.gcf().colorbar(pm, pad=0.075)
2373 cbar = plt.gcf().colorbar(pm, pad=0.075)
2374 caax.set_xlabel('x_range [km]')
2374 caax.set_xlabel('x_range [km]')
2375 caax.set_ylabel('y_range [km]')
2375 caax.set_ylabel('y_range [km]')
2376 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
2376 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
2377 print("***************************self.ini****************************",self.ini)
2377 print("***************************self.ini****************************",self.ini)
2378 self.ini= self.ini+1
2378 self.ini= self.ini+1
2379
2380 class WeatherRHI_vRF4_Plot(Plot):
2381 CODE = 'weather'
2382 plot_name = 'weather'
2383 #plot_type = 'rhistyle'
2384 buffering = False
2385 data_ele_tmp = None
2386
2387 def setup(self):
2388
2389 self.ncols = 1
2390 self.nrows = 1
2391 self.nplots= 1
2392 self.ylabel= 'Range [Km]'
2393 self.titles= ['Weather']
2394 self.polar = True
2395 if self.channels is not None:
2396 self.nplots = len(self.channels)
2397 self.nrows = len(self.channels)
2398 else:
2399 self.nplots = self.data.shape(self.CODE)[0]
2400 self.nrows = self.nplots
2401 self.channels = list(range(self.nplots))
2402 #print("JERE")
2403 #exit(1)
2404 #print("channels",self.channels)
2405 #print("que saldra", self.data.shape(self.CODE)[0])
2406 #self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
2407
2408 #print("self.titles",self.titles)
2409 if self.CODE == 'Power':
2410 self.cb_label = r'Power (dB)'
2411 elif self.CODE == 'Doppler':
2412 self.cb_label = r'Velocity (m/s)'
2413 self.colorbar=True
2414 self.width =8
2415 self.height =8
2416 self.ini =0
2417 self.len_azi =0
2418 self.buffer_ini = None
2419 self.buffer_ele = None
2420 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
2421 self.flag =0
2422 self.indicador= 0
2423 self.last_data_ele = None
2424 self.val_mean = None
2425
2426 def update(self, dataOut):
2427
2428 if self.mode == 'Power':
2429 self.CODE = 'Power'
2430 elif self.mode == 'Doppler':
2431 self.CODE = 'Doppler'
2432
2433 data = {}
2434 meta = {}
2435 if hasattr(dataOut, 'dataPP_POWER'):
2436 factor = 1
2437 if hasattr(dataOut, 'nFFTPoints'):
2438 factor = dataOut.normFactor
2439
2440 if self.CODE == 'Power':
2441 data[self.CODE] = 10*numpy.log10(dataOut.data_360_Power/(factor))
2442 elif self.CODE == 'Doppler':
2443 data[self.CODE] = dataOut.data_360_Velocity/(factor)
2444
2445 data['azi'] = dataOut.data_azi
2446 data['ele'] = dataOut.data_ele
2447
2448 return data, meta
2449
2450 def plot(self):
2451 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
2452 data = self.data[-1]
2453 r = self.data.yrange
2454 delta_height = r[1]-r[0]
2455 r_mask = numpy.where(r>=0)[0]
2456 self.r_mask =r_mask
2457 r = numpy.arange(len(r_mask))*delta_height
2458 self.y = 2*r
2459 res = 1
2460 ang_max = self.ang_max
2461 ang_min = self.ang_min
2462 var_ang =ang_max - ang_min
2463 step = (int(var_ang)/(res*data[self.CODE].shape[0]))
2464
2465 z = data[self.CODE][self.channels[0]][:,r_mask]
2466
2467 #print(z[2,:])
2468 self.titles = []
2469
2470 #exit(1)
2471
2472 if self.CODE == 'Power':
2473 cmap = 'jet'
2474 elif self.CODE == 'Doppler':
2475 cmap = 'RdBu'
2476
2477 self.ymax = self.ymax if self.ymax else numpy.nanmax(r)
2478 self.ymin = self.ymin if self.ymin else numpy.nanmin(r)
2479 self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
2480 self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
2481
2482 #plt.clf()
2483 subplots = [121, 122]
2484
2485 r, theta = numpy.meshgrid(r, numpy.radians(data['ele']) )
2486
2487 points_cb = 200
2488 mylevs_cbar = list(numpy.linspace(self.zmin,self.zmax,points_cb)) #niveles de la barra de colores
2489
2490 for i,ax in enumerate(self.axes):
2491
2492 if ax.firsttime:
2493 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
2494 ax.plt = ax.contourf(theta, r, z, points_cb, cmap=cmap, vmin=self.zmin, vmax=self.zmax, levels=mylevs_cbar)
2495 #print(ax.plt)
2496 #exit(1)
2497 '''
2498 self.figures[-1].colorbar(plt, orientation="vertical", fraction=0.025, pad=0.07)
2499 print(self.figures[0])
2500 print(self.figures)
2501 print(plt)
2502 print(ax)
2503 exit(1)
2504 '''
2505
2506 else:
2507 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
2508 ax.plt = ax.contourf(theta, r, z, points_cb, cmap=cmap, vmin=self.zmin, vmax=self.zmax, levels=mylevs_cbar)
2509 #self.figures[0].colorbar(plt, orientation="vertical", fraction=0.025, pad=0.07)
2510
2511 #print(self.titles)
2512 if len(self.channels) !=1:
2513 self.titles = ['{} Azi: {} Channel {}'.format(self.CODE.upper(), str(round(numpy.mean(data['azi']),2)), x) for x in range(self.nrows)]
2514 else:
2515 self.titles = ['{} Azi: {} Channel {}'.format(self.CODE.upper(), str(round(numpy.mean(data['azi']),2)), self.channels[0])]
2516 #self.titles.append('Azi: {}'.format(str(round(numpy.mean(data['azi']),2))))
2517 #self.titles.append(str(round(numpy.mean(data['azi']),2)))
2518 #print(self.titles)
2519 #plt.text(1.0, 1.05, str(thisDatetime)+ " Azi: "+str(round(numpy.mean(data['azi']),2)), transform=caax.transAxes, va='bottom',ha='right')
2520 #print("***************************self.ini****************************",self.ini)
2521 #self.figures[-1].colorbar(plt, orientation="vertical", fraction=0.025, pad=0.07)
2522 #self.ini= self.ini+1
@@ -1,703 +1,714
1 import os
1 import os
2 import time
2 import time
3 import datetime
3 import datetime
4
4
5 import numpy
5 import numpy
6 import h5py
6 import h5py
7
7
8 import schainpy.admin
8 import schainpy.admin
9 from schainpy.model.data.jrodata import *
9 from schainpy.model.data.jrodata import *
10 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
10 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
11 from schainpy.model.io.jroIO_base import *
11 from schainpy.model.io.jroIO_base import *
12 from schainpy.utils import log
12 from schainpy.utils import log
13
13
14
14
15 class HDFReader(Reader, ProcessingUnit):
15 class HDFReader(Reader, ProcessingUnit):
16 """Processing unit to read HDF5 format files
16 """Processing unit to read HDF5 format files
17
17
18 This unit reads HDF5 files created with `HDFWriter` operation contains
18 This unit reads HDF5 files created with `HDFWriter` operation contains
19 by default two groups Data and Metadata all variables would be saved as `dataOut`
19 by default two groups Data and Metadata all variables would be saved as `dataOut`
20 attributes.
20 attributes.
21 It is possible to read any HDF5 file by given the structure in the `description`
21 It is possible to read any HDF5 file by given the structure in the `description`
22 parameter, also you can add extra values to metadata with the parameter `extras`.
22 parameter, also you can add extra values to metadata with the parameter `extras`.
23
23
24 Parameters:
24 Parameters:
25 -----------
25 -----------
26 path : str
26 path : str
27 Path where files are located.
27 Path where files are located.
28 startDate : date
28 startDate : date
29 Start date of the files
29 Start date of the files
30 endDate : list
30 endDate : list
31 End date of the files
31 End date of the files
32 startTime : time
32 startTime : time
33 Start time of the files
33 Start time of the files
34 endTime : time
34 endTime : time
35 End time of the files
35 End time of the files
36 description : dict, optional
36 description : dict, optional
37 Dictionary with the description of the HDF5 file
37 Dictionary with the description of the HDF5 file
38 extras : dict, optional
38 extras : dict, optional
39 Dictionary with extra metadata to be be added to `dataOut`
39 Dictionary with extra metadata to be be added to `dataOut`
40
40
41 Examples
41 Examples
42 --------
42 --------
43
43
44 desc = {
44 desc = {
45 'Data': {
45 'Data': {
46 'data_output': ['u', 'v', 'w'],
46 'data_output': ['u', 'v', 'w'],
47 'utctime': 'timestamps',
47 'utctime': 'timestamps',
48 } ,
48 } ,
49 'Metadata': {
49 'Metadata': {
50 'heightList': 'heights'
50 'heightList': 'heights'
51 }
51 }
52 }
52 }
53
53
54 desc = {
54 desc = {
55 'Data': {
55 'Data': {
56 'data_output': 'winds',
56 'data_output': 'winds',
57 'utctime': 'timestamps'
57 'utctime': 'timestamps'
58 },
58 },
59 'Metadata': {
59 'Metadata': {
60 'heightList': 'heights'
60 'heightList': 'heights'
61 }
61 }
62 }
62 }
63
63
64 extras = {
64 extras = {
65 'timeZone': 300
65 'timeZone': 300
66 }
66 }
67
67
68 reader = project.addReadUnit(
68 reader = project.addReadUnit(
69 name='HDFReader',
69 name='HDFReader',
70 path='/path/to/files',
70 path='/path/to/files',
71 startDate='2019/01/01',
71 startDate='2019/01/01',
72 endDate='2019/01/31',
72 endDate='2019/01/31',
73 startTime='00:00:00',
73 startTime='00:00:00',
74 endTime='23:59:59',
74 endTime='23:59:59',
75 # description=json.dumps(desc),
75 # description=json.dumps(desc),
76 # extras=json.dumps(extras),
76 # extras=json.dumps(extras),
77 )
77 )
78
78
79 """
79 """
80
80
81 __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'description', 'extras']
81 __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'description', 'extras']
82
82
83 def __init__(self):
83 def __init__(self):
84 ProcessingUnit.__init__(self)
84 ProcessingUnit.__init__(self)
85 self.dataOut = Parameters()
85 self.dataOut = Parameters()
86 self.ext = ".hdf5"
86 self.ext = ".hdf5"
87 self.optchar = "D"
87 self.optchar = "D"
88 self.meta = {}
88 self.meta = {}
89 self.data = {}
89 self.data = {}
90 self.open_file = h5py.File
90 self.open_file = h5py.File
91 self.open_mode = 'r'
91 self.open_mode = 'r'
92 self.description = {}
92 self.description = {}
93 self.extras = {}
93 self.extras = {}
94 self.filefmt = "*%Y%j***"
94 self.filefmt = "*%Y%j***"
95 self.folderfmt = "*%Y%j"
95 self.folderfmt = "*%Y%j"
96 self.utcoffset = 0
96 self.utcoffset = 0
97
97
98 def setup(self, **kwargs):
98 def setup(self, **kwargs):
99
99
100 self.set_kwargs(**kwargs)
100 self.set_kwargs(**kwargs)
101 if not self.ext.startswith('.'):
101 if not self.ext.startswith('.'):
102 self.ext = '.{}'.format(self.ext)
102 self.ext = '.{}'.format(self.ext)
103
103
104 if self.online:
104 if self.online:
105 log.log("Searching files in online mode...", self.name)
105 log.log("Searching files in online mode...", self.name)
106
106
107 for nTries in range(self.nTries):
107 for nTries in range(self.nTries):
108 fullpath = self.searchFilesOnLine(self.path, self.startDate,
108 fullpath = self.searchFilesOnLine(self.path, self.startDate,
109 self.endDate, self.expLabel, self.ext, self.walk,
109 self.endDate, self.expLabel, self.ext, self.walk,
110 self.filefmt, self.folderfmt)
110 self.filefmt, self.folderfmt)
111 try:
111 try:
112 fullpath = next(fullpath)
112 fullpath = next(fullpath)
113 except:
113 except:
114 fullpath = None
114 fullpath = None
115
115
116 if fullpath:
116 if fullpath:
117 break
117 break
118
118
119 log.warning(
119 log.warning(
120 'Waiting {} sec for a valid file in {}: try {} ...'.format(
120 'Waiting {} sec for a valid file in {}: try {} ...'.format(
121 self.delay, self.path, nTries + 1),
121 self.delay, self.path, nTries + 1),
122 self.name)
122 self.name)
123 time.sleep(self.delay)
123 time.sleep(self.delay)
124
124
125 if not(fullpath):
125 if not(fullpath):
126 raise schainpy.admin.SchainError(
126 raise schainpy.admin.SchainError(
127 'There isn\'t any valid file in {}'.format(self.path))
127 'There isn\'t any valid file in {}'.format(self.path))
128
128
129 pathname, filename = os.path.split(fullpath)
129 pathname, filename = os.path.split(fullpath)
130 self.year = int(filename[1:5])
130 self.year = int(filename[1:5])
131 self.doy = int(filename[5:8])
131 self.doy = int(filename[5:8])
132 self.set = int(filename[8:11]) - 1
132 self.set = int(filename[8:11]) - 1
133 else:
133 else:
134 log.log("Searching files in {}".format(self.path), self.name)
134 log.log("Searching files in {}".format(self.path), self.name)
135 self.filenameList = self.searchFilesOffLine(self.path, self.startDate,
135 self.filenameList = self.searchFilesOffLine(self.path, self.startDate,
136 self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt)
136 self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt)
137
137
138 self.setNextFile()
138 self.setNextFile()
139
139
140 return
140 return
141
141
142 def readFirstHeader(self):
142 def readFirstHeader(self):
143 '''Read metadata and data'''
143 '''Read metadata and data'''
144
144
145 self.__readMetadata()
145 self.__readMetadata()
146 self.__readData()
146 self.__readData()
147 self.__setBlockList()
147 self.__setBlockList()
148
148
149 if 'type' in self.meta:
149 if 'type' in self.meta:
150 self.dataOut = eval(self.meta['type'])()
150 self.dataOut = eval(self.meta['type'])()
151
151
152 for attr in self.meta:
152 for attr in self.meta:
153 setattr(self.dataOut, attr, self.meta[attr])
153 setattr(self.dataOut, attr, self.meta[attr])
154
154
155 self.blockIndex = 0
155 self.blockIndex = 0
156
156
157 return
157 return
158
158
159 def __setBlockList(self):
159 def __setBlockList(self):
160 '''
160 '''
161 Selects the data within the times defined
161 Selects the data within the times defined
162
162
163 self.fp
163 self.fp
164 self.startTime
164 self.startTime
165 self.endTime
165 self.endTime
166 self.blockList
166 self.blockList
167 self.blocksPerFile
167 self.blocksPerFile
168
168
169 '''
169 '''
170
170
171 startTime = self.startTime
171 startTime = self.startTime
172 endTime = self.endTime
172 endTime = self.endTime
173 thisUtcTime = self.data['utctime'] + self.utcoffset
173 thisUtcTime = self.data['utctime'] + self.utcoffset
174 self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1])
174 self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1])
175 thisDatetime = datetime.datetime.utcfromtimestamp(thisUtcTime[0])
175 thisDatetime = datetime.datetime.utcfromtimestamp(thisUtcTime[0])
176
176
177 thisDate = thisDatetime.date()
177 thisDate = thisDatetime.date()
178 thisTime = thisDatetime.time()
178 thisTime = thisDatetime.time()
179
179
180 startUtcTime = (datetime.datetime.combine(thisDate, startTime) - datetime.datetime(1970, 1, 1)).total_seconds()
180 startUtcTime = (datetime.datetime.combine(thisDate, startTime) - datetime.datetime(1970, 1, 1)).total_seconds()
181 endUtcTime = (datetime.datetime.combine(thisDate, endTime) - datetime.datetime(1970, 1, 1)).total_seconds()
181 endUtcTime = (datetime.datetime.combine(thisDate, endTime) - datetime.datetime(1970, 1, 1)).total_seconds()
182
182
183 ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0]
183 ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0]
184
184
185 self.blockList = ind
185 self.blockList = ind
186 self.blocksPerFile = len(ind)
186 self.blocksPerFile = len(ind)
187 return
187 return
188
188
189 def __readMetadata(self):
189 def __readMetadata(self):
190 '''
190 '''
191 Reads Metadata
191 Reads Metadata
192 '''
192 '''
193
193
194 meta = {}
194 meta = {}
195
195
196 if self.description:
196 if self.description:
197 for key, value in self.description['Metadata'].items():
197 for key, value in self.description['Metadata'].items():
198 meta[key] = self.fp[value][()]
198 meta[key] = self.fp[value][()]
199 else:
199 else:
200 grp = self.fp['Metadata']
200 grp = self.fp['Metadata']
201 for name in grp:
201 for name in grp:
202 meta[name] = grp[name][()]
202 meta[name] = grp[name][()]
203
203
204 if self.extras:
204 if self.extras:
205 for key, value in self.extras.items():
205 for key, value in self.extras.items():
206 meta[key] = value
206 meta[key] = value
207 self.meta = meta
207 self.meta = meta
208
208
209 return
209 return
210
210
211 def __readData(self):
211 def __readData(self):
212
212
213 data = {}
213 data = {}
214
214
215 if self.description:
215 if self.description:
216 for key, value in self.description['Data'].items():
216 for key, value in self.description['Data'].items():
217 if isinstance(value, str):
217 if isinstance(value, str):
218 if isinstance(self.fp[value], h5py.Dataset):
218 if isinstance(self.fp[value], h5py.Dataset):
219 data[key] = self.fp[value][()]
219 data[key] = self.fp[value][()]
220 elif isinstance(self.fp[value], h5py.Group):
220 elif isinstance(self.fp[value], h5py.Group):
221 array = []
221 array = []
222 for ch in self.fp[value]:
222 for ch in self.fp[value]:
223 array.append(self.fp[value][ch][()])
223 array.append(self.fp[value][ch][()])
224 data[key] = numpy.array(array)
224 data[key] = numpy.array(array)
225 elif isinstance(value, list):
225 elif isinstance(value, list):
226 array = []
226 array = []
227 for ch in value:
227 for ch in value:
228 array.append(self.fp[ch][()])
228 array.append(self.fp[ch][()])
229 data[key] = numpy.array(array)
229 data[key] = numpy.array(array)
230 else:
230 else:
231 grp = self.fp['Data']
231 grp = self.fp['Data']
232 for name in grp:
232 for name in grp:
233 if isinstance(grp[name], h5py.Dataset):
233 if isinstance(grp[name], h5py.Dataset):
234 array = grp[name][()]
234 array = grp[name][()]
235 elif isinstance(grp[name], h5py.Group):
235 elif isinstance(grp[name], h5py.Group):
236 array = []
236 array = []
237 for ch in grp[name]:
237 for ch in grp[name]:
238 array.append(grp[name][ch][()])
238 array.append(grp[name][ch][()])
239 array = numpy.array(array)
239 array = numpy.array(array)
240 else:
240 else:
241 log.warning('Unknown type: {}'.format(name))
241 log.warning('Unknown type: {}'.format(name))
242
242
243 if name in self.description:
243 if name in self.description:
244 key = self.description[name]
244 key = self.description[name]
245 else:
245 else:
246 key = name
246 key = name
247 data[key] = array
247 data[key] = array
248
248
249 self.data = data
249 self.data = data
250 return
250 return
251
251
252 def getData(self):
252 def getData(self):
253
253
254 for attr in self.data:
254 for attr in self.data:
255 if self.data[attr].ndim == 1:
255 if self.data[attr].ndim == 1:
256 setattr(self.dataOut, attr, self.data[attr][self.blockIndex])
256 setattr(self.dataOut, attr, self.data[attr][self.blockIndex])
257 else:
257 else:
258 setattr(self.dataOut, attr, self.data[attr][:, self.blockIndex])
258 setattr(self.dataOut, attr, self.data[attr][:, self.blockIndex])
259
259
260 self.dataOut.flagNoData = False
260 self.dataOut.flagNoData = False
261 self.blockIndex += 1
261 self.blockIndex += 1
262
262
263 log.log("Block No. {}/{} -> {}".format(
263 log.log("Block No. {}/{} -> {}".format(
264 self.blockIndex,
264 self.blockIndex,
265 self.blocksPerFile,
265 self.blocksPerFile,
266 self.dataOut.datatime.ctime()), self.name)
266 self.dataOut.datatime.ctime()), self.name)
267
267
268 return
268 return
269
269
270 def run(self, **kwargs):
270 def run(self, **kwargs):
271
271
272 if not(self.isConfig):
272 if not(self.isConfig):
273 self.setup(**kwargs)
273 self.setup(**kwargs)
274 self.isConfig = True
274 self.isConfig = True
275
275
276 if self.blockIndex == self.blocksPerFile:
276 if self.blockIndex == self.blocksPerFile:
277 self.setNextFile()
277 self.setNextFile()
278
278
279 self.getData()
279 self.getData()
280
280
281 return
281 return
282
282
283 @MPDecorator
283 @MPDecorator
284 class HDFWriter(Operation):
284 class HDFWriter(Operation):
285 """Operation to write HDF5 files.
285 """Operation to write HDF5 files.
286
286
287 The HDF5 file contains by default two groups Data and Metadata where
287 The HDF5 file contains by default two groups Data and Metadata where
288 you can save any `dataOut` attribute specified by `dataList` and `metadataList`
288 you can save any `dataOut` attribute specified by `dataList` and `metadataList`
289 parameters, data attributes are normaly time dependent where the metadata
289 parameters, data attributes are normaly time dependent where the metadata
290 are not.
290 are not.
291 It is possible to customize the structure of the HDF5 file with the
291 It is possible to customize the structure of the HDF5 file with the
292 optional description parameter see the examples.
292 optional description parameter see the examples.
293
293
294 Parameters:
294 Parameters:
295 -----------
295 -----------
296 path : str
296 path : str
297 Path where files will be saved.
297 Path where files will be saved.
298 blocksPerFile : int
298 blocksPerFile : int
299 Number of blocks per file
299 Number of blocks per file
300 metadataList : list
300 metadataList : list
301 List of the dataOut attributes that will be saved as metadata
301 List of the dataOut attributes that will be saved as metadata
302 dataList : int
302 dataList : int
303 List of the dataOut attributes that will be saved as data
303 List of the dataOut attributes that will be saved as data
304 setType : bool
304 setType : bool
305 If True the name of the files corresponds to the timestamp of the data
305 If True the name of the files corresponds to the timestamp of the data
306 description : dict, optional
306 description : dict, optional
307 Dictionary with the desired description of the HDF5 file
307 Dictionary with the desired description of the HDF5 file
308
308
309 Examples
309 Examples
310 --------
310 --------
311
311
312 desc = {
312 desc = {
313 'data_output': {'winds': ['z', 'w', 'v']},
313 'data_output': {'winds': ['z', 'w', 'v']},
314 'utctime': 'timestamps',
314 'utctime': 'timestamps',
315 'heightList': 'heights'
315 'heightList': 'heights'
316 }
316 }
317 desc = {
317 desc = {
318 'data_output': ['z', 'w', 'v'],
318 'data_output': ['z', 'w', 'v'],
319 'utctime': 'timestamps',
319 'utctime': 'timestamps',
320 'heightList': 'heights'
320 'heightList': 'heights'
321 }
321 }
322 desc = {
322 desc = {
323 'Data': {
323 'Data': {
324 'data_output': 'winds',
324 'data_output': 'winds',
325 'utctime': 'timestamps'
325 'utctime': 'timestamps'
326 },
326 },
327 'Metadata': {
327 'Metadata': {
328 'heightList': 'heights'
328 'heightList': 'heights'
329 }
329 }
330 }
330 }
331
331
332 writer = proc_unit.addOperation(name='HDFWriter')
332 writer = proc_unit.addOperation(name='HDFWriter')
333 writer.addParameter(name='path', value='/path/to/file')
333 writer.addParameter(name='path', value='/path/to/file')
334 writer.addParameter(name='blocksPerFile', value='32')
334 writer.addParameter(name='blocksPerFile', value='32')
335 writer.addParameter(name='metadataList', value='heightList,timeZone')
335 writer.addParameter(name='metadataList', value='heightList,timeZone')
336 writer.addParameter(name='dataList',value='data_output,utctime')
336 writer.addParameter(name='dataList',value='data_output,utctime')
337 # writer.addParameter(name='description',value=json.dumps(desc))
337 # writer.addParameter(name='description',value=json.dumps(desc))
338
338
339 """
339 """
340
340
341 ext = ".hdf5"
341 ext = ".hdf5"
342 optchar = "D"
342 optchar = "D"
343 filename = None
343 filename = None
344 path = None
344 path = None
345 setFile = None
345 setFile = None
346 fp = None
346 fp = None
347 firsttime = True
347 firsttime = True
348 #Configurations
348 #Configurations
349 blocksPerFile = None
349 blocksPerFile = None
350 blockIndex = None
350 blockIndex = None
351 dataOut = None
351 dataOut = None
352 #Data Arrays
352 #Data Arrays
353 dataList = None
353 dataList = None
354 metadataList = None
354 metadataList = None
355 currentDay = None
355 currentDay = None
356 lastTime = None
356 lastTime = None
357 last_Azipos = None
357 last_Azipos = None
358 last_Elepos = None
358 last_Elepos = None
359 mode = None
359 mode = None
360 #-----------------------
360 #-----------------------
361 Typename = None
361 Typename = None
362
362
363
363
364
364
365 def __init__(self):
365 def __init__(self):
366
366
367 Operation.__init__(self)
367 Operation.__init__(self)
368 return
368 return
369
369
370
370
371 def set_kwargs(self, **kwargs):
371 def set_kwargs(self, **kwargs):
372
372
373 for key, value in kwargs.items():
373 for key, value in kwargs.items():
374 setattr(self, key, value)
374 setattr(self, key, value)
375
375
376 def set_kwargs_obj(self,obj, **kwargs):
376 def set_kwargs_obj(self,obj, **kwargs):
377
377
378 for key, value in kwargs.items():
378 for key, value in kwargs.items():
379 setattr(obj, key, value)
379 setattr(obj, key, value)
380
380
381 def generalFlag(self):
381 def generalFlag(self):
382 ####rint("GENERALFLAG")
382 ####rint("GENERALFLAG")
383 if self.mode== "weather":
383 if self.mode== "weather":
384 if self.last_Azipos == None:
384 if self.last_Azipos == None:
385 tmp = self.dataOut.azimuth
385 tmp = self.dataOut.azimuth
386 ####print("ang azimuth writer",tmp)
386 ####print("ang azimuth writer",tmp)
387 self.last_Azipos = tmp
387 self.last_Azipos = tmp
388 flag = False
388 flag = False
389 return flag
389 return flag
390 ####print("ang_azimuth writer",self.dataOut.azimuth)
390 ####print("ang_azimuth writer",self.dataOut.azimuth)
391 result = self.dataOut.azimuth - self.last_Azipos
391 result = self.dataOut.azimuth - self.last_Azipos
392 self.last_Azipos = self.dataOut.azimuth
392 self.last_Azipos = self.dataOut.azimuth
393 if result<0:
393 if result<0:
394 flag = True
394 flag = True
395 return flag
395 return flag
396
396
397 def generalFlag_vRF(self):
398 ####rint("GENERALFLAG")
399
400 try:
401 self.dataOut.flagBlock360Done
402 return self.dataOut.flagBlock360Done
403 except:
404 return 0
405
406
397 def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, description=None,type_data=None,**kwargs):
407 def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, description=None,type_data=None,**kwargs):
398 self.path = path
408 self.path = path
399 self.blocksPerFile = blocksPerFile
409 self.blocksPerFile = blocksPerFile
400 self.metadataList = metadataList
410 self.metadataList = metadataList
401 self.dataList = [s.strip() for s in dataList]
411 self.dataList = [s.strip() for s in dataList]
412 self.setType = setType
402 if self.mode == "weather":
413 if self.mode == "weather":
403 self.setType = "weather"
414 self.setType = "weather"
404 #----------------------------------------
415 #----------------------------------------
405 self.set_kwargs(**kwargs)
416 self.set_kwargs(**kwargs)
406 self.set_kwargs_obj(self.dataOut,**kwargs)
417 self.set_kwargs_obj(self.dataOut,**kwargs)
407 #print("-----------------------------------------------------------",self.Typename)
418 #print("-----------------------------------------------------------",self.Typename)
408 #print("hola",self.ContactInformation)
419 #print("hola",self.ContactInformation)
409
420
410 self.description = description
421 self.description = description
411 self.type_data=type_data
422 self.type_data=type_data
412
423
413 if self.metadataList is None:
424 if self.metadataList is None:
414 self.metadataList = self.dataOut.metadata_list
425 self.metadataList = self.dataOut.metadata_list
415
426
416 tableList = []
427 tableList = []
417 dsList = []
428 dsList = []
418
429
419 for i in range(len(self.dataList)):
430 for i in range(len(self.dataList)):
420 dsDict = {}
431 dsDict = {}
421 if hasattr(self.dataOut, self.dataList[i]):
432 if hasattr(self.dataOut, self.dataList[i]):
422 dataAux = getattr(self.dataOut, self.dataList[i])
433 dataAux = getattr(self.dataOut, self.dataList[i])
423 dsDict['variable'] = self.dataList[i]
434 dsDict['variable'] = self.dataList[i]
424 else:
435 else:
425 log.warning('Attribute {} not found in dataOut', self.name)
436 log.warning('Attribute {} not found in dataOut', self.name)
426 continue
437 continue
427
438
428 if dataAux is None:
439 if dataAux is None:
429 continue
440 continue
430 elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)):
441 elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)):
431 dsDict['nDim'] = 0
442 dsDict['nDim'] = 0
432 else:
443 else:
433 dsDict['nDim'] = len(dataAux.shape)
444 dsDict['nDim'] = len(dataAux.shape)
434 dsDict['shape'] = dataAux.shape
445 dsDict['shape'] = dataAux.shape
435 dsDict['dsNumber'] = dataAux.shape[0]
446 dsDict['dsNumber'] = dataAux.shape[0]
436 dsDict['dtype'] = dataAux.dtype
447 dsDict['dtype'] = dataAux.dtype
437
448
438 dsList.append(dsDict)
449 dsList.append(dsDict)
439
450
440 self.dsList = dsList
451 self.dsList = dsList
441 self.currentDay = self.dataOut.datatime.date()
452 self.currentDay = self.dataOut.datatime.date()
442
453
443 def timeFlag(self):
454 def timeFlag(self):
444 currentTime = self.dataOut.utctime
455 currentTime = self.dataOut.utctime
445 timeTuple = time.localtime(currentTime)
456 timeTuple = time.localtime(currentTime)
446 dataDay = timeTuple.tm_yday
457 dataDay = timeTuple.tm_yday
447
458
448 if self.lastTime is None:
459 if self.lastTime is None:
449 self.lastTime = currentTime
460 self.lastTime = currentTime
450 self.currentDay = dataDay
461 self.currentDay = dataDay
451 return False
462 return False
452
463
453 timeDiff = currentTime - self.lastTime
464 timeDiff = currentTime - self.lastTime
454
465
455 #Si el dia es diferente o si la diferencia entre un dato y otro supera la hora
466 #Si el dia es diferente o si la diferencia entre un dato y otro supera la hora
456 if dataDay != self.currentDay:
467 if dataDay != self.currentDay:
457 self.currentDay = dataDay
468 self.currentDay = dataDay
458 return True
469 return True
459 elif timeDiff > 3*60*60:
470 elif timeDiff > 3*60*60:
460 self.lastTime = currentTime
471 self.lastTime = currentTime
461 return True
472 return True
462 else:
473 else:
463 self.lastTime = currentTime
474 self.lastTime = currentTime
464 return False
475 return False
465
476
466 def run(self, dataOut, path, blocksPerFile=10, metadataList=None,
477 def run(self, dataOut, path, blocksPerFile=10, metadataList=None,
467 dataList=[], setType=None, description={},mode= None,type_data=None,**kwargs):
478 dataList=[], setType=None, description={},mode= None,type_data=None,**kwargs):
468
479
469 ###print("VOY A ESCRIBIR----------------------")
480 ###print("VOY A ESCRIBIR----------------------")
470 #print("CHECKTHIS------------------------------------------------------------------*****---",**kwargs)
481 #print("CHECKTHIS------------------------------------------------------------------*****---",**kwargs)
471 self.dataOut = dataOut
482 self.dataOut = dataOut
472 self.mode = mode
483 self.mode = mode
473 if not(self.isConfig):
484 if not(self.isConfig):
474 self.setup(path=path, blocksPerFile=blocksPerFile,
485 self.setup(path=path, blocksPerFile=blocksPerFile,
475 metadataList=metadataList, dataList=dataList,
486 metadataList=metadataList, dataList=dataList,
476 setType=setType, description=description,type_data=type_data,**kwargs)
487 setType=setType, description=description,type_data=type_data,**kwargs)
477
488
478 self.isConfig = True
489 self.isConfig = True
479 self.setNextFile()
490 self.setNextFile()
480
491
481 self.putData()
492 self.putData()
482 return
493 return
483
494
484 def setNextFile(self):
495 def setNextFile(self):
485 ###print("HELLO WORLD--------------------------------")
496 ###print("HELLO WORLD--------------------------------")
486 ext = self.ext
497 ext = self.ext
487 path = self.path
498 path = self.path
488 setFile = self.setFile
499 setFile = self.setFile
489 type_data = self.type_data
500 type_data = self.type_data
490
501
491 timeTuple = time.localtime(self.dataOut.utctime)
502 timeTuple = time.localtime(self.dataOut.utctime)
492 subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday)
503 subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday)
493 fullpath = os.path.join(path, subfolder)
504 fullpath = os.path.join(path, subfolder)
494
505
495 if os.path.exists(fullpath):
506 if os.path.exists(fullpath):
496 filesList = os.listdir(fullpath)
507 filesList = os.listdir(fullpath)
497 filesList = [k for k in filesList if k.startswith(self.optchar)]
508 filesList = [k for k in filesList if k.startswith(self.optchar)]
498 if len( filesList ) > 0:
509 if len( filesList ) > 0:
499 filesList = sorted(filesList, key=str.lower)
510 filesList = sorted(filesList, key=str.lower)
500 filen = filesList[-1]
511 filen = filesList[-1]
501 # el filename debera tener el siguiente formato
512 # el filename debera tener el siguiente formato
502 # 0 1234 567 89A BCDE (hex)
513 # 0 1234 567 89A BCDE (hex)
503 # x YYYY DDD SSS .ext
514 # x YYYY DDD SSS .ext
504 if isNumber(filen[8:11]):
515 if isNumber(filen[8:11]):
505 setFile = int(filen[8:11]) #inicializo mi contador de seteo al seteo del ultimo file
516 setFile = int(filen[8:11]) #inicializo mi contador de seteo al seteo del ultimo file
506 else:
517 else:
507 setFile = -1
518 setFile = -1
508 else:
519 else:
509 setFile = -1 #inicializo mi contador de seteo
520 setFile = -1 #inicializo mi contador de seteo
510 else:
521 else:
511 os.makedirs(fullpath)
522 os.makedirs(fullpath)
512 setFile = -1 #inicializo mi contador de seteo
523 setFile = -1 #inicializo mi contador de seteo
513
524
514 ###print("**************************",self.setType)
525 ###print("**************************",self.setType)
515 if self.setType is None:
526 if self.setType is None:
516 setFile += 1
527 setFile += 1
517 file = '%s%4.4d%3.3d%03d%s' % (self.optchar,
528 file = '%s%4.4d%3.3d%03d%s' % (self.optchar,
518 timeTuple.tm_year,
529 timeTuple.tm_year,
519 timeTuple.tm_yday,
530 timeTuple.tm_yday,
520 setFile,
531 setFile,
521 ext )
532 ext )
522 elif self.setType == "weather":
533 elif self.setType == "weather":
523 print("HOLA AMIGOS")
534 print("HOLA AMIGOS")
524 wr_exp = self.dataOut.wr_exp
535 wr_exp = self.dataOut.wr_exp
525 if wr_exp== "PPI":
536 if wr_exp== "PPI":
526 wr_type = 'E'
537 wr_type = 'E'
527 ang_ = numpy.mean(self.dataOut.elevation)
538 ang_ = numpy.mean(self.dataOut.elevation)
528 else:
539 else:
529 wr_type = 'A'
540 wr_type = 'A'
530 ang_ = numpy.mean(self.dataOut.azimuth)
541 ang_ = numpy.mean(self.dataOut.azimuth)
531
542
532 wr_writer = '%s%s%2.1f%s'%('-',
543 wr_writer = '%s%s%2.1f%s'%('-',
533 wr_type,
544 wr_type,
534 ang_,
545 ang_,
535 '-')
546 '-')
536 ###print("wr_writer********************",wr_writer)
547 ###print("wr_writer********************",wr_writer)
537 file = '%s%4.4d%2.2d%2.2d%s%2.2d%2.2d%2.2d%s%s%s' % (self.optchar,
548 file = '%s%4.4d%2.2d%2.2d%s%2.2d%2.2d%2.2d%s%s%s' % (self.optchar,
538 timeTuple.tm_year,
549 timeTuple.tm_year,
539 timeTuple.tm_mon,
550 timeTuple.tm_mon,
540 timeTuple.tm_mday,
551 timeTuple.tm_mday,
541 '-',
552 '-',
542 timeTuple.tm_hour,
553 timeTuple.tm_hour,
543 timeTuple.tm_min,
554 timeTuple.tm_min,
544 timeTuple.tm_sec,
555 timeTuple.tm_sec,
545 wr_writer,
556 wr_writer,
546 type_data,
557 type_data,
547 ext )
558 ext )
548 ###print("FILENAME", file)
559 ###print("FILENAME", file)
549
560
550
561
551 else:
562 else:
552 setFile = timeTuple.tm_hour*60+timeTuple.tm_min
563 setFile = timeTuple.tm_hour*60+timeTuple.tm_min
553 file = '%s%4.4d%3.3d%04d%s' % (self.optchar,
564 file = '%s%4.4d%3.3d%04d%s' % (self.optchar,
554 timeTuple.tm_year,
565 timeTuple.tm_year,
555 timeTuple.tm_yday,
566 timeTuple.tm_yday,
556 setFile,
567 setFile,
557 ext )
568 ext )
558
569
559 self.filename = os.path.join( path, subfolder, file )
570 self.filename = os.path.join( path, subfolder, file )
560
571
561 #Setting HDF5 File
572 #Setting HDF5 File
562
573
563 self.fp = h5py.File(self.filename, 'w')
574 self.fp = h5py.File(self.filename, 'w')
564 #write metadata
575 #write metadata
565 self.writeMetadata(self.fp)
576 self.writeMetadata(self.fp)
566 #Write data
577 #Write data
567 self.writeData(self.fp)
578 self.writeData(self.fp)
568
579
569 def getLabel(self, name, x=None):
580 def getLabel(self, name, x=None):
570
581
571 if x is None:
582 if x is None:
572 if 'Data' in self.description:
583 if 'Data' in self.description:
573 data = self.description['Data']
584 data = self.description['Data']
574 if 'Metadata' in self.description:
585 if 'Metadata' in self.description:
575 data.update(self.description['Metadata'])
586 data.update(self.description['Metadata'])
576 else:
587 else:
577 data = self.description
588 data = self.description
578 if name in data:
589 if name in data:
579 if isinstance(data[name], str):
590 if isinstance(data[name], str):
580 return data[name]
591 return data[name]
581 elif isinstance(data[name], list):
592 elif isinstance(data[name], list):
582 return None
593 return None
583 elif isinstance(data[name], dict):
594 elif isinstance(data[name], dict):
584 for key, value in data[name].items():
595 for key, value in data[name].items():
585 return key
596 return key
586 return name
597 return name
587 else:
598 else:
588 if 'Metadata' in self.description:
599 if 'Metadata' in self.description:
589 meta = self.description['Metadata']
600 meta = self.description['Metadata']
590 else:
601 else:
591 meta = self.description
602 meta = self.description
592 if name in meta:
603 if name in meta:
593 if isinstance(meta[name], list):
604 if isinstance(meta[name], list):
594 return meta[name][x]
605 return meta[name][x]
595 elif isinstance(meta[name], dict):
606 elif isinstance(meta[name], dict):
596 for key, value in meta[name].items():
607 for key, value in meta[name].items():
597 return value[x]
608 return value[x]
598 if 'cspc' in name:
609 if 'cspc' in name:
599 return 'pair{:02d}'.format(x)
610 return 'pair{:02d}'.format(x)
600 else:
611 else:
601 return 'channel{:02d}'.format(x)
612 return 'channel{:02d}'.format(x)
602
613
603 def writeMetadata(self, fp):
614 def writeMetadata(self, fp):
604
615
605 if self.description:
616 if self.description:
606 if 'Metadata' in self.description:
617 if 'Metadata' in self.description:
607 grp = fp.create_group('Metadata')
618 grp = fp.create_group('Metadata')
608 else:
619 else:
609 grp = fp
620 grp = fp
610 else:
621 else:
611 grp = fp.create_group('Metadata')
622 grp = fp.create_group('Metadata')
612
623
613 for i in range(len(self.metadataList)):
624 for i in range(len(self.metadataList)):
614 if not hasattr(self.dataOut, self.metadataList[i]):
625 if not hasattr(self.dataOut, self.metadataList[i]):
615 log.warning('Metadata: `{}` not found'.format(self.metadataList[i]), self.name)
626 log.warning('Metadata: `{}` not found'.format(self.metadataList[i]), self.name)
616 continue
627 continue
617 value = getattr(self.dataOut, self.metadataList[i])
628 value = getattr(self.dataOut, self.metadataList[i])
618 if isinstance(value, bool):
629 if isinstance(value, bool):
619 if value is True:
630 if value is True:
620 value = 1
631 value = 1
621 else:
632 else:
622 value = 0
633 value = 0
623 grp.create_dataset(self.getLabel(self.metadataList[i]), data=value)
634 grp.create_dataset(self.getLabel(self.metadataList[i]), data=value)
624 return
635 return
625
636
626 def writeData(self, fp):
637 def writeData(self, fp):
627
638 print("writing data")
628 if self.description:
639 if self.description:
629 if 'Data' in self.description:
640 if 'Data' in self.description:
630 grp = fp.create_group('Data')
641 grp = fp.create_group('Data')
631 else:
642 else:
632 grp = fp
643 grp = fp
633 else:
644 else:
634 grp = fp.create_group('Data')
645 grp = fp.create_group('Data')
635
646
636 dtsets = []
647 dtsets = []
637 data = []
648 data = []
638
649
639 for dsInfo in self.dsList:
650 for dsInfo in self.dsList:
640 if dsInfo['nDim'] == 0:
651 if dsInfo['nDim'] == 0:
641 ds = grp.create_dataset(
652 ds = grp.create_dataset(
642 self.getLabel(dsInfo['variable']),
653 self.getLabel(dsInfo['variable']),
643 (self.blocksPerFile, ),
654 (self.blocksPerFile, ),
644 chunks=True,
655 chunks=True,
645 dtype=numpy.float64)
656 dtype=numpy.float64)
646 dtsets.append(ds)
657 dtsets.append(ds)
647 data.append((dsInfo['variable'], -1))
658 data.append((dsInfo['variable'], -1))
648 else:
659 else:
649 label = self.getLabel(dsInfo['variable'])
660 label = self.getLabel(dsInfo['variable'])
650 if label is not None:
661 if label is not None:
651 sgrp = grp.create_group(label)
662 sgrp = grp.create_group(label)
652 else:
663 else:
653 sgrp = grp
664 sgrp = grp
654 for i in range(dsInfo['dsNumber']):
665 for i in range(dsInfo['dsNumber']):
655 ds = sgrp.create_dataset(
666 ds = sgrp.create_dataset(
656 self.getLabel(dsInfo['variable'], i),
667 self.getLabel(dsInfo['variable'], i),
657 (self.blocksPerFile, ) + dsInfo['shape'][1:],
668 (self.blocksPerFile, ) + dsInfo['shape'][1:],
658 chunks=True,
669 chunks=True,
659 dtype=dsInfo['dtype'])
670 dtype=dsInfo['dtype'])
660 dtsets.append(ds)
671 dtsets.append(ds)
661 data.append((dsInfo['variable'], i))
672 data.append((dsInfo['variable'], i))
662 fp.flush()
673 fp.flush()
663
674
664 log.log('Creating file: {}'.format(fp.filename), self.name)
675 log.log('Creating file: {}'.format(fp.filename), self.name)
665
676
666 self.ds = dtsets
677 self.ds = dtsets
667 self.data = data
678 self.data = data
668 self.firsttime = True
679 self.firsttime = True
669 self.blockIndex = 0
680 self.blockIndex = 0
670 return
681 return
671
682
672 def putData(self):
683 def putData(self):
673 ###print("**************************PUT DATA***************************************************")
684 ###print("**************************PUT DATA***************************************************")
674 if (self.blockIndex == self.blocksPerFile) or self.timeFlag() or self.generalFlag():
685 if (self.blockIndex == self.blocksPerFile) or self.timeFlag():# or self.generalFlag_vRF():
675 self.closeFile()
686 self.closeFile()
676 self.setNextFile()
687 self.setNextFile()
677
688
678 for i, ds in enumerate(self.ds):
689 for i, ds in enumerate(self.ds):
679 attr, ch = self.data[i]
690 attr, ch = self.data[i]
680 if ch == -1:
691 if ch == -1:
681 ds[self.blockIndex] = getattr(self.dataOut, attr)
692 ds[self.blockIndex] = getattr(self.dataOut, attr)
682 else:
693 else:
683 ds[self.blockIndex] = getattr(self.dataOut, attr)[ch]
694 ds[self.blockIndex] = getattr(self.dataOut, attr)[ch]
684
695
685 self.fp.flush()
696 self.fp.flush()
686 self.blockIndex += 1
697 self.blockIndex += 1
687 log.log('Block No. {}/{}'.format(self.blockIndex, self.blocksPerFile), self.name)
698 log.log('Block No. {}/{}'.format(self.blockIndex, self.blocksPerFile), self.name)
688
699
689 return
700 return
690
701
691 def closeFile(self):
702 def closeFile(self):
692
703
693 if self.blockIndex != self.blocksPerFile:
704 if self.blockIndex != self.blocksPerFile:
694 for ds in self.ds:
705 for ds in self.ds:
695 ds.resize(self.blockIndex, axis=0)
706 ds.resize(self.blockIndex, axis=0)
696
707
697 if self.fp:
708 if self.fp:
698 self.fp.flush()
709 self.fp.flush()
699 self.fp.close()
710 self.fp.close()
700
711
701 def close(self):
712 def close(self):
702
713
703 self.closeFile()
714 self.closeFile()
@@ -1,206 +1,208
1 '''
1 '''
2 Base clases to create Processing units and operations, the MPDecorator
2 Base clases to create Processing units and operations, the MPDecorator
3 must be used in plotting and writing operations to allow to run as an
3 must be used in plotting and writing operations to allow to run as an
4 external process.
4 external process.
5 '''
5 '''
6
6
7 import os
7 import inspect
8 import inspect
8 import zmq
9 import zmq
9 import time
10 import time
10 import pickle
11 import pickle
11 import traceback
12 import traceback
12 from threading import Thread
13 from threading import Thread
13 from multiprocessing import Process, Queue
14 from multiprocessing import Process, Queue
14 from schainpy.utils import log
15 from schainpy.utils import log
15
16
17 QUEUE_SIZE = int(os.environ.get('QUEUE_MAX_SIZE', '10'))
16
18
17 class ProcessingUnit(object):
19 class ProcessingUnit(object):
18 '''
20 '''
19 Base class to create Signal Chain Units
21 Base class to create Signal Chain Units
20 '''
22 '''
21
23
22 proc_type = 'processing'
24 proc_type = 'processing'
23
25
24 def __init__(self):
26 def __init__(self):
25
27
26 self.dataIn = None
28 self.dataIn = None
27 self.dataOut = None
29 self.dataOut = None
28 self.isConfig = False
30 self.isConfig = False
29 self.operations = []
31 self.operations = []
30
32
31 def setInput(self, unit):
33 def setInput(self, unit):
32
34
33 self.dataIn = unit.dataOut
35 self.dataIn = unit.dataOut
34
36
35 def getAllowedArgs(self):
37 def getAllowedArgs(self):
36 if hasattr(self, '__attrs__'):
38 if hasattr(self, '__attrs__'):
37 return self.__attrs__
39 return self.__attrs__
38 else:
40 else:
39 return inspect.getargspec(self.run).args
41 return inspect.getargspec(self.run).args
40
42
41 def addOperation(self, conf, operation):
43 def addOperation(self, conf, operation):
42 '''
44 '''
43 '''
45 '''
44
46
45 self.operations.append((operation, conf.type, conf.getKwargs()))
47 self.operations.append((operation, conf.type, conf.getKwargs()))
46
48
47 def getOperationObj(self, objId):
49 def getOperationObj(self, objId):
48
50
49 if objId not in list(self.operations.keys()):
51 if objId not in list(self.operations.keys()):
50 return None
52 return None
51
53
52 return self.operations[objId]
54 return self.operations[objId]
53
55
54 def call(self, **kwargs):
56 def call(self, **kwargs):
55 '''
57 '''
56 '''
58 '''
57
59
58 try:
60 try:
59 if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error:
61 if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error:
60 return self.dataIn.isReady()
62 return self.dataIn.isReady()
61 elif self.dataIn is None or not self.dataIn.error:
63 elif self.dataIn is None or not self.dataIn.error:
62 self.run(**kwargs)
64 self.run(**kwargs)
63 elif self.dataIn.error:
65 elif self.dataIn.error:
64 self.dataOut.error = self.dataIn.error
66 self.dataOut.error = self.dataIn.error
65 self.dataOut.flagNoData = True
67 self.dataOut.flagNoData = True
66 except:
68 except:
67 err = traceback.format_exc()
69 err = traceback.format_exc()
68 if 'SchainWarning' in err:
70 if 'SchainWarning' in err:
69 log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), self.name)
71 log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), self.name)
70 elif 'SchainError' in err:
72 elif 'SchainError' in err:
71 log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), self.name)
73 log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), self.name)
72 else:
74 else:
73 log.error(err, self.name)
75 log.error(err, self.name)
74 self.dataOut.error = True
76 self.dataOut.error = True
75 ##### correcion de la declaracion Out
77 ##### correcion de la declaracion Out
76 for op, optype, opkwargs in self.operations:
78 for op, optype, opkwargs in self.operations:
77 aux = self.dataOut.copy()
79 aux = self.dataOut.copy()
78 if optype == 'other' and not self.dataOut.flagNoData:
80 if optype == 'other' and not self.dataOut.flagNoData:
79 self.dataOut = op.run(self.dataOut, **opkwargs)
81 self.dataOut = op.run(self.dataOut, **opkwargs)
80 elif optype == 'external' and not self.dataOut.flagNoData:
82 elif optype == 'external' and not self.dataOut.flagNoData:
81 #op.queue.put(self.dataOut)
83 #op.queue.put(self.dataOut)
82 op.queue.put(aux)
84 op.queue.put(aux)
83 elif optype == 'external' and self.dataOut.error:
85 elif optype == 'external' and self.dataOut.error:
84 #op.queue.put(self.dataOut)
86 #op.queue.put(self.dataOut)
85 op.queue.put(aux)
87 op.queue.put(aux)
86
88
87 return 'Error' if self.dataOut.error else self.dataOut.isReady()
89 return 'Error' if self.dataOut.error else self.dataOut.isReady()
88
90
89 def setup(self):
91 def setup(self):
90
92
91 raise NotImplementedError
93 raise NotImplementedError
92
94
93 def run(self):
95 def run(self):
94
96
95 raise NotImplementedError
97 raise NotImplementedError
96
98
97 def close(self):
99 def close(self):
98
100
99 return
101 return
100
102
101
103
102 class Operation(object):
104 class Operation(object):
103
105
104 '''
106 '''
105 '''
107 '''
106
108
107 proc_type = 'operation'
109 proc_type = 'operation'
108
110
109 def __init__(self):
111 def __init__(self):
110
112
111 self.id = None
113 self.id = None
112 self.isConfig = False
114 self.isConfig = False
113
115
114 if not hasattr(self, 'name'):
116 if not hasattr(self, 'name'):
115 self.name = self.__class__.__name__
117 self.name = self.__class__.__name__
116
118
117 def getAllowedArgs(self):
119 def getAllowedArgs(self):
118 if hasattr(self, '__attrs__'):
120 if hasattr(self, '__attrs__'):
119 return self.__attrs__
121 return self.__attrs__
120 else:
122 else:
121 return inspect.getargspec(self.run).args
123 return inspect.getargspec(self.run).args
122
124
123 def setup(self):
125 def setup(self):
124
126
125 self.isConfig = True
127 self.isConfig = True
126
128
127 raise NotImplementedError
129 raise NotImplementedError
128
130
129 def run(self, dataIn, **kwargs):
131 def run(self, dataIn, **kwargs):
130 """
132 """
131 Realiza las operaciones necesarias sobre la dataIn.data y actualiza los
133 Realiza las operaciones necesarias sobre la dataIn.data y actualiza los
132 atributos del objeto dataIn.
134 atributos del objeto dataIn.
133
135
134 Input:
136 Input:
135
137
136 dataIn : objeto del tipo JROData
138 dataIn : objeto del tipo JROData
137
139
138 Return:
140 Return:
139
141
140 None
142 None
141
143
142 Affected:
144 Affected:
143 __buffer : buffer de recepcion de datos.
145 __buffer : buffer de recepcion de datos.
144
146
145 """
147 """
146 if not self.isConfig:
148 if not self.isConfig:
147 self.setup(**kwargs)
149 self.setup(**kwargs)
148
150
149 raise NotImplementedError
151 raise NotImplementedError
150
152
151 def close(self):
153 def close(self):
152
154
153 return
155 return
154
156
155
157
156 def MPDecorator(BaseClass):
158 def MPDecorator(BaseClass):
157 """
159 """
158 Multiprocessing class decorator
160 Multiprocessing class decorator
159
161
160 This function add multiprocessing features to a BaseClass.
162 This function add multiprocessing features to a BaseClass.
161 """
163 """
162
164
163 class MPClass(BaseClass, Process):
165 class MPClass(BaseClass, Process):
164
166
165 def __init__(self, *args, **kwargs):
167 def __init__(self, *args, **kwargs):
166 super(MPClass, self).__init__()
168 super(MPClass, self).__init__()
167 Process.__init__(self)
169 Process.__init__(self)
168
170
169 self.args = args
171 self.args = args
170 self.kwargs = kwargs
172 self.kwargs = kwargs
171 self.t = time.time()
173 self.t = time.time()
172 self.op_type = 'external'
174 self.op_type = 'external'
173 self.name = BaseClass.__name__
175 self.name = BaseClass.__name__
174 self.__doc__ = BaseClass.__doc__
176 self.__doc__ = BaseClass.__doc__
175
177
176 if 'plot' in self.name.lower() and not self.name.endswith('_'):
178 if 'plot' in self.name.lower() and not self.name.endswith('_'):
177 self.name = '{}{}'.format(self.CODE.upper(), 'Plot')
179 self.name = '{}{}'.format(self.CODE.upper(), 'Plot')
178
180
179 self.start_time = time.time()
181 self.start_time = time.time()
180 self.err_queue = args[3]
182 self.err_queue = args[3]
181 self.queue = Queue(maxsize=1)
183 self.queue = Queue(maxsize=QUEUE_SIZE)
182 self.myrun = BaseClass.run
184 self.myrun = BaseClass.run
183
185
184 def run(self):
186 def run(self):
185
187
186 while True:
188 while True:
187
189
188 dataOut = self.queue.get()
190 dataOut = self.queue.get()
189
191
190 if not dataOut.error:
192 if not dataOut.error:
191 try:
193 try:
192 BaseClass.run(self, dataOut, **self.kwargs)
194 BaseClass.run(self, dataOut, **self.kwargs)
193 except:
195 except:
194 err = traceback.format_exc()
196 err = traceback.format_exc()
195 log.error(err, self.name)
197 log.error(err, self.name)
196 else:
198 else:
197 break
199 break
198
200
199 self.close()
201 self.close()
200
202
201 def close(self):
203 def close(self):
202
204
203 BaseClass.close(self)
205 BaseClass.close(self)
204 log.success('Done...(Time:{:4.2f} secs)'.format(time.time()-self.start_time), self.name)
206 log.success('Done...(Time:{:4.2f} secs)'.format(time.time()-self.start_time), self.name)
205
207
206 return MPClass
208 return MPClass
@@ -1,4708 +1,4821
1
1
2 import os
2 import os
3 import time
3 import time
4 import math
4 import math
5
5
6 import re
6 import re
7 import datetime
7 import datetime
8 import copy
8 import copy
9 import sys
9 import sys
10 import importlib
10 import importlib
11 import itertools
11 import itertools
12
12
13 from multiprocessing import Pool, TimeoutError
13 from multiprocessing import Pool, TimeoutError
14 from multiprocessing.pool import ThreadPool
14 from multiprocessing.pool import ThreadPool
15 import numpy
15 import numpy
16 import glob
16 import glob
17 import scipy
17 import scipy
18 import h5py
18 import h5py
19 from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters
19 from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters
20 from .jroproc_base import ProcessingUnit, Operation, MPDecorator
20 from .jroproc_base import ProcessingUnit, Operation, MPDecorator
21 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
21 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
22 from scipy import asarray as ar,exp
22 from scipy import asarray as ar,exp
23 from scipy.optimize import curve_fit
23 from scipy.optimize import curve_fit
24 from schainpy.utils import log
24 from schainpy.utils import log
25 import schainpy.admin
25 import schainpy.admin
26 import warnings
26 import warnings
27 from scipy import optimize, interpolate, signal, stats, ndimage
27 from scipy import optimize, interpolate, signal, stats, ndimage
28 from scipy.optimize.optimize import OptimizeWarning
28 from scipy.optimize.optimize import OptimizeWarning
29 warnings.filterwarnings('ignore')
29 warnings.filterwarnings('ignore')
30
30
31
31
32 SPEED_OF_LIGHT = 299792458
32 SPEED_OF_LIGHT = 299792458
33
33
34 '''solving pickling issue'''
34 '''solving pickling issue'''
35
35
36 def _pickle_method(method):
36 def _pickle_method(method):
37 func_name = method.__func__.__name__
37 func_name = method.__func__.__name__
38 obj = method.__self__
38 obj = method.__self__
39 cls = method.__self__.__class__
39 cls = method.__self__.__class__
40 return _unpickle_method, (func_name, obj, cls)
40 return _unpickle_method, (func_name, obj, cls)
41
41
42 def _unpickle_method(func_name, obj, cls):
42 def _unpickle_method(func_name, obj, cls):
43 for cls in cls.mro():
43 for cls in cls.mro():
44 try:
44 try:
45 func = cls.__dict__[func_name]
45 func = cls.__dict__[func_name]
46 except KeyError:
46 except KeyError:
47 pass
47 pass
48 else:
48 else:
49 break
49 break
50 return func.__get__(obj, cls)
50 return func.__get__(obj, cls)
51
51
52 def isNumber(str):
52 def isNumber(str):
53 try:
53 try:
54 float(str)
54 float(str)
55 return True
55 return True
56 except:
56 except:
57 return False
57 return False
58
58
59 class ParametersProc(ProcessingUnit):
59 class ParametersProc(ProcessingUnit):
60
60
61 METHODS = {}
61 METHODS = {}
62 nSeconds = None
62 nSeconds = None
63
63
64 def __init__(self):
64 def __init__(self):
65 ProcessingUnit.__init__(self)
65 ProcessingUnit.__init__(self)
66
66
67 # self.objectDict = {}
67 # self.objectDict = {}
68 self.buffer = None
68 self.buffer = None
69 self.firstdatatime = None
69 self.firstdatatime = None
70 self.profIndex = 0
70 self.profIndex = 0
71 self.dataOut = Parameters()
71 self.dataOut = Parameters()
72 self.setupReq = False #Agregar a todas las unidades de proc
72 self.setupReq = False #Agregar a todas las unidades de proc
73
73
74 def __updateObjFromInput(self):
74 def __updateObjFromInput(self):
75
75
76 self.dataOut.inputUnit = self.dataIn.type
76 self.dataOut.inputUnit = self.dataIn.type
77
77
78 self.dataOut.timeZone = self.dataIn.timeZone
78 self.dataOut.timeZone = self.dataIn.timeZone
79 self.dataOut.dstFlag = self.dataIn.dstFlag
79 self.dataOut.dstFlag = self.dataIn.dstFlag
80 self.dataOut.errorCount = self.dataIn.errorCount
80 self.dataOut.errorCount = self.dataIn.errorCount
81 self.dataOut.useLocalTime = self.dataIn.useLocalTime
81 self.dataOut.useLocalTime = self.dataIn.useLocalTime
82
82
83 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
83 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
84 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
84 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
85 self.dataOut.channelList = self.dataIn.channelList
85 self.dataOut.channelList = self.dataIn.channelList
86 self.dataOut.heightList = self.dataIn.heightList
86 self.dataOut.heightList = self.dataIn.heightList
87 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
87 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
88 # self.dataOut.nHeights = self.dataIn.nHeights
88 # self.dataOut.nHeights = self.dataIn.nHeights
89 # self.dataOut.nChannels = self.dataIn.nChannels
89 # self.dataOut.nChannels = self.dataIn.nChannels
90 # self.dataOut.nBaud = self.dataIn.nBaud
90 # self.dataOut.nBaud = self.dataIn.nBaud
91 # self.dataOut.nCode = self.dataIn.nCode
91 # self.dataOut.nCode = self.dataIn.nCode
92 # self.dataOut.code = self.dataIn.code
92 # self.dataOut.code = self.dataIn.code
93 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
93 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
94 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
94 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
95 # self.dataOut.utctime = self.firstdatatime
95 # self.dataOut.utctime = self.firstdatatime
96 self.dataOut.utctime = self.dataIn.utctime
96 self.dataOut.utctime = self.dataIn.utctime
97 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
97 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
98 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
98 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
99 self.dataOut.nCohInt = self.dataIn.nCohInt
99 self.dataOut.nCohInt = self.dataIn.nCohInt
100 # self.dataOut.nIncohInt = 1
100 # self.dataOut.nIncohInt = 1
101 # self.dataOut.ippSeconds = self.dataIn.ippSeconds
101 # self.dataOut.ippSeconds = self.dataIn.ippSeconds
102 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
102 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
103 self.dataOut.timeInterval1 = self.dataIn.timeInterval
103 self.dataOut.timeInterval1 = self.dataIn.timeInterval
104 self.dataOut.heightList = self.dataIn.heightList
104 self.dataOut.heightList = self.dataIn.heightList
105 self.dataOut.frequency = self.dataIn.frequency
105 self.dataOut.frequency = self.dataIn.frequency
106 # self.dataOut.noise = self.dataIn.noise
106 # self.dataOut.noise = self.dataIn.noise
107
107
108 def run(self):
108 def run(self):
109
109
110
110
111 #print("HOLA MUNDO SOY YO")
111 #print("HOLA MUNDO SOY YO")
112 #---------------------- Voltage Data ---------------------------
112 #---------------------- Voltage Data ---------------------------
113
113
114 if self.dataIn.type == "Voltage":
114 if self.dataIn.type == "Voltage":
115
115
116 self.__updateObjFromInput()
116 self.__updateObjFromInput()
117 self.dataOut.data_pre = self.dataIn.data.copy()
117 self.dataOut.data_pre = self.dataIn.data.copy()
118 self.dataOut.flagNoData = False
118 self.dataOut.flagNoData = False
119 self.dataOut.utctimeInit = self.dataIn.utctime
119 self.dataOut.utctimeInit = self.dataIn.utctime
120 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
120 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
121
121
122 if hasattr(self.dataIn, 'flagDataAsBlock'):
122 if hasattr(self.dataIn, 'flagDataAsBlock'):
123 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
123 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
124
124
125 if hasattr(self.dataIn, 'profileIndex'):
125 if hasattr(self.dataIn, 'profileIndex'):
126 self.dataOut.profileIndex = self.dataIn.profileIndex
126 self.dataOut.profileIndex = self.dataIn.profileIndex
127
127
128 if hasattr(self.dataIn, 'dataPP_POW'):
128 if hasattr(self.dataIn, 'dataPP_POW'):
129 self.dataOut.dataPP_POW = self.dataIn.dataPP_POW
129 self.dataOut.dataPP_POW = self.dataIn.dataPP_POW
130
130
131 if hasattr(self.dataIn, 'dataPP_POWER'):
131 if hasattr(self.dataIn, 'dataPP_POWER'):
132 self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER
132 self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER
133
133
134 if hasattr(self.dataIn, 'dataPP_DOP'):
134 if hasattr(self.dataIn, 'dataPP_DOP'):
135 self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP
135 self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP
136
136
137 if hasattr(self.dataIn, 'dataPP_SNR'):
137 if hasattr(self.dataIn, 'dataPP_SNR'):
138 self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR
138 self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR
139
139
140 if hasattr(self.dataIn, 'dataPP_WIDTH'):
140 if hasattr(self.dataIn, 'dataPP_WIDTH'):
141 self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH
141 self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH
142 return
142 return
143
143
144 #---------------------- Spectra Data ---------------------------
144 #---------------------- Spectra Data ---------------------------
145
145
146 if self.dataIn.type == "Spectra":
146 if self.dataIn.type == "Spectra":
147 #print("que paso en spectra")
147 #print("que paso en spectra")
148 self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc]
148 self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc]
149 self.dataOut.data_spc = self.dataIn.data_spc
149 self.dataOut.data_spc = self.dataIn.data_spc
150 self.dataOut.data_cspc = self.dataIn.data_cspc
150 self.dataOut.data_cspc = self.dataIn.data_cspc
151 self.dataOut.nProfiles = self.dataIn.nProfiles
151 self.dataOut.nProfiles = self.dataIn.nProfiles
152 self.dataOut.nIncohInt = self.dataIn.nIncohInt
152 self.dataOut.nIncohInt = self.dataIn.nIncohInt
153 self.dataOut.nFFTPoints = self.dataIn.nFFTPoints
153 self.dataOut.nFFTPoints = self.dataIn.nFFTPoints
154 self.dataOut.ippFactor = self.dataIn.ippFactor
154 self.dataOut.ippFactor = self.dataIn.ippFactor
155 self.dataOut.abscissaList = self.dataIn.getVelRange(1)
155 self.dataOut.abscissaList = self.dataIn.getVelRange(1)
156 self.dataOut.spc_noise = self.dataIn.getNoise()
156 self.dataOut.spc_noise = self.dataIn.getNoise()
157 self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1))
157 self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1))
158 # self.dataOut.normFactor = self.dataIn.normFactor
158 # self.dataOut.normFactor = self.dataIn.normFactor
159 self.dataOut.pairsList = self.dataIn.pairsList
159 self.dataOut.pairsList = self.dataIn.pairsList
160 self.dataOut.groupList = self.dataIn.pairsList
160 self.dataOut.groupList = self.dataIn.pairsList
161 self.dataOut.flagNoData = False
161 self.dataOut.flagNoData = False
162
162
163 if hasattr(self.dataIn, 'flagDataAsBlock'):
163 if hasattr(self.dataIn, 'flagDataAsBlock'):
164 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
164 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
165
165
166 if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
166 if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
167 self.dataOut.ChanDist = self.dataIn.ChanDist
167 self.dataOut.ChanDist = self.dataIn.ChanDist
168 else: self.dataOut.ChanDist = None
168 else: self.dataOut.ChanDist = None
169
169
170 #if hasattr(self.dataIn, 'VelRange'): #Velocities range
170 #if hasattr(self.dataIn, 'VelRange'): #Velocities range
171 # self.dataOut.VelRange = self.dataIn.VelRange
171 # self.dataOut.VelRange = self.dataIn.VelRange
172 #else: self.dataOut.VelRange = None
172 #else: self.dataOut.VelRange = None
173
173
174 if hasattr(self.dataIn, 'RadarConst'): #Radar Constant
174 if hasattr(self.dataIn, 'RadarConst'): #Radar Constant
175 self.dataOut.RadarConst = self.dataIn.RadarConst
175 self.dataOut.RadarConst = self.dataIn.RadarConst
176
176
177 if hasattr(self.dataIn, 'NPW'): #NPW
177 if hasattr(self.dataIn, 'NPW'): #NPW
178 self.dataOut.NPW = self.dataIn.NPW
178 self.dataOut.NPW = self.dataIn.NPW
179
179
180 if hasattr(self.dataIn, 'COFA'): #COFA
180 if hasattr(self.dataIn, 'COFA'): #COFA
181 self.dataOut.COFA = self.dataIn.COFA
181 self.dataOut.COFA = self.dataIn.COFA
182
182
183
183
184
184
185 #---------------------- Correlation Data ---------------------------
185 #---------------------- Correlation Data ---------------------------
186
186
187 if self.dataIn.type == "Correlation":
187 if self.dataIn.type == "Correlation":
188 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
188 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
189
189
190 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
190 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
191 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
191 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
192 self.dataOut.groupList = (acf_pairs, ccf_pairs)
192 self.dataOut.groupList = (acf_pairs, ccf_pairs)
193
193
194 self.dataOut.abscissaList = self.dataIn.lagRange
194 self.dataOut.abscissaList = self.dataIn.lagRange
195 self.dataOut.noise = self.dataIn.noise
195 self.dataOut.noise = self.dataIn.noise
196 self.dataOut.data_snr = self.dataIn.SNR
196 self.dataOut.data_snr = self.dataIn.SNR
197 self.dataOut.flagNoData = False
197 self.dataOut.flagNoData = False
198 self.dataOut.nAvg = self.dataIn.nAvg
198 self.dataOut.nAvg = self.dataIn.nAvg
199
199
200 #---------------------- Parameters Data ---------------------------
200 #---------------------- Parameters Data ---------------------------
201
201
202 if self.dataIn.type == "Parameters":
202 if self.dataIn.type == "Parameters":
203 self.dataOut.copy(self.dataIn)
203 self.dataOut.copy(self.dataIn)
204 self.dataOut.flagNoData = False
204 self.dataOut.flagNoData = False
205 #print("yo si entre")
205 #print("yo si entre")
206
206
207 return True
207 return True
208
208
209 self.__updateObjFromInput()
209 self.__updateObjFromInput()
210 #print("yo si entre2")
210 #print("yo si entre2")
211
211
212 self.dataOut.utctimeInit = self.dataIn.utctime
212 self.dataOut.utctimeInit = self.dataIn.utctime
213 self.dataOut.paramInterval = self.dataIn.timeInterval
213 self.dataOut.paramInterval = self.dataIn.timeInterval
214 #print("soy spectra ",self.dataOut.utctimeInit)
214 #print("soy spectra ",self.dataOut.utctimeInit)
215 return
215 return
216
216
217
217
218 def target(tups):
218 def target(tups):
219
219
220 obj, args = tups
220 obj, args = tups
221
221
222 return obj.FitGau(args)
222 return obj.FitGau(args)
223
223
224 class RemoveWideGC(Operation):
224 class RemoveWideGC(Operation):
225 ''' This class remove the wide clutter and replace it with a simple interpolation points
225 ''' This class remove the wide clutter and replace it with a simple interpolation points
226 This mainly applies to CLAIRE radar
226 This mainly applies to CLAIRE radar
227
227
228 ClutterWidth : Width to look for the clutter peak
228 ClutterWidth : Width to look for the clutter peak
229
229
230 Input:
230 Input:
231
231
232 self.dataOut.data_pre : SPC and CSPC
232 self.dataOut.data_pre : SPC and CSPC
233 self.dataOut.spc_range : To select wind and rainfall velocities
233 self.dataOut.spc_range : To select wind and rainfall velocities
234
234
235 Affected:
235 Affected:
236
236
237 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
237 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
238
238
239 Written by D. ScipiΓ³n 25.02.2021
239 Written by D. ScipiΓ³n 25.02.2021
240 '''
240 '''
241 def __init__(self):
241 def __init__(self):
242 Operation.__init__(self)
242 Operation.__init__(self)
243 self.i = 0
243 self.i = 0
244 self.ich = 0
244 self.ich = 0
245 self.ir = 0
245 self.ir = 0
246
246
247 def run(self, dataOut, ClutterWidth=2.5):
247 def run(self, dataOut, ClutterWidth=2.5):
248 # print ('Entering RemoveWideGC ... ')
248 # print ('Entering RemoveWideGC ... ')
249
249
250 self.spc = dataOut.data_pre[0].copy()
250 self.spc = dataOut.data_pre[0].copy()
251 self.spc_out = dataOut.data_pre[0].copy()
251 self.spc_out = dataOut.data_pre[0].copy()
252 self.Num_Chn = self.spc.shape[0]
252 self.Num_Chn = self.spc.shape[0]
253 self.Num_Hei = self.spc.shape[2]
253 self.Num_Hei = self.spc.shape[2]
254 VelRange = dataOut.spc_range[2][:-1]
254 VelRange = dataOut.spc_range[2][:-1]
255 dv = VelRange[1]-VelRange[0]
255 dv = VelRange[1]-VelRange[0]
256
256
257 # Find the velocities that corresponds to zero
257 # Find the velocities that corresponds to zero
258 gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth))
258 gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth))
259
259
260 # Removing novalid data from the spectra
260 # Removing novalid data from the spectra
261 for ich in range(self.Num_Chn) :
261 for ich in range(self.Num_Chn) :
262 for ir in range(self.Num_Hei) :
262 for ir in range(self.Num_Hei) :
263 # Estimate the noise at each range
263 # Estimate the noise at each range
264 HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt)
264 HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt)
265
265
266 # Removing the noise floor at each range
266 # Removing the noise floor at each range
267 novalid = numpy.where(self.spc[ich,:,ir] < HSn)
267 novalid = numpy.where(self.spc[ich,:,ir] < HSn)
268 self.spc[ich,novalid,ir] = HSn
268 self.spc[ich,novalid,ir] = HSn
269
269
270 junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn)
270 junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn)
271 j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0))
271 j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0))
272 j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0))
272 j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0))
273 if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) :
273 if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) :
274 continue
274 continue
275 junk3 = numpy.squeeze(numpy.diff(j1index))
275 junk3 = numpy.squeeze(numpy.diff(j1index))
276 junk4 = numpy.squeeze(numpy.diff(j2index))
276 junk4 = numpy.squeeze(numpy.diff(j2index))
277
277
278 valleyindex = j2index[numpy.where(junk4>1)]
278 valleyindex = j2index[numpy.where(junk4>1)]
279 peakindex = j1index[numpy.where(junk3>1)]
279 peakindex = j1index[numpy.where(junk3>1)]
280
280
281 isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv))
281 isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv))
282 if numpy.size(isvalid) == 0 :
282 if numpy.size(isvalid) == 0 :
283 continue
283 continue
284 if numpy.size(isvalid) >1 :
284 if numpy.size(isvalid) >1 :
285 vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir])
285 vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir])
286 isvalid = isvalid[vindex]
286 isvalid = isvalid[vindex]
287
287
288 # clutter peak
288 # clutter peak
289 gcpeak = peakindex[isvalid]
289 gcpeak = peakindex[isvalid]
290 vl = numpy.where(valleyindex < gcpeak)
290 vl = numpy.where(valleyindex < gcpeak)
291 if numpy.size(vl) == 0:
291 if numpy.size(vl) == 0:
292 continue
292 continue
293 gcvl = valleyindex[vl[0][-1]]
293 gcvl = valleyindex[vl[0][-1]]
294 vr = numpy.where(valleyindex > gcpeak)
294 vr = numpy.where(valleyindex > gcpeak)
295 if numpy.size(vr) == 0:
295 if numpy.size(vr) == 0:
296 continue
296 continue
297 gcvr = valleyindex[vr[0][0]]
297 gcvr = valleyindex[vr[0][0]]
298
298
299 # Removing the clutter
299 # Removing the clutter
300 interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]])
300 interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]])
301 gcindex = gc_values[gcvl+1:gcvr-1]
301 gcindex = gc_values[gcvl+1:gcvr-1]
302 self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir])
302 self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir])
303
303
304 dataOut.data_pre[0] = self.spc_out
304 dataOut.data_pre[0] = self.spc_out
305 #print ('Leaving RemoveWideGC ... ')
305 #print ('Leaving RemoveWideGC ... ')
306 return dataOut
306 return dataOut
307
307
308 class SpectralFilters(Operation):
308 class SpectralFilters(Operation):
309 ''' This class allows to replace the novalid values with noise for each channel
309 ''' This class allows to replace the novalid values with noise for each channel
310 This applies to CLAIRE RADAR
310 This applies to CLAIRE RADAR
311
311
312 PositiveLimit : RightLimit of novalid data
312 PositiveLimit : RightLimit of novalid data
313 NegativeLimit : LeftLimit of novalid data
313 NegativeLimit : LeftLimit of novalid data
314
314
315 Input:
315 Input:
316
316
317 self.dataOut.data_pre : SPC and CSPC
317 self.dataOut.data_pre : SPC and CSPC
318 self.dataOut.spc_range : To select wind and rainfall velocities
318 self.dataOut.spc_range : To select wind and rainfall velocities
319
319
320 Affected:
320 Affected:
321
321
322 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
322 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
323
323
324 Written by D. ScipiΓ³n 29.01.2021
324 Written by D. ScipiΓ³n 29.01.2021
325 '''
325 '''
326 def __init__(self):
326 def __init__(self):
327 Operation.__init__(self)
327 Operation.__init__(self)
328 self.i = 0
328 self.i = 0
329
329
330 def run(self, dataOut, ):
330 def run(self, dataOut, ):
331
331
332 self.spc = dataOut.data_pre[0].copy()
332 self.spc = dataOut.data_pre[0].copy()
333 self.Num_Chn = self.spc.shape[0]
333 self.Num_Chn = self.spc.shape[0]
334 VelRange = dataOut.spc_range[2]
334 VelRange = dataOut.spc_range[2]
335
335
336 # novalid corresponds to data within the Negative and PositiveLimit
336 # novalid corresponds to data within the Negative and PositiveLimit
337
337
338
338
339 # Removing novalid data from the spectra
339 # Removing novalid data from the spectra
340 for i in range(self.Num_Chn):
340 for i in range(self.Num_Chn):
341 self.spc[i,novalid,:] = dataOut.noise[i]
341 self.spc[i,novalid,:] = dataOut.noise[i]
342 dataOut.data_pre[0] = self.spc
342 dataOut.data_pre[0] = self.spc
343 return dataOut
343 return dataOut
344
344
345 class GaussianFit(Operation):
345 class GaussianFit(Operation):
346
346
347 '''
347 '''
348 Function that fit of one and two generalized gaussians (gg) based
348 Function that fit of one and two generalized gaussians (gg) based
349 on the PSD shape across an "power band" identified from a cumsum of
349 on the PSD shape across an "power band" identified from a cumsum of
350 the measured spectrum - noise.
350 the measured spectrum - noise.
351
351
352 Input:
352 Input:
353 self.dataOut.data_pre : SelfSpectra
353 self.dataOut.data_pre : SelfSpectra
354
354
355 Output:
355 Output:
356 self.dataOut.SPCparam : SPC_ch1, SPC_ch2
356 self.dataOut.SPCparam : SPC_ch1, SPC_ch2
357
357
358 '''
358 '''
359 def __init__(self):
359 def __init__(self):
360 Operation.__init__(self)
360 Operation.__init__(self)
361 self.i=0
361 self.i=0
362
362
363
363
364 # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points
364 # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points
365 def run(self, dataOut, SNRdBlimit=-9, method='generalized'):
365 def run(self, dataOut, SNRdBlimit=-9, method='generalized'):
366 """This routine will find a couple of generalized Gaussians to a power spectrum
366 """This routine will find a couple of generalized Gaussians to a power spectrum
367 methods: generalized, squared
367 methods: generalized, squared
368 input: spc
368 input: spc
369 output:
369 output:
370 noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1
370 noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1
371 """
371 """
372 print ('Entering ',method,' double Gaussian fit')
372 print ('Entering ',method,' double Gaussian fit')
373 self.spc = dataOut.data_pre[0].copy()
373 self.spc = dataOut.data_pre[0].copy()
374 self.Num_Hei = self.spc.shape[2]
374 self.Num_Hei = self.spc.shape[2]
375 self.Num_Bin = self.spc.shape[1]
375 self.Num_Bin = self.spc.shape[1]
376 self.Num_Chn = self.spc.shape[0]
376 self.Num_Chn = self.spc.shape[0]
377
377
378 start_time = time.time()
378 start_time = time.time()
379
379
380 pool = Pool(processes=self.Num_Chn)
380 pool = Pool(processes=self.Num_Chn)
381 args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)]
381 args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)]
382 objs = [self for __ in range(self.Num_Chn)]
382 objs = [self for __ in range(self.Num_Chn)]
383 attrs = list(zip(objs, args))
383 attrs = list(zip(objs, args))
384 DGauFitParam = pool.map(target, attrs)
384 DGauFitParam = pool.map(target, attrs)
385 # Parameters:
385 # Parameters:
386 # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power
386 # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power
387 dataOut.DGauFitParams = numpy.asarray(DGauFitParam)
387 dataOut.DGauFitParams = numpy.asarray(DGauFitParam)
388
388
389 # Double Gaussian Curves
389 # Double Gaussian Curves
390 gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
390 gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
391 gau0[:] = numpy.NaN
391 gau0[:] = numpy.NaN
392 gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
392 gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
393 gau1[:] = numpy.NaN
393 gau1[:] = numpy.NaN
394 x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1)))
394 x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1)))
395 for iCh in range(self.Num_Chn):
395 for iCh in range(self.Num_Chn):
396 N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin))
396 N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin))
397 N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin))
397 N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin))
398 A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin))
398 A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin))
399 A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin))
399 A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin))
400 v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin))
400 v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin))
401 v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin))
401 v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin))
402 s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin))
402 s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin))
403 s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin))
403 s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin))
404 if method == 'genealized':
404 if method == 'genealized':
405 p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin))
405 p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin))
406 p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin))
406 p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin))
407 elif method == 'squared':
407 elif method == 'squared':
408 p0 = 2.
408 p0 = 2.
409 p1 = 2.
409 p1 = 2.
410 gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0
410 gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0
411 gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1
411 gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1
412 dataOut.GaussFit0 = gau0
412 dataOut.GaussFit0 = gau0
413 dataOut.GaussFit1 = gau1
413 dataOut.GaussFit1 = gau1
414
414
415 print('Leaving ',method ,' double Gaussian fit')
415 print('Leaving ',method ,' double Gaussian fit')
416 return dataOut
416 return dataOut
417
417
418 def FitGau(self, X):
418 def FitGau(self, X):
419 # print('Entering FitGau')
419 # print('Entering FitGau')
420 # Assigning the variables
420 # Assigning the variables
421 Vrange, ch, wnoise, num_intg, SNRlimit = X
421 Vrange, ch, wnoise, num_intg, SNRlimit = X
422 # Noise Limits
422 # Noise Limits
423 noisebl = wnoise * 0.9
423 noisebl = wnoise * 0.9
424 noisebh = wnoise * 1.1
424 noisebh = wnoise * 1.1
425 # Radar Velocity
425 # Radar Velocity
426 Va = max(Vrange)
426 Va = max(Vrange)
427 deltav = Vrange[1] - Vrange[0]
427 deltav = Vrange[1] - Vrange[0]
428 x = numpy.arange(self.Num_Bin)
428 x = numpy.arange(self.Num_Bin)
429
429
430 # print ('stop 0')
430 # print ('stop 0')
431
431
432 # 5 parameters, 2 Gaussians
432 # 5 parameters, 2 Gaussians
433 DGauFitParam = numpy.zeros([5, self.Num_Hei,2])
433 DGauFitParam = numpy.zeros([5, self.Num_Hei,2])
434 DGauFitParam[:] = numpy.NaN
434 DGauFitParam[:] = numpy.NaN
435
435
436 # SPCparam = []
436 # SPCparam = []
437 # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei])
437 # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei])
438 # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei])
438 # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei])
439 # SPC_ch1[:] = 0 #numpy.NaN
439 # SPC_ch1[:] = 0 #numpy.NaN
440 # SPC_ch2[:] = 0 #numpy.NaN
440 # SPC_ch2[:] = 0 #numpy.NaN
441 # print ('stop 1')
441 # print ('stop 1')
442 for ht in range(self.Num_Hei):
442 for ht in range(self.Num_Hei):
443 # print (ht)
443 # print (ht)
444 # print ('stop 2')
444 # print ('stop 2')
445 # Spectra at each range
445 # Spectra at each range
446 spc = numpy.asarray(self.spc)[ch,:,ht]
446 spc = numpy.asarray(self.spc)[ch,:,ht]
447 snr = ( spc.mean() - wnoise ) / wnoise
447 snr = ( spc.mean() - wnoise ) / wnoise
448 snrdB = 10.*numpy.log10(snr)
448 snrdB = 10.*numpy.log10(snr)
449
449
450 #print ('stop 3')
450 #print ('stop 3')
451 if snrdB < SNRlimit :
451 if snrdB < SNRlimit :
452 # snr = numpy.NaN
452 # snr = numpy.NaN
453 # SPC_ch1[:,ht] = 0#numpy.NaN
453 # SPC_ch1[:,ht] = 0#numpy.NaN
454 # SPC_ch1[:,ht] = 0#numpy.NaN
454 # SPC_ch1[:,ht] = 0#numpy.NaN
455 # SPCparam = (SPC_ch1,SPC_ch2)
455 # SPCparam = (SPC_ch1,SPC_ch2)
456 # print ('SNR less than SNRth')
456 # print ('SNR less than SNRth')
457 continue
457 continue
458 # wnoise = hildebrand_sekhon(spc,num_intg)
458 # wnoise = hildebrand_sekhon(spc,num_intg)
459 # print ('stop 2.01')
459 # print ('stop 2.01')
460 #############################################
460 #############################################
461 # normalizing spc and noise
461 # normalizing spc and noise
462 # This part differs from gg1
462 # This part differs from gg1
463 # spc_norm_max = max(spc) #commented by D. ScipiΓ³n 19.03.2021
463 # spc_norm_max = max(spc) #commented by D. ScipiΓ³n 19.03.2021
464 #spc = spc / spc_norm_max
464 #spc = spc / spc_norm_max
465 # pnoise = pnoise #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
465 # pnoise = pnoise #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
466 #############################################
466 #############################################
467
467
468 # print ('stop 2.1')
468 # print ('stop 2.1')
469 fatspectra=1.0
469 fatspectra=1.0
470 # noise per channel.... we might want to use the noise at each range
470 # noise per channel.... we might want to use the noise at each range
471
471
472 # wnoise = noise_ #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
472 # wnoise = noise_ #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
473 #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used
473 #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used
474 #if wnoise>1.1*pnoise: # to be tested later
474 #if wnoise>1.1*pnoise: # to be tested later
475 # wnoise=pnoise
475 # wnoise=pnoise
476 # noisebl = wnoise*0.9
476 # noisebl = wnoise*0.9
477 # noisebh = wnoise*1.1
477 # noisebh = wnoise*1.1
478 spc = spc - wnoise # signal
478 spc = spc - wnoise # signal
479
479
480 # print ('stop 2.2')
480 # print ('stop 2.2')
481 minx = numpy.argmin(spc)
481 minx = numpy.argmin(spc)
482 #spcs=spc.copy()
482 #spcs=spc.copy()
483 spcs = numpy.roll(spc,-minx)
483 spcs = numpy.roll(spc,-minx)
484 cum = numpy.cumsum(spcs)
484 cum = numpy.cumsum(spcs)
485 # tot_noise = wnoise * self.Num_Bin #64;
485 # tot_noise = wnoise * self.Num_Bin #64;
486
486
487 # print ('stop 2.3')
487 # print ('stop 2.3')
488 # snr = sum(spcs) / tot_noise
488 # snr = sum(spcs) / tot_noise
489 # snrdB = 10.*numpy.log10(snr)
489 # snrdB = 10.*numpy.log10(snr)
490 #print ('stop 3')
490 #print ('stop 3')
491 # if snrdB < SNRlimit :
491 # if snrdB < SNRlimit :
492 # snr = numpy.NaN
492 # snr = numpy.NaN
493 # SPC_ch1[:,ht] = 0#numpy.NaN
493 # SPC_ch1[:,ht] = 0#numpy.NaN
494 # SPC_ch1[:,ht] = 0#numpy.NaN
494 # SPC_ch1[:,ht] = 0#numpy.NaN
495 # SPCparam = (SPC_ch1,SPC_ch2)
495 # SPCparam = (SPC_ch1,SPC_ch2)
496 # print ('SNR less than SNRth')
496 # print ('SNR less than SNRth')
497 # continue
497 # continue
498
498
499
499
500 #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4:
500 #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4:
501 # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
501 # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
502 # print ('stop 4')
502 # print ('stop 4')
503 cummax = max(cum)
503 cummax = max(cum)
504 epsi = 0.08 * fatspectra # cumsum to narrow down the energy region
504 epsi = 0.08 * fatspectra # cumsum to narrow down the energy region
505 cumlo = cummax * epsi
505 cumlo = cummax * epsi
506 cumhi = cummax * (1-epsi)
506 cumhi = cummax * (1-epsi)
507 powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0])
507 powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0])
508
508
509 # print ('stop 5')
509 # print ('stop 5')
510 if len(powerindex) < 1:# case for powerindex 0
510 if len(powerindex) < 1:# case for powerindex 0
511 # print ('powerindex < 1')
511 # print ('powerindex < 1')
512 continue
512 continue
513 powerlo = powerindex[0]
513 powerlo = powerindex[0]
514 powerhi = powerindex[-1]
514 powerhi = powerindex[-1]
515 powerwidth = powerhi-powerlo
515 powerwidth = powerhi-powerlo
516 if powerwidth <= 1:
516 if powerwidth <= 1:
517 # print('powerwidth <= 1')
517 # print('powerwidth <= 1')
518 continue
518 continue
519
519
520 # print ('stop 6')
520 # print ('stop 6')
521 firstpeak = powerlo + powerwidth/10.# first gaussian energy location
521 firstpeak = powerlo + powerwidth/10.# first gaussian energy location
522 secondpeak = powerhi - powerwidth/10. #second gaussian energy location
522 secondpeak = powerhi - powerwidth/10. #second gaussian energy location
523 midpeak = (firstpeak + secondpeak)/2.
523 midpeak = (firstpeak + secondpeak)/2.
524 firstamp = spcs[int(firstpeak)]
524 firstamp = spcs[int(firstpeak)]
525 secondamp = spcs[int(secondpeak)]
525 secondamp = spcs[int(secondpeak)]
526 midamp = spcs[int(midpeak)]
526 midamp = spcs[int(midpeak)]
527
527
528 y_data = spc + wnoise
528 y_data = spc + wnoise
529
529
530 ''' single Gaussian '''
530 ''' single Gaussian '''
531 shift0 = numpy.mod(midpeak+minx, self.Num_Bin )
531 shift0 = numpy.mod(midpeak+minx, self.Num_Bin )
532 width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4
532 width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4
533 power0 = 2.
533 power0 = 2.
534 amplitude0 = midamp
534 amplitude0 = midamp
535 state0 = [shift0,width0,amplitude0,power0,wnoise]
535 state0 = [shift0,width0,amplitude0,power0,wnoise]
536 bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
536 bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
537 lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True)
537 lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True)
538 # print ('stop 7.1')
538 # print ('stop 7.1')
539 # print (bnds)
539 # print (bnds)
540
540
541 chiSq1=lsq1[1]
541 chiSq1=lsq1[1]
542
542
543 # print ('stop 8')
543 # print ('stop 8')
544 if fatspectra<1.0 and powerwidth<4:
544 if fatspectra<1.0 and powerwidth<4:
545 choice=0
545 choice=0
546 Amplitude0=lsq1[0][2]
546 Amplitude0=lsq1[0][2]
547 shift0=lsq1[0][0]
547 shift0=lsq1[0][0]
548 width0=lsq1[0][1]
548 width0=lsq1[0][1]
549 p0=lsq1[0][3]
549 p0=lsq1[0][3]
550 Amplitude1=0.
550 Amplitude1=0.
551 shift1=0.
551 shift1=0.
552 width1=0.
552 width1=0.
553 p1=0.
553 p1=0.
554 noise=lsq1[0][4]
554 noise=lsq1[0][4]
555 #return (numpy.array([shift0,width0,Amplitude0,p0]),
555 #return (numpy.array([shift0,width0,Amplitude0,p0]),
556 # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
556 # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
557
557
558 # print ('stop 9')
558 # print ('stop 9')
559 ''' two Gaussians '''
559 ''' two Gaussians '''
560 #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
560 #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
561 shift0 = numpy.mod(firstpeak+minx, self.Num_Bin )
561 shift0 = numpy.mod(firstpeak+minx, self.Num_Bin )
562 shift1 = numpy.mod(secondpeak+minx, self.Num_Bin )
562 shift1 = numpy.mod(secondpeak+minx, self.Num_Bin )
563 width0 = powerwidth/6.
563 width0 = powerwidth/6.
564 width1 = width0
564 width1 = width0
565 power0 = 2.
565 power0 = 2.
566 power1 = power0
566 power1 = power0
567 amplitude0 = firstamp
567 amplitude0 = firstamp
568 amplitude1 = secondamp
568 amplitude1 = secondamp
569 state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise]
569 state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise]
570 #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
570 #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
571 bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
571 bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
572 #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5))
572 #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5))
573
573
574 # print ('stop 10')
574 # print ('stop 10')
575 lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True )
575 lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True )
576
576
577 # print ('stop 11')
577 # print ('stop 11')
578 chiSq2 = lsq2[1]
578 chiSq2 = lsq2[1]
579
579
580 # print ('stop 12')
580 # print ('stop 12')
581
581
582 oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10)
582 oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10)
583
583
584 # print ('stop 13')
584 # print ('stop 13')
585 if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error
585 if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error
586 if oneG:
586 if oneG:
587 choice = 0
587 choice = 0
588 else:
588 else:
589 w1 = lsq2[0][1]; w2 = lsq2[0][5]
589 w1 = lsq2[0][1]; w2 = lsq2[0][5]
590 a1 = lsq2[0][2]; a2 = lsq2[0][6]
590 a1 = lsq2[0][2]; a2 = lsq2[0][6]
591 p1 = lsq2[0][3]; p2 = lsq2[0][7]
591 p1 = lsq2[0][3]; p2 = lsq2[0][7]
592 s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1
592 s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1
593 s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2
593 s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2
594 gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling
594 gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling
595
595
596 if gp1>gp2:
596 if gp1>gp2:
597 if a1>0.7*a2:
597 if a1>0.7*a2:
598 choice = 1
598 choice = 1
599 else:
599 else:
600 choice = 2
600 choice = 2
601 elif gp2>gp1:
601 elif gp2>gp1:
602 if a2>0.7*a1:
602 if a2>0.7*a1:
603 choice = 2
603 choice = 2
604 else:
604 else:
605 choice = 1
605 choice = 1
606 else:
606 else:
607 choice = numpy.argmax([a1,a2])+1
607 choice = numpy.argmax([a1,a2])+1
608 #else:
608 #else:
609 #choice=argmin([std2a,std2b])+1
609 #choice=argmin([std2a,std2b])+1
610
610
611 else: # with low SNR go to the most energetic peak
611 else: # with low SNR go to the most energetic peak
612 choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]])
612 choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]])
613
613
614 # print ('stop 14')
614 # print ('stop 14')
615 shift0 = lsq2[0][0]
615 shift0 = lsq2[0][0]
616 vel0 = Vrange[0] + shift0 * deltav
616 vel0 = Vrange[0] + shift0 * deltav
617 shift1 = lsq2[0][4]
617 shift1 = lsq2[0][4]
618 # vel1=Vrange[0] + shift1 * deltav
618 # vel1=Vrange[0] + shift1 * deltav
619
619
620 # max_vel = 1.0
620 # max_vel = 1.0
621 # Va = max(Vrange)
621 # Va = max(Vrange)
622 # deltav = Vrange[1]-Vrange[0]
622 # deltav = Vrange[1]-Vrange[0]
623 # print ('stop 15')
623 # print ('stop 15')
624 #first peak will be 0, second peak will be 1
624 #first peak will be 0, second peak will be 1
625 # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.ScipiΓ³n 19.03.2021
625 # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.ScipiΓ³n 19.03.2021
626 if vel0 > -Va and vel0 < Va : #first peak is in the correct range
626 if vel0 > -Va and vel0 < Va : #first peak is in the correct range
627 shift0 = lsq2[0][0]
627 shift0 = lsq2[0][0]
628 width0 = lsq2[0][1]
628 width0 = lsq2[0][1]
629 Amplitude0 = lsq2[0][2]
629 Amplitude0 = lsq2[0][2]
630 p0 = lsq2[0][3]
630 p0 = lsq2[0][3]
631
631
632 shift1 = lsq2[0][4]
632 shift1 = lsq2[0][4]
633 width1 = lsq2[0][5]
633 width1 = lsq2[0][5]
634 Amplitude1 = lsq2[0][6]
634 Amplitude1 = lsq2[0][6]
635 p1 = lsq2[0][7]
635 p1 = lsq2[0][7]
636 noise = lsq2[0][8]
636 noise = lsq2[0][8]
637 else:
637 else:
638 shift1 = lsq2[0][0]
638 shift1 = lsq2[0][0]
639 width1 = lsq2[0][1]
639 width1 = lsq2[0][1]
640 Amplitude1 = lsq2[0][2]
640 Amplitude1 = lsq2[0][2]
641 p1 = lsq2[0][3]
641 p1 = lsq2[0][3]
642
642
643 shift0 = lsq2[0][4]
643 shift0 = lsq2[0][4]
644 width0 = lsq2[0][5]
644 width0 = lsq2[0][5]
645 Amplitude0 = lsq2[0][6]
645 Amplitude0 = lsq2[0][6]
646 p0 = lsq2[0][7]
646 p0 = lsq2[0][7]
647 noise = lsq2[0][8]
647 noise = lsq2[0][8]
648
648
649 if Amplitude0<0.05: # in case the peak is noise
649 if Amplitude0<0.05: # in case the peak is noise
650 shift0,width0,Amplitude0,p0 = 4*[numpy.NaN]
650 shift0,width0,Amplitude0,p0 = 4*[numpy.NaN]
651 if Amplitude1<0.05:
651 if Amplitude1<0.05:
652 shift1,width1,Amplitude1,p1 = 4*[numpy.NaN]
652 shift1,width1,Amplitude1,p1 = 4*[numpy.NaN]
653
653
654 # print ('stop 16 ')
654 # print ('stop 16 ')
655 # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0)
655 # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0)
656 # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1)
656 # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1)
657 # SPCparam = (SPC_ch1,SPC_ch2)
657 # SPCparam = (SPC_ch1,SPC_ch2)
658
658
659 DGauFitParam[0,ht,0] = noise
659 DGauFitParam[0,ht,0] = noise
660 DGauFitParam[0,ht,1] = noise
660 DGauFitParam[0,ht,1] = noise
661 DGauFitParam[1,ht,0] = Amplitude0
661 DGauFitParam[1,ht,0] = Amplitude0
662 DGauFitParam[1,ht,1] = Amplitude1
662 DGauFitParam[1,ht,1] = Amplitude1
663 DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav
663 DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav
664 DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav
664 DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav
665 DGauFitParam[3,ht,0] = width0 * deltav
665 DGauFitParam[3,ht,0] = width0 * deltav
666 DGauFitParam[3,ht,1] = width1 * deltav
666 DGauFitParam[3,ht,1] = width1 * deltav
667 DGauFitParam[4,ht,0] = p0
667 DGauFitParam[4,ht,0] = p0
668 DGauFitParam[4,ht,1] = p1
668 DGauFitParam[4,ht,1] = p1
669
669
670 # print (DGauFitParam.shape)
670 # print (DGauFitParam.shape)
671 # print ('Leaving FitGau')
671 # print ('Leaving FitGau')
672 return DGauFitParam
672 return DGauFitParam
673 # return SPCparam
673 # return SPCparam
674 # return GauSPC
674 # return GauSPC
675
675
676 def y_model1(self,x,state):
676 def y_model1(self,x,state):
677 shift0, width0, amplitude0, power0, noise = state
677 shift0, width0, amplitude0, power0, noise = state
678 model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0)
678 model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0)
679 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
679 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
680 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
680 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
681 return model0 + model0u + model0d + noise
681 return model0 + model0u + model0d + noise
682
682
683 def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist
683 def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist
684 shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state
684 shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state
685 model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
685 model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
686 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
686 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
687 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
687 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
688
688
689 model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1)
689 model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1)
690 model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1)
690 model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1)
691 model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1)
691 model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1)
692 return model0 + model0u + model0d + model1 + model1u + model1d + noise
692 return model0 + model0u + model0d + model1 + model1u + model1d + noise
693
693
694 def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is.
694 def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is.
695
695
696 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented
696 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented
697
697
698 def misfit2(self,state,y_data,x,num_intg):
698 def misfit2(self,state,y_data,x,num_intg):
699 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.)
699 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.)
700
700
701
701
702
702
703 class PrecipitationProc(Operation):
703 class PrecipitationProc(Operation):
704
704
705 '''
705 '''
706 Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R)
706 Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R)
707
707
708 Input:
708 Input:
709 self.dataOut.data_pre : SelfSpectra
709 self.dataOut.data_pre : SelfSpectra
710
710
711 Output:
711 Output:
712
712
713 self.dataOut.data_output : Reflectivity factor, rainfall Rate
713 self.dataOut.data_output : Reflectivity factor, rainfall Rate
714
714
715
715
716 Parameters affected:
716 Parameters affected:
717 '''
717 '''
718
718
719 def __init__(self):
719 def __init__(self):
720 Operation.__init__(self)
720 Operation.__init__(self)
721 self.i=0
721 self.i=0
722
722
723 def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118,
723 def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118,
724 tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30):
724 tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30):
725
725
726 # print ('Entering PrecepitationProc ... ')
726 # print ('Entering PrecepitationProc ... ')
727
727
728 if radar == "MIRA35C" :
728 if radar == "MIRA35C" :
729
729
730 self.spc = dataOut.data_pre[0].copy()
730 self.spc = dataOut.data_pre[0].copy()
731 self.Num_Hei = self.spc.shape[2]
731 self.Num_Hei = self.spc.shape[2]
732 self.Num_Bin = self.spc.shape[1]
732 self.Num_Bin = self.spc.shape[1]
733 self.Num_Chn = self.spc.shape[0]
733 self.Num_Chn = self.spc.shape[0]
734 Ze = self.dBZeMODE2(dataOut)
734 Ze = self.dBZeMODE2(dataOut)
735
735
736 else:
736 else:
737
737
738 self.spc = dataOut.data_pre[0].copy()
738 self.spc = dataOut.data_pre[0].copy()
739
739
740 #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX
740 #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX
741 self.spc[:,:,0:7]= numpy.NaN
741 self.spc[:,:,0:7]= numpy.NaN
742
742
743 self.Num_Hei = self.spc.shape[2]
743 self.Num_Hei = self.spc.shape[2]
744 self.Num_Bin = self.spc.shape[1]
744 self.Num_Bin = self.spc.shape[1]
745 self.Num_Chn = self.spc.shape[0]
745 self.Num_Chn = self.spc.shape[0]
746
746
747 VelRange = dataOut.spc_range[2]
747 VelRange = dataOut.spc_range[2]
748
748
749 ''' Se obtiene la constante del RADAR '''
749 ''' Se obtiene la constante del RADAR '''
750
750
751 self.Pt = Pt
751 self.Pt = Pt
752 self.Gt = Gt
752 self.Gt = Gt
753 self.Gr = Gr
753 self.Gr = Gr
754 self.Lambda = Lambda
754 self.Lambda = Lambda
755 self.aL = aL
755 self.aL = aL
756 self.tauW = tauW
756 self.tauW = tauW
757 self.ThetaT = ThetaT
757 self.ThetaT = ThetaT
758 self.ThetaR = ThetaR
758 self.ThetaR = ThetaR
759 self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB
759 self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB
760 self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB
760 self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB
761 self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB
761 self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB
762
762
763 Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
763 Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
764 Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR)
764 Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR)
765 RadarConstant = 10e-26 * Numerator / Denominator #
765 RadarConstant = 10e-26 * Numerator / Denominator #
766 ExpConstant = 10**(40/10) #Constante Experimental
766 ExpConstant = 10**(40/10) #Constante Experimental
767
767
768 SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
768 SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
769 for i in range(self.Num_Chn):
769 for i in range(self.Num_Chn):
770 SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i]
770 SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i]
771 SignalPower[numpy.where(SignalPower < 0)] = 1e-20
771 SignalPower[numpy.where(SignalPower < 0)] = 1e-20
772
772
773 SPCmean = numpy.mean(SignalPower, 0)
773 SPCmean = numpy.mean(SignalPower, 0)
774 Pr = SPCmean[:,:]/dataOut.normFactor
774 Pr = SPCmean[:,:]/dataOut.normFactor
775
775
776 # Declaring auxiliary variables
776 # Declaring auxiliary variables
777 Range = dataOut.heightList*1000. #Range in m
777 Range = dataOut.heightList*1000. #Range in m
778 # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei]
778 # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei]
779 rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin))
779 rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin))
780 zMtrx = rMtrx+Altitude
780 zMtrx = rMtrx+Altitude
781 # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei]
781 # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei]
782 VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1)))
782 VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1)))
783
783
784 # height dependence to air density Foote and Du Toit (1969)
784 # height dependence to air density Foote and Du Toit (1969)
785 delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2
785 delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2
786 VMtrx = VelMtrx / delv_z #Normalized velocity
786 VMtrx = VelMtrx / delv_z #Normalized velocity
787 VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN
787 VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN
788 # Diameter is related to the fall speed of falling drops
788 # Diameter is related to the fall speed of falling drops
789 D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm]
789 D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm]
790 # Only valid for D>= 0.16 mm
790 # Only valid for D>= 0.16 mm
791 D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN
791 D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN
792
792
793 #Calculate Radar Reflectivity ETAn
793 #Calculate Radar Reflectivity ETAn
794 ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA)
794 ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA)
795 ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z
795 ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z
796 # Radar Cross Section
796 # Radar Cross Section
797 sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4
797 sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4
798 # Drop Size Distribution
798 # Drop Size Distribution
799 DSD = ETAn / sigmaD
799 DSD = ETAn / sigmaD
800 # Equivalente Reflectivy
800 # Equivalente Reflectivy
801 Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0)
801 Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0)
802 Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3]
802 Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3]
803 # RainFall Rate
803 # RainFall Rate
804 RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr
804 RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr
805
805
806 # Censoring the data
806 # Censoring the data
807 # Removing data with SNRth < 0dB se debe considerar el SNR por canal
807 # Removing data with SNRth < 0dB se debe considerar el SNR por canal
808 SNRth = 10**(SNRdBlimit/10) #-30dB
808 SNRth = 10**(SNRdBlimit/10) #-30dB
809 novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better
809 novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better
810 W = numpy.nanmean(dataOut.data_dop,0)
810 W = numpy.nanmean(dataOut.data_dop,0)
811 W[novalid] = numpy.NaN
811 W[novalid] = numpy.NaN
812 Ze_org[novalid] = numpy.NaN
812 Ze_org[novalid] = numpy.NaN
813 RR[novalid] = numpy.NaN
813 RR[novalid] = numpy.NaN
814
814
815 dataOut.data_output = RR[8]
815 dataOut.data_output = RR[8]
816 dataOut.data_param = numpy.ones([3,self.Num_Hei])
816 dataOut.data_param = numpy.ones([3,self.Num_Hei])
817 dataOut.channelList = [0,1,2]
817 dataOut.channelList = [0,1,2]
818
818
819 dataOut.data_param[0]=10*numpy.log10(Ze_org)
819 dataOut.data_param[0]=10*numpy.log10(Ze_org)
820 dataOut.data_param[1]=-W
820 dataOut.data_param[1]=-W
821 dataOut.data_param[2]=RR
821 dataOut.data_param[2]=RR
822
822
823 # print ('Leaving PrecepitationProc ... ')
823 # print ('Leaving PrecepitationProc ... ')
824 return dataOut
824 return dataOut
825
825
826 def dBZeMODE2(self, dataOut): # Processing for MIRA35C
826 def dBZeMODE2(self, dataOut): # Processing for MIRA35C
827
827
828 NPW = dataOut.NPW
828 NPW = dataOut.NPW
829 COFA = dataOut.COFA
829 COFA = dataOut.COFA
830
830
831 SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]])
831 SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]])
832 RadarConst = dataOut.RadarConst
832 RadarConst = dataOut.RadarConst
833 #frequency = 34.85*10**9
833 #frequency = 34.85*10**9
834
834
835 ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei]))
835 ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei]))
836 data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN
836 data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN
837
837
838 ETA = numpy.sum(SNR,1)
838 ETA = numpy.sum(SNR,1)
839
839
840 ETA = numpy.where(ETA != 0. , ETA, numpy.NaN)
840 ETA = numpy.where(ETA != 0. , ETA, numpy.NaN)
841
841
842 Ze = numpy.ones([self.Num_Chn, self.Num_Hei] )
842 Ze = numpy.ones([self.Num_Chn, self.Num_Hei] )
843
843
844 for r in range(self.Num_Hei):
844 for r in range(self.Num_Hei):
845
845
846 Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2)
846 Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2)
847 #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2)
847 #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2)
848
848
849 return Ze
849 return Ze
850
850
851 # def GetRadarConstant(self):
851 # def GetRadarConstant(self):
852 #
852 #
853 # """
853 # """
854 # Constants:
854 # Constants:
855 #
855 #
856 # Pt: Transmission Power dB 5kW 5000
856 # Pt: Transmission Power dB 5kW 5000
857 # Gt: Transmission Gain dB 24.7 dB 295.1209
857 # Gt: Transmission Gain dB 24.7 dB 295.1209
858 # Gr: Reception Gain dB 18.5 dB 70.7945
858 # Gr: Reception Gain dB 18.5 dB 70.7945
859 # Lambda: Wavelenght m 0.6741 m 0.6741
859 # Lambda: Wavelenght m 0.6741 m 0.6741
860 # aL: Attenuation loses dB 4dB 2.5118
860 # aL: Attenuation loses dB 4dB 2.5118
861 # tauW: Width of transmission pulse s 4us 4e-6
861 # tauW: Width of transmission pulse s 4us 4e-6
862 # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317
862 # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317
863 # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087
863 # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087
864 #
864 #
865 # """
865 # """
866 #
866 #
867 # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
867 # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
868 # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR)
868 # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR)
869 # RadarConstant = Numerator / Denominator
869 # RadarConstant = Numerator / Denominator
870 #
870 #
871 # return RadarConstant
871 # return RadarConstant
872
872
873
873
874
874
875 class FullSpectralAnalysis(Operation):
875 class FullSpectralAnalysis(Operation):
876
876
877 """
877 """
878 Function that implements Full Spectral Analysis technique.
878 Function that implements Full Spectral Analysis technique.
879
879
880 Input:
880 Input:
881 self.dataOut.data_pre : SelfSpectra and CrossSpectra data
881 self.dataOut.data_pre : SelfSpectra and CrossSpectra data
882 self.dataOut.groupList : Pairlist of channels
882 self.dataOut.groupList : Pairlist of channels
883 self.dataOut.ChanDist : Physical distance between receivers
883 self.dataOut.ChanDist : Physical distance between receivers
884
884
885
885
886 Output:
886 Output:
887
887
888 self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind
888 self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind
889
889
890
890
891 Parameters affected: Winds, height range, SNR
891 Parameters affected: Winds, height range, SNR
892
892
893 """
893 """
894 def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30,
894 def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30,
895 minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None):
895 minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None):
896
896
897 spc = dataOut.data_pre[0].copy()
897 spc = dataOut.data_pre[0].copy()
898 cspc = dataOut.data_pre[1]
898 cspc = dataOut.data_pre[1]
899 nHeights = spc.shape[2]
899 nHeights = spc.shape[2]
900
900
901 # first_height = 0.75 #km (ref: data header 20170822)
901 # first_height = 0.75 #km (ref: data header 20170822)
902 # resolution_height = 0.075 #km
902 # resolution_height = 0.075 #km
903 '''
903 '''
904 finding height range. check this when radar parameters are changed!
904 finding height range. check this when radar parameters are changed!
905 '''
905 '''
906 if maxheight is not None:
906 if maxheight is not None:
907 # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical
907 # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical
908 range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better
908 range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better
909 else:
909 else:
910 range_max = nHeights
910 range_max = nHeights
911 if minheight is not None:
911 if minheight is not None:
912 # range_min = int((minheight - first_height) / resolution_height) # theoretical
912 # range_min = int((minheight - first_height) / resolution_height) # theoretical
913 range_min = int(13.26 * minheight - 5) # empirical, works better
913 range_min = int(13.26 * minheight - 5) # empirical, works better
914 if range_min < 0:
914 if range_min < 0:
915 range_min = 0
915 range_min = 0
916 else:
916 else:
917 range_min = 0
917 range_min = 0
918
918
919 pairsList = dataOut.groupList
919 pairsList = dataOut.groupList
920 if dataOut.ChanDist is not None :
920 if dataOut.ChanDist is not None :
921 ChanDist = dataOut.ChanDist
921 ChanDist = dataOut.ChanDist
922 else:
922 else:
923 ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]])
923 ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]])
924
924
925 # 4 variables: zonal, meridional, vertical, and average SNR
925 # 4 variables: zonal, meridional, vertical, and average SNR
926 data_param = numpy.zeros([4,nHeights]) * numpy.NaN
926 data_param = numpy.zeros([4,nHeights]) * numpy.NaN
927 velocityX = numpy.zeros([nHeights]) * numpy.NaN
927 velocityX = numpy.zeros([nHeights]) * numpy.NaN
928 velocityY = numpy.zeros([nHeights]) * numpy.NaN
928 velocityY = numpy.zeros([nHeights]) * numpy.NaN
929 velocityZ = numpy.zeros([nHeights]) * numpy.NaN
929 velocityZ = numpy.zeros([nHeights]) * numpy.NaN
930
930
931 dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0))
931 dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0))
932
932
933 '''***********************************************WIND ESTIMATION**************************************'''
933 '''***********************************************WIND ESTIMATION**************************************'''
934 for Height in range(nHeights):
934 for Height in range(nHeights):
935
935
936 if Height >= range_min and Height < range_max:
936 if Height >= range_min and Height < range_max:
937 # error_code will be useful in future analysis
937 # error_code will be useful in future analysis
938 [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList,
938 [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList,
939 ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency)
939 ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency)
940
940
941 if abs(Vzon) < 100. and abs(Vmer) < 100.:
941 if abs(Vzon) < 100. and abs(Vmer) < 100.:
942 velocityX[Height] = Vzon
942 velocityX[Height] = Vzon
943 velocityY[Height] = -Vmer
943 velocityY[Height] = -Vmer
944 velocityZ[Height] = Vver
944 velocityZ[Height] = Vver
945
945
946 # Censoring data with SNR threshold
946 # Censoring data with SNR threshold
947 dbSNR [dbSNR < SNRdBlimit] = numpy.NaN
947 dbSNR [dbSNR < SNRdBlimit] = numpy.NaN
948
948
949 data_param[0] = velocityX
949 data_param[0] = velocityX
950 data_param[1] = velocityY
950 data_param[1] = velocityY
951 data_param[2] = velocityZ
951 data_param[2] = velocityZ
952 data_param[3] = dbSNR
952 data_param[3] = dbSNR
953 dataOut.data_param = data_param
953 dataOut.data_param = data_param
954 return dataOut
954 return dataOut
955
955
956 def moving_average(self,x, N=2):
956 def moving_average(self,x, N=2):
957 """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """
957 """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """
958 return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
958 return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
959
959
960 def gaus(self,xSamples,Amp,Mu,Sigma):
960 def gaus(self,xSamples,Amp,Mu,Sigma):
961 return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2)
961 return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2)
962
962
963 def Moments(self, ySamples, xSamples):
963 def Moments(self, ySamples, xSamples):
964 Power = numpy.nanmean(ySamples) # Power, 0th Moment
964 Power = numpy.nanmean(ySamples) # Power, 0th Moment
965 yNorm = ySamples / numpy.nansum(ySamples)
965 yNorm = ySamples / numpy.nansum(ySamples)
966 RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment
966 RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment
967 Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment
967 Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment
968 StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral
968 StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral
969 return numpy.array([Power,RadVel,StdDev])
969 return numpy.array([Power,RadVel,StdDev])
970
970
971 def StopWindEstimation(self, error_code):
971 def StopWindEstimation(self, error_code):
972 Vzon = numpy.NaN
972 Vzon = numpy.NaN
973 Vmer = numpy.NaN
973 Vmer = numpy.NaN
974 Vver = numpy.NaN
974 Vver = numpy.NaN
975 return Vzon, Vmer, Vver, error_code
975 return Vzon, Vmer, Vver, error_code
976
976
977 def AntiAliasing(self, interval, maxstep):
977 def AntiAliasing(self, interval, maxstep):
978 """
978 """
979 function to prevent errors from aliased values when computing phaseslope
979 function to prevent errors from aliased values when computing phaseslope
980 """
980 """
981 antialiased = numpy.zeros(len(interval))
981 antialiased = numpy.zeros(len(interval))
982 copyinterval = interval.copy()
982 copyinterval = interval.copy()
983
983
984 antialiased[0] = copyinterval[0]
984 antialiased[0] = copyinterval[0]
985
985
986 for i in range(1,len(antialiased)):
986 for i in range(1,len(antialiased)):
987 step = interval[i] - interval[i-1]
987 step = interval[i] - interval[i-1]
988 if step > maxstep:
988 if step > maxstep:
989 copyinterval -= 2*numpy.pi
989 copyinterval -= 2*numpy.pi
990 antialiased[i] = copyinterval[i]
990 antialiased[i] = copyinterval[i]
991 elif step < maxstep*(-1):
991 elif step < maxstep*(-1):
992 copyinterval += 2*numpy.pi
992 copyinterval += 2*numpy.pi
993 antialiased[i] = copyinterval[i]
993 antialiased[i] = copyinterval[i]
994 else:
994 else:
995 antialiased[i] = copyinterval[i].copy()
995 antialiased[i] = copyinterval[i].copy()
996
996
997 return antialiased
997 return antialiased
998
998
999 def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq):
999 def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq):
1000 """
1000 """
1001 Function that Calculates Zonal, Meridional and Vertical wind velocities.
1001 Function that Calculates Zonal, Meridional and Vertical wind velocities.
1002 Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019.
1002 Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019.
1003
1003
1004 Input:
1004 Input:
1005 spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively.
1005 spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively.
1006 pairsList : Pairlist of channels
1006 pairsList : Pairlist of channels
1007 ChanDist : array of xi_ij and eta_ij
1007 ChanDist : array of xi_ij and eta_ij
1008 Height : height at which data is processed
1008 Height : height at which data is processed
1009 noise : noise in [channels] format for specific height
1009 noise : noise in [channels] format for specific height
1010 Abbsisarange : range of the frequencies or velocities
1010 Abbsisarange : range of the frequencies or velocities
1011 dbSNR, SNRlimit : signal to noise ratio in db, lower limit
1011 dbSNR, SNRlimit : signal to noise ratio in db, lower limit
1012
1012
1013 Output:
1013 Output:
1014 Vzon, Vmer, Vver : wind velocities
1014 Vzon, Vmer, Vver : wind velocities
1015 error_code : int that states where code is terminated
1015 error_code : int that states where code is terminated
1016
1016
1017 0 : no error detected
1017 0 : no error detected
1018 1 : Gaussian of mean spc exceeds widthlimit
1018 1 : Gaussian of mean spc exceeds widthlimit
1019 2 : no Gaussian of mean spc found
1019 2 : no Gaussian of mean spc found
1020 3 : SNR to low or velocity to high -> prec. e.g.
1020 3 : SNR to low or velocity to high -> prec. e.g.
1021 4 : at least one Gaussian of cspc exceeds widthlimit
1021 4 : at least one Gaussian of cspc exceeds widthlimit
1022 5 : zero out of three cspc Gaussian fits converged
1022 5 : zero out of three cspc Gaussian fits converged
1023 6 : phase slope fit could not be found
1023 6 : phase slope fit could not be found
1024 7 : arrays used to fit phase have different length
1024 7 : arrays used to fit phase have different length
1025 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc)
1025 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc)
1026
1026
1027 """
1027 """
1028
1028
1029 error_code = 0
1029 error_code = 0
1030
1030
1031 nChan = spc.shape[0]
1031 nChan = spc.shape[0]
1032 nProf = spc.shape[1]
1032 nProf = spc.shape[1]
1033 nPair = cspc.shape[0]
1033 nPair = cspc.shape[0]
1034
1034
1035 SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height
1035 SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height
1036 CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values
1036 CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values
1037 phase = numpy.zeros([nPair, nProf]) # phase between channels
1037 phase = numpy.zeros([nPair, nProf]) # phase between channels
1038 PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise
1038 PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise
1039 PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise
1039 PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise
1040 xFrec = AbbsisaRange[0][:-1] # frequency range
1040 xFrec = AbbsisaRange[0][:-1] # frequency range
1041 xVel = AbbsisaRange[2][:-1] # velocity range
1041 xVel = AbbsisaRange[2][:-1] # velocity range
1042 xSamples = xFrec # the frequency range is taken
1042 xSamples = xFrec # the frequency range is taken
1043 delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x
1043 delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x
1044
1044
1045 # only consider velocities with in NegativeLimit and PositiveLimit
1045 # only consider velocities with in NegativeLimit and PositiveLimit
1046 if (NegativeLimit is None):
1046 if (NegativeLimit is None):
1047 NegativeLimit = numpy.min(xVel)
1047 NegativeLimit = numpy.min(xVel)
1048 if (PositiveLimit is None):
1048 if (PositiveLimit is None):
1049 PositiveLimit = numpy.max(xVel)
1049 PositiveLimit = numpy.max(xVel)
1050 xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit))
1050 xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit))
1051 xSamples_zoom = xSamples[xvalid]
1051 xSamples_zoom = xSamples[xvalid]
1052
1052
1053 '''Getting Eij and Nij'''
1053 '''Getting Eij and Nij'''
1054 Xi01, Xi02, Xi12 = ChanDist[:,0]
1054 Xi01, Xi02, Xi12 = ChanDist[:,0]
1055 Eta01, Eta02, Eta12 = ChanDist[:,1]
1055 Eta01, Eta02, Eta12 = ChanDist[:,1]
1056
1056
1057 # spwd limit - updated by D. ScipiΓ³n 30.03.2021
1057 # spwd limit - updated by D. ScipiΓ³n 30.03.2021
1058 widthlimit = 10
1058 widthlimit = 10
1059 '''************************* SPC is normalized ********************************'''
1059 '''************************* SPC is normalized ********************************'''
1060 spc_norm = spc.copy()
1060 spc_norm = spc.copy()
1061 # For each channel
1061 # For each channel
1062 for i in range(nChan):
1062 for i in range(nChan):
1063 spc_sub = spc_norm[i,:] - noise[i] # only the signal power
1063 spc_sub = spc_norm[i,:] - noise[i] # only the signal power
1064 SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x)
1064 SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x)
1065
1065
1066 '''********************** FITTING MEAN SPC GAUSSIAN **********************'''
1066 '''********************** FITTING MEAN SPC GAUSSIAN **********************'''
1067
1067
1068 """ the gaussian of the mean: first subtract noise, then normalize. this is legal because
1068 """ the gaussian of the mean: first subtract noise, then normalize. this is legal because
1069 you only fit the curve and don't need the absolute value of height for calculation,
1069 you only fit the curve and don't need the absolute value of height for calculation,
1070 only for estimation of width. for normalization of cross spectra, you need initial,
1070 only for estimation of width. for normalization of cross spectra, you need initial,
1071 unnormalized self-spectra With noise.
1071 unnormalized self-spectra With noise.
1072
1072
1073 Technically, you don't even need to normalize the self-spectra, as you only need the
1073 Technically, you don't even need to normalize the self-spectra, as you only need the
1074 width of the peak. However, it was left this way. Note that the normalization has a flaw:
1074 width of the peak. However, it was left this way. Note that the normalization has a flaw:
1075 due to subtraction of the noise, some values are below zero. Raw "spc" values should be
1075 due to subtraction of the noise, some values are below zero. Raw "spc" values should be
1076 >= 0, as it is the modulus squared of the signals (complex * it's conjugate)
1076 >= 0, as it is the modulus squared of the signals (complex * it's conjugate)
1077 """
1077 """
1078 # initial conditions
1078 # initial conditions
1079 popt = [1e-10,0,1e-10]
1079 popt = [1e-10,0,1e-10]
1080 # Spectra average
1080 # Spectra average
1081 SPCMean = numpy.average(SPC_Samples,0)
1081 SPCMean = numpy.average(SPC_Samples,0)
1082 # Moments in frequency
1082 # Moments in frequency
1083 SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom)
1083 SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom)
1084
1084
1085 # Gauss Fit SPC in frequency domain
1085 # Gauss Fit SPC in frequency domain
1086 if dbSNR > SNRlimit: # only if SNR > SNRth
1086 if dbSNR > SNRlimit: # only if SNR > SNRth
1087 try:
1087 try:
1088 popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments)
1088 popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments)
1089 if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION
1089 if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION
1090 return self.StopWindEstimation(error_code = 1)
1090 return self.StopWindEstimation(error_code = 1)
1091 FitGauss = self.gaus(xSamples_zoom,*popt)
1091 FitGauss = self.gaus(xSamples_zoom,*popt)
1092 except :#RuntimeError:
1092 except :#RuntimeError:
1093 return self.StopWindEstimation(error_code = 2)
1093 return self.StopWindEstimation(error_code = 2)
1094 else:
1094 else:
1095 return self.StopWindEstimation(error_code = 3)
1095 return self.StopWindEstimation(error_code = 3)
1096
1096
1097 '''***************************** CSPC Normalization *************************
1097 '''***************************** CSPC Normalization *************************
1098 The Spc spectra are used to normalize the crossspectra. Peaks from precipitation
1098 The Spc spectra are used to normalize the crossspectra. Peaks from precipitation
1099 influence the norm which is not desired. First, a range is identified where the
1099 influence the norm which is not desired. First, a range is identified where the
1100 wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area
1100 wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area
1101 around it gets cut off and values replaced by mean determined by the boundary
1101 around it gets cut off and values replaced by mean determined by the boundary
1102 data -> sum_noise (spc is not normalized here, thats why the noise is important)
1102 data -> sum_noise (spc is not normalized here, thats why the noise is important)
1103
1103
1104 The sums are then added and multiplied by range/datapoints, because you need
1104 The sums are then added and multiplied by range/datapoints, because you need
1105 an integral and not a sum for normalization.
1105 an integral and not a sum for normalization.
1106
1106
1107 A norm is found according to Briggs 92.
1107 A norm is found according to Briggs 92.
1108 '''
1108 '''
1109 # for each pair
1109 # for each pair
1110 for i in range(nPair):
1110 for i in range(nPair):
1111 cspc_norm = cspc[i,:].copy()
1111 cspc_norm = cspc[i,:].copy()
1112 chan_index0 = pairsList[i][0]
1112 chan_index0 = pairsList[i][0]
1113 chan_index1 = pairsList[i][1]
1113 chan_index1 = pairsList[i][1]
1114 CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x)
1114 CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x)
1115 phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real)
1115 phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real)
1116
1116
1117 CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom),
1117 CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom),
1118 self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom),
1118 self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom),
1119 self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)])
1119 self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)])
1120
1120
1121 popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10]
1121 popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10]
1122 FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples))
1122 FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples))
1123
1123
1124 '''*******************************FIT GAUSS CSPC************************************'''
1124 '''*******************************FIT GAUSS CSPC************************************'''
1125 try:
1125 try:
1126 popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0])
1126 popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0])
1127 if popt01[2] > widthlimit: # CONDITION
1127 if popt01[2] > widthlimit: # CONDITION
1128 return self.StopWindEstimation(error_code = 4)
1128 return self.StopWindEstimation(error_code = 4)
1129 popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1])
1129 popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1])
1130 if popt02[2] > widthlimit: # CONDITION
1130 if popt02[2] > widthlimit: # CONDITION
1131 return self.StopWindEstimation(error_code = 4)
1131 return self.StopWindEstimation(error_code = 4)
1132 popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2])
1132 popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2])
1133 if popt12[2] > widthlimit: # CONDITION
1133 if popt12[2] > widthlimit: # CONDITION
1134 return self.StopWindEstimation(error_code = 4)
1134 return self.StopWindEstimation(error_code = 4)
1135
1135
1136 FitGauss01 = self.gaus(xSamples_zoom, *popt01)
1136 FitGauss01 = self.gaus(xSamples_zoom, *popt01)
1137 FitGauss02 = self.gaus(xSamples_zoom, *popt02)
1137 FitGauss02 = self.gaus(xSamples_zoom, *popt02)
1138 FitGauss12 = self.gaus(xSamples_zoom, *popt12)
1138 FitGauss12 = self.gaus(xSamples_zoom, *popt12)
1139 except:
1139 except:
1140 return self.StopWindEstimation(error_code = 5)
1140 return self.StopWindEstimation(error_code = 5)
1141
1141
1142
1142
1143 '''************* Getting Fij ***************'''
1143 '''************* Getting Fij ***************'''
1144 # x-axis point of the gaussian where the center is located from GaussFit of spectra
1144 # x-axis point of the gaussian where the center is located from GaussFit of spectra
1145 GaussCenter = popt[1]
1145 GaussCenter = popt[1]
1146 ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()]
1146 ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()]
1147 PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0]
1147 PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0]
1148
1148
1149 # Point where e^-1 is located in the gaussian
1149 # Point where e^-1 is located in the gaussian
1150 PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1)
1150 PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1)
1151 FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss"
1151 FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss"
1152 PointFij = numpy.where(FitGauss==FijClosest)[0][0]
1152 PointFij = numpy.where(FitGauss==FijClosest)[0][0]
1153 Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter])
1153 Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter])
1154
1154
1155 '''********** Taking frequency ranges from mean SPCs **********'''
1155 '''********** Taking frequency ranges from mean SPCs **********'''
1156 GauWidth = popt[2] * 3/2 # Bandwidth of Gau01
1156 GauWidth = popt[2] * 3/2 # Bandwidth of Gau01
1157 Range = numpy.empty(2)
1157 Range = numpy.empty(2)
1158 Range[0] = GaussCenter - GauWidth
1158 Range[0] = GaussCenter - GauWidth
1159 Range[1] = GaussCenter + GauWidth
1159 Range[1] = GaussCenter + GauWidth
1160 # Point in x-axis where the bandwidth is located (min:max)
1160 # Point in x-axis where the bandwidth is located (min:max)
1161 ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()]
1161 ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()]
1162 ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()]
1162 ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()]
1163 PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0]
1163 PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0]
1164 PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0]
1164 PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0]
1165 Range = numpy.array([ PointRangeMin, PointRangeMax ])
1165 Range = numpy.array([ PointRangeMin, PointRangeMax ])
1166 FrecRange = xSamples_zoom[ Range[0] : Range[1] ]
1166 FrecRange = xSamples_zoom[ Range[0] : Range[1] ]
1167
1167
1168 '''************************** Getting Phase Slope ***************************'''
1168 '''************************** Getting Phase Slope ***************************'''
1169 for i in range(nPair):
1169 for i in range(nPair):
1170 if len(FrecRange) > 5:
1170 if len(FrecRange) > 5:
1171 PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy()
1171 PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy()
1172 mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange)
1172 mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange)
1173 if len(FrecRange) == len(PhaseRange):
1173 if len(FrecRange) == len(PhaseRange):
1174 try:
1174 try:
1175 slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5))
1175 slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5))
1176 PhaseSlope[i] = slope
1176 PhaseSlope[i] = slope
1177 PhaseInter[i] = intercept
1177 PhaseInter[i] = intercept
1178 except:
1178 except:
1179 return self.StopWindEstimation(error_code = 6)
1179 return self.StopWindEstimation(error_code = 6)
1180 else:
1180 else:
1181 return self.StopWindEstimation(error_code = 7)
1181 return self.StopWindEstimation(error_code = 7)
1182 else:
1182 else:
1183 return self.StopWindEstimation(error_code = 8)
1183 return self.StopWindEstimation(error_code = 8)
1184
1184
1185 '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***'''
1185 '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***'''
1186
1186
1187 '''Getting constant C'''
1187 '''Getting constant C'''
1188 cC=(Fij*numpy.pi)**2
1188 cC=(Fij*numpy.pi)**2
1189
1189
1190 '''****** Getting constants F and G ******'''
1190 '''****** Getting constants F and G ******'''
1191 MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]])
1191 MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]])
1192 # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]])
1192 # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]])
1193 # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi)
1193 # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi)
1194 MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi)
1194 MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi)
1195 MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi)
1195 MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi)
1196 # MijResults = numpy.array([MijResult0, MijResult1, MijResult2])
1196 # MijResults = numpy.array([MijResult0, MijResult1, MijResult2])
1197 MijResults = numpy.array([MijResult1, MijResult2])
1197 MijResults = numpy.array([MijResult1, MijResult2])
1198 (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
1198 (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
1199
1199
1200 '''****** Getting constants A, B and H ******'''
1200 '''****** Getting constants A, B and H ******'''
1201 W01 = numpy.nanmax( FitGauss01 )
1201 W01 = numpy.nanmax( FitGauss01 )
1202 W02 = numpy.nanmax( FitGauss02 )
1202 W02 = numpy.nanmax( FitGauss02 )
1203 W12 = numpy.nanmax( FitGauss12 )
1203 W12 = numpy.nanmax( FitGauss12 )
1204
1204
1205 WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC))
1205 WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC))
1206 WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC))
1206 WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC))
1207 WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC))
1207 WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC))
1208 WijResults = numpy.array([WijResult01, WijResult02, WijResult12])
1208 WijResults = numpy.array([WijResult01, WijResult02, WijResult12])
1209
1209
1210 WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ])
1210 WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ])
1211 (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
1211 (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
1212
1212
1213 VxVy = numpy.array([[cA,cH],[cH,cB]])
1213 VxVy = numpy.array([[cA,cH],[cH,cB]])
1214 VxVyResults = numpy.array([-cF,-cG])
1214 VxVyResults = numpy.array([-cF,-cG])
1215 (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults)
1215 (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults)
1216 Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq)
1216 Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq)
1217 error_code = 0
1217 error_code = 0
1218
1218
1219 return Vzon, Vmer, Vver, error_code
1219 return Vzon, Vmer, Vver, error_code
1220
1220
1221 class SpectralMoments(Operation):
1221 class SpectralMoments(Operation):
1222
1222
1223 '''
1223 '''
1224 Function SpectralMoments()
1224 Function SpectralMoments()
1225
1225
1226 Calculates moments (power, mean, standard deviation) and SNR of the signal
1226 Calculates moments (power, mean, standard deviation) and SNR of the signal
1227
1227
1228 Type of dataIn: Spectra
1228 Type of dataIn: Spectra
1229
1229
1230 Configuration Parameters:
1230 Configuration Parameters:
1231
1231
1232 dirCosx : Cosine director in X axis
1232 dirCosx : Cosine director in X axis
1233 dirCosy : Cosine director in Y axis
1233 dirCosy : Cosine director in Y axis
1234
1234
1235 elevation :
1235 elevation :
1236 azimuth :
1236 azimuth :
1237
1237
1238 Input:
1238 Input:
1239 channelList : simple channel list to select e.g. [2,3,7]
1239 channelList : simple channel list to select e.g. [2,3,7]
1240 self.dataOut.data_pre : Spectral data
1240 self.dataOut.data_pre : Spectral data
1241 self.dataOut.abscissaList : List of frequencies
1241 self.dataOut.abscissaList : List of frequencies
1242 self.dataOut.noise : Noise level per channel
1242 self.dataOut.noise : Noise level per channel
1243
1243
1244 Affected:
1244 Affected:
1245 self.dataOut.moments : Parameters per channel
1245 self.dataOut.moments : Parameters per channel
1246 self.dataOut.data_snr : SNR per channel
1246 self.dataOut.data_snr : SNR per channel
1247
1247
1248 '''
1248 '''
1249
1249
1250 def run(self, dataOut):
1250 def run(self, dataOut):
1251
1251
1252 data = dataOut.data_pre[0]
1252 data = dataOut.data_pre[0]
1253 absc = dataOut.abscissaList[:-1]
1253 absc = dataOut.abscissaList[:-1]
1254 noise = dataOut.noise
1254 noise = dataOut.noise
1255 nChannel = data.shape[0]
1255 nChannel = data.shape[0]
1256 data_param = numpy.zeros((nChannel, 4, data.shape[2]))
1256 data_param = numpy.zeros((nChannel, 4, data.shape[2]))
1257
1257
1258 for ind in range(nChannel):
1258 for ind in range(nChannel):
1259 data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] )
1259 data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] )
1260
1260
1261 dataOut.moments = data_param[:,1:,:]
1261 dataOut.moments = data_param[:,1:,:]
1262 dataOut.data_snr = data_param[:,0]
1262 dataOut.data_snr = data_param[:,0]
1263 dataOut.data_pow = data_param[:,1]
1263 dataOut.data_pow = data_param[:,1]
1264 dataOut.data_dop = data_param[:,2]
1264 dataOut.data_dop = data_param[:,2]
1265 dataOut.data_width = data_param[:,3]
1265 dataOut.data_width = data_param[:,3]
1266 return dataOut
1266 return dataOut
1267
1267
1268 def __calculateMoments(self, oldspec, oldfreq, n0,
1268 def __calculateMoments(self, oldspec, oldfreq, n0,
1269 nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
1269 nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
1270
1270
1271 if (nicoh is None): nicoh = 1
1271 if (nicoh is None): nicoh = 1
1272 if (graph is None): graph = 0
1272 if (graph is None): graph = 0
1273 if (smooth is None): smooth = 0
1273 if (smooth is None): smooth = 0
1274 elif (self.smooth < 3): smooth = 0
1274 elif (self.smooth < 3): smooth = 0
1275
1275
1276 if (type1 is None): type1 = 0
1276 if (type1 is None): type1 = 0
1277 if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1
1277 if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1
1278 if (snrth is None): snrth = -3
1278 if (snrth is None): snrth = -3
1279 if (dc is None): dc = 0
1279 if (dc is None): dc = 0
1280 if (aliasing is None): aliasing = 0
1280 if (aliasing is None): aliasing = 0
1281 if (oldfd is None): oldfd = 0
1281 if (oldfd is None): oldfd = 0
1282 if (wwauto is None): wwauto = 0
1282 if (wwauto is None): wwauto = 0
1283
1283
1284 if (n0 < 1.e-20): n0 = 1.e-20
1284 if (n0 < 1.e-20): n0 = 1.e-20
1285
1285
1286 freq = oldfreq
1286 freq = oldfreq
1287 vec_power = numpy.zeros(oldspec.shape[1])
1287 vec_power = numpy.zeros(oldspec.shape[1])
1288 vec_fd = numpy.zeros(oldspec.shape[1])
1288 vec_fd = numpy.zeros(oldspec.shape[1])
1289 vec_w = numpy.zeros(oldspec.shape[1])
1289 vec_w = numpy.zeros(oldspec.shape[1])
1290 vec_snr = numpy.zeros(oldspec.shape[1])
1290 vec_snr = numpy.zeros(oldspec.shape[1])
1291
1291
1292 # oldspec = numpy.ma.masked_invalid(oldspec)
1292 # oldspec = numpy.ma.masked_invalid(oldspec)
1293 for ind in range(oldspec.shape[1]):
1293 for ind in range(oldspec.shape[1]):
1294
1294
1295 spec = oldspec[:,ind]
1295 spec = oldspec[:,ind]
1296 aux = spec*fwindow
1296 aux = spec*fwindow
1297 max_spec = aux.max()
1297 max_spec = aux.max()
1298 m = aux.tolist().index(max_spec)
1298 m = aux.tolist().index(max_spec)
1299
1299
1300 # Smooth
1300 # Smooth
1301 if (smooth == 0):
1301 if (smooth == 0):
1302 spec2 = spec
1302 spec2 = spec
1303 else:
1303 else:
1304 spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
1304 spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
1305
1305
1306 # Moments Estimation
1306 # Moments Estimation
1307 bb = spec2[numpy.arange(m,spec2.size)]
1307 bb = spec2[numpy.arange(m,spec2.size)]
1308 bb = (bb<n0).nonzero()
1308 bb = (bb<n0).nonzero()
1309 bb = bb[0]
1309 bb = bb[0]
1310
1310
1311 ss = spec2[numpy.arange(0,m + 1)]
1311 ss = spec2[numpy.arange(0,m + 1)]
1312 ss = (ss<n0).nonzero()
1312 ss = (ss<n0).nonzero()
1313 ss = ss[0]
1313 ss = ss[0]
1314
1314
1315 if (bb.size == 0):
1315 if (bb.size == 0):
1316 bb0 = spec.size - 1 - m
1316 bb0 = spec.size - 1 - m
1317 else:
1317 else:
1318 bb0 = bb[0] - 1
1318 bb0 = bb[0] - 1
1319 if (bb0 < 0):
1319 if (bb0 < 0):
1320 bb0 = 0
1320 bb0 = 0
1321
1321
1322 if (ss.size == 0):
1322 if (ss.size == 0):
1323 ss1 = 1
1323 ss1 = 1
1324 else:
1324 else:
1325 ss1 = max(ss) + 1
1325 ss1 = max(ss) + 1
1326
1326
1327 if (ss1 > m):
1327 if (ss1 > m):
1328 ss1 = m
1328 ss1 = m
1329
1329
1330 #valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1
1330 #valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1
1331 valid = numpy.arange(1,oldspec.shape[0])# valid perfil completo igual pulsepair
1331 valid = numpy.arange(1,oldspec.shape[0])# valid perfil completo igual pulsepair
1332 signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1332 signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1333 total_power = (spec2[valid] * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1333 total_power = (spec2[valid] * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1334 power = ((spec2[valid] - n0) * fwindow[valid]).sum()
1334 power = ((spec2[valid] - n0) * fwindow[valid]).sum()
1335 fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power
1335 fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power
1336 w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power)
1336 w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power)
1337 snr = (spec2.mean()-n0)/n0
1337 snr = (spec2.mean()-n0)/n0
1338 if (snr < 1.e-20) :
1338 if (snr < 1.e-20) :
1339 snr = 1.e-20
1339 snr = 1.e-20
1340
1340
1341 # vec_power[ind] = power #D. ScipiΓ³n replaced with the line below
1341 # vec_power[ind] = power #D. ScipiΓ³n replaced with the line below
1342 vec_power[ind] = total_power
1342 vec_power[ind] = total_power
1343 vec_fd[ind] = fd
1343 vec_fd[ind] = fd
1344 vec_w[ind] = w
1344 vec_w[ind] = w
1345 vec_snr[ind] = snr
1345 vec_snr[ind] = snr
1346
1346
1347 return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
1347 return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
1348
1348
1349 #------------------ Get SA Parameters --------------------------
1349 #------------------ Get SA Parameters --------------------------
1350
1350
1351 def GetSAParameters(self):
1351 def GetSAParameters(self):
1352 #SA en frecuencia
1352 #SA en frecuencia
1353 pairslist = self.dataOut.groupList
1353 pairslist = self.dataOut.groupList
1354 num_pairs = len(pairslist)
1354 num_pairs = len(pairslist)
1355
1355
1356 vel = self.dataOut.abscissaList
1356 vel = self.dataOut.abscissaList
1357 spectra = self.dataOut.data_pre
1357 spectra = self.dataOut.data_pre
1358 cspectra = self.dataIn.data_cspc
1358 cspectra = self.dataIn.data_cspc
1359 delta_v = vel[1] - vel[0]
1359 delta_v = vel[1] - vel[0]
1360
1360
1361 #Calculating the power spectrum
1361 #Calculating the power spectrum
1362 spc_pow = numpy.sum(spectra, 3)*delta_v
1362 spc_pow = numpy.sum(spectra, 3)*delta_v
1363 #Normalizing Spectra
1363 #Normalizing Spectra
1364 norm_spectra = spectra/spc_pow
1364 norm_spectra = spectra/spc_pow
1365 #Calculating the norm_spectra at peak
1365 #Calculating the norm_spectra at peak
1366 max_spectra = numpy.max(norm_spectra, 3)
1366 max_spectra = numpy.max(norm_spectra, 3)
1367
1367
1368 #Normalizing Cross Spectra
1368 #Normalizing Cross Spectra
1369 norm_cspectra = numpy.zeros(cspectra.shape)
1369 norm_cspectra = numpy.zeros(cspectra.shape)
1370
1370
1371 for i in range(num_chan):
1371 for i in range(num_chan):
1372 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
1372 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
1373
1373
1374 max_cspectra = numpy.max(norm_cspectra,2)
1374 max_cspectra = numpy.max(norm_cspectra,2)
1375 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
1375 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
1376
1376
1377 for i in range(num_pairs):
1377 for i in range(num_pairs):
1378 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
1378 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
1379 #------------------- Get Lags ----------------------------------
1379 #------------------- Get Lags ----------------------------------
1380
1380
1381 class SALags(Operation):
1381 class SALags(Operation):
1382 '''
1382 '''
1383 Function GetMoments()
1383 Function GetMoments()
1384
1384
1385 Input:
1385 Input:
1386 self.dataOut.data_pre
1386 self.dataOut.data_pre
1387 self.dataOut.abscissaList
1387 self.dataOut.abscissaList
1388 self.dataOut.noise
1388 self.dataOut.noise
1389 self.dataOut.normFactor
1389 self.dataOut.normFactor
1390 self.dataOut.data_snr
1390 self.dataOut.data_snr
1391 self.dataOut.groupList
1391 self.dataOut.groupList
1392 self.dataOut.nChannels
1392 self.dataOut.nChannels
1393
1393
1394 Affected:
1394 Affected:
1395 self.dataOut.data_param
1395 self.dataOut.data_param
1396
1396
1397 '''
1397 '''
1398 def run(self, dataOut):
1398 def run(self, dataOut):
1399 data_acf = dataOut.data_pre[0]
1399 data_acf = dataOut.data_pre[0]
1400 data_ccf = dataOut.data_pre[1]
1400 data_ccf = dataOut.data_pre[1]
1401 normFactor_acf = dataOut.normFactor[0]
1401 normFactor_acf = dataOut.normFactor[0]
1402 normFactor_ccf = dataOut.normFactor[1]
1402 normFactor_ccf = dataOut.normFactor[1]
1403 pairs_acf = dataOut.groupList[0]
1403 pairs_acf = dataOut.groupList[0]
1404 pairs_ccf = dataOut.groupList[1]
1404 pairs_ccf = dataOut.groupList[1]
1405
1405
1406 nHeights = dataOut.nHeights
1406 nHeights = dataOut.nHeights
1407 absc = dataOut.abscissaList
1407 absc = dataOut.abscissaList
1408 noise = dataOut.noise
1408 noise = dataOut.noise
1409 SNR = dataOut.data_snr
1409 SNR = dataOut.data_snr
1410 nChannels = dataOut.nChannels
1410 nChannels = dataOut.nChannels
1411 # pairsList = dataOut.groupList
1411 # pairsList = dataOut.groupList
1412 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels)
1412 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels)
1413
1413
1414 for l in range(len(pairs_acf)):
1414 for l in range(len(pairs_acf)):
1415 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
1415 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
1416
1416
1417 for l in range(len(pairs_ccf)):
1417 for l in range(len(pairs_ccf)):
1418 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
1418 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
1419
1419
1420 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
1420 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
1421 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
1421 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
1422 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
1422 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
1423 return
1423 return
1424
1424
1425 # def __getPairsAutoCorr(self, pairsList, nChannels):
1425 # def __getPairsAutoCorr(self, pairsList, nChannels):
1426 #
1426 #
1427 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1427 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1428 #
1428 #
1429 # for l in range(len(pairsList)):
1429 # for l in range(len(pairsList)):
1430 # firstChannel = pairsList[l][0]
1430 # firstChannel = pairsList[l][0]
1431 # secondChannel = pairsList[l][1]
1431 # secondChannel = pairsList[l][1]
1432 #
1432 #
1433 # #Obteniendo pares de Autocorrelacion
1433 # #Obteniendo pares de Autocorrelacion
1434 # if firstChannel == secondChannel:
1434 # if firstChannel == secondChannel:
1435 # pairsAutoCorr[firstChannel] = int(l)
1435 # pairsAutoCorr[firstChannel] = int(l)
1436 #
1436 #
1437 # pairsAutoCorr = pairsAutoCorr.astype(int)
1437 # pairsAutoCorr = pairsAutoCorr.astype(int)
1438 #
1438 #
1439 # pairsCrossCorr = range(len(pairsList))
1439 # pairsCrossCorr = range(len(pairsList))
1440 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1440 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1441 #
1441 #
1442 # return pairsAutoCorr, pairsCrossCorr
1442 # return pairsAutoCorr, pairsCrossCorr
1443
1443
1444 def __calculateTaus(self, data_acf, data_ccf, lagRange):
1444 def __calculateTaus(self, data_acf, data_ccf, lagRange):
1445
1445
1446 lag0 = data_acf.shape[1]/2
1446 lag0 = data_acf.shape[1]/2
1447 #Funcion de Autocorrelacion
1447 #Funcion de Autocorrelacion
1448 mean_acf = stats.nanmean(data_acf, axis = 0)
1448 mean_acf = stats.nanmean(data_acf, axis = 0)
1449
1449
1450 #Obtencion Indice de TauCross
1450 #Obtencion Indice de TauCross
1451 ind_ccf = data_ccf.argmax(axis = 1)
1451 ind_ccf = data_ccf.argmax(axis = 1)
1452 #Obtencion Indice de TauAuto
1452 #Obtencion Indice de TauAuto
1453 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
1453 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
1454 ccf_lag0 = data_ccf[:,lag0,:]
1454 ccf_lag0 = data_ccf[:,lag0,:]
1455
1455
1456 for i in range(ccf_lag0.shape[0]):
1456 for i in range(ccf_lag0.shape[0]):
1457 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
1457 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
1458
1458
1459 #Obtencion de TauCross y TauAuto
1459 #Obtencion de TauCross y TauAuto
1460 tau_ccf = lagRange[ind_ccf]
1460 tau_ccf = lagRange[ind_ccf]
1461 tau_acf = lagRange[ind_acf]
1461 tau_acf = lagRange[ind_acf]
1462
1462
1463 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
1463 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
1464
1464
1465 tau_ccf[Nan1,Nan2] = numpy.nan
1465 tau_ccf[Nan1,Nan2] = numpy.nan
1466 tau_acf[Nan1,Nan2] = numpy.nan
1466 tau_acf[Nan1,Nan2] = numpy.nan
1467 tau = numpy.vstack((tau_ccf,tau_acf))
1467 tau = numpy.vstack((tau_ccf,tau_acf))
1468
1468
1469 return tau
1469 return tau
1470
1470
1471 def __calculateLag1Phase(self, data, lagTRange):
1471 def __calculateLag1Phase(self, data, lagTRange):
1472 data1 = stats.nanmean(data, axis = 0)
1472 data1 = stats.nanmean(data, axis = 0)
1473 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
1473 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
1474
1474
1475 phase = numpy.angle(data1[lag1,:])
1475 phase = numpy.angle(data1[lag1,:])
1476
1476
1477 return phase
1477 return phase
1478
1478
1479 class SpectralFitting(Operation):
1479 class SpectralFitting(Operation):
1480 '''
1480 '''
1481 Function GetMoments()
1481 Function GetMoments()
1482
1482
1483 Input:
1483 Input:
1484 Output:
1484 Output:
1485 Variables modified:
1485 Variables modified:
1486 '''
1486 '''
1487
1487
1488 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
1488 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
1489
1489
1490
1490
1491 if path != None:
1491 if path != None:
1492 sys.path.append(path)
1492 sys.path.append(path)
1493 self.dataOut.library = importlib.import_module(file)
1493 self.dataOut.library = importlib.import_module(file)
1494
1494
1495 #To be inserted as a parameter
1495 #To be inserted as a parameter
1496 groupArray = numpy.array(groupList)
1496 groupArray = numpy.array(groupList)
1497 # groupArray = numpy.array([[0,1],[2,3]])
1497 # groupArray = numpy.array([[0,1],[2,3]])
1498 self.dataOut.groupList = groupArray
1498 self.dataOut.groupList = groupArray
1499
1499
1500 nGroups = groupArray.shape[0]
1500 nGroups = groupArray.shape[0]
1501 nChannels = self.dataIn.nChannels
1501 nChannels = self.dataIn.nChannels
1502 nHeights=self.dataIn.heightList.size
1502 nHeights=self.dataIn.heightList.size
1503
1503
1504 #Parameters Array
1504 #Parameters Array
1505 self.dataOut.data_param = None
1505 self.dataOut.data_param = None
1506
1506
1507 #Set constants
1507 #Set constants
1508 constants = self.dataOut.library.setConstants(self.dataIn)
1508 constants = self.dataOut.library.setConstants(self.dataIn)
1509 self.dataOut.constants = constants
1509 self.dataOut.constants = constants
1510 M = self.dataIn.normFactor
1510 M = self.dataIn.normFactor
1511 N = self.dataIn.nFFTPoints
1511 N = self.dataIn.nFFTPoints
1512 ippSeconds = self.dataIn.ippSeconds
1512 ippSeconds = self.dataIn.ippSeconds
1513 K = self.dataIn.nIncohInt
1513 K = self.dataIn.nIncohInt
1514 pairsArray = numpy.array(self.dataIn.pairsList)
1514 pairsArray = numpy.array(self.dataIn.pairsList)
1515
1515
1516 #List of possible combinations
1516 #List of possible combinations
1517 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
1517 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
1518 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
1518 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
1519
1519
1520 if getSNR:
1520 if getSNR:
1521 listChannels = groupArray.reshape((groupArray.size))
1521 listChannels = groupArray.reshape((groupArray.size))
1522 listChannels.sort()
1522 listChannels.sort()
1523 noise = self.dataIn.getNoise()
1523 noise = self.dataIn.getNoise()
1524 self.dataOut.data_snr = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
1524 self.dataOut.data_snr = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
1525
1525
1526 for i in range(nGroups):
1526 for i in range(nGroups):
1527 coord = groupArray[i,:]
1527 coord = groupArray[i,:]
1528
1528
1529 #Input data array
1529 #Input data array
1530 data = self.dataIn.data_spc[coord,:,:]/(M*N)
1530 data = self.dataIn.data_spc[coord,:,:]/(M*N)
1531 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
1531 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
1532
1532
1533 #Cross Spectra data array for Covariance Matrixes
1533 #Cross Spectra data array for Covariance Matrixes
1534 ind = 0
1534 ind = 0
1535 for pairs in listComb:
1535 for pairs in listComb:
1536 pairsSel = numpy.array([coord[x],coord[y]])
1536 pairsSel = numpy.array([coord[x],coord[y]])
1537 indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0])
1537 indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0])
1538 ind += 1
1538 ind += 1
1539 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
1539 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
1540 dataCross = dataCross**2/K
1540 dataCross = dataCross**2/K
1541
1541
1542 for h in range(nHeights):
1542 for h in range(nHeights):
1543
1543
1544 #Input
1544 #Input
1545 d = data[:,h]
1545 d = data[:,h]
1546
1546
1547 #Covariance Matrix
1547 #Covariance Matrix
1548 D = numpy.diag(d**2/K)
1548 D = numpy.diag(d**2/K)
1549 ind = 0
1549 ind = 0
1550 for pairs in listComb:
1550 for pairs in listComb:
1551 #Coordinates in Covariance Matrix
1551 #Coordinates in Covariance Matrix
1552 x = pairs[0]
1552 x = pairs[0]
1553 y = pairs[1]
1553 y = pairs[1]
1554 #Channel Index
1554 #Channel Index
1555 S12 = dataCross[ind,:,h]
1555 S12 = dataCross[ind,:,h]
1556 D12 = numpy.diag(S12)
1556 D12 = numpy.diag(S12)
1557 #Completing Covariance Matrix with Cross Spectras
1557 #Completing Covariance Matrix with Cross Spectras
1558 D[x*N:(x+1)*N,y*N:(y+1)*N] = D12
1558 D[x*N:(x+1)*N,y*N:(y+1)*N] = D12
1559 D[y*N:(y+1)*N,x*N:(x+1)*N] = D12
1559 D[y*N:(y+1)*N,x*N:(x+1)*N] = D12
1560 ind += 1
1560 ind += 1
1561 Dinv=numpy.linalg.inv(D)
1561 Dinv=numpy.linalg.inv(D)
1562 L=numpy.linalg.cholesky(Dinv)
1562 L=numpy.linalg.cholesky(Dinv)
1563 LT=L.T
1563 LT=L.T
1564
1564
1565 dp = numpy.dot(LT,d)
1565 dp = numpy.dot(LT,d)
1566
1566
1567 #Initial values
1567 #Initial values
1568 data_spc = self.dataIn.data_spc[coord,:,h]
1568 data_spc = self.dataIn.data_spc[coord,:,h]
1569
1569
1570 if (h>0)and(error1[3]<5):
1570 if (h>0)and(error1[3]<5):
1571 p0 = self.dataOut.data_param[i,:,h-1]
1571 p0 = self.dataOut.data_param[i,:,h-1]
1572 else:
1572 else:
1573 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
1573 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
1574
1574
1575 try:
1575 try:
1576 #Least Squares
1576 #Least Squares
1577 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
1577 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
1578 # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants))
1578 # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants))
1579 #Chi square error
1579 #Chi square error
1580 error0 = numpy.sum(infodict['fvec']**2)/(2*N)
1580 error0 = numpy.sum(infodict['fvec']**2)/(2*N)
1581 #Error with Jacobian
1581 #Error with Jacobian
1582 error1 = self.dataOut.library.errorFunction(minp,constants,LT)
1582 error1 = self.dataOut.library.errorFunction(minp,constants,LT)
1583 except:
1583 except:
1584 minp = p0*numpy.nan
1584 minp = p0*numpy.nan
1585 error0 = numpy.nan
1585 error0 = numpy.nan
1586 error1 = p0*numpy.nan
1586 error1 = p0*numpy.nan
1587
1587
1588 #Save
1588 #Save
1589 if self.dataOut.data_param is None:
1589 if self.dataOut.data_param is None:
1590 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
1590 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
1591 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
1591 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
1592
1592
1593 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
1593 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
1594 self.dataOut.data_param[i,:,h] = minp
1594 self.dataOut.data_param[i,:,h] = minp
1595 return
1595 return
1596
1596
1597 def __residFunction(self, p, dp, LT, constants):
1597 def __residFunction(self, p, dp, LT, constants):
1598
1598
1599 fm = self.dataOut.library.modelFunction(p, constants)
1599 fm = self.dataOut.library.modelFunction(p, constants)
1600 fmp=numpy.dot(LT,fm)
1600 fmp=numpy.dot(LT,fm)
1601
1601
1602 return dp-fmp
1602 return dp-fmp
1603
1603
1604 def __getSNR(self, z, noise):
1604 def __getSNR(self, z, noise):
1605
1605
1606 avg = numpy.average(z, axis=1)
1606 avg = numpy.average(z, axis=1)
1607 SNR = (avg.T-noise)/noise
1607 SNR = (avg.T-noise)/noise
1608 SNR = SNR.T
1608 SNR = SNR.T
1609 return SNR
1609 return SNR
1610
1610
1611 def __chisq(p,chindex,hindex):
1611 def __chisq(p,chindex,hindex):
1612 #similar to Resid but calculates CHI**2
1612 #similar to Resid but calculates CHI**2
1613 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
1613 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
1614 dp=numpy.dot(LT,d)
1614 dp=numpy.dot(LT,d)
1615 fmp=numpy.dot(LT,fm)
1615 fmp=numpy.dot(LT,fm)
1616 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
1616 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
1617 return chisq
1617 return chisq
1618
1618
1619 class WindProfiler(Operation):
1619 class WindProfiler(Operation):
1620
1620
1621 __isConfig = False
1621 __isConfig = False
1622
1622
1623 __initime = None
1623 __initime = None
1624 __lastdatatime = None
1624 __lastdatatime = None
1625 __integrationtime = None
1625 __integrationtime = None
1626
1626
1627 __buffer = None
1627 __buffer = None
1628
1628
1629 __dataReady = False
1629 __dataReady = False
1630
1630
1631 __firstdata = None
1631 __firstdata = None
1632
1632
1633 n = None
1633 n = None
1634
1634
1635 def __init__(self):
1635 def __init__(self):
1636 Operation.__init__(self)
1636 Operation.__init__(self)
1637
1637
1638 def __calculateCosDir(self, elev, azim):
1638 def __calculateCosDir(self, elev, azim):
1639 zen = (90 - elev)*numpy.pi/180
1639 zen = (90 - elev)*numpy.pi/180
1640 azim = azim*numpy.pi/180
1640 azim = azim*numpy.pi/180
1641 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
1641 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
1642 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
1642 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
1643
1643
1644 signX = numpy.sign(numpy.cos(azim))
1644 signX = numpy.sign(numpy.cos(azim))
1645 signY = numpy.sign(numpy.sin(azim))
1645 signY = numpy.sign(numpy.sin(azim))
1646
1646
1647 cosDirX = numpy.copysign(cosDirX, signX)
1647 cosDirX = numpy.copysign(cosDirX, signX)
1648 cosDirY = numpy.copysign(cosDirY, signY)
1648 cosDirY = numpy.copysign(cosDirY, signY)
1649 return cosDirX, cosDirY
1649 return cosDirX, cosDirY
1650
1650
1651 def __calculateAngles(self, theta_x, theta_y, azimuth):
1651 def __calculateAngles(self, theta_x, theta_y, azimuth):
1652
1652
1653 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
1653 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
1654 zenith_arr = numpy.arccos(dir_cosw)
1654 zenith_arr = numpy.arccos(dir_cosw)
1655 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
1655 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
1656
1656
1657 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
1657 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
1658 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
1658 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
1659
1659
1660 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
1660 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
1661
1661
1662 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
1662 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
1663
1663
1664 #
1664 #
1665 if horOnly:
1665 if horOnly:
1666 A = numpy.c_[dir_cosu,dir_cosv]
1666 A = numpy.c_[dir_cosu,dir_cosv]
1667 else:
1667 else:
1668 A = numpy.c_[dir_cosu,dir_cosv,dir_cosw]
1668 A = numpy.c_[dir_cosu,dir_cosv,dir_cosw]
1669 A = numpy.asmatrix(A)
1669 A = numpy.asmatrix(A)
1670 A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose()
1670 A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose()
1671
1671
1672 return A1
1672 return A1
1673
1673
1674 def __correctValues(self, heiRang, phi, velRadial, SNR):
1674 def __correctValues(self, heiRang, phi, velRadial, SNR):
1675 listPhi = phi.tolist()
1675 listPhi = phi.tolist()
1676 maxid = listPhi.index(max(listPhi))
1676 maxid = listPhi.index(max(listPhi))
1677 minid = listPhi.index(min(listPhi))
1677 minid = listPhi.index(min(listPhi))
1678
1678
1679 rango = list(range(len(phi)))
1679 rango = list(range(len(phi)))
1680 # rango = numpy.delete(rango,maxid)
1680 # rango = numpy.delete(rango,maxid)
1681
1681
1682 heiRang1 = heiRang*math.cos(phi[maxid])
1682 heiRang1 = heiRang*math.cos(phi[maxid])
1683 heiRangAux = heiRang*math.cos(phi[minid])
1683 heiRangAux = heiRang*math.cos(phi[minid])
1684 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1684 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1685 heiRang1 = numpy.delete(heiRang1,indOut)
1685 heiRang1 = numpy.delete(heiRang1,indOut)
1686
1686
1687 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1687 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1688 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1688 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1689
1689
1690 for i in rango:
1690 for i in rango:
1691 x = heiRang*math.cos(phi[i])
1691 x = heiRang*math.cos(phi[i])
1692 y1 = velRadial[i,:]
1692 y1 = velRadial[i,:]
1693 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1693 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1694
1694
1695 x1 = heiRang1
1695 x1 = heiRang1
1696 y11 = f1(x1)
1696 y11 = f1(x1)
1697
1697
1698 y2 = SNR[i,:]
1698 y2 = SNR[i,:]
1699 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1699 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1700 y21 = f2(x1)
1700 y21 = f2(x1)
1701
1701
1702 velRadial1[i,:] = y11
1702 velRadial1[i,:] = y11
1703 SNR1[i,:] = y21
1703 SNR1[i,:] = y21
1704
1704
1705 return heiRang1, velRadial1, SNR1
1705 return heiRang1, velRadial1, SNR1
1706
1706
1707 def __calculateVelUVW(self, A, velRadial):
1707 def __calculateVelUVW(self, A, velRadial):
1708
1708
1709 #Operacion Matricial
1709 #Operacion Matricial
1710 # velUVW = numpy.zeros((velRadial.shape[1],3))
1710 # velUVW = numpy.zeros((velRadial.shape[1],3))
1711 # for ind in range(velRadial.shape[1]):
1711 # for ind in range(velRadial.shape[1]):
1712 # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind])
1712 # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind])
1713 # velUVW = velUVW.transpose()
1713 # velUVW = velUVW.transpose()
1714 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
1714 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
1715 velUVW[:,:] = numpy.dot(A,velRadial)
1715 velUVW[:,:] = numpy.dot(A,velRadial)
1716
1716
1717
1717
1718 return velUVW
1718 return velUVW
1719
1719
1720 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
1720 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
1721
1721
1722 def techniqueDBS(self, kwargs):
1722 def techniqueDBS(self, kwargs):
1723 """
1723 """
1724 Function that implements Doppler Beam Swinging (DBS) technique.
1724 Function that implements Doppler Beam Swinging (DBS) technique.
1725
1725
1726 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1726 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1727 Direction correction (if necessary), Ranges and SNR
1727 Direction correction (if necessary), Ranges and SNR
1728
1728
1729 Output: Winds estimation (Zonal, Meridional and Vertical)
1729 Output: Winds estimation (Zonal, Meridional and Vertical)
1730
1730
1731 Parameters affected: Winds, height range, SNR
1731 Parameters affected: Winds, height range, SNR
1732 """
1732 """
1733 velRadial0 = kwargs['velRadial']
1733 velRadial0 = kwargs['velRadial']
1734 heiRang = kwargs['heightList']
1734 heiRang = kwargs['heightList']
1735 SNR0 = kwargs['SNR']
1735 SNR0 = kwargs['SNR']
1736
1736
1737 if 'dirCosx' in kwargs and 'dirCosy' in kwargs:
1737 if 'dirCosx' in kwargs and 'dirCosy' in kwargs:
1738 theta_x = numpy.array(kwargs['dirCosx'])
1738 theta_x = numpy.array(kwargs['dirCosx'])
1739 theta_y = numpy.array(kwargs['dirCosy'])
1739 theta_y = numpy.array(kwargs['dirCosy'])
1740 else:
1740 else:
1741 elev = numpy.array(kwargs['elevation'])
1741 elev = numpy.array(kwargs['elevation'])
1742 azim = numpy.array(kwargs['azimuth'])
1742 azim = numpy.array(kwargs['azimuth'])
1743 theta_x, theta_y = self.__calculateCosDir(elev, azim)
1743 theta_x, theta_y = self.__calculateCosDir(elev, azim)
1744 azimuth = kwargs['correctAzimuth']
1744 azimuth = kwargs['correctAzimuth']
1745 if 'horizontalOnly' in kwargs:
1745 if 'horizontalOnly' in kwargs:
1746 horizontalOnly = kwargs['horizontalOnly']
1746 horizontalOnly = kwargs['horizontalOnly']
1747 else: horizontalOnly = False
1747 else: horizontalOnly = False
1748 if 'correctFactor' in kwargs:
1748 if 'correctFactor' in kwargs:
1749 correctFactor = kwargs['correctFactor']
1749 correctFactor = kwargs['correctFactor']
1750 else: correctFactor = 1
1750 else: correctFactor = 1
1751 if 'channelList' in kwargs:
1751 if 'channelList' in kwargs:
1752 channelList = kwargs['channelList']
1752 channelList = kwargs['channelList']
1753 if len(channelList) == 2:
1753 if len(channelList) == 2:
1754 horizontalOnly = True
1754 horizontalOnly = True
1755 arrayChannel = numpy.array(channelList)
1755 arrayChannel = numpy.array(channelList)
1756 param = param[arrayChannel,:,:]
1756 param = param[arrayChannel,:,:]
1757 theta_x = theta_x[arrayChannel]
1757 theta_x = theta_x[arrayChannel]
1758 theta_y = theta_y[arrayChannel]
1758 theta_y = theta_y[arrayChannel]
1759
1759
1760 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
1760 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
1761 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
1761 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
1762 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
1762 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
1763
1763
1764 #Calculo de Componentes de la velocidad con DBS
1764 #Calculo de Componentes de la velocidad con DBS
1765 winds = self.__calculateVelUVW(A,velRadial1)
1765 winds = self.__calculateVelUVW(A,velRadial1)
1766
1766
1767 return winds, heiRang1, SNR1
1767 return winds, heiRang1, SNR1
1768
1768
1769 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
1769 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
1770
1770
1771 nPairs = len(pairs_ccf)
1771 nPairs = len(pairs_ccf)
1772 posx = numpy.asarray(posx)
1772 posx = numpy.asarray(posx)
1773 posy = numpy.asarray(posy)
1773 posy = numpy.asarray(posy)
1774
1774
1775 #Rotacion Inversa para alinear con el azimuth
1775 #Rotacion Inversa para alinear con el azimuth
1776 if azimuth!= None:
1776 if azimuth!= None:
1777 azimuth = azimuth*math.pi/180
1777 azimuth = azimuth*math.pi/180
1778 posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth)
1778 posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth)
1779 posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth)
1779 posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth)
1780 else:
1780 else:
1781 posx1 = posx
1781 posx1 = posx
1782 posy1 = posy
1782 posy1 = posy
1783
1783
1784 #Calculo de Distancias
1784 #Calculo de Distancias
1785 distx = numpy.zeros(nPairs)
1785 distx = numpy.zeros(nPairs)
1786 disty = numpy.zeros(nPairs)
1786 disty = numpy.zeros(nPairs)
1787 dist = numpy.zeros(nPairs)
1787 dist = numpy.zeros(nPairs)
1788 ang = numpy.zeros(nPairs)
1788 ang = numpy.zeros(nPairs)
1789
1789
1790 for i in range(nPairs):
1790 for i in range(nPairs):
1791 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
1791 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
1792 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
1792 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
1793 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
1793 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
1794 ang[i] = numpy.arctan2(disty[i],distx[i])
1794 ang[i] = numpy.arctan2(disty[i],distx[i])
1795
1795
1796 return distx, disty, dist, ang
1796 return distx, disty, dist, ang
1797 #Calculo de Matrices
1797 #Calculo de Matrices
1798 # nPairs = len(pairs)
1798 # nPairs = len(pairs)
1799 # ang1 = numpy.zeros((nPairs, 2, 1))
1799 # ang1 = numpy.zeros((nPairs, 2, 1))
1800 # dist1 = numpy.zeros((nPairs, 2, 1))
1800 # dist1 = numpy.zeros((nPairs, 2, 1))
1801 #
1801 #
1802 # for j in range(nPairs):
1802 # for j in range(nPairs):
1803 # dist1[j,0,0] = dist[pairs[j][0]]
1803 # dist1[j,0,0] = dist[pairs[j][0]]
1804 # dist1[j,1,0] = dist[pairs[j][1]]
1804 # dist1[j,1,0] = dist[pairs[j][1]]
1805 # ang1[j,0,0] = ang[pairs[j][0]]
1805 # ang1[j,0,0] = ang[pairs[j][0]]
1806 # ang1[j,1,0] = ang[pairs[j][1]]
1806 # ang1[j,1,0] = ang[pairs[j][1]]
1807 #
1807 #
1808 # return distx,disty, dist1,ang1
1808 # return distx,disty, dist1,ang1
1809
1809
1810
1810
1811 def __calculateVelVer(self, phase, lagTRange, _lambda):
1811 def __calculateVelVer(self, phase, lagTRange, _lambda):
1812
1812
1813 Ts = lagTRange[1] - lagTRange[0]
1813 Ts = lagTRange[1] - lagTRange[0]
1814 velW = -_lambda*phase/(4*math.pi*Ts)
1814 velW = -_lambda*phase/(4*math.pi*Ts)
1815
1815
1816 return velW
1816 return velW
1817
1817
1818 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
1818 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
1819 nPairs = tau1.shape[0]
1819 nPairs = tau1.shape[0]
1820 nHeights = tau1.shape[1]
1820 nHeights = tau1.shape[1]
1821 vel = numpy.zeros((nPairs,3,nHeights))
1821 vel = numpy.zeros((nPairs,3,nHeights))
1822 dist1 = numpy.reshape(dist, (dist.size,1))
1822 dist1 = numpy.reshape(dist, (dist.size,1))
1823
1823
1824 angCos = numpy.cos(ang)
1824 angCos = numpy.cos(ang)
1825 angSin = numpy.sin(ang)
1825 angSin = numpy.sin(ang)
1826
1826
1827 vel0 = dist1*tau1/(2*tau2**2)
1827 vel0 = dist1*tau1/(2*tau2**2)
1828 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
1828 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
1829 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
1829 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
1830
1830
1831 ind = numpy.where(numpy.isinf(vel))
1831 ind = numpy.where(numpy.isinf(vel))
1832 vel[ind] = numpy.nan
1832 vel[ind] = numpy.nan
1833
1833
1834 return vel
1834 return vel
1835
1835
1836 # def __getPairsAutoCorr(self, pairsList, nChannels):
1836 # def __getPairsAutoCorr(self, pairsList, nChannels):
1837 #
1837 #
1838 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1838 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1839 #
1839 #
1840 # for l in range(len(pairsList)):
1840 # for l in range(len(pairsList)):
1841 # firstChannel = pairsList[l][0]
1841 # firstChannel = pairsList[l][0]
1842 # secondChannel = pairsList[l][1]
1842 # secondChannel = pairsList[l][1]
1843 #
1843 #
1844 # #Obteniendo pares de Autocorrelacion
1844 # #Obteniendo pares de Autocorrelacion
1845 # if firstChannel == secondChannel:
1845 # if firstChannel == secondChannel:
1846 # pairsAutoCorr[firstChannel] = int(l)
1846 # pairsAutoCorr[firstChannel] = int(l)
1847 #
1847 #
1848 # pairsAutoCorr = pairsAutoCorr.astype(int)
1848 # pairsAutoCorr = pairsAutoCorr.astype(int)
1849 #
1849 #
1850 # pairsCrossCorr = range(len(pairsList))
1850 # pairsCrossCorr = range(len(pairsList))
1851 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1851 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1852 #
1852 #
1853 # return pairsAutoCorr, pairsCrossCorr
1853 # return pairsAutoCorr, pairsCrossCorr
1854
1854
1855 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
1855 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
1856 def techniqueSA(self, kwargs):
1856 def techniqueSA(self, kwargs):
1857
1857
1858 """
1858 """
1859 Function that implements Spaced Antenna (SA) technique.
1859 Function that implements Spaced Antenna (SA) technique.
1860
1860
1861 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1861 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1862 Direction correction (if necessary), Ranges and SNR
1862 Direction correction (if necessary), Ranges and SNR
1863
1863
1864 Output: Winds estimation (Zonal, Meridional and Vertical)
1864 Output: Winds estimation (Zonal, Meridional and Vertical)
1865
1865
1866 Parameters affected: Winds
1866 Parameters affected: Winds
1867 """
1867 """
1868 position_x = kwargs['positionX']
1868 position_x = kwargs['positionX']
1869 position_y = kwargs['positionY']
1869 position_y = kwargs['positionY']
1870 azimuth = kwargs['azimuth']
1870 azimuth = kwargs['azimuth']
1871
1871
1872 if 'correctFactor' in kwargs:
1872 if 'correctFactor' in kwargs:
1873 correctFactor = kwargs['correctFactor']
1873 correctFactor = kwargs['correctFactor']
1874 else:
1874 else:
1875 correctFactor = 1
1875 correctFactor = 1
1876
1876
1877 groupList = kwargs['groupList']
1877 groupList = kwargs['groupList']
1878 pairs_ccf = groupList[1]
1878 pairs_ccf = groupList[1]
1879 tau = kwargs['tau']
1879 tau = kwargs['tau']
1880 _lambda = kwargs['_lambda']
1880 _lambda = kwargs['_lambda']
1881
1881
1882 #Cross Correlation pairs obtained
1882 #Cross Correlation pairs obtained
1883 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
1883 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
1884 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
1884 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
1885 # pairsSelArray = numpy.array(pairsSelected)
1885 # pairsSelArray = numpy.array(pairsSelected)
1886 # pairs = []
1886 # pairs = []
1887 #
1887 #
1888 # #Wind estimation pairs obtained
1888 # #Wind estimation pairs obtained
1889 # for i in range(pairsSelArray.shape[0]/2):
1889 # for i in range(pairsSelArray.shape[0]/2):
1890 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
1890 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
1891 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
1891 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
1892 # pairs.append((ind1,ind2))
1892 # pairs.append((ind1,ind2))
1893
1893
1894 indtau = tau.shape[0]/2
1894 indtau = tau.shape[0]/2
1895 tau1 = tau[:indtau,:]
1895 tau1 = tau[:indtau,:]
1896 tau2 = tau[indtau:-1,:]
1896 tau2 = tau[indtau:-1,:]
1897 # tau1 = tau1[pairs,:]
1897 # tau1 = tau1[pairs,:]
1898 # tau2 = tau2[pairs,:]
1898 # tau2 = tau2[pairs,:]
1899 phase1 = tau[-1,:]
1899 phase1 = tau[-1,:]
1900
1900
1901 #---------------------------------------------------------------------
1901 #---------------------------------------------------------------------
1902 #Metodo Directo
1902 #Metodo Directo
1903 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
1903 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
1904 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
1904 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
1905 winds = stats.nanmean(winds, axis=0)
1905 winds = stats.nanmean(winds, axis=0)
1906 #---------------------------------------------------------------------
1906 #---------------------------------------------------------------------
1907 #Metodo General
1907 #Metodo General
1908 # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth)
1908 # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth)
1909 # #Calculo Coeficientes de Funcion de Correlacion
1909 # #Calculo Coeficientes de Funcion de Correlacion
1910 # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n)
1910 # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n)
1911 # #Calculo de Velocidades
1911 # #Calculo de Velocidades
1912 # winds = self.calculateVelUV(F,G,A,B,H)
1912 # winds = self.calculateVelUV(F,G,A,B,H)
1913
1913
1914 #---------------------------------------------------------------------
1914 #---------------------------------------------------------------------
1915 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
1915 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
1916 winds = correctFactor*winds
1916 winds = correctFactor*winds
1917 return winds
1917 return winds
1918
1918
1919 def __checkTime(self, currentTime, paramInterval, outputInterval):
1919 def __checkTime(self, currentTime, paramInterval, outputInterval):
1920
1920
1921 dataTime = currentTime + paramInterval
1921 dataTime = currentTime + paramInterval
1922 deltaTime = dataTime - self.__initime
1922 deltaTime = dataTime - self.__initime
1923
1923
1924 if deltaTime >= outputInterval or deltaTime < 0:
1924 if deltaTime >= outputInterval or deltaTime < 0:
1925 self.__dataReady = True
1925 self.__dataReady = True
1926 return
1926 return
1927
1927
1928 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
1928 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
1929 '''
1929 '''
1930 Function that implements winds estimation technique with detected meteors.
1930 Function that implements winds estimation technique with detected meteors.
1931
1931
1932 Input: Detected meteors, Minimum meteor quantity to wind estimation
1932 Input: Detected meteors, Minimum meteor quantity to wind estimation
1933
1933
1934 Output: Winds estimation (Zonal and Meridional)
1934 Output: Winds estimation (Zonal and Meridional)
1935
1935
1936 Parameters affected: Winds
1936 Parameters affected: Winds
1937 '''
1937 '''
1938 #Settings
1938 #Settings
1939 nInt = (heightMax - heightMin)/2
1939 nInt = (heightMax - heightMin)/2
1940 nInt = int(nInt)
1940 nInt = int(nInt)
1941 winds = numpy.zeros((2,nInt))*numpy.nan
1941 winds = numpy.zeros((2,nInt))*numpy.nan
1942
1942
1943 #Filter errors
1943 #Filter errors
1944 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
1944 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
1945 finalMeteor = arrayMeteor[error,:]
1945 finalMeteor = arrayMeteor[error,:]
1946
1946
1947 #Meteor Histogram
1947 #Meteor Histogram
1948 finalHeights = finalMeteor[:,2]
1948 finalHeights = finalMeteor[:,2]
1949 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
1949 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
1950 nMeteorsPerI = hist[0]
1950 nMeteorsPerI = hist[0]
1951 heightPerI = hist[1]
1951 heightPerI = hist[1]
1952
1952
1953 #Sort of meteors
1953 #Sort of meteors
1954 indSort = finalHeights.argsort()
1954 indSort = finalHeights.argsort()
1955 finalMeteor2 = finalMeteor[indSort,:]
1955 finalMeteor2 = finalMeteor[indSort,:]
1956
1956
1957 # Calculating winds
1957 # Calculating winds
1958 ind1 = 0
1958 ind1 = 0
1959 ind2 = 0
1959 ind2 = 0
1960
1960
1961 for i in range(nInt):
1961 for i in range(nInt):
1962 nMet = nMeteorsPerI[i]
1962 nMet = nMeteorsPerI[i]
1963 ind1 = ind2
1963 ind1 = ind2
1964 ind2 = ind1 + nMet
1964 ind2 = ind1 + nMet
1965
1965
1966 meteorAux = finalMeteor2[ind1:ind2,:]
1966 meteorAux = finalMeteor2[ind1:ind2,:]
1967
1967
1968 if meteorAux.shape[0] >= meteorThresh:
1968 if meteorAux.shape[0] >= meteorThresh:
1969 vel = meteorAux[:, 6]
1969 vel = meteorAux[:, 6]
1970 zen = meteorAux[:, 4]*numpy.pi/180
1970 zen = meteorAux[:, 4]*numpy.pi/180
1971 azim = meteorAux[:, 3]*numpy.pi/180
1971 azim = meteorAux[:, 3]*numpy.pi/180
1972
1972
1973 n = numpy.cos(zen)
1973 n = numpy.cos(zen)
1974 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
1974 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
1975 # l = m*numpy.tan(azim)
1975 # l = m*numpy.tan(azim)
1976 l = numpy.sin(zen)*numpy.sin(azim)
1976 l = numpy.sin(zen)*numpy.sin(azim)
1977 m = numpy.sin(zen)*numpy.cos(azim)
1977 m = numpy.sin(zen)*numpy.cos(azim)
1978
1978
1979 A = numpy.vstack((l, m)).transpose()
1979 A = numpy.vstack((l, m)).transpose()
1980 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
1980 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
1981 windsAux = numpy.dot(A1, vel)
1981 windsAux = numpy.dot(A1, vel)
1982
1982
1983 winds[0,i] = windsAux[0]
1983 winds[0,i] = windsAux[0]
1984 winds[1,i] = windsAux[1]
1984 winds[1,i] = windsAux[1]
1985
1985
1986 return winds, heightPerI[:-1]
1986 return winds, heightPerI[:-1]
1987
1987
1988 def techniqueNSM_SA(self, **kwargs):
1988 def techniqueNSM_SA(self, **kwargs):
1989 metArray = kwargs['metArray']
1989 metArray = kwargs['metArray']
1990 heightList = kwargs['heightList']
1990 heightList = kwargs['heightList']
1991 timeList = kwargs['timeList']
1991 timeList = kwargs['timeList']
1992
1992
1993 rx_location = kwargs['rx_location']
1993 rx_location = kwargs['rx_location']
1994 groupList = kwargs['groupList']
1994 groupList = kwargs['groupList']
1995 azimuth = kwargs['azimuth']
1995 azimuth = kwargs['azimuth']
1996 dfactor = kwargs['dfactor']
1996 dfactor = kwargs['dfactor']
1997 k = kwargs['k']
1997 k = kwargs['k']
1998
1998
1999 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
1999 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
2000 d = dist*dfactor
2000 d = dist*dfactor
2001 #Phase calculation
2001 #Phase calculation
2002 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
2002 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
2003
2003
2004 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
2004 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
2005
2005
2006 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2006 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2007 azimuth1 = azimuth1*numpy.pi/180
2007 azimuth1 = azimuth1*numpy.pi/180
2008
2008
2009 for i in range(heightList.size):
2009 for i in range(heightList.size):
2010 h = heightList[i]
2010 h = heightList[i]
2011 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
2011 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
2012 metHeight = metArray1[indH,:]
2012 metHeight = metArray1[indH,:]
2013 if metHeight.shape[0] >= 2:
2013 if metHeight.shape[0] >= 2:
2014 velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities
2014 velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities
2015 iazim = metHeight[:,1].astype(int)
2015 iazim = metHeight[:,1].astype(int)
2016 azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths
2016 azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths
2017 A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux)))
2017 A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux)))
2018 A = numpy.asmatrix(A)
2018 A = numpy.asmatrix(A)
2019 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
2019 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
2020 velHor = numpy.dot(A1,velAux)
2020 velHor = numpy.dot(A1,velAux)
2021
2021
2022 velEst[i,:] = numpy.squeeze(velHor)
2022 velEst[i,:] = numpy.squeeze(velHor)
2023 return velEst
2023 return velEst
2024
2024
2025 def __getPhaseSlope(self, metArray, heightList, timeList):
2025 def __getPhaseSlope(self, metArray, heightList, timeList):
2026 meteorList = []
2026 meteorList = []
2027 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
2027 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
2028 #Putting back together the meteor matrix
2028 #Putting back together the meteor matrix
2029 utctime = metArray[:,0]
2029 utctime = metArray[:,0]
2030 uniqueTime = numpy.unique(utctime)
2030 uniqueTime = numpy.unique(utctime)
2031
2031
2032 phaseDerThresh = 0.5
2032 phaseDerThresh = 0.5
2033 ippSeconds = timeList[1] - timeList[0]
2033 ippSeconds = timeList[1] - timeList[0]
2034 sec = numpy.where(timeList>1)[0][0]
2034 sec = numpy.where(timeList>1)[0][0]
2035 nPairs = metArray.shape[1] - 6
2035 nPairs = metArray.shape[1] - 6
2036 nHeights = len(heightList)
2036 nHeights = len(heightList)
2037
2037
2038 for t in uniqueTime:
2038 for t in uniqueTime:
2039 metArray1 = metArray[utctime==t,:]
2039 metArray1 = metArray[utctime==t,:]
2040 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
2040 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
2041 tmet = metArray1[:,1].astype(int)
2041 tmet = metArray1[:,1].astype(int)
2042 hmet = metArray1[:,2].astype(int)
2042 hmet = metArray1[:,2].astype(int)
2043
2043
2044 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
2044 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
2045 metPhase[:,:] = numpy.nan
2045 metPhase[:,:] = numpy.nan
2046 metPhase[:,hmet,tmet] = metArray1[:,6:].T
2046 metPhase[:,hmet,tmet] = metArray1[:,6:].T
2047
2047
2048 #Delete short trails
2048 #Delete short trails
2049 metBool = ~numpy.isnan(metPhase[0,:,:])
2049 metBool = ~numpy.isnan(metPhase[0,:,:])
2050 heightVect = numpy.sum(metBool, axis = 1)
2050 heightVect = numpy.sum(metBool, axis = 1)
2051 metBool[heightVect<sec,:] = False
2051 metBool[heightVect<sec,:] = False
2052 metPhase[:,heightVect<sec,:] = numpy.nan
2052 metPhase[:,heightVect<sec,:] = numpy.nan
2053
2053
2054 #Derivative
2054 #Derivative
2055 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
2055 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
2056 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
2056 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
2057 metPhase[phDerAux] = numpy.nan
2057 metPhase[phDerAux] = numpy.nan
2058
2058
2059 #--------------------------METEOR DETECTION -----------------------------------------
2059 #--------------------------METEOR DETECTION -----------------------------------------
2060 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
2060 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
2061
2061
2062 for p in numpy.arange(nPairs):
2062 for p in numpy.arange(nPairs):
2063 phase = metPhase[p,:,:]
2063 phase = metPhase[p,:,:]
2064 phDer = metDer[p,:,:]
2064 phDer = metDer[p,:,:]
2065
2065
2066 for h in indMet:
2066 for h in indMet:
2067 height = heightList[h]
2067 height = heightList[h]
2068 phase1 = phase[h,:] #82
2068 phase1 = phase[h,:] #82
2069 phDer1 = phDer[h,:]
2069 phDer1 = phDer[h,:]
2070
2070
2071 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
2071 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
2072
2072
2073 indValid = numpy.where(~numpy.isnan(phase1))[0]
2073 indValid = numpy.where(~numpy.isnan(phase1))[0]
2074 initMet = indValid[0]
2074 initMet = indValid[0]
2075 endMet = 0
2075 endMet = 0
2076
2076
2077 for i in range(len(indValid)-1):
2077 for i in range(len(indValid)-1):
2078
2078
2079 #Time difference
2079 #Time difference
2080 inow = indValid[i]
2080 inow = indValid[i]
2081 inext = indValid[i+1]
2081 inext = indValid[i+1]
2082 idiff = inext - inow
2082 idiff = inext - inow
2083 #Phase difference
2083 #Phase difference
2084 phDiff = numpy.abs(phase1[inext] - phase1[inow])
2084 phDiff = numpy.abs(phase1[inext] - phase1[inow])
2085
2085
2086 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
2086 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
2087 sizeTrail = inow - initMet + 1
2087 sizeTrail = inow - initMet + 1
2088 if sizeTrail>3*sec: #Too short meteors
2088 if sizeTrail>3*sec: #Too short meteors
2089 x = numpy.arange(initMet,inow+1)*ippSeconds
2089 x = numpy.arange(initMet,inow+1)*ippSeconds
2090 y = phase1[initMet:inow+1]
2090 y = phase1[initMet:inow+1]
2091 ynnan = ~numpy.isnan(y)
2091 ynnan = ~numpy.isnan(y)
2092 x = x[ynnan]
2092 x = x[ynnan]
2093 y = y[ynnan]
2093 y = y[ynnan]
2094 slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
2094 slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
2095 ylin = x*slope + intercept
2095 ylin = x*slope + intercept
2096 rsq = r_value**2
2096 rsq = r_value**2
2097 if rsq > 0.5:
2097 if rsq > 0.5:
2098 vel = slope#*height*1000/(k*d)
2098 vel = slope#*height*1000/(k*d)
2099 estAux = numpy.array([utctime,p,height, vel, rsq])
2099 estAux = numpy.array([utctime,p,height, vel, rsq])
2100 meteorList.append(estAux)
2100 meteorList.append(estAux)
2101 initMet = inext
2101 initMet = inext
2102 metArray2 = numpy.array(meteorList)
2102 metArray2 = numpy.array(meteorList)
2103
2103
2104 return metArray2
2104 return metArray2
2105
2105
2106 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
2106 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
2107
2107
2108 azimuth1 = numpy.zeros(len(pairslist))
2108 azimuth1 = numpy.zeros(len(pairslist))
2109 dist = numpy.zeros(len(pairslist))
2109 dist = numpy.zeros(len(pairslist))
2110
2110
2111 for i in range(len(rx_location)):
2111 for i in range(len(rx_location)):
2112 ch0 = pairslist[i][0]
2112 ch0 = pairslist[i][0]
2113 ch1 = pairslist[i][1]
2113 ch1 = pairslist[i][1]
2114
2114
2115 diffX = rx_location[ch0][0] - rx_location[ch1][0]
2115 diffX = rx_location[ch0][0] - rx_location[ch1][0]
2116 diffY = rx_location[ch0][1] - rx_location[ch1][1]
2116 diffY = rx_location[ch0][1] - rx_location[ch1][1]
2117 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
2117 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
2118 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
2118 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
2119
2119
2120 azimuth1 -= azimuth0
2120 azimuth1 -= azimuth0
2121 return azimuth1, dist
2121 return azimuth1, dist
2122
2122
2123 def techniqueNSM_DBS(self, **kwargs):
2123 def techniqueNSM_DBS(self, **kwargs):
2124 metArray = kwargs['metArray']
2124 metArray = kwargs['metArray']
2125 heightList = kwargs['heightList']
2125 heightList = kwargs['heightList']
2126 timeList = kwargs['timeList']
2126 timeList = kwargs['timeList']
2127 azimuth = kwargs['azimuth']
2127 azimuth = kwargs['azimuth']
2128 theta_x = numpy.array(kwargs['theta_x'])
2128 theta_x = numpy.array(kwargs['theta_x'])
2129 theta_y = numpy.array(kwargs['theta_y'])
2129 theta_y = numpy.array(kwargs['theta_y'])
2130
2130
2131 utctime = metArray[:,0]
2131 utctime = metArray[:,0]
2132 cmet = metArray[:,1].astype(int)
2132 cmet = metArray[:,1].astype(int)
2133 hmet = metArray[:,3].astype(int)
2133 hmet = metArray[:,3].astype(int)
2134 SNRmet = metArray[:,4]
2134 SNRmet = metArray[:,4]
2135 vmet = metArray[:,5]
2135 vmet = metArray[:,5]
2136 spcmet = metArray[:,6]
2136 spcmet = metArray[:,6]
2137
2137
2138 nChan = numpy.max(cmet) + 1
2138 nChan = numpy.max(cmet) + 1
2139 nHeights = len(heightList)
2139 nHeights = len(heightList)
2140
2140
2141 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
2141 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
2142 hmet = heightList[hmet]
2142 hmet = heightList[hmet]
2143 h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights
2143 h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights
2144
2144
2145 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2145 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2146
2146
2147 for i in range(nHeights - 1):
2147 for i in range(nHeights - 1):
2148 hmin = heightList[i]
2148 hmin = heightList[i]
2149 hmax = heightList[i + 1]
2149 hmax = heightList[i + 1]
2150
2150
2151 thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10)
2151 thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10)
2152 indthisH = numpy.where(thisH)
2152 indthisH = numpy.where(thisH)
2153
2153
2154 if numpy.size(indthisH) > 3:
2154 if numpy.size(indthisH) > 3:
2155
2155
2156 vel_aux = vmet[thisH]
2156 vel_aux = vmet[thisH]
2157 chan_aux = cmet[thisH]
2157 chan_aux = cmet[thisH]
2158 cosu_aux = dir_cosu[chan_aux]
2158 cosu_aux = dir_cosu[chan_aux]
2159 cosv_aux = dir_cosv[chan_aux]
2159 cosv_aux = dir_cosv[chan_aux]
2160 cosw_aux = dir_cosw[chan_aux]
2160 cosw_aux = dir_cosw[chan_aux]
2161
2161
2162 nch = numpy.size(numpy.unique(chan_aux))
2162 nch = numpy.size(numpy.unique(chan_aux))
2163 if nch > 1:
2163 if nch > 1:
2164 A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True)
2164 A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True)
2165 velEst[i,:] = numpy.dot(A,vel_aux)
2165 velEst[i,:] = numpy.dot(A,vel_aux)
2166
2166
2167 return velEst
2167 return velEst
2168
2168
2169 def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs):
2169 def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs):
2170
2170
2171 param = dataOut.data_param
2171 param = dataOut.data_param
2172 if dataOut.abscissaList != None:
2172 if dataOut.abscissaList != None:
2173 absc = dataOut.abscissaList[:-1]
2173 absc = dataOut.abscissaList[:-1]
2174 # noise = dataOut.noise
2174 # noise = dataOut.noise
2175 heightList = dataOut.heightList
2175 heightList = dataOut.heightList
2176 SNR = dataOut.data_snr
2176 SNR = dataOut.data_snr
2177
2177
2178 if technique == 'DBS':
2178 if technique == 'DBS':
2179
2179
2180 kwargs['velRadial'] = param[:,1,:] #Radial velocity
2180 kwargs['velRadial'] = param[:,1,:] #Radial velocity
2181 kwargs['heightList'] = heightList
2181 kwargs['heightList'] = heightList
2182 kwargs['SNR'] = SNR
2182 kwargs['SNR'] = SNR
2183
2183
2184 dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function
2184 dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function
2185 dataOut.utctimeInit = dataOut.utctime
2185 dataOut.utctimeInit = dataOut.utctime
2186 dataOut.outputInterval = dataOut.paramInterval
2186 dataOut.outputInterval = dataOut.paramInterval
2187
2187
2188 elif technique == 'SA':
2188 elif technique == 'SA':
2189
2189
2190 #Parameters
2190 #Parameters
2191 # position_x = kwargs['positionX']
2191 # position_x = kwargs['positionX']
2192 # position_y = kwargs['positionY']
2192 # position_y = kwargs['positionY']
2193 # azimuth = kwargs['azimuth']
2193 # azimuth = kwargs['azimuth']
2194 #
2194 #
2195 # if kwargs.has_key('crosspairsList'):
2195 # if kwargs.has_key('crosspairsList'):
2196 # pairs = kwargs['crosspairsList']
2196 # pairs = kwargs['crosspairsList']
2197 # else:
2197 # else:
2198 # pairs = None
2198 # pairs = None
2199 #
2199 #
2200 # if kwargs.has_key('correctFactor'):
2200 # if kwargs.has_key('correctFactor'):
2201 # correctFactor = kwargs['correctFactor']
2201 # correctFactor = kwargs['correctFactor']
2202 # else:
2202 # else:
2203 # correctFactor = 1
2203 # correctFactor = 1
2204
2204
2205 # tau = dataOut.data_param
2205 # tau = dataOut.data_param
2206 # _lambda = dataOut.C/dataOut.frequency
2206 # _lambda = dataOut.C/dataOut.frequency
2207 # pairsList = dataOut.groupList
2207 # pairsList = dataOut.groupList
2208 # nChannels = dataOut.nChannels
2208 # nChannels = dataOut.nChannels
2209
2209
2210 kwargs['groupList'] = dataOut.groupList
2210 kwargs['groupList'] = dataOut.groupList
2211 kwargs['tau'] = dataOut.data_param
2211 kwargs['tau'] = dataOut.data_param
2212 kwargs['_lambda'] = dataOut.C/dataOut.frequency
2212 kwargs['_lambda'] = dataOut.C/dataOut.frequency
2213 # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor)
2213 # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor)
2214 dataOut.data_output = self.techniqueSA(kwargs)
2214 dataOut.data_output = self.techniqueSA(kwargs)
2215 dataOut.utctimeInit = dataOut.utctime
2215 dataOut.utctimeInit = dataOut.utctime
2216 dataOut.outputInterval = dataOut.timeInterval
2216 dataOut.outputInterval = dataOut.timeInterval
2217
2217
2218 elif technique == 'Meteors':
2218 elif technique == 'Meteors':
2219 dataOut.flagNoData = True
2219 dataOut.flagNoData = True
2220 self.__dataReady = False
2220 self.__dataReady = False
2221
2221
2222 if 'nHours' in kwargs:
2222 if 'nHours' in kwargs:
2223 nHours = kwargs['nHours']
2223 nHours = kwargs['nHours']
2224 else:
2224 else:
2225 nHours = 1
2225 nHours = 1
2226
2226
2227 if 'meteorsPerBin' in kwargs:
2227 if 'meteorsPerBin' in kwargs:
2228 meteorThresh = kwargs['meteorsPerBin']
2228 meteorThresh = kwargs['meteorsPerBin']
2229 else:
2229 else:
2230 meteorThresh = 6
2230 meteorThresh = 6
2231
2231
2232 if 'hmin' in kwargs:
2232 if 'hmin' in kwargs:
2233 hmin = kwargs['hmin']
2233 hmin = kwargs['hmin']
2234 else: hmin = 70
2234 else: hmin = 70
2235 if 'hmax' in kwargs:
2235 if 'hmax' in kwargs:
2236 hmax = kwargs['hmax']
2236 hmax = kwargs['hmax']
2237 else: hmax = 110
2237 else: hmax = 110
2238
2238
2239 dataOut.outputInterval = nHours*3600
2239 dataOut.outputInterval = nHours*3600
2240
2240
2241 if self.__isConfig == False:
2241 if self.__isConfig == False:
2242 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2242 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2243 #Get Initial LTC time
2243 #Get Initial LTC time
2244 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2244 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2245 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2245 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2246
2246
2247 self.__isConfig = True
2247 self.__isConfig = True
2248
2248
2249 if self.__buffer is None:
2249 if self.__buffer is None:
2250 self.__buffer = dataOut.data_param
2250 self.__buffer = dataOut.data_param
2251 self.__firstdata = copy.copy(dataOut)
2251 self.__firstdata = copy.copy(dataOut)
2252
2252
2253 else:
2253 else:
2254 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2254 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2255
2255
2256 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2256 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2257
2257
2258 if self.__dataReady:
2258 if self.__dataReady:
2259 dataOut.utctimeInit = self.__initime
2259 dataOut.utctimeInit = self.__initime
2260
2260
2261 self.__initime += dataOut.outputInterval #to erase time offset
2261 self.__initime += dataOut.outputInterval #to erase time offset
2262
2262
2263 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
2263 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
2264 dataOut.flagNoData = False
2264 dataOut.flagNoData = False
2265 self.__buffer = None
2265 self.__buffer = None
2266
2266
2267 elif technique == 'Meteors1':
2267 elif technique == 'Meteors1':
2268 dataOut.flagNoData = True
2268 dataOut.flagNoData = True
2269 self.__dataReady = False
2269 self.__dataReady = False
2270
2270
2271 if 'nMins' in kwargs:
2271 if 'nMins' in kwargs:
2272 nMins = kwargs['nMins']
2272 nMins = kwargs['nMins']
2273 else: nMins = 20
2273 else: nMins = 20
2274 if 'rx_location' in kwargs:
2274 if 'rx_location' in kwargs:
2275 rx_location = kwargs['rx_location']
2275 rx_location = kwargs['rx_location']
2276 else: rx_location = [(0,1),(1,1),(1,0)]
2276 else: rx_location = [(0,1),(1,1),(1,0)]
2277 if 'azimuth' in kwargs:
2277 if 'azimuth' in kwargs:
2278 azimuth = kwargs['azimuth']
2278 azimuth = kwargs['azimuth']
2279 else: azimuth = 51.06
2279 else: azimuth = 51.06
2280 if 'dfactor' in kwargs:
2280 if 'dfactor' in kwargs:
2281 dfactor = kwargs['dfactor']
2281 dfactor = kwargs['dfactor']
2282 if 'mode' in kwargs:
2282 if 'mode' in kwargs:
2283 mode = kwargs['mode']
2283 mode = kwargs['mode']
2284 if 'theta_x' in kwargs:
2284 if 'theta_x' in kwargs:
2285 theta_x = kwargs['theta_x']
2285 theta_x = kwargs['theta_x']
2286 if 'theta_y' in kwargs:
2286 if 'theta_y' in kwargs:
2287 theta_y = kwargs['theta_y']
2287 theta_y = kwargs['theta_y']
2288 else: mode = 'SA'
2288 else: mode = 'SA'
2289
2289
2290 #Borrar luego esto
2290 #Borrar luego esto
2291 if dataOut.groupList is None:
2291 if dataOut.groupList is None:
2292 dataOut.groupList = [(0,1),(0,2),(1,2)]
2292 dataOut.groupList = [(0,1),(0,2),(1,2)]
2293 groupList = dataOut.groupList
2293 groupList = dataOut.groupList
2294 C = 3e8
2294 C = 3e8
2295 freq = 50e6
2295 freq = 50e6
2296 lamb = C/freq
2296 lamb = C/freq
2297 k = 2*numpy.pi/lamb
2297 k = 2*numpy.pi/lamb
2298
2298
2299 timeList = dataOut.abscissaList
2299 timeList = dataOut.abscissaList
2300 heightList = dataOut.heightList
2300 heightList = dataOut.heightList
2301
2301
2302 if self.__isConfig == False:
2302 if self.__isConfig == False:
2303 dataOut.outputInterval = nMins*60
2303 dataOut.outputInterval = nMins*60
2304 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2304 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2305 #Get Initial LTC time
2305 #Get Initial LTC time
2306 initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2306 initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2307 minuteAux = initime.minute
2307 minuteAux = initime.minute
2308 minuteNew = int(numpy.floor(minuteAux/nMins)*nMins)
2308 minuteNew = int(numpy.floor(minuteAux/nMins)*nMins)
2309 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2309 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2310
2310
2311 self.__isConfig = True
2311 self.__isConfig = True
2312
2312
2313 if self.__buffer is None:
2313 if self.__buffer is None:
2314 self.__buffer = dataOut.data_param
2314 self.__buffer = dataOut.data_param
2315 self.__firstdata = copy.copy(dataOut)
2315 self.__firstdata = copy.copy(dataOut)
2316
2316
2317 else:
2317 else:
2318 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2318 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2319
2319
2320 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2320 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2321
2321
2322 if self.__dataReady:
2322 if self.__dataReady:
2323 dataOut.utctimeInit = self.__initime
2323 dataOut.utctimeInit = self.__initime
2324 self.__initime += dataOut.outputInterval #to erase time offset
2324 self.__initime += dataOut.outputInterval #to erase time offset
2325
2325
2326 metArray = self.__buffer
2326 metArray = self.__buffer
2327 if mode == 'SA':
2327 if mode == 'SA':
2328 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
2328 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
2329 elif mode == 'DBS':
2329 elif mode == 'DBS':
2330 dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y)
2330 dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y)
2331 dataOut.data_output = dataOut.data_output.T
2331 dataOut.data_output = dataOut.data_output.T
2332 dataOut.flagNoData = False
2332 dataOut.flagNoData = False
2333 self.__buffer = None
2333 self.__buffer = None
2334
2334
2335 return
2335 return
2336
2336
2337 class EWDriftsEstimation(Operation):
2337 class EWDriftsEstimation(Operation):
2338
2338
2339 def __init__(self):
2339 def __init__(self):
2340 Operation.__init__(self)
2340 Operation.__init__(self)
2341
2341
2342 def __correctValues(self, heiRang, phi, velRadial, SNR):
2342 def __correctValues(self, heiRang, phi, velRadial, SNR):
2343 listPhi = phi.tolist()
2343 listPhi = phi.tolist()
2344 maxid = listPhi.index(max(listPhi))
2344 maxid = listPhi.index(max(listPhi))
2345 minid = listPhi.index(min(listPhi))
2345 minid = listPhi.index(min(listPhi))
2346
2346
2347 rango = list(range(len(phi)))
2347 rango = list(range(len(phi)))
2348 # rango = numpy.delete(rango,maxid)
2348 # rango = numpy.delete(rango,maxid)
2349
2349
2350 heiRang1 = heiRang*math.cos(phi[maxid])
2350 heiRang1 = heiRang*math.cos(phi[maxid])
2351 heiRangAux = heiRang*math.cos(phi[minid])
2351 heiRangAux = heiRang*math.cos(phi[minid])
2352 indOut = (heiRang1 < heiRangAux[0]).nonzero()
2352 indOut = (heiRang1 < heiRangAux[0]).nonzero()
2353 heiRang1 = numpy.delete(heiRang1,indOut)
2353 heiRang1 = numpy.delete(heiRang1,indOut)
2354
2354
2355 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
2355 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
2356 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
2356 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
2357
2357
2358 for i in rango:
2358 for i in rango:
2359 x = heiRang*math.cos(phi[i])
2359 x = heiRang*math.cos(phi[i])
2360 y1 = velRadial[i,:]
2360 y1 = velRadial[i,:]
2361 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
2361 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
2362
2362
2363 x1 = heiRang1
2363 x1 = heiRang1
2364 y11 = f1(x1)
2364 y11 = f1(x1)
2365
2365
2366 y2 = SNR[i,:]
2366 y2 = SNR[i,:]
2367 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
2367 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
2368 y21 = f2(x1)
2368 y21 = f2(x1)
2369
2369
2370 velRadial1[i,:] = y11
2370 velRadial1[i,:] = y11
2371 SNR1[i,:] = y21
2371 SNR1[i,:] = y21
2372
2372
2373 return heiRang1, velRadial1, SNR1
2373 return heiRang1, velRadial1, SNR1
2374
2374
2375 def run(self, dataOut, zenith, zenithCorrection):
2375 def run(self, dataOut, zenith, zenithCorrection):
2376 heiRang = dataOut.heightList
2376 heiRang = dataOut.heightList
2377 velRadial = dataOut.data_param[:,3,:]
2377 velRadial = dataOut.data_param[:,3,:]
2378 SNR = dataOut.data_snr
2378 SNR = dataOut.data_snr
2379
2379
2380 zenith = numpy.array(zenith)
2380 zenith = numpy.array(zenith)
2381 zenith -= zenithCorrection
2381 zenith -= zenithCorrection
2382 zenith *= numpy.pi/180
2382 zenith *= numpy.pi/180
2383
2383
2384 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
2384 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
2385
2385
2386 alp = zenith[0]
2386 alp = zenith[0]
2387 bet = zenith[1]
2387 bet = zenith[1]
2388
2388
2389 w_w = velRadial1[0,:]
2389 w_w = velRadial1[0,:]
2390 w_e = velRadial1[1,:]
2390 w_e = velRadial1[1,:]
2391
2391
2392 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
2392 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
2393 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
2393 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
2394
2394
2395 winds = numpy.vstack((u,w))
2395 winds = numpy.vstack((u,w))
2396
2396
2397 dataOut.heightList = heiRang1
2397 dataOut.heightList = heiRang1
2398 dataOut.data_output = winds
2398 dataOut.data_output = winds
2399 dataOut.data_snr = SNR1
2399 dataOut.data_snr = SNR1
2400
2400
2401 dataOut.utctimeInit = dataOut.utctime
2401 dataOut.utctimeInit = dataOut.utctime
2402 dataOut.outputInterval = dataOut.timeInterval
2402 dataOut.outputInterval = dataOut.timeInterval
2403 return
2403 return
2404
2404
2405 #--------------- Non Specular Meteor ----------------
2405 #--------------- Non Specular Meteor ----------------
2406
2406
2407 class NonSpecularMeteorDetection(Operation):
2407 class NonSpecularMeteorDetection(Operation):
2408
2408
2409 def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
2409 def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
2410 data_acf = dataOut.data_pre[0]
2410 data_acf = dataOut.data_pre[0]
2411 data_ccf = dataOut.data_pre[1]
2411 data_ccf = dataOut.data_pre[1]
2412 pairsList = dataOut.groupList[1]
2412 pairsList = dataOut.groupList[1]
2413
2413
2414 lamb = dataOut.C/dataOut.frequency
2414 lamb = dataOut.C/dataOut.frequency
2415 tSamp = dataOut.ippSeconds*dataOut.nCohInt
2415 tSamp = dataOut.ippSeconds*dataOut.nCohInt
2416 paramInterval = dataOut.paramInterval
2416 paramInterval = dataOut.paramInterval
2417
2417
2418 nChannels = data_acf.shape[0]
2418 nChannels = data_acf.shape[0]
2419 nLags = data_acf.shape[1]
2419 nLags = data_acf.shape[1]
2420 nProfiles = data_acf.shape[2]
2420 nProfiles = data_acf.shape[2]
2421 nHeights = dataOut.nHeights
2421 nHeights = dataOut.nHeights
2422 nCohInt = dataOut.nCohInt
2422 nCohInt = dataOut.nCohInt
2423 sec = numpy.round(nProfiles/dataOut.paramInterval)
2423 sec = numpy.round(nProfiles/dataOut.paramInterval)
2424 heightList = dataOut.heightList
2424 heightList = dataOut.heightList
2425 ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg
2425 ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg
2426 utctime = dataOut.utctime
2426 utctime = dataOut.utctime
2427
2427
2428 dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
2428 dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
2429
2429
2430 #------------------------ SNR --------------------------------------
2430 #------------------------ SNR --------------------------------------
2431 power = data_acf[:,0,:,:].real
2431 power = data_acf[:,0,:,:].real
2432 noise = numpy.zeros(nChannels)
2432 noise = numpy.zeros(nChannels)
2433 SNR = numpy.zeros(power.shape)
2433 SNR = numpy.zeros(power.shape)
2434 for i in range(nChannels):
2434 for i in range(nChannels):
2435 noise[i] = hildebrand_sekhon(power[i,:], nCohInt)
2435 noise[i] = hildebrand_sekhon(power[i,:], nCohInt)
2436 SNR[i] = (power[i]-noise[i])/noise[i]
2436 SNR[i] = (power[i]-noise[i])/noise[i]
2437 SNRm = numpy.nanmean(SNR, axis = 0)
2437 SNRm = numpy.nanmean(SNR, axis = 0)
2438 SNRdB = 10*numpy.log10(SNR)
2438 SNRdB = 10*numpy.log10(SNR)
2439
2439
2440 if mode == 'SA':
2440 if mode == 'SA':
2441 dataOut.groupList = dataOut.groupList[1]
2441 dataOut.groupList = dataOut.groupList[1]
2442 nPairs = data_ccf.shape[0]
2442 nPairs = data_ccf.shape[0]
2443 #---------------------- Coherence and Phase --------------------------
2443 #---------------------- Coherence and Phase --------------------------
2444 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
2444 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
2445 # phase1 = numpy.copy(phase)
2445 # phase1 = numpy.copy(phase)
2446 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
2446 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
2447
2447
2448 for p in range(nPairs):
2448 for p in range(nPairs):
2449 ch0 = pairsList[p][0]
2449 ch0 = pairsList[p][0]
2450 ch1 = pairsList[p][1]
2450 ch1 = pairsList[p][1]
2451 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
2451 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
2452 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
2452 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
2453 # phase1[p,:,:] = numpy.angle(ccf) #median filter
2453 # phase1[p,:,:] = numpy.angle(ccf) #median filter
2454 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
2454 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
2455 # coh1[p,:,:] = numpy.abs(ccf) #median filter
2455 # coh1[p,:,:] = numpy.abs(ccf) #median filter
2456 coh = numpy.nanmax(coh1, axis = 0)
2456 coh = numpy.nanmax(coh1, axis = 0)
2457 # struc = numpy.ones((5,1))
2457 # struc = numpy.ones((5,1))
2458 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
2458 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
2459 #---------------------- Radial Velocity ----------------------------
2459 #---------------------- Radial Velocity ----------------------------
2460 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
2460 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
2461 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
2461 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
2462
2462
2463 if allData:
2463 if allData:
2464 boolMetFin = ~numpy.isnan(SNRm)
2464 boolMetFin = ~numpy.isnan(SNRm)
2465 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2465 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2466 else:
2466 else:
2467 #------------------------ Meteor mask ---------------------------------
2467 #------------------------ Meteor mask ---------------------------------
2468 # #SNR mask
2468 # #SNR mask
2469 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
2469 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
2470 #
2470 #
2471 # #Erase small objects
2471 # #Erase small objects
2472 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
2472 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
2473 #
2473 #
2474 # auxEEJ = numpy.sum(boolMet1,axis=0)
2474 # auxEEJ = numpy.sum(boolMet1,axis=0)
2475 # indOver = auxEEJ>nProfiles*0.8 #Use this later
2475 # indOver = auxEEJ>nProfiles*0.8 #Use this later
2476 # indEEJ = numpy.where(indOver)[0]
2476 # indEEJ = numpy.where(indOver)[0]
2477 # indNEEJ = numpy.where(~indOver)[0]
2477 # indNEEJ = numpy.where(~indOver)[0]
2478 #
2478 #
2479 # boolMetFin = boolMet1
2479 # boolMetFin = boolMet1
2480 #
2480 #
2481 # if indEEJ.size > 0:
2481 # if indEEJ.size > 0:
2482 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
2482 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
2483 #
2483 #
2484 # boolMet2 = coh > cohThresh
2484 # boolMet2 = coh > cohThresh
2485 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
2485 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
2486 #
2486 #
2487 # #Final Meteor mask
2487 # #Final Meteor mask
2488 # boolMetFin = boolMet1|boolMet2
2488 # boolMetFin = boolMet1|boolMet2
2489
2489
2490 #Coherence mask
2490 #Coherence mask
2491 boolMet1 = coh > 0.75
2491 boolMet1 = coh > 0.75
2492 struc = numpy.ones((30,1))
2492 struc = numpy.ones((30,1))
2493 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
2493 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
2494
2494
2495 #Derivative mask
2495 #Derivative mask
2496 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2496 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2497 boolMet2 = derPhase < 0.2
2497 boolMet2 = derPhase < 0.2
2498 # boolMet2 = ndimage.morphology.binary_opening(boolMet2)
2498 # boolMet2 = ndimage.morphology.binary_opening(boolMet2)
2499 # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1)))
2499 # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1)))
2500 boolMet2 = ndimage.median_filter(boolMet2,size=5)
2500 boolMet2 = ndimage.median_filter(boolMet2,size=5)
2501 boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool)))
2501 boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool)))
2502 # #Final mask
2502 # #Final mask
2503 # boolMetFin = boolMet2
2503 # boolMetFin = boolMet2
2504 boolMetFin = boolMet1&boolMet2
2504 boolMetFin = boolMet1&boolMet2
2505 # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin)
2505 # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin)
2506 #Creating data_param
2506 #Creating data_param
2507 coordMet = numpy.where(boolMetFin)
2507 coordMet = numpy.where(boolMetFin)
2508
2508
2509 tmet = coordMet[0]
2509 tmet = coordMet[0]
2510 hmet = coordMet[1]
2510 hmet = coordMet[1]
2511
2511
2512 data_param = numpy.zeros((tmet.size, 6 + nPairs))
2512 data_param = numpy.zeros((tmet.size, 6 + nPairs))
2513 data_param[:,0] = utctime
2513 data_param[:,0] = utctime
2514 data_param[:,1] = tmet
2514 data_param[:,1] = tmet
2515 data_param[:,2] = hmet
2515 data_param[:,2] = hmet
2516 data_param[:,3] = SNRm[tmet,hmet]
2516 data_param[:,3] = SNRm[tmet,hmet]
2517 data_param[:,4] = velRad[tmet,hmet]
2517 data_param[:,4] = velRad[tmet,hmet]
2518 data_param[:,5] = coh[tmet,hmet]
2518 data_param[:,5] = coh[tmet,hmet]
2519 data_param[:,6:] = phase[:,tmet,hmet].T
2519 data_param[:,6:] = phase[:,tmet,hmet].T
2520
2520
2521 elif mode == 'DBS':
2521 elif mode == 'DBS':
2522 dataOut.groupList = numpy.arange(nChannels)
2522 dataOut.groupList = numpy.arange(nChannels)
2523
2523
2524 #Radial Velocities
2524 #Radial Velocities
2525 phase = numpy.angle(data_acf[:,1,:,:])
2525 phase = numpy.angle(data_acf[:,1,:,:])
2526 # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
2526 # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
2527 velRad = phase*lamb/(4*numpy.pi*tSamp)
2527 velRad = phase*lamb/(4*numpy.pi*tSamp)
2528
2528
2529 #Spectral width
2529 #Spectral width
2530 # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
2530 # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
2531 # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
2531 # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
2532 acf1 = data_acf[:,1,:,:]
2532 acf1 = data_acf[:,1,:,:]
2533 acf2 = data_acf[:,2,:,:]
2533 acf2 = data_acf[:,2,:,:]
2534
2534
2535 spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
2535 spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
2536 # velRad = ndimage.median_filter(velRad, size = (1,5,1))
2536 # velRad = ndimage.median_filter(velRad, size = (1,5,1))
2537 if allData:
2537 if allData:
2538 boolMetFin = ~numpy.isnan(SNRdB)
2538 boolMetFin = ~numpy.isnan(SNRdB)
2539 else:
2539 else:
2540 #SNR
2540 #SNR
2541 boolMet1 = (SNRdB>SNRthresh) #SNR mask
2541 boolMet1 = (SNRdB>SNRthresh) #SNR mask
2542 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
2542 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
2543
2543
2544 #Radial velocity
2544 #Radial velocity
2545 boolMet2 = numpy.abs(velRad) < 20
2545 boolMet2 = numpy.abs(velRad) < 20
2546 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
2546 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
2547
2547
2548 #Spectral Width
2548 #Spectral Width
2549 boolMet3 = spcWidth < 30
2549 boolMet3 = spcWidth < 30
2550 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
2550 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
2551 # boolMetFin = self.__erase_small(boolMet1, 10,5)
2551 # boolMetFin = self.__erase_small(boolMet1, 10,5)
2552 boolMetFin = boolMet1&boolMet2&boolMet3
2552 boolMetFin = boolMet1&boolMet2&boolMet3
2553
2553
2554 #Creating data_param
2554 #Creating data_param
2555 coordMet = numpy.where(boolMetFin)
2555 coordMet = numpy.where(boolMetFin)
2556
2556
2557 cmet = coordMet[0]
2557 cmet = coordMet[0]
2558 tmet = coordMet[1]
2558 tmet = coordMet[1]
2559 hmet = coordMet[2]
2559 hmet = coordMet[2]
2560
2560
2561 data_param = numpy.zeros((tmet.size, 7))
2561 data_param = numpy.zeros((tmet.size, 7))
2562 data_param[:,0] = utctime
2562 data_param[:,0] = utctime
2563 data_param[:,1] = cmet
2563 data_param[:,1] = cmet
2564 data_param[:,2] = tmet
2564 data_param[:,2] = tmet
2565 data_param[:,3] = hmet
2565 data_param[:,3] = hmet
2566 data_param[:,4] = SNR[cmet,tmet,hmet].T
2566 data_param[:,4] = SNR[cmet,tmet,hmet].T
2567 data_param[:,5] = velRad[cmet,tmet,hmet].T
2567 data_param[:,5] = velRad[cmet,tmet,hmet].T
2568 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
2568 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
2569
2569
2570 # self.dataOut.data_param = data_int
2570 # self.dataOut.data_param = data_int
2571 if len(data_param) == 0:
2571 if len(data_param) == 0:
2572 dataOut.flagNoData = True
2572 dataOut.flagNoData = True
2573 else:
2573 else:
2574 dataOut.data_param = data_param
2574 dataOut.data_param = data_param
2575
2575
2576 def __erase_small(self, binArray, threshX, threshY):
2576 def __erase_small(self, binArray, threshX, threshY):
2577 labarray, numfeat = ndimage.measurements.label(binArray)
2577 labarray, numfeat = ndimage.measurements.label(binArray)
2578 binArray1 = numpy.copy(binArray)
2578 binArray1 = numpy.copy(binArray)
2579
2579
2580 for i in range(1,numfeat + 1):
2580 for i in range(1,numfeat + 1):
2581 auxBin = (labarray==i)
2581 auxBin = (labarray==i)
2582 auxSize = auxBin.sum()
2582 auxSize = auxBin.sum()
2583
2583
2584 x,y = numpy.where(auxBin)
2584 x,y = numpy.where(auxBin)
2585 widthX = x.max() - x.min()
2585 widthX = x.max() - x.min()
2586 widthY = y.max() - y.min()
2586 widthY = y.max() - y.min()
2587
2587
2588 #width X: 3 seg -> 12.5*3
2588 #width X: 3 seg -> 12.5*3
2589 #width Y:
2589 #width Y:
2590
2590
2591 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
2591 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
2592 binArray1[auxBin] = False
2592 binArray1[auxBin] = False
2593
2593
2594 return binArray1
2594 return binArray1
2595
2595
2596 #--------------- Specular Meteor ----------------
2596 #--------------- Specular Meteor ----------------
2597
2597
2598 class SMDetection(Operation):
2598 class SMDetection(Operation):
2599 '''
2599 '''
2600 Function DetectMeteors()
2600 Function DetectMeteors()
2601 Project developed with paper:
2601 Project developed with paper:
2602 HOLDSWORTH ET AL. 2004
2602 HOLDSWORTH ET AL. 2004
2603
2603
2604 Input:
2604 Input:
2605 self.dataOut.data_pre
2605 self.dataOut.data_pre
2606
2606
2607 centerReceiverIndex: From the channels, which is the center receiver
2607 centerReceiverIndex: From the channels, which is the center receiver
2608
2608
2609 hei_ref: Height reference for the Beacon signal extraction
2609 hei_ref: Height reference for the Beacon signal extraction
2610 tauindex:
2610 tauindex:
2611 predefinedPhaseShifts: Predefined phase offset for the voltge signals
2611 predefinedPhaseShifts: Predefined phase offset for the voltge signals
2612
2612
2613 cohDetection: Whether to user Coherent detection or not
2613 cohDetection: Whether to user Coherent detection or not
2614 cohDet_timeStep: Coherent Detection calculation time step
2614 cohDet_timeStep: Coherent Detection calculation time step
2615 cohDet_thresh: Coherent Detection phase threshold to correct phases
2615 cohDet_thresh: Coherent Detection phase threshold to correct phases
2616
2616
2617 noise_timeStep: Noise calculation time step
2617 noise_timeStep: Noise calculation time step
2618 noise_multiple: Noise multiple to define signal threshold
2618 noise_multiple: Noise multiple to define signal threshold
2619
2619
2620 multDet_timeLimit: Multiple Detection Removal time limit in seconds
2620 multDet_timeLimit: Multiple Detection Removal time limit in seconds
2621 multDet_rangeLimit: Multiple Detection Removal range limit in km
2621 multDet_rangeLimit: Multiple Detection Removal range limit in km
2622
2622
2623 phaseThresh: Maximum phase difference between receiver to be consider a meteor
2623 phaseThresh: Maximum phase difference between receiver to be consider a meteor
2624 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
2624 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
2625
2625
2626 hmin: Minimum Height of the meteor to use it in the further wind estimations
2626 hmin: Minimum Height of the meteor to use it in the further wind estimations
2627 hmax: Maximum Height of the meteor to use it in the further wind estimations
2627 hmax: Maximum Height of the meteor to use it in the further wind estimations
2628 azimuth: Azimuth angle correction
2628 azimuth: Azimuth angle correction
2629
2629
2630 Affected:
2630 Affected:
2631 self.dataOut.data_param
2631 self.dataOut.data_param
2632
2632
2633 Rejection Criteria (Errors):
2633 Rejection Criteria (Errors):
2634 0: No error; analysis OK
2634 0: No error; analysis OK
2635 1: SNR < SNR threshold
2635 1: SNR < SNR threshold
2636 2: angle of arrival (AOA) ambiguously determined
2636 2: angle of arrival (AOA) ambiguously determined
2637 3: AOA estimate not feasible
2637 3: AOA estimate not feasible
2638 4: Large difference in AOAs obtained from different antenna baselines
2638 4: Large difference in AOAs obtained from different antenna baselines
2639 5: echo at start or end of time series
2639 5: echo at start or end of time series
2640 6: echo less than 5 examples long; too short for analysis
2640 6: echo less than 5 examples long; too short for analysis
2641 7: echo rise exceeds 0.3s
2641 7: echo rise exceeds 0.3s
2642 8: echo decay time less than twice rise time
2642 8: echo decay time less than twice rise time
2643 9: large power level before echo
2643 9: large power level before echo
2644 10: large power level after echo
2644 10: large power level after echo
2645 11: poor fit to amplitude for estimation of decay time
2645 11: poor fit to amplitude for estimation of decay time
2646 12: poor fit to CCF phase variation for estimation of radial drift velocity
2646 12: poor fit to CCF phase variation for estimation of radial drift velocity
2647 13: height unresolvable echo: not valid height within 70 to 110 km
2647 13: height unresolvable echo: not valid height within 70 to 110 km
2648 14: height ambiguous echo: more then one possible height within 70 to 110 km
2648 14: height ambiguous echo: more then one possible height within 70 to 110 km
2649 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
2649 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
2650 16: oscilatory echo, indicating event most likely not an underdense echo
2650 16: oscilatory echo, indicating event most likely not an underdense echo
2651
2651
2652 17: phase difference in meteor Reestimation
2652 17: phase difference in meteor Reestimation
2653
2653
2654 Data Storage:
2654 Data Storage:
2655 Meteors for Wind Estimation (8):
2655 Meteors for Wind Estimation (8):
2656 Utc Time | Range Height
2656 Utc Time | Range Height
2657 Azimuth Zenith errorCosDir
2657 Azimuth Zenith errorCosDir
2658 VelRad errorVelRad
2658 VelRad errorVelRad
2659 Phase0 Phase1 Phase2 Phase3
2659 Phase0 Phase1 Phase2 Phase3
2660 TypeError
2660 TypeError
2661
2661
2662 '''
2662 '''
2663
2663
2664 def run(self, dataOut, hei_ref = None, tauindex = 0,
2664 def run(self, dataOut, hei_ref = None, tauindex = 0,
2665 phaseOffsets = None,
2665 phaseOffsets = None,
2666 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
2666 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
2667 noise_timeStep = 4, noise_multiple = 4,
2667 noise_timeStep = 4, noise_multiple = 4,
2668 multDet_timeLimit = 1, multDet_rangeLimit = 3,
2668 multDet_timeLimit = 1, multDet_rangeLimit = 3,
2669 phaseThresh = 20, SNRThresh = 5,
2669 phaseThresh = 20, SNRThresh = 5,
2670 hmin = 50, hmax=150, azimuth = 0,
2670 hmin = 50, hmax=150, azimuth = 0,
2671 channelPositions = None) :
2671 channelPositions = None) :
2672
2672
2673
2673
2674 #Getting Pairslist
2674 #Getting Pairslist
2675 if channelPositions is None:
2675 if channelPositions is None:
2676 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2676 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2677 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2677 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2678 meteorOps = SMOperations()
2678 meteorOps = SMOperations()
2679 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2679 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2680 heiRang = dataOut.heightList
2680 heiRang = dataOut.heightList
2681 #Get Beacon signal - No Beacon signal anymore
2681 #Get Beacon signal - No Beacon signal anymore
2682 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
2682 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
2683 #
2683 #
2684 # if hei_ref != None:
2684 # if hei_ref != None:
2685 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
2685 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
2686 #
2686 #
2687
2687
2688
2688
2689 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
2689 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
2690 # see if the user put in pre defined phase shifts
2690 # see if the user put in pre defined phase shifts
2691 voltsPShift = dataOut.data_pre.copy()
2691 voltsPShift = dataOut.data_pre.copy()
2692
2692
2693 # if predefinedPhaseShifts != None:
2693 # if predefinedPhaseShifts != None:
2694 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
2694 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
2695 #
2695 #
2696 # # elif beaconPhaseShifts:
2696 # # elif beaconPhaseShifts:
2697 # # #get hardware phase shifts using beacon signal
2697 # # #get hardware phase shifts using beacon signal
2698 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
2698 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
2699 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
2699 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
2700 #
2700 #
2701 # else:
2701 # else:
2702 # hardwarePhaseShifts = numpy.zeros(5)
2702 # hardwarePhaseShifts = numpy.zeros(5)
2703 #
2703 #
2704 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
2704 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
2705 # for i in range(self.dataOut.data_pre.shape[0]):
2705 # for i in range(self.dataOut.data_pre.shape[0]):
2706 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
2706 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
2707
2707
2708 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
2708 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
2709
2709
2710 #Remove DC
2710 #Remove DC
2711 voltsDC = numpy.mean(voltsPShift,1)
2711 voltsDC = numpy.mean(voltsPShift,1)
2712 voltsDC = numpy.mean(voltsDC,1)
2712 voltsDC = numpy.mean(voltsDC,1)
2713 for i in range(voltsDC.shape[0]):
2713 for i in range(voltsDC.shape[0]):
2714 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
2714 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
2715
2715
2716 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
2716 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
2717 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
2717 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
2718
2718
2719 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
2719 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
2720 #Coherent Detection
2720 #Coherent Detection
2721 if cohDetection:
2721 if cohDetection:
2722 #use coherent detection to get the net power
2722 #use coherent detection to get the net power
2723 cohDet_thresh = cohDet_thresh*numpy.pi/180
2723 cohDet_thresh = cohDet_thresh*numpy.pi/180
2724 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
2724 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
2725
2725
2726 #Non-coherent detection!
2726 #Non-coherent detection!
2727 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
2727 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
2728 #********** END OF COH/NON-COH POWER CALCULATION**********************
2728 #********** END OF COH/NON-COH POWER CALCULATION**********************
2729
2729
2730 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
2730 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
2731 #Get noise
2731 #Get noise
2732 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
2732 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
2733 # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval)
2733 # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval)
2734 #Get signal threshold
2734 #Get signal threshold
2735 signalThresh = noise_multiple*noise
2735 signalThresh = noise_multiple*noise
2736 #Meteor echoes detection
2736 #Meteor echoes detection
2737 listMeteors = self.__findMeteors(powerNet, signalThresh)
2737 listMeteors = self.__findMeteors(powerNet, signalThresh)
2738 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
2738 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
2739
2739
2740 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
2740 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
2741 #Parameters
2741 #Parameters
2742 heiRange = dataOut.heightList
2742 heiRange = dataOut.heightList
2743 rangeInterval = heiRange[1] - heiRange[0]
2743 rangeInterval = heiRange[1] - heiRange[0]
2744 rangeLimit = multDet_rangeLimit/rangeInterval
2744 rangeLimit = multDet_rangeLimit/rangeInterval
2745 timeLimit = multDet_timeLimit/dataOut.timeInterval
2745 timeLimit = multDet_timeLimit/dataOut.timeInterval
2746 #Multiple detection removals
2746 #Multiple detection removals
2747 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
2747 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
2748 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
2748 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
2749
2749
2750 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
2750 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
2751 #Parameters
2751 #Parameters
2752 phaseThresh = phaseThresh*numpy.pi/180
2752 phaseThresh = phaseThresh*numpy.pi/180
2753 thresh = [phaseThresh, noise_multiple, SNRThresh]
2753 thresh = [phaseThresh, noise_multiple, SNRThresh]
2754 #Meteor reestimation (Errors N 1, 6, 12, 17)
2754 #Meteor reestimation (Errors N 1, 6, 12, 17)
2755 listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency)
2755 listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency)
2756 # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise)
2756 # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise)
2757 #Estimation of decay times (Errors N 7, 8, 11)
2757 #Estimation of decay times (Errors N 7, 8, 11)
2758 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
2758 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
2759 #******************* END OF METEOR REESTIMATION *******************
2759 #******************* END OF METEOR REESTIMATION *******************
2760
2760
2761 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
2761 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
2762 #Calculating Radial Velocity (Error N 15)
2762 #Calculating Radial Velocity (Error N 15)
2763 radialStdThresh = 10
2763 radialStdThresh = 10
2764 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
2764 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
2765
2765
2766 if len(listMeteors4) > 0:
2766 if len(listMeteors4) > 0:
2767 #Setting New Array
2767 #Setting New Array
2768 date = dataOut.utctime
2768 date = dataOut.utctime
2769 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
2769 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
2770
2770
2771 #Correcting phase offset
2771 #Correcting phase offset
2772 if phaseOffsets != None:
2772 if phaseOffsets != None:
2773 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2773 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2774 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2774 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2775
2775
2776 #Second Pairslist
2776 #Second Pairslist
2777 pairsList = []
2777 pairsList = []
2778 pairx = (0,1)
2778 pairx = (0,1)
2779 pairy = (2,3)
2779 pairy = (2,3)
2780 pairsList.append(pairx)
2780 pairsList.append(pairx)
2781 pairsList.append(pairy)
2781 pairsList.append(pairy)
2782
2782
2783 jph = numpy.array([0,0,0,0])
2783 jph = numpy.array([0,0,0,0])
2784 h = (hmin,hmax)
2784 h = (hmin,hmax)
2785 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2785 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2786
2786
2787 # #Calculate AOA (Error N 3, 4)
2787 # #Calculate AOA (Error N 3, 4)
2788 # #JONES ET AL. 1998
2788 # #JONES ET AL. 1998
2789 # error = arrayParameters[:,-1]
2789 # error = arrayParameters[:,-1]
2790 # AOAthresh = numpy.pi/8
2790 # AOAthresh = numpy.pi/8
2791 # phases = -arrayParameters[:,9:13]
2791 # phases = -arrayParameters[:,9:13]
2792 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
2792 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
2793 #
2793 #
2794 # #Calculate Heights (Error N 13 and 14)
2794 # #Calculate Heights (Error N 13 and 14)
2795 # error = arrayParameters[:,-1]
2795 # error = arrayParameters[:,-1]
2796 # Ranges = arrayParameters[:,2]
2796 # Ranges = arrayParameters[:,2]
2797 # zenith = arrayParameters[:,5]
2797 # zenith = arrayParameters[:,5]
2798 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
2798 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
2799 # error = arrayParameters[:,-1]
2799 # error = arrayParameters[:,-1]
2800 #********************* END OF PARAMETERS CALCULATION **************************
2800 #********************* END OF PARAMETERS CALCULATION **************************
2801
2801
2802 #***************************+ PASS DATA TO NEXT STEP **********************
2802 #***************************+ PASS DATA TO NEXT STEP **********************
2803 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
2803 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
2804 dataOut.data_param = arrayParameters
2804 dataOut.data_param = arrayParameters
2805
2805
2806 if arrayParameters is None:
2806 if arrayParameters is None:
2807 dataOut.flagNoData = True
2807 dataOut.flagNoData = True
2808 else:
2808 else:
2809 dataOut.flagNoData = True
2809 dataOut.flagNoData = True
2810
2810
2811 return
2811 return
2812
2812
2813 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
2813 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
2814
2814
2815 minIndex = min(newheis[0])
2815 minIndex = min(newheis[0])
2816 maxIndex = max(newheis[0])
2816 maxIndex = max(newheis[0])
2817
2817
2818 voltage = voltage0[:,:,minIndex:maxIndex+1]
2818 voltage = voltage0[:,:,minIndex:maxIndex+1]
2819 nLength = voltage.shape[1]/n
2819 nLength = voltage.shape[1]/n
2820 nMin = 0
2820 nMin = 0
2821 nMax = 0
2821 nMax = 0
2822 phaseOffset = numpy.zeros((len(pairslist),n))
2822 phaseOffset = numpy.zeros((len(pairslist),n))
2823
2823
2824 for i in range(n):
2824 for i in range(n):
2825 nMax += nLength
2825 nMax += nLength
2826 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
2826 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
2827 phaseCCF = numpy.mean(phaseCCF, axis = 2)
2827 phaseCCF = numpy.mean(phaseCCF, axis = 2)
2828 phaseOffset[:,i] = phaseCCF.transpose()
2828 phaseOffset[:,i] = phaseCCF.transpose()
2829 nMin = nMax
2829 nMin = nMax
2830 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
2830 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
2831
2831
2832 #Remove Outliers
2832 #Remove Outliers
2833 factor = 2
2833 factor = 2
2834 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
2834 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
2835 dw = numpy.std(wt,axis = 1)
2835 dw = numpy.std(wt,axis = 1)
2836 dw = dw.reshape((dw.size,1))
2836 dw = dw.reshape((dw.size,1))
2837 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
2837 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
2838 phaseOffset[ind] = numpy.nan
2838 phaseOffset[ind] = numpy.nan
2839 phaseOffset = stats.nanmean(phaseOffset, axis=1)
2839 phaseOffset = stats.nanmean(phaseOffset, axis=1)
2840
2840
2841 return phaseOffset
2841 return phaseOffset
2842
2842
2843 def __shiftPhase(self, data, phaseShift):
2843 def __shiftPhase(self, data, phaseShift):
2844 #this will shift the phase of a complex number
2844 #this will shift the phase of a complex number
2845 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
2845 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
2846 return dataShifted
2846 return dataShifted
2847
2847
2848 def __estimatePhaseDifference(self, array, pairslist):
2848 def __estimatePhaseDifference(self, array, pairslist):
2849 nChannel = array.shape[0]
2849 nChannel = array.shape[0]
2850 nHeights = array.shape[2]
2850 nHeights = array.shape[2]
2851 numPairs = len(pairslist)
2851 numPairs = len(pairslist)
2852 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
2852 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
2853 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
2853 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
2854
2854
2855 #Correct phases
2855 #Correct phases
2856 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
2856 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
2857 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2857 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2858
2858
2859 if indDer[0].shape[0] > 0:
2859 if indDer[0].shape[0] > 0:
2860 for i in range(indDer[0].shape[0]):
2860 for i in range(indDer[0].shape[0]):
2861 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
2861 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
2862 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
2862 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
2863
2863
2864 # for j in range(numSides):
2864 # for j in range(numSides):
2865 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
2865 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
2866 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
2866 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
2867 #
2867 #
2868 #Linear
2868 #Linear
2869 phaseInt = numpy.zeros((numPairs,1))
2869 phaseInt = numpy.zeros((numPairs,1))
2870 angAllCCF = phaseCCF[:,[0,1,3,4],0]
2870 angAllCCF = phaseCCF[:,[0,1,3,4],0]
2871 for j in range(numPairs):
2871 for j in range(numPairs):
2872 fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:])
2872 fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:])
2873 phaseInt[j] = fit[1]
2873 phaseInt[j] = fit[1]
2874 #Phase Differences
2874 #Phase Differences
2875 phaseDiff = phaseInt - phaseCCF[:,2,:]
2875 phaseDiff = phaseInt - phaseCCF[:,2,:]
2876 phaseArrival = phaseInt.reshape(phaseInt.size)
2876 phaseArrival = phaseInt.reshape(phaseInt.size)
2877
2877
2878 #Dealias
2878 #Dealias
2879 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
2879 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
2880 # indAlias = numpy.where(phaseArrival > numpy.pi)
2880 # indAlias = numpy.where(phaseArrival > numpy.pi)
2881 # phaseArrival[indAlias] -= 2*numpy.pi
2881 # phaseArrival[indAlias] -= 2*numpy.pi
2882 # indAlias = numpy.where(phaseArrival < -numpy.pi)
2882 # indAlias = numpy.where(phaseArrival < -numpy.pi)
2883 # phaseArrival[indAlias] += 2*numpy.pi
2883 # phaseArrival[indAlias] += 2*numpy.pi
2884
2884
2885 return phaseDiff, phaseArrival
2885 return phaseDiff, phaseArrival
2886
2886
2887 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
2887 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
2888 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
2888 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
2889 #find the phase shifts of each channel over 1 second intervals
2889 #find the phase shifts of each channel over 1 second intervals
2890 #only look at ranges below the beacon signal
2890 #only look at ranges below the beacon signal
2891 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2891 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2892 numBlocks = int(volts.shape[1]/numProfPerBlock)
2892 numBlocks = int(volts.shape[1]/numProfPerBlock)
2893 numHeights = volts.shape[2]
2893 numHeights = volts.shape[2]
2894 nChannel = volts.shape[0]
2894 nChannel = volts.shape[0]
2895 voltsCohDet = volts.copy()
2895 voltsCohDet = volts.copy()
2896
2896
2897 pairsarray = numpy.array(pairslist)
2897 pairsarray = numpy.array(pairslist)
2898 indSides = pairsarray[:,1]
2898 indSides = pairsarray[:,1]
2899 # indSides = numpy.array(range(nChannel))
2899 # indSides = numpy.array(range(nChannel))
2900 # indSides = numpy.delete(indSides, indCenter)
2900 # indSides = numpy.delete(indSides, indCenter)
2901 #
2901 #
2902 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
2902 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
2903 listBlocks = numpy.array_split(volts, numBlocks, 1)
2903 listBlocks = numpy.array_split(volts, numBlocks, 1)
2904
2904
2905 startInd = 0
2905 startInd = 0
2906 endInd = 0
2906 endInd = 0
2907
2907
2908 for i in range(numBlocks):
2908 for i in range(numBlocks):
2909 startInd = endInd
2909 startInd = endInd
2910 endInd = endInd + listBlocks[i].shape[1]
2910 endInd = endInd + listBlocks[i].shape[1]
2911
2911
2912 arrayBlock = listBlocks[i]
2912 arrayBlock = listBlocks[i]
2913 # arrayBlockCenter = listCenter[i]
2913 # arrayBlockCenter = listCenter[i]
2914
2914
2915 #Estimate the Phase Difference
2915 #Estimate the Phase Difference
2916 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
2916 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
2917 #Phase Difference RMS
2917 #Phase Difference RMS
2918 arrayPhaseRMS = numpy.abs(phaseDiff)
2918 arrayPhaseRMS = numpy.abs(phaseDiff)
2919 phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0)
2919 phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0)
2920 indPhase = numpy.where(phaseRMSaux==4)
2920 indPhase = numpy.where(phaseRMSaux==4)
2921 #Shifting
2921 #Shifting
2922 if indPhase[0].shape[0] > 0:
2922 if indPhase[0].shape[0] > 0:
2923 for j in range(indSides.size):
2923 for j in range(indSides.size):
2924 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
2924 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
2925 voltsCohDet[:,startInd:endInd,:] = arrayBlock
2925 voltsCohDet[:,startInd:endInd,:] = arrayBlock
2926
2926
2927 return voltsCohDet
2927 return voltsCohDet
2928
2928
2929 def __calculateCCF(self, volts, pairslist ,laglist):
2929 def __calculateCCF(self, volts, pairslist ,laglist):
2930
2930
2931 nHeights = volts.shape[2]
2931 nHeights = volts.shape[2]
2932 nPoints = volts.shape[1]
2932 nPoints = volts.shape[1]
2933 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
2933 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
2934
2934
2935 for i in range(len(pairslist)):
2935 for i in range(len(pairslist)):
2936 volts1 = volts[pairslist[i][0]]
2936 volts1 = volts[pairslist[i][0]]
2937 volts2 = volts[pairslist[i][1]]
2937 volts2 = volts[pairslist[i][1]]
2938
2938
2939 for t in range(len(laglist)):
2939 for t in range(len(laglist)):
2940 idxT = laglist[t]
2940 idxT = laglist[t]
2941 if idxT >= 0:
2941 if idxT >= 0:
2942 vStacked = numpy.vstack((volts2[idxT:,:],
2942 vStacked = numpy.vstack((volts2[idxT:,:],
2943 numpy.zeros((idxT, nHeights),dtype='complex')))
2943 numpy.zeros((idxT, nHeights),dtype='complex')))
2944 else:
2944 else:
2945 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
2945 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
2946 volts2[:(nPoints + idxT),:]))
2946 volts2[:(nPoints + idxT),:]))
2947 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
2947 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
2948
2948
2949 vStacked = None
2949 vStacked = None
2950 return voltsCCF
2950 return voltsCCF
2951
2951
2952 def __getNoise(self, power, timeSegment, timeInterval):
2952 def __getNoise(self, power, timeSegment, timeInterval):
2953 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2953 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2954 numBlocks = int(power.shape[0]/numProfPerBlock)
2954 numBlocks = int(power.shape[0]/numProfPerBlock)
2955 numHeights = power.shape[1]
2955 numHeights = power.shape[1]
2956
2956
2957 listPower = numpy.array_split(power, numBlocks, 0)
2957 listPower = numpy.array_split(power, numBlocks, 0)
2958 noise = numpy.zeros((power.shape[0], power.shape[1]))
2958 noise = numpy.zeros((power.shape[0], power.shape[1]))
2959 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
2959 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
2960
2960
2961 startInd = 0
2961 startInd = 0
2962 endInd = 0
2962 endInd = 0
2963
2963
2964 for i in range(numBlocks): #split por canal
2964 for i in range(numBlocks): #split por canal
2965 startInd = endInd
2965 startInd = endInd
2966 endInd = endInd + listPower[i].shape[0]
2966 endInd = endInd + listPower[i].shape[0]
2967
2967
2968 arrayBlock = listPower[i]
2968 arrayBlock = listPower[i]
2969 noiseAux = numpy.mean(arrayBlock, 0)
2969 noiseAux = numpy.mean(arrayBlock, 0)
2970 # noiseAux = numpy.median(noiseAux)
2970 # noiseAux = numpy.median(noiseAux)
2971 # noiseAux = numpy.mean(arrayBlock)
2971 # noiseAux = numpy.mean(arrayBlock)
2972 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
2972 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
2973
2973
2974 noiseAux1 = numpy.mean(arrayBlock)
2974 noiseAux1 = numpy.mean(arrayBlock)
2975 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
2975 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
2976
2976
2977 return noise, noise1
2977 return noise, noise1
2978
2978
2979 def __findMeteors(self, power, thresh):
2979 def __findMeteors(self, power, thresh):
2980 nProf = power.shape[0]
2980 nProf = power.shape[0]
2981 nHeights = power.shape[1]
2981 nHeights = power.shape[1]
2982 listMeteors = []
2982 listMeteors = []
2983
2983
2984 for i in range(nHeights):
2984 for i in range(nHeights):
2985 powerAux = power[:,i]
2985 powerAux = power[:,i]
2986 threshAux = thresh[:,i]
2986 threshAux = thresh[:,i]
2987
2987
2988 indUPthresh = numpy.where(powerAux > threshAux)[0]
2988 indUPthresh = numpy.where(powerAux > threshAux)[0]
2989 indDNthresh = numpy.where(powerAux <= threshAux)[0]
2989 indDNthresh = numpy.where(powerAux <= threshAux)[0]
2990
2990
2991 j = 0
2991 j = 0
2992
2992
2993 while (j < indUPthresh.size - 2):
2993 while (j < indUPthresh.size - 2):
2994 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
2994 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
2995 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
2995 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
2996 indDNthresh = indDNthresh[indDNAux]
2996 indDNthresh = indDNthresh[indDNAux]
2997
2997
2998 if (indDNthresh.size > 0):
2998 if (indDNthresh.size > 0):
2999 indEnd = indDNthresh[0] - 1
2999 indEnd = indDNthresh[0] - 1
3000 indInit = indUPthresh[j]
3000 indInit = indUPthresh[j]
3001
3001
3002 meteor = powerAux[indInit:indEnd + 1]
3002 meteor = powerAux[indInit:indEnd + 1]
3003 indPeak = meteor.argmax() + indInit
3003 indPeak = meteor.argmax() + indInit
3004 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
3004 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
3005
3005
3006 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
3006 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
3007 j = numpy.where(indUPthresh == indEnd)[0] + 1
3007 j = numpy.where(indUPthresh == indEnd)[0] + 1
3008 else: j+=1
3008 else: j+=1
3009 else: j+=1
3009 else: j+=1
3010
3010
3011 return listMeteors
3011 return listMeteors
3012
3012
3013 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
3013 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
3014
3014
3015 arrayMeteors = numpy.asarray(listMeteors)
3015 arrayMeteors = numpy.asarray(listMeteors)
3016 listMeteors1 = []
3016 listMeteors1 = []
3017
3017
3018 while arrayMeteors.shape[0] > 0:
3018 while arrayMeteors.shape[0] > 0:
3019 FLAs = arrayMeteors[:,4]
3019 FLAs = arrayMeteors[:,4]
3020 maxFLA = FLAs.argmax()
3020 maxFLA = FLAs.argmax()
3021 listMeteors1.append(arrayMeteors[maxFLA,:])
3021 listMeteors1.append(arrayMeteors[maxFLA,:])
3022
3022
3023 MeteorInitTime = arrayMeteors[maxFLA,1]
3023 MeteorInitTime = arrayMeteors[maxFLA,1]
3024 MeteorEndTime = arrayMeteors[maxFLA,3]
3024 MeteorEndTime = arrayMeteors[maxFLA,3]
3025 MeteorHeight = arrayMeteors[maxFLA,0]
3025 MeteorHeight = arrayMeteors[maxFLA,0]
3026
3026
3027 #Check neighborhood
3027 #Check neighborhood
3028 maxHeightIndex = MeteorHeight + rangeLimit
3028 maxHeightIndex = MeteorHeight + rangeLimit
3029 minHeightIndex = MeteorHeight - rangeLimit
3029 minHeightIndex = MeteorHeight - rangeLimit
3030 minTimeIndex = MeteorInitTime - timeLimit
3030 minTimeIndex = MeteorInitTime - timeLimit
3031 maxTimeIndex = MeteorEndTime + timeLimit
3031 maxTimeIndex = MeteorEndTime + timeLimit
3032
3032
3033 #Check Heights
3033 #Check Heights
3034 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
3034 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
3035 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
3035 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
3036 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
3036 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
3037
3037
3038 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
3038 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
3039
3039
3040 return listMeteors1
3040 return listMeteors1
3041
3041
3042 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
3042 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
3043 numHeights = volts.shape[2]
3043 numHeights = volts.shape[2]
3044 nChannel = volts.shape[0]
3044 nChannel = volts.shape[0]
3045
3045
3046 thresholdPhase = thresh[0]
3046 thresholdPhase = thresh[0]
3047 thresholdNoise = thresh[1]
3047 thresholdNoise = thresh[1]
3048 thresholdDB = float(thresh[2])
3048 thresholdDB = float(thresh[2])
3049
3049
3050 thresholdDB1 = 10**(thresholdDB/10)
3050 thresholdDB1 = 10**(thresholdDB/10)
3051 pairsarray = numpy.array(pairslist)
3051 pairsarray = numpy.array(pairslist)
3052 indSides = pairsarray[:,1]
3052 indSides = pairsarray[:,1]
3053
3053
3054 pairslist1 = list(pairslist)
3054 pairslist1 = list(pairslist)
3055 pairslist1.append((0,1))
3055 pairslist1.append((0,1))
3056 pairslist1.append((3,4))
3056 pairslist1.append((3,4))
3057
3057
3058 listMeteors1 = []
3058 listMeteors1 = []
3059 listPowerSeries = []
3059 listPowerSeries = []
3060 listVoltageSeries = []
3060 listVoltageSeries = []
3061 #volts has the war data
3061 #volts has the war data
3062
3062
3063 if frequency == 30e6:
3063 if frequency == 30e6:
3064 timeLag = 45*10**-3
3064 timeLag = 45*10**-3
3065 else:
3065 else:
3066 timeLag = 15*10**-3
3066 timeLag = 15*10**-3
3067 lag = numpy.ceil(timeLag/timeInterval)
3067 lag = numpy.ceil(timeLag/timeInterval)
3068
3068
3069 for i in range(len(listMeteors)):
3069 for i in range(len(listMeteors)):
3070
3070
3071 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
3071 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
3072 meteorAux = numpy.zeros(16)
3072 meteorAux = numpy.zeros(16)
3073
3073
3074 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
3074 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
3075 mHeight = listMeteors[i][0]
3075 mHeight = listMeteors[i][0]
3076 mStart = listMeteors[i][1]
3076 mStart = listMeteors[i][1]
3077 mPeak = listMeteors[i][2]
3077 mPeak = listMeteors[i][2]
3078 mEnd = listMeteors[i][3]
3078 mEnd = listMeteors[i][3]
3079
3079
3080 #get the volt data between the start and end times of the meteor
3080 #get the volt data between the start and end times of the meteor
3081 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
3081 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
3082 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3082 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3083
3083
3084 #3.6. Phase Difference estimation
3084 #3.6. Phase Difference estimation
3085 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
3085 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
3086
3086
3087 #3.7. Phase difference removal & meteor start, peak and end times reestimated
3087 #3.7. Phase difference removal & meteor start, peak and end times reestimated
3088 #meteorVolts0.- all Channels, all Profiles
3088 #meteorVolts0.- all Channels, all Profiles
3089 meteorVolts0 = volts[:,:,mHeight]
3089 meteorVolts0 = volts[:,:,mHeight]
3090 meteorThresh = noise[:,mHeight]*thresholdNoise
3090 meteorThresh = noise[:,mHeight]*thresholdNoise
3091 meteorNoise = noise[:,mHeight]
3091 meteorNoise = noise[:,mHeight]
3092 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
3092 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
3093 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
3093 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
3094
3094
3095 #Times reestimation
3095 #Times reestimation
3096 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
3096 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
3097 if mStart1.size > 0:
3097 if mStart1.size > 0:
3098 mStart1 = mStart1[-1] + 1
3098 mStart1 = mStart1[-1] + 1
3099
3099
3100 else:
3100 else:
3101 mStart1 = mPeak
3101 mStart1 = mPeak
3102
3102
3103 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
3103 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
3104 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
3104 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
3105 if mEndDecayTime1.size == 0:
3105 if mEndDecayTime1.size == 0:
3106 mEndDecayTime1 = powerNet0.size
3106 mEndDecayTime1 = powerNet0.size
3107 else:
3107 else:
3108 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
3108 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
3109 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
3109 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
3110
3110
3111 #meteorVolts1.- all Channels, from start to end
3111 #meteorVolts1.- all Channels, from start to end
3112 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
3112 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
3113 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
3113 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
3114 if meteorVolts2.shape[1] == 0:
3114 if meteorVolts2.shape[1] == 0:
3115 meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1]
3115 meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1]
3116 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
3116 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
3117 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
3117 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
3118 ##################### END PARAMETERS REESTIMATION #########################
3118 ##################### END PARAMETERS REESTIMATION #########################
3119
3119
3120 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
3120 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
3121 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
3121 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
3122 if meteorVolts2.shape[1] > 0:
3122 if meteorVolts2.shape[1] > 0:
3123 #Phase Difference re-estimation
3123 #Phase Difference re-estimation
3124 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
3124 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
3125 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
3125 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
3126 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
3126 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
3127 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
3127 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
3128 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
3128 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
3129
3129
3130 #Phase Difference RMS
3130 #Phase Difference RMS
3131 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
3131 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
3132 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
3132 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
3133 #Data from Meteor
3133 #Data from Meteor
3134 mPeak1 = powerNet1.argmax() + mStart1
3134 mPeak1 = powerNet1.argmax() + mStart1
3135 mPeakPower1 = powerNet1.max()
3135 mPeakPower1 = powerNet1.max()
3136 noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight])
3136 noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight])
3137 mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux
3137 mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux
3138 Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1])
3138 Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1])
3139 Meteor1 = numpy.hstack((Meteor1,phaseDiffint))
3139 Meteor1 = numpy.hstack((Meteor1,phaseDiffint))
3140 PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1]
3140 PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1]
3141 #Vectorize
3141 #Vectorize
3142 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
3142 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
3143 meteorAux[7:11] = phaseDiffint[0:4]
3143 meteorAux[7:11] = phaseDiffint[0:4]
3144
3144
3145 #Rejection Criterions
3145 #Rejection Criterions
3146 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
3146 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
3147 meteorAux[-1] = 17
3147 meteorAux[-1] = 17
3148 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
3148 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
3149 meteorAux[-1] = 1
3149 meteorAux[-1] = 1
3150
3150
3151
3151
3152 else:
3152 else:
3153 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
3153 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
3154 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
3154 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
3155 PowerSeries = 0
3155 PowerSeries = 0
3156
3156
3157 listMeteors1.append(meteorAux)
3157 listMeteors1.append(meteorAux)
3158 listPowerSeries.append(PowerSeries)
3158 listPowerSeries.append(PowerSeries)
3159 listVoltageSeries.append(meteorVolts1)
3159 listVoltageSeries.append(meteorVolts1)
3160
3160
3161 return listMeteors1, listPowerSeries, listVoltageSeries
3161 return listMeteors1, listPowerSeries, listVoltageSeries
3162
3162
3163 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
3163 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
3164
3164
3165 threshError = 10
3165 threshError = 10
3166 #Depending if it is 30 or 50 MHz
3166 #Depending if it is 30 or 50 MHz
3167 if frequency == 30e6:
3167 if frequency == 30e6:
3168 timeLag = 45*10**-3
3168 timeLag = 45*10**-3
3169 else:
3169 else:
3170 timeLag = 15*10**-3
3170 timeLag = 15*10**-3
3171 lag = numpy.ceil(timeLag/timeInterval)
3171 lag = numpy.ceil(timeLag/timeInterval)
3172
3172
3173 listMeteors1 = []
3173 listMeteors1 = []
3174
3174
3175 for i in range(len(listMeteors)):
3175 for i in range(len(listMeteors)):
3176 meteorPower = listPower[i]
3176 meteorPower = listPower[i]
3177 meteorAux = listMeteors[i]
3177 meteorAux = listMeteors[i]
3178
3178
3179 if meteorAux[-1] == 0:
3179 if meteorAux[-1] == 0:
3180
3180
3181 try:
3181 try:
3182 indmax = meteorPower.argmax()
3182 indmax = meteorPower.argmax()
3183 indlag = indmax + lag
3183 indlag = indmax + lag
3184
3184
3185 y = meteorPower[indlag:]
3185 y = meteorPower[indlag:]
3186 x = numpy.arange(0, y.size)*timeLag
3186 x = numpy.arange(0, y.size)*timeLag
3187
3187
3188 #first guess
3188 #first guess
3189 a = y[0]
3189 a = y[0]
3190 tau = timeLag
3190 tau = timeLag
3191 #exponential fit
3191 #exponential fit
3192 popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau])
3192 popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau])
3193 y1 = self.__exponential_function(x, *popt)
3193 y1 = self.__exponential_function(x, *popt)
3194 #error estimation
3194 #error estimation
3195 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
3195 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
3196
3196
3197 decayTime = popt[1]
3197 decayTime = popt[1]
3198 riseTime = indmax*timeInterval
3198 riseTime = indmax*timeInterval
3199 meteorAux[11:13] = [decayTime, error]
3199 meteorAux[11:13] = [decayTime, error]
3200
3200
3201 #Table items 7, 8 and 11
3201 #Table items 7, 8 and 11
3202 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
3202 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
3203 meteorAux[-1] = 7
3203 meteorAux[-1] = 7
3204 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
3204 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
3205 meteorAux[-1] = 8
3205 meteorAux[-1] = 8
3206 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
3206 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
3207 meteorAux[-1] = 11
3207 meteorAux[-1] = 11
3208
3208
3209
3209
3210 except:
3210 except:
3211 meteorAux[-1] = 11
3211 meteorAux[-1] = 11
3212
3212
3213
3213
3214 listMeteors1.append(meteorAux)
3214 listMeteors1.append(meteorAux)
3215
3215
3216 return listMeteors1
3216 return listMeteors1
3217
3217
3218 #Exponential Function
3218 #Exponential Function
3219
3219
3220 def __exponential_function(self, x, a, tau):
3220 def __exponential_function(self, x, a, tau):
3221 y = a*numpy.exp(-x/tau)
3221 y = a*numpy.exp(-x/tau)
3222 return y
3222 return y
3223
3223
3224 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
3224 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
3225
3225
3226 pairslist1 = list(pairslist)
3226 pairslist1 = list(pairslist)
3227 pairslist1.append((0,1))
3227 pairslist1.append((0,1))
3228 pairslist1.append((3,4))
3228 pairslist1.append((3,4))
3229 numPairs = len(pairslist1)
3229 numPairs = len(pairslist1)
3230 #Time Lag
3230 #Time Lag
3231 timeLag = 45*10**-3
3231 timeLag = 45*10**-3
3232 c = 3e8
3232 c = 3e8
3233 lag = numpy.ceil(timeLag/timeInterval)
3233 lag = numpy.ceil(timeLag/timeInterval)
3234 freq = 30e6
3234 freq = 30e6
3235
3235
3236 listMeteors1 = []
3236 listMeteors1 = []
3237
3237
3238 for i in range(len(listMeteors)):
3238 for i in range(len(listMeteors)):
3239 meteorAux = listMeteors[i]
3239 meteorAux = listMeteors[i]
3240 if meteorAux[-1] == 0:
3240 if meteorAux[-1] == 0:
3241 mStart = listMeteors[i][1]
3241 mStart = listMeteors[i][1]
3242 mPeak = listMeteors[i][2]
3242 mPeak = listMeteors[i][2]
3243 mLag = mPeak - mStart + lag
3243 mLag = mPeak - mStart + lag
3244
3244
3245 #get the volt data between the start and end times of the meteor
3245 #get the volt data between the start and end times of the meteor
3246 meteorVolts = listVolts[i]
3246 meteorVolts = listVolts[i]
3247 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3247 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3248
3248
3249 #Get CCF
3249 #Get CCF
3250 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
3250 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
3251
3251
3252 #Method 2
3252 #Method 2
3253 slopes = numpy.zeros(numPairs)
3253 slopes = numpy.zeros(numPairs)
3254 time = numpy.array([-2,-1,1,2])*timeInterval
3254 time = numpy.array([-2,-1,1,2])*timeInterval
3255 angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
3255 angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
3256
3256
3257 #Correct phases
3257 #Correct phases
3258 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
3258 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
3259 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
3259 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
3260
3260
3261 if indDer[0].shape[0] > 0:
3261 if indDer[0].shape[0] > 0:
3262 for i in range(indDer[0].shape[0]):
3262 for i in range(indDer[0].shape[0]):
3263 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
3263 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
3264 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
3264 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
3265
3265
3266 # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]]))
3266 # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]]))
3267 for j in range(numPairs):
3267 for j in range(numPairs):
3268 fit = stats.linregress(time, angAllCCF[j,:])
3268 fit = stats.linregress(time, angAllCCF[j,:])
3269 slopes[j] = fit[0]
3269 slopes[j] = fit[0]
3270
3270
3271 #Remove Outlier
3271 #Remove Outlier
3272 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3272 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3273 # slopes = numpy.delete(slopes,indOut)
3273 # slopes = numpy.delete(slopes,indOut)
3274 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3274 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3275 # slopes = numpy.delete(slopes,indOut)
3275 # slopes = numpy.delete(slopes,indOut)
3276
3276
3277 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
3277 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
3278 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
3278 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
3279 meteorAux[-2] = radialError
3279 meteorAux[-2] = radialError
3280 meteorAux[-3] = radialVelocity
3280 meteorAux[-3] = radialVelocity
3281
3281
3282 #Setting Error
3282 #Setting Error
3283 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
3283 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
3284 if numpy.abs(radialVelocity) > 200:
3284 if numpy.abs(radialVelocity) > 200:
3285 meteorAux[-1] = 15
3285 meteorAux[-1] = 15
3286 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
3286 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
3287 elif radialError > radialStdThresh:
3287 elif radialError > radialStdThresh:
3288 meteorAux[-1] = 12
3288 meteorAux[-1] = 12
3289
3289
3290 listMeteors1.append(meteorAux)
3290 listMeteors1.append(meteorAux)
3291 return listMeteors1
3291 return listMeteors1
3292
3292
3293 def __setNewArrays(self, listMeteors, date, heiRang):
3293 def __setNewArrays(self, listMeteors, date, heiRang):
3294
3294
3295 #New arrays
3295 #New arrays
3296 arrayMeteors = numpy.array(listMeteors)
3296 arrayMeteors = numpy.array(listMeteors)
3297 arrayParameters = numpy.zeros((len(listMeteors), 13))
3297 arrayParameters = numpy.zeros((len(listMeteors), 13))
3298
3298
3299 #Date inclusion
3299 #Date inclusion
3300 # date = re.findall(r'\((.*?)\)', date)
3300 # date = re.findall(r'\((.*?)\)', date)
3301 # date = date[0].split(',')
3301 # date = date[0].split(',')
3302 # date = map(int, date)
3302 # date = map(int, date)
3303 #
3303 #
3304 # if len(date)<6:
3304 # if len(date)<6:
3305 # date.append(0)
3305 # date.append(0)
3306 #
3306 #
3307 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
3307 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
3308 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
3308 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
3309 arrayDate = numpy.tile(date, (len(listMeteors)))
3309 arrayDate = numpy.tile(date, (len(listMeteors)))
3310
3310
3311 #Meteor array
3311 #Meteor array
3312 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
3312 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
3313 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
3313 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
3314
3314
3315 #Parameters Array
3315 #Parameters Array
3316 arrayParameters[:,0] = arrayDate #Date
3316 arrayParameters[:,0] = arrayDate #Date
3317 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
3317 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
3318 arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error
3318 arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error
3319 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
3319 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
3320 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
3320 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
3321
3321
3322
3322
3323 return arrayParameters
3323 return arrayParameters
3324
3324
3325 class CorrectSMPhases(Operation):
3325 class CorrectSMPhases(Operation):
3326
3326
3327 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
3327 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
3328
3328
3329 arrayParameters = dataOut.data_param
3329 arrayParameters = dataOut.data_param
3330 pairsList = []
3330 pairsList = []
3331 pairx = (0,1)
3331 pairx = (0,1)
3332 pairy = (2,3)
3332 pairy = (2,3)
3333 pairsList.append(pairx)
3333 pairsList.append(pairx)
3334 pairsList.append(pairy)
3334 pairsList.append(pairy)
3335 jph = numpy.zeros(4)
3335 jph = numpy.zeros(4)
3336
3336
3337 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
3337 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
3338 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
3338 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
3339 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
3339 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
3340
3340
3341 meteorOps = SMOperations()
3341 meteorOps = SMOperations()
3342 if channelPositions is None:
3342 if channelPositions is None:
3343 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3343 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3344 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3344 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3345
3345
3346 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3346 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3347 h = (hmin,hmax)
3347 h = (hmin,hmax)
3348
3348
3349 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
3349 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
3350
3350
3351 dataOut.data_param = arrayParameters
3351 dataOut.data_param = arrayParameters
3352 return
3352 return
3353
3353
3354 class SMPhaseCalibration(Operation):
3354 class SMPhaseCalibration(Operation):
3355
3355
3356 __buffer = None
3356 __buffer = None
3357
3357
3358 __initime = None
3358 __initime = None
3359
3359
3360 __dataReady = False
3360 __dataReady = False
3361
3361
3362 __isConfig = False
3362 __isConfig = False
3363
3363
3364 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
3364 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
3365
3365
3366 dataTime = currentTime + paramInterval
3366 dataTime = currentTime + paramInterval
3367 deltaTime = dataTime - initTime
3367 deltaTime = dataTime - initTime
3368
3368
3369 if deltaTime >= outputInterval or deltaTime < 0:
3369 if deltaTime >= outputInterval or deltaTime < 0:
3370 return True
3370 return True
3371
3371
3372 return False
3372 return False
3373
3373
3374 def __getGammas(self, pairs, d, phases):
3374 def __getGammas(self, pairs, d, phases):
3375 gammas = numpy.zeros(2)
3375 gammas = numpy.zeros(2)
3376
3376
3377 for i in range(len(pairs)):
3377 for i in range(len(pairs)):
3378
3378
3379 pairi = pairs[i]
3379 pairi = pairs[i]
3380
3380
3381 phip3 = phases[:,pairi[0]]
3381 phip3 = phases[:,pairi[0]]
3382 d3 = d[pairi[0]]
3382 d3 = d[pairi[0]]
3383 phip2 = phases[:,pairi[1]]
3383 phip2 = phases[:,pairi[1]]
3384 d2 = d[pairi[1]]
3384 d2 = d[pairi[1]]
3385 #Calculating gamma
3385 #Calculating gamma
3386 # jdcos = alp1/(k*d1)
3386 # jdcos = alp1/(k*d1)
3387 # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0)))
3387 # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0)))
3388 jgamma = -phip2*d3/d2 - phip3
3388 jgamma = -phip2*d3/d2 - phip3
3389 jgamma = numpy.angle(numpy.exp(1j*jgamma))
3389 jgamma = numpy.angle(numpy.exp(1j*jgamma))
3390 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
3390 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
3391 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
3391 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
3392
3392
3393 #Revised distribution
3393 #Revised distribution
3394 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
3394 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
3395
3395
3396 #Histogram
3396 #Histogram
3397 nBins = 64
3397 nBins = 64
3398 rmin = -0.5*numpy.pi
3398 rmin = -0.5*numpy.pi
3399 rmax = 0.5*numpy.pi
3399 rmax = 0.5*numpy.pi
3400 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
3400 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
3401
3401
3402 meteorsY = phaseHisto[0]
3402 meteorsY = phaseHisto[0]
3403 phasesX = phaseHisto[1][:-1]
3403 phasesX = phaseHisto[1][:-1]
3404 width = phasesX[1] - phasesX[0]
3404 width = phasesX[1] - phasesX[0]
3405 phasesX += width/2
3405 phasesX += width/2
3406
3406
3407 #Gaussian aproximation
3407 #Gaussian aproximation
3408 bpeak = meteorsY.argmax()
3408 bpeak = meteorsY.argmax()
3409 peak = meteorsY.max()
3409 peak = meteorsY.max()
3410 jmin = bpeak - 5
3410 jmin = bpeak - 5
3411 jmax = bpeak + 5 + 1
3411 jmax = bpeak + 5 + 1
3412
3412
3413 if jmin<0:
3413 if jmin<0:
3414 jmin = 0
3414 jmin = 0
3415 jmax = 6
3415 jmax = 6
3416 elif jmax > meteorsY.size:
3416 elif jmax > meteorsY.size:
3417 jmin = meteorsY.size - 6
3417 jmin = meteorsY.size - 6
3418 jmax = meteorsY.size
3418 jmax = meteorsY.size
3419
3419
3420 x0 = numpy.array([peak,bpeak,50])
3420 x0 = numpy.array([peak,bpeak,50])
3421 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
3421 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
3422
3422
3423 #Gammas
3423 #Gammas
3424 gammas[i] = coeff[0][1]
3424 gammas[i] = coeff[0][1]
3425
3425
3426 return gammas
3426 return gammas
3427
3427
3428 def __residualFunction(self, coeffs, y, t):
3428 def __residualFunction(self, coeffs, y, t):
3429
3429
3430 return y - self.__gauss_function(t, coeffs)
3430 return y - self.__gauss_function(t, coeffs)
3431
3431
3432 def __gauss_function(self, t, coeffs):
3432 def __gauss_function(self, t, coeffs):
3433
3433
3434 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
3434 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
3435
3435
3436 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
3436 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
3437 meteorOps = SMOperations()
3437 meteorOps = SMOperations()
3438 nchan = 4
3438 nchan = 4
3439 pairx = pairsList[0] #x es 0
3439 pairx = pairsList[0] #x es 0
3440 pairy = pairsList[1] #y es 1
3440 pairy = pairsList[1] #y es 1
3441 center_xangle = 0
3441 center_xangle = 0
3442 center_yangle = 0
3442 center_yangle = 0
3443 range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
3443 range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
3444 ntimes = len(range_angle)
3444 ntimes = len(range_angle)
3445
3445
3446 nstepsx = 20
3446 nstepsx = 20
3447 nstepsy = 20
3447 nstepsy = 20
3448
3448
3449 for iz in range(ntimes):
3449 for iz in range(ntimes):
3450 min_xangle = -range_angle[iz]/2 + center_xangle
3450 min_xangle = -range_angle[iz]/2 + center_xangle
3451 max_xangle = range_angle[iz]/2 + center_xangle
3451 max_xangle = range_angle[iz]/2 + center_xangle
3452 min_yangle = -range_angle[iz]/2 + center_yangle
3452 min_yangle = -range_angle[iz]/2 + center_yangle
3453 max_yangle = range_angle[iz]/2 + center_yangle
3453 max_yangle = range_angle[iz]/2 + center_yangle
3454
3454
3455 inc_x = (max_xangle-min_xangle)/nstepsx
3455 inc_x = (max_xangle-min_xangle)/nstepsx
3456 inc_y = (max_yangle-min_yangle)/nstepsy
3456 inc_y = (max_yangle-min_yangle)/nstepsy
3457
3457
3458 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
3458 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
3459 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
3459 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
3460 penalty = numpy.zeros((nstepsx,nstepsy))
3460 penalty = numpy.zeros((nstepsx,nstepsy))
3461 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
3461 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
3462 jph = numpy.zeros(nchan)
3462 jph = numpy.zeros(nchan)
3463
3463
3464 # Iterations looking for the offset
3464 # Iterations looking for the offset
3465 for iy in range(int(nstepsy)):
3465 for iy in range(int(nstepsy)):
3466 for ix in range(int(nstepsx)):
3466 for ix in range(int(nstepsx)):
3467 d3 = d[pairsList[1][0]]
3467 d3 = d[pairsList[1][0]]
3468 d2 = d[pairsList[1][1]]
3468 d2 = d[pairsList[1][1]]
3469 d5 = d[pairsList[0][0]]
3469 d5 = d[pairsList[0][0]]
3470 d4 = d[pairsList[0][1]]
3470 d4 = d[pairsList[0][1]]
3471
3471
3472 alp2 = alpha_y[iy] #gamma 1
3472 alp2 = alpha_y[iy] #gamma 1
3473 alp4 = alpha_x[ix] #gamma 0
3473 alp4 = alpha_x[ix] #gamma 0
3474
3474
3475 alp3 = -alp2*d3/d2 - gammas[1]
3475 alp3 = -alp2*d3/d2 - gammas[1]
3476 alp5 = -alp4*d5/d4 - gammas[0]
3476 alp5 = -alp4*d5/d4 - gammas[0]
3477 # jph[pairy[1]] = alpha_y[iy]
3477 # jph[pairy[1]] = alpha_y[iy]
3478 # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
3478 # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
3479
3479
3480 # jph[pairx[1]] = alpha_x[ix]
3480 # jph[pairx[1]] = alpha_x[ix]
3481 # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
3481 # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
3482 jph[pairsList[0][1]] = alp4
3482 jph[pairsList[0][1]] = alp4
3483 jph[pairsList[0][0]] = alp5
3483 jph[pairsList[0][0]] = alp5
3484 jph[pairsList[1][0]] = alp3
3484 jph[pairsList[1][0]] = alp3
3485 jph[pairsList[1][1]] = alp2
3485 jph[pairsList[1][1]] = alp2
3486 jph_array[:,ix,iy] = jph
3486 jph_array[:,ix,iy] = jph
3487 # d = [2.0,2.5,2.5,2.0]
3487 # d = [2.0,2.5,2.5,2.0]
3488 #falta chequear si va a leer bien los meteoros
3488 #falta chequear si va a leer bien los meteoros
3489 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
3489 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
3490 error = meteorsArray1[:,-1]
3490 error = meteorsArray1[:,-1]
3491 ind1 = numpy.where(error==0)[0]
3491 ind1 = numpy.where(error==0)[0]
3492 penalty[ix,iy] = ind1.size
3492 penalty[ix,iy] = ind1.size
3493
3493
3494 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
3494 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
3495 phOffset = jph_array[:,i,j]
3495 phOffset = jph_array[:,i,j]
3496
3496
3497 center_xangle = phOffset[pairx[1]]
3497 center_xangle = phOffset[pairx[1]]
3498 center_yangle = phOffset[pairy[1]]
3498 center_yangle = phOffset[pairy[1]]
3499
3499
3500 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
3500 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
3501 phOffset = phOffset*180/numpy.pi
3501 phOffset = phOffset*180/numpy.pi
3502 return phOffset
3502 return phOffset
3503
3503
3504
3504
3505 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
3505 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
3506
3506
3507 dataOut.flagNoData = True
3507 dataOut.flagNoData = True
3508 self.__dataReady = False
3508 self.__dataReady = False
3509 dataOut.outputInterval = nHours*3600
3509 dataOut.outputInterval = nHours*3600
3510
3510
3511 if self.__isConfig == False:
3511 if self.__isConfig == False:
3512 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
3512 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
3513 #Get Initial LTC time
3513 #Get Initial LTC time
3514 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
3514 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
3515 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
3515 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
3516
3516
3517 self.__isConfig = True
3517 self.__isConfig = True
3518
3518
3519 if self.__buffer is None:
3519 if self.__buffer is None:
3520 self.__buffer = dataOut.data_param.copy()
3520 self.__buffer = dataOut.data_param.copy()
3521
3521
3522 else:
3522 else:
3523 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
3523 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
3524
3524
3525 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
3525 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
3526
3526
3527 if self.__dataReady:
3527 if self.__dataReady:
3528 dataOut.utctimeInit = self.__initime
3528 dataOut.utctimeInit = self.__initime
3529 self.__initime += dataOut.outputInterval #to erase time offset
3529 self.__initime += dataOut.outputInterval #to erase time offset
3530
3530
3531 freq = dataOut.frequency
3531 freq = dataOut.frequency
3532 c = dataOut.C #m/s
3532 c = dataOut.C #m/s
3533 lamb = c/freq
3533 lamb = c/freq
3534 k = 2*numpy.pi/lamb
3534 k = 2*numpy.pi/lamb
3535 azimuth = 0
3535 azimuth = 0
3536 h = (hmin, hmax)
3536 h = (hmin, hmax)
3537 # pairs = ((0,1),(2,3)) #Estrella
3537 # pairs = ((0,1),(2,3)) #Estrella
3538 # pairs = ((1,0),(2,3)) #T
3538 # pairs = ((1,0),(2,3)) #T
3539
3539
3540 if channelPositions is None:
3540 if channelPositions is None:
3541 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3541 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3542 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3542 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3543 meteorOps = SMOperations()
3543 meteorOps = SMOperations()
3544 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3544 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3545
3545
3546 #Checking correct order of pairs
3546 #Checking correct order of pairs
3547 pairs = []
3547 pairs = []
3548 if distances[1] > distances[0]:
3548 if distances[1] > distances[0]:
3549 pairs.append((1,0))
3549 pairs.append((1,0))
3550 else:
3550 else:
3551 pairs.append((0,1))
3551 pairs.append((0,1))
3552
3552
3553 if distances[3] > distances[2]:
3553 if distances[3] > distances[2]:
3554 pairs.append((3,2))
3554 pairs.append((3,2))
3555 else:
3555 else:
3556 pairs.append((2,3))
3556 pairs.append((2,3))
3557 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
3557 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
3558
3558
3559 meteorsArray = self.__buffer
3559 meteorsArray = self.__buffer
3560 error = meteorsArray[:,-1]
3560 error = meteorsArray[:,-1]
3561 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
3561 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
3562 ind1 = numpy.where(boolError)[0]
3562 ind1 = numpy.where(boolError)[0]
3563 meteorsArray = meteorsArray[ind1,:]
3563 meteorsArray = meteorsArray[ind1,:]
3564 meteorsArray[:,-1] = 0
3564 meteorsArray[:,-1] = 0
3565 phases = meteorsArray[:,8:12]
3565 phases = meteorsArray[:,8:12]
3566
3566
3567 #Calculate Gammas
3567 #Calculate Gammas
3568 gammas = self.__getGammas(pairs, distances, phases)
3568 gammas = self.__getGammas(pairs, distances, phases)
3569 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
3569 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
3570 #Calculate Phases
3570 #Calculate Phases
3571 phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray)
3571 phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray)
3572 phasesOff = phasesOff.reshape((1,phasesOff.size))
3572 phasesOff = phasesOff.reshape((1,phasesOff.size))
3573 dataOut.data_output = -phasesOff
3573 dataOut.data_output = -phasesOff
3574 dataOut.flagNoData = False
3574 dataOut.flagNoData = False
3575 self.__buffer = None
3575 self.__buffer = None
3576
3576
3577
3577
3578 return
3578 return
3579
3579
3580 class SMOperations():
3580 class SMOperations():
3581
3581
3582 def __init__(self):
3582 def __init__(self):
3583
3583
3584 return
3584 return
3585
3585
3586 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
3586 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
3587
3587
3588 arrayParameters = arrayParameters0.copy()
3588 arrayParameters = arrayParameters0.copy()
3589 hmin = h[0]
3589 hmin = h[0]
3590 hmax = h[1]
3590 hmax = h[1]
3591
3591
3592 #Calculate AOA (Error N 3, 4)
3592 #Calculate AOA (Error N 3, 4)
3593 #JONES ET AL. 1998
3593 #JONES ET AL. 1998
3594 AOAthresh = numpy.pi/8
3594 AOAthresh = numpy.pi/8
3595 error = arrayParameters[:,-1]
3595 error = arrayParameters[:,-1]
3596 phases = -arrayParameters[:,8:12] + jph
3596 phases = -arrayParameters[:,8:12] + jph
3597 # phases = numpy.unwrap(phases)
3597 # phases = numpy.unwrap(phases)
3598 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
3598 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
3599
3599
3600 #Calculate Heights (Error N 13 and 14)
3600 #Calculate Heights (Error N 13 and 14)
3601 error = arrayParameters[:,-1]
3601 error = arrayParameters[:,-1]
3602 Ranges = arrayParameters[:,1]
3602 Ranges = arrayParameters[:,1]
3603 zenith = arrayParameters[:,4]
3603 zenith = arrayParameters[:,4]
3604 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
3604 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
3605
3605
3606 #----------------------- Get Final data ------------------------------------
3606 #----------------------- Get Final data ------------------------------------
3607 # error = arrayParameters[:,-1]
3607 # error = arrayParameters[:,-1]
3608 # ind1 = numpy.where(error==0)[0]
3608 # ind1 = numpy.where(error==0)[0]
3609 # arrayParameters = arrayParameters[ind1,:]
3609 # arrayParameters = arrayParameters[ind1,:]
3610
3610
3611 return arrayParameters
3611 return arrayParameters
3612
3612
3613 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
3613 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
3614
3614
3615 arrayAOA = numpy.zeros((phases.shape[0],3))
3615 arrayAOA = numpy.zeros((phases.shape[0],3))
3616 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
3616 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
3617
3617
3618 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3618 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3619 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3619 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3620 arrayAOA[:,2] = cosDirError
3620 arrayAOA[:,2] = cosDirError
3621
3621
3622 azimuthAngle = arrayAOA[:,0]
3622 azimuthAngle = arrayAOA[:,0]
3623 zenithAngle = arrayAOA[:,1]
3623 zenithAngle = arrayAOA[:,1]
3624
3624
3625 #Setting Error
3625 #Setting Error
3626 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
3626 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
3627 error[indError] = 0
3627 error[indError] = 0
3628 #Number 3: AOA not fesible
3628 #Number 3: AOA not fesible
3629 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3629 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3630 error[indInvalid] = 3
3630 error[indInvalid] = 3
3631 #Number 4: Large difference in AOAs obtained from different antenna baselines
3631 #Number 4: Large difference in AOAs obtained from different antenna baselines
3632 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3632 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3633 error[indInvalid] = 4
3633 error[indInvalid] = 4
3634 return arrayAOA, error
3634 return arrayAOA, error
3635
3635
3636 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
3636 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
3637
3637
3638 #Initializing some variables
3638 #Initializing some variables
3639 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3639 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3640 ang_aux = ang_aux.reshape(1,ang_aux.size)
3640 ang_aux = ang_aux.reshape(1,ang_aux.size)
3641
3641
3642 cosdir = numpy.zeros((arrayPhase.shape[0],2))
3642 cosdir = numpy.zeros((arrayPhase.shape[0],2))
3643 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3643 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3644
3644
3645
3645
3646 for i in range(2):
3646 for i in range(2):
3647 ph0 = arrayPhase[:,pairsList[i][0]]
3647 ph0 = arrayPhase[:,pairsList[i][0]]
3648 ph1 = arrayPhase[:,pairsList[i][1]]
3648 ph1 = arrayPhase[:,pairsList[i][1]]
3649 d0 = distances[pairsList[i][0]]
3649 d0 = distances[pairsList[i][0]]
3650 d1 = distances[pairsList[i][1]]
3650 d1 = distances[pairsList[i][1]]
3651
3651
3652 ph0_aux = ph0 + ph1
3652 ph0_aux = ph0 + ph1
3653 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
3653 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
3654 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
3654 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
3655 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
3655 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
3656 #First Estimation
3656 #First Estimation
3657 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
3657 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
3658
3658
3659 #Most-Accurate Second Estimation
3659 #Most-Accurate Second Estimation
3660 phi1_aux = ph0 - ph1
3660 phi1_aux = ph0 - ph1
3661 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3661 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3662 #Direction Cosine 1
3662 #Direction Cosine 1
3663 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
3663 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
3664
3664
3665 #Searching the correct Direction Cosine
3665 #Searching the correct Direction Cosine
3666 cosdir0_aux = cosdir0[:,i]
3666 cosdir0_aux = cosdir0[:,i]
3667 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3667 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3668 #Minimum Distance
3668 #Minimum Distance
3669 cosDiff = (cosdir1 - cosdir0_aux)**2
3669 cosDiff = (cosdir1 - cosdir0_aux)**2
3670 indcos = cosDiff.argmin(axis = 1)
3670 indcos = cosDiff.argmin(axis = 1)
3671 #Saving Value obtained
3671 #Saving Value obtained
3672 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3672 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3673
3673
3674 return cosdir0, cosdir
3674 return cosdir0, cosdir
3675
3675
3676 def __calculateAOA(self, cosdir, azimuth):
3676 def __calculateAOA(self, cosdir, azimuth):
3677 cosdirX = cosdir[:,0]
3677 cosdirX = cosdir[:,0]
3678 cosdirY = cosdir[:,1]
3678 cosdirY = cosdir[:,1]
3679
3679
3680 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3680 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3681 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
3681 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
3682 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3682 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3683
3683
3684 return angles
3684 return angles
3685
3685
3686 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3686 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3687
3687
3688 Ramb = 375 #Ramb = c/(2*PRF)
3688 Ramb = 375 #Ramb = c/(2*PRF)
3689 Re = 6371 #Earth Radius
3689 Re = 6371 #Earth Radius
3690 heights = numpy.zeros(Ranges.shape)
3690 heights = numpy.zeros(Ranges.shape)
3691
3691
3692 R_aux = numpy.array([0,1,2])*Ramb
3692 R_aux = numpy.array([0,1,2])*Ramb
3693 R_aux = R_aux.reshape(1,R_aux.size)
3693 R_aux = R_aux.reshape(1,R_aux.size)
3694
3694
3695 Ranges = Ranges.reshape(Ranges.size,1)
3695 Ranges = Ranges.reshape(Ranges.size,1)
3696
3696
3697 Ri = Ranges + R_aux
3697 Ri = Ranges + R_aux
3698 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3698 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3699
3699
3700 #Check if there is a height between 70 and 110 km
3700 #Check if there is a height between 70 and 110 km
3701 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3701 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3702 ind_h = numpy.where(h_bool == 1)[0]
3702 ind_h = numpy.where(h_bool == 1)[0]
3703
3703
3704 hCorr = hi[ind_h, :]
3704 hCorr = hi[ind_h, :]
3705 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3705 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3706
3706
3707 hCorr = hi[ind_hCorr][:len(ind_h)]
3707 hCorr = hi[ind_hCorr][:len(ind_h)]
3708 heights[ind_h] = hCorr
3708 heights[ind_h] = hCorr
3709
3709
3710 #Setting Error
3710 #Setting Error
3711 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3711 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3712 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3712 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3713 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
3713 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
3714 error[indError] = 0
3714 error[indError] = 0
3715 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3715 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3716 error[indInvalid2] = 14
3716 error[indInvalid2] = 14
3717 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3717 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3718 error[indInvalid1] = 13
3718 error[indInvalid1] = 13
3719
3719
3720 return heights, error
3720 return heights, error
3721
3721
3722 def getPhasePairs(self, channelPositions):
3722 def getPhasePairs(self, channelPositions):
3723 chanPos = numpy.array(channelPositions)
3723 chanPos = numpy.array(channelPositions)
3724 listOper = list(itertools.combinations(list(range(5)),2))
3724 listOper = list(itertools.combinations(list(range(5)),2))
3725
3725
3726 distances = numpy.zeros(4)
3726 distances = numpy.zeros(4)
3727 axisX = []
3727 axisX = []
3728 axisY = []
3728 axisY = []
3729 distX = numpy.zeros(3)
3729 distX = numpy.zeros(3)
3730 distY = numpy.zeros(3)
3730 distY = numpy.zeros(3)
3731 ix = 0
3731 ix = 0
3732 iy = 0
3732 iy = 0
3733
3733
3734 pairX = numpy.zeros((2,2))
3734 pairX = numpy.zeros((2,2))
3735 pairY = numpy.zeros((2,2))
3735 pairY = numpy.zeros((2,2))
3736
3736
3737 for i in range(len(listOper)):
3737 for i in range(len(listOper)):
3738 pairi = listOper[i]
3738 pairi = listOper[i]
3739
3739
3740 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
3740 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
3741
3741
3742 if posDif[0] == 0:
3742 if posDif[0] == 0:
3743 axisY.append(pairi)
3743 axisY.append(pairi)
3744 distY[iy] = posDif[1]
3744 distY[iy] = posDif[1]
3745 iy += 1
3745 iy += 1
3746 elif posDif[1] == 0:
3746 elif posDif[1] == 0:
3747 axisX.append(pairi)
3747 axisX.append(pairi)
3748 distX[ix] = posDif[0]
3748 distX[ix] = posDif[0]
3749 ix += 1
3749 ix += 1
3750
3750
3751 for i in range(2):
3751 for i in range(2):
3752 if i==0:
3752 if i==0:
3753 dist0 = distX
3753 dist0 = distX
3754 axis0 = axisX
3754 axis0 = axisX
3755 else:
3755 else:
3756 dist0 = distY
3756 dist0 = distY
3757 axis0 = axisY
3757 axis0 = axisY
3758
3758
3759 side = numpy.argsort(dist0)[:-1]
3759 side = numpy.argsort(dist0)[:-1]
3760 axis0 = numpy.array(axis0)[side,:]
3760 axis0 = numpy.array(axis0)[side,:]
3761 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
3761 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
3762 axis1 = numpy.unique(numpy.reshape(axis0,4))
3762 axis1 = numpy.unique(numpy.reshape(axis0,4))
3763 side = axis1[axis1 != chanC]
3763 side = axis1[axis1 != chanC]
3764 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
3764 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
3765 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
3765 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
3766 if diff1<0:
3766 if diff1<0:
3767 chan2 = side[0]
3767 chan2 = side[0]
3768 d2 = numpy.abs(diff1)
3768 d2 = numpy.abs(diff1)
3769 chan1 = side[1]
3769 chan1 = side[1]
3770 d1 = numpy.abs(diff2)
3770 d1 = numpy.abs(diff2)
3771 else:
3771 else:
3772 chan2 = side[1]
3772 chan2 = side[1]
3773 d2 = numpy.abs(diff2)
3773 d2 = numpy.abs(diff2)
3774 chan1 = side[0]
3774 chan1 = side[0]
3775 d1 = numpy.abs(diff1)
3775 d1 = numpy.abs(diff1)
3776
3776
3777 if i==0:
3777 if i==0:
3778 chanCX = chanC
3778 chanCX = chanC
3779 chan1X = chan1
3779 chan1X = chan1
3780 chan2X = chan2
3780 chan2X = chan2
3781 distances[0:2] = numpy.array([d1,d2])
3781 distances[0:2] = numpy.array([d1,d2])
3782 else:
3782 else:
3783 chanCY = chanC
3783 chanCY = chanC
3784 chan1Y = chan1
3784 chan1Y = chan1
3785 chan2Y = chan2
3785 chan2Y = chan2
3786 distances[2:4] = numpy.array([d1,d2])
3786 distances[2:4] = numpy.array([d1,d2])
3787 # axisXsides = numpy.reshape(axisX[ix,:],4)
3787 # axisXsides = numpy.reshape(axisX[ix,:],4)
3788 #
3788 #
3789 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
3789 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
3790 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
3790 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
3791 #
3791 #
3792 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
3792 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
3793 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
3793 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
3794 # channel25X = int(pairX[0,ind25X])
3794 # channel25X = int(pairX[0,ind25X])
3795 # channel20X = int(pairX[1,ind20X])
3795 # channel20X = int(pairX[1,ind20X])
3796 # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0]
3796 # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0]
3797 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
3797 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
3798 # channel25Y = int(pairY[0,ind25Y])
3798 # channel25Y = int(pairY[0,ind25Y])
3799 # channel20Y = int(pairY[1,ind20Y])
3799 # channel20Y = int(pairY[1,ind20Y])
3800
3800
3801 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
3801 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
3802 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
3802 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
3803
3803
3804 return pairslist, distances
3804 return pairslist, distances
3805 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
3805 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
3806 #
3806 #
3807 # arrayAOA = numpy.zeros((phases.shape[0],3))
3807 # arrayAOA = numpy.zeros((phases.shape[0],3))
3808 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
3808 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
3809 #
3809 #
3810 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3810 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3811 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3811 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3812 # arrayAOA[:,2] = cosDirError
3812 # arrayAOA[:,2] = cosDirError
3813 #
3813 #
3814 # azimuthAngle = arrayAOA[:,0]
3814 # azimuthAngle = arrayAOA[:,0]
3815 # zenithAngle = arrayAOA[:,1]
3815 # zenithAngle = arrayAOA[:,1]
3816 #
3816 #
3817 # #Setting Error
3817 # #Setting Error
3818 # #Number 3: AOA not fesible
3818 # #Number 3: AOA not fesible
3819 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3819 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3820 # error[indInvalid] = 3
3820 # error[indInvalid] = 3
3821 # #Number 4: Large difference in AOAs obtained from different antenna baselines
3821 # #Number 4: Large difference in AOAs obtained from different antenna baselines
3822 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3822 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3823 # error[indInvalid] = 4
3823 # error[indInvalid] = 4
3824 # return arrayAOA, error
3824 # return arrayAOA, error
3825 #
3825 #
3826 # def __getDirectionCosines(self, arrayPhase, pairsList):
3826 # def __getDirectionCosines(self, arrayPhase, pairsList):
3827 #
3827 #
3828 # #Initializing some variables
3828 # #Initializing some variables
3829 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3829 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3830 # ang_aux = ang_aux.reshape(1,ang_aux.size)
3830 # ang_aux = ang_aux.reshape(1,ang_aux.size)
3831 #
3831 #
3832 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
3832 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
3833 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3833 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3834 #
3834 #
3835 #
3835 #
3836 # for i in range(2):
3836 # for i in range(2):
3837 # #First Estimation
3837 # #First Estimation
3838 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
3838 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
3839 # #Dealias
3839 # #Dealias
3840 # indcsi = numpy.where(phi0_aux > numpy.pi)
3840 # indcsi = numpy.where(phi0_aux > numpy.pi)
3841 # phi0_aux[indcsi] -= 2*numpy.pi
3841 # phi0_aux[indcsi] -= 2*numpy.pi
3842 # indcsi = numpy.where(phi0_aux < -numpy.pi)
3842 # indcsi = numpy.where(phi0_aux < -numpy.pi)
3843 # phi0_aux[indcsi] += 2*numpy.pi
3843 # phi0_aux[indcsi] += 2*numpy.pi
3844 # #Direction Cosine 0
3844 # #Direction Cosine 0
3845 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
3845 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
3846 #
3846 #
3847 # #Most-Accurate Second Estimation
3847 # #Most-Accurate Second Estimation
3848 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
3848 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
3849 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3849 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3850 # #Direction Cosine 1
3850 # #Direction Cosine 1
3851 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
3851 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
3852 #
3852 #
3853 # #Searching the correct Direction Cosine
3853 # #Searching the correct Direction Cosine
3854 # cosdir0_aux = cosdir0[:,i]
3854 # cosdir0_aux = cosdir0[:,i]
3855 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3855 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3856 # #Minimum Distance
3856 # #Minimum Distance
3857 # cosDiff = (cosdir1 - cosdir0_aux)**2
3857 # cosDiff = (cosdir1 - cosdir0_aux)**2
3858 # indcos = cosDiff.argmin(axis = 1)
3858 # indcos = cosDiff.argmin(axis = 1)
3859 # #Saving Value obtained
3859 # #Saving Value obtained
3860 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3860 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3861 #
3861 #
3862 # return cosdir0, cosdir
3862 # return cosdir0, cosdir
3863 #
3863 #
3864 # def __calculateAOA(self, cosdir, azimuth):
3864 # def __calculateAOA(self, cosdir, azimuth):
3865 # cosdirX = cosdir[:,0]
3865 # cosdirX = cosdir[:,0]
3866 # cosdirY = cosdir[:,1]
3866 # cosdirY = cosdir[:,1]
3867 #
3867 #
3868 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3868 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3869 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
3869 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
3870 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3870 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3871 #
3871 #
3872 # return angles
3872 # return angles
3873 #
3873 #
3874 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3874 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3875 #
3875 #
3876 # Ramb = 375 #Ramb = c/(2*PRF)
3876 # Ramb = 375 #Ramb = c/(2*PRF)
3877 # Re = 6371 #Earth Radius
3877 # Re = 6371 #Earth Radius
3878 # heights = numpy.zeros(Ranges.shape)
3878 # heights = numpy.zeros(Ranges.shape)
3879 #
3879 #
3880 # R_aux = numpy.array([0,1,2])*Ramb
3880 # R_aux = numpy.array([0,1,2])*Ramb
3881 # R_aux = R_aux.reshape(1,R_aux.size)
3881 # R_aux = R_aux.reshape(1,R_aux.size)
3882 #
3882 #
3883 # Ranges = Ranges.reshape(Ranges.size,1)
3883 # Ranges = Ranges.reshape(Ranges.size,1)
3884 #
3884 #
3885 # Ri = Ranges + R_aux
3885 # Ri = Ranges + R_aux
3886 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3886 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3887 #
3887 #
3888 # #Check if there is a height between 70 and 110 km
3888 # #Check if there is a height between 70 and 110 km
3889 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3889 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3890 # ind_h = numpy.where(h_bool == 1)[0]
3890 # ind_h = numpy.where(h_bool == 1)[0]
3891 #
3891 #
3892 # hCorr = hi[ind_h, :]
3892 # hCorr = hi[ind_h, :]
3893 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3893 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3894 #
3894 #
3895 # hCorr = hi[ind_hCorr]
3895 # hCorr = hi[ind_hCorr]
3896 # heights[ind_h] = hCorr
3896 # heights[ind_h] = hCorr
3897 #
3897 #
3898 # #Setting Error
3898 # #Setting Error
3899 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3899 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3900 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3900 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3901 #
3901 #
3902 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3902 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3903 # error[indInvalid2] = 14
3903 # error[indInvalid2] = 14
3904 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3904 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3905 # error[indInvalid1] = 13
3905 # error[indInvalid1] = 13
3906 #
3906 #
3907 # return heights, error
3907 # return heights, error
3908
3908
3909
3909
3910 class WeatherRadar(Operation):
3910 class WeatherRadar(Operation):
3911 '''
3911 '''
3912 Function tat implements Weather Radar operations-
3912 Function tat implements Weather Radar operations-
3913 Input:
3913 Input:
3914 Output:
3914 Output:
3915 Parameters affected:
3915 Parameters affected:
3916 '''
3916 '''
3917 isConfig = False
3917 isConfig = False
3918 variableList = None
3918 variableList = None
3919
3919
3920 def __init__(self):
3920 def __init__(self):
3921 Operation.__init__(self)
3921 Operation.__init__(self)
3922
3922
3923 def setup(self,dataOut,variableList= None,Pt=0,Gt=0,Gr=0,lambda_=0, aL=0,
3923 def setup(self,dataOut,variableList= None,Pt=0,Gt=0,Gr=0,lambda_=0, aL=0,
3924 tauW= 0,thetaT=0,thetaR=0,Km =0):
3924 tauW= 0,thetaT=0,thetaR=0,Km =0):
3925 self.nCh = dataOut.nChannels
3925 self.nCh = dataOut.nChannels
3926 self.nHeis = dataOut.nHeights
3926 self.nHeis = dataOut.nHeights
3927 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
3927 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
3928 self.Range = numpy.arange(dataOut.nHeights)*deltaHeight + dataOut.heightList[0]
3928 self.Range = numpy.arange(dataOut.nHeights)*deltaHeight + dataOut.heightList[0]
3929 self.Range = self.Range.reshape(1,self.nHeis)
3929 self.Range = self.Range.reshape(1,self.nHeis)
3930 self.Range = numpy.tile(self.Range,[self.nCh,1])
3930 self.Range = numpy.tile(self.Range,[self.nCh,1])
3931 '''-----------1 Constante del Radar----------'''
3931 '''-----------1 Constante del Radar----------'''
3932 self.Pt = Pt
3932 self.Pt = Pt
3933 self.Gt = Gt
3933 self.Gt = Gt
3934 self.Gr = Gr
3934 self.Gr = Gr
3935 self.lambda_ = lambda_
3935 self.lambda_ = lambda_
3936 self.aL = aL
3936 self.aL = aL
3937 self.tauW = tauW
3937 self.tauW = tauW
3938 self.thetaT = thetaT
3938 self.thetaT = thetaT
3939 self.thetaR = thetaR
3939 self.thetaR = thetaR
3940 self.Km = Km
3940 self.Km = Km
3941 Numerator = ((4*numpy.pi)**3 * aL**2 * 16 *numpy.log(2))
3941 Numerator = ((4*numpy.pi)**3 * aL**2 * 16 *numpy.log(2))
3942 Denominator = (Pt * Gt * Gr * lambda_**2 * SPEED_OF_LIGHT * tauW * numpy.pi*thetaT*thetaR)
3942 Denominator = (Pt * Gt * Gr * lambda_**2 * SPEED_OF_LIGHT * tauW * numpy.pi*thetaT*thetaR)
3943 self.RadarConstant = Numerator/Denominator
3943 self.RadarConstant = Numerator/Denominator
3944 self.variableList= variableList
3944 self.variableList= variableList
3945
3945
3946 def setMoments(self,dataOut,i):
3946 def setMoments(self,dataOut,i):
3947
3947
3948 type = dataOut.inputUnit
3948 type = dataOut.inputUnit
3949 nCh = dataOut.nChannels
3949 nCh = dataOut.nChannels
3950 nHeis = dataOut.nHeights
3950 nHeis = dataOut.nHeights
3951 data_param = numpy.zeros((nCh,4,nHeis))
3951 data_param = numpy.zeros((nCh,4,nHeis))
3952 if type == "Voltage":
3952 if type == "Voltage":
3953 factor = dataOut.normFactor
3953 factor = dataOut.normFactor
3954 data_param[:,0,:] = dataOut.dataPP_POW/(factor)
3954 data_param[:,0,:] = dataOut.dataPP_POW/(factor)
3955 data_param[:,1,:] = dataOut.dataPP_DOP
3955 data_param[:,1,:] = dataOut.dataPP_DOP
3956 data_param[:,2,:] = dataOut.dataPP_WIDTH
3956 data_param[:,2,:] = dataOut.dataPP_WIDTH
3957 data_param[:,3,:] = dataOut.dataPP_SNR
3957 data_param[:,3,:] = dataOut.dataPP_SNR
3958 if type == "Spectra":
3958 if type == "Spectra":
3959 data_param[:,0,:] = dataOut.data_POW
3959 data_param[:,0,:] = dataOut.data_POW
3960 data_param[:,1,:] = dataOut.data_DOP
3960 data_param[:,1,:] = dataOut.data_DOP
3961 data_param[:,2,:] = dataOut.data_WIDTH
3961 data_param[:,2,:] = dataOut.data_WIDTH
3962 data_param[:,3,:] = dataOut.data_SNR
3962 data_param[:,3,:] = dataOut.data_SNR
3963
3963
3964 return data_param[:,i,:]
3964 return data_param[:,i,:]
3965
3965
3966 def getCoeficienteCorrelacionROhv_R(self,dataOut):
3966 def getCoeficienteCorrelacionROhv_R(self,dataOut):
3967 type = dataOut.inputUnit
3967 type = dataOut.inputUnit
3968 nHeis = dataOut.nHeights
3968 nHeis = dataOut.nHeights
3969 data_RhoHV_R = numpy.zeros((nHeis))
3969 data_RhoHV_R = numpy.zeros((nHeis))
3970 if type == "Voltage":
3970 if type == "Voltage":
3971 powa = dataOut.dataPP_POWER[0]
3971 powa = dataOut.dataPP_POWER[0]
3972 powb = dataOut.dataPP_POWER[1]
3972 powb = dataOut.dataPP_POWER[1]
3973 ccf = dataOut.dataPP_CCF
3973 ccf = dataOut.dataPP_CCF
3974 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3974 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3975 data_RhoHV_R = numpy.abs(avgcoherenceComplex)
3975 data_RhoHV_R = numpy.abs(avgcoherenceComplex)
3976 if type == "Spectra":
3976 if type == "Spectra":
3977 data_RhoHV_R = dataOut.getCoherence()
3977 data_RhoHV_R = dataOut.getCoherence()
3978
3978
3979 return data_RhoHV_R
3979 return data_RhoHV_R
3980
3980
3981 def getFasediferencialPhiD_P(self,dataOut,phase= True):
3981 def getFasediferencialPhiD_P(self,dataOut,phase= True):
3982 type = dataOut.inputUnit
3982 type = dataOut.inputUnit
3983 nHeis = dataOut.nHeights
3983 nHeis = dataOut.nHeights
3984 data_PhiD_P = numpy.zeros((nHeis))
3984 data_PhiD_P = numpy.zeros((nHeis))
3985 if type == "Voltage":
3985 if type == "Voltage":
3986 powa = dataOut.dataPP_POWER[0]
3986 powa = dataOut.dataPP_POWER[0]
3987 powb = dataOut.dataPP_POWER[1]
3987 powb = dataOut.dataPP_POWER[1]
3988 ccf = dataOut.dataPP_CCF
3988 ccf = dataOut.dataPP_CCF
3989 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3989 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3990 if phase:
3990 if phase:
3991 data_PhiD_P = numpy.arctan2(avgcoherenceComplex.imag,
3991 data_PhiD_P = numpy.arctan2(avgcoherenceComplex.imag,
3992 avgcoherenceComplex.real) * 180 / numpy.pi
3992 avgcoherenceComplex.real) * 180 / numpy.pi
3993 if type == "Spectra":
3993 if type == "Spectra":
3994 data_PhiD_P = dataOut.getCoherence(phase = phase)
3994 data_PhiD_P = dataOut.getCoherence(phase = phase)
3995
3995
3996 return data_PhiD_P
3996 return data_PhiD_P
3997
3997
3998 def getReflectividad_D(self,dataOut):
3998 def getReflectividad_D(self,dataOut):
3999 '''-----------------------------Potencia de Radar -Signal S-----------------------------'''
3999 '''-----------------------------Potencia de Radar -Signal S-----------------------------'''
4000
4000
4001 Pr = self.setMoments(dataOut,0)
4001 Pr = self.setMoments(dataOut,0)
4002
4002
4003 '''-----------2 Reflectividad del Radar y Factor de Reflectividad------'''
4003 '''-----------2 Reflectividad del Radar y Factor de Reflectividad------'''
4004 self.n_radar = numpy.zeros((self.nCh,self.nHeis))
4004 self.n_radar = numpy.zeros((self.nCh,self.nHeis))
4005 self.Z_radar = numpy.zeros((self.nCh,self.nHeis))
4005 self.Z_radar = numpy.zeros((self.nCh,self.nHeis))
4006 for R in range(self.nHeis):
4006 for R in range(self.nHeis):
4007 self.n_radar[:,R] = self.RadarConstant*Pr[:,R]* (self.Range[:,R])**2
4007 self.n_radar[:,R] = self.RadarConstant*Pr[:,R]* (self.Range[:,R])**2
4008
4008
4009 self.Z_radar[:,R] = self.n_radar[:,R]* self.lambda_**4/( numpy.pi**5 * self.Km**2)
4009 self.Z_radar[:,R] = self.n_radar[:,R]* self.lambda_**4/( numpy.pi**5 * self.Km**2)
4010
4010
4011 '''----------- Factor de Reflectividad Equivalente lamda_ < 10 cm , lamda_= 3.2cm-------'''
4011 '''----------- Factor de Reflectividad Equivalente lamda_ < 10 cm , lamda_= 3.2cm-------'''
4012 Zeh = self.Z_radar
4012 Zeh = self.Z_radar
4013 dBZeh = 10*numpy.log10(Zeh)
4013 dBZeh = 10*numpy.log10(Zeh)
4014 Zdb_D = dBZeh[0] - dBZeh[1]
4014 Zdb_D = dBZeh[0] - dBZeh[1]
4015 return Zdb_D
4015 return Zdb_D
4016
4016
4017 def getRadialVelocity_V(self,dataOut):
4017 def getRadialVelocity_V(self,dataOut):
4018 velRadial_V = self.setMoments(dataOut,1)
4018 velRadial_V = self.setMoments(dataOut,1)
4019 return velRadial_V
4019 return velRadial_V
4020
4020
4021 def getAnchoEspectral_W(self,dataOut):
4021 def getAnchoEspectral_W(self,dataOut):
4022 Sigmav_W = self.setMoments(dataOut,2)
4022 Sigmav_W = self.setMoments(dataOut,2)
4023 return Sigmav_W
4023 return Sigmav_W
4024
4024
4025
4025
4026 def run(self,dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4026 def run(self,dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4027 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93):
4027 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93):
4028
4028
4029 if not self.isConfig:
4029 if not self.isConfig:
4030 self.setup(dataOut= dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4030 self.setup(dataOut= dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4031 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93)
4031 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93)
4032 self.isConfig = True
4032 self.isConfig = True
4033
4033
4034 for i in range(len(self.variableList)):
4034 for i in range(len(self.variableList)):
4035 if self.variableList[i]=='ReflectividadDiferencial':
4035 if self.variableList[i]=='ReflectividadDiferencial':
4036 dataOut.Zdb_D =self.getReflectividad_D(dataOut=dataOut)
4036 dataOut.Zdb_D =self.getReflectividad_D(dataOut=dataOut)
4037 if self.variableList[i]=='FaseDiferencial':
4037 if self.variableList[i]=='FaseDiferencial':
4038 dataOut.PhiD_P =self.getFasediferencialPhiD_P(dataOut=dataOut, phase=True)
4038 dataOut.PhiD_P =self.getFasediferencialPhiD_P(dataOut=dataOut, phase=True)
4039 if self.variableList[i] == "CoeficienteCorrelacion":
4039 if self.variableList[i] == "CoeficienteCorrelacion":
4040 dataOut.RhoHV_R = self.getCoeficienteCorrelacionROhv_R(dataOut)
4040 dataOut.RhoHV_R = self.getCoeficienteCorrelacionROhv_R(dataOut)
4041 if self.variableList[i] =="VelocidadRadial":
4041 if self.variableList[i] =="VelocidadRadial":
4042 dataOut.velRadial_V = self.getRadialVelocity_V(dataOut)
4042 dataOut.velRadial_V = self.getRadialVelocity_V(dataOut)
4043 if self.variableList[i] =="AnchoEspectral":
4043 if self.variableList[i] =="AnchoEspectral":
4044 dataOut.Sigmav_W = self.getAnchoEspectral_W(dataOut)
4044 dataOut.Sigmav_W = self.getAnchoEspectral_W(dataOut)
4045 return dataOut
4045 return dataOut
4046
4046
4047 class PedestalInformation(Operation):
4047 class PedestalInformation(Operation):
4048
4048
4049 def __init__(self):
4049 def __init__(self):
4050 Operation.__init__(self)
4050 Operation.__init__(self)
4051 self.filename = False
4051 self.filename = False
4052
4052
4053 def find_file(self, timestamp):
4053 def find_file(self, timestamp):
4054
4054
4055 dt = datetime.datetime.utcfromtimestamp(timestamp)
4055 dt = datetime.datetime.utcfromtimestamp(timestamp)
4056 path = os.path.join(self.path, dt.strftime('%Y-%m-%dT%H-00-00'))
4056 path = os.path.join(self.path, dt.strftime('%Y-%m-%dT%H-00-00'))
4057
4057
4058 if not os.path.exists(path):
4058 if not os.path.exists(path):
4059 return False, False
4059 return False, False
4060 fileList = glob.glob(os.path.join(path, '*.h5'))
4060 fileList = glob.glob(os.path.join(path, '*.h5'))
4061 fileList.sort()
4061 fileList.sort()
4062 for fullname in fileList:
4062 for fullname in fileList:
4063 filename = fullname.split('/')[-1]
4063 filename = fullname.split('/')[-1]
4064 number = int(filename[4:14])
4064 number = int(filename[4:14])
4065 if number <= timestamp:
4065 if number <= timestamp:
4066 return number, fullname
4066 return number, fullname
4067 return False, False
4067 return False, False
4068
4068
4069 def find_next_file(self):
4069 def find_next_file(self):
4070
4070
4071 while True:
4071 while True:
4072 file_size = len(self.fp['Data']['utc'])
4072 file_size = len(self.fp['Data']['utc'])
4073 if self.utctime < self.utcfile+file_size*self.interval:
4073 if self.utctime < self.utcfile+file_size*self.interval:
4074 break
4074 break
4075 self.utcfile += file_size*self.interval
4075 self.utcfile += file_size*self.interval
4076 dt = datetime.datetime.utcfromtimestamp(self.utctime)
4076 dt = datetime.datetime.utcfromtimestamp(self.utctime)
4077 path = os.path.join(self.path, dt.strftime('%Y-%m-%dT%H-00-00'))
4077 path = os.path.join(self.path, dt.strftime('%Y-%m-%dT%H-00-00'))
4078 self.filename = os.path.join(path, 'pos@{}.000.h5'.format(int(self.utcfile)))
4078 self.filename = os.path.join(path, 'pos@{}.000.h5'.format(int(self.utcfile)))
4079 if not os.path.exists(self.filename):
4079 if not os.path.exists(self.filename):
4080 log.warning('Waiting for position files...', self.name)
4080 log.warning('Waiting for position files...', self.name)
4081
4081
4082 if not os.path.exists(self.filename):
4082 if not os.path.exists(self.filename):
4083
4083
4084 raise IOError('No new position files found in {}'.format(path))
4084 raise IOError('No new position files found in {}'.format(path))
4085 self.fp.close()
4085 self.fp.close()
4086 self.fp = h5py.File(self.filename, 'r')
4086 self.fp = h5py.File(self.filename, 'r')
4087 log.log('Opening file: {}'.format(self.filename), self.name)
4087 log.log('Opening file: {}'.format(self.filename), self.name)
4088
4088
4089 def get_values(self):
4089 def get_values(self):
4090
4090
4091 index = int((self.utctime-self.utcfile)/self.interval)
4091 index = int((self.utctime-self.utcfile)/self.interval)
4092 return self.fp['Data']['azi_pos'][index], self.fp['Data']['ele_pos'][index]
4092 return self.fp['Data']['azi_pos'][index], self.fp['Data']['ele_pos'][index]
4093
4093
4094 def setup(self, dataOut, path, conf, samples, interval, wr_exp):
4094 def setup(self, dataOut, path, conf, samples, interval, wr_exp):
4095
4095
4096 self.path = path
4096 self.path = path
4097 self.conf = conf
4097 self.conf = conf
4098 self.samples = samples
4098 self.samples = samples
4099 self.interval = interval
4099 self.interval = interval
4100 self.utcfile, self.filename = self.find_file(dataOut.utctime)
4100 self.utcfile, self.filename = self.find_file(dataOut.utctime)
4101
4101
4102 if not self.filename:
4102 if not self.filename:
4103 log.error('No position files found in {}'.format(path), self.name)
4103 log.error('No position files found in {}'.format(path), self.name)
4104 raise IOError('No position files found in {}'.format(path))
4104 raise IOError('No position files found in {}'.format(path))
4105 else:
4105 else:
4106 log.log('Opening file: {}'.format(self.filename), self.name)
4106 log.log('Opening file: {}'.format(self.filename), self.name)
4107 self.fp = h5py.File(self.filename, 'r')
4107 self.fp = h5py.File(self.filename, 'r')
4108
4108
4109 def run(self, dataOut, path, conf=None, samples=1500, interval=0.04, wr_exp=None):
4109 def run(self, dataOut, path, conf=None, samples=1500, interval=0.04, wr_exp=None):
4110
4110
4111 if not self.isConfig:
4111 if not self.isConfig:
4112 self.setup(dataOut, path, conf, samples, interval, wr_exp)
4112 self.setup(dataOut, path, conf, samples, interval, wr_exp)
4113 self.isConfig = True
4113 self.isConfig = True
4114
4114
4115 self.utctime = dataOut.utctime
4115 self.utctime = dataOut.utctime
4116
4116
4117 self.find_next_file()
4117 self.find_next_file()
4118
4118
4119 az, el = self.get_values()
4119 az, el = self.get_values()
4120 dataOut.flagNoData = False
4120 dataOut.flagNoData = False
4121
4121
4122 if numpy.isnan(az) or numpy.isnan(el) :
4122 if numpy.isnan(az) or numpy.isnan(el) :
4123 dataOut.flagNoData = True
4123 dataOut.flagNoData = True
4124 return dataOut
4124 return dataOut
4125
4125
4126 dataOut.azimuth = az
4126 dataOut.azimuth = az
4127 dataOut.elevation = el
4127 dataOut.elevation = el
4128 # print('AZ: ', az, ' EL: ', el)
4128 # print('AZ: ', az, ' EL: ', el)
4129 return dataOut
4129 return dataOut
4130
4130
4131 class Block360(Operation):
4131 class Block360(Operation):
4132 '''
4132 '''
4133 '''
4133 '''
4134 isConfig = False
4134 isConfig = False
4135 __profIndex = 0
4135 __profIndex = 0
4136 __initime = None
4136 __initime = None
4137 __lastdatatime = None
4137 __lastdatatime = None
4138 __buffer = None
4138 __buffer = None
4139 __dataReady = False
4139 __dataReady = False
4140 n = None
4140 n = None
4141 __nch = 0
4141 __nch = 0
4142 __nHeis = 0
4142 __nHeis = 0
4143 index = 0
4143 index = 0
4144 mode = 0
4144 mode = 0
4145
4145
4146 def __init__(self,**kwargs):
4146 def __init__(self,**kwargs):
4147 Operation.__init__(self,**kwargs)
4147 Operation.__init__(self,**kwargs)
4148
4148
4149 def setup(self, dataOut, n = None, mode = None):
4149 def setup(self, dataOut, n = None, mode = None):
4150 '''
4150 '''
4151 n= Numero de PRF's de entrada
4151 n= Numero de PRF's de entrada
4152 '''
4152 '''
4153 self.__initime = None
4153 self.__initime = None
4154 self.__lastdatatime = 0
4154 self.__lastdatatime = 0
4155 self.__dataReady = False
4155 self.__dataReady = False
4156 self.__buffer = 0
4156 self.__buffer = 0
4157 self.__buffer_1D = 0
4157 self.__buffer_1D = 0
4158 self.__profIndex = 0
4158 self.__profIndex = 0
4159 self.index = 0
4159 self.index = 0
4160 self.__nch = dataOut.nChannels
4160 self.__nch = dataOut.nChannels
4161 self.__nHeis = dataOut.nHeights
4161 self.__nHeis = dataOut.nHeights
4162 ##print("ELVALOR DE n es:", n)
4162 ##print("ELVALOR DE n es:", n)
4163 if n == None:
4163 if n == None:
4164 raise ValueError("n should be specified.")
4164 raise ValueError("n should be specified.")
4165
4165
4166 if mode == None:
4166 if mode == None:
4167 raise ValueError("mode should be specified.")
4167 raise ValueError("mode should be specified.")
4168
4168
4169 if n != None:
4169 if n != None:
4170 if n<1:
4170 if n<1:
4171 print("n should be greater than 2")
4171 print("n should be greater than 2")
4172 raise ValueError("n should be greater than 2")
4172 raise ValueError("n should be greater than 2")
4173
4173
4174 self.n = n
4174 self.n = n
4175 self.mode = mode
4175 self.mode = mode
4176 #print("self.mode",self.mode)
4176 #print("self.mode",self.mode)
4177 #print("nHeights")
4177 #print("nHeights")
4178 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4178 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4179 self.__buffer2 = numpy.zeros(n)
4179 self.__buffer2 = numpy.zeros(n)
4180 self.__buffer3 = numpy.zeros(n)
4180 self.__buffer3 = numpy.zeros(n)
4181
4181
4182
4182
4183
4183
4184
4184
4185 def putData(self,data,mode):
4185 def putData(self,data,mode):
4186 '''
4186 '''
4187 Add a profile to he __buffer and increase in one the __profiel Index
4187 Add a profile to he __buffer and increase in one the __profiel Index
4188 '''
4188 '''
4189 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4189 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4190 #print("line 4049",data.azimuth.shape,data.azimuth)
4190 #print("line 4049",data.azimuth.shape,data.azimuth)
4191 if self.mode==0:
4191 if self.mode==0:
4192 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4192 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4193 if self.mode==1:
4193 if self.mode==1:
4194 self.__buffer[:,self.__profIndex,:]= data.data_pow
4194 self.__buffer[:,self.__profIndex,:]= data.data_pow
4195 #print("me casi",self.index,data.azimuth[self.index])
4195 #print("me casi",self.index,data.azimuth[self.index])
4196 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4196 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4197 #print("magic",data.profileIndex)
4197 #print("magic",data.profileIndex)
4198 #print(data.azimuth[self.index])
4198 #print(data.azimuth[self.index])
4199 #print("index",self.index)
4199 #print("index",self.index)
4200
4200
4201 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4201 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4202 self.__buffer2[self.__profIndex] = data.azimuth
4202 self.__buffer2[self.__profIndex] = data.azimuth
4203 self.__buffer3[self.__profIndex] = data.elevation
4203 self.__buffer3[self.__profIndex] = data.elevation
4204 #print("q pasa")
4204 #print("q pasa")
4205 #####self.index+=1
4205 #####self.index+=1
4206 #print("index",self.index,data.azimuth[:10])
4206 #print("index",self.index,data.azimuth[:10])
4207 self.__profIndex += 1
4207 self.__profIndex += 1
4208 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4208 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4209
4209
4210 def pushData(self,data):
4210 def pushData(self,data):
4211 '''
4211 '''
4212 Return the PULSEPAIR and the profiles used in the operation
4212 Return the PULSEPAIR and the profiles used in the operation
4213 Affected : self.__profileIndex
4213 Affected : self.__profileIndex
4214 '''
4214 '''
4215 #print("pushData")
4215 #print("pushData")
4216
4216
4217 data_360 = self.__buffer
4217 data_360 = self.__buffer
4218 data_p = self.__buffer2
4218 data_p = self.__buffer2
4219 data_e = self.__buffer3
4219 data_e = self.__buffer3
4220 n = self.__profIndex
4220 n = self.__profIndex
4221
4221
4222 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4222 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4223 self.__buffer2 = numpy.zeros(self.n)
4223 self.__buffer2 = numpy.zeros(self.n)
4224 self.__buffer3 = numpy.zeros(self.n)
4224 self.__buffer3 = numpy.zeros(self.n)
4225 self.__profIndex = 0
4225 self.__profIndex = 0
4226 #print("pushData")
4226 #print("pushData")
4227 return data_360,n,data_p,data_e
4227 return data_360,n,data_p,data_e
4228
4228
4229
4229
4230 def byProfiles(self,dataOut):
4230 def byProfiles(self,dataOut):
4231
4231
4232 self.__dataReady = False
4232 self.__dataReady = False
4233 data_360 = None
4233 data_360 = None
4234 data_p = None
4234 data_p = None
4235 data_e = None
4235 data_e = None
4236 #print("dataOu",dataOut.dataPP_POW)
4236 #print("dataOu",dataOut.dataPP_POW)
4237 self.putData(data=dataOut,mode = self.mode)
4237 self.putData(data=dataOut,mode = self.mode)
4238 ##### print("profIndex",self.__profIndex)
4238 ##### print("profIndex",self.__profIndex)
4239 if self.__profIndex == self.n:
4239 if self.__profIndex == self.n:
4240 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4240 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4241 self.__dataReady = True
4241 self.__dataReady = True
4242
4242
4243 return data_360,data_p,data_e
4243 return data_360,data_p,data_e
4244
4244
4245
4245
4246 def blockOp(self, dataOut, datatime= None):
4246 def blockOp(self, dataOut, datatime= None):
4247 if self.__initime == None:
4247 if self.__initime == None:
4248 self.__initime = datatime
4248 self.__initime = datatime
4249 data_360,data_p,data_e = self.byProfiles(dataOut)
4249 data_360,data_p,data_e = self.byProfiles(dataOut)
4250 self.__lastdatatime = datatime
4250 self.__lastdatatime = datatime
4251
4251
4252 if data_360 is None:
4252 if data_360 is None:
4253 return None, None,None,None
4253 return None, None,None,None
4254
4254
4255
4255
4256 avgdatatime = self.__initime
4256 avgdatatime = self.__initime
4257 if self.n==1:
4257 if self.n==1:
4258 avgdatatime = datatime
4258 avgdatatime = datatime
4259 deltatime = datatime - self.__lastdatatime
4259 deltatime = datatime - self.__lastdatatime
4260 self.__initime = datatime
4260 self.__initime = datatime
4261 #print(data_360.shape,avgdatatime,data_p.shape)
4261 #print(data_360.shape,avgdatatime,data_p.shape)
4262 return data_360,avgdatatime,data_p,data_e
4262 return data_360,avgdatatime,data_p,data_e
4263
4263
4264 def run(self, dataOut,n = None,mode=None,**kwargs):
4264 def run(self, dataOut,n = None,mode=None,**kwargs):
4265 #print("BLOCK 360 HERE WE GO MOMENTOS")
4265 #print("BLOCK 360 HERE WE GO MOMENTOS")
4266 print("Block 360")
4266 print("Block 360")
4267 #exit(1)
4267 #exit(1)
4268 if not self.isConfig:
4268 if not self.isConfig:
4269 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4269 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4270 ####self.index = 0
4270 ####self.index = 0
4271 #print("comova",self.isConfig)
4271 #print("comova",self.isConfig)
4272 self.isConfig = True
4272 self.isConfig = True
4273 ####if self.index==dataOut.azimuth.shape[0]:
4273 ####if self.index==dataOut.azimuth.shape[0]:
4274 #### self.index=0
4274 #### self.index=0
4275 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4275 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4276 dataOut.flagNoData = True
4276 dataOut.flagNoData = True
4277
4277
4278 if self.__dataReady:
4278 if self.__dataReady:
4279 dataOut.data_360 = data_360 # S
4279 dataOut.data_360 = data_360 # S
4280 #print("DATA 360")
4280 #print("DATA 360")
4281 #print(dataOut.data_360)
4281 #print(dataOut.data_360)
4282 #print("---------------------------------------------------------------------------------")
4282 #print("---------------------------------------------------------------------------------")
4283 print("---------------------------DATAREADY---------------------------------------------")
4283 print("---------------------------DATAREADY---------------------------------------------")
4284 #print("---------------------------------------------------------------------------------")
4284 #print("---------------------------------------------------------------------------------")
4285 #print("data_360",dataOut.data_360.shape)
4285 #print("data_360",dataOut.data_360.shape)
4286 dataOut.data_azi = data_p
4286 dataOut.data_azi = data_p
4287 dataOut.data_ele = data_e
4287 dataOut.data_ele = data_e
4288 ###print("azi: ",dataOut.data_azi)
4288 ###print("azi: ",dataOut.data_azi)
4289 #print("ele: ",dataOut.data_ele)
4289 #print("ele: ",dataOut.data_ele)
4290 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4290 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4291 dataOut.utctime = avgdatatime
4291 dataOut.utctime = avgdatatime
4292 dataOut.flagNoData = False
4292 dataOut.flagNoData = False
4293 return dataOut
4293 return dataOut
4294
4294
4295 class Block360_vRF(Operation):
4295 class Block360_vRF(Operation):
4296 '''
4296 '''
4297 '''
4297 '''
4298 isConfig = False
4298 isConfig = False
4299 __profIndex = 0
4299 __profIndex = 0
4300 __initime = None
4300 __initime = None
4301 __lastdatatime = None
4301 __lastdatatime = None
4302 __buffer = None
4302 __buffer = None
4303 __dataReady = False
4303 __dataReady = False
4304 n = None
4304 n = None
4305 __nch = 0
4305 __nch = 0
4306 __nHeis = 0
4306 __nHeis = 0
4307 index = 0
4307 index = 0
4308 mode = 0
4308 mode = 0
4309
4309
4310 def __init__(self,**kwargs):
4310 def __init__(self,**kwargs):
4311 Operation.__init__(self,**kwargs)
4311 Operation.__init__(self,**kwargs)
4312
4312
4313 def setup(self, dataOut, n = None, mode = None):
4313 def setup(self, dataOut, n = None, mode = None):
4314 '''
4314 '''
4315 n= Numero de PRF's de entrada
4315 n= Numero de PRF's de entrada
4316 '''
4316 '''
4317 self.__initime = None
4317 self.__initime = None
4318 self.__lastdatatime = 0
4318 self.__lastdatatime = 0
4319 self.__dataReady = False
4319 self.__dataReady = False
4320 self.__buffer = 0
4320 self.__buffer = 0
4321 self.__buffer_1D = 0
4321 self.__buffer_1D = 0
4322 self.__profIndex = 0
4322 self.__profIndex = 0
4323 self.index = 0
4323 self.index = 0
4324 self.__nch = dataOut.nChannels
4324 self.__nch = dataOut.nChannels
4325 self.__nHeis = dataOut.nHeights
4325 self.__nHeis = dataOut.nHeights
4326 ##print("ELVALOR DE n es:", n)
4326 ##print("ELVALOR DE n es:", n)
4327 if n == None:
4327 if n == None:
4328 raise ValueError("n should be specified.")
4328 raise ValueError("n should be specified.")
4329
4329
4330 if mode == None:
4330 if mode == None:
4331 raise ValueError("mode should be specified.")
4331 raise ValueError("mode should be specified.")
4332
4332
4333 if n != None:
4333 if n != None:
4334 if n<1:
4334 if n<1:
4335 print("n should be greater than 2")
4335 print("n should be greater than 2")
4336 raise ValueError("n should be greater than 2")
4336 raise ValueError("n should be greater than 2")
4337
4337
4338 self.n = n
4338 self.n = n
4339 self.mode = mode
4339 self.mode = mode
4340 #print("self.mode",self.mode)
4340 #print("self.mode",self.mode)
4341 #print("nHeights")
4341 #print("nHeights")
4342 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4342 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4343 self.__buffer2 = numpy.zeros(n)
4343 self.__buffer2 = numpy.zeros(n)
4344 self.__buffer3 = numpy.zeros(n)
4344 self.__buffer3 = numpy.zeros(n)
4345
4345
4346
4346
4347
4347
4348
4348
4349 def putData(self,data,mode):
4349 def putData(self,data,mode):
4350 '''
4350 '''
4351 Add a profile to he __buffer and increase in one the __profiel Index
4351 Add a profile to he __buffer and increase in one the __profiel Index
4352 '''
4352 '''
4353 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4353 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4354 #print("line 4049",data.azimuth.shape,data.azimuth)
4354 #print("line 4049",data.azimuth.shape,data.azimuth)
4355 if self.mode==0:
4355 if self.mode==0:
4356 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4356 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4357 if self.mode==1:
4357 if self.mode==1:
4358 self.__buffer[:,self.__profIndex,:]= data.data_pow
4358 self.__buffer[:,self.__profIndex,:]= data.data_pow
4359 #print("me casi",self.index,data.azimuth[self.index])
4359 #print("me casi",self.index,data.azimuth[self.index])
4360 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4360 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4361 #print("magic",data.profileIndex)
4361 #print("magic",data.profileIndex)
4362 #print(data.azimuth[self.index])
4362 #print(data.azimuth[self.index])
4363 #print("index",self.index)
4363 #print("index",self.index)
4364
4364
4365 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4365 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4366 self.__buffer2[self.__profIndex] = data.azimuth
4366 self.__buffer2[self.__profIndex] = data.azimuth
4367 self.__buffer3[self.__profIndex] = data.elevation
4367 self.__buffer3[self.__profIndex] = data.elevation
4368 #print("q pasa")
4368 #print("q pasa")
4369 #####self.index+=1
4369 #####self.index+=1
4370 #print("index",self.index,data.azimuth[:10])
4370 #print("index",self.index,data.azimuth[:10])
4371 self.__profIndex += 1
4371 self.__profIndex += 1
4372 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4372 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4373
4373
4374 def pushData(self,data):
4374 def pushData(self,data):
4375 '''
4375 '''
4376 Return the PULSEPAIR and the profiles used in the operation
4376 Return the PULSEPAIR and the profiles used in the operation
4377 Affected : self.__profileIndex
4377 Affected : self.__profileIndex
4378 '''
4378 '''
4379 #print("pushData")
4379 #print("pushData")
4380
4380
4381 data_360 = self.__buffer
4381 data_360 = self.__buffer
4382 data_p = self.__buffer2
4382 data_p = self.__buffer2
4383 data_e = self.__buffer3
4383 data_e = self.__buffer3
4384 n = self.__profIndex
4384 n = self.__profIndex
4385
4385
4386 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4386 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4387 self.__buffer2 = numpy.zeros(self.n)
4387 self.__buffer2 = numpy.zeros(self.n)
4388 self.__buffer3 = numpy.zeros(self.n)
4388 self.__buffer3 = numpy.zeros(self.n)
4389 self.__profIndex = 0
4389 self.__profIndex = 0
4390 #print("pushData")
4390 #print("pushData")
4391 return data_360,n,data_p,data_e
4391 return data_360,n,data_p,data_e
4392
4392
4393
4393
4394 def byProfiles(self,dataOut):
4394 def byProfiles(self,dataOut):
4395
4395
4396 self.__dataReady = False
4396 self.__dataReady = False
4397 data_360 = None
4397 data_360 = None
4398 data_p = None
4398 data_p = None
4399 data_e = None
4399 data_e = None
4400 #print("dataOu",dataOut.dataPP_POW)
4400 #print("dataOu",dataOut.dataPP_POW)
4401 self.putData(data=dataOut,mode = self.mode)
4401 self.putData(data=dataOut,mode = self.mode)
4402 ##### print("profIndex",self.__profIndex)
4402 ##### print("profIndex",self.__profIndex)
4403 if self.__profIndex == self.n:
4403 if self.__profIndex == self.n:
4404 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4404 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4405 self.__dataReady = True
4405 self.__dataReady = True
4406
4406
4407 return data_360,data_p,data_e
4407 return data_360,data_p,data_e
4408
4408
4409
4409
4410 def blockOp(self, dataOut, datatime= None):
4410 def blockOp(self, dataOut, datatime= None):
4411 if self.__initime == None:
4411 if self.__initime == None:
4412 self.__initime = datatime
4412 self.__initime = datatime
4413 data_360,data_p,data_e = self.byProfiles(dataOut)
4413 data_360,data_p,data_e = self.byProfiles(dataOut)
4414 self.__lastdatatime = datatime
4414 self.__lastdatatime = datatime
4415
4415
4416 if data_360 is None:
4416 if data_360 is None:
4417 return None, None,None,None
4417 return None, None,None,None
4418
4418
4419
4419
4420 avgdatatime = self.__initime
4420 avgdatatime = self.__initime
4421 if self.n==1:
4421 if self.n==1:
4422 avgdatatime = datatime
4422 avgdatatime = datatime
4423 deltatime = datatime - self.__lastdatatime
4423 deltatime = datatime - self.__lastdatatime
4424 self.__initime = datatime
4424 self.__initime = datatime
4425 #print(data_360.shape,avgdatatime,data_p.shape)
4425 #print(data_360.shape,avgdatatime,data_p.shape)
4426 return data_360,avgdatatime,data_p,data_e
4426 return data_360,avgdatatime,data_p,data_e
4427
4427
4428 def checkcase(self,data_ele):
4428 def checkcase(self,data_ele):
4429 start = data_ele[0]
4429 start = data_ele[0]
4430 end = data_ele[-1]
4430 end = data_ele[-1]
4431 diff_angle = (end-start)
4431 diff_angle = (end-start)
4432 len_ang=len(data_ele)
4432 len_ang=len(data_ele)
4433 print("start",start)
4433 print("start",start)
4434 print("end",end)
4434 print("end",end)
4435 print("number",diff_angle)
4435 print("number",diff_angle)
4436
4436
4437 print("len_ang",len_ang)
4437 print("len_ang",len_ang)
4438
4438
4439 aux = (data_ele<0).any(axis=0)
4439 aux = (data_ele<0).any(axis=0)
4440
4440
4441 #exit(1)
4441 #exit(1)
4442 if diff_angle<0 and aux!=1: #Bajada
4442 if diff_angle<0 and aux!=1: #Bajada
4443 return 1
4443 return 1
4444 elif diff_angle<0 and aux==1: #Bajada con angulos negativos
4444 elif diff_angle<0 and aux==1: #Bajada con angulos negativos
4445 return 0
4445 return 0
4446 elif diff_angle == 0: # This case happens when the angle reaches the max_angle if n = 2
4446 elif diff_angle == 0: # This case happens when the angle reaches the max_angle if n = 2
4447 self.flagEraseFirstData = 1
4447 self.flagEraseFirstData = 1
4448 print("ToDO this case")
4448 print("ToDO this case")
4449 exit(1)
4449 exit(1)
4450 elif diff_angle>0: #Subida
4450 elif diff_angle>0: #Subida
4451 return 0
4451 return 0
4452
4452
4453 def run(self, dataOut,n = None,mode=None,**kwargs):
4453 def run(self, dataOut,n = None,mode=None,**kwargs):
4454 #print("BLOCK 360 HERE WE GO MOMENTOS")
4454 #print("BLOCK 360 HERE WE GO MOMENTOS")
4455 print("Block 360")
4455 print("Block 360")
4456
4456
4457 #exit(1)
4457 #exit(1)
4458 if not self.isConfig:
4458 if not self.isConfig:
4459 if n == 1:
4459 if n == 1:
4460 print("*******************Min Value is 2. Setting n = 2*******************")
4460 print("*******************Min Value is 2. Setting n = 2*******************")
4461 n = 2
4461 n = 2
4462 #exit(1)
4462 #exit(1)
4463 print(n)
4463 print(n)
4464 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4464 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4465 ####self.index = 0
4465 ####self.index = 0
4466 #print("comova",self.isConfig)
4466 #print("comova",self.isConfig)
4467 self.isConfig = True
4467 self.isConfig = True
4468 ####if self.index==dataOut.azimuth.shape[0]:
4468 ####if self.index==dataOut.azimuth.shape[0]:
4469 #### self.index=0
4469 #### self.index=0
4470 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4470 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4471 dataOut.flagNoData = True
4471 dataOut.flagNoData = True
4472
4472
4473 if self.__dataReady:
4473 if self.__dataReady:
4474 dataOut.data_360 = data_360 # S
4474 dataOut.data_360 = data_360 # S
4475 #print("DATA 360")
4475 #print("DATA 360")
4476 #print(dataOut.data_360)
4476 #print(dataOut.data_360)
4477 #print("---------------------------------------------------------------------------------")
4477 #print("---------------------------------------------------------------------------------")
4478 print("---------------------------DATAREADY---------------------------------------------")
4478 print("---------------------------DATAREADY---------------------------------------------")
4479 #print("---------------------------------------------------------------------------------")
4479 #print("---------------------------------------------------------------------------------")
4480 #print("data_360",dataOut.data_360.shape)
4480 #print("data_360",dataOut.data_360.shape)
4481 dataOut.data_azi = data_p
4481 dataOut.data_azi = data_p
4482 dataOut.data_ele = data_e
4482 dataOut.data_ele = data_e
4483 ###print("azi: ",dataOut.data_azi)
4483 ###print("azi: ",dataOut.data_azi)
4484 #print("ele: ",dataOut.data_ele)
4484 #print("ele: ",dataOut.data_ele)
4485 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4485 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4486 dataOut.utctime = avgdatatime
4486 dataOut.utctime = avgdatatime
4487
4487
4488 dataOut.case_flag = self.checkcase(dataOut.data_ele)
4488 dataOut.case_flag = self.checkcase(dataOut.data_ele)
4489 if dataOut.case_flag: #Si estΓ‘ de bajada empieza a plotear
4489 if dataOut.case_flag: #Si estΓ‘ de bajada empieza a plotear
4490 print("INSIDE CASE FLAG BAJADA")
4490 print("INSIDE CASE FLAG BAJADA")
4491 dataOut.flagNoData = False
4491 dataOut.flagNoData = False
4492 else:
4492 else:
4493 print("CASE SUBIDA")
4493 print("CASE SUBIDA")
4494 dataOut.flagNoData = True
4494 dataOut.flagNoData = True
4495
4495
4496 #dataOut.flagNoData = False
4496 #dataOut.flagNoData = False
4497 return dataOut
4497 return dataOut
4498
4498
4499 class Block360_vRF2(Operation):
4499 class Block360_vRF2(Operation):
4500 '''
4500 '''
4501 '''
4501 '''
4502 isConfig = False
4502 isConfig = False
4503 __profIndex = 0
4503 __profIndex = 0
4504 __initime = None
4504 __initime = None
4505 __lastdatatime = None
4505 __lastdatatime = None
4506 __buffer = None
4506 __buffer = None
4507 __dataReady = False
4507 __dataReady = False
4508 n = None
4508 n = None
4509 __nch = 0
4509 __nch = 0
4510 __nHeis = 0
4510 __nHeis = 0
4511 index = 0
4511 index = 0
4512 mode = 0
4512 mode = None
4513
4513
4514 def __init__(self,**kwargs):
4514 def __init__(self,**kwargs):
4515 Operation.__init__(self,**kwargs)
4515 Operation.__init__(self,**kwargs)
4516
4516
4517 def setup(self, dataOut, n = None, mode = None):
4517 def setup(self, dataOut, n = None, mode = None):
4518 '''
4518 '''
4519 n= Numero de PRF's de entrada
4519 n= Numero de PRF's de entrada
4520 '''
4520 '''
4521 self.__initime = None
4521 self.__initime = None
4522 self.__lastdatatime = 0
4522 self.__lastdatatime = 0
4523 self.__dataReady = False
4523 self.__dataReady = False
4524 self.__buffer = 0
4524 self.__buffer = 0
4525 self.__buffer_1D = 0
4525 self.__buffer_1D = 0
4526 #self.__profIndex = 0
4526 #self.__profIndex = 0
4527 self.index = 0
4527 self.index = 0
4528 self.__nch = dataOut.nChannels
4528 self.__nch = dataOut.nChannels
4529 self.__nHeis = dataOut.nHeights
4529 self.__nHeis = dataOut.nHeights
4530
4530
4531 self.mode = mode
4531 self.mode = mode
4532 #print("self.mode",self.mode)
4532 #print("self.mode",self.mode)
4533 #print("nHeights")
4533 #print("nHeights")
4534 self.__buffer = []
4534 self.__buffer = []
4535 self.__buffer2 = []
4535 self.__buffer2 = []
4536 self.__buffer3 = []
4536 self.__buffer3 = []
4537 self.__buffer4 = []
4537
4538
4538 def putData(self,data,mode):
4539 def putData(self,data,mode):
4539 '''
4540 '''
4540 Add a profile to he __buffer and increase in one the __profiel Index
4541 Add a profile to he __buffer and increase in one the __profiel Index
4541 '''
4542 '''
4542 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4543
4543 #print("line 4049",data.azimuth.shape,data.azimuth)
4544 if self.mode==0:
4544 if self.mode==0:
4545 self.__buffer.append(data.dataPP_POWER)# PRIMER MOMENTO
4545 self.__buffer.append(data.dataPP_POWER)# PRIMER MOMENTO
4546 if self.mode==1:
4546 if self.mode==1:
4547 self.__buffer.append(data.data_pow)
4547 self.__buffer.append(data.data_pow)
4548 #print("me casi",self.index,data.azimuth[self.index])
4549 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4550 #print("magic",data.profileIndex)
4551 #print(data.azimuth[self.index])
4552 #print("index",self.index)
4553
4548
4554 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4549 self.__buffer4.append(data.dataPP_DOP)
4550
4555 self.__buffer2.append(data.azimuth)
4551 self.__buffer2.append(data.azimuth)
4556 self.__buffer3.append(data.elevation)
4552 self.__buffer3.append(data.elevation)
4557 self.__profIndex += 1
4553 self.__profIndex += 1
4558 #print("q pasa")
4554
4559 return numpy.array(self.__buffer3) #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4555 return numpy.array(self.__buffer3) #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4560
4556
4561 def pushData(self,data):
4557 def pushData(self,data):
4562 '''
4558 '''
4563 Return the PULSEPAIR and the profiles used in the operation
4559 Return the PULSEPAIR and the profiles used in the operation
4564 Affected : self.__profileIndex
4560 Affected : self.__profileIndex
4565 '''
4561 '''
4566 #print("pushData")
4567
4562
4568 data_360 = numpy.array(self.__buffer).transpose(1,0,2)
4563 data_360_Power = numpy.array(self.__buffer).transpose(1,0,2)
4564 data_360_Velocity = numpy.array(self.__buffer4).transpose(1,0,2)
4569 data_p = numpy.array(self.__buffer2)
4565 data_p = numpy.array(self.__buffer2)
4570 data_e = numpy.array(self.__buffer3)
4566 data_e = numpy.array(self.__buffer3)
4571 n = self.__profIndex
4567 n = self.__profIndex
4572
4568
4573 self.__buffer = []
4569 self.__buffer = []
4570 self.__buffer4 = []
4574 self.__buffer2 = []
4571 self.__buffer2 = []
4575 self.__buffer3 = []
4572 self.__buffer3 = []
4576 self.__profIndex = 0
4573 self.__profIndex = 0
4577 #print("pushData")
4574 return data_360_Power,data_360_Velocity,n,data_p,data_e
4578 return data_360,n,data_p,data_e
4579
4575
4580
4576
4581 def byProfiles(self,dataOut):
4577 def byProfiles(self,dataOut):
4582
4578
4583 self.__dataReady = False
4579 self.__dataReady = False
4584 data_360 = None
4580 data_360_Power = []
4581 data_360_Velocity = []
4585 data_p = None
4582 data_p = None
4586 data_e = None
4583 data_e = None
4587 #print("dataOu",dataOut.dataPP_POW)
4588
4584
4589 elevations = self.putData(data=dataOut,mode = self.mode)
4585 elevations = self.putData(data=dataOut,mode = self.mode)
4590 ##### print("profIndex",self.__profIndex)
4591
4592
4586
4593 if self.__profIndex > 1:
4587 if self.__profIndex > 1:
4594 case_flag = self.checkcase(elevations)
4588 case_flag = self.checkcase(elevations)
4595
4589
4596 if case_flag == 0: #Subida
4590 if case_flag == 0: #Subida
4597 #Se borra el dato anterior para liberar buffer y comparar el dato actual con el siguiente
4591
4598 if len(self.__buffer) == 2: #Cuando estΓ‘ de subida
4592 if len(self.__buffer) == 2: #Cuando estΓ‘ de subida
4593 #Se borra el dato anterior para liberar buffer y comparar el dato actual con el siguiente
4599 self.__buffer.pop(0) #Erase first data
4594 self.__buffer.pop(0) #Erase first data
4600 self.__buffer2.pop(0)
4595 self.__buffer2.pop(0)
4601 self.__buffer3.pop(0)
4596 self.__buffer3.pop(0)
4597 self.__buffer4.pop(0)
4602 self.__profIndex -= 1
4598 self.__profIndex -= 1
4603 else: #Cuando ha estado de bajada y ha vuelto a subir
4599 else: #Cuando ha estado de bajada y ha vuelto a subir
4604 #print("else",self.__buffer3)
4600 #Se borra el ΓΊltimo dato
4605 self.__buffer.pop() #Erase last data
4601 self.__buffer.pop() #Erase last data
4606 self.__buffer2.pop()
4602 self.__buffer2.pop()
4607 self.__buffer3.pop()
4603 self.__buffer3.pop()
4608 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4604 self.__buffer4.pop()
4609 #print(data_360.shape)
4605 data_360_Power,data_360_Velocity,n,data_p,data_e = self.pushData(data=dataOut)
4610 #print(data_e.shape)
4606
4611 #exit(1)
4612 self.__dataReady = True
4607 self.__dataReady = True
4613 '''
4608
4614 elif elevations[-1]<0.:
4609 return data_360_Power,data_360_Velocity,data_p,data_e
4615 if len(self.__buffer) == 2:
4610
4611
4612 def blockOp(self, dataOut, datatime= None):
4613 if self.__initime == None:
4614 self.__initime = datatime
4615 data_360_Power,data_360_Velocity,data_p,data_e = self.byProfiles(dataOut)
4616 self.__lastdatatime = datatime
4617
4618 avgdatatime = self.__initime
4619 if self.n==1:
4620 avgdatatime = datatime
4621 deltatime = datatime - self.__lastdatatime
4622 self.__initime = datatime
4623 return data_360_Power,data_360_Velocity,avgdatatime,data_p,data_e
4624
4625 def checkcase(self,data_ele):
4626 #print(data_ele)
4627 start = data_ele[-2]
4628 end = data_ele[-1]
4629 diff_angle = (end-start)
4630 len_ang=len(data_ele)
4631
4632 if diff_angle > 0: #Subida
4633 return 0
4634
4635 def run(self, dataOut,mode='Power',**kwargs):
4636 #print("BLOCK 360 HERE WE GO MOMENTOS")
4637 #print("Block 360")
4638 dataOut.mode = mode
4639
4640 if not self.isConfig:
4641 self.setup(dataOut = dataOut ,mode= mode ,**kwargs)
4642 self.isConfig = True
4643
4644
4645 data_360_Power, data_360_Velocity, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4646
4647
4648 dataOut.flagNoData = True
4649
4650
4651 if self.__dataReady:
4652 dataOut.data_360_Power = data_360_Power # S
4653 dataOut.data_360_Velocity = data_360_Velocity
4654 dataOut.data_azi = data_p
4655 dataOut.data_ele = data_e
4656 dataOut.utctime = avgdatatime
4657 dataOut.flagNoData = False
4658
4659 return dataOut
4660
4661 class Block360_vRF3(Operation):
4662 '''
4663 '''
4664 isConfig = False
4665 __profIndex = 0
4666 __initime = None
4667 __lastdatatime = None
4668 __buffer = None
4669 __dataReady = False
4670 n = None
4671 __nch = 0
4672 __nHeis = 0
4673 index = 0
4674 mode = None
4675
4676 def __init__(self,**kwargs):
4677 Operation.__init__(self,**kwargs)
4678
4679 def setup(self, dataOut, n = None, mode = None):
4680 '''
4681 n= Numero de PRF's de entrada
4682 '''
4683 self.__initime = None
4684 self.__lastdatatime = 0
4685 self.__dataReady = False
4686 self.__buffer = 0
4687 self.__buffer_1D = 0
4688 #self.__profIndex = 0
4689 self.index = 0
4690 self.__nch = dataOut.nChannels
4691 self.__nHeis = dataOut.nHeights
4692
4693 self.mode = mode
4694 #print("self.mode",self.mode)
4695 #print("nHeights")
4696 self.__buffer = []
4697 self.__buffer2 = []
4698 self.__buffer3 = []
4699 self.__buffer4 = []
4700
4701 def putData(self,data,mode):
4702 '''
4703 Add a profile to he __buffer and increase in one the __profiel Index
4704 '''
4705
4706 if self.mode==0:
4707 self.__buffer.append(data.dataPP_POWER)# PRIMER MOMENTO
4708 if self.mode==1:
4709 self.__buffer.append(data.data_pow)
4710
4711 self.__buffer4.append(data.dataPP_DOP)
4712
4713 self.__buffer2.append(data.azimuth)
4714 self.__buffer3.append(data.elevation)
4715 self.__profIndex += 1
4716
4717 return numpy.array(self.__buffer3) #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4718
4719 def pushData(self,data):
4720 '''
4721 Return the PULSEPAIR and the profiles used in the operation
4722 Affected : self.__profileIndex
4723 '''
4724
4725 data_360_Power = numpy.array(self.__buffer).transpose(1,0,2)
4726 data_360_Velocity = numpy.array(self.__buffer4).transpose(1,0,2)
4727 data_p = numpy.array(self.__buffer2)
4728 data_e = numpy.array(self.__buffer3)
4729 n = self.__profIndex
4730
4731 self.__buffer = []
4732 self.__buffer4 = []
4733 self.__buffer2 = []
4734 self.__buffer3 = []
4735 self.__profIndex = 0
4736 return data_360_Power,data_360_Velocity,n,data_p,data_e
4737
4738
4739 def byProfiles(self,dataOut):
4740
4741 self.__dataReady = False
4742 data_360_Power = []
4743 data_360_Velocity = []
4744 data_p = None
4745 data_e = None
4746
4747 elevations = self.putData(data=dataOut,mode = self.mode)
4748
4749 if self.__profIndex > 1:
4750 case_flag = self.checkcase(elevations)
4751
4752 if case_flag == 0: #Subida
4753
4754 if len(self.__buffer) == 2: #Cuando estΓ‘ de subida
4755 #Se borra el dato anterior para liberar buffer y comparar el dato actual con el siguiente
4616 self.__buffer.pop(0) #Erase first data
4756 self.__buffer.pop(0) #Erase first data
4617 self.__buffer2.pop(0)
4757 self.__buffer2.pop(0)
4618 self.__buffer3.pop(0)
4758 self.__buffer3.pop(0)
4759 self.__buffer4.pop(0)
4619 self.__profIndex -= 1
4760 self.__profIndex -= 1
4620 else:
4761 else: #Cuando ha estado de bajada y ha vuelto a subir
4762 #Se borra el ΓΊltimo dato
4621 self.__buffer.pop() #Erase last data
4763 self.__buffer.pop() #Erase last data
4622 self.__buffer2.pop()
4764 self.__buffer2.pop()
4623 self.__buffer3.pop()
4765 self.__buffer3.pop()
4624 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4766 self.__buffer4.pop()
4625 self.__dataReady = True
4767 data_360_Power,data_360_Velocity,n,data_p,data_e = self.pushData(data=dataOut)
4626 '''
4627
4628
4768
4629 '''
4769 self.__dataReady = True
4630 if self.__profIndex == self.n:
4631 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4632 self.__dataReady = True
4633 '''
4634
4770
4635 return data_360,data_p,data_e
4771 return data_360_Power,data_360_Velocity,data_p,data_e
4636
4772
4637
4773
4638 def blockOp(self, dataOut, datatime= None):
4774 def blockOp(self, dataOut, datatime= None):
4639 if self.__initime == None:
4775 if self.__initime == None:
4640 self.__initime = datatime
4776 self.__initime = datatime
4641 data_360,data_p,data_e = self.byProfiles(dataOut)
4777 data_360_Power,data_360_Velocity,data_p,data_e = self.byProfiles(dataOut)
4642 self.__lastdatatime = datatime
4778 self.__lastdatatime = datatime
4643
4779
4644 if data_360 is None:
4645 return None, None,None,None
4646
4647
4648 avgdatatime = self.__initime
4780 avgdatatime = self.__initime
4649 if self.n==1:
4781 if self.n==1:
4650 avgdatatime = datatime
4782 avgdatatime = datatime
4651 deltatime = datatime - self.__lastdatatime
4783 deltatime = datatime - self.__lastdatatime
4652 self.__initime = datatime
4784 self.__initime = datatime
4653 #print(data_360.shape,avgdatatime,data_p.shape)
4785 return data_360_Power,data_360_Velocity,avgdatatime,data_p,data_e
4654 return data_360,avgdatatime,data_p,data_e
4655
4786
4656 def checkcase(self,data_ele):
4787 def checkcase(self,data_ele):
4657 print(data_ele)
4788 #print(data_ele)
4658 start = data_ele[-2]
4789 start = data_ele[-2]
4659 end = data_ele[-1]
4790 end = data_ele[-1]
4660 diff_angle = (end-start)
4791 diff_angle = (end-start)
4661 len_ang=len(data_ele)
4792 len_ang=len(data_ele)
4662
4793
4663 if diff_angle > 0: #Subida
4794 if diff_angle > 0: #Subida
4664 return 0
4795 return 0
4665
4796
4666 def run(self, dataOut,n = None,mode=None,**kwargs):
4797 def run(self, dataOut,mode='Power',**kwargs):
4667 #print("BLOCK 360 HERE WE GO MOMENTOS")
4798 #print("BLOCK 360 HERE WE GO MOMENTOS")
4668 print("Block 360")
4799 #print("Block 360")
4800 dataOut.mode = mode
4669
4801
4670 #exit(1)
4671 if not self.isConfig:
4802 if not self.isConfig:
4672
4673 print(n)
4674 self.setup(dataOut = dataOut ,mode= mode ,**kwargs)
4803 self.setup(dataOut = dataOut ,mode= mode ,**kwargs)
4675 ####self.index = 0
4676 #print("comova",self.isConfig)
4677 self.isConfig = True
4804 self.isConfig = True
4678 ####if self.index==dataOut.azimuth.shape[0]:
4679 #### self.index=0
4680
4681 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4682
4805
4683
4806
4807 data_360_Power, data_360_Velocity, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4684
4808
4685
4809
4686 dataOut.flagNoData = True
4810 dataOut.flagNoData = True
4687
4811
4812
4688 if self.__dataReady:
4813 if self.__dataReady:
4689 dataOut.data_360 = data_360 # S
4814 dataOut.data_360_Power = data_360_Power # S
4690 #print("DATA 360")
4815 dataOut.data_360_Velocity = data_360_Velocity
4691 #print(dataOut.data_360)
4692 #print("---------------------------------------------------------------------------------")
4693 print("---------------------------DATAREADY---------------------------------------------")
4694 #print("---------------------------------------------------------------------------------")
4695 #print("data_360",dataOut.data_360.shape)
4696 print(data_e)
4697 #exit(1)
4698 dataOut.data_azi = data_p
4816 dataOut.data_azi = data_p
4699 dataOut.data_ele = data_e
4817 dataOut.data_ele = data_e
4700 ###print("azi: ",dataOut.data_azi)
4701 #print("ele: ",dataOut.data_ele)
4702 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4703 dataOut.utctime = avgdatatime
4818 dataOut.utctime = avgdatatime
4704
4705
4706
4707 dataOut.flagNoData = False
4819 dataOut.flagNoData = False
4820
4708 return dataOut
4821 return dataOut
General Comments 0
You need to be logged in to leave comments. Login now