The requested changes are too big and content was truncated. Show full diff
@@ -1,707 +1,714 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Base class to create plot operations |
|
5 | """Base class to create plot operations | |
6 |
|
6 | |||
7 | """ |
|
7 | """ | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import sys |
|
10 | import sys | |
11 | import zmq |
|
11 | import zmq | |
12 | import time |
|
12 | import time | |
13 | import numpy |
|
13 | import numpy | |
14 | import datetime |
|
14 | import datetime | |
15 | from collections import deque |
|
15 | from collections import deque | |
16 | from functools import wraps |
|
16 | from functools import wraps | |
17 | from threading import Thread |
|
17 | from threading import Thread | |
18 | import matplotlib |
|
18 | import matplotlib | |
19 |
|
19 | |||
20 | if 'BACKEND' in os.environ: |
|
20 | if 'BACKEND' in os.environ: | |
21 | matplotlib.use(os.environ['BACKEND']) |
|
21 | matplotlib.use(os.environ['BACKEND']) | |
22 | elif 'linux' in sys.platform: |
|
22 | elif 'linux' in sys.platform: | |
23 | matplotlib.use("TkAgg") |
|
23 | matplotlib.use("TkAgg") | |
24 | elif 'darwin' in sys.platform: |
|
24 | elif 'darwin' in sys.platform: | |
25 | matplotlib.use('MacOSX') |
|
25 | matplotlib.use('MacOSX') | |
26 | else: |
|
26 | else: | |
27 | from schainpy.utils import log |
|
27 | from schainpy.utils import log | |
28 | log.warning('Using default Backend="Agg"', 'INFO') |
|
28 | log.warning('Using default Backend="Agg"', 'INFO') | |
29 | matplotlib.use('Agg') |
|
29 | matplotlib.use('Agg') | |
30 |
|
30 | |||
31 | import matplotlib.pyplot as plt |
|
31 | import matplotlib.pyplot as plt | |
32 | from matplotlib.patches import Polygon |
|
32 | from matplotlib.patches import Polygon | |
33 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
33 | from mpl_toolkits.axes_grid1 import make_axes_locatable | |
34 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator |
|
34 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator | |
35 |
|
35 | |||
36 | from schainpy.model.data.jrodata import PlotterData |
|
36 | from schainpy.model.data.jrodata import PlotterData | |
37 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
37 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
38 | from schainpy.utils import log |
|
38 | from schainpy.utils import log | |
39 |
|
39 | |||
40 | jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90] |
|
40 | jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90] | |
41 | blu_values = matplotlib.pyplot.get_cmap( |
|
41 | blu_values = matplotlib.pyplot.get_cmap( | |
42 | 'seismic_r', 20)(numpy.arange(20))[10:15] |
|
42 | 'seismic_r', 20)(numpy.arange(20))[10:15] | |
43 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list( |
|
43 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list( | |
44 | 'jro', numpy.vstack((blu_values, jet_values))) |
|
44 | 'jro', numpy.vstack((blu_values, jet_values))) | |
45 | matplotlib.pyplot.register_cmap(cmap=ncmap) |
|
45 | matplotlib.pyplot.register_cmap(cmap=ncmap) | |
46 |
|
46 | |||
47 | CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis', |
|
47 | CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis', | |
48 | 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')] |
|
48 | 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')] | |
49 |
|
49 | |||
50 | EARTH_RADIUS = 6.3710e3 |
|
50 | EARTH_RADIUS = 6.3710e3 | |
51 |
|
51 | |||
52 | def ll2xy(lat1, lon1, lat2, lon2): |
|
52 | def ll2xy(lat1, lon1, lat2, lon2): | |
53 |
|
53 | |||
54 | p = 0.017453292519943295 |
|
54 | p = 0.017453292519943295 | |
55 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
55 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |
56 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
56 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |
57 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
57 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
58 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
58 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |
59 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
59 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |
60 | theta = -theta + numpy.pi/2 |
|
60 | theta = -theta + numpy.pi/2 | |
61 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
61 | return r*numpy.cos(theta), r*numpy.sin(theta) | |
62 |
|
62 | |||
63 |
|
63 | |||
64 | def km2deg(km): |
|
64 | def km2deg(km): | |
65 | ''' |
|
65 | ''' | |
66 | Convert distance in km to degrees |
|
66 | Convert distance in km to degrees | |
67 | ''' |
|
67 | ''' | |
68 |
|
68 | |||
69 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
69 | return numpy.rad2deg(km/EARTH_RADIUS) | |
70 |
|
70 | |||
71 |
|
71 | |||
72 | def figpause(interval): |
|
72 | def figpause(interval): | |
73 | backend = plt.rcParams['backend'] |
|
73 | backend = plt.rcParams['backend'] | |
74 | if backend in matplotlib.rcsetup.interactive_bk: |
|
74 | if backend in matplotlib.rcsetup.interactive_bk: | |
75 | figManager = matplotlib._pylab_helpers.Gcf.get_active() |
|
75 | figManager = matplotlib._pylab_helpers.Gcf.get_active() | |
76 | if figManager is not None: |
|
76 | if figManager is not None: | |
77 | canvas = figManager.canvas |
|
77 | canvas = figManager.canvas | |
78 | if canvas.figure.stale: |
|
78 | if canvas.figure.stale: | |
79 | canvas.draw() |
|
79 | canvas.draw() | |
80 | try: |
|
80 | try: | |
81 | canvas.start_event_loop(interval) |
|
81 | canvas.start_event_loop(interval) | |
82 | except: |
|
82 | except: | |
83 | pass |
|
83 | pass | |
84 | return |
|
84 | return | |
85 |
|
85 | |||
86 | def popup(message): |
|
86 | def popup(message): | |
87 | ''' |
|
87 | ''' | |
88 | ''' |
|
88 | ''' | |
89 |
|
89 | |||
90 | fig = plt.figure(figsize=(12, 8), facecolor='r') |
|
90 | fig = plt.figure(figsize=(12, 8), facecolor='r') | |
91 | text = '\n'.join([s.strip() for s in message.split(':')]) |
|
91 | text = '\n'.join([s.strip() for s in message.split(':')]) | |
92 | fig.text(0.01, 0.5, text, ha='left', va='center', |
|
92 | fig.text(0.01, 0.5, text, ha='left', va='center', | |
93 | size='20', weight='heavy', color='w') |
|
93 | size='20', weight='heavy', color='w') | |
94 | fig.show() |
|
94 | fig.show() | |
95 | figpause(1000) |
|
95 | figpause(1000) | |
96 |
|
96 | |||
97 |
|
97 | |||
98 | class Throttle(object): |
|
98 | class Throttle(object): | |
99 | ''' |
|
99 | ''' | |
100 | Decorator that prevents a function from being called more than once every |
|
100 | Decorator that prevents a function from being called more than once every | |
101 | time period. |
|
101 | time period. | |
102 | To create a function that cannot be called more than once a minute, but |
|
102 | To create a function that cannot be called more than once a minute, but | |
103 | will sleep until it can be called: |
|
103 | will sleep until it can be called: | |
104 | @Throttle(minutes=1) |
|
104 | @Throttle(minutes=1) | |
105 | def foo(): |
|
105 | def foo(): | |
106 | pass |
|
106 | pass | |
107 |
|
107 | |||
108 | for i in range(10): |
|
108 | for i in range(10): | |
109 | foo() |
|
109 | foo() | |
110 | print "This function has run %s times." % i |
|
110 | print "This function has run %s times." % i | |
111 | ''' |
|
111 | ''' | |
112 |
|
112 | |||
113 | def __init__(self, seconds=0, minutes=0, hours=0): |
|
113 | def __init__(self, seconds=0, minutes=0, hours=0): | |
114 | self.throttle_period = datetime.timedelta( |
|
114 | self.throttle_period = datetime.timedelta( | |
115 | seconds=seconds, minutes=minutes, hours=hours |
|
115 | seconds=seconds, minutes=minutes, hours=hours | |
116 | ) |
|
116 | ) | |
117 |
|
117 | |||
118 | self.time_of_last_call = datetime.datetime.min |
|
118 | self.time_of_last_call = datetime.datetime.min | |
119 |
|
119 | |||
120 | def __call__(self, fn): |
|
120 | def __call__(self, fn): | |
121 | @wraps(fn) |
|
121 | @wraps(fn) | |
122 | def wrapper(*args, **kwargs): |
|
122 | def wrapper(*args, **kwargs): | |
123 | coerce = kwargs.pop('coerce', None) |
|
123 | coerce = kwargs.pop('coerce', None) | |
124 | if coerce: |
|
124 | if coerce: | |
125 | self.time_of_last_call = datetime.datetime.now() |
|
125 | self.time_of_last_call = datetime.datetime.now() | |
126 | return fn(*args, **kwargs) |
|
126 | return fn(*args, **kwargs) | |
127 | else: |
|
127 | else: | |
128 | now = datetime.datetime.now() |
|
128 | now = datetime.datetime.now() | |
129 | time_since_last_call = now - self.time_of_last_call |
|
129 | time_since_last_call = now - self.time_of_last_call | |
130 | time_left = self.throttle_period - time_since_last_call |
|
130 | time_left = self.throttle_period - time_since_last_call | |
131 |
|
131 | |||
132 | if time_left > datetime.timedelta(seconds=0): |
|
132 | if time_left > datetime.timedelta(seconds=0): | |
133 | return |
|
133 | return | |
134 |
|
134 | |||
135 | self.time_of_last_call = datetime.datetime.now() |
|
135 | self.time_of_last_call = datetime.datetime.now() | |
136 | return fn(*args, **kwargs) |
|
136 | return fn(*args, **kwargs) | |
137 |
|
137 | |||
138 | return wrapper |
|
138 | return wrapper | |
139 |
|
139 | |||
140 | def apply_throttle(value): |
|
140 | def apply_throttle(value): | |
141 |
|
141 | |||
142 | @Throttle(seconds=value) |
|
142 | @Throttle(seconds=value) | |
143 | def fnThrottled(fn): |
|
143 | def fnThrottled(fn): | |
144 | fn() |
|
144 | fn() | |
145 |
|
145 | |||
146 | return fnThrottled |
|
146 | return fnThrottled | |
147 |
|
147 | |||
148 |
|
148 | |||
149 | @MPDecorator |
|
149 | @MPDecorator | |
150 | class Plot(Operation): |
|
150 | class Plot(Operation): | |
151 | """Base class for Schain plotting operations |
|
151 | """Base class for Schain plotting operations | |
152 |
|
152 | |||
153 | This class should never be use directtly you must subclass a new operation, |
|
153 | This class should never be use directtly you must subclass a new operation, | |
154 | children classes must be defined as follow: |
|
154 | children classes must be defined as follow: | |
155 |
|
155 | |||
156 | ExamplePlot(Plot): |
|
156 | ExamplePlot(Plot): | |
157 |
|
157 | |||
158 | CODE = 'code' |
|
158 | CODE = 'code' | |
159 | colormap = 'jet' |
|
159 | colormap = 'jet' | |
160 | plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer') |
|
160 | plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer') | |
161 |
|
161 | |||
162 | def setup(self): |
|
162 | def setup(self): | |
163 | pass |
|
163 | pass | |
164 |
|
164 | |||
165 | def plot(self): |
|
165 | def plot(self): | |
166 | pass |
|
166 | pass | |
167 |
|
167 | |||
168 | """ |
|
168 | """ | |
169 |
|
169 | |||
170 | CODE = 'Figure' |
|
170 | CODE = 'Figure' | |
171 | colormap = 'jet' |
|
171 | colormap = 'jet' | |
172 | bgcolor = 'white' |
|
172 | bgcolor = 'white' | |
173 | buffering = True |
|
173 | buffering = True | |
174 | __missing = 1E30 |
|
174 | __missing = 1E30 | |
175 |
|
175 | |||
176 | __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title', |
|
176 | __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title', | |
177 | 'showprofile'] |
|
177 | 'showprofile'] | |
178 |
|
178 | |||
179 | def __init__(self): |
|
179 | def __init__(self): | |
180 |
|
180 | |||
181 | Operation.__init__(self) |
|
181 | Operation.__init__(self) | |
182 | self.isConfig = False |
|
182 | self.isConfig = False | |
183 | self.isPlotConfig = False |
|
183 | self.isPlotConfig = False | |
184 | self.save_time = 0 |
|
184 | self.save_time = 0 | |
185 | self.sender_time = 0 |
|
185 | self.sender_time = 0 | |
186 | self.data = None |
|
186 | self.data = None | |
187 | self.firsttime = True |
|
187 | self.firsttime = True | |
188 | self.sender_queue = deque(maxlen=10) |
|
188 | self.sender_queue = deque(maxlen=10) | |
189 | self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2} |
|
189 | self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2} | |
190 |
|
190 | |||
191 | def __fmtTime(self, x, pos): |
|
191 | def __fmtTime(self, x, pos): | |
192 | ''' |
|
192 | ''' | |
193 | ''' |
|
193 | ''' | |
194 |
|
194 | |||
195 | return '{}'.format(self.getDateTime(x).strftime('%H:%M')) |
|
195 | return '{}'.format(self.getDateTime(x).strftime('%H:%M')) | |
196 |
|
196 | |||
197 | def __setup(self, **kwargs): |
|
197 | def __setup(self, **kwargs): | |
198 | ''' |
|
198 | ''' | |
199 | Initialize variables |
|
199 | Initialize variables | |
200 | ''' |
|
200 | ''' | |
201 |
|
201 | |||
202 | self.figures = [] |
|
202 | self.figures = [] | |
203 | self.axes = [] |
|
203 | self.axes = [] | |
204 | self.cb_axes = [] |
|
204 | self.cb_axes = [] | |
205 | self.localtime = kwargs.pop('localtime', True) |
|
205 | self.localtime = kwargs.pop('localtime', True) | |
206 | self.show = kwargs.get('show', True) |
|
206 | self.show = kwargs.get('show', True) | |
207 | self.save = kwargs.get('save', False) |
|
207 | self.save = kwargs.get('save', False) | |
208 | self.save_period = kwargs.get('save_period', 0) |
|
208 | self.save_period = kwargs.get('save_period', 0) | |
209 | self.colormap = kwargs.get('colormap', self.colormap) |
|
209 | self.colormap = kwargs.get('colormap', self.colormap) | |
210 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') |
|
210 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') | |
211 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') |
|
211 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') | |
212 | self.colormaps = kwargs.get('colormaps', None) |
|
212 | self.colormaps = kwargs.get('colormaps', None) | |
213 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) |
|
213 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) | |
214 | self.showprofile = kwargs.get('showprofile', False) |
|
214 | self.showprofile = kwargs.get('showprofile', False) | |
215 | self.title = kwargs.get('wintitle', self.CODE.upper()) |
|
215 | self.title = kwargs.get('wintitle', self.CODE.upper()) | |
216 | self.cb_label = kwargs.get('cb_label', None) |
|
216 | self.cb_label = kwargs.get('cb_label', None) | |
217 | self.cb_labels = kwargs.get('cb_labels', None) |
|
217 | self.cb_labels = kwargs.get('cb_labels', None) | |
218 | self.labels = kwargs.get('labels', None) |
|
218 | self.labels = kwargs.get('labels', None) | |
219 | self.xaxis = kwargs.get('xaxis', 'frequency') |
|
219 | self.xaxis = kwargs.get('xaxis', 'frequency') | |
220 | self.zmin = kwargs.get('zmin', None) |
|
220 | self.zmin = kwargs.get('zmin', None) | |
221 | self.zmax = kwargs.get('zmax', None) |
|
221 | self.zmax = kwargs.get('zmax', None) | |
222 | self.zlimits = kwargs.get('zlimits', None) |
|
222 | self.zlimits = kwargs.get('zlimits', None) | |
223 | self.xmin = kwargs.get('xmin', None) |
|
223 | self.xmin = kwargs.get('xmin', None) | |
224 | self.xmax = kwargs.get('xmax', None) |
|
224 | self.xmax = kwargs.get('xmax', None) | |
225 | self.xrange = kwargs.get('xrange', 12) |
|
225 | self.xrange = kwargs.get('xrange', 12) | |
226 | self.xscale = kwargs.get('xscale', None) |
|
226 | self.xscale = kwargs.get('xscale', None) | |
227 | self.ymin = kwargs.get('ymin', None) |
|
227 | self.ymin = kwargs.get('ymin', None) | |
228 | self.ymax = kwargs.get('ymax', None) |
|
228 | self.ymax = kwargs.get('ymax', None) | |
229 | self.yscale = kwargs.get('yscale', None) |
|
229 | self.yscale = kwargs.get('yscale', None) | |
230 | self.xlabel = kwargs.get('xlabel', None) |
|
230 | self.xlabel = kwargs.get('xlabel', None) | |
231 | self.attr_time = kwargs.get('attr_time', 'utctime') |
|
231 | self.attr_time = kwargs.get('attr_time', 'utctime') | |
232 | self.attr_data = kwargs.get('attr_data', 'data_param') |
|
232 | self.attr_data = kwargs.get('attr_data', 'data_param') | |
233 | self.decimation = kwargs.get('decimation', None) |
|
233 | self.decimation = kwargs.get('decimation', None) | |
234 | self.oneFigure = kwargs.get('oneFigure', True) |
|
234 | self.oneFigure = kwargs.get('oneFigure', True) | |
235 | self.width = kwargs.get('width', None) |
|
235 | self.width = kwargs.get('width', None) | |
236 | self.height = kwargs.get('height', None) |
|
236 | self.height = kwargs.get('height', None) | |
237 | self.colorbar = kwargs.get('colorbar', True) |
|
237 | self.colorbar = kwargs.get('colorbar', True) | |
238 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) |
|
238 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) | |
239 | self.channels = kwargs.get('channels', None) |
|
239 | self.channels = kwargs.get('channels', None) | |
240 | self.titles = kwargs.get('titles', []) |
|
240 | self.titles = kwargs.get('titles', []) | |
241 | self.polar = False |
|
241 | self.polar = False | |
242 | self.type = kwargs.get('type', 'iq') |
|
242 | self.type = kwargs.get('type', 'iq') | |
243 | self.grid = kwargs.get('grid', False) |
|
243 | self.grid = kwargs.get('grid', False) | |
244 | self.pause = kwargs.get('pause', False) |
|
244 | self.pause = kwargs.get('pause', False) | |
245 | self.save_code = kwargs.get('save_code', self.CODE) |
|
245 | self.save_code = kwargs.get('save_code', self.CODE) | |
246 | self.throttle = kwargs.get('throttle', 0) |
|
246 | self.throttle = kwargs.get('throttle', 0) | |
247 | self.exp_code = kwargs.get('exp_code', None) |
|
247 | self.exp_code = kwargs.get('exp_code', None) | |
248 | self.server = kwargs.get('server', False) |
|
248 | self.server = kwargs.get('server', False) | |
249 | self.sender_period = kwargs.get('sender_period', 60) |
|
249 | self.sender_period = kwargs.get('sender_period', 60) | |
250 | self.tag = kwargs.get('tag', '') |
|
250 | self.tag = kwargs.get('tag', '') | |
251 | self.height_index = kwargs.get('height_index', None) |
|
251 | self.height_index = kwargs.get('height_index', None) | |
252 | self.__throttle_plot = apply_throttle(self.throttle) |
|
252 | self.__throttle_plot = apply_throttle(self.throttle) | |
253 | code = self.attr_data if self.attr_data else self.CODE |
|
253 | code = self.attr_data if self.attr_data else self.CODE | |
254 | self.data = PlotterData(self.CODE, self.exp_code, self.localtime) |
|
254 | self.data = PlotterData(self.CODE, self.exp_code, self.localtime) | |
255 | self.ang_min = kwargs.get('ang_min', None) |
|
255 | self.ang_min = kwargs.get('ang_min', None) | |
256 | self.ang_max = kwargs.get('ang_max', None) |
|
256 | self.ang_max = kwargs.get('ang_max', None) | |
|
257 | self.mode = kwargs.get('mode', None) | |||
257 |
|
258 | |||
258 |
|
259 | |||
259 | if self.server: |
|
260 | if self.server: | |
260 | if not self.server.startswith('tcp://'): |
|
261 | if not self.server.startswith('tcp://'): | |
261 | self.server = 'tcp://{}'.format(self.server) |
|
262 | self.server = 'tcp://{}'.format(self.server) | |
262 | log.success( |
|
263 | log.success( | |
263 | 'Sending to server: {}'.format(self.server), |
|
264 | 'Sending to server: {}'.format(self.server), | |
264 | self.name |
|
265 | self.name | |
265 | ) |
|
266 | ) | |
266 |
|
267 | |||
267 | if isinstance(self.attr_data, str): |
|
268 | if isinstance(self.attr_data, str): | |
268 | self.attr_data = [self.attr_data] |
|
269 | self.attr_data = [self.attr_data] | |
269 |
|
270 | |||
270 | def __setup_plot(self): |
|
271 | def __setup_plot(self): | |
271 | ''' |
|
272 | ''' | |
272 | Common setup for all figures, here figures and axes are created |
|
273 | Common setup for all figures, here figures and axes are created | |
273 | ''' |
|
274 | ''' | |
274 |
|
275 | |||
275 | self.setup() |
|
276 | self.setup() | |
276 |
|
277 | |||
277 | self.time_label = 'LT' if self.localtime else 'UTC' |
|
278 | self.time_label = 'LT' if self.localtime else 'UTC' | |
278 |
|
279 | |||
279 | if self.width is None: |
|
280 | if self.width is None: | |
280 | self.width = 8 |
|
281 | self.width = 8 | |
281 |
|
282 | |||
282 | self.figures = [] |
|
283 | self.figures = [] | |
283 | self.axes = [] |
|
284 | self.axes = [] | |
284 | self.cb_axes = [] |
|
285 | self.cb_axes = [] | |
285 | self.pf_axes = [] |
|
286 | self.pf_axes = [] | |
286 | self.cmaps = [] |
|
287 | self.cmaps = [] | |
287 |
|
288 | |||
288 | size = '15%' if self.ncols == 1 else '30%' |
|
289 | size = '15%' if self.ncols == 1 else '30%' | |
289 | pad = '4%' if self.ncols == 1 else '8%' |
|
290 | pad = '4%' if self.ncols == 1 else '8%' | |
290 |
|
291 | |||
291 | if self.oneFigure: |
|
292 | if self.oneFigure: | |
292 | if self.height is None: |
|
293 | if self.height is None: | |
293 | self.height = 1.4 * self.nrows + 1 |
|
294 | self.height = 1.4 * self.nrows + 1 | |
294 | fig = plt.figure(figsize=(self.width, self.height), |
|
295 | fig = plt.figure(figsize=(self.width, self.height), | |
295 | edgecolor='k', |
|
296 | edgecolor='k', | |
296 | facecolor='w') |
|
297 | facecolor='w') | |
297 | self.figures.append(fig) |
|
298 | self.figures.append(fig) | |
298 | for n in range(self.nplots): |
|
299 | for n in range(self.nplots): | |
299 | ax = fig.add_subplot(self.nrows, self.ncols, |
|
300 | ax = fig.add_subplot(self.nrows, self.ncols, | |
300 | n + 1, polar=self.polar) |
|
301 | n + 1, polar=self.polar) | |
301 | ax.tick_params(labelsize=8) |
|
302 | ax.tick_params(labelsize=8) | |
302 | ax.firsttime = True |
|
303 | ax.firsttime = True | |
303 | ax.index = 0 |
|
304 | ax.index = 0 | |
304 | ax.press = None |
|
305 | ax.press = None | |
305 | self.axes.append(ax) |
|
306 | self.axes.append(ax) | |
306 | if self.showprofile: |
|
307 | if self.showprofile: | |
307 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
308 | cax = self.__add_axes(ax, size=size, pad=pad) | |
308 | cax.tick_params(labelsize=8) |
|
309 | cax.tick_params(labelsize=8) | |
309 | self.pf_axes.append(cax) |
|
310 | self.pf_axes.append(cax) | |
310 | else: |
|
311 | else: | |
311 | if self.height is None: |
|
312 | if self.height is None: | |
312 | self.height = 3 |
|
313 | self.height = 3 | |
313 | for n in range(self.nplots): |
|
314 | for n in range(self.nplots): | |
314 | fig = plt.figure(figsize=(self.width, self.height), |
|
315 | fig = plt.figure(figsize=(self.width, self.height), | |
315 | edgecolor='k', |
|
316 | edgecolor='k', | |
316 | facecolor='w') |
|
317 | facecolor='w') | |
317 | ax = fig.add_subplot(1, 1, 1, polar=self.polar) |
|
318 | ax = fig.add_subplot(1, 1, 1, polar=self.polar) | |
318 | ax.tick_params(labelsize=8) |
|
319 | ax.tick_params(labelsize=8) | |
319 | ax.firsttime = True |
|
320 | ax.firsttime = True | |
320 | ax.index = 0 |
|
321 | ax.index = 0 | |
321 | ax.press = None |
|
322 | ax.press = None | |
322 | self.figures.append(fig) |
|
323 | self.figures.append(fig) | |
323 | self.axes.append(ax) |
|
324 | self.axes.append(ax) | |
324 | if self.showprofile: |
|
325 | if self.showprofile: | |
325 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
326 | cax = self.__add_axes(ax, size=size, pad=pad) | |
326 | cax.tick_params(labelsize=8) |
|
327 | cax.tick_params(labelsize=8) | |
327 | self.pf_axes.append(cax) |
|
328 | self.pf_axes.append(cax) | |
328 |
|
329 | |||
329 | for n in range(self.nrows): |
|
330 | for n in range(self.nrows): | |
330 | if self.colormaps is not None: |
|
331 | if self.colormaps is not None: | |
331 | cmap = plt.get_cmap(self.colormaps[n]) |
|
332 | cmap = plt.get_cmap(self.colormaps[n]) | |
332 | else: |
|
333 | else: | |
333 | cmap = plt.get_cmap(self.colormap) |
|
334 | cmap = plt.get_cmap(self.colormap) | |
334 | cmap.set_bad(self.bgcolor, 1.) |
|
335 | cmap.set_bad(self.bgcolor, 1.) | |
335 | self.cmaps.append(cmap) |
|
336 | self.cmaps.append(cmap) | |
336 |
|
337 | |||
337 | def __add_axes(self, ax, size='30%', pad='8%'): |
|
338 | def __add_axes(self, ax, size='30%', pad='8%'): | |
338 | ''' |
|
339 | ''' | |
339 | Add new axes to the given figure |
|
340 | Add new axes to the given figure | |
340 | ''' |
|
341 | ''' | |
341 | divider = make_axes_locatable(ax) |
|
342 | divider = make_axes_locatable(ax) | |
342 | nax = divider.new_horizontal(size=size, pad=pad) |
|
343 | nax = divider.new_horizontal(size=size, pad=pad) | |
343 | ax.figure.add_axes(nax) |
|
344 | ax.figure.add_axes(nax) | |
344 | return nax |
|
345 | return nax | |
345 |
|
346 | |||
346 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
347 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): | |
347 | ''' |
|
348 | ''' | |
348 | Create a masked array for missing data |
|
349 | Create a masked array for missing data | |
349 | ''' |
|
350 | ''' | |
350 | if x_buffer.shape[0] < 2: |
|
351 | if x_buffer.shape[0] < 2: | |
351 | return x_buffer, y_buffer, z_buffer |
|
352 | return x_buffer, y_buffer, z_buffer | |
352 |
|
353 | |||
353 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
354 | deltas = x_buffer[1:] - x_buffer[0:-1] | |
354 | x_median = numpy.median(deltas) |
|
355 | x_median = numpy.median(deltas) | |
355 |
|
356 | |||
356 | index = numpy.where(deltas > 5 * x_median) |
|
357 | index = numpy.where(deltas > 5 * x_median) | |
357 |
|
358 | |||
358 | if len(index[0]) != 0: |
|
359 | if len(index[0]) != 0: | |
359 | z_buffer[::, index[0], ::] = self.__missing |
|
360 | z_buffer[::, index[0], ::] = self.__missing | |
360 | z_buffer = numpy.ma.masked_inside(z_buffer, |
|
361 | z_buffer = numpy.ma.masked_inside(z_buffer, | |
361 | 0.99 * self.__missing, |
|
362 | 0.99 * self.__missing, | |
362 | 1.01 * self.__missing) |
|
363 | 1.01 * self.__missing) | |
363 |
|
364 | |||
364 | return x_buffer, y_buffer, z_buffer |
|
365 | return x_buffer, y_buffer, z_buffer | |
365 |
|
366 | |||
366 | def decimate(self): |
|
367 | def decimate(self): | |
367 |
|
368 | |||
368 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
369 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 | |
369 | dy = int(len(self.y) / self.decimation) + 1 |
|
370 | dy = int(len(self.y) / self.decimation) + 1 | |
370 |
|
371 | |||
371 | # x = self.x[::dx] |
|
372 | # x = self.x[::dx] | |
372 | x = self.x |
|
373 | x = self.x | |
373 | y = self.y[::dy] |
|
374 | y = self.y[::dy] | |
374 | z = self.z[::, ::, ::dy] |
|
375 | z = self.z[::, ::, ::dy] | |
375 |
|
376 | |||
376 | return x, y, z |
|
377 | return x, y, z | |
377 |
|
378 | |||
378 | def format(self): |
|
379 | def format(self): | |
379 | ''' |
|
380 | ''' | |
380 | Set min and max values, labels, ticks and titles |
|
381 | Set min and max values, labels, ticks and titles | |
381 | ''' |
|
382 | ''' | |
382 |
|
383 | |||
383 | for n, ax in enumerate(self.axes): |
|
384 | for n, ax in enumerate(self.axes): | |
384 | if ax.firsttime: |
|
385 | if ax.firsttime: | |
385 | if self.xaxis != 'time': |
|
386 | if self.xaxis != 'time': | |
386 | xmin = self.xmin |
|
387 | xmin = self.xmin | |
387 | xmax = self.xmax |
|
388 | xmax = self.xmax | |
388 | else: |
|
389 | else: | |
389 | xmin = self.tmin |
|
390 | xmin = self.tmin | |
390 | xmax = self.tmin + self.xrange*60*60 |
|
391 | xmax = self.tmin + self.xrange*60*60 | |
391 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) |
|
392 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) | |
392 | ax.xaxis.set_major_locator(LinearLocator(9)) |
|
393 | ax.xaxis.set_major_locator(LinearLocator(9)) | |
393 | ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)]) |
|
394 | ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)]) | |
394 | ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)]) |
|
395 | ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)]) | |
395 | ax.set_facecolor(self.bgcolor) |
|
396 | ax.set_facecolor(self.bgcolor) | |
396 | if self.xscale: |
|
397 | if self.xscale: | |
397 | ax.xaxis.set_major_formatter(FuncFormatter( |
|
398 | ax.xaxis.set_major_formatter(FuncFormatter( | |
398 | lambda x, pos: '{0:g}'.format(x*self.xscale))) |
|
399 | lambda x, pos: '{0:g}'.format(x*self.xscale))) | |
399 | if self.yscale: |
|
400 | if self.yscale: | |
400 | ax.yaxis.set_major_formatter(FuncFormatter( |
|
401 | ax.yaxis.set_major_formatter(FuncFormatter( | |
401 | lambda x, pos: '{0:g}'.format(x*self.yscale))) |
|
402 | lambda x, pos: '{0:g}'.format(x*self.yscale))) | |
402 | if self.xlabel is not None: |
|
403 | if self.xlabel is not None: | |
403 | ax.set_xlabel(self.xlabel) |
|
404 | ax.set_xlabel(self.xlabel) | |
404 | if self.ylabel is not None: |
|
405 | if self.ylabel is not None: | |
405 | ax.set_ylabel(self.ylabel) |
|
406 | ax.set_ylabel(self.ylabel) | |
406 | if self.showprofile: |
|
407 | if self.showprofile: | |
407 | self.pf_axes[n].set_ylim(ymin, ymax) |
|
408 | self.pf_axes[n].set_ylim(ymin, ymax) | |
408 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) |
|
409 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) | |
409 | self.pf_axes[n].set_xlabel('dB') |
|
410 | self.pf_axes[n].set_xlabel('dB') | |
410 | self.pf_axes[n].grid(b=True, axis='x') |
|
411 | self.pf_axes[n].grid(b=True, axis='x') | |
411 | [tick.set_visible(False) |
|
412 | [tick.set_visible(False) | |
412 | for tick in self.pf_axes[n].get_yticklabels()] |
|
413 | for tick in self.pf_axes[n].get_yticklabels()] | |
413 | if self.colorbar: |
|
414 | if self.colorbar: | |
414 | ax.cbar = plt.colorbar( |
|
415 | ax.cbar = plt.colorbar( | |
415 | ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10) |
|
416 | ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10) | |
416 | ax.cbar.ax.tick_params(labelsize=8) |
|
417 | ax.cbar.ax.tick_params(labelsize=8) | |
417 | ax.cbar.ax.press = None |
|
418 | ax.cbar.ax.press = None | |
418 | if self.cb_label: |
|
419 | if self.cb_label: | |
419 | ax.cbar.set_label(self.cb_label, size=8) |
|
420 | ax.cbar.set_label(self.cb_label, size=8) | |
420 | elif self.cb_labels: |
|
421 | elif self.cb_labels: | |
421 | ax.cbar.set_label(self.cb_labels[n], size=8) |
|
422 | ax.cbar.set_label(self.cb_labels[n], size=8) | |
422 | else: |
|
423 | else: | |
423 | ax.cbar = None |
|
424 | ax.cbar = None | |
424 | ax.set_xlim(xmin, xmax) |
|
425 | ax.set_xlim(xmin, xmax) | |
425 | ax.set_ylim(ymin, ymax) |
|
426 | ax.set_ylim(ymin, ymax) | |
426 | ax.firsttime = False |
|
427 | ax.firsttime = False | |
427 | if self.grid: |
|
428 | if self.grid: | |
428 | ax.grid(True) |
|
429 | ax.grid(True) | |
429 | if not self.polar: |
|
430 | if not self.polar: | |
430 | ax.set_title('{} {} {}'.format( |
|
431 | ax.set_title('{} {} {}'.format( | |
431 | self.titles[n], |
|
432 | self.titles[n], | |
432 | self.getDateTime(self.data.max_time).strftime( |
|
433 | self.getDateTime(self.data.max_time).strftime( | |
433 | '%Y-%m-%d %H:%M:%S'), |
|
434 | '%Y-%m-%d %H:%M:%S'), | |
434 | self.time_label), |
|
435 | self.time_label), | |
435 | size=8) |
|
436 | size=8) | |
436 | else: |
|
437 | else: | |
437 | ax.set_title('{}'.format(self.titles[n]), size=8) |
|
438 | #ax.set_title('{}'.format(self.titles[n]), size=8) | |
438 |
ax.set_ |
|
439 | ax.set_title('{} {} {}'.format( | |
439 | ax.set_yticks(numpy.arange(0, 90, 20)) |
|
440 | self.titles[n], | |
|
441 | self.getDateTime(self.data.max_time).strftime( | |||
|
442 | '%Y-%m-%d %H:%M:%S'), | |||
|
443 | self.time_label), | |||
|
444 | size=8) | |||
|
445 | ax.set_ylim(0, self.ymax) | |||
|
446 | #ax.set_yticks(numpy.arange(0, self.ymax, 20)) | |||
440 | ax.yaxis.labelpad = 40 |
|
447 | ax.yaxis.labelpad = 40 | |
441 |
|
448 | |||
442 | if self.firsttime: |
|
449 | if self.firsttime: | |
443 | for n, fig in enumerate(self.figures): |
|
450 | for n, fig in enumerate(self.figures): | |
444 | fig.subplots_adjust(**self.plots_adjust) |
|
451 | fig.subplots_adjust(**self.plots_adjust) | |
445 | self.firsttime = False |
|
452 | self.firsttime = False | |
446 |
|
453 | |||
447 | def clear_figures(self): |
|
454 | def clear_figures(self): | |
448 | ''' |
|
455 | ''' | |
449 | Reset axes for redraw plots |
|
456 | Reset axes for redraw plots | |
450 | ''' |
|
457 | ''' | |
451 |
|
458 | |||
452 | for ax in self.axes+self.pf_axes+self.cb_axes: |
|
459 | for ax in self.axes+self.pf_axes+self.cb_axes: | |
453 | ax.clear() |
|
460 | ax.clear() | |
454 | ax.firsttime = True |
|
461 | ax.firsttime = True | |
455 | if hasattr(ax, 'cbar') and ax.cbar: |
|
462 | if hasattr(ax, 'cbar') and ax.cbar: | |
456 | ax.cbar.remove() |
|
463 | ax.cbar.remove() | |
457 |
|
464 | |||
458 | def __plot(self): |
|
465 | def __plot(self): | |
459 | ''' |
|
466 | ''' | |
460 | Main function to plot, format and save figures |
|
467 | Main function to plot, format and save figures | |
461 | ''' |
|
468 | ''' | |
462 |
|
469 | |||
463 | self.plot() |
|
470 | self.plot() | |
464 | self.format() |
|
471 | self.format() | |
465 |
|
472 | |||
466 | for n, fig in enumerate(self.figures): |
|
473 | for n, fig in enumerate(self.figures): | |
467 | if self.nrows == 0 or self.nplots == 0: |
|
474 | if self.nrows == 0 or self.nplots == 0: | |
468 | log.warning('No data', self.name) |
|
475 | log.warning('No data', self.name) | |
469 | fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center') |
|
476 | fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center') | |
470 | fig.canvas.manager.set_window_title(self.CODE) |
|
477 | fig.canvas.manager.set_window_title(self.CODE) | |
471 | continue |
|
478 | continue | |
472 |
|
479 | |||
473 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, |
|
480 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, | |
474 | self.getDateTime(self.data.max_time).strftime('%Y/%m/%d'))) |
|
481 | self.getDateTime(self.data.max_time).strftime('%Y/%m/%d'))) | |
475 | fig.canvas.draw() |
|
482 | fig.canvas.draw() | |
476 | if self.show: |
|
483 | if self.show: | |
477 | fig.show() |
|
484 | fig.show() | |
478 | figpause(0.01) |
|
485 | figpause(0.01) | |
479 |
|
486 | |||
480 | if self.save: |
|
487 | if self.save: | |
481 | self.save_figure(n) |
|
488 | self.save_figure(n) | |
482 |
|
489 | |||
483 | if self.server: |
|
490 | if self.server: | |
484 | self.send_to_server() |
|
491 | self.send_to_server() | |
485 |
|
492 | |||
486 | def __update(self, dataOut, timestamp): |
|
493 | def __update(self, dataOut, timestamp): | |
487 | ''' |
|
494 | ''' | |
488 | ''' |
|
495 | ''' | |
489 |
|
496 | |||
490 | metadata = { |
|
497 | metadata = { | |
491 | 'yrange': dataOut.heightList, |
|
498 | 'yrange': dataOut.heightList, | |
492 | 'interval': dataOut.timeInterval, |
|
499 | 'interval': dataOut.timeInterval, | |
493 | 'channels': dataOut.channelList |
|
500 | 'channels': dataOut.channelList | |
494 | } |
|
501 | } | |
495 |
|
502 | |||
496 | data, meta = self.update(dataOut) |
|
503 | data, meta = self.update(dataOut) | |
497 | metadata.update(meta) |
|
504 | metadata.update(meta) | |
498 | self.data.update(data, timestamp, metadata) |
|
505 | self.data.update(data, timestamp, metadata) | |
499 |
|
506 | |||
500 | def save_figure(self, n): |
|
507 | def save_figure(self, n): | |
501 | ''' |
|
508 | ''' | |
502 | ''' |
|
509 | ''' | |
503 | if self.oneFigure: |
|
510 | if self.oneFigure: | |
504 | if (self.data.max_time - self.save_time) <= self.save_period: |
|
511 | if (self.data.max_time - self.save_time) <= self.save_period: | |
505 | return |
|
512 | return | |
506 |
|
513 | |||
507 | self.save_time = self.data.max_time |
|
514 | self.save_time = self.data.max_time | |
508 |
|
515 | |||
509 | fig = self.figures[n] |
|
516 | fig = self.figures[n] | |
510 | if self.throttle == 0: |
|
517 | if self.throttle == 0: | |
511 | if self.oneFigure: |
|
518 | if self.oneFigure: | |
512 | figname = os.path.join( |
|
519 | figname = os.path.join( | |
513 | self.save, |
|
520 | self.save, | |
514 | self.save_code, |
|
521 | self.save_code, | |
515 | '{}_{}.png'.format( |
|
522 | '{}_{}.png'.format( | |
516 | self.save_code, |
|
523 | self.save_code, | |
517 | self.getDateTime(self.data.max_time).strftime( |
|
524 | self.getDateTime(self.data.max_time).strftime( | |
518 | '%Y%m%d_%H%M%S' |
|
525 | '%Y%m%d_%H%M%S' | |
519 | ), |
|
526 | ), | |
520 | ) |
|
527 | ) | |
521 | ) |
|
528 | ) | |
522 | else: |
|
529 | else: | |
523 | figname = os.path.join( |
|
530 | figname = os.path.join( | |
524 | self.save, |
|
531 | self.save, | |
525 | self.save_code, |
|
532 | self.save_code, | |
526 | '{}_ch{}_{}.png'.format( |
|
533 | '{}_ch{}_{}.png'.format( | |
527 | self.save_code,n, |
|
534 | self.save_code,n, | |
528 | self.getDateTime(self.data.max_time).strftime( |
|
535 | self.getDateTime(self.data.max_time).strftime( | |
529 | '%Y%m%d_%H%M%S' |
|
536 | '%Y%m%d_%H%M%S' | |
530 | ), |
|
537 | ), | |
531 | ) |
|
538 | ) | |
532 | ) |
|
539 | ) | |
533 | log.log('Saving figure: {}'.format(figname), self.name) |
|
540 | log.log('Saving figure: {}'.format(figname), self.name) | |
534 | if not os.path.isdir(os.path.dirname(figname)): |
|
541 | if not os.path.isdir(os.path.dirname(figname)): | |
535 | os.makedirs(os.path.dirname(figname)) |
|
542 | os.makedirs(os.path.dirname(figname)) | |
536 | fig.savefig(figname) |
|
543 | fig.savefig(figname) | |
537 |
|
544 | |||
538 | figname = os.path.join( |
|
545 | figname = os.path.join( | |
539 | self.save, |
|
546 | self.save, | |
540 | '{}_{}.png'.format( |
|
547 | '{}_{}.png'.format( | |
541 | self.save_code, |
|
548 | self.save_code, | |
542 | self.getDateTime(self.data.min_time).strftime( |
|
549 | self.getDateTime(self.data.min_time).strftime( | |
543 | '%Y%m%d' |
|
550 | '%Y%m%d' | |
544 | ), |
|
551 | ), | |
545 | ) |
|
552 | ) | |
546 | ) |
|
553 | ) | |
547 |
|
554 | |||
548 | log.log('Saving figure: {}'.format(figname), self.name) |
|
555 | log.log('Saving figure: {}'.format(figname), self.name) | |
549 | if not os.path.isdir(os.path.dirname(figname)): |
|
556 | if not os.path.isdir(os.path.dirname(figname)): | |
550 | os.makedirs(os.path.dirname(figname)) |
|
557 | os.makedirs(os.path.dirname(figname)) | |
551 | fig.savefig(figname) |
|
558 | fig.savefig(figname) | |
552 |
|
559 | |||
553 | def send_to_server(self): |
|
560 | def send_to_server(self): | |
554 | ''' |
|
561 | ''' | |
555 | ''' |
|
562 | ''' | |
556 |
|
563 | |||
557 | if self.exp_code == None: |
|
564 | if self.exp_code == None: | |
558 | log.warning('Missing `exp_code` skipping sending to server...') |
|
565 | log.warning('Missing `exp_code` skipping sending to server...') | |
559 |
|
566 | |||
560 | last_time = self.data.max_time |
|
567 | last_time = self.data.max_time | |
561 | interval = last_time - self.sender_time |
|
568 | interval = last_time - self.sender_time | |
562 | if interval < self.sender_period: |
|
569 | if interval < self.sender_period: | |
563 | return |
|
570 | return | |
564 |
|
571 | |||
565 | self.sender_time = last_time |
|
572 | self.sender_time = last_time | |
566 |
|
573 | |||
567 | attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax'] |
|
574 | attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax'] | |
568 | for attr in attrs: |
|
575 | for attr in attrs: | |
569 | value = getattr(self, attr) |
|
576 | value = getattr(self, attr) | |
570 | if value: |
|
577 | if value: | |
571 | if isinstance(value, (numpy.float32, numpy.float64)): |
|
578 | if isinstance(value, (numpy.float32, numpy.float64)): | |
572 | value = round(float(value), 2) |
|
579 | value = round(float(value), 2) | |
573 | self.data.meta[attr] = value |
|
580 | self.data.meta[attr] = value | |
574 | if self.colormap == 'jet': |
|
581 | if self.colormap == 'jet': | |
575 | self.data.meta['colormap'] = 'Jet' |
|
582 | self.data.meta['colormap'] = 'Jet' | |
576 | elif 'RdBu' in self.colormap: |
|
583 | elif 'RdBu' in self.colormap: | |
577 | self.data.meta['colormap'] = 'RdBu' |
|
584 | self.data.meta['colormap'] = 'RdBu' | |
578 | else: |
|
585 | else: | |
579 | self.data.meta['colormap'] = 'Viridis' |
|
586 | self.data.meta['colormap'] = 'Viridis' | |
580 | self.data.meta['interval'] = int(interval) |
|
587 | self.data.meta['interval'] = int(interval) | |
581 |
|
588 | |||
582 | self.sender_queue.append(last_time) |
|
589 | self.sender_queue.append(last_time) | |
583 |
|
590 | |||
584 | while True: |
|
591 | while True: | |
585 | try: |
|
592 | try: | |
586 | tm = self.sender_queue.popleft() |
|
593 | tm = self.sender_queue.popleft() | |
587 | except IndexError: |
|
594 | except IndexError: | |
588 | break |
|
595 | break | |
589 | msg = self.data.jsonify(tm, self.save_code, self.plot_type) |
|
596 | msg = self.data.jsonify(tm, self.save_code, self.plot_type) | |
590 | self.socket.send_string(msg) |
|
597 | self.socket.send_string(msg) | |
591 | socks = dict(self.poll.poll(2000)) |
|
598 | socks = dict(self.poll.poll(2000)) | |
592 | if socks.get(self.socket) == zmq.POLLIN: |
|
599 | if socks.get(self.socket) == zmq.POLLIN: | |
593 | reply = self.socket.recv_string() |
|
600 | reply = self.socket.recv_string() | |
594 | if reply == 'ok': |
|
601 | if reply == 'ok': | |
595 | log.log("Response from server ok", self.name) |
|
602 | log.log("Response from server ok", self.name) | |
596 | time.sleep(0.1) |
|
603 | time.sleep(0.1) | |
597 | continue |
|
604 | continue | |
598 | else: |
|
605 | else: | |
599 | log.warning( |
|
606 | log.warning( | |
600 | "Malformed reply from server: {}".format(reply), self.name) |
|
607 | "Malformed reply from server: {}".format(reply), self.name) | |
601 | else: |
|
608 | else: | |
602 | log.warning( |
|
609 | log.warning( | |
603 | "No response from server, retrying...", self.name) |
|
610 | "No response from server, retrying...", self.name) | |
604 | self.sender_queue.appendleft(tm) |
|
611 | self.sender_queue.appendleft(tm) | |
605 | self.socket.setsockopt(zmq.LINGER, 0) |
|
612 | self.socket.setsockopt(zmq.LINGER, 0) | |
606 | self.socket.close() |
|
613 | self.socket.close() | |
607 | self.poll.unregister(self.socket) |
|
614 | self.poll.unregister(self.socket) | |
608 | self.socket = self.context.socket(zmq.REQ) |
|
615 | self.socket = self.context.socket(zmq.REQ) | |
609 | self.socket.connect(self.server) |
|
616 | self.socket.connect(self.server) | |
610 | self.poll.register(self.socket, zmq.POLLIN) |
|
617 | self.poll.register(self.socket, zmq.POLLIN) | |
611 | break |
|
618 | break | |
612 |
|
619 | |||
613 | def setup(self): |
|
620 | def setup(self): | |
614 | ''' |
|
621 | ''' | |
615 | This method should be implemented in the child class, the following |
|
622 | This method should be implemented in the child class, the following | |
616 | attributes should be set: |
|
623 | attributes should be set: | |
617 |
|
624 | |||
618 | self.nrows: number of rows |
|
625 | self.nrows: number of rows | |
619 | self.ncols: number of cols |
|
626 | self.ncols: number of cols | |
620 | self.nplots: number of plots (channels or pairs) |
|
627 | self.nplots: number of plots (channels or pairs) | |
621 | self.ylabel: label for Y axes |
|
628 | self.ylabel: label for Y axes | |
622 | self.titles: list of axes title |
|
629 | self.titles: list of axes title | |
623 |
|
630 | |||
624 | ''' |
|
631 | ''' | |
625 | raise NotImplementedError |
|
632 | raise NotImplementedError | |
626 |
|
633 | |||
627 | def plot(self): |
|
634 | def plot(self): | |
628 | ''' |
|
635 | ''' | |
629 | Must be defined in the child class, the actual plotting method |
|
636 | Must be defined in the child class, the actual plotting method | |
630 | ''' |
|
637 | ''' | |
631 | raise NotImplementedError |
|
638 | raise NotImplementedError | |
632 |
|
639 | |||
633 | def update(self, dataOut): |
|
640 | def update(self, dataOut): | |
634 | ''' |
|
641 | ''' | |
635 | Must be defined in the child class, update self.data with new data |
|
642 | Must be defined in the child class, update self.data with new data | |
636 | ''' |
|
643 | ''' | |
637 |
|
644 | |||
638 | data = { |
|
645 | data = { | |
639 | self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE)) |
|
646 | self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE)) | |
640 | } |
|
647 | } | |
641 | meta = {} |
|
648 | meta = {} | |
642 |
|
649 | |||
643 | return data, meta |
|
650 | return data, meta | |
644 |
|
651 | |||
645 | def run(self, dataOut, **kwargs): |
|
652 | def run(self, dataOut, **kwargs): | |
646 | ''' |
|
653 | ''' | |
647 | Main plotting routine |
|
654 | Main plotting routine | |
648 | ''' |
|
655 | ''' | |
649 |
|
656 | |||
650 | if self.isConfig is False: |
|
657 | if self.isConfig is False: | |
651 | self.__setup(**kwargs) |
|
658 | self.__setup(**kwargs) | |
652 |
|
659 | |||
653 | if self.localtime: |
|
660 | if self.localtime: | |
654 | self.getDateTime = datetime.datetime.fromtimestamp |
|
661 | self.getDateTime = datetime.datetime.fromtimestamp | |
655 | else: |
|
662 | else: | |
656 | self.getDateTime = datetime.datetime.utcfromtimestamp |
|
663 | self.getDateTime = datetime.datetime.utcfromtimestamp | |
657 |
|
664 | |||
658 | self.data.setup() |
|
665 | self.data.setup() | |
659 | self.isConfig = True |
|
666 | self.isConfig = True | |
660 | if self.server: |
|
667 | if self.server: | |
661 | self.context = zmq.Context() |
|
668 | self.context = zmq.Context() | |
662 | self.socket = self.context.socket(zmq.REQ) |
|
669 | self.socket = self.context.socket(zmq.REQ) | |
663 | self.socket.connect(self.server) |
|
670 | self.socket.connect(self.server) | |
664 | self.poll = zmq.Poller() |
|
671 | self.poll = zmq.Poller() | |
665 | self.poll.register(self.socket, zmq.POLLIN) |
|
672 | self.poll.register(self.socket, zmq.POLLIN) | |
666 |
|
673 | |||
667 | tm = getattr(dataOut, self.attr_time) |
|
674 | tm = getattr(dataOut, self.attr_time) | |
668 |
|
675 | |||
669 | if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60: |
|
676 | if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60: | |
670 | self.save_time = tm |
|
677 | self.save_time = tm | |
671 | self.__plot() |
|
678 | self.__plot() | |
672 | self.tmin += self.xrange*60*60 |
|
679 | self.tmin += self.xrange*60*60 | |
673 | self.data.setup() |
|
680 | self.data.setup() | |
674 | self.clear_figures() |
|
681 | self.clear_figures() | |
675 |
|
682 | |||
676 | self.__update(dataOut, tm) |
|
683 | self.__update(dataOut, tm) | |
677 |
|
684 | |||
678 | if self.isPlotConfig is False: |
|
685 | if self.isPlotConfig is False: | |
679 | self.__setup_plot() |
|
686 | self.__setup_plot() | |
680 | self.isPlotConfig = True |
|
687 | self.isPlotConfig = True | |
681 | if self.xaxis == 'time': |
|
688 | if self.xaxis == 'time': | |
682 | dt = self.getDateTime(tm) |
|
689 | dt = self.getDateTime(tm) | |
683 | if self.xmin is None: |
|
690 | if self.xmin is None: | |
684 | self.tmin = tm |
|
691 | self.tmin = tm | |
685 | self.xmin = dt.hour |
|
692 | self.xmin = dt.hour | |
686 | minutes = (self.xmin-int(self.xmin)) * 60 |
|
693 | minutes = (self.xmin-int(self.xmin)) * 60 | |
687 | seconds = (minutes - int(minutes)) * 60 |
|
694 | seconds = (minutes - int(minutes)) * 60 | |
688 | self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) - |
|
695 | self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) - | |
689 | datetime.datetime(1970, 1, 1)).total_seconds() |
|
696 | datetime.datetime(1970, 1, 1)).total_seconds() | |
690 | if self.localtime: |
|
697 | if self.localtime: | |
691 | self.tmin += time.timezone |
|
698 | self.tmin += time.timezone | |
692 |
|
699 | |||
693 | if self.xmin is not None and self.xmax is not None: |
|
700 | if self.xmin is not None and self.xmax is not None: | |
694 | self.xrange = self.xmax - self.xmin |
|
701 | self.xrange = self.xmax - self.xmin | |
695 |
|
702 | |||
696 | if self.throttle == 0: |
|
703 | if self.throttle == 0: | |
697 | self.__plot() |
|
704 | self.__plot() | |
698 | else: |
|
705 | else: | |
699 | self.__throttle_plot(self.__plot)#, coerce=coerce) |
|
706 | self.__throttle_plot(self.__plot)#, coerce=coerce) | |
700 |
|
707 | |||
701 | def close(self): |
|
708 | def close(self): | |
702 |
|
709 | |||
703 | if self.data and not self.data.flagNoData: |
|
710 | if self.data and not self.data.flagNoData: | |
704 | self.save_time = 0 |
|
711 | self.save_time = 0 | |
705 | self.__plot() |
|
712 | self.__plot() | |
706 | if self.data and not self.data.flagNoData and self.pause: |
|
713 | if self.data and not self.data.flagNoData and self.pause: | |
707 | figpause(10) |
|
714 | figpause(10) |
@@ -1,2378 +1,2522 | |||||
1 | import os |
|
1 | import os | |
2 | import datetime |
|
2 | import datetime | |
3 | import numpy |
|
3 | import numpy | |
4 | from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter |
|
4 | from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter | |
5 |
|
5 | |||
6 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
6 | from schainpy.model.graphics.jroplot_base import Plot, plt | |
7 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
7 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot | |
8 | from schainpy.utils import log |
|
8 | from schainpy.utils import log | |
9 | # libreria wradlib |
|
9 | # libreria wradlib | |
10 | import wradlib as wrl |
|
10 | import wradlib as wrl | |
11 |
|
11 | |||
12 | EARTH_RADIUS = 6.3710e3 |
|
12 | EARTH_RADIUS = 6.3710e3 | |
13 |
|
13 | |||
14 |
|
14 | |||
15 | def ll2xy(lat1, lon1, lat2, lon2): |
|
15 | def ll2xy(lat1, lon1, lat2, lon2): | |
16 |
|
16 | |||
17 | p = 0.017453292519943295 |
|
17 | p = 0.017453292519943295 | |
18 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
18 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |
19 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
19 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |
20 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
20 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
21 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
21 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |
22 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
22 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |
23 | theta = -theta + numpy.pi/2 |
|
23 | theta = -theta + numpy.pi/2 | |
24 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
24 | return r*numpy.cos(theta), r*numpy.sin(theta) | |
25 |
|
25 | |||
26 |
|
26 | |||
27 | def km2deg(km): |
|
27 | def km2deg(km): | |
28 | ''' |
|
28 | ''' | |
29 | Convert distance in km to degrees |
|
29 | Convert distance in km to degrees | |
30 | ''' |
|
30 | ''' | |
31 |
|
31 | |||
32 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
32 | return numpy.rad2deg(km/EARTH_RADIUS) | |
33 |
|
33 | |||
34 |
|
34 | |||
35 |
|
35 | |||
36 | class SpectralMomentsPlot(SpectraPlot): |
|
36 | class SpectralMomentsPlot(SpectraPlot): | |
37 | ''' |
|
37 | ''' | |
38 | Plot for Spectral Moments |
|
38 | Plot for Spectral Moments | |
39 | ''' |
|
39 | ''' | |
40 | CODE = 'spc_moments' |
|
40 | CODE = 'spc_moments' | |
41 | # colormap = 'jet' |
|
41 | # colormap = 'jet' | |
42 | # plot_type = 'pcolor' |
|
42 | # plot_type = 'pcolor' | |
43 |
|
43 | |||
44 | class DobleGaussianPlot(SpectraPlot): |
|
44 | class DobleGaussianPlot(SpectraPlot): | |
45 | ''' |
|
45 | ''' | |
46 | Plot for Double Gaussian Plot |
|
46 | Plot for Double Gaussian Plot | |
47 | ''' |
|
47 | ''' | |
48 | CODE = 'gaussian_fit' |
|
48 | CODE = 'gaussian_fit' | |
49 | # colormap = 'jet' |
|
49 | # colormap = 'jet' | |
50 | # plot_type = 'pcolor' |
|
50 | # plot_type = 'pcolor' | |
51 |
|
51 | |||
52 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
52 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): | |
53 | ''' |
|
53 | ''' | |
54 | Plot SpectraCut with Double Gaussian Fit |
|
54 | Plot SpectraCut with Double Gaussian Fit | |
55 | ''' |
|
55 | ''' | |
56 | CODE = 'cut_gaussian_fit' |
|
56 | CODE = 'cut_gaussian_fit' | |
57 |
|
57 | |||
58 | class SnrPlot(RTIPlot): |
|
58 | class SnrPlot(RTIPlot): | |
59 | ''' |
|
59 | ''' | |
60 | Plot for SNR Data |
|
60 | Plot for SNR Data | |
61 | ''' |
|
61 | ''' | |
62 |
|
62 | |||
63 | CODE = 'snr' |
|
63 | CODE = 'snr' | |
64 | colormap = 'jet' |
|
64 | colormap = 'jet' | |
65 |
|
65 | |||
66 | def update(self, dataOut): |
|
66 | def update(self, dataOut): | |
67 |
|
67 | |||
68 | data = { |
|
68 | data = { | |
69 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
69 | 'snr': 10*numpy.log10(dataOut.data_snr) | |
70 | } |
|
70 | } | |
71 |
|
71 | |||
72 | return data, {} |
|
72 | return data, {} | |
73 |
|
73 | |||
74 | class DopplerPlot(RTIPlot): |
|
74 | class DopplerPlot(RTIPlot): | |
75 | ''' |
|
75 | ''' | |
76 | Plot for DOPPLER Data (1st moment) |
|
76 | Plot for DOPPLER Data (1st moment) | |
77 | ''' |
|
77 | ''' | |
78 |
|
78 | |||
79 | CODE = 'dop' |
|
79 | CODE = 'dop' | |
80 | colormap = 'jet' |
|
80 | colormap = 'jet' | |
81 |
|
81 | |||
82 | def update(self, dataOut): |
|
82 | def update(self, dataOut): | |
83 |
|
83 | |||
84 | data = { |
|
84 | data = { | |
85 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
85 | 'dop': 10*numpy.log10(dataOut.data_dop) | |
86 | } |
|
86 | } | |
87 |
|
87 | |||
88 | return data, {} |
|
88 | return data, {} | |
89 |
|
89 | |||
90 | class PowerPlot(RTIPlot): |
|
90 | class PowerPlot(RTIPlot): | |
91 | ''' |
|
91 | ''' | |
92 | Plot for Power Data (0 moment) |
|
92 | Plot for Power Data (0 moment) | |
93 | ''' |
|
93 | ''' | |
94 |
|
94 | |||
95 | CODE = 'pow' |
|
95 | CODE = 'pow' | |
96 | colormap = 'jet' |
|
96 | colormap = 'jet' | |
97 |
|
97 | |||
98 | def update(self, dataOut): |
|
98 | def update(self, dataOut): | |
99 | data = { |
|
99 | data = { | |
100 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) |
|
100 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) | |
101 | } |
|
101 | } | |
102 | return data, {} |
|
102 | return data, {} | |
103 |
|
103 | |||
104 | class SpectralWidthPlot(RTIPlot): |
|
104 | class SpectralWidthPlot(RTIPlot): | |
105 | ''' |
|
105 | ''' | |
106 | Plot for Spectral Width Data (2nd moment) |
|
106 | Plot for Spectral Width Data (2nd moment) | |
107 | ''' |
|
107 | ''' | |
108 |
|
108 | |||
109 | CODE = 'width' |
|
109 | CODE = 'width' | |
110 | colormap = 'jet' |
|
110 | colormap = 'jet' | |
111 |
|
111 | |||
112 | def update(self, dataOut): |
|
112 | def update(self, dataOut): | |
113 |
|
113 | |||
114 | data = { |
|
114 | data = { | |
115 | 'width': dataOut.data_width |
|
115 | 'width': dataOut.data_width | |
116 | } |
|
116 | } | |
117 |
|
117 | |||
118 | return data, {} |
|
118 | return data, {} | |
119 |
|
119 | |||
120 | class SkyMapPlot(Plot): |
|
120 | class SkyMapPlot(Plot): | |
121 | ''' |
|
121 | ''' | |
122 | Plot for meteors detection data |
|
122 | Plot for meteors detection data | |
123 | ''' |
|
123 | ''' | |
124 |
|
124 | |||
125 | CODE = 'param' |
|
125 | CODE = 'param' | |
126 |
|
126 | |||
127 | def setup(self): |
|
127 | def setup(self): | |
128 |
|
128 | |||
129 | self.ncols = 1 |
|
129 | self.ncols = 1 | |
130 | self.nrows = 1 |
|
130 | self.nrows = 1 | |
131 | self.width = 7.2 |
|
131 | self.width = 7.2 | |
132 | self.height = 7.2 |
|
132 | self.height = 7.2 | |
133 | self.nplots = 1 |
|
133 | self.nplots = 1 | |
134 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
134 | self.xlabel = 'Zonal Zenith Angle (deg)' | |
135 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
135 | self.ylabel = 'Meridional Zenith Angle (deg)' | |
136 | self.polar = True |
|
136 | self.polar = True | |
137 | self.ymin = -180 |
|
137 | self.ymin = -180 | |
138 | self.ymax = 180 |
|
138 | self.ymax = 180 | |
139 | self.colorbar = False |
|
139 | self.colorbar = False | |
140 |
|
140 | |||
141 | def plot(self): |
|
141 | def plot(self): | |
142 |
|
142 | |||
143 | arrayParameters = numpy.concatenate(self.data['param']) |
|
143 | arrayParameters = numpy.concatenate(self.data['param']) | |
144 | error = arrayParameters[:, -1] |
|
144 | error = arrayParameters[:, -1] | |
145 | indValid = numpy.where(error == 0)[0] |
|
145 | indValid = numpy.where(error == 0)[0] | |
146 | finalMeteor = arrayParameters[indValid, :] |
|
146 | finalMeteor = arrayParameters[indValid, :] | |
147 | finalAzimuth = finalMeteor[:, 3] |
|
147 | finalAzimuth = finalMeteor[:, 3] | |
148 | finalZenith = finalMeteor[:, 4] |
|
148 | finalZenith = finalMeteor[:, 4] | |
149 |
|
149 | |||
150 | x = finalAzimuth * numpy.pi / 180 |
|
150 | x = finalAzimuth * numpy.pi / 180 | |
151 | y = finalZenith |
|
151 | y = finalZenith | |
152 |
|
152 | |||
153 | ax = self.axes[0] |
|
153 | ax = self.axes[0] | |
154 |
|
154 | |||
155 | if ax.firsttime: |
|
155 | if ax.firsttime: | |
156 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
156 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] | |
157 | else: |
|
157 | else: | |
158 | ax.plot.set_data(x, y) |
|
158 | ax.plot.set_data(x, y) | |
159 |
|
159 | |||
160 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
160 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') | |
161 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
161 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') | |
162 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
162 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | |
163 | dt2, |
|
163 | dt2, | |
164 | len(x)) |
|
164 | len(x)) | |
165 | self.titles[0] = title |
|
165 | self.titles[0] = title | |
166 |
|
166 | |||
167 |
|
167 | |||
168 | class GenericRTIPlot(Plot): |
|
168 | class GenericRTIPlot(Plot): | |
169 | ''' |
|
169 | ''' | |
170 | Plot for data_xxxx object |
|
170 | Plot for data_xxxx object | |
171 | ''' |
|
171 | ''' | |
172 |
|
172 | |||
173 | CODE = 'param' |
|
173 | CODE = 'param' | |
174 | colormap = 'viridis' |
|
174 | colormap = 'viridis' | |
175 | plot_type = 'pcolorbuffer' |
|
175 | plot_type = 'pcolorbuffer' | |
176 |
|
176 | |||
177 | def setup(self): |
|
177 | def setup(self): | |
178 | self.xaxis = 'time' |
|
178 | self.xaxis = 'time' | |
179 | self.ncols = 1 |
|
179 | self.ncols = 1 | |
180 | self.nrows = self.data.shape('param')[0] |
|
180 | self.nrows = self.data.shape('param')[0] | |
181 | self.nplots = self.nrows |
|
181 | self.nplots = self.nrows | |
182 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
182 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) | |
183 |
|
183 | |||
184 | if not self.xlabel: |
|
184 | if not self.xlabel: | |
185 | self.xlabel = 'Time' |
|
185 | self.xlabel = 'Time' | |
186 |
|
186 | |||
187 | self.ylabel = 'Range [km]' |
|
187 | self.ylabel = 'Range [km]' | |
188 | if not self.titles: |
|
188 | if not self.titles: | |
189 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
189 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] | |
190 |
|
190 | |||
191 | def update(self, dataOut): |
|
191 | def update(self, dataOut): | |
192 |
|
192 | |||
193 | data = { |
|
193 | data = { | |
194 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
194 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) | |
195 | } |
|
195 | } | |
196 |
|
196 | |||
197 | meta = {} |
|
197 | meta = {} | |
198 |
|
198 | |||
199 | return data, meta |
|
199 | return data, meta | |
200 |
|
200 | |||
201 | def plot(self): |
|
201 | def plot(self): | |
202 | # self.data.normalize_heights() |
|
202 | # self.data.normalize_heights() | |
203 | self.x = self.data.times |
|
203 | self.x = self.data.times | |
204 | self.y = self.data.yrange |
|
204 | self.y = self.data.yrange | |
205 | self.z = self.data['param'] |
|
205 | self.z = self.data['param'] | |
206 | self.z = 10*numpy.log10(self.z) |
|
206 | self.z = 10*numpy.log10(self.z) | |
207 | self.z = numpy.ma.masked_invalid(self.z) |
|
207 | self.z = numpy.ma.masked_invalid(self.z) | |
208 |
|
208 | |||
209 | if self.decimation is None: |
|
209 | if self.decimation is None: | |
210 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
210 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
211 | else: |
|
211 | else: | |
212 | x, y, z = self.fill_gaps(*self.decimate()) |
|
212 | x, y, z = self.fill_gaps(*self.decimate()) | |
213 |
|
213 | |||
214 | for n, ax in enumerate(self.axes): |
|
214 | for n, ax in enumerate(self.axes): | |
215 |
|
215 | |||
216 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
216 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
217 | self.z[n]) |
|
217 | self.z[n]) | |
218 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
218 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
219 | self.z[n]) |
|
219 | self.z[n]) | |
220 |
|
220 | |||
221 | if ax.firsttime: |
|
221 | if ax.firsttime: | |
222 | if self.zlimits is not None: |
|
222 | if self.zlimits is not None: | |
223 | self.zmin, self.zmax = self.zlimits[n] |
|
223 | self.zmin, self.zmax = self.zlimits[n] | |
224 |
|
224 | |||
225 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
225 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
226 | vmin=self.zmin, |
|
226 | vmin=self.zmin, | |
227 | vmax=self.zmax, |
|
227 | vmax=self.zmax, | |
228 | cmap=self.cmaps[n] |
|
228 | cmap=self.cmaps[n] | |
229 | ) |
|
229 | ) | |
230 | else: |
|
230 | else: | |
231 | if self.zlimits is not None: |
|
231 | if self.zlimits is not None: | |
232 | self.zmin, self.zmax = self.zlimits[n] |
|
232 | self.zmin, self.zmax = self.zlimits[n] | |
233 | ax.collections.remove(ax.collections[0]) |
|
233 | ax.collections.remove(ax.collections[0]) | |
234 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
234 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
235 | vmin=self.zmin, |
|
235 | vmin=self.zmin, | |
236 | vmax=self.zmax, |
|
236 | vmax=self.zmax, | |
237 | cmap=self.cmaps[n] |
|
237 | cmap=self.cmaps[n] | |
238 | ) |
|
238 | ) | |
239 |
|
239 | |||
240 |
|
240 | |||
241 | class PolarMapPlot(Plot): |
|
241 | class PolarMapPlot(Plot): | |
242 | ''' |
|
242 | ''' | |
243 | Plot for weather radar |
|
243 | Plot for weather radar | |
244 | ''' |
|
244 | ''' | |
245 |
|
245 | |||
246 | CODE = 'param' |
|
246 | CODE = 'param' | |
247 | colormap = 'seismic' |
|
247 | colormap = 'seismic' | |
248 |
|
248 | |||
249 | def setup(self): |
|
249 | def setup(self): | |
250 | self.ncols = 1 |
|
250 | self.ncols = 1 | |
251 | self.nrows = 1 |
|
251 | self.nrows = 1 | |
252 | self.width = 9 |
|
252 | self.width = 9 | |
253 | self.height = 8 |
|
253 | self.height = 8 | |
254 | self.mode = self.data.meta['mode'] |
|
254 | self.mode = self.data.meta['mode'] | |
255 | if self.channels is not None: |
|
255 | if self.channels is not None: | |
256 | self.nplots = len(self.channels) |
|
256 | self.nplots = len(self.channels) | |
257 | self.nrows = len(self.channels) |
|
257 | self.nrows = len(self.channels) | |
258 | else: |
|
258 | else: | |
259 | self.nplots = self.data.shape(self.CODE)[0] |
|
259 | self.nplots = self.data.shape(self.CODE)[0] | |
260 | self.nrows = self.nplots |
|
260 | self.nrows = self.nplots | |
261 | self.channels = list(range(self.nplots)) |
|
261 | self.channels = list(range(self.nplots)) | |
262 | if self.mode == 'E': |
|
262 | if self.mode == 'E': | |
263 | self.xlabel = 'Longitude' |
|
263 | self.xlabel = 'Longitude' | |
264 | self.ylabel = 'Latitude' |
|
264 | self.ylabel = 'Latitude' | |
265 | else: |
|
265 | else: | |
266 | self.xlabel = 'Range (km)' |
|
266 | self.xlabel = 'Range (km)' | |
267 | self.ylabel = 'Height (km)' |
|
267 | self.ylabel = 'Height (km)' | |
268 | self.bgcolor = 'white' |
|
268 | self.bgcolor = 'white' | |
269 | self.cb_labels = self.data.meta['units'] |
|
269 | self.cb_labels = self.data.meta['units'] | |
270 | self.lat = self.data.meta['latitude'] |
|
270 | self.lat = self.data.meta['latitude'] | |
271 | self.lon = self.data.meta['longitude'] |
|
271 | self.lon = self.data.meta['longitude'] | |
272 | self.xmin, self.xmax = float( |
|
272 | self.xmin, self.xmax = float( | |
273 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
273 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) | |
274 | self.ymin, self.ymax = float( |
|
274 | self.ymin, self.ymax = float( | |
275 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
275 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) | |
276 | # self.polar = True |
|
276 | # self.polar = True | |
277 |
|
277 | |||
278 | def plot(self): |
|
278 | def plot(self): | |
279 |
|
279 | |||
280 | for n, ax in enumerate(self.axes): |
|
280 | for n, ax in enumerate(self.axes): | |
281 | data = self.data['param'][self.channels[n]] |
|
281 | data = self.data['param'][self.channels[n]] | |
282 |
|
282 | |||
283 | zeniths = numpy.linspace( |
|
283 | zeniths = numpy.linspace( | |
284 | 0, self.data.meta['max_range'], data.shape[1]) |
|
284 | 0, self.data.meta['max_range'], data.shape[1]) | |
285 | if self.mode == 'E': |
|
285 | if self.mode == 'E': | |
286 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
286 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 | |
287 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
287 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
288 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
288 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( | |
289 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
289 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) | |
290 | x = km2deg(x) + self.lon |
|
290 | x = km2deg(x) + self.lon | |
291 | y = km2deg(y) + self.lat |
|
291 | y = km2deg(y) + self.lat | |
292 | else: |
|
292 | else: | |
293 | azimuths = numpy.radians(self.data.yrange) |
|
293 | azimuths = numpy.radians(self.data.yrange) | |
294 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
294 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
295 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
295 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) | |
296 | self.y = zeniths |
|
296 | self.y = zeniths | |
297 |
|
297 | |||
298 | if ax.firsttime: |
|
298 | if ax.firsttime: | |
299 | if self.zlimits is not None: |
|
299 | if self.zlimits is not None: | |
300 | self.zmin, self.zmax = self.zlimits[n] |
|
300 | self.zmin, self.zmax = self.zlimits[n] | |
301 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
301 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
302 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
302 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
303 | vmin=self.zmin, |
|
303 | vmin=self.zmin, | |
304 | vmax=self.zmax, |
|
304 | vmax=self.zmax, | |
305 | cmap=self.cmaps[n]) |
|
305 | cmap=self.cmaps[n]) | |
306 | else: |
|
306 | else: | |
307 | if self.zlimits is not None: |
|
307 | if self.zlimits is not None: | |
308 | self.zmin, self.zmax = self.zlimits[n] |
|
308 | self.zmin, self.zmax = self.zlimits[n] | |
309 | ax.collections.remove(ax.collections[0]) |
|
309 | ax.collections.remove(ax.collections[0]) | |
310 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
310 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
311 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
311 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
312 | vmin=self.zmin, |
|
312 | vmin=self.zmin, | |
313 | vmax=self.zmax, |
|
313 | vmax=self.zmax, | |
314 | cmap=self.cmaps[n]) |
|
314 | cmap=self.cmaps[n]) | |
315 |
|
315 | |||
316 | if self.mode == 'A': |
|
316 | if self.mode == 'A': | |
317 | continue |
|
317 | continue | |
318 |
|
318 | |||
319 | # plot district names |
|
319 | # plot district names | |
320 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
320 | f = open('/data/workspace/schain_scripts/distrito.csv') | |
321 | for line in f: |
|
321 | for line in f: | |
322 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
322 | label, lon, lat = [s.strip() for s in line.split(',') if s] | |
323 | lat = float(lat) |
|
323 | lat = float(lat) | |
324 | lon = float(lon) |
|
324 | lon = float(lon) | |
325 | # ax.plot(lon, lat, '.b', ms=2) |
|
325 | # ax.plot(lon, lat, '.b', ms=2) | |
326 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
326 | ax.text(lon, lat, label.decode('utf8'), ha='center', | |
327 | va='bottom', size='8', color='black') |
|
327 | va='bottom', size='8', color='black') | |
328 |
|
328 | |||
329 | # plot limites |
|
329 | # plot limites | |
330 | limites = [] |
|
330 | limites = [] | |
331 | tmp = [] |
|
331 | tmp = [] | |
332 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
332 | for line in open('/data/workspace/schain_scripts/lima.csv'): | |
333 | if '#' in line: |
|
333 | if '#' in line: | |
334 | if tmp: |
|
334 | if tmp: | |
335 | limites.append(tmp) |
|
335 | limites.append(tmp) | |
336 | tmp = [] |
|
336 | tmp = [] | |
337 | continue |
|
337 | continue | |
338 | values = line.strip().split(',') |
|
338 | values = line.strip().split(',') | |
339 | tmp.append((float(values[0]), float(values[1]))) |
|
339 | tmp.append((float(values[0]), float(values[1]))) | |
340 | for points in limites: |
|
340 | for points in limites: | |
341 | ax.add_patch( |
|
341 | ax.add_patch( | |
342 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
342 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) | |
343 |
|
343 | |||
344 | # plot Cuencas |
|
344 | # plot Cuencas | |
345 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
345 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): | |
346 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
346 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) | |
347 | values = [line.strip().split(',') for line in f] |
|
347 | values = [line.strip().split(',') for line in f] | |
348 | points = [(float(s[0]), float(s[1])) for s in values] |
|
348 | points = [(float(s[0]), float(s[1])) for s in values] | |
349 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
349 | ax.add_patch(Polygon(points, ec='b', fc='none')) | |
350 |
|
350 | |||
351 | # plot grid |
|
351 | # plot grid | |
352 | for r in (15, 30, 45, 60): |
|
352 | for r in (15, 30, 45, 60): | |
353 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
353 | ax.add_artist(plt.Circle((self.lon, self.lat), | |
354 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
354 | km2deg(r), color='0.6', fill=False, lw=0.2)) | |
355 | ax.text( |
|
355 | ax.text( | |
356 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
356 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), | |
357 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
357 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), | |
358 | '{}km'.format(r), |
|
358 | '{}km'.format(r), | |
359 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
359 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') | |
360 |
|
360 | |||
361 | if self.mode == 'E': |
|
361 | if self.mode == 'E': | |
362 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
362 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) | |
363 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
363 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) | |
364 | else: |
|
364 | else: | |
365 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
365 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) | |
366 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
366 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) | |
367 |
|
367 | |||
368 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
368 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] | |
369 | self.titles = ['{} {}'.format( |
|
369 | self.titles = ['{} {}'.format( | |
370 | self.data.parameters[x], title) for x in self.channels] |
|
370 | self.data.parameters[x], title) for x in self.channels] | |
371 |
|
371 | |||
372 | class WeatherPlot(Plot): |
|
372 | class WeatherPlot(Plot): | |
373 | CODE = 'weather' |
|
373 | CODE = 'weather' | |
374 | plot_name = 'weather' |
|
374 | plot_name = 'weather' | |
375 | plot_type = 'ppistyle' |
|
375 | plot_type = 'ppistyle' | |
376 | buffering = False |
|
376 | buffering = False | |
377 |
|
377 | |||
378 | def setup(self): |
|
378 | def setup(self): | |
379 | self.ncols = 1 |
|
379 | self.ncols = 1 | |
380 | self.nrows = 1 |
|
380 | self.nrows = 1 | |
381 | self.width =8 |
|
381 | self.width =8 | |
382 | self.height =8 |
|
382 | self.height =8 | |
383 | self.nplots= 1 |
|
383 | self.nplots= 1 | |
384 | self.ylabel= 'Range [Km]' |
|
384 | self.ylabel= 'Range [Km]' | |
385 | self.titles= ['Weather'] |
|
385 | self.titles= ['Weather'] | |
386 | self.colorbar=False |
|
386 | self.colorbar=False | |
387 | self.ini =0 |
|
387 | self.ini =0 | |
388 | self.len_azi =0 |
|
388 | self.len_azi =0 | |
389 | self.buffer_ini = None |
|
389 | self.buffer_ini = None | |
390 | self.buffer_azi = None |
|
390 | self.buffer_azi = None | |
391 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
391 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
392 | self.flag =0 |
|
392 | self.flag =0 | |
393 | self.indicador= 0 |
|
393 | self.indicador= 0 | |
394 | self.last_data_azi = None |
|
394 | self.last_data_azi = None | |
395 | self.val_mean = None |
|
395 | self.val_mean = None | |
396 |
|
396 | |||
397 | def update(self, dataOut): |
|
397 | def update(self, dataOut): | |
398 |
|
398 | |||
399 | data = {} |
|
399 | data = {} | |
400 | meta = {} |
|
400 | meta = {} | |
401 | if hasattr(dataOut, 'dataPP_POWER'): |
|
401 | if hasattr(dataOut, 'dataPP_POWER'): | |
402 | factor = 1 |
|
402 | factor = 1 | |
403 | if hasattr(dataOut, 'nFFTPoints'): |
|
403 | if hasattr(dataOut, 'nFFTPoints'): | |
404 | factor = dataOut.normFactor |
|
404 | factor = dataOut.normFactor | |
405 | #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape) |
|
405 | #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape) | |
406 | data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
406 | data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) | |
407 | data['azi'] = dataOut.data_azi |
|
407 | data['azi'] = dataOut.data_azi | |
408 | data['ele'] = dataOut.data_ele |
|
408 | data['ele'] = dataOut.data_ele | |
409 | return data, meta |
|
409 | return data, meta | |
410 |
|
410 | |||
411 | def get2List(self,angulos): |
|
411 | def get2List(self,angulos): | |
412 | list1=[] |
|
412 | list1=[] | |
413 | list2=[] |
|
413 | list2=[] | |
414 | for i in reversed(range(len(angulos))): |
|
414 | for i in reversed(range(len(angulos))): | |
415 | diff_ = angulos[i]-angulos[i-1] |
|
415 | diff_ = angulos[i]-angulos[i-1] | |
416 | if diff_ >1.5: |
|
416 | if diff_ >1.5: | |
417 | list1.append(i-1) |
|
417 | list1.append(i-1) | |
418 | list2.append(diff_) |
|
418 | list2.append(diff_) | |
419 | return list(reversed(list1)),list(reversed(list2)) |
|
419 | return list(reversed(list1)),list(reversed(list2)) | |
420 |
|
420 | |||
421 | def fixData360(self,list_,ang_): |
|
421 | def fixData360(self,list_,ang_): | |
422 | if list_[0]==-1: |
|
422 | if list_[0]==-1: | |
423 | vec = numpy.where(ang_<ang_[0]) |
|
423 | vec = numpy.where(ang_<ang_[0]) | |
424 | ang_[vec] = ang_[vec]+360 |
|
424 | ang_[vec] = ang_[vec]+360 | |
425 | return ang_ |
|
425 | return ang_ | |
426 | return ang_ |
|
426 | return ang_ | |
427 |
|
427 | |||
428 | def fixData360HL(self,angulos): |
|
428 | def fixData360HL(self,angulos): | |
429 | vec = numpy.where(angulos>=360) |
|
429 | vec = numpy.where(angulos>=360) | |
430 | angulos[vec]=angulos[vec]-360 |
|
430 | angulos[vec]=angulos[vec]-360 | |
431 | return angulos |
|
431 | return angulos | |
432 |
|
432 | |||
433 | def search_pos(self,pos,list_): |
|
433 | def search_pos(self,pos,list_): | |
434 | for i in range(len(list_)): |
|
434 | for i in range(len(list_)): | |
435 | if pos == list_[i]: |
|
435 | if pos == list_[i]: | |
436 | return True,i |
|
436 | return True,i | |
437 | i=None |
|
437 | i=None | |
438 | return False,i |
|
438 | return False,i | |
439 |
|
439 | |||
440 | def fixDataComp(self,ang_,list1_,list2_): |
|
440 | def fixDataComp(self,ang_,list1_,list2_): | |
441 | size = len(ang_) |
|
441 | size = len(ang_) | |
442 | size2 = 0 |
|
442 | size2 = 0 | |
443 | for i in range(len(list2_)): |
|
443 | for i in range(len(list2_)): | |
444 | size2=size2+round(list2_[i])-1 |
|
444 | size2=size2+round(list2_[i])-1 | |
445 | new_size= size+size2 |
|
445 | new_size= size+size2 | |
446 | ang_new = numpy.zeros(new_size) |
|
446 | ang_new = numpy.zeros(new_size) | |
447 | ang_new2 = numpy.zeros(new_size) |
|
447 | ang_new2 = numpy.zeros(new_size) | |
448 |
|
448 | |||
449 | tmp = 0 |
|
449 | tmp = 0 | |
450 | c = 0 |
|
450 | c = 0 | |
451 | for i in range(len(ang_)): |
|
451 | for i in range(len(ang_)): | |
452 | ang_new[tmp +c] = ang_[i] |
|
452 | ang_new[tmp +c] = ang_[i] | |
453 | ang_new2[tmp+c] = ang_[i] |
|
453 | ang_new2[tmp+c] = ang_[i] | |
454 | condition , value = self.search_pos(i,list1_) |
|
454 | condition , value = self.search_pos(i,list1_) | |
455 | if condition: |
|
455 | if condition: | |
456 | pos = tmp + c + 1 |
|
456 | pos = tmp + c + 1 | |
457 | for k in range(round(list2_[value])-1): |
|
457 | for k in range(round(list2_[value])-1): | |
458 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
458 | ang_new[pos+k] = ang_new[pos+k-1]+1 | |
459 | ang_new2[pos+k] = numpy.nan |
|
459 | ang_new2[pos+k] = numpy.nan | |
460 | tmp = pos +k |
|
460 | tmp = pos +k | |
461 | c = 0 |
|
461 | c = 0 | |
462 | c=c+1 |
|
462 | c=c+1 | |
463 | return ang_new,ang_new2 |
|
463 | return ang_new,ang_new2 | |
464 |
|
464 | |||
465 | def globalCheckPED(self,angulos): |
|
465 | def globalCheckPED(self,angulos): | |
466 | l1,l2 = self.get2List(angulos) |
|
466 | l1,l2 = self.get2List(angulos) | |
467 | if len(l1)>0: |
|
467 | if len(l1)>0: | |
468 | angulos2 = self.fixData360(list_=l1,ang_=angulos) |
|
468 | angulos2 = self.fixData360(list_=l1,ang_=angulos) | |
469 | l1,l2 = self.get2List(angulos2) |
|
469 | l1,l2 = self.get2List(angulos2) | |
470 |
|
470 | |||
471 | ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2) |
|
471 | ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2) | |
472 | ang1_ = self.fixData360HL(ang1_) |
|
472 | ang1_ = self.fixData360HL(ang1_) | |
473 | ang2_ = self.fixData360HL(ang2_) |
|
473 | ang2_ = self.fixData360HL(ang2_) | |
474 | else: |
|
474 | else: | |
475 | ang1_= angulos |
|
475 | ang1_= angulos | |
476 | ang2_= angulos |
|
476 | ang2_= angulos | |
477 | return ang1_,ang2_ |
|
477 | return ang1_,ang2_ | |
478 |
|
478 | |||
479 | def analizeDATA(self,data_azi): |
|
479 | def analizeDATA(self,data_azi): | |
480 | list1 = [] |
|
480 | list1 = [] | |
481 | list2 = [] |
|
481 | list2 = [] | |
482 | dat = data_azi |
|
482 | dat = data_azi | |
483 | for i in reversed(range(1,len(dat))): |
|
483 | for i in reversed(range(1,len(dat))): | |
484 | if dat[i]>dat[i-1]: |
|
484 | if dat[i]>dat[i-1]: | |
485 | diff = int(dat[i])-int(dat[i-1]) |
|
485 | diff = int(dat[i])-int(dat[i-1]) | |
486 | else: |
|
486 | else: | |
487 | diff = 360+int(dat[i])-int(dat[i-1]) |
|
487 | diff = 360+int(dat[i])-int(dat[i-1]) | |
488 | if diff > 1: |
|
488 | if diff > 1: | |
489 | list1.append(i-1) |
|
489 | list1.append(i-1) | |
490 | list2.append(diff-1) |
|
490 | list2.append(diff-1) | |
491 | return list1,list2 |
|
491 | return list1,list2 | |
492 |
|
492 | |||
493 | def fixDATANEW(self,data_azi,data_weather): |
|
493 | def fixDATANEW(self,data_azi,data_weather): | |
494 | list1,list2 = self.analizeDATA(data_azi) |
|
494 | list1,list2 = self.analizeDATA(data_azi) | |
495 | if len(list1)== 0: |
|
495 | if len(list1)== 0: | |
496 | return data_azi,data_weather |
|
496 | return data_azi,data_weather | |
497 | else: |
|
497 | else: | |
498 | resize = 0 |
|
498 | resize = 0 | |
499 | for i in range(len(list2)): |
|
499 | for i in range(len(list2)): | |
500 | resize= resize + list2[i] |
|
500 | resize= resize + list2[i] | |
501 | new_data_azi = numpy.resize(data_azi,resize) |
|
501 | new_data_azi = numpy.resize(data_azi,resize) | |
502 | new_data_weather= numpy.resize(date_weather,resize) |
|
502 | new_data_weather= numpy.resize(date_weather,resize) | |
503 |
|
503 | |||
504 | for i in range(len(list2)): |
|
504 | for i in range(len(list2)): | |
505 | j=0 |
|
505 | j=0 | |
506 | position=list1[i]+1 |
|
506 | position=list1[i]+1 | |
507 | for j in range(list2[i]): |
|
507 | for j in range(list2[i]): | |
508 | new_data_azi[position+j]=new_data_azi[position+j-1]+1 |
|
508 | new_data_azi[position+j]=new_data_azi[position+j-1]+1 | |
509 | return new_data_azi |
|
509 | return new_data_azi | |
510 |
|
510 | |||
511 | def fixDATA(self,data_azi): |
|
511 | def fixDATA(self,data_azi): | |
512 | data=data_azi |
|
512 | data=data_azi | |
513 | for i in range(len(data)): |
|
513 | for i in range(len(data)): | |
514 | if numpy.isnan(data[i]): |
|
514 | if numpy.isnan(data[i]): | |
515 | data[i]=data[i-1]+1 |
|
515 | data[i]=data[i-1]+1 | |
516 | return data |
|
516 | return data | |
517 |
|
517 | |||
518 | def replaceNAN(self,data_weather,data_azi,val): |
|
518 | def replaceNAN(self,data_weather,data_azi,val): | |
519 | data= data_azi |
|
519 | data= data_azi | |
520 | data_T= data_weather |
|
520 | data_T= data_weather | |
521 | if data.shape[0]> data_T.shape[0]: |
|
521 | if data.shape[0]> data_T.shape[0]: | |
522 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
522 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) | |
523 | c = 0 |
|
523 | c = 0 | |
524 | for i in range(len(data)): |
|
524 | for i in range(len(data)): | |
525 | if numpy.isnan(data[i]): |
|
525 | if numpy.isnan(data[i]): | |
526 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
526 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
527 | else: |
|
527 | else: | |
528 | data_N[i,:]=data_T[c,:] |
|
528 | data_N[i,:]=data_T[c,:] | |
529 | c=c+1 |
|
529 | c=c+1 | |
530 | return data_N |
|
530 | return data_N | |
531 | else: |
|
531 | else: | |
532 | for i in range(len(data)): |
|
532 | for i in range(len(data)): | |
533 | if numpy.isnan(data[i]): |
|
533 | if numpy.isnan(data[i]): | |
534 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
534 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
535 | return data_T |
|
535 | return data_T | |
536 |
|
536 | |||
537 | def const_ploteo(self,data_weather,data_azi,step,res): |
|
537 | def const_ploteo(self,data_weather,data_azi,step,res): | |
538 | if self.ini==0: |
|
538 | if self.ini==0: | |
539 | #------- |
|
539 | #------- | |
540 | n = (360/res)-len(data_azi) |
|
540 | n = (360/res)-len(data_azi) | |
541 | #--------------------- new ------------------------- |
|
541 | #--------------------- new ------------------------- | |
542 | data_azi_new ,data_azi_old= self.globalCheckPED(data_azi) |
|
542 | data_azi_new ,data_azi_old= self.globalCheckPED(data_azi) | |
543 | #------------------------ |
|
543 | #------------------------ | |
544 | start = data_azi_new[-1] + res |
|
544 | start = data_azi_new[-1] + res | |
545 | end = data_azi_new[0] - res |
|
545 | end = data_azi_new[0] - res | |
546 | #------ new |
|
546 | #------ new | |
547 | self.last_data_azi = end |
|
547 | self.last_data_azi = end | |
548 | if start>end: |
|
548 | if start>end: | |
549 | end = end + 360 |
|
549 | end = end + 360 | |
550 | azi_vacia = numpy.linspace(start,end,int(n)) |
|
550 | azi_vacia = numpy.linspace(start,end,int(n)) | |
551 | azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia) |
|
551 | azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia) | |
552 | data_azi = numpy.hstack((data_azi_new,azi_vacia)) |
|
552 | data_azi = numpy.hstack((data_azi_new,azi_vacia)) | |
553 | # RADAR |
|
553 | # RADAR | |
554 | val_mean = numpy.mean(data_weather[:,-1]) |
|
554 | val_mean = numpy.mean(data_weather[:,-1]) | |
555 | self.val_mean = val_mean |
|
555 | self.val_mean = val_mean | |
556 | data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean |
|
556 | data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean | |
557 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) |
|
557 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) | |
558 | data_weather = numpy.vstack((data_weather,data_weather_cmp)) |
|
558 | data_weather = numpy.vstack((data_weather,data_weather_cmp)) | |
559 | else: |
|
559 | else: | |
560 | # azimuth |
|
560 | # azimuth | |
561 | flag=0 |
|
561 | flag=0 | |
562 | start_azi = self.res_azi[0] |
|
562 | start_azi = self.res_azi[0] | |
563 | #-----------new------------ |
|
563 | #-----------new------------ | |
564 | data_azi ,data_azi_old= self.globalCheckPED(data_azi) |
|
564 | data_azi ,data_azi_old= self.globalCheckPED(data_azi) | |
565 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) |
|
565 | data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean) | |
566 | #-------------------------- |
|
566 | #-------------------------- | |
567 | start = data_azi[0] |
|
567 | start = data_azi[0] | |
568 | end = data_azi[-1] |
|
568 | end = data_azi[-1] | |
569 | self.last_data_azi= end |
|
569 | self.last_data_azi= end | |
570 | if start< start_azi: |
|
570 | if start< start_azi: | |
571 | start = start +360 |
|
571 | start = start +360 | |
572 | if end <start_azi: |
|
572 | if end <start_azi: | |
573 | end = end +360 |
|
573 | end = end +360 | |
574 |
|
574 | |||
575 | pos_ini = int((start-start_azi)/res) |
|
575 | pos_ini = int((start-start_azi)/res) | |
576 | len_azi = len(data_azi) |
|
576 | len_azi = len(data_azi) | |
577 | if (360-pos_ini)<len_azi: |
|
577 | if (360-pos_ini)<len_azi: | |
578 | if pos_ini+1==360: |
|
578 | if pos_ini+1==360: | |
579 | pos_ini=0 |
|
579 | pos_ini=0 | |
580 | else: |
|
580 | else: | |
581 | flag=1 |
|
581 | flag=1 | |
582 | dif= 360-pos_ini |
|
582 | dif= 360-pos_ini | |
583 | comp= len_azi-dif |
|
583 | comp= len_azi-dif | |
584 | #----------------- |
|
584 | #----------------- | |
585 | if flag==0: |
|
585 | if flag==0: | |
586 | # AZIMUTH |
|
586 | # AZIMUTH | |
587 | self.res_azi[pos_ini:pos_ini+len_azi] = data_azi |
|
587 | self.res_azi[pos_ini:pos_ini+len_azi] = data_azi | |
588 | # RADAR |
|
588 | # RADAR | |
589 | self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather |
|
589 | self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather | |
590 | else: |
|
590 | else: | |
591 | # AZIMUTH |
|
591 | # AZIMUTH | |
592 | self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif] |
|
592 | self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif] | |
593 | self.res_azi[0:comp] = data_azi[dif:] |
|
593 | self.res_azi[0:comp] = data_azi[dif:] | |
594 | # RADAR |
|
594 | # RADAR | |
595 | self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:] |
|
595 | self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:] | |
596 | self.res_weather[0:comp,:] = data_weather[dif:,:] |
|
596 | self.res_weather[0:comp,:] = data_weather[dif:,:] | |
597 | flag=0 |
|
597 | flag=0 | |
598 | data_azi = self.res_azi |
|
598 | data_azi = self.res_azi | |
599 | data_weather = self.res_weather |
|
599 | data_weather = self.res_weather | |
600 |
|
600 | |||
601 | return data_weather,data_azi |
|
601 | return data_weather,data_azi | |
602 |
|
602 | |||
603 | def plot(self): |
|
603 | def plot(self): | |
604 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
604 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') | |
605 | data = self.data[-1] |
|
605 | data = self.data[-1] | |
606 | r = self.data.yrange |
|
606 | r = self.data.yrange | |
607 | delta_height = r[1]-r[0] |
|
607 | delta_height = r[1]-r[0] | |
608 | r_mask = numpy.where(r>=0)[0] |
|
608 | r_mask = numpy.where(r>=0)[0] | |
609 | r = numpy.arange(len(r_mask))*delta_height |
|
609 | r = numpy.arange(len(r_mask))*delta_height | |
610 | self.y = 2*r |
|
610 | self.y = 2*r | |
611 | # RADAR |
|
611 | # RADAR | |
612 | #data_weather = data['weather'] |
|
612 | #data_weather = data['weather'] | |
613 | # PEDESTAL |
|
613 | # PEDESTAL | |
614 | #data_azi = data['azi'] |
|
614 | #data_azi = data['azi'] | |
615 | res = 1 |
|
615 | res = 1 | |
616 | # STEP |
|
616 | # STEP | |
617 | step = (360/(res*data['weather'].shape[0])) |
|
617 | step = (360/(res*data['weather'].shape[0])) | |
618 |
|
618 | |||
619 | self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res) |
|
619 | self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res) | |
620 | self.res_ele = numpy.mean(data['ele']) |
|
620 | self.res_ele = numpy.mean(data['ele']) | |
621 | ################# PLOTEO ################### |
|
621 | ################# PLOTEO ################### | |
622 | for i,ax in enumerate(self.axes): |
|
622 | for i,ax in enumerate(self.axes): | |
623 | if ax.firsttime: |
|
623 | if ax.firsttime: | |
624 | plt.clf() |
|
624 | plt.clf() | |
625 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80) |
|
625 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80) | |
626 | else: |
|
626 | else: | |
627 | plt.clf() |
|
627 | plt.clf() | |
628 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80) |
|
628 | cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80) | |
629 | caax = cgax.parasites[0] |
|
629 | caax = cgax.parasites[0] | |
630 | paax = cgax.parasites[1] |
|
630 | paax = cgax.parasites[1] | |
631 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
631 | cbar = plt.gcf().colorbar(pm, pad=0.075) | |
632 | caax.set_xlabel('x_range [km]') |
|
632 | caax.set_xlabel('x_range [km]') | |
633 | caax.set_ylabel('y_range [km]') |
|
633 | caax.set_ylabel('y_range [km]') | |
634 | plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
634 | plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right') | |
635 |
|
635 | |||
636 | self.ini= self.ini+1 |
|
636 | self.ini= self.ini+1 | |
637 |
|
637 | |||
638 |
|
638 | |||
639 | class WeatherRHIPlot(Plot): |
|
639 | class WeatherRHIPlot(Plot): | |
640 | CODE = 'weather' |
|
640 | CODE = 'weather' | |
641 | plot_name = 'weather' |
|
641 | plot_name = 'weather' | |
642 | plot_type = 'rhistyle' |
|
642 | plot_type = 'rhistyle' | |
643 | buffering = False |
|
643 | buffering = False | |
644 | data_ele_tmp = None |
|
644 | data_ele_tmp = None | |
645 |
|
645 | |||
646 | def setup(self): |
|
646 | def setup(self): | |
647 | print("********************") |
|
647 | print("********************") | |
648 | print("********************") |
|
648 | print("********************") | |
649 | print("********************") |
|
649 | print("********************") | |
650 | print("SETUP WEATHER PLOT") |
|
650 | print("SETUP WEATHER PLOT") | |
651 | self.ncols = 1 |
|
651 | self.ncols = 1 | |
652 | self.nrows = 1 |
|
652 | self.nrows = 1 | |
653 | self.nplots= 1 |
|
653 | self.nplots= 1 | |
654 | self.ylabel= 'Range [Km]' |
|
654 | self.ylabel= 'Range [Km]' | |
655 | self.titles= ['Weather'] |
|
655 | self.titles= ['Weather'] | |
656 | if self.channels is not None: |
|
656 | if self.channels is not None: | |
657 | self.nplots = len(self.channels) |
|
657 | self.nplots = len(self.channels) | |
658 | self.nrows = len(self.channels) |
|
658 | self.nrows = len(self.channels) | |
659 | else: |
|
659 | else: | |
660 | self.nplots = self.data.shape(self.CODE)[0] |
|
660 | self.nplots = self.data.shape(self.CODE)[0] | |
661 | self.nrows = self.nplots |
|
661 | self.nrows = self.nplots | |
662 | self.channels = list(range(self.nplots)) |
|
662 | self.channels = list(range(self.nplots)) | |
663 | print("channels",self.channels) |
|
663 | print("channels",self.channels) | |
664 | print("que saldra", self.data.shape(self.CODE)[0]) |
|
664 | print("que saldra", self.data.shape(self.CODE)[0]) | |
665 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] |
|
665 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] | |
666 | print("self.titles",self.titles) |
|
666 | print("self.titles",self.titles) | |
667 | self.colorbar=False |
|
667 | self.colorbar=False | |
668 | self.width =8 |
|
668 | self.width =8 | |
669 | self.height =8 |
|
669 | self.height =8 | |
670 | self.ini =0 |
|
670 | self.ini =0 | |
671 | self.len_azi =0 |
|
671 | self.len_azi =0 | |
672 | self.buffer_ini = None |
|
672 | self.buffer_ini = None | |
673 | self.buffer_ele = None |
|
673 | self.buffer_ele = None | |
674 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
674 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
675 | self.flag =0 |
|
675 | self.flag =0 | |
676 | self.indicador= 0 |
|
676 | self.indicador= 0 | |
677 | self.last_data_ele = None |
|
677 | self.last_data_ele = None | |
678 | self.val_mean = None |
|
678 | self.val_mean = None | |
679 |
|
679 | |||
680 | def update(self, dataOut): |
|
680 | def update(self, dataOut): | |
681 |
|
681 | |||
682 | data = {} |
|
682 | data = {} | |
683 | meta = {} |
|
683 | meta = {} | |
684 | if hasattr(dataOut, 'dataPP_POWER'): |
|
684 | if hasattr(dataOut, 'dataPP_POWER'): | |
685 | factor = 1 |
|
685 | factor = 1 | |
686 | if hasattr(dataOut, 'nFFTPoints'): |
|
686 | if hasattr(dataOut, 'nFFTPoints'): | |
687 | factor = dataOut.normFactor |
|
687 | factor = dataOut.normFactor | |
688 | print("dataOut",dataOut.data_360.shape) |
|
688 | print("dataOut",dataOut.data_360.shape) | |
689 | # |
|
689 | # | |
690 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) |
|
690 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) | |
691 | # |
|
691 | # | |
692 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
692 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) | |
693 | data['azi'] = dataOut.data_azi |
|
693 | data['azi'] = dataOut.data_azi | |
694 | data['ele'] = dataOut.data_ele |
|
694 | data['ele'] = dataOut.data_ele | |
695 | #print("UPDATE") |
|
695 | #print("UPDATE") | |
696 | #print("data[weather]",data['weather'].shape) |
|
696 | #print("data[weather]",data['weather'].shape) | |
697 | #print("data[azi]",data['azi']) |
|
697 | #print("data[azi]",data['azi']) | |
698 | return data, meta |
|
698 | return data, meta | |
699 |
|
699 | |||
700 | def get2List(self,angulos): |
|
700 | def get2List(self,angulos): | |
701 | list1=[] |
|
701 | list1=[] | |
702 | list2=[] |
|
702 | list2=[] | |
703 | for i in reversed(range(len(angulos))): |
|
703 | for i in reversed(range(len(angulos))): | |
704 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante |
|
704 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante | |
705 | diff_ = angulos[i]-angulos[i-1] |
|
705 | diff_ = angulos[i]-angulos[i-1] | |
706 | if abs(diff_) >1.5: |
|
706 | if abs(diff_) >1.5: | |
707 | list1.append(i-1) |
|
707 | list1.append(i-1) | |
708 | list2.append(diff_) |
|
708 | list2.append(diff_) | |
709 | return list(reversed(list1)),list(reversed(list2)) |
|
709 | return list(reversed(list1)),list(reversed(list2)) | |
710 |
|
710 | |||
711 | def fixData90(self,list_,ang_): |
|
711 | def fixData90(self,list_,ang_): | |
712 | if list_[0]==-1: |
|
712 | if list_[0]==-1: | |
713 | vec = numpy.where(ang_<ang_[0]) |
|
713 | vec = numpy.where(ang_<ang_[0]) | |
714 | ang_[vec] = ang_[vec]+90 |
|
714 | ang_[vec] = ang_[vec]+90 | |
715 | return ang_ |
|
715 | return ang_ | |
716 | return ang_ |
|
716 | return ang_ | |
717 |
|
717 | |||
718 | def fixData90HL(self,angulos): |
|
718 | def fixData90HL(self,angulos): | |
719 | vec = numpy.where(angulos>=90) |
|
719 | vec = numpy.where(angulos>=90) | |
720 | angulos[vec]=angulos[vec]-90 |
|
720 | angulos[vec]=angulos[vec]-90 | |
721 | return angulos |
|
721 | return angulos | |
722 |
|
722 | |||
723 |
|
723 | |||
724 | def search_pos(self,pos,list_): |
|
724 | def search_pos(self,pos,list_): | |
725 | for i in range(len(list_)): |
|
725 | for i in range(len(list_)): | |
726 | if pos == list_[i]: |
|
726 | if pos == list_[i]: | |
727 | return True,i |
|
727 | return True,i | |
728 | i=None |
|
728 | i=None | |
729 | return False,i |
|
729 | return False,i | |
730 |
|
730 | |||
731 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): |
|
731 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): | |
732 | size = len(ang_) |
|
732 | size = len(ang_) | |
733 | size2 = 0 |
|
733 | size2 = 0 | |
734 | for i in range(len(list2_)): |
|
734 | for i in range(len(list2_)): | |
735 | size2=size2+round(abs(list2_[i]))-1 |
|
735 | size2=size2+round(abs(list2_[i]))-1 | |
736 | new_size= size+size2 |
|
736 | new_size= size+size2 | |
737 | ang_new = numpy.zeros(new_size) |
|
737 | ang_new = numpy.zeros(new_size) | |
738 | ang_new2 = numpy.zeros(new_size) |
|
738 | ang_new2 = numpy.zeros(new_size) | |
739 |
|
739 | |||
740 | tmp = 0 |
|
740 | tmp = 0 | |
741 | c = 0 |
|
741 | c = 0 | |
742 | for i in range(len(ang_)): |
|
742 | for i in range(len(ang_)): | |
743 | ang_new[tmp +c] = ang_[i] |
|
743 | ang_new[tmp +c] = ang_[i] | |
744 | ang_new2[tmp+c] = ang_[i] |
|
744 | ang_new2[tmp+c] = ang_[i] | |
745 | condition , value = self.search_pos(i,list1_) |
|
745 | condition , value = self.search_pos(i,list1_) | |
746 | if condition: |
|
746 | if condition: | |
747 | pos = tmp + c + 1 |
|
747 | pos = tmp + c + 1 | |
748 | for k in range(round(abs(list2_[value]))-1): |
|
748 | for k in range(round(abs(list2_[value]))-1): | |
749 | if tipo_case==0 or tipo_case==3:#subida |
|
749 | if tipo_case==0 or tipo_case==3:#subida | |
750 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
750 | ang_new[pos+k] = ang_new[pos+k-1]+1 | |
751 | ang_new2[pos+k] = numpy.nan |
|
751 | ang_new2[pos+k] = numpy.nan | |
752 | elif tipo_case==1 or tipo_case==2:#bajada |
|
752 | elif tipo_case==1 or tipo_case==2:#bajada | |
753 | ang_new[pos+k] = ang_new[pos+k-1]-1 |
|
753 | ang_new[pos+k] = ang_new[pos+k-1]-1 | |
754 | ang_new2[pos+k] = numpy.nan |
|
754 | ang_new2[pos+k] = numpy.nan | |
755 |
|
755 | |||
756 | tmp = pos +k |
|
756 | tmp = pos +k | |
757 | c = 0 |
|
757 | c = 0 | |
758 | c=c+1 |
|
758 | c=c+1 | |
759 | return ang_new,ang_new2 |
|
759 | return ang_new,ang_new2 | |
760 |
|
760 | |||
761 | def globalCheckPED(self,angulos,tipo_case): |
|
761 | def globalCheckPED(self,angulos,tipo_case): | |
762 | l1,l2 = self.get2List(angulos) |
|
762 | l1,l2 = self.get2List(angulos) | |
763 | ##print("l1",l1) |
|
763 | ##print("l1",l1) | |
764 | ##print("l2",l2) |
|
764 | ##print("l2",l2) | |
765 | if len(l1)>0: |
|
765 | if len(l1)>0: | |
766 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) |
|
766 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) | |
767 | #l1,l2 = self.get2List(angulos2) |
|
767 | #l1,l2 = self.get2List(angulos2) | |
768 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) |
|
768 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) | |
769 | #ang1_ = self.fixData90HL(ang1_) |
|
769 | #ang1_ = self.fixData90HL(ang1_) | |
770 | #ang2_ = self.fixData90HL(ang2_) |
|
770 | #ang2_ = self.fixData90HL(ang2_) | |
771 | else: |
|
771 | else: | |
772 | ang1_= angulos |
|
772 | ang1_= angulos | |
773 | ang2_= angulos |
|
773 | ang2_= angulos | |
774 | return ang1_,ang2_ |
|
774 | return ang1_,ang2_ | |
775 |
|
775 | |||
776 |
|
776 | |||
777 | def replaceNAN(self,data_weather,data_ele,val): |
|
777 | def replaceNAN(self,data_weather,data_ele,val): | |
778 | data= data_ele |
|
778 | data= data_ele | |
779 | data_T= data_weather |
|
779 | data_T= data_weather | |
780 | if data.shape[0]> data_T.shape[0]: |
|
780 | if data.shape[0]> data_T.shape[0]: | |
781 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
781 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) | |
782 | c = 0 |
|
782 | c = 0 | |
783 | for i in range(len(data)): |
|
783 | for i in range(len(data)): | |
784 | if numpy.isnan(data[i]): |
|
784 | if numpy.isnan(data[i]): | |
785 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
785 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
786 | else: |
|
786 | else: | |
787 | data_N[i,:]=data_T[c,:] |
|
787 | data_N[i,:]=data_T[c,:] | |
788 | c=c+1 |
|
788 | c=c+1 | |
789 | return data_N |
|
789 | return data_N | |
790 | else: |
|
790 | else: | |
791 | for i in range(len(data)): |
|
791 | for i in range(len(data)): | |
792 | if numpy.isnan(data[i]): |
|
792 | if numpy.isnan(data[i]): | |
793 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
793 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
794 | return data_T |
|
794 | return data_T | |
795 |
|
795 | |||
796 | def check_case(self,data_ele,ang_max,ang_min): |
|
796 | def check_case(self,data_ele,ang_max,ang_min): | |
797 | start = data_ele[0] |
|
797 | start = data_ele[0] | |
798 | end = data_ele[-1] |
|
798 | end = data_ele[-1] | |
799 | number = (end-start) |
|
799 | number = (end-start) | |
800 | len_ang=len(data_ele) |
|
800 | len_ang=len(data_ele) | |
801 | print("start",start) |
|
801 | print("start",start) | |
802 | print("end",end) |
|
802 | print("end",end) | |
803 | print("number",number) |
|
803 | print("number",number) | |
804 |
|
804 | |||
805 | print("len_ang",len_ang) |
|
805 | print("len_ang",len_ang) | |
806 |
|
806 | |||
807 | #exit(1) |
|
807 | #exit(1) | |
808 |
|
808 | |||
809 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida |
|
809 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida | |
810 | return 0 |
|
810 | return 0 | |
811 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada |
|
811 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada | |
812 | # return 1 |
|
812 | # return 1 | |
813 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada |
|
813 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada | |
814 | return 1 |
|
814 | return 1 | |
815 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX |
|
815 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX | |
816 | return 2 |
|
816 | return 2 | |
817 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN |
|
817 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN | |
818 | return 3 |
|
818 | return 3 | |
819 |
|
819 | |||
820 |
|
820 | |||
821 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min): |
|
821 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min): | |
822 | ang_max= ang_max |
|
822 | ang_max= ang_max | |
823 | ang_min= ang_min |
|
823 | ang_min= ang_min | |
824 | data_weather=data_weather |
|
824 | data_weather=data_weather | |
825 | val_ch=val_ch |
|
825 | val_ch=val_ch | |
826 | ##print("*********************DATA WEATHER**************************************") |
|
826 | ##print("*********************DATA WEATHER**************************************") | |
827 | ##print(data_weather) |
|
827 | ##print(data_weather) | |
828 | if self.ini==0: |
|
828 | if self.ini==0: | |
829 | ''' |
|
829 | ''' | |
830 | print("**********************************************") |
|
830 | print("**********************************************") | |
831 | print("**********************************************") |
|
831 | print("**********************************************") | |
832 | print("***************ini**************") |
|
832 | print("***************ini**************") | |
833 | print("**********************************************") |
|
833 | print("**********************************************") | |
834 | print("**********************************************") |
|
834 | print("**********************************************") | |
835 | ''' |
|
835 | ''' | |
836 | #print("data_ele",data_ele) |
|
836 | #print("data_ele",data_ele) | |
837 | #---------------------------------------------------------- |
|
837 | #---------------------------------------------------------- | |
838 | tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
838 | tipo_case = self.check_case(data_ele,ang_max,ang_min) | |
839 | print("check_case",tipo_case) |
|
839 | print("check_case",tipo_case) | |
840 | #exit(1) |
|
840 | #exit(1) | |
841 | #--------------------- new ------------------------- |
|
841 | #--------------------- new ------------------------- | |
842 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) |
|
842 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) | |
843 |
|
843 | |||
844 | #-------------------------CAMBIOS RHI--------------------------------- |
|
844 | #-------------------------CAMBIOS RHI--------------------------------- | |
845 | start= ang_min |
|
845 | start= ang_min | |
846 | end = ang_max |
|
846 | end = ang_max | |
847 | n= (ang_max-ang_min)/res |
|
847 | n= (ang_max-ang_min)/res | |
848 | #------ new |
|
848 | #------ new | |
849 | self.start_data_ele = data_ele_new[0] |
|
849 | self.start_data_ele = data_ele_new[0] | |
850 | self.end_data_ele = data_ele_new[-1] |
|
850 | self.end_data_ele = data_ele_new[-1] | |
851 | if tipo_case==0 or tipo_case==3: # SUBIDA |
|
851 | if tipo_case==0 or tipo_case==3: # SUBIDA | |
852 | n1= round(self.start_data_ele)- start |
|
852 | n1= round(self.start_data_ele)- start | |
853 | n2= end - round(self.end_data_ele) |
|
853 | n2= end - round(self.end_data_ele) | |
854 | print(self.start_data_ele) |
|
854 | print(self.start_data_ele) | |
855 | print(self.end_data_ele) |
|
855 | print(self.end_data_ele) | |
856 | if n1>0: |
|
856 | if n1>0: | |
857 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
857 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |
858 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
858 | ele1_nan= numpy.ones(n1)*numpy.nan | |
859 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
859 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
860 | print("ele1_nan",ele1_nan.shape) |
|
860 | print("ele1_nan",ele1_nan.shape) | |
861 | print("data_ele_old",data_ele_old.shape) |
|
861 | print("data_ele_old",data_ele_old.shape) | |
862 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
862 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |
863 | if n2>0: |
|
863 | if n2>0: | |
864 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
864 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |
865 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
865 | ele2_nan= numpy.ones(n2)*numpy.nan | |
866 | data_ele = numpy.hstack((data_ele,ele2)) |
|
866 | data_ele = numpy.hstack((data_ele,ele2)) | |
867 | print("ele2_nan",ele2_nan.shape) |
|
867 | print("ele2_nan",ele2_nan.shape) | |
868 | print("data_ele_old",data_ele_old.shape) |
|
868 | print("data_ele_old",data_ele_old.shape) | |
869 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
869 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
870 |
|
870 | |||
871 | if tipo_case==1 or tipo_case==2: # BAJADA |
|
871 | if tipo_case==1 or tipo_case==2: # BAJADA | |
872 | data_ele_new = data_ele_new[::-1] # reversa |
|
872 | data_ele_new = data_ele_new[::-1] # reversa | |
873 | data_ele_old = data_ele_old[::-1]# reversa |
|
873 | data_ele_old = data_ele_old[::-1]# reversa | |
874 | data_weather = data_weather[::-1,:]# reversa |
|
874 | data_weather = data_weather[::-1,:]# reversa | |
875 | vec= numpy.where(data_ele_new<ang_max) |
|
875 | vec= numpy.where(data_ele_new<ang_max) | |
876 | data_ele_new = data_ele_new[vec] |
|
876 | data_ele_new = data_ele_new[vec] | |
877 | data_ele_old = data_ele_old[vec] |
|
877 | data_ele_old = data_ele_old[vec] | |
878 | data_weather = data_weather[vec[0]] |
|
878 | data_weather = data_weather[vec[0]] | |
879 | vec2= numpy.where(0<data_ele_new) |
|
879 | vec2= numpy.where(0<data_ele_new) | |
880 | data_ele_new = data_ele_new[vec2] |
|
880 | data_ele_new = data_ele_new[vec2] | |
881 | data_ele_old = data_ele_old[vec2] |
|
881 | data_ele_old = data_ele_old[vec2] | |
882 | data_weather = data_weather[vec2[0]] |
|
882 | data_weather = data_weather[vec2[0]] | |
883 | self.start_data_ele = data_ele_new[0] |
|
883 | self.start_data_ele = data_ele_new[0] | |
884 | self.end_data_ele = data_ele_new[-1] |
|
884 | self.end_data_ele = data_ele_new[-1] | |
885 |
|
885 | |||
886 | n1= round(self.start_data_ele)- start |
|
886 | n1= round(self.start_data_ele)- start | |
887 | n2= end - round(self.end_data_ele)-1 |
|
887 | n2= end - round(self.end_data_ele)-1 | |
888 | print(self.start_data_ele) |
|
888 | print(self.start_data_ele) | |
889 | print(self.end_data_ele) |
|
889 | print(self.end_data_ele) | |
890 | if n1>0: |
|
890 | if n1>0: | |
891 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
891 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |
892 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
892 | ele1_nan= numpy.ones(n1)*numpy.nan | |
893 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
893 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
894 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
894 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |
895 | if n2>0: |
|
895 | if n2>0: | |
896 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
896 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |
897 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
897 | ele2_nan= numpy.ones(n2)*numpy.nan | |
898 | data_ele = numpy.hstack((data_ele,ele2)) |
|
898 | data_ele = numpy.hstack((data_ele,ele2)) | |
899 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
899 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
900 | # RADAR |
|
900 | # RADAR | |
901 | # NOTA data_ele y data_weather es la variable que retorna |
|
901 | # NOTA data_ele y data_weather es la variable que retorna | |
902 | val_mean = numpy.mean(data_weather[:,-1]) |
|
902 | val_mean = numpy.mean(data_weather[:,-1]) | |
903 | self.val_mean = val_mean |
|
903 | self.val_mean = val_mean | |
904 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
904 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
905 | self.data_ele_tmp[val_ch]= data_ele_old |
|
905 | self.data_ele_tmp[val_ch]= data_ele_old | |
906 | else: |
|
906 | else: | |
907 | #print("**********************************************") |
|
907 | #print("**********************************************") | |
908 | #print("****************VARIABLE**********************") |
|
908 | #print("****************VARIABLE**********************") | |
909 | #-------------------------CAMBIOS RHI--------------------------------- |
|
909 | #-------------------------CAMBIOS RHI--------------------------------- | |
910 | #--------------------------------------------------------------------- |
|
910 | #--------------------------------------------------------------------- | |
911 | ##print("INPUT data_ele",data_ele) |
|
911 | ##print("INPUT data_ele",data_ele) | |
912 | flag=0 |
|
912 | flag=0 | |
913 | start_ele = self.res_ele[0] |
|
913 | start_ele = self.res_ele[0] | |
914 | tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
914 | tipo_case = self.check_case(data_ele,ang_max,ang_min) | |
915 | #print("TIPO DE DATA",tipo_case) |
|
915 | #print("TIPO DE DATA",tipo_case) | |
916 | #-----------new------------ |
|
916 | #-----------new------------ | |
917 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) |
|
917 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) | |
918 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
918 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
919 |
|
919 | |||
920 | #-------------------------------NEW RHI ITERATIVO------------------------- |
|
920 | #-------------------------------NEW RHI ITERATIVO------------------------- | |
921 |
|
921 | |||
922 | if tipo_case==0 : # SUBIDA |
|
922 | if tipo_case==0 : # SUBIDA | |
923 | vec = numpy.where(data_ele<ang_max) |
|
923 | vec = numpy.where(data_ele<ang_max) | |
924 | data_ele = data_ele[vec] |
|
924 | data_ele = data_ele[vec] | |
925 | data_ele_old = data_ele_old[vec] |
|
925 | data_ele_old = data_ele_old[vec] | |
926 | data_weather = data_weather[vec[0]] |
|
926 | data_weather = data_weather[vec[0]] | |
927 |
|
927 | |||
928 | vec2 = numpy.where(0<data_ele) |
|
928 | vec2 = numpy.where(0<data_ele) | |
929 | data_ele= data_ele[vec2] |
|
929 | data_ele= data_ele[vec2] | |
930 | data_ele_old= data_ele_old[vec2] |
|
930 | data_ele_old= data_ele_old[vec2] | |
931 | ##print(data_ele_new) |
|
931 | ##print(data_ele_new) | |
932 | data_weather= data_weather[vec2[0]] |
|
932 | data_weather= data_weather[vec2[0]] | |
933 |
|
933 | |||
934 | new_i_ele = int(round(data_ele[0])) |
|
934 | new_i_ele = int(round(data_ele[0])) | |
935 | new_f_ele = int(round(data_ele[-1])) |
|
935 | new_f_ele = int(round(data_ele[-1])) | |
936 | #print(new_i_ele) |
|
936 | #print(new_i_ele) | |
937 | #print(new_f_ele) |
|
937 | #print(new_f_ele) | |
938 | #print(data_ele,len(data_ele)) |
|
938 | #print(data_ele,len(data_ele)) | |
939 | #print(data_ele_old,len(data_ele_old)) |
|
939 | #print(data_ele_old,len(data_ele_old)) | |
940 | if new_i_ele< 2: |
|
940 | if new_i_ele< 2: | |
941 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
941 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |
942 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
942 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |
943 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old |
|
943 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old | |
944 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele |
|
944 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele | |
945 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather |
|
945 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather | |
946 | data_ele = self.res_ele |
|
946 | data_ele = self.res_ele | |
947 | data_weather = self.res_weather[val_ch] |
|
947 | data_weather = self.res_weather[val_ch] | |
948 |
|
948 | |||
949 | elif tipo_case==1 : #BAJADA |
|
949 | elif tipo_case==1 : #BAJADA | |
950 | data_ele = data_ele[::-1] # reversa |
|
950 | data_ele = data_ele[::-1] # reversa | |
951 | data_ele_old = data_ele_old[::-1]# reversa |
|
951 | data_ele_old = data_ele_old[::-1]# reversa | |
952 | data_weather = data_weather[::-1,:]# reversa |
|
952 | data_weather = data_weather[::-1,:]# reversa | |
953 | vec= numpy.where(data_ele<ang_max) |
|
953 | vec= numpy.where(data_ele<ang_max) | |
954 | data_ele = data_ele[vec] |
|
954 | data_ele = data_ele[vec] | |
955 | data_ele_old = data_ele_old[vec] |
|
955 | data_ele_old = data_ele_old[vec] | |
956 | data_weather = data_weather[vec[0]] |
|
956 | data_weather = data_weather[vec[0]] | |
957 | vec2= numpy.where(0<data_ele) |
|
957 | vec2= numpy.where(0<data_ele) | |
958 | data_ele = data_ele[vec2] |
|
958 | data_ele = data_ele[vec2] | |
959 | data_ele_old = data_ele_old[vec2] |
|
959 | data_ele_old = data_ele_old[vec2] | |
960 | data_weather = data_weather[vec2[0]] |
|
960 | data_weather = data_weather[vec2[0]] | |
961 |
|
961 | |||
962 |
|
962 | |||
963 | new_i_ele = int(round(data_ele[0])) |
|
963 | new_i_ele = int(round(data_ele[0])) | |
964 | new_f_ele = int(round(data_ele[-1])) |
|
964 | new_f_ele = int(round(data_ele[-1])) | |
965 | #print(data_ele) |
|
965 | #print(data_ele) | |
966 | #print(ang_max) |
|
966 | #print(ang_max) | |
967 | #print(data_ele_old) |
|
967 | #print(data_ele_old) | |
968 | if new_i_ele <= 1: |
|
968 | if new_i_ele <= 1: | |
969 | new_i_ele = 1 |
|
969 | new_i_ele = 1 | |
970 | if round(data_ele[-1])>=ang_max-1: |
|
970 | if round(data_ele[-1])>=ang_max-1: | |
971 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
971 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |
972 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
972 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |
973 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old |
|
973 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old | |
974 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele |
|
974 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele | |
975 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather |
|
975 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather | |
976 | data_ele = self.res_ele |
|
976 | data_ele = self.res_ele | |
977 | data_weather = self.res_weather[val_ch] |
|
977 | data_weather = self.res_weather[val_ch] | |
978 |
|
978 | |||
979 | elif tipo_case==2: #bajada |
|
979 | elif tipo_case==2: #bajada | |
980 | vec = numpy.where(data_ele<ang_max) |
|
980 | vec = numpy.where(data_ele<ang_max) | |
981 | data_ele = data_ele[vec] |
|
981 | data_ele = data_ele[vec] | |
982 | data_weather= data_weather[vec[0]] |
|
982 | data_weather= data_weather[vec[0]] | |
983 |
|
983 | |||
984 | len_vec = len(vec) |
|
984 | len_vec = len(vec) | |
985 | data_ele_new = data_ele[::-1] # reversa |
|
985 | data_ele_new = data_ele[::-1] # reversa | |
986 | data_weather = data_weather[::-1,:] |
|
986 | data_weather = data_weather[::-1,:] | |
987 | new_i_ele = int(data_ele_new[0]) |
|
987 | new_i_ele = int(data_ele_new[0]) | |
988 | new_f_ele = int(data_ele_new[-1]) |
|
988 | new_f_ele = int(data_ele_new[-1]) | |
989 |
|
989 | |||
990 | n1= new_i_ele- ang_min |
|
990 | n1= new_i_ele- ang_min | |
991 | n2= ang_max - new_f_ele-1 |
|
991 | n2= ang_max - new_f_ele-1 | |
992 | if n1>0: |
|
992 | if n1>0: | |
993 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
993 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
994 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
994 | ele1_nan= numpy.ones(n1)*numpy.nan | |
995 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
995 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
996 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
996 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
997 | if n2>0: |
|
997 | if n2>0: | |
998 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
998 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
999 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
999 | ele2_nan= numpy.ones(n2)*numpy.nan | |
1000 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1000 | data_ele = numpy.hstack((data_ele,ele2)) | |
1001 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1001 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1002 |
|
1002 | |||
1003 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1003 | self.data_ele_tmp[val_ch] = data_ele_old | |
1004 | self.res_ele = data_ele |
|
1004 | self.res_ele = data_ele | |
1005 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1005 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1006 | data_ele = self.res_ele |
|
1006 | data_ele = self.res_ele | |
1007 | data_weather = self.res_weather[val_ch] |
|
1007 | data_weather = self.res_weather[val_ch] | |
1008 |
|
1008 | |||
1009 | elif tipo_case==3:#subida |
|
1009 | elif tipo_case==3:#subida | |
1010 | vec = numpy.where(0<data_ele) |
|
1010 | vec = numpy.where(0<data_ele) | |
1011 | data_ele= data_ele[vec] |
|
1011 | data_ele= data_ele[vec] | |
1012 | data_ele_new = data_ele |
|
1012 | data_ele_new = data_ele | |
1013 | data_ele_old= data_ele_old[vec] |
|
1013 | data_ele_old= data_ele_old[vec] | |
1014 | data_weather= data_weather[vec[0]] |
|
1014 | data_weather= data_weather[vec[0]] | |
1015 | pos_ini = numpy.argmin(data_ele) |
|
1015 | pos_ini = numpy.argmin(data_ele) | |
1016 | if pos_ini>0: |
|
1016 | if pos_ini>0: | |
1017 | len_vec= len(data_ele) |
|
1017 | len_vec= len(data_ele) | |
1018 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) |
|
1018 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) | |
1019 | #print(vec3) |
|
1019 | #print(vec3) | |
1020 | data_ele= data_ele[vec3] |
|
1020 | data_ele= data_ele[vec3] | |
1021 | data_ele_new = data_ele |
|
1021 | data_ele_new = data_ele | |
1022 | data_ele_old= data_ele_old[vec3] |
|
1022 | data_ele_old= data_ele_old[vec3] | |
1023 | data_weather= data_weather[vec3] |
|
1023 | data_weather= data_weather[vec3] | |
1024 |
|
1024 | |||
1025 | new_i_ele = int(data_ele_new[0]) |
|
1025 | new_i_ele = int(data_ele_new[0]) | |
1026 | new_f_ele = int(data_ele_new[-1]) |
|
1026 | new_f_ele = int(data_ele_new[-1]) | |
1027 | n1= new_i_ele- ang_min |
|
1027 | n1= new_i_ele- ang_min | |
1028 | n2= ang_max - new_f_ele-1 |
|
1028 | n2= ang_max - new_f_ele-1 | |
1029 | if n1>0: |
|
1029 | if n1>0: | |
1030 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1030 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
1031 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1031 | ele1_nan= numpy.ones(n1)*numpy.nan | |
1032 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1032 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
1033 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1033 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
1034 | if n2>0: |
|
1034 | if n2>0: | |
1035 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1035 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
1036 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1036 | ele2_nan= numpy.ones(n2)*numpy.nan | |
1037 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1037 | data_ele = numpy.hstack((data_ele,ele2)) | |
1038 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1038 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1039 |
|
1039 | |||
1040 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1040 | self.data_ele_tmp[val_ch] = data_ele_old | |
1041 | self.res_ele = data_ele |
|
1041 | self.res_ele = data_ele | |
1042 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1042 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1043 | data_ele = self.res_ele |
|
1043 | data_ele = self.res_ele | |
1044 | data_weather = self.res_weather[val_ch] |
|
1044 | data_weather = self.res_weather[val_ch] | |
1045 | #print("self.data_ele_tmp",self.data_ele_tmp) |
|
1045 | #print("self.data_ele_tmp",self.data_ele_tmp) | |
1046 | return data_weather,data_ele |
|
1046 | return data_weather,data_ele | |
1047 |
|
1047 | |||
1048 |
|
1048 | |||
1049 | def plot(self): |
|
1049 | def plot(self): | |
1050 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
1050 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') | |
1051 | data = self.data[-1] |
|
1051 | data = self.data[-1] | |
1052 | r = self.data.yrange |
|
1052 | r = self.data.yrange | |
1053 | delta_height = r[1]-r[0] |
|
1053 | delta_height = r[1]-r[0] | |
1054 | r_mask = numpy.where(r>=0)[0] |
|
1054 | r_mask = numpy.where(r>=0)[0] | |
1055 | ##print("delta_height",delta_height) |
|
1055 | ##print("delta_height",delta_height) | |
1056 | #print("r_mask",r_mask,len(r_mask)) |
|
1056 | #print("r_mask",r_mask,len(r_mask)) | |
1057 | r = numpy.arange(len(r_mask))*delta_height |
|
1057 | r = numpy.arange(len(r_mask))*delta_height | |
1058 | self.y = 2*r |
|
1058 | self.y = 2*r | |
1059 | res = 1 |
|
1059 | res = 1 | |
1060 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) |
|
1060 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) | |
1061 | ang_max = self.ang_max |
|
1061 | ang_max = self.ang_max | |
1062 | ang_min = self.ang_min |
|
1062 | ang_min = self.ang_min | |
1063 | var_ang =ang_max - ang_min |
|
1063 | var_ang =ang_max - ang_min | |
1064 | step = (int(var_ang)/(res*data['weather'].shape[0])) |
|
1064 | step = (int(var_ang)/(res*data['weather'].shape[0])) | |
1065 | ###print("step",step) |
|
1065 | ###print("step",step) | |
1066 | #-------------------------------------------------------- |
|
1066 | #-------------------------------------------------------- | |
1067 | ##print('weather',data['weather'].shape) |
|
1067 | ##print('weather',data['weather'].shape) | |
1068 | ##print('ele',data['ele'].shape) |
|
1068 | ##print('ele',data['ele'].shape) | |
1069 |
|
1069 | |||
1070 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1070 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) | |
1071 | ###self.res_azi = numpy.mean(data['azi']) |
|
1071 | ###self.res_azi = numpy.mean(data['azi']) | |
1072 | ###print("self.res_ele",self.res_ele) |
|
1072 | ###print("self.res_ele",self.res_ele) | |
1073 | plt.clf() |
|
1073 | plt.clf() | |
1074 | subplots = [121, 122] |
|
1074 | subplots = [121, 122] | |
1075 | if self.ini==0: |
|
1075 | if self.ini==0: | |
1076 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan |
|
1076 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan | |
1077 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan |
|
1077 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan | |
1078 | print("SHAPE",self.data_ele_tmp.shape) |
|
1078 | print("SHAPE",self.data_ele_tmp.shape) | |
1079 |
|
1079 | |||
1080 | for i,ax in enumerate(self.axes): |
|
1080 | for i,ax in enumerate(self.axes): | |
1081 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1081 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) | |
1082 | self.res_azi = numpy.mean(data['azi']) |
|
1082 | self.res_azi = numpy.mean(data['azi']) | |
1083 | if i==0: |
|
1083 | if i==0: | |
1084 | print("*****************************************************************************to plot**************************",self.res_weather[i].shape) |
|
1084 | print("*****************************************************************************to plot**************************",self.res_weather[i].shape) | |
1085 | if ax.firsttime: |
|
1085 | if ax.firsttime: | |
1086 | #plt.clf() |
|
1086 | #plt.clf() | |
1087 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1087 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
1088 | #fig=self.figures[0] |
|
1088 | #fig=self.figures[0] | |
1089 | else: |
|
1089 | else: | |
1090 | #plt.clf() |
|
1090 | #plt.clf() | |
1091 | if i==0: |
|
1091 | if i==0: | |
1092 | print(self.res_weather[i]) |
|
1092 | print(self.res_weather[i]) | |
1093 | print(self.res_ele) |
|
1093 | print(self.res_ele) | |
1094 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1094 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
1095 | caax = cgax.parasites[0] |
|
1095 | caax = cgax.parasites[0] | |
1096 | paax = cgax.parasites[1] |
|
1096 | paax = cgax.parasites[1] | |
1097 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
1097 | cbar = plt.gcf().colorbar(pm, pad=0.075) | |
1098 | caax.set_xlabel('x_range [km]') |
|
1098 | caax.set_xlabel('x_range [km]') | |
1099 | caax.set_ylabel('y_range [km]') |
|
1099 | caax.set_ylabel('y_range [km]') | |
1100 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
1100 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') | |
1101 | print("***************************self.ini****************************",self.ini) |
|
1101 | print("***************************self.ini****************************",self.ini) | |
1102 | self.ini= self.ini+1 |
|
1102 | self.ini= self.ini+1 | |
1103 |
|
1103 | |||
1104 | class WeatherRHI_vRF2_Plot(Plot): |
|
1104 | class WeatherRHI_vRF2_Plot(Plot): | |
1105 | CODE = 'weather' |
|
1105 | CODE = 'weather' | |
1106 | plot_name = 'weather' |
|
1106 | plot_name = 'weather' | |
1107 | plot_type = 'rhistyle' |
|
1107 | plot_type = 'rhistyle' | |
1108 | buffering = False |
|
1108 | buffering = False | |
1109 | data_ele_tmp = None |
|
1109 | data_ele_tmp = None | |
1110 |
|
1110 | |||
1111 | def setup(self): |
|
1111 | def setup(self): | |
1112 | print("********************") |
|
1112 | print("********************") | |
1113 | print("********************") |
|
1113 | print("********************") | |
1114 | print("********************") |
|
1114 | print("********************") | |
1115 | print("SETUP WEATHER PLOT") |
|
1115 | print("SETUP WEATHER PLOT") | |
1116 | self.ncols = 1 |
|
1116 | self.ncols = 1 | |
1117 | self.nrows = 1 |
|
1117 | self.nrows = 1 | |
1118 | self.nplots= 1 |
|
1118 | self.nplots= 1 | |
1119 | self.ylabel= 'Range [Km]' |
|
1119 | self.ylabel= 'Range [Km]' | |
1120 | self.titles= ['Weather'] |
|
1120 | self.titles= ['Weather'] | |
1121 | if self.channels is not None: |
|
1121 | if self.channels is not None: | |
1122 | self.nplots = len(self.channels) |
|
1122 | self.nplots = len(self.channels) | |
1123 | self.nrows = len(self.channels) |
|
1123 | self.nrows = len(self.channels) | |
1124 | else: |
|
1124 | else: | |
1125 | self.nplots = self.data.shape(self.CODE)[0] |
|
1125 | self.nplots = self.data.shape(self.CODE)[0] | |
1126 | self.nrows = self.nplots |
|
1126 | self.nrows = self.nplots | |
1127 | self.channels = list(range(self.nplots)) |
|
1127 | self.channels = list(range(self.nplots)) | |
1128 | print("channels",self.channels) |
|
1128 | print("channels",self.channels) | |
1129 | print("que saldra", self.data.shape(self.CODE)[0]) |
|
1129 | print("que saldra", self.data.shape(self.CODE)[0]) | |
1130 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] |
|
1130 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] | |
1131 | print("self.titles",self.titles) |
|
1131 | print("self.titles",self.titles) | |
1132 | self.colorbar=False |
|
1132 | self.colorbar=False | |
1133 | self.width =8 |
|
1133 | self.width =8 | |
1134 | self.height =8 |
|
1134 | self.height =8 | |
1135 | self.ini =0 |
|
1135 | self.ini =0 | |
1136 | self.len_azi =0 |
|
1136 | self.len_azi =0 | |
1137 | self.buffer_ini = None |
|
1137 | self.buffer_ini = None | |
1138 | self.buffer_ele = None |
|
1138 | self.buffer_ele = None | |
1139 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
1139 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
1140 | self.flag =0 |
|
1140 | self.flag =0 | |
1141 | self.indicador= 0 |
|
1141 | self.indicador= 0 | |
1142 | self.last_data_ele = None |
|
1142 | self.last_data_ele = None | |
1143 | self.val_mean = None |
|
1143 | self.val_mean = None | |
1144 |
|
1144 | |||
1145 | def update(self, dataOut): |
|
1145 | def update(self, dataOut): | |
1146 |
|
1146 | |||
1147 | data = {} |
|
1147 | data = {} | |
1148 | meta = {} |
|
1148 | meta = {} | |
1149 | if hasattr(dataOut, 'dataPP_POWER'): |
|
1149 | if hasattr(dataOut, 'dataPP_POWER'): | |
1150 | factor = 1 |
|
1150 | factor = 1 | |
1151 | if hasattr(dataOut, 'nFFTPoints'): |
|
1151 | if hasattr(dataOut, 'nFFTPoints'): | |
1152 | factor = dataOut.normFactor |
|
1152 | factor = dataOut.normFactor | |
1153 | print("dataOut",dataOut.data_360.shape) |
|
1153 | print("dataOut",dataOut.data_360.shape) | |
1154 | # |
|
1154 | # | |
1155 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) |
|
1155 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) | |
1156 | # |
|
1156 | # | |
1157 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
1157 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) | |
1158 | data['azi'] = dataOut.data_azi |
|
1158 | data['azi'] = dataOut.data_azi | |
1159 | data['ele'] = dataOut.data_ele |
|
1159 | data['ele'] = dataOut.data_ele | |
1160 | data['case_flag'] = dataOut.case_flag |
|
1160 | data['case_flag'] = dataOut.case_flag | |
1161 | #print("UPDATE") |
|
1161 | #print("UPDATE") | |
1162 | #print("data[weather]",data['weather'].shape) |
|
1162 | #print("data[weather]",data['weather'].shape) | |
1163 | #print("data[azi]",data['azi']) |
|
1163 | #print("data[azi]",data['azi']) | |
1164 | return data, meta |
|
1164 | return data, meta | |
1165 |
|
1165 | |||
1166 | def get2List(self,angulos): |
|
1166 | def get2List(self,angulos): | |
1167 | list1=[] |
|
1167 | list1=[] | |
1168 | list2=[] |
|
1168 | list2=[] | |
1169 | for i in reversed(range(len(angulos))): |
|
1169 | for i in reversed(range(len(angulos))): | |
1170 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante |
|
1170 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante | |
1171 | diff_ = angulos[i]-angulos[i-1] |
|
1171 | diff_ = angulos[i]-angulos[i-1] | |
1172 | if abs(diff_) >1.5: |
|
1172 | if abs(diff_) >1.5: | |
1173 | list1.append(i-1) |
|
1173 | list1.append(i-1) | |
1174 | list2.append(diff_) |
|
1174 | list2.append(diff_) | |
1175 | return list(reversed(list1)),list(reversed(list2)) |
|
1175 | return list(reversed(list1)),list(reversed(list2)) | |
1176 |
|
1176 | |||
1177 | def fixData90(self,list_,ang_): |
|
1177 | def fixData90(self,list_,ang_): | |
1178 | if list_[0]==-1: |
|
1178 | if list_[0]==-1: | |
1179 | vec = numpy.where(ang_<ang_[0]) |
|
1179 | vec = numpy.where(ang_<ang_[0]) | |
1180 | ang_[vec] = ang_[vec]+90 |
|
1180 | ang_[vec] = ang_[vec]+90 | |
1181 | return ang_ |
|
1181 | return ang_ | |
1182 | return ang_ |
|
1182 | return ang_ | |
1183 |
|
1183 | |||
1184 | def fixData90HL(self,angulos): |
|
1184 | def fixData90HL(self,angulos): | |
1185 | vec = numpy.where(angulos>=90) |
|
1185 | vec = numpy.where(angulos>=90) | |
1186 | angulos[vec]=angulos[vec]-90 |
|
1186 | angulos[vec]=angulos[vec]-90 | |
1187 | return angulos |
|
1187 | return angulos | |
1188 |
|
1188 | |||
1189 |
|
1189 | |||
1190 | def search_pos(self,pos,list_): |
|
1190 | def search_pos(self,pos,list_): | |
1191 | for i in range(len(list_)): |
|
1191 | for i in range(len(list_)): | |
1192 | if pos == list_[i]: |
|
1192 | if pos == list_[i]: | |
1193 | return True,i |
|
1193 | return True,i | |
1194 | i=None |
|
1194 | i=None | |
1195 | return False,i |
|
1195 | return False,i | |
1196 |
|
1196 | |||
1197 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): |
|
1197 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): | |
1198 | size = len(ang_) |
|
1198 | size = len(ang_) | |
1199 | size2 = 0 |
|
1199 | size2 = 0 | |
1200 | for i in range(len(list2_)): |
|
1200 | for i in range(len(list2_)): | |
1201 | size2=size2+round(abs(list2_[i]))-1 |
|
1201 | size2=size2+round(abs(list2_[i]))-1 | |
1202 | new_size= size+size2 |
|
1202 | new_size= size+size2 | |
1203 | ang_new = numpy.zeros(new_size) |
|
1203 | ang_new = numpy.zeros(new_size) | |
1204 | ang_new2 = numpy.zeros(new_size) |
|
1204 | ang_new2 = numpy.zeros(new_size) | |
1205 |
|
1205 | |||
1206 | tmp = 0 |
|
1206 | tmp = 0 | |
1207 | c = 0 |
|
1207 | c = 0 | |
1208 | for i in range(len(ang_)): |
|
1208 | for i in range(len(ang_)): | |
1209 | ang_new[tmp +c] = ang_[i] |
|
1209 | ang_new[tmp +c] = ang_[i] | |
1210 | ang_new2[tmp+c] = ang_[i] |
|
1210 | ang_new2[tmp+c] = ang_[i] | |
1211 | condition , value = self.search_pos(i,list1_) |
|
1211 | condition , value = self.search_pos(i,list1_) | |
1212 | if condition: |
|
1212 | if condition: | |
1213 | pos = tmp + c + 1 |
|
1213 | pos = tmp + c + 1 | |
1214 | for k in range(round(abs(list2_[value]))-1): |
|
1214 | for k in range(round(abs(list2_[value]))-1): | |
1215 | if tipo_case==0 or tipo_case==3:#subida |
|
1215 | if tipo_case==0 or tipo_case==3:#subida | |
1216 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
1216 | ang_new[pos+k] = ang_new[pos+k-1]+1 | |
1217 | ang_new2[pos+k] = numpy.nan |
|
1217 | ang_new2[pos+k] = numpy.nan | |
1218 | elif tipo_case==1 or tipo_case==2:#bajada |
|
1218 | elif tipo_case==1 or tipo_case==2:#bajada | |
1219 | ang_new[pos+k] = ang_new[pos+k-1]-1 |
|
1219 | ang_new[pos+k] = ang_new[pos+k-1]-1 | |
1220 | ang_new2[pos+k] = numpy.nan |
|
1220 | ang_new2[pos+k] = numpy.nan | |
1221 |
|
1221 | |||
1222 | tmp = pos +k |
|
1222 | tmp = pos +k | |
1223 | c = 0 |
|
1223 | c = 0 | |
1224 | c=c+1 |
|
1224 | c=c+1 | |
1225 | return ang_new,ang_new2 |
|
1225 | return ang_new,ang_new2 | |
1226 |
|
1226 | |||
1227 | def globalCheckPED(self,angulos,tipo_case): |
|
1227 | def globalCheckPED(self,angulos,tipo_case): | |
1228 | l1,l2 = self.get2List(angulos) |
|
1228 | l1,l2 = self.get2List(angulos) | |
1229 | ##print("l1",l1) |
|
1229 | ##print("l1",l1) | |
1230 | ##print("l2",l2) |
|
1230 | ##print("l2",l2) | |
1231 | if len(l1)>0: |
|
1231 | if len(l1)>0: | |
1232 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) |
|
1232 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) | |
1233 | #l1,l2 = self.get2List(angulos2) |
|
1233 | #l1,l2 = self.get2List(angulos2) | |
1234 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) |
|
1234 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) | |
1235 | #ang1_ = self.fixData90HL(ang1_) |
|
1235 | #ang1_ = self.fixData90HL(ang1_) | |
1236 | #ang2_ = self.fixData90HL(ang2_) |
|
1236 | #ang2_ = self.fixData90HL(ang2_) | |
1237 | else: |
|
1237 | else: | |
1238 | ang1_= angulos |
|
1238 | ang1_= angulos | |
1239 | ang2_= angulos |
|
1239 | ang2_= angulos | |
1240 | return ang1_,ang2_ |
|
1240 | return ang1_,ang2_ | |
1241 |
|
1241 | |||
1242 |
|
1242 | |||
1243 | def replaceNAN(self,data_weather,data_ele,val): |
|
1243 | def replaceNAN(self,data_weather,data_ele,val): | |
1244 | data= data_ele |
|
1244 | data= data_ele | |
1245 | data_T= data_weather |
|
1245 | data_T= data_weather | |
1246 | if data.shape[0]> data_T.shape[0]: |
|
1246 | if data.shape[0]> data_T.shape[0]: | |
1247 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
1247 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) | |
1248 | c = 0 |
|
1248 | c = 0 | |
1249 | for i in range(len(data)): |
|
1249 | for i in range(len(data)): | |
1250 | if numpy.isnan(data[i]): |
|
1250 | if numpy.isnan(data[i]): | |
1251 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
1251 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
1252 | else: |
|
1252 | else: | |
1253 | data_N[i,:]=data_T[c,:] |
|
1253 | data_N[i,:]=data_T[c,:] | |
1254 | c=c+1 |
|
1254 | c=c+1 | |
1255 | return data_N |
|
1255 | return data_N | |
1256 | else: |
|
1256 | else: | |
1257 | for i in range(len(data)): |
|
1257 | for i in range(len(data)): | |
1258 | if numpy.isnan(data[i]): |
|
1258 | if numpy.isnan(data[i]): | |
1259 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
1259 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
1260 | return data_T |
|
1260 | return data_T | |
1261 |
|
1261 | |||
1262 | def check_case(self,data_ele,ang_max,ang_min): |
|
1262 | def check_case(self,data_ele,ang_max,ang_min): | |
1263 | start = data_ele[0] |
|
1263 | start = data_ele[0] | |
1264 | end = data_ele[-1] |
|
1264 | end = data_ele[-1] | |
1265 | number = (end-start) |
|
1265 | number = (end-start) | |
1266 | len_ang=len(data_ele) |
|
1266 | len_ang=len(data_ele) | |
1267 | print("start",start) |
|
1267 | print("start",start) | |
1268 | print("end",end) |
|
1268 | print("end",end) | |
1269 | print("number",number) |
|
1269 | print("number",number) | |
1270 |
|
1270 | |||
1271 | print("len_ang",len_ang) |
|
1271 | print("len_ang",len_ang) | |
1272 |
|
1272 | |||
1273 | #exit(1) |
|
1273 | #exit(1) | |
1274 |
|
1274 | |||
1275 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida |
|
1275 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida | |
1276 | return 0 |
|
1276 | return 0 | |
1277 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada |
|
1277 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada | |
1278 | # return 1 |
|
1278 | # return 1 | |
1279 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada |
|
1279 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada | |
1280 | return 1 |
|
1280 | return 1 | |
1281 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX |
|
1281 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX | |
1282 | return 2 |
|
1282 | return 2 | |
1283 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN |
|
1283 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN | |
1284 | return 3 |
|
1284 | return 3 | |
1285 |
|
1285 | |||
1286 |
|
1286 | |||
1287 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): |
|
1287 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): | |
1288 | ang_max= ang_max |
|
1288 | ang_max= ang_max | |
1289 | ang_min= ang_min |
|
1289 | ang_min= ang_min | |
1290 | data_weather=data_weather |
|
1290 | data_weather=data_weather | |
1291 | val_ch=val_ch |
|
1291 | val_ch=val_ch | |
1292 | ##print("*********************DATA WEATHER**************************************") |
|
1292 | ##print("*********************DATA WEATHER**************************************") | |
1293 | ##print(data_weather) |
|
1293 | ##print(data_weather) | |
1294 | if self.ini==0: |
|
1294 | if self.ini==0: | |
1295 | ''' |
|
1295 | ''' | |
1296 | print("**********************************************") |
|
1296 | print("**********************************************") | |
1297 | print("**********************************************") |
|
1297 | print("**********************************************") | |
1298 | print("***************ini**************") |
|
1298 | print("***************ini**************") | |
1299 | print("**********************************************") |
|
1299 | print("**********************************************") | |
1300 | print("**********************************************") |
|
1300 | print("**********************************************") | |
1301 | ''' |
|
1301 | ''' | |
1302 | #print("data_ele",data_ele) |
|
1302 | #print("data_ele",data_ele) | |
1303 | #---------------------------------------------------------- |
|
1303 | #---------------------------------------------------------- | |
1304 | tipo_case = case_flag[-1] |
|
1304 | tipo_case = case_flag[-1] | |
1305 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
1305 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) | |
1306 | print("check_case",tipo_case) |
|
1306 | print("check_case",tipo_case) | |
1307 | #exit(1) |
|
1307 | #exit(1) | |
1308 | #--------------------- new ------------------------- |
|
1308 | #--------------------- new ------------------------- | |
1309 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) |
|
1309 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) | |
1310 |
|
1310 | |||
1311 | #-------------------------CAMBIOS RHI--------------------------------- |
|
1311 | #-------------------------CAMBIOS RHI--------------------------------- | |
1312 | start= ang_min |
|
1312 | start= ang_min | |
1313 | end = ang_max |
|
1313 | end = ang_max | |
1314 | n= (ang_max-ang_min)/res |
|
1314 | n= (ang_max-ang_min)/res | |
1315 | #------ new |
|
1315 | #------ new | |
1316 | self.start_data_ele = data_ele_new[0] |
|
1316 | self.start_data_ele = data_ele_new[0] | |
1317 | self.end_data_ele = data_ele_new[-1] |
|
1317 | self.end_data_ele = data_ele_new[-1] | |
1318 | if tipo_case==0 or tipo_case==3: # SUBIDA |
|
1318 | if tipo_case==0 or tipo_case==3: # SUBIDA | |
1319 | n1= round(self.start_data_ele)- start |
|
1319 | n1= round(self.start_data_ele)- start | |
1320 | n2= end - round(self.end_data_ele) |
|
1320 | n2= end - round(self.end_data_ele) | |
1321 | print(self.start_data_ele) |
|
1321 | print(self.start_data_ele) | |
1322 | print(self.end_data_ele) |
|
1322 | print(self.end_data_ele) | |
1323 | if n1>0: |
|
1323 | if n1>0: | |
1324 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
1324 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |
1325 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1325 | ele1_nan= numpy.ones(n1)*numpy.nan | |
1326 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1326 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
1327 | print("ele1_nan",ele1_nan.shape) |
|
1327 | print("ele1_nan",ele1_nan.shape) | |
1328 | print("data_ele_old",data_ele_old.shape) |
|
1328 | print("data_ele_old",data_ele_old.shape) | |
1329 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
1329 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |
1330 | if n2>0: |
|
1330 | if n2>0: | |
1331 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
1331 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |
1332 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1332 | ele2_nan= numpy.ones(n2)*numpy.nan | |
1333 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1333 | data_ele = numpy.hstack((data_ele,ele2)) | |
1334 | print("ele2_nan",ele2_nan.shape) |
|
1334 | print("ele2_nan",ele2_nan.shape) | |
1335 | print("data_ele_old",data_ele_old.shape) |
|
1335 | print("data_ele_old",data_ele_old.shape) | |
1336 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1336 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1337 |
|
1337 | |||
1338 | if tipo_case==1 or tipo_case==2: # BAJADA |
|
1338 | if tipo_case==1 or tipo_case==2: # BAJADA | |
1339 | data_ele_new = data_ele_new[::-1] # reversa |
|
1339 | data_ele_new = data_ele_new[::-1] # reversa | |
1340 | data_ele_old = data_ele_old[::-1]# reversa |
|
1340 | data_ele_old = data_ele_old[::-1]# reversa | |
1341 | data_weather = data_weather[::-1,:]# reversa |
|
1341 | data_weather = data_weather[::-1,:]# reversa | |
1342 | vec= numpy.where(data_ele_new<ang_max) |
|
1342 | vec= numpy.where(data_ele_new<ang_max) | |
1343 | data_ele_new = data_ele_new[vec] |
|
1343 | data_ele_new = data_ele_new[vec] | |
1344 | data_ele_old = data_ele_old[vec] |
|
1344 | data_ele_old = data_ele_old[vec] | |
1345 | data_weather = data_weather[vec[0]] |
|
1345 | data_weather = data_weather[vec[0]] | |
1346 | vec2= numpy.where(0<data_ele_new) |
|
1346 | vec2= numpy.where(0<data_ele_new) | |
1347 | data_ele_new = data_ele_new[vec2] |
|
1347 | data_ele_new = data_ele_new[vec2] | |
1348 | data_ele_old = data_ele_old[vec2] |
|
1348 | data_ele_old = data_ele_old[vec2] | |
1349 | data_weather = data_weather[vec2[0]] |
|
1349 | data_weather = data_weather[vec2[0]] | |
1350 | self.start_data_ele = data_ele_new[0] |
|
1350 | self.start_data_ele = data_ele_new[0] | |
1351 | self.end_data_ele = data_ele_new[-1] |
|
1351 | self.end_data_ele = data_ele_new[-1] | |
1352 |
|
1352 | |||
1353 | n1= round(self.start_data_ele)- start |
|
1353 | n1= round(self.start_data_ele)- start | |
1354 | n2= end - round(self.end_data_ele)-1 |
|
1354 | n2= end - round(self.end_data_ele)-1 | |
1355 | print(self.start_data_ele) |
|
1355 | print(self.start_data_ele) | |
1356 | print(self.end_data_ele) |
|
1356 | print(self.end_data_ele) | |
1357 | if n1>0: |
|
1357 | if n1>0: | |
1358 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
1358 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |
1359 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1359 | ele1_nan= numpy.ones(n1)*numpy.nan | |
1360 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1360 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
1361 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
1361 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |
1362 | if n2>0: |
|
1362 | if n2>0: | |
1363 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
1363 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |
1364 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1364 | ele2_nan= numpy.ones(n2)*numpy.nan | |
1365 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1365 | data_ele = numpy.hstack((data_ele,ele2)) | |
1366 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1366 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1367 | # RADAR |
|
1367 | # RADAR | |
1368 | # NOTA data_ele y data_weather es la variable que retorna |
|
1368 | # NOTA data_ele y data_weather es la variable que retorna | |
1369 | val_mean = numpy.mean(data_weather[:,-1]) |
|
1369 | val_mean = numpy.mean(data_weather[:,-1]) | |
1370 | self.val_mean = val_mean |
|
1370 | self.val_mean = val_mean | |
1371 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1371 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1372 | print("eleold",data_ele_old) |
|
1372 | print("eleold",data_ele_old) | |
1373 | print(self.data_ele_tmp[val_ch]) |
|
1373 | print(self.data_ele_tmp[val_ch]) | |
1374 | print(data_ele_old.shape[0]) |
|
1374 | print(data_ele_old.shape[0]) | |
1375 | print(self.data_ele_tmp[val_ch].shape[0]) |
|
1375 | print(self.data_ele_tmp[val_ch].shape[0]) | |
1376 | if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91): |
|
1376 | if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91): | |
1377 | import sys |
|
1377 | import sys | |
1378 | print("EXIT",self.ini) |
|
1378 | print("EXIT",self.ini) | |
1379 |
|
1379 | |||
1380 | sys.exit(1) |
|
1380 | sys.exit(1) | |
1381 | self.data_ele_tmp[val_ch]= data_ele_old |
|
1381 | self.data_ele_tmp[val_ch]= data_ele_old | |
1382 | else: |
|
1382 | else: | |
1383 | #print("**********************************************") |
|
1383 | #print("**********************************************") | |
1384 | #print("****************VARIABLE**********************") |
|
1384 | #print("****************VARIABLE**********************") | |
1385 | #-------------------------CAMBIOS RHI--------------------------------- |
|
1385 | #-------------------------CAMBIOS RHI--------------------------------- | |
1386 | #--------------------------------------------------------------------- |
|
1386 | #--------------------------------------------------------------------- | |
1387 | ##print("INPUT data_ele",data_ele) |
|
1387 | ##print("INPUT data_ele",data_ele) | |
1388 | flag=0 |
|
1388 | flag=0 | |
1389 | start_ele = self.res_ele[0] |
|
1389 | start_ele = self.res_ele[0] | |
1390 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
1390 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) | |
1391 | tipo_case = case_flag[-1] |
|
1391 | tipo_case = case_flag[-1] | |
1392 | #print("TIPO DE DATA",tipo_case) |
|
1392 | #print("TIPO DE DATA",tipo_case) | |
1393 | #-----------new------------ |
|
1393 | #-----------new------------ | |
1394 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) |
|
1394 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) | |
1395 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1395 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1396 |
|
1396 | |||
1397 | #-------------------------------NEW RHI ITERATIVO------------------------- |
|
1397 | #-------------------------------NEW RHI ITERATIVO------------------------- | |
1398 |
|
1398 | |||
1399 | if tipo_case==0 : # SUBIDA |
|
1399 | if tipo_case==0 : # SUBIDA | |
1400 | vec = numpy.where(data_ele<ang_max) |
|
1400 | vec = numpy.where(data_ele<ang_max) | |
1401 | data_ele = data_ele[vec] |
|
1401 | data_ele = data_ele[vec] | |
1402 | data_ele_old = data_ele_old[vec] |
|
1402 | data_ele_old = data_ele_old[vec] | |
1403 | data_weather = data_weather[vec[0]] |
|
1403 | data_weather = data_weather[vec[0]] | |
1404 |
|
1404 | |||
1405 | vec2 = numpy.where(0<data_ele) |
|
1405 | vec2 = numpy.where(0<data_ele) | |
1406 | data_ele= data_ele[vec2] |
|
1406 | data_ele= data_ele[vec2] | |
1407 | data_ele_old= data_ele_old[vec2] |
|
1407 | data_ele_old= data_ele_old[vec2] | |
1408 | ##print(data_ele_new) |
|
1408 | ##print(data_ele_new) | |
1409 | data_weather= data_weather[vec2[0]] |
|
1409 | data_weather= data_weather[vec2[0]] | |
1410 |
|
1410 | |||
1411 | new_i_ele = int(round(data_ele[0])) |
|
1411 | new_i_ele = int(round(data_ele[0])) | |
1412 | new_f_ele = int(round(data_ele[-1])) |
|
1412 | new_f_ele = int(round(data_ele[-1])) | |
1413 | #print(new_i_ele) |
|
1413 | #print(new_i_ele) | |
1414 | #print(new_f_ele) |
|
1414 | #print(new_f_ele) | |
1415 | #print(data_ele,len(data_ele)) |
|
1415 | #print(data_ele,len(data_ele)) | |
1416 | #print(data_ele_old,len(data_ele_old)) |
|
1416 | #print(data_ele_old,len(data_ele_old)) | |
1417 | if new_i_ele< 2: |
|
1417 | if new_i_ele< 2: | |
1418 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
1418 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |
1419 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
1419 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |
1420 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old |
|
1420 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old | |
1421 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele |
|
1421 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele | |
1422 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather |
|
1422 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather | |
1423 | data_ele = self.res_ele |
|
1423 | data_ele = self.res_ele | |
1424 | data_weather = self.res_weather[val_ch] |
|
1424 | data_weather = self.res_weather[val_ch] | |
1425 |
|
1425 | |||
1426 | elif tipo_case==1 : #BAJADA |
|
1426 | elif tipo_case==1 : #BAJADA | |
1427 | data_ele = data_ele[::-1] # reversa |
|
1427 | data_ele = data_ele[::-1] # reversa | |
1428 | data_ele_old = data_ele_old[::-1]# reversa |
|
1428 | data_ele_old = data_ele_old[::-1]# reversa | |
1429 | data_weather = data_weather[::-1,:]# reversa |
|
1429 | data_weather = data_weather[::-1,:]# reversa | |
1430 | vec= numpy.where(data_ele<ang_max) |
|
1430 | vec= numpy.where(data_ele<ang_max) | |
1431 | data_ele = data_ele[vec] |
|
1431 | data_ele = data_ele[vec] | |
1432 | data_ele_old = data_ele_old[vec] |
|
1432 | data_ele_old = data_ele_old[vec] | |
1433 | data_weather = data_weather[vec[0]] |
|
1433 | data_weather = data_weather[vec[0]] | |
1434 | vec2= numpy.where(0<data_ele) |
|
1434 | vec2= numpy.where(0<data_ele) | |
1435 | data_ele = data_ele[vec2] |
|
1435 | data_ele = data_ele[vec2] | |
1436 | data_ele_old = data_ele_old[vec2] |
|
1436 | data_ele_old = data_ele_old[vec2] | |
1437 | data_weather = data_weather[vec2[0]] |
|
1437 | data_weather = data_weather[vec2[0]] | |
1438 |
|
1438 | |||
1439 |
|
1439 | |||
1440 | new_i_ele = int(round(data_ele[0])) |
|
1440 | new_i_ele = int(round(data_ele[0])) | |
1441 | new_f_ele = int(round(data_ele[-1])) |
|
1441 | new_f_ele = int(round(data_ele[-1])) | |
1442 | #print(data_ele) |
|
1442 | #print(data_ele) | |
1443 | #print(ang_max) |
|
1443 | #print(ang_max) | |
1444 | #print(data_ele_old) |
|
1444 | #print(data_ele_old) | |
1445 | if new_i_ele <= 1: |
|
1445 | if new_i_ele <= 1: | |
1446 | new_i_ele = 1 |
|
1446 | new_i_ele = 1 | |
1447 | if round(data_ele[-1])>=ang_max-1: |
|
1447 | if round(data_ele[-1])>=ang_max-1: | |
1448 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
1448 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |
1449 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
1449 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |
1450 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old |
|
1450 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old | |
1451 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele |
|
1451 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele | |
1452 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather |
|
1452 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather | |
1453 | data_ele = self.res_ele |
|
1453 | data_ele = self.res_ele | |
1454 | data_weather = self.res_weather[val_ch] |
|
1454 | data_weather = self.res_weather[val_ch] | |
1455 |
|
1455 | |||
1456 | elif tipo_case==2: #bajada |
|
1456 | elif tipo_case==2: #bajada | |
1457 | vec = numpy.where(data_ele<ang_max) |
|
1457 | vec = numpy.where(data_ele<ang_max) | |
1458 | data_ele = data_ele[vec] |
|
1458 | data_ele = data_ele[vec] | |
1459 | data_weather= data_weather[vec[0]] |
|
1459 | data_weather= data_weather[vec[0]] | |
1460 |
|
1460 | |||
1461 | len_vec = len(vec) |
|
1461 | len_vec = len(vec) | |
1462 | data_ele_new = data_ele[::-1] # reversa |
|
1462 | data_ele_new = data_ele[::-1] # reversa | |
1463 | data_weather = data_weather[::-1,:] |
|
1463 | data_weather = data_weather[::-1,:] | |
1464 | new_i_ele = int(data_ele_new[0]) |
|
1464 | new_i_ele = int(data_ele_new[0]) | |
1465 | new_f_ele = int(data_ele_new[-1]) |
|
1465 | new_f_ele = int(data_ele_new[-1]) | |
1466 |
|
1466 | |||
1467 | n1= new_i_ele- ang_min |
|
1467 | n1= new_i_ele- ang_min | |
1468 | n2= ang_max - new_f_ele-1 |
|
1468 | n2= ang_max - new_f_ele-1 | |
1469 | if n1>0: |
|
1469 | if n1>0: | |
1470 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1470 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
1471 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1471 | ele1_nan= numpy.ones(n1)*numpy.nan | |
1472 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1472 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
1473 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1473 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
1474 | if n2>0: |
|
1474 | if n2>0: | |
1475 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1475 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
1476 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1476 | ele2_nan= numpy.ones(n2)*numpy.nan | |
1477 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1477 | data_ele = numpy.hstack((data_ele,ele2)) | |
1478 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1478 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1479 |
|
1479 | |||
1480 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1480 | self.data_ele_tmp[val_ch] = data_ele_old | |
1481 | self.res_ele = data_ele |
|
1481 | self.res_ele = data_ele | |
1482 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1482 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1483 | data_ele = self.res_ele |
|
1483 | data_ele = self.res_ele | |
1484 | data_weather = self.res_weather[val_ch] |
|
1484 | data_weather = self.res_weather[val_ch] | |
1485 |
|
1485 | |||
1486 | elif tipo_case==3:#subida |
|
1486 | elif tipo_case==3:#subida | |
1487 | vec = numpy.where(0<data_ele) |
|
1487 | vec = numpy.where(0<data_ele) | |
1488 | data_ele= data_ele[vec] |
|
1488 | data_ele= data_ele[vec] | |
1489 | data_ele_new = data_ele |
|
1489 | data_ele_new = data_ele | |
1490 | data_ele_old= data_ele_old[vec] |
|
1490 | data_ele_old= data_ele_old[vec] | |
1491 | data_weather= data_weather[vec[0]] |
|
1491 | data_weather= data_weather[vec[0]] | |
1492 | pos_ini = numpy.argmin(data_ele) |
|
1492 | pos_ini = numpy.argmin(data_ele) | |
1493 | if pos_ini>0: |
|
1493 | if pos_ini>0: | |
1494 | len_vec= len(data_ele) |
|
1494 | len_vec= len(data_ele) | |
1495 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) |
|
1495 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) | |
1496 | #print(vec3) |
|
1496 | #print(vec3) | |
1497 | data_ele= data_ele[vec3] |
|
1497 | data_ele= data_ele[vec3] | |
1498 | data_ele_new = data_ele |
|
1498 | data_ele_new = data_ele | |
1499 | data_ele_old= data_ele_old[vec3] |
|
1499 | data_ele_old= data_ele_old[vec3] | |
1500 | data_weather= data_weather[vec3] |
|
1500 | data_weather= data_weather[vec3] | |
1501 |
|
1501 | |||
1502 | new_i_ele = int(data_ele_new[0]) |
|
1502 | new_i_ele = int(data_ele_new[0]) | |
1503 | new_f_ele = int(data_ele_new[-1]) |
|
1503 | new_f_ele = int(data_ele_new[-1]) | |
1504 | n1= new_i_ele- ang_min |
|
1504 | n1= new_i_ele- ang_min | |
1505 | n2= ang_max - new_f_ele-1 |
|
1505 | n2= ang_max - new_f_ele-1 | |
1506 | if n1>0: |
|
1506 | if n1>0: | |
1507 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1507 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
1508 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1508 | ele1_nan= numpy.ones(n1)*numpy.nan | |
1509 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1509 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
1510 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1510 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
1511 | if n2>0: |
|
1511 | if n2>0: | |
1512 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1512 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
1513 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1513 | ele2_nan= numpy.ones(n2)*numpy.nan | |
1514 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1514 | data_ele = numpy.hstack((data_ele,ele2)) | |
1515 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1515 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1516 |
|
1516 | |||
1517 | self.data_ele_tmp[val_ch] = data_ele_old |
|
1517 | self.data_ele_tmp[val_ch] = data_ele_old | |
1518 | self.res_ele = data_ele |
|
1518 | self.res_ele = data_ele | |
1519 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1519 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1520 | data_ele = self.res_ele |
|
1520 | data_ele = self.res_ele | |
1521 | data_weather = self.res_weather[val_ch] |
|
1521 | data_weather = self.res_weather[val_ch] | |
1522 | #print("self.data_ele_tmp",self.data_ele_tmp) |
|
1522 | #print("self.data_ele_tmp",self.data_ele_tmp) | |
1523 | return data_weather,data_ele |
|
1523 | return data_weather,data_ele | |
1524 |
|
1524 | |||
1525 |
|
1525 | |||
1526 | def plot(self): |
|
1526 | def plot(self): | |
1527 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
1527 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') | |
1528 | data = self.data[-1] |
|
1528 | data = self.data[-1] | |
1529 | r = self.data.yrange |
|
1529 | r = self.data.yrange | |
1530 | delta_height = r[1]-r[0] |
|
1530 | delta_height = r[1]-r[0] | |
1531 | r_mask = numpy.where(r>=0)[0] |
|
1531 | r_mask = numpy.where(r>=0)[0] | |
1532 | ##print("delta_height",delta_height) |
|
1532 | ##print("delta_height",delta_height) | |
1533 | #print("r_mask",r_mask,len(r_mask)) |
|
1533 | #print("r_mask",r_mask,len(r_mask)) | |
1534 | r = numpy.arange(len(r_mask))*delta_height |
|
1534 | r = numpy.arange(len(r_mask))*delta_height | |
1535 | self.y = 2*r |
|
1535 | self.y = 2*r | |
1536 | res = 1 |
|
1536 | res = 1 | |
1537 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) |
|
1537 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) | |
1538 | ang_max = self.ang_max |
|
1538 | ang_max = self.ang_max | |
1539 | ang_min = self.ang_min |
|
1539 | ang_min = self.ang_min | |
1540 | var_ang =ang_max - ang_min |
|
1540 | var_ang =ang_max - ang_min | |
1541 | step = (int(var_ang)/(res*data['weather'].shape[0])) |
|
1541 | step = (int(var_ang)/(res*data['weather'].shape[0])) | |
1542 | ###print("step",step) |
|
1542 | ###print("step",step) | |
1543 | #-------------------------------------------------------- |
|
1543 | #-------------------------------------------------------- | |
1544 | ##print('weather',data['weather'].shape) |
|
1544 | ##print('weather',data['weather'].shape) | |
1545 | ##print('ele',data['ele'].shape) |
|
1545 | ##print('ele',data['ele'].shape) | |
1546 |
|
1546 | |||
1547 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1547 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) | |
1548 | ###self.res_azi = numpy.mean(data['azi']) |
|
1548 | ###self.res_azi = numpy.mean(data['azi']) | |
1549 | ###print("self.res_ele",self.res_ele) |
|
1549 | ###print("self.res_ele",self.res_ele) | |
1550 | plt.clf() |
|
1550 | plt.clf() | |
1551 | subplots = [121, 122] |
|
1551 | subplots = [121, 122] | |
1552 | try: |
|
1552 | try: | |
1553 | if self.data[-2]['ele'].max()<data['ele'].max(): |
|
1553 | if self.data[-2]['ele'].max()<data['ele'].max(): | |
1554 | self.ini=0 |
|
1554 | self.ini=0 | |
1555 | except: |
|
1555 | except: | |
1556 | pass |
|
1556 | pass | |
1557 | if self.ini==0: |
|
1557 | if self.ini==0: | |
1558 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan |
|
1558 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan | |
1559 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan |
|
1559 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan | |
1560 | print("SHAPE",self.data_ele_tmp.shape) |
|
1560 | print("SHAPE",self.data_ele_tmp.shape) | |
1561 |
|
1561 | |||
1562 | for i,ax in enumerate(self.axes): |
|
1562 | for i,ax in enumerate(self.axes): | |
1563 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag']) |
|
1563 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag']) | |
1564 | self.res_azi = numpy.mean(data['azi']) |
|
1564 | self.res_azi = numpy.mean(data['azi']) | |
1565 |
|
1565 | |||
1566 | if ax.firsttime: |
|
1566 | if ax.firsttime: | |
1567 | #plt.clf() |
|
1567 | #plt.clf() | |
1568 | print("Frist Plot") |
|
1568 | print("Frist Plot") | |
1569 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1569 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
1570 | #fig=self.figures[0] |
|
1570 | #fig=self.figures[0] | |
1571 | else: |
|
1571 | else: | |
1572 | #plt.clf() |
|
1572 | #plt.clf() | |
1573 | print("ELSE PLOT") |
|
1573 | print("ELSE PLOT") | |
1574 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1574 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
1575 | caax = cgax.parasites[0] |
|
1575 | caax = cgax.parasites[0] | |
1576 | paax = cgax.parasites[1] |
|
1576 | paax = cgax.parasites[1] | |
1577 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
1577 | cbar = plt.gcf().colorbar(pm, pad=0.075) | |
1578 | caax.set_xlabel('x_range [km]') |
|
1578 | caax.set_xlabel('x_range [km]') | |
1579 | caax.set_ylabel('y_range [km]') |
|
1579 | caax.set_ylabel('y_range [km]') | |
1580 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
1580 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') | |
1581 | print("***************************self.ini****************************",self.ini) |
|
1581 | print("***************************self.ini****************************",self.ini) | |
1582 | self.ini= self.ini+1 |
|
1582 | self.ini= self.ini+1 | |
1583 |
|
1583 | |||
1584 | class WeatherRHI_vRF_Plot(Plot): |
|
1584 | class WeatherRHI_vRF_Plot(Plot): | |
1585 | CODE = 'weather' |
|
1585 | CODE = 'weather' | |
1586 | plot_name = 'weather' |
|
1586 | plot_name = 'weather' | |
1587 | plot_type = 'rhistyle' |
|
1587 | plot_type = 'rhistyle' | |
1588 | buffering = False |
|
1588 | buffering = False | |
1589 | data_ele_tmp = None |
|
1589 | data_ele_tmp = None | |
1590 |
|
1590 | |||
1591 | def setup(self): |
|
1591 | def setup(self): | |
1592 | print("********************") |
|
1592 | print("********************") | |
1593 | print("********************") |
|
1593 | print("********************") | |
1594 | print("********************") |
|
1594 | print("********************") | |
1595 | print("SETUP WEATHER PLOT") |
|
1595 | print("SETUP WEATHER PLOT") | |
1596 | self.ncols = 1 |
|
1596 | self.ncols = 1 | |
1597 | self.nrows = 1 |
|
1597 | self.nrows = 1 | |
1598 | self.nplots= 1 |
|
1598 | self.nplots= 1 | |
1599 | self.ylabel= 'Range [Km]' |
|
1599 | self.ylabel= 'Range [Km]' | |
1600 | self.titles= ['Weather'] |
|
1600 | self.titles= ['Weather'] | |
1601 | if self.channels is not None: |
|
1601 | if self.channels is not None: | |
1602 | self.nplots = len(self.channels) |
|
1602 | self.nplots = len(self.channels) | |
1603 | self.nrows = len(self.channels) |
|
1603 | self.nrows = len(self.channels) | |
1604 | else: |
|
1604 | else: | |
1605 | self.nplots = self.data.shape(self.CODE)[0] |
|
1605 | self.nplots = self.data.shape(self.CODE)[0] | |
1606 | self.nrows = self.nplots |
|
1606 | self.nrows = self.nplots | |
1607 | self.channels = list(range(self.nplots)) |
|
1607 | self.channels = list(range(self.nplots)) | |
1608 | print("channels",self.channels) |
|
1608 | print("channels",self.channels) | |
1609 | print("que saldra", self.data.shape(self.CODE)[0]) |
|
1609 | print("que saldra", self.data.shape(self.CODE)[0]) | |
1610 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] |
|
1610 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] | |
1611 | print("self.titles",self.titles) |
|
1611 | print("self.titles",self.titles) | |
1612 | self.colorbar=False |
|
1612 | self.colorbar=False | |
1613 | self.width =8 |
|
1613 | self.width =8 | |
1614 | self.height =8 |
|
1614 | self.height =8 | |
1615 | self.ini =0 |
|
1615 | self.ini =0 | |
1616 | self.len_azi =0 |
|
1616 | self.len_azi =0 | |
1617 | self.buffer_ini = None |
|
1617 | self.buffer_ini = None | |
1618 | self.buffer_ele = None |
|
1618 | self.buffer_ele = None | |
1619 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
1619 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
1620 | self.flag =0 |
|
1620 | self.flag =0 | |
1621 | self.indicador= 0 |
|
1621 | self.indicador= 0 | |
1622 | self.last_data_ele = None |
|
1622 | self.last_data_ele = None | |
1623 | self.val_mean = None |
|
1623 | self.val_mean = None | |
1624 |
|
1624 | |||
1625 | def update(self, dataOut): |
|
1625 | def update(self, dataOut): | |
1626 |
|
1626 | |||
1627 | data = {} |
|
1627 | data = {} | |
1628 | meta = {} |
|
1628 | meta = {} | |
1629 | if hasattr(dataOut, 'dataPP_POWER'): |
|
1629 | if hasattr(dataOut, 'dataPP_POWER'): | |
1630 | factor = 1 |
|
1630 | factor = 1 | |
1631 | if hasattr(dataOut, 'nFFTPoints'): |
|
1631 | if hasattr(dataOut, 'nFFTPoints'): | |
1632 | factor = dataOut.normFactor |
|
1632 | factor = dataOut.normFactor | |
1633 | print("dataOut",dataOut.data_360.shape) |
|
1633 | print("dataOut",dataOut.data_360.shape) | |
1634 | # |
|
1634 | # | |
1635 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) |
|
1635 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) | |
1636 | # |
|
1636 | # | |
1637 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
1637 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) | |
1638 | data['azi'] = dataOut.data_azi |
|
1638 | data['azi'] = dataOut.data_azi | |
1639 | data['ele'] = dataOut.data_ele |
|
1639 | data['ele'] = dataOut.data_ele | |
1640 | data['case_flag'] = dataOut.case_flag |
|
1640 | data['case_flag'] = dataOut.case_flag | |
1641 | #print("UPDATE") |
|
1641 | #print("UPDATE") | |
1642 | #print("data[weather]",data['weather'].shape) |
|
1642 | #print("data[weather]",data['weather'].shape) | |
1643 | #print("data[azi]",data['azi']) |
|
1643 | #print("data[azi]",data['azi']) | |
1644 | return data, meta |
|
1644 | return data, meta | |
1645 |
|
1645 | |||
1646 | def get2List(self,angulos): |
|
1646 | def get2List(self,angulos): | |
1647 | list1=[] |
|
1647 | list1=[] | |
1648 | list2=[] |
|
1648 | list2=[] | |
1649 | #print(angulos) |
|
1649 | #print(angulos) | |
1650 | #exit(1) |
|
1650 | #exit(1) | |
1651 | for i in reversed(range(len(angulos))): |
|
1651 | for i in reversed(range(len(angulos))): | |
1652 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante |
|
1652 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante | |
1653 | diff_ = angulos[i]-angulos[i-1] |
|
1653 | diff_ = angulos[i]-angulos[i-1] | |
1654 | if abs(diff_) >1.5: |
|
1654 | if abs(diff_) >1.5: | |
1655 | list1.append(i-1) |
|
1655 | list1.append(i-1) | |
1656 | list2.append(diff_) |
|
1656 | list2.append(diff_) | |
1657 | return list(reversed(list1)),list(reversed(list2)) |
|
1657 | return list(reversed(list1)),list(reversed(list2)) | |
1658 |
|
1658 | |||
1659 | def fixData90(self,list_,ang_): |
|
1659 | def fixData90(self,list_,ang_): | |
1660 | if list_[0]==-1: |
|
1660 | if list_[0]==-1: | |
1661 | vec = numpy.where(ang_<ang_[0]) |
|
1661 | vec = numpy.where(ang_<ang_[0]) | |
1662 | ang_[vec] = ang_[vec]+90 |
|
1662 | ang_[vec] = ang_[vec]+90 | |
1663 | return ang_ |
|
1663 | return ang_ | |
1664 | return ang_ |
|
1664 | return ang_ | |
1665 |
|
1665 | |||
1666 | def fixData90HL(self,angulos): |
|
1666 | def fixData90HL(self,angulos): | |
1667 | vec = numpy.where(angulos>=90) |
|
1667 | vec = numpy.where(angulos>=90) | |
1668 | angulos[vec]=angulos[vec]-90 |
|
1668 | angulos[vec]=angulos[vec]-90 | |
1669 | return angulos |
|
1669 | return angulos | |
1670 |
|
1670 | |||
1671 |
|
1671 | |||
1672 | def search_pos(self,pos,list_): |
|
1672 | def search_pos(self,pos,list_): | |
1673 | for i in range(len(list_)): |
|
1673 | for i in range(len(list_)): | |
1674 | if pos == list_[i]: |
|
1674 | if pos == list_[i]: | |
1675 | return True,i |
|
1675 | return True,i | |
1676 | i=None |
|
1676 | i=None | |
1677 | return False,i |
|
1677 | return False,i | |
1678 |
|
1678 | |||
1679 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): |
|
1679 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): | |
1680 | size = len(ang_) |
|
1680 | size = len(ang_) | |
1681 | size2 = 0 |
|
1681 | size2 = 0 | |
1682 | for i in range(len(list2_)): |
|
1682 | for i in range(len(list2_)): | |
1683 | size2=size2+round(abs(list2_[i]))-1 |
|
1683 | size2=size2+round(abs(list2_[i]))-1 | |
1684 | new_size= size+size2 |
|
1684 | new_size= size+size2 | |
1685 | ang_new = numpy.zeros(new_size) |
|
1685 | ang_new = numpy.zeros(new_size) | |
1686 | ang_new2 = numpy.zeros(new_size) |
|
1686 | ang_new2 = numpy.zeros(new_size) | |
1687 |
|
1687 | |||
1688 | tmp = 0 |
|
1688 | tmp = 0 | |
1689 | c = 0 |
|
1689 | c = 0 | |
1690 | for i in range(len(ang_)): |
|
1690 | for i in range(len(ang_)): | |
1691 | ang_new[tmp +c] = ang_[i] |
|
1691 | ang_new[tmp +c] = ang_[i] | |
1692 | ang_new2[tmp+c] = ang_[i] |
|
1692 | ang_new2[tmp+c] = ang_[i] | |
1693 | condition , value = self.search_pos(i,list1_) |
|
1693 | condition , value = self.search_pos(i,list1_) | |
1694 | if condition: |
|
1694 | if condition: | |
1695 | pos = tmp + c + 1 |
|
1695 | pos = tmp + c + 1 | |
1696 | for k in range(round(abs(list2_[value]))-1): |
|
1696 | for k in range(round(abs(list2_[value]))-1): | |
1697 | if tipo_case==0 or tipo_case==3:#subida |
|
1697 | if tipo_case==0 or tipo_case==3:#subida | |
1698 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
1698 | ang_new[pos+k] = ang_new[pos+k-1]+1 | |
1699 | ang_new2[pos+k] = numpy.nan |
|
1699 | ang_new2[pos+k] = numpy.nan | |
1700 | elif tipo_case==1 or tipo_case==2:#bajada |
|
1700 | elif tipo_case==1 or tipo_case==2:#bajada | |
1701 | ang_new[pos+k] = ang_new[pos+k-1]-1 |
|
1701 | ang_new[pos+k] = ang_new[pos+k-1]-1 | |
1702 | ang_new2[pos+k] = numpy.nan |
|
1702 | ang_new2[pos+k] = numpy.nan | |
1703 |
|
1703 | |||
1704 | tmp = pos +k |
|
1704 | tmp = pos +k | |
1705 | c = 0 |
|
1705 | c = 0 | |
1706 | c=c+1 |
|
1706 | c=c+1 | |
1707 | return ang_new,ang_new2 |
|
1707 | return ang_new,ang_new2 | |
1708 |
|
1708 | |||
1709 | def globalCheckPED(self,angulos,tipo_case): |
|
1709 | def globalCheckPED(self,angulos,tipo_case): | |
1710 | l1,l2 = self.get2List(angulos) |
|
1710 | l1,l2 = self.get2List(angulos) | |
1711 | print("l1",l1) |
|
1711 | print("l1",l1) | |
1712 | print("l2",l2) |
|
1712 | print("l2",l2) | |
1713 | if len(l1)>0: |
|
1713 | if len(l1)>0: | |
1714 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) |
|
1714 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) | |
1715 | #l1,l2 = self.get2List(angulos2) |
|
1715 | #l1,l2 = self.get2List(angulos2) | |
1716 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) |
|
1716 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) | |
1717 | #ang1_ = self.fixData90HL(ang1_) |
|
1717 | #ang1_ = self.fixData90HL(ang1_) | |
1718 | #ang2_ = self.fixData90HL(ang2_) |
|
1718 | #ang2_ = self.fixData90HL(ang2_) | |
1719 | else: |
|
1719 | else: | |
1720 | ang1_= angulos |
|
1720 | ang1_= angulos | |
1721 | ang2_= angulos |
|
1721 | ang2_= angulos | |
1722 | return ang1_,ang2_ |
|
1722 | return ang1_,ang2_ | |
1723 |
|
1723 | |||
1724 |
|
1724 | |||
1725 | def replaceNAN(self,data_weather,data_ele,val): |
|
1725 | def replaceNAN(self,data_weather,data_ele,val): | |
1726 | data= data_ele |
|
1726 | data= data_ele | |
1727 | data_T= data_weather |
|
1727 | data_T= data_weather | |
1728 | #print(data.shape[0]) |
|
1728 | #print(data.shape[0]) | |
1729 | #print(data_T.shape[0]) |
|
1729 | #print(data_T.shape[0]) | |
1730 | #exit(1) |
|
1730 | #exit(1) | |
1731 | if data.shape[0]> data_T.shape[0]: |
|
1731 | if data.shape[0]> data_T.shape[0]: | |
1732 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
1732 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) | |
1733 | c = 0 |
|
1733 | c = 0 | |
1734 | for i in range(len(data)): |
|
1734 | for i in range(len(data)): | |
1735 | if numpy.isnan(data[i]): |
|
1735 | if numpy.isnan(data[i]): | |
1736 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
1736 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
1737 | else: |
|
1737 | else: | |
1738 | data_N[i,:]=data_T[c,:] |
|
1738 | data_N[i,:]=data_T[c,:] | |
1739 | c=c+1 |
|
1739 | c=c+1 | |
1740 | return data_N |
|
1740 | return data_N | |
1741 | else: |
|
1741 | else: | |
1742 | for i in range(len(data)): |
|
1742 | for i in range(len(data)): | |
1743 | if numpy.isnan(data[i]): |
|
1743 | if numpy.isnan(data[i]): | |
1744 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
1744 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
1745 | return data_T |
|
1745 | return data_T | |
1746 |
|
1746 | |||
1747 |
|
1747 | |||
1748 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): |
|
1748 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): | |
1749 | ang_max= ang_max |
|
1749 | ang_max= ang_max | |
1750 | ang_min= ang_min |
|
1750 | ang_min= ang_min | |
1751 | data_weather=data_weather |
|
1751 | data_weather=data_weather | |
1752 | val_ch=val_ch |
|
1752 | val_ch=val_ch | |
1753 | ##print("*********************DATA WEATHER**************************************") |
|
1753 | ##print("*********************DATA WEATHER**************************************") | |
1754 | ##print(data_weather) |
|
1754 | ##print(data_weather) | |
1755 |
|
1755 | |||
1756 | ''' |
|
1756 | ''' | |
1757 | print("**********************************************") |
|
1757 | print("**********************************************") | |
1758 | print("**********************************************") |
|
1758 | print("**********************************************") | |
1759 | print("***************ini**************") |
|
1759 | print("***************ini**************") | |
1760 | print("**********************************************") |
|
1760 | print("**********************************************") | |
1761 | print("**********************************************") |
|
1761 | print("**********************************************") | |
1762 | ''' |
|
1762 | ''' | |
1763 | #print("data_ele",data_ele) |
|
1763 | #print("data_ele",data_ele) | |
1764 | #---------------------------------------------------------- |
|
1764 | #---------------------------------------------------------- | |
1765 |
|
1765 | |||
1766 | #exit(1) |
|
1766 | #exit(1) | |
1767 | tipo_case = case_flag[-1] |
|
1767 | tipo_case = case_flag[-1] | |
1768 | print("tipo_case",tipo_case) |
|
1768 | print("tipo_case",tipo_case) | |
1769 | #--------------------- new ------------------------- |
|
1769 | #--------------------- new ------------------------- | |
1770 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) |
|
1770 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) | |
1771 |
|
1771 | |||
1772 | #-------------------------CAMBIOS RHI--------------------------------- |
|
1772 | #-------------------------CAMBIOS RHI--------------------------------- | |
1773 |
|
1773 | |||
1774 | vec = numpy.where(data_ele<ang_max) |
|
1774 | vec = numpy.where(data_ele<ang_max) | |
1775 | data_ele = data_ele[vec] |
|
1775 | data_ele = data_ele[vec] | |
1776 | data_weather= data_weather[vec[0]] |
|
1776 | data_weather= data_weather[vec[0]] | |
1777 |
|
1777 | |||
1778 | len_vec = len(vec) |
|
1778 | len_vec = len(vec) | |
1779 | data_ele_new = data_ele[::-1] # reversa |
|
1779 | data_ele_new = data_ele[::-1] # reversa | |
1780 | data_weather = data_weather[::-1,:] |
|
1780 | data_weather = data_weather[::-1,:] | |
1781 | new_i_ele = int(data_ele_new[0]) |
|
1781 | new_i_ele = int(data_ele_new[0]) | |
1782 | new_f_ele = int(data_ele_new[-1]) |
|
1782 | new_f_ele = int(data_ele_new[-1]) | |
1783 |
|
1783 | |||
1784 | n1= new_i_ele- ang_min |
|
1784 | n1= new_i_ele- ang_min | |
1785 | n2= ang_max - new_f_ele-1 |
|
1785 | n2= ang_max - new_f_ele-1 | |
1786 | if n1>0: |
|
1786 | if n1>0: | |
1787 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
1787 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
1788 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
1788 | ele1_nan= numpy.ones(n1)*numpy.nan | |
1789 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
1789 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
1790 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
1790 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
1791 | if n2>0: |
|
1791 | if n2>0: | |
1792 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
1792 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
1793 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
1793 | ele2_nan= numpy.ones(n2)*numpy.nan | |
1794 | data_ele = numpy.hstack((data_ele,ele2)) |
|
1794 | data_ele = numpy.hstack((data_ele,ele2)) | |
1795 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
1795 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
1796 |
|
1796 | |||
1797 |
|
1797 | |||
1798 | print("ele shape",data_ele.shape) |
|
1798 | print("ele shape",data_ele.shape) | |
1799 | print(data_ele) |
|
1799 | print(data_ele) | |
1800 |
|
1800 | |||
1801 | #print("self.data_ele_tmp",self.data_ele_tmp) |
|
1801 | #print("self.data_ele_tmp",self.data_ele_tmp) | |
1802 | val_mean = numpy.mean(data_weather[:,-1]) |
|
1802 | val_mean = numpy.mean(data_weather[:,-1]) | |
1803 | self.val_mean = val_mean |
|
1803 | self.val_mean = val_mean | |
1804 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
1804 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
1805 | self.data_ele_tmp[val_ch]= data_ele_old |
|
1805 | self.data_ele_tmp[val_ch]= data_ele_old | |
1806 |
|
1806 | |||
1807 |
|
1807 | |||
1808 | print("data_weather shape",data_weather.shape) |
|
1808 | print("data_weather shape",data_weather.shape) | |
1809 | print(data_weather) |
|
1809 | print(data_weather) | |
1810 | #exit(1) |
|
1810 | #exit(1) | |
1811 | return data_weather,data_ele |
|
1811 | return data_weather,data_ele | |
1812 |
|
1812 | |||
1813 |
|
1813 | |||
1814 | def plot(self): |
|
1814 | def plot(self): | |
1815 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
1815 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') | |
1816 | data = self.data[-1] |
|
1816 | data = self.data[-1] | |
1817 | r = self.data.yrange |
|
1817 | r = self.data.yrange | |
1818 | delta_height = r[1]-r[0] |
|
1818 | delta_height = r[1]-r[0] | |
1819 | r_mask = numpy.where(r>=0)[0] |
|
1819 | r_mask = numpy.where(r>=0)[0] | |
1820 | ##print("delta_height",delta_height) |
|
1820 | ##print("delta_height",delta_height) | |
1821 | #print("r_mask",r_mask,len(r_mask)) |
|
1821 | #print("r_mask",r_mask,len(r_mask)) | |
1822 | r = numpy.arange(len(r_mask))*delta_height |
|
1822 | r = numpy.arange(len(r_mask))*delta_height | |
1823 | self.y = 2*r |
|
1823 | self.y = 2*r | |
1824 | res = 1 |
|
1824 | res = 1 | |
1825 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) |
|
1825 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) | |
1826 | ang_max = self.ang_max |
|
1826 | ang_max = self.ang_max | |
1827 | ang_min = self.ang_min |
|
1827 | ang_min = self.ang_min | |
1828 | var_ang =ang_max - ang_min |
|
1828 | var_ang =ang_max - ang_min | |
1829 | step = (int(var_ang)/(res*data['weather'].shape[0])) |
|
1829 | step = (int(var_ang)/(res*data['weather'].shape[0])) | |
1830 | ###print("step",step) |
|
1830 | ###print("step",step) | |
1831 | #-------------------------------------------------------- |
|
1831 | #-------------------------------------------------------- | |
1832 | ##print('weather',data['weather'].shape) |
|
1832 | ##print('weather',data['weather'].shape) | |
1833 | ##print('ele',data['ele'].shape) |
|
1833 | ##print('ele',data['ele'].shape) | |
1834 |
|
1834 | |||
1835 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
1835 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) | |
1836 | ###self.res_azi = numpy.mean(data['azi']) |
|
1836 | ###self.res_azi = numpy.mean(data['azi']) | |
1837 | ###print("self.res_ele",self.res_ele) |
|
1837 | ###print("self.res_ele",self.res_ele) | |
1838 | plt.clf() |
|
1838 | plt.clf() | |
1839 | subplots = [121, 122] |
|
1839 | subplots = [121, 122] | |
1840 | if self.ini==0: |
|
1840 | if self.ini==0: | |
1841 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan |
|
1841 | self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan | |
1842 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan |
|
1842 | self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan | |
1843 | print("SHAPE",self.data_ele_tmp.shape) |
|
1843 | print("SHAPE",self.data_ele_tmp.shape) | |
1844 |
|
1844 | |||
1845 | for i,ax in enumerate(self.axes): |
|
1845 | for i,ax in enumerate(self.axes): | |
1846 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag']) |
|
1846 | self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag']) | |
1847 | self.res_azi = numpy.mean(data['azi']) |
|
1847 | self.res_azi = numpy.mean(data['azi']) | |
1848 |
|
1848 | |||
1849 | print(self.res_ele) |
|
1849 | print(self.res_ele) | |
1850 | #exit(1) |
|
1850 | #exit(1) | |
1851 | if ax.firsttime: |
|
1851 | if ax.firsttime: | |
1852 | #plt.clf() |
|
1852 | #plt.clf() | |
1853 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1853 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
1854 | #fig=self.figures[0] |
|
1854 | #fig=self.figures[0] | |
1855 | else: |
|
1855 | else: | |
1856 |
|
1856 | |||
1857 | #plt.clf() |
|
1857 | #plt.clf() | |
1858 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
1858 | cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
1859 | caax = cgax.parasites[0] |
|
1859 | caax = cgax.parasites[0] | |
1860 | paax = cgax.parasites[1] |
|
1860 | paax = cgax.parasites[1] | |
1861 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
1861 | cbar = plt.gcf().colorbar(pm, pad=0.075) | |
1862 | caax.set_xlabel('x_range [km]') |
|
1862 | caax.set_xlabel('x_range [km]') | |
1863 | caax.set_ylabel('y_range [km]') |
|
1863 | caax.set_ylabel('y_range [km]') | |
1864 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
1864 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') | |
1865 | print("***************************self.ini****************************",self.ini) |
|
1865 | print("***************************self.ini****************************",self.ini) | |
1866 | self.ini= self.ini+1 |
|
1866 | self.ini= self.ini+1 | |
1867 |
|
1867 | |||
1868 | class WeatherRHI_vRF3_Plot(Plot): |
|
1868 | class WeatherRHI_vRF3_Plot(Plot): | |
1869 | CODE = 'weather' |
|
1869 | CODE = 'weather' | |
1870 | plot_name = 'weather' |
|
1870 | plot_name = 'weather' | |
1871 | plot_type = 'rhistyle' |
|
1871 | plot_type = 'rhistyle' | |
1872 | buffering = False |
|
1872 | buffering = False | |
1873 | data_ele_tmp = None |
|
1873 | data_ele_tmp = None | |
1874 |
|
1874 | |||
1875 | def setup(self): |
|
1875 | def setup(self): | |
1876 | print("********************") |
|
1876 | print("********************") | |
1877 | print("********************") |
|
1877 | print("********************") | |
1878 | print("********************") |
|
1878 | print("********************") | |
1879 | print("SETUP WEATHER PLOT") |
|
1879 | print("SETUP WEATHER PLOT") | |
1880 | self.ncols = 1 |
|
1880 | self.ncols = 1 | |
1881 | self.nrows = 1 |
|
1881 | self.nrows = 1 | |
1882 | self.nplots= 1 |
|
1882 | self.nplots= 1 | |
1883 | self.ylabel= 'Range [Km]' |
|
1883 | self.ylabel= 'Range [Km]' | |
1884 | self.titles= ['Weather'] |
|
1884 | self.titles= ['Weather'] | |
1885 | if self.channels is not None: |
|
1885 | if self.channels is not None: | |
1886 | self.nplots = len(self.channels) |
|
1886 | self.nplots = len(self.channels) | |
1887 | self.nrows = len(self.channels) |
|
1887 | self.nrows = len(self.channels) | |
1888 | else: |
|
1888 | else: | |
1889 | self.nplots = self.data.shape(self.CODE)[0] |
|
1889 | self.nplots = self.data.shape(self.CODE)[0] | |
1890 | self.nrows = self.nplots |
|
1890 | self.nrows = self.nplots | |
1891 | self.channels = list(range(self.nplots)) |
|
1891 | self.channels = list(range(self.nplots)) | |
1892 | print("channels",self.channels) |
|
1892 | print("channels",self.channels) | |
1893 | print("que saldra", self.data.shape(self.CODE)[0]) |
|
1893 | print("que saldra", self.data.shape(self.CODE)[0]) | |
1894 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] |
|
1894 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] | |
1895 | print("self.titles",self.titles) |
|
1895 | print("self.titles",self.titles) | |
1896 | self.colorbar=False |
|
1896 | self.colorbar=False | |
1897 | self.width =8 |
|
1897 | self.width =8 | |
1898 | self.height =8 |
|
1898 | self.height =8 | |
1899 | self.ini =0 |
|
1899 | self.ini =0 | |
1900 | self.len_azi =0 |
|
1900 | self.len_azi =0 | |
1901 | self.buffer_ini = None |
|
1901 | self.buffer_ini = None | |
1902 | self.buffer_ele = None |
|
1902 | self.buffer_ele = None | |
1903 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
1903 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
1904 | self.flag =0 |
|
1904 | self.flag =0 | |
1905 | self.indicador= 0 |
|
1905 | self.indicador= 0 | |
1906 | self.last_data_ele = None |
|
1906 | self.last_data_ele = None | |
1907 | self.val_mean = None |
|
1907 | self.val_mean = None | |
1908 |
|
1908 | |||
1909 | def update(self, dataOut): |
|
1909 | def update(self, dataOut): | |
1910 |
|
1910 | |||
1911 | data = {} |
|
1911 | data = {} | |
1912 | meta = {} |
|
1912 | meta = {} | |
1913 | if hasattr(dataOut, 'dataPP_POWER'): |
|
1913 | if hasattr(dataOut, 'dataPP_POWER'): | |
1914 | factor = 1 |
|
1914 | factor = 1 | |
1915 | if hasattr(dataOut, 'nFFTPoints'): |
|
1915 | if hasattr(dataOut, 'nFFTPoints'): | |
1916 | factor = dataOut.normFactor |
|
1916 | factor = dataOut.normFactor | |
1917 | print("dataOut",dataOut.data_360.shape) |
|
1917 | print("dataOut",dataOut.data_360.shape) | |
1918 | # |
|
1918 | # | |
1919 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) |
|
1919 | data['weather'] = 10*numpy.log10(dataOut.data_360/(factor)) | |
1920 | # |
|
1920 | # | |
1921 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) |
|
1921 | #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor)) | |
1922 | data['azi'] = dataOut.data_azi |
|
1922 | data['azi'] = dataOut.data_azi | |
1923 | data['ele'] = dataOut.data_ele |
|
1923 | data['ele'] = dataOut.data_ele | |
1924 | #data['case_flag'] = dataOut.case_flag |
|
1924 | #data['case_flag'] = dataOut.case_flag | |
1925 | #print("UPDATE") |
|
1925 | #print("UPDATE") | |
1926 | #print("data[weather]",data['weather'].shape) |
|
1926 | #print("data[weather]",data['weather'].shape) | |
1927 | #print("data[azi]",data['azi']) |
|
1927 | #print("data[azi]",data['azi']) | |
1928 | return data, meta |
|
1928 | return data, meta | |
1929 |
|
1929 | |||
1930 | def get2List(self,angulos): |
|
1930 | def get2List(self,angulos): | |
1931 | list1=[] |
|
1931 | list1=[] | |
1932 | list2=[] |
|
1932 | list2=[] | |
1933 | for i in reversed(range(len(angulos))): |
|
1933 | for i in reversed(range(len(angulos))): | |
1934 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante |
|
1934 | if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante | |
1935 | diff_ = angulos[i]-angulos[i-1] |
|
1935 | diff_ = angulos[i]-angulos[i-1] | |
1936 | if abs(diff_) >1.5: |
|
1936 | if abs(diff_) >1.5: | |
1937 | list1.append(i-1) |
|
1937 | list1.append(i-1) | |
1938 | list2.append(diff_) |
|
1938 | list2.append(diff_) | |
1939 | return list(reversed(list1)),list(reversed(list2)) |
|
1939 | return list(reversed(list1)),list(reversed(list2)) | |
1940 |
|
1940 | |||
1941 | def fixData90(self,list_,ang_): |
|
1941 | def fixData90(self,list_,ang_): | |
1942 | if list_[0]==-1: |
|
1942 | if list_[0]==-1: | |
1943 | vec = numpy.where(ang_<ang_[0]) |
|
1943 | vec = numpy.where(ang_<ang_[0]) | |
1944 | ang_[vec] = ang_[vec]+90 |
|
1944 | ang_[vec] = ang_[vec]+90 | |
1945 | return ang_ |
|
1945 | return ang_ | |
1946 | return ang_ |
|
1946 | return ang_ | |
1947 |
|
1947 | |||
1948 | def fixData90HL(self,angulos): |
|
1948 | def fixData90HL(self,angulos): | |
1949 | vec = numpy.where(angulos>=90) |
|
1949 | vec = numpy.where(angulos>=90) | |
1950 | angulos[vec]=angulos[vec]-90 |
|
1950 | angulos[vec]=angulos[vec]-90 | |
1951 | return angulos |
|
1951 | return angulos | |
1952 |
|
1952 | |||
1953 |
|
1953 | |||
1954 | def search_pos(self,pos,list_): |
|
1954 | def search_pos(self,pos,list_): | |
1955 | for i in range(len(list_)): |
|
1955 | for i in range(len(list_)): | |
1956 | if pos == list_[i]: |
|
1956 | if pos == list_[i]: | |
1957 | return True,i |
|
1957 | return True,i | |
1958 | i=None |
|
1958 | i=None | |
1959 | return False,i |
|
1959 | return False,i | |
1960 |
|
1960 | |||
1961 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): |
|
1961 | def fixDataComp(self,ang_,list1_,list2_,tipo_case): | |
1962 | size = len(ang_) |
|
1962 | size = len(ang_) | |
1963 | size2 = 0 |
|
1963 | size2 = 0 | |
1964 | for i in range(len(list2_)): |
|
1964 | for i in range(len(list2_)): | |
1965 | size2=size2+round(abs(list2_[i]))-1 |
|
1965 | size2=size2+round(abs(list2_[i]))-1 | |
1966 | new_size= size+size2 |
|
1966 | new_size= size+size2 | |
1967 | ang_new = numpy.zeros(new_size) |
|
1967 | ang_new = numpy.zeros(new_size) | |
1968 | ang_new2 = numpy.zeros(new_size) |
|
1968 | ang_new2 = numpy.zeros(new_size) | |
1969 |
|
1969 | |||
1970 | tmp = 0 |
|
1970 | tmp = 0 | |
1971 | c = 0 |
|
1971 | c = 0 | |
1972 | for i in range(len(ang_)): |
|
1972 | for i in range(len(ang_)): | |
1973 | ang_new[tmp +c] = ang_[i] |
|
1973 | ang_new[tmp +c] = ang_[i] | |
1974 | ang_new2[tmp+c] = ang_[i] |
|
1974 | ang_new2[tmp+c] = ang_[i] | |
1975 | condition , value = self.search_pos(i,list1_) |
|
1975 | condition , value = self.search_pos(i,list1_) | |
1976 | if condition: |
|
1976 | if condition: | |
1977 | pos = tmp + c + 1 |
|
1977 | pos = tmp + c + 1 | |
1978 | for k in range(round(abs(list2_[value]))-1): |
|
1978 | for k in range(round(abs(list2_[value]))-1): | |
1979 | if tipo_case==0 or tipo_case==3:#subida |
|
1979 | if tipo_case==0 or tipo_case==3:#subida | |
1980 | ang_new[pos+k] = ang_new[pos+k-1]+1 |
|
1980 | ang_new[pos+k] = ang_new[pos+k-1]+1 | |
1981 | ang_new2[pos+k] = numpy.nan |
|
1981 | ang_new2[pos+k] = numpy.nan | |
1982 | elif tipo_case==1 or tipo_case==2:#bajada |
|
1982 | elif tipo_case==1 or tipo_case==2:#bajada | |
1983 | ang_new[pos+k] = ang_new[pos+k-1]-1 |
|
1983 | ang_new[pos+k] = ang_new[pos+k-1]-1 | |
1984 | ang_new2[pos+k] = numpy.nan |
|
1984 | ang_new2[pos+k] = numpy.nan | |
1985 |
|
1985 | |||
1986 | tmp = pos +k |
|
1986 | tmp = pos +k | |
1987 | c = 0 |
|
1987 | c = 0 | |
1988 | c=c+1 |
|
1988 | c=c+1 | |
1989 | return ang_new,ang_new2 |
|
1989 | return ang_new,ang_new2 | |
1990 |
|
1990 | |||
1991 | def globalCheckPED(self,angulos,tipo_case): |
|
1991 | def globalCheckPED(self,angulos,tipo_case): | |
1992 | l1,l2 = self.get2List(angulos) |
|
1992 | l1,l2 = self.get2List(angulos) | |
1993 | ##print("l1",l1) |
|
1993 | ##print("l1",l1) | |
1994 | ##print("l2",l2) |
|
1994 | ##print("l2",l2) | |
1995 | if len(l1)>0: |
|
1995 | if len(l1)>0: | |
1996 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) |
|
1996 | #angulos2 = self.fixData90(list_=l1,ang_=angulos) | |
1997 | #l1,l2 = self.get2List(angulos2) |
|
1997 | #l1,l2 = self.get2List(angulos2) | |
1998 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) |
|
1998 | ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case) | |
1999 | #ang1_ = self.fixData90HL(ang1_) |
|
1999 | #ang1_ = self.fixData90HL(ang1_) | |
2000 | #ang2_ = self.fixData90HL(ang2_) |
|
2000 | #ang2_ = self.fixData90HL(ang2_) | |
2001 | else: |
|
2001 | else: | |
2002 | ang1_= angulos |
|
2002 | ang1_= angulos | |
2003 | ang2_= angulos |
|
2003 | ang2_= angulos | |
2004 | return ang1_,ang2_ |
|
2004 | return ang1_,ang2_ | |
2005 |
|
2005 | |||
2006 |
|
2006 | |||
2007 | def replaceNAN(self,data_weather,data_ele,val): |
|
2007 | def replaceNAN(self,data_weather,data_ele,val): | |
2008 | data= data_ele |
|
2008 | data= data_ele | |
2009 | data_T= data_weather |
|
2009 | data_T= data_weather | |
2010 |
|
2010 | |||
2011 | if data.shape[0]> data_T.shape[0]: |
|
2011 | if data.shape[0]> data_T.shape[0]: | |
2012 | print("IF") |
|
2012 | print("IF") | |
2013 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) |
|
2013 | data_N = numpy.ones( [data.shape[0],data_T.shape[1]]) | |
2014 | c = 0 |
|
2014 | c = 0 | |
2015 | for i in range(len(data)): |
|
2015 | for i in range(len(data)): | |
2016 | if numpy.isnan(data[i]): |
|
2016 | if numpy.isnan(data[i]): | |
2017 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
2017 | data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
2018 | else: |
|
2018 | else: | |
2019 | data_N[i,:]=data_T[c,:] |
|
2019 | data_N[i,:]=data_T[c,:] | |
2020 | c=c+1 |
|
2020 | c=c+1 | |
2021 | return data_N |
|
2021 | return data_N | |
2022 | else: |
|
2022 | else: | |
2023 | print("else") |
|
2023 | print("else") | |
2024 | for i in range(len(data)): |
|
2024 | for i in range(len(data)): | |
2025 | if numpy.isnan(data[i]): |
|
2025 | if numpy.isnan(data[i]): | |
2026 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan |
|
2026 | data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan | |
2027 | return data_T |
|
2027 | return data_T | |
2028 |
|
2028 | |||
2029 | def check_case(self,data_ele,ang_max,ang_min): |
|
2029 | def check_case(self,data_ele,ang_max,ang_min): | |
2030 | start = data_ele[0] |
|
2030 | start = data_ele[0] | |
2031 | end = data_ele[-1] |
|
2031 | end = data_ele[-1] | |
2032 | number = (end-start) |
|
2032 | number = (end-start) | |
2033 | len_ang=len(data_ele) |
|
2033 | len_ang=len(data_ele) | |
2034 | print("start",start) |
|
2034 | print("start",start) | |
2035 | print("end",end) |
|
2035 | print("end",end) | |
2036 | print("number",number) |
|
2036 | print("number",number) | |
2037 |
|
2037 | |||
2038 | print("len_ang",len_ang) |
|
2038 | print("len_ang",len_ang) | |
2039 |
|
2039 | |||
2040 | #exit(1) |
|
2040 | #exit(1) | |
2041 |
|
2041 | |||
2042 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida |
|
2042 | if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida | |
2043 | return 0 |
|
2043 | return 0 | |
2044 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada |
|
2044 | #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada | |
2045 | # return 1 |
|
2045 | # return 1 | |
2046 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada |
|
2046 | elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada | |
2047 | return 1 |
|
2047 | return 1 | |
2048 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX |
|
2048 | elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX | |
2049 | return 2 |
|
2049 | return 2 | |
2050 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN |
|
2050 | elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN | |
2051 | return 3 |
|
2051 | return 3 | |
2052 |
|
2052 | |||
2053 |
|
2053 | |||
2054 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): |
|
2054 | def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag): | |
2055 | ang_max= ang_max |
|
2055 | ang_max= ang_max | |
2056 | ang_min= ang_min |
|
2056 | ang_min= ang_min | |
2057 | data_weather=data_weather |
|
2057 | data_weather=data_weather | |
2058 | val_ch=val_ch |
|
2058 | val_ch=val_ch | |
2059 | ##print("*********************DATA WEATHER**************************************") |
|
2059 | ##print("*********************DATA WEATHER**************************************") | |
2060 | ##print(data_weather) |
|
2060 | ##print(data_weather) | |
2061 | if self.ini==0: |
|
2061 | if self.ini==0: | |
2062 |
|
2062 | |||
2063 | #--------------------- new ------------------------- |
|
2063 | #--------------------- new ------------------------- | |
2064 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) |
|
2064 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case) | |
2065 |
|
2065 | |||
2066 | #-------------------------CAMBIOS RHI--------------------------------- |
|
2066 | #-------------------------CAMBIOS RHI--------------------------------- | |
2067 | start= ang_min |
|
2067 | start= ang_min | |
2068 | end = ang_max |
|
2068 | end = ang_max | |
2069 | n= (ang_max-ang_min)/res |
|
2069 | n= (ang_max-ang_min)/res | |
2070 | #------ new |
|
2070 | #------ new | |
2071 | self.start_data_ele = data_ele_new[0] |
|
2071 | self.start_data_ele = data_ele_new[0] | |
2072 | self.end_data_ele = data_ele_new[-1] |
|
2072 | self.end_data_ele = data_ele_new[-1] | |
2073 | if tipo_case==0 or tipo_case==3: # SUBIDA |
|
2073 | if tipo_case==0 or tipo_case==3: # SUBIDA | |
2074 | n1= round(self.start_data_ele)- start |
|
2074 | n1= round(self.start_data_ele)- start | |
2075 | n2= end - round(self.end_data_ele) |
|
2075 | n2= end - round(self.end_data_ele) | |
2076 | print(self.start_data_ele) |
|
2076 | print(self.start_data_ele) | |
2077 | print(self.end_data_ele) |
|
2077 | print(self.end_data_ele) | |
2078 | if n1>0: |
|
2078 | if n1>0: | |
2079 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
2079 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |
2080 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
2080 | ele1_nan= numpy.ones(n1)*numpy.nan | |
2081 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
2081 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
2082 | print("ele1_nan",ele1_nan.shape) |
|
2082 | print("ele1_nan",ele1_nan.shape) | |
2083 | print("data_ele_old",data_ele_old.shape) |
|
2083 | print("data_ele_old",data_ele_old.shape) | |
2084 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
2084 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |
2085 | if n2>0: |
|
2085 | if n2>0: | |
2086 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
2086 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |
2087 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
2087 | ele2_nan= numpy.ones(n2)*numpy.nan | |
2088 | data_ele = numpy.hstack((data_ele,ele2)) |
|
2088 | data_ele = numpy.hstack((data_ele,ele2)) | |
2089 | print("ele2_nan",ele2_nan.shape) |
|
2089 | print("ele2_nan",ele2_nan.shape) | |
2090 | print("data_ele_old",data_ele_old.shape) |
|
2090 | print("data_ele_old",data_ele_old.shape) | |
2091 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
2091 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
2092 |
|
2092 | |||
2093 | if tipo_case==1 or tipo_case==2: # BAJADA |
|
2093 | if tipo_case==1 or tipo_case==2: # BAJADA | |
2094 | data_ele_new = data_ele_new[::-1] # reversa |
|
2094 | data_ele_new = data_ele_new[::-1] # reversa | |
2095 | data_ele_old = data_ele_old[::-1]# reversa |
|
2095 | data_ele_old = data_ele_old[::-1]# reversa | |
2096 | data_weather = data_weather[::-1,:]# reversa |
|
2096 | data_weather = data_weather[::-1,:]# reversa | |
2097 | vec= numpy.where(data_ele_new<ang_max) |
|
2097 | vec= numpy.where(data_ele_new<ang_max) | |
2098 | data_ele_new = data_ele_new[vec] |
|
2098 | data_ele_new = data_ele_new[vec] | |
2099 | data_ele_old = data_ele_old[vec] |
|
2099 | data_ele_old = data_ele_old[vec] | |
2100 | data_weather = data_weather[vec[0]] |
|
2100 | data_weather = data_weather[vec[0]] | |
2101 | vec2= numpy.where(0<data_ele_new) |
|
2101 | vec2= numpy.where(0<data_ele_new) | |
2102 | data_ele_new = data_ele_new[vec2] |
|
2102 | data_ele_new = data_ele_new[vec2] | |
2103 | data_ele_old = data_ele_old[vec2] |
|
2103 | data_ele_old = data_ele_old[vec2] | |
2104 | data_weather = data_weather[vec2[0]] |
|
2104 | data_weather = data_weather[vec2[0]] | |
2105 | self.start_data_ele = data_ele_new[0] |
|
2105 | self.start_data_ele = data_ele_new[0] | |
2106 | self.end_data_ele = data_ele_new[-1] |
|
2106 | self.end_data_ele = data_ele_new[-1] | |
2107 |
|
2107 | |||
2108 | n1= round(self.start_data_ele)- start |
|
2108 | n1= round(self.start_data_ele)- start | |
2109 | n2= end - round(self.end_data_ele)-1 |
|
2109 | n2= end - round(self.end_data_ele)-1 | |
2110 | print(self.start_data_ele) |
|
2110 | print(self.start_data_ele) | |
2111 | print(self.end_data_ele) |
|
2111 | print(self.end_data_ele) | |
2112 | if n1>0: |
|
2112 | if n1>0: | |
2113 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) |
|
2113 | ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1) | |
2114 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
2114 | ele1_nan= numpy.ones(n1)*numpy.nan | |
2115 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
2115 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
2116 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) |
|
2116 | data_ele_old = numpy.hstack((ele1_nan,data_ele_old)) | |
2117 | if n2>0: |
|
2117 | if n2>0: | |
2118 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) |
|
2118 | ele2= numpy.linspace(self.end_data_ele+1,end,n2) | |
2119 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
2119 | ele2_nan= numpy.ones(n2)*numpy.nan | |
2120 | data_ele = numpy.hstack((data_ele,ele2)) |
|
2120 | data_ele = numpy.hstack((data_ele,ele2)) | |
2121 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
2121 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
2122 | # RADAR |
|
2122 | # RADAR | |
2123 | # NOTA data_ele y data_weather es la variable que retorna |
|
2123 | # NOTA data_ele y data_weather es la variable que retorna | |
2124 | val_mean = numpy.mean(data_weather[:,-1]) |
|
2124 | val_mean = numpy.mean(data_weather[:,-1]) | |
2125 | self.val_mean = val_mean |
|
2125 | self.val_mean = val_mean | |
2126 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
2126 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
2127 | print("eleold",data_ele_old) |
|
2127 | print("eleold",data_ele_old) | |
2128 | print(self.data_ele_tmp[val_ch]) |
|
2128 | print(self.data_ele_tmp[val_ch]) | |
2129 | print(data_ele_old.shape[0]) |
|
2129 | print(data_ele_old.shape[0]) | |
2130 | print(self.data_ele_tmp[val_ch].shape[0]) |
|
2130 | print(self.data_ele_tmp[val_ch].shape[0]) | |
2131 | if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91): |
|
2131 | if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91): | |
2132 | import sys |
|
2132 | import sys | |
2133 | print("EXIT",self.ini) |
|
2133 | print("EXIT",self.ini) | |
2134 |
|
2134 | |||
2135 | sys.exit(1) |
|
2135 | sys.exit(1) | |
2136 | self.data_ele_tmp[val_ch]= data_ele_old |
|
2136 | self.data_ele_tmp[val_ch]= data_ele_old | |
2137 | else: |
|
2137 | else: | |
2138 | #print("**********************************************") |
|
2138 | #print("**********************************************") | |
2139 | #print("****************VARIABLE**********************") |
|
2139 | #print("****************VARIABLE**********************") | |
2140 | #-------------------------CAMBIOS RHI--------------------------------- |
|
2140 | #-------------------------CAMBIOS RHI--------------------------------- | |
2141 | #--------------------------------------------------------------------- |
|
2141 | #--------------------------------------------------------------------- | |
2142 | ##print("INPUT data_ele",data_ele) |
|
2142 | ##print("INPUT data_ele",data_ele) | |
2143 | flag=0 |
|
2143 | flag=0 | |
2144 | start_ele = self.res_ele[0] |
|
2144 | start_ele = self.res_ele[0] | |
2145 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) |
|
2145 | #tipo_case = self.check_case(data_ele,ang_max,ang_min) | |
2146 | tipo_case = case_flag[-1] |
|
2146 | tipo_case = case_flag[-1] | |
2147 | #print("TIPO DE DATA",tipo_case) |
|
2147 | #print("TIPO DE DATA",tipo_case) | |
2148 | #-----------new------------ |
|
2148 | #-----------new------------ | |
2149 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) |
|
2149 | data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case) | |
2150 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
2150 | data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
2151 |
|
2151 | |||
2152 | #-------------------------------NEW RHI ITERATIVO------------------------- |
|
2152 | #-------------------------------NEW RHI ITERATIVO------------------------- | |
2153 |
|
2153 | |||
2154 | if tipo_case==0 : # SUBIDA |
|
2154 | if tipo_case==0 : # SUBIDA | |
2155 | vec = numpy.where(data_ele<ang_max) |
|
2155 | vec = numpy.where(data_ele<ang_max) | |
2156 | data_ele = data_ele[vec] |
|
2156 | data_ele = data_ele[vec] | |
2157 | data_ele_old = data_ele_old[vec] |
|
2157 | data_ele_old = data_ele_old[vec] | |
2158 | data_weather = data_weather[vec[0]] |
|
2158 | data_weather = data_weather[vec[0]] | |
2159 |
|
2159 | |||
2160 | vec2 = numpy.where(0<data_ele) |
|
2160 | vec2 = numpy.where(0<data_ele) | |
2161 | data_ele= data_ele[vec2] |
|
2161 | data_ele= data_ele[vec2] | |
2162 | data_ele_old= data_ele_old[vec2] |
|
2162 | data_ele_old= data_ele_old[vec2] | |
2163 | ##print(data_ele_new) |
|
2163 | ##print(data_ele_new) | |
2164 | data_weather= data_weather[vec2[0]] |
|
2164 | data_weather= data_weather[vec2[0]] | |
2165 |
|
2165 | |||
2166 | new_i_ele = int(round(data_ele[0])) |
|
2166 | new_i_ele = int(round(data_ele[0])) | |
2167 | new_f_ele = int(round(data_ele[-1])) |
|
2167 | new_f_ele = int(round(data_ele[-1])) | |
2168 | #print(new_i_ele) |
|
2168 | #print(new_i_ele) | |
2169 | #print(new_f_ele) |
|
2169 | #print(new_f_ele) | |
2170 | #print(data_ele,len(data_ele)) |
|
2170 | #print(data_ele,len(data_ele)) | |
2171 | #print(data_ele_old,len(data_ele_old)) |
|
2171 | #print(data_ele_old,len(data_ele_old)) | |
2172 | if new_i_ele< 2: |
|
2172 | if new_i_ele< 2: | |
2173 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
2173 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |
2174 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
2174 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |
2175 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old |
|
2175 | self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old | |
2176 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele |
|
2176 | self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele | |
2177 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather |
|
2177 | self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather | |
2178 | data_ele = self.res_ele |
|
2178 | data_ele = self.res_ele | |
2179 | data_weather = self.res_weather[val_ch] |
|
2179 | data_weather = self.res_weather[val_ch] | |
2180 |
|
2180 | |||
2181 | elif tipo_case==1 : #BAJADA |
|
2181 | elif tipo_case==1 : #BAJADA | |
2182 | data_ele = data_ele[::-1] # reversa |
|
2182 | data_ele = data_ele[::-1] # reversa | |
2183 | data_ele_old = data_ele_old[::-1]# reversa |
|
2183 | data_ele_old = data_ele_old[::-1]# reversa | |
2184 | data_weather = data_weather[::-1,:]# reversa |
|
2184 | data_weather = data_weather[::-1,:]# reversa | |
2185 | vec= numpy.where(data_ele<ang_max) |
|
2185 | vec= numpy.where(data_ele<ang_max) | |
2186 | data_ele = data_ele[vec] |
|
2186 | data_ele = data_ele[vec] | |
2187 | data_ele_old = data_ele_old[vec] |
|
2187 | data_ele_old = data_ele_old[vec] | |
2188 | data_weather = data_weather[vec[0]] |
|
2188 | data_weather = data_weather[vec[0]] | |
2189 | vec2= numpy.where(0<data_ele) |
|
2189 | vec2= numpy.where(0<data_ele) | |
2190 | data_ele = data_ele[vec2] |
|
2190 | data_ele = data_ele[vec2] | |
2191 | data_ele_old = data_ele_old[vec2] |
|
2191 | data_ele_old = data_ele_old[vec2] | |
2192 | data_weather = data_weather[vec2[0]] |
|
2192 | data_weather = data_weather[vec2[0]] | |
2193 |
|
2193 | |||
2194 |
|
2194 | |||
2195 | new_i_ele = int(round(data_ele[0])) |
|
2195 | new_i_ele = int(round(data_ele[0])) | |
2196 | new_f_ele = int(round(data_ele[-1])) |
|
2196 | new_f_ele = int(round(data_ele[-1])) | |
2197 | #print(data_ele) |
|
2197 | #print(data_ele) | |
2198 | #print(ang_max) |
|
2198 | #print(ang_max) | |
2199 | #print(data_ele_old) |
|
2199 | #print(data_ele_old) | |
2200 | if new_i_ele <= 1: |
|
2200 | if new_i_ele <= 1: | |
2201 | new_i_ele = 1 |
|
2201 | new_i_ele = 1 | |
2202 | if round(data_ele[-1])>=ang_max-1: |
|
2202 | if round(data_ele[-1])>=ang_max-1: | |
2203 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan |
|
2203 | self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan | |
2204 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) |
|
2204 | self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean) | |
2205 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old |
|
2205 | self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old | |
2206 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele |
|
2206 | self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele | |
2207 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather |
|
2207 | self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather | |
2208 | data_ele = self.res_ele |
|
2208 | data_ele = self.res_ele | |
2209 | data_weather = self.res_weather[val_ch] |
|
2209 | data_weather = self.res_weather[val_ch] | |
2210 |
|
2210 | |||
2211 | elif tipo_case==2: #bajada |
|
2211 | elif tipo_case==2: #bajada | |
2212 | vec = numpy.where(data_ele<ang_max) |
|
2212 | vec = numpy.where(data_ele<ang_max) | |
2213 | data_ele = data_ele[vec] |
|
2213 | data_ele = data_ele[vec] | |
2214 | data_weather= data_weather[vec[0]] |
|
2214 | data_weather= data_weather[vec[0]] | |
2215 |
|
2215 | |||
2216 | len_vec = len(vec) |
|
2216 | len_vec = len(vec) | |
2217 | data_ele_new = data_ele[::-1] # reversa |
|
2217 | data_ele_new = data_ele[::-1] # reversa | |
2218 | data_weather = data_weather[::-1,:] |
|
2218 | data_weather = data_weather[::-1,:] | |
2219 | new_i_ele = int(data_ele_new[0]) |
|
2219 | new_i_ele = int(data_ele_new[0]) | |
2220 | new_f_ele = int(data_ele_new[-1]) |
|
2220 | new_f_ele = int(data_ele_new[-1]) | |
2221 |
|
2221 | |||
2222 | n1= new_i_ele- ang_min |
|
2222 | n1= new_i_ele- ang_min | |
2223 | n2= ang_max - new_f_ele-1 |
|
2223 | n2= ang_max - new_f_ele-1 | |
2224 | if n1>0: |
|
2224 | if n1>0: | |
2225 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
2225 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
2226 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
2226 | ele1_nan= numpy.ones(n1)*numpy.nan | |
2227 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
2227 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
2228 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
2228 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
2229 | if n2>0: |
|
2229 | if n2>0: | |
2230 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
2230 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
2231 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
2231 | ele2_nan= numpy.ones(n2)*numpy.nan | |
2232 | data_ele = numpy.hstack((data_ele,ele2)) |
|
2232 | data_ele = numpy.hstack((data_ele,ele2)) | |
2233 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
2233 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
2234 |
|
2234 | |||
2235 | self.data_ele_tmp[val_ch] = data_ele_old |
|
2235 | self.data_ele_tmp[val_ch] = data_ele_old | |
2236 | self.res_ele = data_ele |
|
2236 | self.res_ele = data_ele | |
2237 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
2237 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
2238 | data_ele = self.res_ele |
|
2238 | data_ele = self.res_ele | |
2239 | data_weather = self.res_weather[val_ch] |
|
2239 | data_weather = self.res_weather[val_ch] | |
2240 |
|
2240 | |||
2241 | elif tipo_case==3:#subida |
|
2241 | elif tipo_case==3:#subida | |
2242 | vec = numpy.where(0<data_ele) |
|
2242 | vec = numpy.where(0<data_ele) | |
2243 | data_ele= data_ele[vec] |
|
2243 | data_ele= data_ele[vec] | |
2244 | data_ele_new = data_ele |
|
2244 | data_ele_new = data_ele | |
2245 | data_ele_old= data_ele_old[vec] |
|
2245 | data_ele_old= data_ele_old[vec] | |
2246 | data_weather= data_weather[vec[0]] |
|
2246 | data_weather= data_weather[vec[0]] | |
2247 | pos_ini = numpy.argmin(data_ele) |
|
2247 | pos_ini = numpy.argmin(data_ele) | |
2248 | if pos_ini>0: |
|
2248 | if pos_ini>0: | |
2249 | len_vec= len(data_ele) |
|
2249 | len_vec= len(data_ele) | |
2250 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) |
|
2250 | vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int) | |
2251 | #print(vec3) |
|
2251 | #print(vec3) | |
2252 | data_ele= data_ele[vec3] |
|
2252 | data_ele= data_ele[vec3] | |
2253 | data_ele_new = data_ele |
|
2253 | data_ele_new = data_ele | |
2254 | data_ele_old= data_ele_old[vec3] |
|
2254 | data_ele_old= data_ele_old[vec3] | |
2255 | data_weather= data_weather[vec3] |
|
2255 | data_weather= data_weather[vec3] | |
2256 |
|
2256 | |||
2257 | new_i_ele = int(data_ele_new[0]) |
|
2257 | new_i_ele = int(data_ele_new[0]) | |
2258 | new_f_ele = int(data_ele_new[-1]) |
|
2258 | new_f_ele = int(data_ele_new[-1]) | |
2259 | n1= new_i_ele- ang_min |
|
2259 | n1= new_i_ele- ang_min | |
2260 | n2= ang_max - new_f_ele-1 |
|
2260 | n2= ang_max - new_f_ele-1 | |
2261 | if n1>0: |
|
2261 | if n1>0: | |
2262 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) |
|
2262 | ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1) | |
2263 | ele1_nan= numpy.ones(n1)*numpy.nan |
|
2263 | ele1_nan= numpy.ones(n1)*numpy.nan | |
2264 | data_ele = numpy.hstack((ele1,data_ele_new)) |
|
2264 | data_ele = numpy.hstack((ele1,data_ele_new)) | |
2265 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) |
|
2265 | data_ele_old = numpy.hstack((ele1_nan,data_ele_new)) | |
2266 | if n2>0: |
|
2266 | if n2>0: | |
2267 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) |
|
2267 | ele2= numpy.linspace(new_f_ele+1,ang_max,n2) | |
2268 | ele2_nan= numpy.ones(n2)*numpy.nan |
|
2268 | ele2_nan= numpy.ones(n2)*numpy.nan | |
2269 | data_ele = numpy.hstack((data_ele,ele2)) |
|
2269 | data_ele = numpy.hstack((data_ele,ele2)) | |
2270 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) |
|
2270 | data_ele_old = numpy.hstack((data_ele_old,ele2_nan)) | |
2271 |
|
2271 | |||
2272 | self.data_ele_tmp[val_ch] = data_ele_old |
|
2272 | self.data_ele_tmp[val_ch] = data_ele_old | |
2273 | self.res_ele = data_ele |
|
2273 | self.res_ele = data_ele | |
2274 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) |
|
2274 | self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean) | |
2275 | data_ele = self.res_ele |
|
2275 | data_ele = self.res_ele | |
2276 | data_weather = self.res_weather[val_ch] |
|
2276 | data_weather = self.res_weather[val_ch] | |
2277 | #print("self.data_ele_tmp",self.data_ele_tmp) |
|
2277 | #print("self.data_ele_tmp",self.data_ele_tmp) | |
2278 | return data_weather,data_ele |
|
2278 | return data_weather,data_ele | |
2279 |
|
2279 | |||
2280 | def const_ploteo_vRF(self,val_ch,data_weather,data_ele,res,ang_max,ang_min): |
|
2280 | def const_ploteo_vRF(self,val_ch,data_weather,data_ele,res,ang_max,ang_min): | |
2281 |
|
2281 | |||
2282 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,1) |
|
2282 | data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,1) | |
2283 |
|
2283 | |||
2284 | data_ele = data_ele_old.copy() |
|
2284 | data_ele = data_ele_old.copy() | |
2285 |
|
2285 | |||
2286 | diff_1 = ang_max - data_ele[0] |
|
2286 | diff_1 = ang_max - data_ele[0] | |
2287 | angles_1_nan = numpy.linspace(ang_max,data_ele[0]+1,int(diff_1)-1)#*numpy.nan |
|
2287 | angles_1_nan = numpy.linspace(ang_max,data_ele[0]+1,int(diff_1)-1)#*numpy.nan | |
2288 |
|
2288 | |||
2289 | diff_2 = data_ele[-1]-ang_min |
|
2289 | diff_2 = data_ele[-1]-ang_min | |
2290 | angles_2_nan = numpy.linspace(data_ele[-1]-1,ang_min,int(diff_2)-1)#*numpy.nan |
|
2290 | angles_2_nan = numpy.linspace(data_ele[-1]-1,ang_min,int(diff_2)-1)#*numpy.nan | |
2291 |
|
2291 | |||
2292 | angles_filled = numpy.concatenate((angles_1_nan,data_ele,angles_2_nan)) |
|
2292 | angles_filled = numpy.concatenate((angles_1_nan,data_ele,angles_2_nan)) | |
2293 |
|
2293 | |||
2294 | print(angles_filled) |
|
2294 | print(angles_filled) | |
2295 |
|
2295 | |||
2296 | data_1_nan = numpy.ones([angles_1_nan.shape[0],len(self.r_mask)])*numpy.nan |
|
2296 | data_1_nan = numpy.ones([angles_1_nan.shape[0],len(self.r_mask)])*numpy.nan | |
2297 | data_2_nan = numpy.ones([angles_2_nan.shape[0],len(self.r_mask)])*numpy.nan |
|
2297 | data_2_nan = numpy.ones([angles_2_nan.shape[0],len(self.r_mask)])*numpy.nan | |
2298 |
|
2298 | |||
2299 | data_filled = numpy.concatenate((data_1_nan,data_weather,data_2_nan),axis=0) |
|
2299 | data_filled = numpy.concatenate((data_1_nan,data_weather,data_2_nan),axis=0) | |
2300 | #val_mean = numpy.mean(data_weather[:,-1]) |
|
2300 | #val_mean = numpy.mean(data_weather[:,-1]) | |
2301 | #self.val_mean = val_mean |
|
2301 | #self.val_mean = val_mean | |
2302 | print(data_filled) |
|
2302 | print(data_filled) | |
2303 | data_filled = self.replaceNAN(data_weather=data_filled,data_ele=angles_filled,val=numpy.nan) |
|
2303 | data_filled = self.replaceNAN(data_weather=data_filled,data_ele=angles_filled,val=numpy.nan) | |
2304 |
|
2304 | |||
2305 | print(data_filled) |
|
2305 | print(data_filled) | |
2306 | print(data_filled.shape) |
|
2306 | print(data_filled.shape) | |
2307 | print(angles_filled.shape) |
|
2307 | print(angles_filled.shape) | |
2308 |
|
2308 | |||
2309 | return data_filled,angles_filled |
|
2309 | return data_filled,angles_filled | |
2310 |
|
2310 | |||
2311 | def plot(self): |
|
2311 | def plot(self): | |
2312 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') |
|
2312 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') | |
2313 | data = self.data[-1] |
|
2313 | data = self.data[-1] | |
2314 | r = self.data.yrange |
|
2314 | r = self.data.yrange | |
2315 | delta_height = r[1]-r[0] |
|
2315 | delta_height = r[1]-r[0] | |
2316 | r_mask = numpy.where(r>=0)[0] |
|
2316 | r_mask = numpy.where(r>=0)[0] | |
2317 | self.r_mask =r_mask |
|
2317 | self.r_mask =r_mask | |
2318 | ##print("delta_height",delta_height) |
|
2318 | ##print("delta_height",delta_height) | |
2319 | #print("r_mask",r_mask,len(r_mask)) |
|
2319 | #print("r_mask",r_mask,len(r_mask)) | |
2320 | r = numpy.arange(len(r_mask))*delta_height |
|
2320 | r = numpy.arange(len(r_mask))*delta_height | |
2321 | self.y = 2*r |
|
2321 | self.y = 2*r | |
2322 | res = 1 |
|
2322 | res = 1 | |
2323 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) |
|
2323 | ###print("data['weather'].shape[0]",data['weather'].shape[0]) | |
2324 | ang_max = self.ang_max |
|
2324 | ang_max = self.ang_max | |
2325 | ang_min = self.ang_min |
|
2325 | ang_min = self.ang_min | |
2326 | var_ang =ang_max - ang_min |
|
2326 | var_ang =ang_max - ang_min | |
2327 | step = (int(var_ang)/(res*data['weather'].shape[0])) |
|
2327 | step = (int(var_ang)/(res*data['weather'].shape[0])) | |
2328 | ###print("step",step) |
|
2328 | ###print("step",step) | |
2329 | #-------------------------------------------------------- |
|
2329 | #-------------------------------------------------------- | |
2330 | ##print('weather',data['weather'].shape) |
|
2330 | ##print('weather',data['weather'].shape) | |
2331 | ##print('ele',data['ele'].shape) |
|
2331 | ##print('ele',data['ele'].shape) | |
2332 |
|
2332 | |||
2333 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) |
|
2333 | ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min) | |
2334 | ###self.res_azi = numpy.mean(data['azi']) |
|
2334 | ###self.res_azi = numpy.mean(data['azi']) | |
2335 | ###print("self.res_ele",self.res_ele) |
|
2335 | ###print("self.res_ele",self.res_ele) | |
2336 |
|
2336 | |||
2337 | plt.clf() |
|
2337 | plt.clf() | |
2338 | subplots = [121, 122] |
|
2338 | subplots = [121, 122] | |
2339 | #if self.ini==0: |
|
2339 | #if self.ini==0: | |
2340 | #self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan |
|
2340 | #self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan | |
2341 | #print("SHAPE",self.data_ele_tmp.shape) |
|
2341 | #print("SHAPE",self.data_ele_tmp.shape) | |
2342 |
|
2342 | |||
2343 | for i,ax in enumerate(self.axes): |
|
2343 | for i,ax in enumerate(self.axes): | |
2344 | res_weather, self.res_ele = self.const_ploteo_vRF(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],res=res,ang_max=ang_max,ang_min=ang_min) |
|
2344 | res_weather, self.res_ele = self.const_ploteo_vRF(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],res=res,ang_max=ang_max,ang_min=ang_min) | |
2345 | self.res_azi = numpy.mean(data['azi']) |
|
2345 | self.res_azi = numpy.mean(data['azi']) | |
2346 |
|
2346 | |||
2347 | if ax.firsttime: |
|
2347 | if ax.firsttime: | |
2348 | #plt.clf() |
|
2348 | #plt.clf() | |
2349 | print("Frist Plot") |
|
2349 | print("Frist Plot") | |
2350 | print(data['weather'][i][:,r_mask].shape) |
|
2350 | print(data['weather'][i][:,r_mask].shape) | |
2351 | print(data['ele'].shape) |
|
2351 | print(data['ele'].shape) | |
2352 | cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
2352 | cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
2353 | #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
2353 | #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
2354 | gh = cgax.get_grid_helper() |
|
2354 | gh = cgax.get_grid_helper() | |
2355 | locs = numpy.linspace(ang_min,ang_max,var_ang+1) |
|
2355 | locs = numpy.linspace(ang_min,ang_max,var_ang+1) | |
2356 | gh.grid_finder.grid_locator1 = FixedLocator(locs) |
|
2356 | gh.grid_finder.grid_locator1 = FixedLocator(locs) | |
2357 | gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs])) |
|
2357 | gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs])) | |
2358 |
|
2358 | |||
2359 |
|
2359 | |||
2360 | #fig=self.figures[0] |
|
2360 | #fig=self.figures[0] | |
2361 | else: |
|
2361 | else: | |
2362 | #plt.clf() |
|
2362 | #plt.clf() | |
2363 | print("ELSE PLOT") |
|
2363 | print("ELSE PLOT") | |
2364 | cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
2364 | cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
2365 | #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80) |
|
2365 | #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80) | |
2366 | gh = cgax.get_grid_helper() |
|
2366 | gh = cgax.get_grid_helper() | |
2367 | locs = numpy.linspace(ang_min,ang_max,var_ang+1) |
|
2367 | locs = numpy.linspace(ang_min,ang_max,var_ang+1) | |
2368 | gh.grid_finder.grid_locator1 = FixedLocator(locs) |
|
2368 | gh.grid_finder.grid_locator1 = FixedLocator(locs) | |
2369 | gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs])) |
|
2369 | gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs])) | |
2370 |
|
2370 | |||
2371 | caax = cgax.parasites[0] |
|
2371 | caax = cgax.parasites[0] | |
2372 | paax = cgax.parasites[1] |
|
2372 | paax = cgax.parasites[1] | |
2373 | cbar = plt.gcf().colorbar(pm, pad=0.075) |
|
2373 | cbar = plt.gcf().colorbar(pm, pad=0.075) | |
2374 | caax.set_xlabel('x_range [km]') |
|
2374 | caax.set_xlabel('x_range [km]') | |
2375 | caax.set_ylabel('y_range [km]') |
|
2375 | caax.set_ylabel('y_range [km]') | |
2376 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') |
|
2376 | plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right') | |
2377 | print("***************************self.ini****************************",self.ini) |
|
2377 | print("***************************self.ini****************************",self.ini) | |
2378 | self.ini= self.ini+1 |
|
2378 | self.ini= self.ini+1 | |
|
2379 | ||||
|
2380 | class WeatherRHI_vRF4_Plot(Plot): | |||
|
2381 | CODE = 'weather' | |||
|
2382 | plot_name = 'weather' | |||
|
2383 | #plot_type = 'rhistyle' | |||
|
2384 | buffering = False | |||
|
2385 | data_ele_tmp = None | |||
|
2386 | ||||
|
2387 | def setup(self): | |||
|
2388 | ||||
|
2389 | self.ncols = 1 | |||
|
2390 | self.nrows = 1 | |||
|
2391 | self.nplots= 1 | |||
|
2392 | self.ylabel= 'Range [Km]' | |||
|
2393 | self.titles= ['Weather'] | |||
|
2394 | self.polar = True | |||
|
2395 | if self.channels is not None: | |||
|
2396 | self.nplots = len(self.channels) | |||
|
2397 | self.nrows = len(self.channels) | |||
|
2398 | else: | |||
|
2399 | self.nplots = self.data.shape(self.CODE)[0] | |||
|
2400 | self.nrows = self.nplots | |||
|
2401 | self.channels = list(range(self.nplots)) | |||
|
2402 | #print("JERE") | |||
|
2403 | #exit(1) | |||
|
2404 | #print("channels",self.channels) | |||
|
2405 | #print("que saldra", self.data.shape(self.CODE)[0]) | |||
|
2406 | #self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] | |||
|
2407 | ||||
|
2408 | #print("self.titles",self.titles) | |||
|
2409 | if self.CODE == 'Power': | |||
|
2410 | self.cb_label = r'Power (dB)' | |||
|
2411 | elif self.CODE == 'Doppler': | |||
|
2412 | self.cb_label = r'Velocity (m/s)' | |||
|
2413 | self.colorbar=True | |||
|
2414 | self.width =8 | |||
|
2415 | self.height =8 | |||
|
2416 | self.ini =0 | |||
|
2417 | self.len_azi =0 | |||
|
2418 | self.buffer_ini = None | |||
|
2419 | self.buffer_ele = None | |||
|
2420 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |||
|
2421 | self.flag =0 | |||
|
2422 | self.indicador= 0 | |||
|
2423 | self.last_data_ele = None | |||
|
2424 | self.val_mean = None | |||
|
2425 | ||||
|
2426 | def update(self, dataOut): | |||
|
2427 | ||||
|
2428 | if self.mode == 'Power': | |||
|
2429 | self.CODE = 'Power' | |||
|
2430 | elif self.mode == 'Doppler': | |||
|
2431 | self.CODE = 'Doppler' | |||
|
2432 | ||||
|
2433 | data = {} | |||
|
2434 | meta = {} | |||
|
2435 | if hasattr(dataOut, 'dataPP_POWER'): | |||
|
2436 | factor = 1 | |||
|
2437 | if hasattr(dataOut, 'nFFTPoints'): | |||
|
2438 | factor = dataOut.normFactor | |||
|
2439 | ||||
|
2440 | if self.CODE == 'Power': | |||
|
2441 | data[self.CODE] = 10*numpy.log10(dataOut.data_360_Power/(factor)) | |||
|
2442 | elif self.CODE == 'Doppler': | |||
|
2443 | data[self.CODE] = dataOut.data_360_Velocity/(factor) | |||
|
2444 | ||||
|
2445 | data['azi'] = dataOut.data_azi | |||
|
2446 | data['ele'] = dataOut.data_ele | |||
|
2447 | ||||
|
2448 | return data, meta | |||
|
2449 | ||||
|
2450 | def plot(self): | |||
|
2451 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S') | |||
|
2452 | data = self.data[-1] | |||
|
2453 | r = self.data.yrange | |||
|
2454 | delta_height = r[1]-r[0] | |||
|
2455 | r_mask = numpy.where(r>=0)[0] | |||
|
2456 | self.r_mask =r_mask | |||
|
2457 | r = numpy.arange(len(r_mask))*delta_height | |||
|
2458 | self.y = 2*r | |||
|
2459 | res = 1 | |||
|
2460 | ang_max = self.ang_max | |||
|
2461 | ang_min = self.ang_min | |||
|
2462 | var_ang =ang_max - ang_min | |||
|
2463 | step = (int(var_ang)/(res*data[self.CODE].shape[0])) | |||
|
2464 | ||||
|
2465 | z = data[self.CODE][self.channels[0]][:,r_mask] | |||
|
2466 | ||||
|
2467 | #print(z[2,:]) | |||
|
2468 | self.titles = [] | |||
|
2469 | ||||
|
2470 | #exit(1) | |||
|
2471 | ||||
|
2472 | if self.CODE == 'Power': | |||
|
2473 | cmap = 'jet' | |||
|
2474 | elif self.CODE == 'Doppler': | |||
|
2475 | cmap = 'RdBu' | |||
|
2476 | ||||
|
2477 | self.ymax = self.ymax if self.ymax else numpy.nanmax(r) | |||
|
2478 | self.ymin = self.ymin if self.ymin else numpy.nanmin(r) | |||
|
2479 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |||
|
2480 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |||
|
2481 | ||||
|
2482 | #plt.clf() | |||
|
2483 | subplots = [121, 122] | |||
|
2484 | ||||
|
2485 | r, theta = numpy.meshgrid(r, numpy.radians(data['ele']) ) | |||
|
2486 | ||||
|
2487 | points_cb = 200 | |||
|
2488 | mylevs_cbar = list(numpy.linspace(self.zmin,self.zmax,points_cb)) #niveles de la barra de colores | |||
|
2489 | ||||
|
2490 | for i,ax in enumerate(self.axes): | |||
|
2491 | ||||
|
2492 | if ax.firsttime: | |||
|
2493 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) | |||
|
2494 | ax.plt = ax.contourf(theta, r, z, points_cb, cmap=cmap, vmin=self.zmin, vmax=self.zmax, levels=mylevs_cbar) | |||
|
2495 | #print(ax.plt) | |||
|
2496 | #exit(1) | |||
|
2497 | ''' | |||
|
2498 | self.figures[-1].colorbar(plt, orientation="vertical", fraction=0.025, pad=0.07) | |||
|
2499 | print(self.figures[0]) | |||
|
2500 | print(self.figures) | |||
|
2501 | print(plt) | |||
|
2502 | print(ax) | |||
|
2503 | exit(1) | |||
|
2504 | ''' | |||
|
2505 | ||||
|
2506 | else: | |||
|
2507 | ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max)) | |||
|
2508 | ax.plt = ax.contourf(theta, r, z, points_cb, cmap=cmap, vmin=self.zmin, vmax=self.zmax, levels=mylevs_cbar) | |||
|
2509 | #self.figures[0].colorbar(plt, orientation="vertical", fraction=0.025, pad=0.07) | |||
|
2510 | ||||
|
2511 | #print(self.titles) | |||
|
2512 | if len(self.channels) !=1: | |||
|
2513 | self.titles = ['{} Azi: {} Channel {}'.format(self.CODE.upper(), str(round(numpy.mean(data['azi']),2)), x) for x in range(self.nrows)] | |||
|
2514 | else: | |||
|
2515 | self.titles = ['{} Azi: {} Channel {}'.format(self.CODE.upper(), str(round(numpy.mean(data['azi']),2)), self.channels[0])] | |||
|
2516 | #self.titles.append('Azi: {}'.format(str(round(numpy.mean(data['azi']),2)))) | |||
|
2517 | #self.titles.append(str(round(numpy.mean(data['azi']),2))) | |||
|
2518 | #print(self.titles) | |||
|
2519 | #plt.text(1.0, 1.05, str(thisDatetime)+ " Azi: "+str(round(numpy.mean(data['azi']),2)), transform=caax.transAxes, va='bottom',ha='right') | |||
|
2520 | #print("***************************self.ini****************************",self.ini) | |||
|
2521 | #self.figures[-1].colorbar(plt, orientation="vertical", fraction=0.025, pad=0.07) | |||
|
2522 | #self.ini= self.ini+1 |
@@ -1,703 +1,714 | |||||
1 | import os |
|
1 | import os | |
2 | import time |
|
2 | import time | |
3 | import datetime |
|
3 | import datetime | |
4 |
|
4 | |||
5 | import numpy |
|
5 | import numpy | |
6 | import h5py |
|
6 | import h5py | |
7 |
|
7 | |||
8 | import schainpy.admin |
|
8 | import schainpy.admin | |
9 | from schainpy.model.data.jrodata import * |
|
9 | from schainpy.model.data.jrodata import * | |
10 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
10 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
11 | from schainpy.model.io.jroIO_base import * |
|
11 | from schainpy.model.io.jroIO_base import * | |
12 | from schainpy.utils import log |
|
12 | from schainpy.utils import log | |
13 |
|
13 | |||
14 |
|
14 | |||
15 | class HDFReader(Reader, ProcessingUnit): |
|
15 | class HDFReader(Reader, ProcessingUnit): | |
16 | """Processing unit to read HDF5 format files |
|
16 | """Processing unit to read HDF5 format files | |
17 |
|
17 | |||
18 | This unit reads HDF5 files created with `HDFWriter` operation contains |
|
18 | This unit reads HDF5 files created with `HDFWriter` operation contains | |
19 | by default two groups Data and Metadata all variables would be saved as `dataOut` |
|
19 | by default two groups Data and Metadata all variables would be saved as `dataOut` | |
20 | attributes. |
|
20 | attributes. | |
21 | It is possible to read any HDF5 file by given the structure in the `description` |
|
21 | It is possible to read any HDF5 file by given the structure in the `description` | |
22 | parameter, also you can add extra values to metadata with the parameter `extras`. |
|
22 | parameter, also you can add extra values to metadata with the parameter `extras`. | |
23 |
|
23 | |||
24 | Parameters: |
|
24 | Parameters: | |
25 | ----------- |
|
25 | ----------- | |
26 | path : str |
|
26 | path : str | |
27 | Path where files are located. |
|
27 | Path where files are located. | |
28 | startDate : date |
|
28 | startDate : date | |
29 | Start date of the files |
|
29 | Start date of the files | |
30 | endDate : list |
|
30 | endDate : list | |
31 | End date of the files |
|
31 | End date of the files | |
32 | startTime : time |
|
32 | startTime : time | |
33 | Start time of the files |
|
33 | Start time of the files | |
34 | endTime : time |
|
34 | endTime : time | |
35 | End time of the files |
|
35 | End time of the files | |
36 | description : dict, optional |
|
36 | description : dict, optional | |
37 | Dictionary with the description of the HDF5 file |
|
37 | Dictionary with the description of the HDF5 file | |
38 | extras : dict, optional |
|
38 | extras : dict, optional | |
39 | Dictionary with extra metadata to be be added to `dataOut` |
|
39 | Dictionary with extra metadata to be be added to `dataOut` | |
40 |
|
40 | |||
41 | Examples |
|
41 | Examples | |
42 | -------- |
|
42 | -------- | |
43 |
|
43 | |||
44 | desc = { |
|
44 | desc = { | |
45 | 'Data': { |
|
45 | 'Data': { | |
46 | 'data_output': ['u', 'v', 'w'], |
|
46 | 'data_output': ['u', 'v', 'w'], | |
47 | 'utctime': 'timestamps', |
|
47 | 'utctime': 'timestamps', | |
48 | } , |
|
48 | } , | |
49 | 'Metadata': { |
|
49 | 'Metadata': { | |
50 | 'heightList': 'heights' |
|
50 | 'heightList': 'heights' | |
51 | } |
|
51 | } | |
52 | } |
|
52 | } | |
53 |
|
53 | |||
54 | desc = { |
|
54 | desc = { | |
55 | 'Data': { |
|
55 | 'Data': { | |
56 | 'data_output': 'winds', |
|
56 | 'data_output': 'winds', | |
57 | 'utctime': 'timestamps' |
|
57 | 'utctime': 'timestamps' | |
58 | }, |
|
58 | }, | |
59 | 'Metadata': { |
|
59 | 'Metadata': { | |
60 | 'heightList': 'heights' |
|
60 | 'heightList': 'heights' | |
61 | } |
|
61 | } | |
62 | } |
|
62 | } | |
63 |
|
63 | |||
64 | extras = { |
|
64 | extras = { | |
65 | 'timeZone': 300 |
|
65 | 'timeZone': 300 | |
66 | } |
|
66 | } | |
67 |
|
67 | |||
68 | reader = project.addReadUnit( |
|
68 | reader = project.addReadUnit( | |
69 | name='HDFReader', |
|
69 | name='HDFReader', | |
70 | path='/path/to/files', |
|
70 | path='/path/to/files', | |
71 | startDate='2019/01/01', |
|
71 | startDate='2019/01/01', | |
72 | endDate='2019/01/31', |
|
72 | endDate='2019/01/31', | |
73 | startTime='00:00:00', |
|
73 | startTime='00:00:00', | |
74 | endTime='23:59:59', |
|
74 | endTime='23:59:59', | |
75 | # description=json.dumps(desc), |
|
75 | # description=json.dumps(desc), | |
76 | # extras=json.dumps(extras), |
|
76 | # extras=json.dumps(extras), | |
77 | ) |
|
77 | ) | |
78 |
|
78 | |||
79 | """ |
|
79 | """ | |
80 |
|
80 | |||
81 | __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'description', 'extras'] |
|
81 | __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'description', 'extras'] | |
82 |
|
82 | |||
83 | def __init__(self): |
|
83 | def __init__(self): | |
84 | ProcessingUnit.__init__(self) |
|
84 | ProcessingUnit.__init__(self) | |
85 | self.dataOut = Parameters() |
|
85 | self.dataOut = Parameters() | |
86 | self.ext = ".hdf5" |
|
86 | self.ext = ".hdf5" | |
87 | self.optchar = "D" |
|
87 | self.optchar = "D" | |
88 | self.meta = {} |
|
88 | self.meta = {} | |
89 | self.data = {} |
|
89 | self.data = {} | |
90 | self.open_file = h5py.File |
|
90 | self.open_file = h5py.File | |
91 | self.open_mode = 'r' |
|
91 | self.open_mode = 'r' | |
92 | self.description = {} |
|
92 | self.description = {} | |
93 | self.extras = {} |
|
93 | self.extras = {} | |
94 | self.filefmt = "*%Y%j***" |
|
94 | self.filefmt = "*%Y%j***" | |
95 | self.folderfmt = "*%Y%j" |
|
95 | self.folderfmt = "*%Y%j" | |
96 | self.utcoffset = 0 |
|
96 | self.utcoffset = 0 | |
97 |
|
97 | |||
98 | def setup(self, **kwargs): |
|
98 | def setup(self, **kwargs): | |
99 |
|
99 | |||
100 | self.set_kwargs(**kwargs) |
|
100 | self.set_kwargs(**kwargs) | |
101 | if not self.ext.startswith('.'): |
|
101 | if not self.ext.startswith('.'): | |
102 | self.ext = '.{}'.format(self.ext) |
|
102 | self.ext = '.{}'.format(self.ext) | |
103 |
|
103 | |||
104 | if self.online: |
|
104 | if self.online: | |
105 | log.log("Searching files in online mode...", self.name) |
|
105 | log.log("Searching files in online mode...", self.name) | |
106 |
|
106 | |||
107 | for nTries in range(self.nTries): |
|
107 | for nTries in range(self.nTries): | |
108 | fullpath = self.searchFilesOnLine(self.path, self.startDate, |
|
108 | fullpath = self.searchFilesOnLine(self.path, self.startDate, | |
109 | self.endDate, self.expLabel, self.ext, self.walk, |
|
109 | self.endDate, self.expLabel, self.ext, self.walk, | |
110 | self.filefmt, self.folderfmt) |
|
110 | self.filefmt, self.folderfmt) | |
111 | try: |
|
111 | try: | |
112 | fullpath = next(fullpath) |
|
112 | fullpath = next(fullpath) | |
113 | except: |
|
113 | except: | |
114 | fullpath = None |
|
114 | fullpath = None | |
115 |
|
115 | |||
116 | if fullpath: |
|
116 | if fullpath: | |
117 | break |
|
117 | break | |
118 |
|
118 | |||
119 | log.warning( |
|
119 | log.warning( | |
120 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( |
|
120 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( | |
121 | self.delay, self.path, nTries + 1), |
|
121 | self.delay, self.path, nTries + 1), | |
122 | self.name) |
|
122 | self.name) | |
123 | time.sleep(self.delay) |
|
123 | time.sleep(self.delay) | |
124 |
|
124 | |||
125 | if not(fullpath): |
|
125 | if not(fullpath): | |
126 | raise schainpy.admin.SchainError( |
|
126 | raise schainpy.admin.SchainError( | |
127 | 'There isn\'t any valid file in {}'.format(self.path)) |
|
127 | 'There isn\'t any valid file in {}'.format(self.path)) | |
128 |
|
128 | |||
129 | pathname, filename = os.path.split(fullpath) |
|
129 | pathname, filename = os.path.split(fullpath) | |
130 | self.year = int(filename[1:5]) |
|
130 | self.year = int(filename[1:5]) | |
131 | self.doy = int(filename[5:8]) |
|
131 | self.doy = int(filename[5:8]) | |
132 | self.set = int(filename[8:11]) - 1 |
|
132 | self.set = int(filename[8:11]) - 1 | |
133 | else: |
|
133 | else: | |
134 | log.log("Searching files in {}".format(self.path), self.name) |
|
134 | log.log("Searching files in {}".format(self.path), self.name) | |
135 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, |
|
135 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, | |
136 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) |
|
136 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) | |
137 |
|
137 | |||
138 | self.setNextFile() |
|
138 | self.setNextFile() | |
139 |
|
139 | |||
140 | return |
|
140 | return | |
141 |
|
141 | |||
142 | def readFirstHeader(self): |
|
142 | def readFirstHeader(self): | |
143 | '''Read metadata and data''' |
|
143 | '''Read metadata and data''' | |
144 |
|
144 | |||
145 | self.__readMetadata() |
|
145 | self.__readMetadata() | |
146 | self.__readData() |
|
146 | self.__readData() | |
147 | self.__setBlockList() |
|
147 | self.__setBlockList() | |
148 |
|
148 | |||
149 | if 'type' in self.meta: |
|
149 | if 'type' in self.meta: | |
150 | self.dataOut = eval(self.meta['type'])() |
|
150 | self.dataOut = eval(self.meta['type'])() | |
151 |
|
151 | |||
152 | for attr in self.meta: |
|
152 | for attr in self.meta: | |
153 | setattr(self.dataOut, attr, self.meta[attr]) |
|
153 | setattr(self.dataOut, attr, self.meta[attr]) | |
154 |
|
154 | |||
155 | self.blockIndex = 0 |
|
155 | self.blockIndex = 0 | |
156 |
|
156 | |||
157 | return |
|
157 | return | |
158 |
|
158 | |||
159 | def __setBlockList(self): |
|
159 | def __setBlockList(self): | |
160 | ''' |
|
160 | ''' | |
161 | Selects the data within the times defined |
|
161 | Selects the data within the times defined | |
162 |
|
162 | |||
163 | self.fp |
|
163 | self.fp | |
164 | self.startTime |
|
164 | self.startTime | |
165 | self.endTime |
|
165 | self.endTime | |
166 | self.blockList |
|
166 | self.blockList | |
167 | self.blocksPerFile |
|
167 | self.blocksPerFile | |
168 |
|
168 | |||
169 | ''' |
|
169 | ''' | |
170 |
|
170 | |||
171 | startTime = self.startTime |
|
171 | startTime = self.startTime | |
172 | endTime = self.endTime |
|
172 | endTime = self.endTime | |
173 | thisUtcTime = self.data['utctime'] + self.utcoffset |
|
173 | thisUtcTime = self.data['utctime'] + self.utcoffset | |
174 | self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1]) |
|
174 | self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1]) | |
175 | thisDatetime = datetime.datetime.utcfromtimestamp(thisUtcTime[0]) |
|
175 | thisDatetime = datetime.datetime.utcfromtimestamp(thisUtcTime[0]) | |
176 |
|
176 | |||
177 | thisDate = thisDatetime.date() |
|
177 | thisDate = thisDatetime.date() | |
178 | thisTime = thisDatetime.time() |
|
178 | thisTime = thisDatetime.time() | |
179 |
|
179 | |||
180 | startUtcTime = (datetime.datetime.combine(thisDate, startTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
180 | startUtcTime = (datetime.datetime.combine(thisDate, startTime) - datetime.datetime(1970, 1, 1)).total_seconds() | |
181 | endUtcTime = (datetime.datetime.combine(thisDate, endTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
181 | endUtcTime = (datetime.datetime.combine(thisDate, endTime) - datetime.datetime(1970, 1, 1)).total_seconds() | |
182 |
|
182 | |||
183 | ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0] |
|
183 | ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0] | |
184 |
|
184 | |||
185 | self.blockList = ind |
|
185 | self.blockList = ind | |
186 | self.blocksPerFile = len(ind) |
|
186 | self.blocksPerFile = len(ind) | |
187 | return |
|
187 | return | |
188 |
|
188 | |||
189 | def __readMetadata(self): |
|
189 | def __readMetadata(self): | |
190 | ''' |
|
190 | ''' | |
191 | Reads Metadata |
|
191 | Reads Metadata | |
192 | ''' |
|
192 | ''' | |
193 |
|
193 | |||
194 | meta = {} |
|
194 | meta = {} | |
195 |
|
195 | |||
196 | if self.description: |
|
196 | if self.description: | |
197 | for key, value in self.description['Metadata'].items(): |
|
197 | for key, value in self.description['Metadata'].items(): | |
198 | meta[key] = self.fp[value][()] |
|
198 | meta[key] = self.fp[value][()] | |
199 | else: |
|
199 | else: | |
200 | grp = self.fp['Metadata'] |
|
200 | grp = self.fp['Metadata'] | |
201 | for name in grp: |
|
201 | for name in grp: | |
202 | meta[name] = grp[name][()] |
|
202 | meta[name] = grp[name][()] | |
203 |
|
203 | |||
204 | if self.extras: |
|
204 | if self.extras: | |
205 | for key, value in self.extras.items(): |
|
205 | for key, value in self.extras.items(): | |
206 | meta[key] = value |
|
206 | meta[key] = value | |
207 | self.meta = meta |
|
207 | self.meta = meta | |
208 |
|
208 | |||
209 | return |
|
209 | return | |
210 |
|
210 | |||
211 | def __readData(self): |
|
211 | def __readData(self): | |
212 |
|
212 | |||
213 | data = {} |
|
213 | data = {} | |
214 |
|
214 | |||
215 | if self.description: |
|
215 | if self.description: | |
216 | for key, value in self.description['Data'].items(): |
|
216 | for key, value in self.description['Data'].items(): | |
217 | if isinstance(value, str): |
|
217 | if isinstance(value, str): | |
218 | if isinstance(self.fp[value], h5py.Dataset): |
|
218 | if isinstance(self.fp[value], h5py.Dataset): | |
219 | data[key] = self.fp[value][()] |
|
219 | data[key] = self.fp[value][()] | |
220 | elif isinstance(self.fp[value], h5py.Group): |
|
220 | elif isinstance(self.fp[value], h5py.Group): | |
221 | array = [] |
|
221 | array = [] | |
222 | for ch in self.fp[value]: |
|
222 | for ch in self.fp[value]: | |
223 | array.append(self.fp[value][ch][()]) |
|
223 | array.append(self.fp[value][ch][()]) | |
224 | data[key] = numpy.array(array) |
|
224 | data[key] = numpy.array(array) | |
225 | elif isinstance(value, list): |
|
225 | elif isinstance(value, list): | |
226 | array = [] |
|
226 | array = [] | |
227 | for ch in value: |
|
227 | for ch in value: | |
228 | array.append(self.fp[ch][()]) |
|
228 | array.append(self.fp[ch][()]) | |
229 | data[key] = numpy.array(array) |
|
229 | data[key] = numpy.array(array) | |
230 | else: |
|
230 | else: | |
231 | grp = self.fp['Data'] |
|
231 | grp = self.fp['Data'] | |
232 | for name in grp: |
|
232 | for name in grp: | |
233 | if isinstance(grp[name], h5py.Dataset): |
|
233 | if isinstance(grp[name], h5py.Dataset): | |
234 | array = grp[name][()] |
|
234 | array = grp[name][()] | |
235 | elif isinstance(grp[name], h5py.Group): |
|
235 | elif isinstance(grp[name], h5py.Group): | |
236 | array = [] |
|
236 | array = [] | |
237 | for ch in grp[name]: |
|
237 | for ch in grp[name]: | |
238 | array.append(grp[name][ch][()]) |
|
238 | array.append(grp[name][ch][()]) | |
239 | array = numpy.array(array) |
|
239 | array = numpy.array(array) | |
240 | else: |
|
240 | else: | |
241 | log.warning('Unknown type: {}'.format(name)) |
|
241 | log.warning('Unknown type: {}'.format(name)) | |
242 |
|
242 | |||
243 | if name in self.description: |
|
243 | if name in self.description: | |
244 | key = self.description[name] |
|
244 | key = self.description[name] | |
245 | else: |
|
245 | else: | |
246 | key = name |
|
246 | key = name | |
247 | data[key] = array |
|
247 | data[key] = array | |
248 |
|
248 | |||
249 | self.data = data |
|
249 | self.data = data | |
250 | return |
|
250 | return | |
251 |
|
251 | |||
252 | def getData(self): |
|
252 | def getData(self): | |
253 |
|
253 | |||
254 | for attr in self.data: |
|
254 | for attr in self.data: | |
255 | if self.data[attr].ndim == 1: |
|
255 | if self.data[attr].ndim == 1: | |
256 | setattr(self.dataOut, attr, self.data[attr][self.blockIndex]) |
|
256 | setattr(self.dataOut, attr, self.data[attr][self.blockIndex]) | |
257 | else: |
|
257 | else: | |
258 | setattr(self.dataOut, attr, self.data[attr][:, self.blockIndex]) |
|
258 | setattr(self.dataOut, attr, self.data[attr][:, self.blockIndex]) | |
259 |
|
259 | |||
260 | self.dataOut.flagNoData = False |
|
260 | self.dataOut.flagNoData = False | |
261 | self.blockIndex += 1 |
|
261 | self.blockIndex += 1 | |
262 |
|
262 | |||
263 | log.log("Block No. {}/{} -> {}".format( |
|
263 | log.log("Block No. {}/{} -> {}".format( | |
264 | self.blockIndex, |
|
264 | self.blockIndex, | |
265 | self.blocksPerFile, |
|
265 | self.blocksPerFile, | |
266 | self.dataOut.datatime.ctime()), self.name) |
|
266 | self.dataOut.datatime.ctime()), self.name) | |
267 |
|
267 | |||
268 | return |
|
268 | return | |
269 |
|
269 | |||
270 | def run(self, **kwargs): |
|
270 | def run(self, **kwargs): | |
271 |
|
271 | |||
272 | if not(self.isConfig): |
|
272 | if not(self.isConfig): | |
273 | self.setup(**kwargs) |
|
273 | self.setup(**kwargs) | |
274 | self.isConfig = True |
|
274 | self.isConfig = True | |
275 |
|
275 | |||
276 | if self.blockIndex == self.blocksPerFile: |
|
276 | if self.blockIndex == self.blocksPerFile: | |
277 | self.setNextFile() |
|
277 | self.setNextFile() | |
278 |
|
278 | |||
279 | self.getData() |
|
279 | self.getData() | |
280 |
|
280 | |||
281 | return |
|
281 | return | |
282 |
|
282 | |||
283 | @MPDecorator |
|
283 | @MPDecorator | |
284 | class HDFWriter(Operation): |
|
284 | class HDFWriter(Operation): | |
285 | """Operation to write HDF5 files. |
|
285 | """Operation to write HDF5 files. | |
286 |
|
286 | |||
287 | The HDF5 file contains by default two groups Data and Metadata where |
|
287 | The HDF5 file contains by default two groups Data and Metadata where | |
288 | you can save any `dataOut` attribute specified by `dataList` and `metadataList` |
|
288 | you can save any `dataOut` attribute specified by `dataList` and `metadataList` | |
289 | parameters, data attributes are normaly time dependent where the metadata |
|
289 | parameters, data attributes are normaly time dependent where the metadata | |
290 | are not. |
|
290 | are not. | |
291 | It is possible to customize the structure of the HDF5 file with the |
|
291 | It is possible to customize the structure of the HDF5 file with the | |
292 | optional description parameter see the examples. |
|
292 | optional description parameter see the examples. | |
293 |
|
293 | |||
294 | Parameters: |
|
294 | Parameters: | |
295 | ----------- |
|
295 | ----------- | |
296 | path : str |
|
296 | path : str | |
297 | Path where files will be saved. |
|
297 | Path where files will be saved. | |
298 | blocksPerFile : int |
|
298 | blocksPerFile : int | |
299 | Number of blocks per file |
|
299 | Number of blocks per file | |
300 | metadataList : list |
|
300 | metadataList : list | |
301 | List of the dataOut attributes that will be saved as metadata |
|
301 | List of the dataOut attributes that will be saved as metadata | |
302 | dataList : int |
|
302 | dataList : int | |
303 | List of the dataOut attributes that will be saved as data |
|
303 | List of the dataOut attributes that will be saved as data | |
304 | setType : bool |
|
304 | setType : bool | |
305 | If True the name of the files corresponds to the timestamp of the data |
|
305 | If True the name of the files corresponds to the timestamp of the data | |
306 | description : dict, optional |
|
306 | description : dict, optional | |
307 | Dictionary with the desired description of the HDF5 file |
|
307 | Dictionary with the desired description of the HDF5 file | |
308 |
|
308 | |||
309 | Examples |
|
309 | Examples | |
310 | -------- |
|
310 | -------- | |
311 |
|
311 | |||
312 | desc = { |
|
312 | desc = { | |
313 | 'data_output': {'winds': ['z', 'w', 'v']}, |
|
313 | 'data_output': {'winds': ['z', 'w', 'v']}, | |
314 | 'utctime': 'timestamps', |
|
314 | 'utctime': 'timestamps', | |
315 | 'heightList': 'heights' |
|
315 | 'heightList': 'heights' | |
316 | } |
|
316 | } | |
317 | desc = { |
|
317 | desc = { | |
318 | 'data_output': ['z', 'w', 'v'], |
|
318 | 'data_output': ['z', 'w', 'v'], | |
319 | 'utctime': 'timestamps', |
|
319 | 'utctime': 'timestamps', | |
320 | 'heightList': 'heights' |
|
320 | 'heightList': 'heights' | |
321 | } |
|
321 | } | |
322 | desc = { |
|
322 | desc = { | |
323 | 'Data': { |
|
323 | 'Data': { | |
324 | 'data_output': 'winds', |
|
324 | 'data_output': 'winds', | |
325 | 'utctime': 'timestamps' |
|
325 | 'utctime': 'timestamps' | |
326 | }, |
|
326 | }, | |
327 | 'Metadata': { |
|
327 | 'Metadata': { | |
328 | 'heightList': 'heights' |
|
328 | 'heightList': 'heights' | |
329 | } |
|
329 | } | |
330 | } |
|
330 | } | |
331 |
|
331 | |||
332 | writer = proc_unit.addOperation(name='HDFWriter') |
|
332 | writer = proc_unit.addOperation(name='HDFWriter') | |
333 | writer.addParameter(name='path', value='/path/to/file') |
|
333 | writer.addParameter(name='path', value='/path/to/file') | |
334 | writer.addParameter(name='blocksPerFile', value='32') |
|
334 | writer.addParameter(name='blocksPerFile', value='32') | |
335 | writer.addParameter(name='metadataList', value='heightList,timeZone') |
|
335 | writer.addParameter(name='metadataList', value='heightList,timeZone') | |
336 | writer.addParameter(name='dataList',value='data_output,utctime') |
|
336 | writer.addParameter(name='dataList',value='data_output,utctime') | |
337 | # writer.addParameter(name='description',value=json.dumps(desc)) |
|
337 | # writer.addParameter(name='description',value=json.dumps(desc)) | |
338 |
|
338 | |||
339 | """ |
|
339 | """ | |
340 |
|
340 | |||
341 | ext = ".hdf5" |
|
341 | ext = ".hdf5" | |
342 | optchar = "D" |
|
342 | optchar = "D" | |
343 | filename = None |
|
343 | filename = None | |
344 | path = None |
|
344 | path = None | |
345 | setFile = None |
|
345 | setFile = None | |
346 | fp = None |
|
346 | fp = None | |
347 | firsttime = True |
|
347 | firsttime = True | |
348 | #Configurations |
|
348 | #Configurations | |
349 | blocksPerFile = None |
|
349 | blocksPerFile = None | |
350 | blockIndex = None |
|
350 | blockIndex = None | |
351 | dataOut = None |
|
351 | dataOut = None | |
352 | #Data Arrays |
|
352 | #Data Arrays | |
353 | dataList = None |
|
353 | dataList = None | |
354 | metadataList = None |
|
354 | metadataList = None | |
355 | currentDay = None |
|
355 | currentDay = None | |
356 | lastTime = None |
|
356 | lastTime = None | |
357 | last_Azipos = None |
|
357 | last_Azipos = None | |
358 | last_Elepos = None |
|
358 | last_Elepos = None | |
359 | mode = None |
|
359 | mode = None | |
360 | #----------------------- |
|
360 | #----------------------- | |
361 | Typename = None |
|
361 | Typename = None | |
362 |
|
362 | |||
363 |
|
363 | |||
364 |
|
364 | |||
365 | def __init__(self): |
|
365 | def __init__(self): | |
366 |
|
366 | |||
367 | Operation.__init__(self) |
|
367 | Operation.__init__(self) | |
368 | return |
|
368 | return | |
369 |
|
369 | |||
370 |
|
370 | |||
371 | def set_kwargs(self, **kwargs): |
|
371 | def set_kwargs(self, **kwargs): | |
372 |
|
372 | |||
373 | for key, value in kwargs.items(): |
|
373 | for key, value in kwargs.items(): | |
374 | setattr(self, key, value) |
|
374 | setattr(self, key, value) | |
375 |
|
375 | |||
376 | def set_kwargs_obj(self,obj, **kwargs): |
|
376 | def set_kwargs_obj(self,obj, **kwargs): | |
377 |
|
377 | |||
378 | for key, value in kwargs.items(): |
|
378 | for key, value in kwargs.items(): | |
379 | setattr(obj, key, value) |
|
379 | setattr(obj, key, value) | |
380 |
|
380 | |||
381 | def generalFlag(self): |
|
381 | def generalFlag(self): | |
382 | ####rint("GENERALFLAG") |
|
382 | ####rint("GENERALFLAG") | |
383 | if self.mode== "weather": |
|
383 | if self.mode== "weather": | |
384 | if self.last_Azipos == None: |
|
384 | if self.last_Azipos == None: | |
385 | tmp = self.dataOut.azimuth |
|
385 | tmp = self.dataOut.azimuth | |
386 | ####print("ang azimuth writer",tmp) |
|
386 | ####print("ang azimuth writer",tmp) | |
387 | self.last_Azipos = tmp |
|
387 | self.last_Azipos = tmp | |
388 | flag = False |
|
388 | flag = False | |
389 | return flag |
|
389 | return flag | |
390 | ####print("ang_azimuth writer",self.dataOut.azimuth) |
|
390 | ####print("ang_azimuth writer",self.dataOut.azimuth) | |
391 | result = self.dataOut.azimuth - self.last_Azipos |
|
391 | result = self.dataOut.azimuth - self.last_Azipos | |
392 | self.last_Azipos = self.dataOut.azimuth |
|
392 | self.last_Azipos = self.dataOut.azimuth | |
393 | if result<0: |
|
393 | if result<0: | |
394 | flag = True |
|
394 | flag = True | |
395 | return flag |
|
395 | return flag | |
396 |
|
396 | |||
|
397 | def generalFlag_vRF(self): | |||
|
398 | ####rint("GENERALFLAG") | |||
|
399 | ||||
|
400 | try: | |||
|
401 | self.dataOut.flagBlock360Done | |||
|
402 | return self.dataOut.flagBlock360Done | |||
|
403 | except: | |||
|
404 | return 0 | |||
|
405 | ||||
|
406 | ||||
397 | def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, description=None,type_data=None,**kwargs): |
|
407 | def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, description=None,type_data=None,**kwargs): | |
398 | self.path = path |
|
408 | self.path = path | |
399 | self.blocksPerFile = blocksPerFile |
|
409 | self.blocksPerFile = blocksPerFile | |
400 | self.metadataList = metadataList |
|
410 | self.metadataList = metadataList | |
401 | self.dataList = [s.strip() for s in dataList] |
|
411 | self.dataList = [s.strip() for s in dataList] | |
|
412 | self.setType = setType | |||
402 | if self.mode == "weather": |
|
413 | if self.mode == "weather": | |
403 | self.setType = "weather" |
|
414 | self.setType = "weather" | |
404 | #---------------------------------------- |
|
415 | #---------------------------------------- | |
405 | self.set_kwargs(**kwargs) |
|
416 | self.set_kwargs(**kwargs) | |
406 | self.set_kwargs_obj(self.dataOut,**kwargs) |
|
417 | self.set_kwargs_obj(self.dataOut,**kwargs) | |
407 | #print("-----------------------------------------------------------",self.Typename) |
|
418 | #print("-----------------------------------------------------------",self.Typename) | |
408 | #print("hola",self.ContactInformation) |
|
419 | #print("hola",self.ContactInformation) | |
409 |
|
420 | |||
410 | self.description = description |
|
421 | self.description = description | |
411 | self.type_data=type_data |
|
422 | self.type_data=type_data | |
412 |
|
423 | |||
413 | if self.metadataList is None: |
|
424 | if self.metadataList is None: | |
414 | self.metadataList = self.dataOut.metadata_list |
|
425 | self.metadataList = self.dataOut.metadata_list | |
415 |
|
426 | |||
416 | tableList = [] |
|
427 | tableList = [] | |
417 | dsList = [] |
|
428 | dsList = [] | |
418 |
|
429 | |||
419 | for i in range(len(self.dataList)): |
|
430 | for i in range(len(self.dataList)): | |
420 | dsDict = {} |
|
431 | dsDict = {} | |
421 | if hasattr(self.dataOut, self.dataList[i]): |
|
432 | if hasattr(self.dataOut, self.dataList[i]): | |
422 | dataAux = getattr(self.dataOut, self.dataList[i]) |
|
433 | dataAux = getattr(self.dataOut, self.dataList[i]) | |
423 | dsDict['variable'] = self.dataList[i] |
|
434 | dsDict['variable'] = self.dataList[i] | |
424 | else: |
|
435 | else: | |
425 | log.warning('Attribute {} not found in dataOut', self.name) |
|
436 | log.warning('Attribute {} not found in dataOut', self.name) | |
426 | continue |
|
437 | continue | |
427 |
|
438 | |||
428 | if dataAux is None: |
|
439 | if dataAux is None: | |
429 | continue |
|
440 | continue | |
430 | elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)): |
|
441 | elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)): | |
431 | dsDict['nDim'] = 0 |
|
442 | dsDict['nDim'] = 0 | |
432 | else: |
|
443 | else: | |
433 | dsDict['nDim'] = len(dataAux.shape) |
|
444 | dsDict['nDim'] = len(dataAux.shape) | |
434 | dsDict['shape'] = dataAux.shape |
|
445 | dsDict['shape'] = dataAux.shape | |
435 | dsDict['dsNumber'] = dataAux.shape[0] |
|
446 | dsDict['dsNumber'] = dataAux.shape[0] | |
436 | dsDict['dtype'] = dataAux.dtype |
|
447 | dsDict['dtype'] = dataAux.dtype | |
437 |
|
448 | |||
438 | dsList.append(dsDict) |
|
449 | dsList.append(dsDict) | |
439 |
|
450 | |||
440 | self.dsList = dsList |
|
451 | self.dsList = dsList | |
441 | self.currentDay = self.dataOut.datatime.date() |
|
452 | self.currentDay = self.dataOut.datatime.date() | |
442 |
|
453 | |||
443 | def timeFlag(self): |
|
454 | def timeFlag(self): | |
444 | currentTime = self.dataOut.utctime |
|
455 | currentTime = self.dataOut.utctime | |
445 | timeTuple = time.localtime(currentTime) |
|
456 | timeTuple = time.localtime(currentTime) | |
446 | dataDay = timeTuple.tm_yday |
|
457 | dataDay = timeTuple.tm_yday | |
447 |
|
458 | |||
448 | if self.lastTime is None: |
|
459 | if self.lastTime is None: | |
449 | self.lastTime = currentTime |
|
460 | self.lastTime = currentTime | |
450 | self.currentDay = dataDay |
|
461 | self.currentDay = dataDay | |
451 | return False |
|
462 | return False | |
452 |
|
463 | |||
453 | timeDiff = currentTime - self.lastTime |
|
464 | timeDiff = currentTime - self.lastTime | |
454 |
|
465 | |||
455 | #Si el dia es diferente o si la diferencia entre un dato y otro supera la hora |
|
466 | #Si el dia es diferente o si la diferencia entre un dato y otro supera la hora | |
456 | if dataDay != self.currentDay: |
|
467 | if dataDay != self.currentDay: | |
457 | self.currentDay = dataDay |
|
468 | self.currentDay = dataDay | |
458 | return True |
|
469 | return True | |
459 | elif timeDiff > 3*60*60: |
|
470 | elif timeDiff > 3*60*60: | |
460 | self.lastTime = currentTime |
|
471 | self.lastTime = currentTime | |
461 | return True |
|
472 | return True | |
462 | else: |
|
473 | else: | |
463 | self.lastTime = currentTime |
|
474 | self.lastTime = currentTime | |
464 | return False |
|
475 | return False | |
465 |
|
476 | |||
466 | def run(self, dataOut, path, blocksPerFile=10, metadataList=None, |
|
477 | def run(self, dataOut, path, blocksPerFile=10, metadataList=None, | |
467 | dataList=[], setType=None, description={},mode= None,type_data=None,**kwargs): |
|
478 | dataList=[], setType=None, description={},mode= None,type_data=None,**kwargs): | |
468 |
|
479 | |||
469 | ###print("VOY A ESCRIBIR----------------------") |
|
480 | ###print("VOY A ESCRIBIR----------------------") | |
470 | #print("CHECKTHIS------------------------------------------------------------------*****---",**kwargs) |
|
481 | #print("CHECKTHIS------------------------------------------------------------------*****---",**kwargs) | |
471 | self.dataOut = dataOut |
|
482 | self.dataOut = dataOut | |
472 | self.mode = mode |
|
483 | self.mode = mode | |
473 | if not(self.isConfig): |
|
484 | if not(self.isConfig): | |
474 | self.setup(path=path, blocksPerFile=blocksPerFile, |
|
485 | self.setup(path=path, blocksPerFile=blocksPerFile, | |
475 | metadataList=metadataList, dataList=dataList, |
|
486 | metadataList=metadataList, dataList=dataList, | |
476 | setType=setType, description=description,type_data=type_data,**kwargs) |
|
487 | setType=setType, description=description,type_data=type_data,**kwargs) | |
477 |
|
488 | |||
478 | self.isConfig = True |
|
489 | self.isConfig = True | |
479 | self.setNextFile() |
|
490 | self.setNextFile() | |
480 |
|
491 | |||
481 | self.putData() |
|
492 | self.putData() | |
482 | return |
|
493 | return | |
483 |
|
494 | |||
484 | def setNextFile(self): |
|
495 | def setNextFile(self): | |
485 | ###print("HELLO WORLD--------------------------------") |
|
496 | ###print("HELLO WORLD--------------------------------") | |
486 | ext = self.ext |
|
497 | ext = self.ext | |
487 | path = self.path |
|
498 | path = self.path | |
488 | setFile = self.setFile |
|
499 | setFile = self.setFile | |
489 | type_data = self.type_data |
|
500 | type_data = self.type_data | |
490 |
|
501 | |||
491 | timeTuple = time.localtime(self.dataOut.utctime) |
|
502 | timeTuple = time.localtime(self.dataOut.utctime) | |
492 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) |
|
503 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) | |
493 | fullpath = os.path.join(path, subfolder) |
|
504 | fullpath = os.path.join(path, subfolder) | |
494 |
|
505 | |||
495 | if os.path.exists(fullpath): |
|
506 | if os.path.exists(fullpath): | |
496 | filesList = os.listdir(fullpath) |
|
507 | filesList = os.listdir(fullpath) | |
497 | filesList = [k for k in filesList if k.startswith(self.optchar)] |
|
508 | filesList = [k for k in filesList if k.startswith(self.optchar)] | |
498 | if len( filesList ) > 0: |
|
509 | if len( filesList ) > 0: | |
499 | filesList = sorted(filesList, key=str.lower) |
|
510 | filesList = sorted(filesList, key=str.lower) | |
500 | filen = filesList[-1] |
|
511 | filen = filesList[-1] | |
501 | # el filename debera tener el siguiente formato |
|
512 | # el filename debera tener el siguiente formato | |
502 | # 0 1234 567 89A BCDE (hex) |
|
513 | # 0 1234 567 89A BCDE (hex) | |
503 | # x YYYY DDD SSS .ext |
|
514 | # x YYYY DDD SSS .ext | |
504 | if isNumber(filen[8:11]): |
|
515 | if isNumber(filen[8:11]): | |
505 | setFile = int(filen[8:11]) #inicializo mi contador de seteo al seteo del ultimo file |
|
516 | setFile = int(filen[8:11]) #inicializo mi contador de seteo al seteo del ultimo file | |
506 | else: |
|
517 | else: | |
507 | setFile = -1 |
|
518 | setFile = -1 | |
508 | else: |
|
519 | else: | |
509 | setFile = -1 #inicializo mi contador de seteo |
|
520 | setFile = -1 #inicializo mi contador de seteo | |
510 | else: |
|
521 | else: | |
511 | os.makedirs(fullpath) |
|
522 | os.makedirs(fullpath) | |
512 | setFile = -1 #inicializo mi contador de seteo |
|
523 | setFile = -1 #inicializo mi contador de seteo | |
513 |
|
524 | |||
514 | ###print("**************************",self.setType) |
|
525 | ###print("**************************",self.setType) | |
515 | if self.setType is None: |
|
526 | if self.setType is None: | |
516 | setFile += 1 |
|
527 | setFile += 1 | |
517 | file = '%s%4.4d%3.3d%03d%s' % (self.optchar, |
|
528 | file = '%s%4.4d%3.3d%03d%s' % (self.optchar, | |
518 | timeTuple.tm_year, |
|
529 | timeTuple.tm_year, | |
519 | timeTuple.tm_yday, |
|
530 | timeTuple.tm_yday, | |
520 | setFile, |
|
531 | setFile, | |
521 | ext ) |
|
532 | ext ) | |
522 | elif self.setType == "weather": |
|
533 | elif self.setType == "weather": | |
523 | print("HOLA AMIGOS") |
|
534 | print("HOLA AMIGOS") | |
524 | wr_exp = self.dataOut.wr_exp |
|
535 | wr_exp = self.dataOut.wr_exp | |
525 | if wr_exp== "PPI": |
|
536 | if wr_exp== "PPI": | |
526 | wr_type = 'E' |
|
537 | wr_type = 'E' | |
527 | ang_ = numpy.mean(self.dataOut.elevation) |
|
538 | ang_ = numpy.mean(self.dataOut.elevation) | |
528 | else: |
|
539 | else: | |
529 | wr_type = 'A' |
|
540 | wr_type = 'A' | |
530 | ang_ = numpy.mean(self.dataOut.azimuth) |
|
541 | ang_ = numpy.mean(self.dataOut.azimuth) | |
531 |
|
542 | |||
532 | wr_writer = '%s%s%2.1f%s'%('-', |
|
543 | wr_writer = '%s%s%2.1f%s'%('-', | |
533 | wr_type, |
|
544 | wr_type, | |
534 | ang_, |
|
545 | ang_, | |
535 | '-') |
|
546 | '-') | |
536 | ###print("wr_writer********************",wr_writer) |
|
547 | ###print("wr_writer********************",wr_writer) | |
537 | file = '%s%4.4d%2.2d%2.2d%s%2.2d%2.2d%2.2d%s%s%s' % (self.optchar, |
|
548 | file = '%s%4.4d%2.2d%2.2d%s%2.2d%2.2d%2.2d%s%s%s' % (self.optchar, | |
538 | timeTuple.tm_year, |
|
549 | timeTuple.tm_year, | |
539 | timeTuple.tm_mon, |
|
550 | timeTuple.tm_mon, | |
540 | timeTuple.tm_mday, |
|
551 | timeTuple.tm_mday, | |
541 | '-', |
|
552 | '-', | |
542 | timeTuple.tm_hour, |
|
553 | timeTuple.tm_hour, | |
543 | timeTuple.tm_min, |
|
554 | timeTuple.tm_min, | |
544 | timeTuple.tm_sec, |
|
555 | timeTuple.tm_sec, | |
545 | wr_writer, |
|
556 | wr_writer, | |
546 | type_data, |
|
557 | type_data, | |
547 | ext ) |
|
558 | ext ) | |
548 | ###print("FILENAME", file) |
|
559 | ###print("FILENAME", file) | |
549 |
|
560 | |||
550 |
|
561 | |||
551 | else: |
|
562 | else: | |
552 | setFile = timeTuple.tm_hour*60+timeTuple.tm_min |
|
563 | setFile = timeTuple.tm_hour*60+timeTuple.tm_min | |
553 | file = '%s%4.4d%3.3d%04d%s' % (self.optchar, |
|
564 | file = '%s%4.4d%3.3d%04d%s' % (self.optchar, | |
554 | timeTuple.tm_year, |
|
565 | timeTuple.tm_year, | |
555 | timeTuple.tm_yday, |
|
566 | timeTuple.tm_yday, | |
556 | setFile, |
|
567 | setFile, | |
557 | ext ) |
|
568 | ext ) | |
558 |
|
569 | |||
559 | self.filename = os.path.join( path, subfolder, file ) |
|
570 | self.filename = os.path.join( path, subfolder, file ) | |
560 |
|
571 | |||
561 | #Setting HDF5 File |
|
572 | #Setting HDF5 File | |
562 |
|
573 | |||
563 | self.fp = h5py.File(self.filename, 'w') |
|
574 | self.fp = h5py.File(self.filename, 'w') | |
564 | #write metadata |
|
575 | #write metadata | |
565 | self.writeMetadata(self.fp) |
|
576 | self.writeMetadata(self.fp) | |
566 | #Write data |
|
577 | #Write data | |
567 | self.writeData(self.fp) |
|
578 | self.writeData(self.fp) | |
568 |
|
579 | |||
569 | def getLabel(self, name, x=None): |
|
580 | def getLabel(self, name, x=None): | |
570 |
|
581 | |||
571 | if x is None: |
|
582 | if x is None: | |
572 | if 'Data' in self.description: |
|
583 | if 'Data' in self.description: | |
573 | data = self.description['Data'] |
|
584 | data = self.description['Data'] | |
574 | if 'Metadata' in self.description: |
|
585 | if 'Metadata' in self.description: | |
575 | data.update(self.description['Metadata']) |
|
586 | data.update(self.description['Metadata']) | |
576 | else: |
|
587 | else: | |
577 | data = self.description |
|
588 | data = self.description | |
578 | if name in data: |
|
589 | if name in data: | |
579 | if isinstance(data[name], str): |
|
590 | if isinstance(data[name], str): | |
580 | return data[name] |
|
591 | return data[name] | |
581 | elif isinstance(data[name], list): |
|
592 | elif isinstance(data[name], list): | |
582 | return None |
|
593 | return None | |
583 | elif isinstance(data[name], dict): |
|
594 | elif isinstance(data[name], dict): | |
584 | for key, value in data[name].items(): |
|
595 | for key, value in data[name].items(): | |
585 | return key |
|
596 | return key | |
586 | return name |
|
597 | return name | |
587 | else: |
|
598 | else: | |
588 | if 'Metadata' in self.description: |
|
599 | if 'Metadata' in self.description: | |
589 | meta = self.description['Metadata'] |
|
600 | meta = self.description['Metadata'] | |
590 | else: |
|
601 | else: | |
591 | meta = self.description |
|
602 | meta = self.description | |
592 | if name in meta: |
|
603 | if name in meta: | |
593 | if isinstance(meta[name], list): |
|
604 | if isinstance(meta[name], list): | |
594 | return meta[name][x] |
|
605 | return meta[name][x] | |
595 | elif isinstance(meta[name], dict): |
|
606 | elif isinstance(meta[name], dict): | |
596 | for key, value in meta[name].items(): |
|
607 | for key, value in meta[name].items(): | |
597 | return value[x] |
|
608 | return value[x] | |
598 | if 'cspc' in name: |
|
609 | if 'cspc' in name: | |
599 | return 'pair{:02d}'.format(x) |
|
610 | return 'pair{:02d}'.format(x) | |
600 | else: |
|
611 | else: | |
601 | return 'channel{:02d}'.format(x) |
|
612 | return 'channel{:02d}'.format(x) | |
602 |
|
613 | |||
603 | def writeMetadata(self, fp): |
|
614 | def writeMetadata(self, fp): | |
604 |
|
615 | |||
605 | if self.description: |
|
616 | if self.description: | |
606 | if 'Metadata' in self.description: |
|
617 | if 'Metadata' in self.description: | |
607 | grp = fp.create_group('Metadata') |
|
618 | grp = fp.create_group('Metadata') | |
608 | else: |
|
619 | else: | |
609 | grp = fp |
|
620 | grp = fp | |
610 | else: |
|
621 | else: | |
611 | grp = fp.create_group('Metadata') |
|
622 | grp = fp.create_group('Metadata') | |
612 |
|
623 | |||
613 | for i in range(len(self.metadataList)): |
|
624 | for i in range(len(self.metadataList)): | |
614 | if not hasattr(self.dataOut, self.metadataList[i]): |
|
625 | if not hasattr(self.dataOut, self.metadataList[i]): | |
615 | log.warning('Metadata: `{}` not found'.format(self.metadataList[i]), self.name) |
|
626 | log.warning('Metadata: `{}` not found'.format(self.metadataList[i]), self.name) | |
616 | continue |
|
627 | continue | |
617 | value = getattr(self.dataOut, self.metadataList[i]) |
|
628 | value = getattr(self.dataOut, self.metadataList[i]) | |
618 | if isinstance(value, bool): |
|
629 | if isinstance(value, bool): | |
619 | if value is True: |
|
630 | if value is True: | |
620 | value = 1 |
|
631 | value = 1 | |
621 | else: |
|
632 | else: | |
622 | value = 0 |
|
633 | value = 0 | |
623 | grp.create_dataset(self.getLabel(self.metadataList[i]), data=value) |
|
634 | grp.create_dataset(self.getLabel(self.metadataList[i]), data=value) | |
624 | return |
|
635 | return | |
625 |
|
636 | |||
626 | def writeData(self, fp): |
|
637 | def writeData(self, fp): | |
627 |
|
638 | print("writing data") | ||
628 | if self.description: |
|
639 | if self.description: | |
629 | if 'Data' in self.description: |
|
640 | if 'Data' in self.description: | |
630 | grp = fp.create_group('Data') |
|
641 | grp = fp.create_group('Data') | |
631 | else: |
|
642 | else: | |
632 | grp = fp |
|
643 | grp = fp | |
633 | else: |
|
644 | else: | |
634 | grp = fp.create_group('Data') |
|
645 | grp = fp.create_group('Data') | |
635 |
|
646 | |||
636 | dtsets = [] |
|
647 | dtsets = [] | |
637 | data = [] |
|
648 | data = [] | |
638 |
|
649 | |||
639 | for dsInfo in self.dsList: |
|
650 | for dsInfo in self.dsList: | |
640 | if dsInfo['nDim'] == 0: |
|
651 | if dsInfo['nDim'] == 0: | |
641 | ds = grp.create_dataset( |
|
652 | ds = grp.create_dataset( | |
642 | self.getLabel(dsInfo['variable']), |
|
653 | self.getLabel(dsInfo['variable']), | |
643 | (self.blocksPerFile, ), |
|
654 | (self.blocksPerFile, ), | |
644 | chunks=True, |
|
655 | chunks=True, | |
645 | dtype=numpy.float64) |
|
656 | dtype=numpy.float64) | |
646 | dtsets.append(ds) |
|
657 | dtsets.append(ds) | |
647 | data.append((dsInfo['variable'], -1)) |
|
658 | data.append((dsInfo['variable'], -1)) | |
648 | else: |
|
659 | else: | |
649 | label = self.getLabel(dsInfo['variable']) |
|
660 | label = self.getLabel(dsInfo['variable']) | |
650 | if label is not None: |
|
661 | if label is not None: | |
651 | sgrp = grp.create_group(label) |
|
662 | sgrp = grp.create_group(label) | |
652 | else: |
|
663 | else: | |
653 | sgrp = grp |
|
664 | sgrp = grp | |
654 | for i in range(dsInfo['dsNumber']): |
|
665 | for i in range(dsInfo['dsNumber']): | |
655 | ds = sgrp.create_dataset( |
|
666 | ds = sgrp.create_dataset( | |
656 | self.getLabel(dsInfo['variable'], i), |
|
667 | self.getLabel(dsInfo['variable'], i), | |
657 | (self.blocksPerFile, ) + dsInfo['shape'][1:], |
|
668 | (self.blocksPerFile, ) + dsInfo['shape'][1:], | |
658 | chunks=True, |
|
669 | chunks=True, | |
659 | dtype=dsInfo['dtype']) |
|
670 | dtype=dsInfo['dtype']) | |
660 | dtsets.append(ds) |
|
671 | dtsets.append(ds) | |
661 | data.append((dsInfo['variable'], i)) |
|
672 | data.append((dsInfo['variable'], i)) | |
662 | fp.flush() |
|
673 | fp.flush() | |
663 |
|
674 | |||
664 | log.log('Creating file: {}'.format(fp.filename), self.name) |
|
675 | log.log('Creating file: {}'.format(fp.filename), self.name) | |
665 |
|
676 | |||
666 | self.ds = dtsets |
|
677 | self.ds = dtsets | |
667 | self.data = data |
|
678 | self.data = data | |
668 | self.firsttime = True |
|
679 | self.firsttime = True | |
669 | self.blockIndex = 0 |
|
680 | self.blockIndex = 0 | |
670 | return |
|
681 | return | |
671 |
|
682 | |||
672 | def putData(self): |
|
683 | def putData(self): | |
673 | ###print("**************************PUT DATA***************************************************") |
|
684 | ###print("**************************PUT DATA***************************************************") | |
674 |
if (self.blockIndex == self.blocksPerFile) or self.timeFlag() |
|
685 | if (self.blockIndex == self.blocksPerFile) or self.timeFlag():# or self.generalFlag_vRF(): | |
675 | self.closeFile() |
|
686 | self.closeFile() | |
676 | self.setNextFile() |
|
687 | self.setNextFile() | |
677 |
|
688 | |||
678 | for i, ds in enumerate(self.ds): |
|
689 | for i, ds in enumerate(self.ds): | |
679 | attr, ch = self.data[i] |
|
690 | attr, ch = self.data[i] | |
680 | if ch == -1: |
|
691 | if ch == -1: | |
681 | ds[self.blockIndex] = getattr(self.dataOut, attr) |
|
692 | ds[self.blockIndex] = getattr(self.dataOut, attr) | |
682 | else: |
|
693 | else: | |
683 | ds[self.blockIndex] = getattr(self.dataOut, attr)[ch] |
|
694 | ds[self.blockIndex] = getattr(self.dataOut, attr)[ch] | |
684 |
|
695 | |||
685 | self.fp.flush() |
|
696 | self.fp.flush() | |
686 | self.blockIndex += 1 |
|
697 | self.blockIndex += 1 | |
687 | log.log('Block No. {}/{}'.format(self.blockIndex, self.blocksPerFile), self.name) |
|
698 | log.log('Block No. {}/{}'.format(self.blockIndex, self.blocksPerFile), self.name) | |
688 |
|
699 | |||
689 | return |
|
700 | return | |
690 |
|
701 | |||
691 | def closeFile(self): |
|
702 | def closeFile(self): | |
692 |
|
703 | |||
693 | if self.blockIndex != self.blocksPerFile: |
|
704 | if self.blockIndex != self.blocksPerFile: | |
694 | for ds in self.ds: |
|
705 | for ds in self.ds: | |
695 | ds.resize(self.blockIndex, axis=0) |
|
706 | ds.resize(self.blockIndex, axis=0) | |
696 |
|
707 | |||
697 | if self.fp: |
|
708 | if self.fp: | |
698 | self.fp.flush() |
|
709 | self.fp.flush() | |
699 | self.fp.close() |
|
710 | self.fp.close() | |
700 |
|
711 | |||
701 | def close(self): |
|
712 | def close(self): | |
702 |
|
713 | |||
703 | self.closeFile() |
|
714 | self.closeFile() |
@@ -1,206 +1,208 | |||||
1 | ''' |
|
1 | ''' | |
2 | Base clases to create Processing units and operations, the MPDecorator |
|
2 | Base clases to create Processing units and operations, the MPDecorator | |
3 | must be used in plotting and writing operations to allow to run as an |
|
3 | must be used in plotting and writing operations to allow to run as an | |
4 | external process. |
|
4 | external process. | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
|
7 | import os | |||
7 | import inspect |
|
8 | import inspect | |
8 | import zmq |
|
9 | import zmq | |
9 | import time |
|
10 | import time | |
10 | import pickle |
|
11 | import pickle | |
11 | import traceback |
|
12 | import traceback | |
12 | from threading import Thread |
|
13 | from threading import Thread | |
13 | from multiprocessing import Process, Queue |
|
14 | from multiprocessing import Process, Queue | |
14 | from schainpy.utils import log |
|
15 | from schainpy.utils import log | |
15 |
|
16 | |||
|
17 | QUEUE_SIZE = int(os.environ.get('QUEUE_MAX_SIZE', '10')) | |||
16 |
|
18 | |||
17 | class ProcessingUnit(object): |
|
19 | class ProcessingUnit(object): | |
18 | ''' |
|
20 | ''' | |
19 | Base class to create Signal Chain Units |
|
21 | Base class to create Signal Chain Units | |
20 | ''' |
|
22 | ''' | |
21 |
|
23 | |||
22 | proc_type = 'processing' |
|
24 | proc_type = 'processing' | |
23 |
|
25 | |||
24 | def __init__(self): |
|
26 | def __init__(self): | |
25 |
|
27 | |||
26 | self.dataIn = None |
|
28 | self.dataIn = None | |
27 | self.dataOut = None |
|
29 | self.dataOut = None | |
28 | self.isConfig = False |
|
30 | self.isConfig = False | |
29 | self.operations = [] |
|
31 | self.operations = [] | |
30 |
|
32 | |||
31 | def setInput(self, unit): |
|
33 | def setInput(self, unit): | |
32 |
|
34 | |||
33 | self.dataIn = unit.dataOut |
|
35 | self.dataIn = unit.dataOut | |
34 |
|
36 | |||
35 | def getAllowedArgs(self): |
|
37 | def getAllowedArgs(self): | |
36 | if hasattr(self, '__attrs__'): |
|
38 | if hasattr(self, '__attrs__'): | |
37 | return self.__attrs__ |
|
39 | return self.__attrs__ | |
38 | else: |
|
40 | else: | |
39 | return inspect.getargspec(self.run).args |
|
41 | return inspect.getargspec(self.run).args | |
40 |
|
42 | |||
41 | def addOperation(self, conf, operation): |
|
43 | def addOperation(self, conf, operation): | |
42 | ''' |
|
44 | ''' | |
43 | ''' |
|
45 | ''' | |
44 |
|
46 | |||
45 | self.operations.append((operation, conf.type, conf.getKwargs())) |
|
47 | self.operations.append((operation, conf.type, conf.getKwargs())) | |
46 |
|
48 | |||
47 | def getOperationObj(self, objId): |
|
49 | def getOperationObj(self, objId): | |
48 |
|
50 | |||
49 | if objId not in list(self.operations.keys()): |
|
51 | if objId not in list(self.operations.keys()): | |
50 | return None |
|
52 | return None | |
51 |
|
53 | |||
52 | return self.operations[objId] |
|
54 | return self.operations[objId] | |
53 |
|
55 | |||
54 | def call(self, **kwargs): |
|
56 | def call(self, **kwargs): | |
55 | ''' |
|
57 | ''' | |
56 | ''' |
|
58 | ''' | |
57 |
|
59 | |||
58 | try: |
|
60 | try: | |
59 | if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error: |
|
61 | if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error: | |
60 | return self.dataIn.isReady() |
|
62 | return self.dataIn.isReady() | |
61 | elif self.dataIn is None or not self.dataIn.error: |
|
63 | elif self.dataIn is None or not self.dataIn.error: | |
62 | self.run(**kwargs) |
|
64 | self.run(**kwargs) | |
63 | elif self.dataIn.error: |
|
65 | elif self.dataIn.error: | |
64 | self.dataOut.error = self.dataIn.error |
|
66 | self.dataOut.error = self.dataIn.error | |
65 | self.dataOut.flagNoData = True |
|
67 | self.dataOut.flagNoData = True | |
66 | except: |
|
68 | except: | |
67 | err = traceback.format_exc() |
|
69 | err = traceback.format_exc() | |
68 | if 'SchainWarning' in err: |
|
70 | if 'SchainWarning' in err: | |
69 | log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), self.name) |
|
71 | log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), self.name) | |
70 | elif 'SchainError' in err: |
|
72 | elif 'SchainError' in err: | |
71 | log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), self.name) |
|
73 | log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), self.name) | |
72 | else: |
|
74 | else: | |
73 | log.error(err, self.name) |
|
75 | log.error(err, self.name) | |
74 | self.dataOut.error = True |
|
76 | self.dataOut.error = True | |
75 | ##### correcion de la declaracion Out |
|
77 | ##### correcion de la declaracion Out | |
76 | for op, optype, opkwargs in self.operations: |
|
78 | for op, optype, opkwargs in self.operations: | |
77 | aux = self.dataOut.copy() |
|
79 | aux = self.dataOut.copy() | |
78 | if optype == 'other' and not self.dataOut.flagNoData: |
|
80 | if optype == 'other' and not self.dataOut.flagNoData: | |
79 | self.dataOut = op.run(self.dataOut, **opkwargs) |
|
81 | self.dataOut = op.run(self.dataOut, **opkwargs) | |
80 | elif optype == 'external' and not self.dataOut.flagNoData: |
|
82 | elif optype == 'external' and not self.dataOut.flagNoData: | |
81 | #op.queue.put(self.dataOut) |
|
83 | #op.queue.put(self.dataOut) | |
82 | op.queue.put(aux) |
|
84 | op.queue.put(aux) | |
83 | elif optype == 'external' and self.dataOut.error: |
|
85 | elif optype == 'external' and self.dataOut.error: | |
84 | #op.queue.put(self.dataOut) |
|
86 | #op.queue.put(self.dataOut) | |
85 | op.queue.put(aux) |
|
87 | op.queue.put(aux) | |
86 |
|
88 | |||
87 | return 'Error' if self.dataOut.error else self.dataOut.isReady() |
|
89 | return 'Error' if self.dataOut.error else self.dataOut.isReady() | |
88 |
|
90 | |||
89 | def setup(self): |
|
91 | def setup(self): | |
90 |
|
92 | |||
91 | raise NotImplementedError |
|
93 | raise NotImplementedError | |
92 |
|
94 | |||
93 | def run(self): |
|
95 | def run(self): | |
94 |
|
96 | |||
95 | raise NotImplementedError |
|
97 | raise NotImplementedError | |
96 |
|
98 | |||
97 | def close(self): |
|
99 | def close(self): | |
98 |
|
100 | |||
99 | return |
|
101 | return | |
100 |
|
102 | |||
101 |
|
103 | |||
102 | class Operation(object): |
|
104 | class Operation(object): | |
103 |
|
105 | |||
104 | ''' |
|
106 | ''' | |
105 | ''' |
|
107 | ''' | |
106 |
|
108 | |||
107 | proc_type = 'operation' |
|
109 | proc_type = 'operation' | |
108 |
|
110 | |||
109 | def __init__(self): |
|
111 | def __init__(self): | |
110 |
|
112 | |||
111 | self.id = None |
|
113 | self.id = None | |
112 | self.isConfig = False |
|
114 | self.isConfig = False | |
113 |
|
115 | |||
114 | if not hasattr(self, 'name'): |
|
116 | if not hasattr(self, 'name'): | |
115 | self.name = self.__class__.__name__ |
|
117 | self.name = self.__class__.__name__ | |
116 |
|
118 | |||
117 | def getAllowedArgs(self): |
|
119 | def getAllowedArgs(self): | |
118 | if hasattr(self, '__attrs__'): |
|
120 | if hasattr(self, '__attrs__'): | |
119 | return self.__attrs__ |
|
121 | return self.__attrs__ | |
120 | else: |
|
122 | else: | |
121 | return inspect.getargspec(self.run).args |
|
123 | return inspect.getargspec(self.run).args | |
122 |
|
124 | |||
123 | def setup(self): |
|
125 | def setup(self): | |
124 |
|
126 | |||
125 | self.isConfig = True |
|
127 | self.isConfig = True | |
126 |
|
128 | |||
127 | raise NotImplementedError |
|
129 | raise NotImplementedError | |
128 |
|
130 | |||
129 | def run(self, dataIn, **kwargs): |
|
131 | def run(self, dataIn, **kwargs): | |
130 | """ |
|
132 | """ | |
131 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los |
|
133 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los | |
132 | atributos del objeto dataIn. |
|
134 | atributos del objeto dataIn. | |
133 |
|
135 | |||
134 | Input: |
|
136 | Input: | |
135 |
|
137 | |||
136 | dataIn : objeto del tipo JROData |
|
138 | dataIn : objeto del tipo JROData | |
137 |
|
139 | |||
138 | Return: |
|
140 | Return: | |
139 |
|
141 | |||
140 | None |
|
142 | None | |
141 |
|
143 | |||
142 | Affected: |
|
144 | Affected: | |
143 | __buffer : buffer de recepcion de datos. |
|
145 | __buffer : buffer de recepcion de datos. | |
144 |
|
146 | |||
145 | """ |
|
147 | """ | |
146 | if not self.isConfig: |
|
148 | if not self.isConfig: | |
147 | self.setup(**kwargs) |
|
149 | self.setup(**kwargs) | |
148 |
|
150 | |||
149 | raise NotImplementedError |
|
151 | raise NotImplementedError | |
150 |
|
152 | |||
151 | def close(self): |
|
153 | def close(self): | |
152 |
|
154 | |||
153 | return |
|
155 | return | |
154 |
|
156 | |||
155 |
|
157 | |||
156 | def MPDecorator(BaseClass): |
|
158 | def MPDecorator(BaseClass): | |
157 | """ |
|
159 | """ | |
158 | Multiprocessing class decorator |
|
160 | Multiprocessing class decorator | |
159 |
|
161 | |||
160 | This function add multiprocessing features to a BaseClass. |
|
162 | This function add multiprocessing features to a BaseClass. | |
161 | """ |
|
163 | """ | |
162 |
|
164 | |||
163 | class MPClass(BaseClass, Process): |
|
165 | class MPClass(BaseClass, Process): | |
164 |
|
166 | |||
165 | def __init__(self, *args, **kwargs): |
|
167 | def __init__(self, *args, **kwargs): | |
166 | super(MPClass, self).__init__() |
|
168 | super(MPClass, self).__init__() | |
167 | Process.__init__(self) |
|
169 | Process.__init__(self) | |
168 |
|
170 | |||
169 | self.args = args |
|
171 | self.args = args | |
170 | self.kwargs = kwargs |
|
172 | self.kwargs = kwargs | |
171 | self.t = time.time() |
|
173 | self.t = time.time() | |
172 | self.op_type = 'external' |
|
174 | self.op_type = 'external' | |
173 | self.name = BaseClass.__name__ |
|
175 | self.name = BaseClass.__name__ | |
174 | self.__doc__ = BaseClass.__doc__ |
|
176 | self.__doc__ = BaseClass.__doc__ | |
175 |
|
177 | |||
176 | if 'plot' in self.name.lower() and not self.name.endswith('_'): |
|
178 | if 'plot' in self.name.lower() and not self.name.endswith('_'): | |
177 | self.name = '{}{}'.format(self.CODE.upper(), 'Plot') |
|
179 | self.name = '{}{}'.format(self.CODE.upper(), 'Plot') | |
178 |
|
180 | |||
179 | self.start_time = time.time() |
|
181 | self.start_time = time.time() | |
180 | self.err_queue = args[3] |
|
182 | self.err_queue = args[3] | |
181 |
self.queue = Queue(maxsize= |
|
183 | self.queue = Queue(maxsize=QUEUE_SIZE) | |
182 | self.myrun = BaseClass.run |
|
184 | self.myrun = BaseClass.run | |
183 |
|
185 | |||
184 | def run(self): |
|
186 | def run(self): | |
185 |
|
187 | |||
186 | while True: |
|
188 | while True: | |
187 |
|
189 | |||
188 | dataOut = self.queue.get() |
|
190 | dataOut = self.queue.get() | |
189 |
|
191 | |||
190 | if not dataOut.error: |
|
192 | if not dataOut.error: | |
191 | try: |
|
193 | try: | |
192 | BaseClass.run(self, dataOut, **self.kwargs) |
|
194 | BaseClass.run(self, dataOut, **self.kwargs) | |
193 | except: |
|
195 | except: | |
194 | err = traceback.format_exc() |
|
196 | err = traceback.format_exc() | |
195 | log.error(err, self.name) |
|
197 | log.error(err, self.name) | |
196 | else: |
|
198 | else: | |
197 | break |
|
199 | break | |
198 |
|
200 | |||
199 | self.close() |
|
201 | self.close() | |
200 |
|
202 | |||
201 | def close(self): |
|
203 | def close(self): | |
202 |
|
204 | |||
203 | BaseClass.close(self) |
|
205 | BaseClass.close(self) | |
204 | log.success('Done...(Time:{:4.2f} secs)'.format(time.time()-self.start_time), self.name) |
|
206 | log.success('Done...(Time:{:4.2f} secs)'.format(time.time()-self.start_time), self.name) | |
205 |
|
207 | |||
206 | return MPClass |
|
208 | return MPClass |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
General Comments 0
You need to be logged in to leave comments.
Login now