##// END OF EJS Templates
New RHI Plot and Block 360 stores more parameters
rflores -
r1442:f9eef645eb53
parent child
Show More

The requested changes are too big and content was truncated. Show full diff

@@ -1,707 +1,714
1 # Copyright (c) 2012-2020 Jicamarca Radio Observatory
1 # Copyright (c) 2012-2020 Jicamarca Radio Observatory
2 # All rights reserved.
2 # All rights reserved.
3 #
3 #
4 # Distributed under the terms of the BSD 3-clause license.
4 # Distributed under the terms of the BSD 3-clause license.
5 """Base class to create plot operations
5 """Base class to create plot operations
6
6
7 """
7 """
8
8
9 import os
9 import os
10 import sys
10 import sys
11 import zmq
11 import zmq
12 import time
12 import time
13 import numpy
13 import numpy
14 import datetime
14 import datetime
15 from collections import deque
15 from collections import deque
16 from functools import wraps
16 from functools import wraps
17 from threading import Thread
17 from threading import Thread
18 import matplotlib
18 import matplotlib
19
19
20 if 'BACKEND' in os.environ:
20 if 'BACKEND' in os.environ:
21 matplotlib.use(os.environ['BACKEND'])
21 matplotlib.use(os.environ['BACKEND'])
22 elif 'linux' in sys.platform:
22 elif 'linux' in sys.platform:
23 matplotlib.use("TkAgg")
23 matplotlib.use("TkAgg")
24 elif 'darwin' in sys.platform:
24 elif 'darwin' in sys.platform:
25 matplotlib.use('MacOSX')
25 matplotlib.use('MacOSX')
26 else:
26 else:
27 from schainpy.utils import log
27 from schainpy.utils import log
28 log.warning('Using default Backend="Agg"', 'INFO')
28 log.warning('Using default Backend="Agg"', 'INFO')
29 matplotlib.use('Agg')
29 matplotlib.use('Agg')
30
30
31 import matplotlib.pyplot as plt
31 import matplotlib.pyplot as plt
32 from matplotlib.patches import Polygon
32 from matplotlib.patches import Polygon
33 from mpl_toolkits.axes_grid1 import make_axes_locatable
33 from mpl_toolkits.axes_grid1 import make_axes_locatable
34 from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator
34 from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator
35
35
36 from schainpy.model.data.jrodata import PlotterData
36 from schainpy.model.data.jrodata import PlotterData
37 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
37 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
38 from schainpy.utils import log
38 from schainpy.utils import log
39
39
40 jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90]
40 jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90]
41 blu_values = matplotlib.pyplot.get_cmap(
41 blu_values = matplotlib.pyplot.get_cmap(
42 'seismic_r', 20)(numpy.arange(20))[10:15]
42 'seismic_r', 20)(numpy.arange(20))[10:15]
43 ncmap = matplotlib.colors.LinearSegmentedColormap.from_list(
43 ncmap = matplotlib.colors.LinearSegmentedColormap.from_list(
44 'jro', numpy.vstack((blu_values, jet_values)))
44 'jro', numpy.vstack((blu_values, jet_values)))
45 matplotlib.pyplot.register_cmap(cmap=ncmap)
45 matplotlib.pyplot.register_cmap(cmap=ncmap)
46
46
47 CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis',
47 CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis',
48 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')]
48 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')]
49
49
50 EARTH_RADIUS = 6.3710e3
50 EARTH_RADIUS = 6.3710e3
51
51
52 def ll2xy(lat1, lon1, lat2, lon2):
52 def ll2xy(lat1, lon1, lat2, lon2):
53
53
54 p = 0.017453292519943295
54 p = 0.017453292519943295
55 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
55 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
56 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
56 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
57 r = 12742 * numpy.arcsin(numpy.sqrt(a))
57 r = 12742 * numpy.arcsin(numpy.sqrt(a))
58 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
58 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
59 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
59 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
60 theta = -theta + numpy.pi/2
60 theta = -theta + numpy.pi/2
61 return r*numpy.cos(theta), r*numpy.sin(theta)
61 return r*numpy.cos(theta), r*numpy.sin(theta)
62
62
63
63
64 def km2deg(km):
64 def km2deg(km):
65 '''
65 '''
66 Convert distance in km to degrees
66 Convert distance in km to degrees
67 '''
67 '''
68
68
69 return numpy.rad2deg(km/EARTH_RADIUS)
69 return numpy.rad2deg(km/EARTH_RADIUS)
70
70
71
71
72 def figpause(interval):
72 def figpause(interval):
73 backend = plt.rcParams['backend']
73 backend = plt.rcParams['backend']
74 if backend in matplotlib.rcsetup.interactive_bk:
74 if backend in matplotlib.rcsetup.interactive_bk:
75 figManager = matplotlib._pylab_helpers.Gcf.get_active()
75 figManager = matplotlib._pylab_helpers.Gcf.get_active()
76 if figManager is not None:
76 if figManager is not None:
77 canvas = figManager.canvas
77 canvas = figManager.canvas
78 if canvas.figure.stale:
78 if canvas.figure.stale:
79 canvas.draw()
79 canvas.draw()
80 try:
80 try:
81 canvas.start_event_loop(interval)
81 canvas.start_event_loop(interval)
82 except:
82 except:
83 pass
83 pass
84 return
84 return
85
85
86 def popup(message):
86 def popup(message):
87 '''
87 '''
88 '''
88 '''
89
89
90 fig = plt.figure(figsize=(12, 8), facecolor='r')
90 fig = plt.figure(figsize=(12, 8), facecolor='r')
91 text = '\n'.join([s.strip() for s in message.split(':')])
91 text = '\n'.join([s.strip() for s in message.split(':')])
92 fig.text(0.01, 0.5, text, ha='left', va='center',
92 fig.text(0.01, 0.5, text, ha='left', va='center',
93 size='20', weight='heavy', color='w')
93 size='20', weight='heavy', color='w')
94 fig.show()
94 fig.show()
95 figpause(1000)
95 figpause(1000)
96
96
97
97
98 class Throttle(object):
98 class Throttle(object):
99 '''
99 '''
100 Decorator that prevents a function from being called more than once every
100 Decorator that prevents a function from being called more than once every
101 time period.
101 time period.
102 To create a function that cannot be called more than once a minute, but
102 To create a function that cannot be called more than once a minute, but
103 will sleep until it can be called:
103 will sleep until it can be called:
104 @Throttle(minutes=1)
104 @Throttle(minutes=1)
105 def foo():
105 def foo():
106 pass
106 pass
107
107
108 for i in range(10):
108 for i in range(10):
109 foo()
109 foo()
110 print "This function has run %s times." % i
110 print "This function has run %s times." % i
111 '''
111 '''
112
112
113 def __init__(self, seconds=0, minutes=0, hours=0):
113 def __init__(self, seconds=0, minutes=0, hours=0):
114 self.throttle_period = datetime.timedelta(
114 self.throttle_period = datetime.timedelta(
115 seconds=seconds, minutes=minutes, hours=hours
115 seconds=seconds, minutes=minutes, hours=hours
116 )
116 )
117
117
118 self.time_of_last_call = datetime.datetime.min
118 self.time_of_last_call = datetime.datetime.min
119
119
120 def __call__(self, fn):
120 def __call__(self, fn):
121 @wraps(fn)
121 @wraps(fn)
122 def wrapper(*args, **kwargs):
122 def wrapper(*args, **kwargs):
123 coerce = kwargs.pop('coerce', None)
123 coerce = kwargs.pop('coerce', None)
124 if coerce:
124 if coerce:
125 self.time_of_last_call = datetime.datetime.now()
125 self.time_of_last_call = datetime.datetime.now()
126 return fn(*args, **kwargs)
126 return fn(*args, **kwargs)
127 else:
127 else:
128 now = datetime.datetime.now()
128 now = datetime.datetime.now()
129 time_since_last_call = now - self.time_of_last_call
129 time_since_last_call = now - self.time_of_last_call
130 time_left = self.throttle_period - time_since_last_call
130 time_left = self.throttle_period - time_since_last_call
131
131
132 if time_left > datetime.timedelta(seconds=0):
132 if time_left > datetime.timedelta(seconds=0):
133 return
133 return
134
134
135 self.time_of_last_call = datetime.datetime.now()
135 self.time_of_last_call = datetime.datetime.now()
136 return fn(*args, **kwargs)
136 return fn(*args, **kwargs)
137
137
138 return wrapper
138 return wrapper
139
139
140 def apply_throttle(value):
140 def apply_throttle(value):
141
141
142 @Throttle(seconds=value)
142 @Throttle(seconds=value)
143 def fnThrottled(fn):
143 def fnThrottled(fn):
144 fn()
144 fn()
145
145
146 return fnThrottled
146 return fnThrottled
147
147
148
148
149 @MPDecorator
149 @MPDecorator
150 class Plot(Operation):
150 class Plot(Operation):
151 """Base class for Schain plotting operations
151 """Base class for Schain plotting operations
152
152
153 This class should never be use directtly you must subclass a new operation,
153 This class should never be use directtly you must subclass a new operation,
154 children classes must be defined as follow:
154 children classes must be defined as follow:
155
155
156 ExamplePlot(Plot):
156 ExamplePlot(Plot):
157
157
158 CODE = 'code'
158 CODE = 'code'
159 colormap = 'jet'
159 colormap = 'jet'
160 plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer')
160 plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer')
161
161
162 def setup(self):
162 def setup(self):
163 pass
163 pass
164
164
165 def plot(self):
165 def plot(self):
166 pass
166 pass
167
167
168 """
168 """
169
169
170 CODE = 'Figure'
170 CODE = 'Figure'
171 colormap = 'jet'
171 colormap = 'jet'
172 bgcolor = 'white'
172 bgcolor = 'white'
173 buffering = True
173 buffering = True
174 __missing = 1E30
174 __missing = 1E30
175
175
176 __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title',
176 __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title',
177 'showprofile']
177 'showprofile']
178
178
179 def __init__(self):
179 def __init__(self):
180
180
181 Operation.__init__(self)
181 Operation.__init__(self)
182 self.isConfig = False
182 self.isConfig = False
183 self.isPlotConfig = False
183 self.isPlotConfig = False
184 self.save_time = 0
184 self.save_time = 0
185 self.sender_time = 0
185 self.sender_time = 0
186 self.data = None
186 self.data = None
187 self.firsttime = True
187 self.firsttime = True
188 self.sender_queue = deque(maxlen=10)
188 self.sender_queue = deque(maxlen=10)
189 self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2}
189 self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2}
190
190
191 def __fmtTime(self, x, pos):
191 def __fmtTime(self, x, pos):
192 '''
192 '''
193 '''
193 '''
194
194
195 return '{}'.format(self.getDateTime(x).strftime('%H:%M'))
195 return '{}'.format(self.getDateTime(x).strftime('%H:%M'))
196
196
197 def __setup(self, **kwargs):
197 def __setup(self, **kwargs):
198 '''
198 '''
199 Initialize variables
199 Initialize variables
200 '''
200 '''
201
201
202 self.figures = []
202 self.figures = []
203 self.axes = []
203 self.axes = []
204 self.cb_axes = []
204 self.cb_axes = []
205 self.localtime = kwargs.pop('localtime', True)
205 self.localtime = kwargs.pop('localtime', True)
206 self.show = kwargs.get('show', True)
206 self.show = kwargs.get('show', True)
207 self.save = kwargs.get('save', False)
207 self.save = kwargs.get('save', False)
208 self.save_period = kwargs.get('save_period', 0)
208 self.save_period = kwargs.get('save_period', 0)
209 self.colormap = kwargs.get('colormap', self.colormap)
209 self.colormap = kwargs.get('colormap', self.colormap)
210 self.colormap_coh = kwargs.get('colormap_coh', 'jet')
210 self.colormap_coh = kwargs.get('colormap_coh', 'jet')
211 self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r')
211 self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r')
212 self.colormaps = kwargs.get('colormaps', None)
212 self.colormaps = kwargs.get('colormaps', None)
213 self.bgcolor = kwargs.get('bgcolor', self.bgcolor)
213 self.bgcolor = kwargs.get('bgcolor', self.bgcolor)
214 self.showprofile = kwargs.get('showprofile', False)
214 self.showprofile = kwargs.get('showprofile', False)
215 self.title = kwargs.get('wintitle', self.CODE.upper())
215 self.title = kwargs.get('wintitle', self.CODE.upper())
216 self.cb_label = kwargs.get('cb_label', None)
216 self.cb_label = kwargs.get('cb_label', None)
217 self.cb_labels = kwargs.get('cb_labels', None)
217 self.cb_labels = kwargs.get('cb_labels', None)
218 self.labels = kwargs.get('labels', None)
218 self.labels = kwargs.get('labels', None)
219 self.xaxis = kwargs.get('xaxis', 'frequency')
219 self.xaxis = kwargs.get('xaxis', 'frequency')
220 self.zmin = kwargs.get('zmin', None)
220 self.zmin = kwargs.get('zmin', None)
221 self.zmax = kwargs.get('zmax', None)
221 self.zmax = kwargs.get('zmax', None)
222 self.zlimits = kwargs.get('zlimits', None)
222 self.zlimits = kwargs.get('zlimits', None)
223 self.xmin = kwargs.get('xmin', None)
223 self.xmin = kwargs.get('xmin', None)
224 self.xmax = kwargs.get('xmax', None)
224 self.xmax = kwargs.get('xmax', None)
225 self.xrange = kwargs.get('xrange', 12)
225 self.xrange = kwargs.get('xrange', 12)
226 self.xscale = kwargs.get('xscale', None)
226 self.xscale = kwargs.get('xscale', None)
227 self.ymin = kwargs.get('ymin', None)
227 self.ymin = kwargs.get('ymin', None)
228 self.ymax = kwargs.get('ymax', None)
228 self.ymax = kwargs.get('ymax', None)
229 self.yscale = kwargs.get('yscale', None)
229 self.yscale = kwargs.get('yscale', None)
230 self.xlabel = kwargs.get('xlabel', None)
230 self.xlabel = kwargs.get('xlabel', None)
231 self.attr_time = kwargs.get('attr_time', 'utctime')
231 self.attr_time = kwargs.get('attr_time', 'utctime')
232 self.attr_data = kwargs.get('attr_data', 'data_param')
232 self.attr_data = kwargs.get('attr_data', 'data_param')
233 self.decimation = kwargs.get('decimation', None)
233 self.decimation = kwargs.get('decimation', None)
234 self.oneFigure = kwargs.get('oneFigure', True)
234 self.oneFigure = kwargs.get('oneFigure', True)
235 self.width = kwargs.get('width', None)
235 self.width = kwargs.get('width', None)
236 self.height = kwargs.get('height', None)
236 self.height = kwargs.get('height', None)
237 self.colorbar = kwargs.get('colorbar', True)
237 self.colorbar = kwargs.get('colorbar', True)
238 self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1])
238 self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1])
239 self.channels = kwargs.get('channels', None)
239 self.channels = kwargs.get('channels', None)
240 self.titles = kwargs.get('titles', [])
240 self.titles = kwargs.get('titles', [])
241 self.polar = False
241 self.polar = False
242 self.type = kwargs.get('type', 'iq')
242 self.type = kwargs.get('type', 'iq')
243 self.grid = kwargs.get('grid', False)
243 self.grid = kwargs.get('grid', False)
244 self.pause = kwargs.get('pause', False)
244 self.pause = kwargs.get('pause', False)
245 self.save_code = kwargs.get('save_code', self.CODE)
245 self.save_code = kwargs.get('save_code', self.CODE)
246 self.throttle = kwargs.get('throttle', 0)
246 self.throttle = kwargs.get('throttle', 0)
247 self.exp_code = kwargs.get('exp_code', None)
247 self.exp_code = kwargs.get('exp_code', None)
248 self.server = kwargs.get('server', False)
248 self.server = kwargs.get('server', False)
249 self.sender_period = kwargs.get('sender_period', 60)
249 self.sender_period = kwargs.get('sender_period', 60)
250 self.tag = kwargs.get('tag', '')
250 self.tag = kwargs.get('tag', '')
251 self.height_index = kwargs.get('height_index', None)
251 self.height_index = kwargs.get('height_index', None)
252 self.__throttle_plot = apply_throttle(self.throttle)
252 self.__throttle_plot = apply_throttle(self.throttle)
253 code = self.attr_data if self.attr_data else self.CODE
253 code = self.attr_data if self.attr_data else self.CODE
254 self.data = PlotterData(self.CODE, self.exp_code, self.localtime)
254 self.data = PlotterData(self.CODE, self.exp_code, self.localtime)
255 self.ang_min = kwargs.get('ang_min', None)
255 self.ang_min = kwargs.get('ang_min', None)
256 self.ang_max = kwargs.get('ang_max', None)
256 self.ang_max = kwargs.get('ang_max', None)
257 self.mode = kwargs.get('mode', None)
257
258
258
259
259 if self.server:
260 if self.server:
260 if not self.server.startswith('tcp://'):
261 if not self.server.startswith('tcp://'):
261 self.server = 'tcp://{}'.format(self.server)
262 self.server = 'tcp://{}'.format(self.server)
262 log.success(
263 log.success(
263 'Sending to server: {}'.format(self.server),
264 'Sending to server: {}'.format(self.server),
264 self.name
265 self.name
265 )
266 )
266
267
267 if isinstance(self.attr_data, str):
268 if isinstance(self.attr_data, str):
268 self.attr_data = [self.attr_data]
269 self.attr_data = [self.attr_data]
269
270
270 def __setup_plot(self):
271 def __setup_plot(self):
271 '''
272 '''
272 Common setup for all figures, here figures and axes are created
273 Common setup for all figures, here figures and axes are created
273 '''
274 '''
274
275
275 self.setup()
276 self.setup()
276
277
277 self.time_label = 'LT' if self.localtime else 'UTC'
278 self.time_label = 'LT' if self.localtime else 'UTC'
278
279
279 if self.width is None:
280 if self.width is None:
280 self.width = 8
281 self.width = 8
281
282
282 self.figures = []
283 self.figures = []
283 self.axes = []
284 self.axes = []
284 self.cb_axes = []
285 self.cb_axes = []
285 self.pf_axes = []
286 self.pf_axes = []
286 self.cmaps = []
287 self.cmaps = []
287
288
288 size = '15%' if self.ncols == 1 else '30%'
289 size = '15%' if self.ncols == 1 else '30%'
289 pad = '4%' if self.ncols == 1 else '8%'
290 pad = '4%' if self.ncols == 1 else '8%'
290
291
291 if self.oneFigure:
292 if self.oneFigure:
292 if self.height is None:
293 if self.height is None:
293 self.height = 1.4 * self.nrows + 1
294 self.height = 1.4 * self.nrows + 1
294 fig = plt.figure(figsize=(self.width, self.height),
295 fig = plt.figure(figsize=(self.width, self.height),
295 edgecolor='k',
296 edgecolor='k',
296 facecolor='w')
297 facecolor='w')
297 self.figures.append(fig)
298 self.figures.append(fig)
298 for n in range(self.nplots):
299 for n in range(self.nplots):
299 ax = fig.add_subplot(self.nrows, self.ncols,
300 ax = fig.add_subplot(self.nrows, self.ncols,
300 n + 1, polar=self.polar)
301 n + 1, polar=self.polar)
301 ax.tick_params(labelsize=8)
302 ax.tick_params(labelsize=8)
302 ax.firsttime = True
303 ax.firsttime = True
303 ax.index = 0
304 ax.index = 0
304 ax.press = None
305 ax.press = None
305 self.axes.append(ax)
306 self.axes.append(ax)
306 if self.showprofile:
307 if self.showprofile:
307 cax = self.__add_axes(ax, size=size, pad=pad)
308 cax = self.__add_axes(ax, size=size, pad=pad)
308 cax.tick_params(labelsize=8)
309 cax.tick_params(labelsize=8)
309 self.pf_axes.append(cax)
310 self.pf_axes.append(cax)
310 else:
311 else:
311 if self.height is None:
312 if self.height is None:
312 self.height = 3
313 self.height = 3
313 for n in range(self.nplots):
314 for n in range(self.nplots):
314 fig = plt.figure(figsize=(self.width, self.height),
315 fig = plt.figure(figsize=(self.width, self.height),
315 edgecolor='k',
316 edgecolor='k',
316 facecolor='w')
317 facecolor='w')
317 ax = fig.add_subplot(1, 1, 1, polar=self.polar)
318 ax = fig.add_subplot(1, 1, 1, polar=self.polar)
318 ax.tick_params(labelsize=8)
319 ax.tick_params(labelsize=8)
319 ax.firsttime = True
320 ax.firsttime = True
320 ax.index = 0
321 ax.index = 0
321 ax.press = None
322 ax.press = None
322 self.figures.append(fig)
323 self.figures.append(fig)
323 self.axes.append(ax)
324 self.axes.append(ax)
324 if self.showprofile:
325 if self.showprofile:
325 cax = self.__add_axes(ax, size=size, pad=pad)
326 cax = self.__add_axes(ax, size=size, pad=pad)
326 cax.tick_params(labelsize=8)
327 cax.tick_params(labelsize=8)
327 self.pf_axes.append(cax)
328 self.pf_axes.append(cax)
328
329
329 for n in range(self.nrows):
330 for n in range(self.nrows):
330 if self.colormaps is not None:
331 if self.colormaps is not None:
331 cmap = plt.get_cmap(self.colormaps[n])
332 cmap = plt.get_cmap(self.colormaps[n])
332 else:
333 else:
333 cmap = plt.get_cmap(self.colormap)
334 cmap = plt.get_cmap(self.colormap)
334 cmap.set_bad(self.bgcolor, 1.)
335 cmap.set_bad(self.bgcolor, 1.)
335 self.cmaps.append(cmap)
336 self.cmaps.append(cmap)
336
337
337 def __add_axes(self, ax, size='30%', pad='8%'):
338 def __add_axes(self, ax, size='30%', pad='8%'):
338 '''
339 '''
339 Add new axes to the given figure
340 Add new axes to the given figure
340 '''
341 '''
341 divider = make_axes_locatable(ax)
342 divider = make_axes_locatable(ax)
342 nax = divider.new_horizontal(size=size, pad=pad)
343 nax = divider.new_horizontal(size=size, pad=pad)
343 ax.figure.add_axes(nax)
344 ax.figure.add_axes(nax)
344 return nax
345 return nax
345
346
346 def fill_gaps(self, x_buffer, y_buffer, z_buffer):
347 def fill_gaps(self, x_buffer, y_buffer, z_buffer):
347 '''
348 '''
348 Create a masked array for missing data
349 Create a masked array for missing data
349 '''
350 '''
350 if x_buffer.shape[0] < 2:
351 if x_buffer.shape[0] < 2:
351 return x_buffer, y_buffer, z_buffer
352 return x_buffer, y_buffer, z_buffer
352
353
353 deltas = x_buffer[1:] - x_buffer[0:-1]
354 deltas = x_buffer[1:] - x_buffer[0:-1]
354 x_median = numpy.median(deltas)
355 x_median = numpy.median(deltas)
355
356
356 index = numpy.where(deltas > 5 * x_median)
357 index = numpy.where(deltas > 5 * x_median)
357
358
358 if len(index[0]) != 0:
359 if len(index[0]) != 0:
359 z_buffer[::, index[0], ::] = self.__missing
360 z_buffer[::, index[0], ::] = self.__missing
360 z_buffer = numpy.ma.masked_inside(z_buffer,
361 z_buffer = numpy.ma.masked_inside(z_buffer,
361 0.99 * self.__missing,
362 0.99 * self.__missing,
362 1.01 * self.__missing)
363 1.01 * self.__missing)
363
364
364 return x_buffer, y_buffer, z_buffer
365 return x_buffer, y_buffer, z_buffer
365
366
366 def decimate(self):
367 def decimate(self):
367
368
368 # dx = int(len(self.x)/self.__MAXNUMX) + 1
369 # dx = int(len(self.x)/self.__MAXNUMX) + 1
369 dy = int(len(self.y) / self.decimation) + 1
370 dy = int(len(self.y) / self.decimation) + 1
370
371
371 # x = self.x[::dx]
372 # x = self.x[::dx]
372 x = self.x
373 x = self.x
373 y = self.y[::dy]
374 y = self.y[::dy]
374 z = self.z[::, ::, ::dy]
375 z = self.z[::, ::, ::dy]
375
376
376 return x, y, z
377 return x, y, z
377
378
378 def format(self):
379 def format(self):
379 '''
380 '''
380 Set min and max values, labels, ticks and titles
381 Set min and max values, labels, ticks and titles
381 '''
382 '''
382
383
383 for n, ax in enumerate(self.axes):
384 for n, ax in enumerate(self.axes):
384 if ax.firsttime:
385 if ax.firsttime:
385 if self.xaxis != 'time':
386 if self.xaxis != 'time':
386 xmin = self.xmin
387 xmin = self.xmin
387 xmax = self.xmax
388 xmax = self.xmax
388 else:
389 else:
389 xmin = self.tmin
390 xmin = self.tmin
390 xmax = self.tmin + self.xrange*60*60
391 xmax = self.tmin + self.xrange*60*60
391 ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime))
392 ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime))
392 ax.xaxis.set_major_locator(LinearLocator(9))
393 ax.xaxis.set_major_locator(LinearLocator(9))
393 ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)])
394 ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)])
394 ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)])
395 ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)])
395 ax.set_facecolor(self.bgcolor)
396 ax.set_facecolor(self.bgcolor)
396 if self.xscale:
397 if self.xscale:
397 ax.xaxis.set_major_formatter(FuncFormatter(
398 ax.xaxis.set_major_formatter(FuncFormatter(
398 lambda x, pos: '{0:g}'.format(x*self.xscale)))
399 lambda x, pos: '{0:g}'.format(x*self.xscale)))
399 if self.yscale:
400 if self.yscale:
400 ax.yaxis.set_major_formatter(FuncFormatter(
401 ax.yaxis.set_major_formatter(FuncFormatter(
401 lambda x, pos: '{0:g}'.format(x*self.yscale)))
402 lambda x, pos: '{0:g}'.format(x*self.yscale)))
402 if self.xlabel is not None:
403 if self.xlabel is not None:
403 ax.set_xlabel(self.xlabel)
404 ax.set_xlabel(self.xlabel)
404 if self.ylabel is not None:
405 if self.ylabel is not None:
405 ax.set_ylabel(self.ylabel)
406 ax.set_ylabel(self.ylabel)
406 if self.showprofile:
407 if self.showprofile:
407 self.pf_axes[n].set_ylim(ymin, ymax)
408 self.pf_axes[n].set_ylim(ymin, ymax)
408 self.pf_axes[n].set_xlim(self.zmin, self.zmax)
409 self.pf_axes[n].set_xlim(self.zmin, self.zmax)
409 self.pf_axes[n].set_xlabel('dB')
410 self.pf_axes[n].set_xlabel('dB')
410 self.pf_axes[n].grid(b=True, axis='x')
411 self.pf_axes[n].grid(b=True, axis='x')
411 [tick.set_visible(False)
412 [tick.set_visible(False)
412 for tick in self.pf_axes[n].get_yticklabels()]
413 for tick in self.pf_axes[n].get_yticklabels()]
413 if self.colorbar:
414 if self.colorbar:
414 ax.cbar = plt.colorbar(
415 ax.cbar = plt.colorbar(
415 ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10)
416 ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10)
416 ax.cbar.ax.tick_params(labelsize=8)
417 ax.cbar.ax.tick_params(labelsize=8)
417 ax.cbar.ax.press = None
418 ax.cbar.ax.press = None
418 if self.cb_label:
419 if self.cb_label:
419 ax.cbar.set_label(self.cb_label, size=8)
420 ax.cbar.set_label(self.cb_label, size=8)
420 elif self.cb_labels:
421 elif self.cb_labels:
421 ax.cbar.set_label(self.cb_labels[n], size=8)
422 ax.cbar.set_label(self.cb_labels[n], size=8)
422 else:
423 else:
423 ax.cbar = None
424 ax.cbar = None
424 ax.set_xlim(xmin, xmax)
425 ax.set_xlim(xmin, xmax)
425 ax.set_ylim(ymin, ymax)
426 ax.set_ylim(ymin, ymax)
426 ax.firsttime = False
427 ax.firsttime = False
427 if self.grid:
428 if self.grid:
428 ax.grid(True)
429 ax.grid(True)
429 if not self.polar:
430 if not self.polar:
430 ax.set_title('{} {} {}'.format(
431 ax.set_title('{} {} {}'.format(
431 self.titles[n],
432 self.titles[n],
432 self.getDateTime(self.data.max_time).strftime(
433 self.getDateTime(self.data.max_time).strftime(
433 '%Y-%m-%d %H:%M:%S'),
434 '%Y-%m-%d %H:%M:%S'),
434 self.time_label),
435 self.time_label),
435 size=8)
436 size=8)
436 else:
437 else:
437 ax.set_title('{}'.format(self.titles[n]), size=8)
438 #ax.set_title('{}'.format(self.titles[n]), size=8)
438 ax.set_ylim(0, 90)
439 ax.set_title('{} {} {}'.format(
439 ax.set_yticks(numpy.arange(0, 90, 20))
440 self.titles[n],
441 self.getDateTime(self.data.max_time).strftime(
442 '%Y-%m-%d %H:%M:%S'),
443 self.time_label),
444 size=8)
445 ax.set_ylim(0, self.ymax)
446 #ax.set_yticks(numpy.arange(0, self.ymax, 20))
440 ax.yaxis.labelpad = 40
447 ax.yaxis.labelpad = 40
441
448
442 if self.firsttime:
449 if self.firsttime:
443 for n, fig in enumerate(self.figures):
450 for n, fig in enumerate(self.figures):
444 fig.subplots_adjust(**self.plots_adjust)
451 fig.subplots_adjust(**self.plots_adjust)
445 self.firsttime = False
452 self.firsttime = False
446
453
447 def clear_figures(self):
454 def clear_figures(self):
448 '''
455 '''
449 Reset axes for redraw plots
456 Reset axes for redraw plots
450 '''
457 '''
451
458
452 for ax in self.axes+self.pf_axes+self.cb_axes:
459 for ax in self.axes+self.pf_axes+self.cb_axes:
453 ax.clear()
460 ax.clear()
454 ax.firsttime = True
461 ax.firsttime = True
455 if hasattr(ax, 'cbar') and ax.cbar:
462 if hasattr(ax, 'cbar') and ax.cbar:
456 ax.cbar.remove()
463 ax.cbar.remove()
457
464
458 def __plot(self):
465 def __plot(self):
459 '''
466 '''
460 Main function to plot, format and save figures
467 Main function to plot, format and save figures
461 '''
468 '''
462
469
463 self.plot()
470 self.plot()
464 self.format()
471 self.format()
465
472
466 for n, fig in enumerate(self.figures):
473 for n, fig in enumerate(self.figures):
467 if self.nrows == 0 or self.nplots == 0:
474 if self.nrows == 0 or self.nplots == 0:
468 log.warning('No data', self.name)
475 log.warning('No data', self.name)
469 fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center')
476 fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center')
470 fig.canvas.manager.set_window_title(self.CODE)
477 fig.canvas.manager.set_window_title(self.CODE)
471 continue
478 continue
472
479
473 fig.canvas.manager.set_window_title('{} - {}'.format(self.title,
480 fig.canvas.manager.set_window_title('{} - {}'.format(self.title,
474 self.getDateTime(self.data.max_time).strftime('%Y/%m/%d')))
481 self.getDateTime(self.data.max_time).strftime('%Y/%m/%d')))
475 fig.canvas.draw()
482 fig.canvas.draw()
476 if self.show:
483 if self.show:
477 fig.show()
484 fig.show()
478 figpause(0.01)
485 figpause(0.01)
479
486
480 if self.save:
487 if self.save:
481 self.save_figure(n)
488 self.save_figure(n)
482
489
483 if self.server:
490 if self.server:
484 self.send_to_server()
491 self.send_to_server()
485
492
486 def __update(self, dataOut, timestamp):
493 def __update(self, dataOut, timestamp):
487 '''
494 '''
488 '''
495 '''
489
496
490 metadata = {
497 metadata = {
491 'yrange': dataOut.heightList,
498 'yrange': dataOut.heightList,
492 'interval': dataOut.timeInterval,
499 'interval': dataOut.timeInterval,
493 'channels': dataOut.channelList
500 'channels': dataOut.channelList
494 }
501 }
495
502
496 data, meta = self.update(dataOut)
503 data, meta = self.update(dataOut)
497 metadata.update(meta)
504 metadata.update(meta)
498 self.data.update(data, timestamp, metadata)
505 self.data.update(data, timestamp, metadata)
499
506
500 def save_figure(self, n):
507 def save_figure(self, n):
501 '''
508 '''
502 '''
509 '''
503 if self.oneFigure:
510 if self.oneFigure:
504 if (self.data.max_time - self.save_time) <= self.save_period:
511 if (self.data.max_time - self.save_time) <= self.save_period:
505 return
512 return
506
513
507 self.save_time = self.data.max_time
514 self.save_time = self.data.max_time
508
515
509 fig = self.figures[n]
516 fig = self.figures[n]
510 if self.throttle == 0:
517 if self.throttle == 0:
511 if self.oneFigure:
518 if self.oneFigure:
512 figname = os.path.join(
519 figname = os.path.join(
513 self.save,
520 self.save,
514 self.save_code,
521 self.save_code,
515 '{}_{}.png'.format(
522 '{}_{}.png'.format(
516 self.save_code,
523 self.save_code,
517 self.getDateTime(self.data.max_time).strftime(
524 self.getDateTime(self.data.max_time).strftime(
518 '%Y%m%d_%H%M%S'
525 '%Y%m%d_%H%M%S'
519 ),
526 ),
520 )
527 )
521 )
528 )
522 else:
529 else:
523 figname = os.path.join(
530 figname = os.path.join(
524 self.save,
531 self.save,
525 self.save_code,
532 self.save_code,
526 '{}_ch{}_{}.png'.format(
533 '{}_ch{}_{}.png'.format(
527 self.save_code,n,
534 self.save_code,n,
528 self.getDateTime(self.data.max_time).strftime(
535 self.getDateTime(self.data.max_time).strftime(
529 '%Y%m%d_%H%M%S'
536 '%Y%m%d_%H%M%S'
530 ),
537 ),
531 )
538 )
532 )
539 )
533 log.log('Saving figure: {}'.format(figname), self.name)
540 log.log('Saving figure: {}'.format(figname), self.name)
534 if not os.path.isdir(os.path.dirname(figname)):
541 if not os.path.isdir(os.path.dirname(figname)):
535 os.makedirs(os.path.dirname(figname))
542 os.makedirs(os.path.dirname(figname))
536 fig.savefig(figname)
543 fig.savefig(figname)
537
544
538 figname = os.path.join(
545 figname = os.path.join(
539 self.save,
546 self.save,
540 '{}_{}.png'.format(
547 '{}_{}.png'.format(
541 self.save_code,
548 self.save_code,
542 self.getDateTime(self.data.min_time).strftime(
549 self.getDateTime(self.data.min_time).strftime(
543 '%Y%m%d'
550 '%Y%m%d'
544 ),
551 ),
545 )
552 )
546 )
553 )
547
554
548 log.log('Saving figure: {}'.format(figname), self.name)
555 log.log('Saving figure: {}'.format(figname), self.name)
549 if not os.path.isdir(os.path.dirname(figname)):
556 if not os.path.isdir(os.path.dirname(figname)):
550 os.makedirs(os.path.dirname(figname))
557 os.makedirs(os.path.dirname(figname))
551 fig.savefig(figname)
558 fig.savefig(figname)
552
559
553 def send_to_server(self):
560 def send_to_server(self):
554 '''
561 '''
555 '''
562 '''
556
563
557 if self.exp_code == None:
564 if self.exp_code == None:
558 log.warning('Missing `exp_code` skipping sending to server...')
565 log.warning('Missing `exp_code` skipping sending to server...')
559
566
560 last_time = self.data.max_time
567 last_time = self.data.max_time
561 interval = last_time - self.sender_time
568 interval = last_time - self.sender_time
562 if interval < self.sender_period:
569 if interval < self.sender_period:
563 return
570 return
564
571
565 self.sender_time = last_time
572 self.sender_time = last_time
566
573
567 attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax']
574 attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax']
568 for attr in attrs:
575 for attr in attrs:
569 value = getattr(self, attr)
576 value = getattr(self, attr)
570 if value:
577 if value:
571 if isinstance(value, (numpy.float32, numpy.float64)):
578 if isinstance(value, (numpy.float32, numpy.float64)):
572 value = round(float(value), 2)
579 value = round(float(value), 2)
573 self.data.meta[attr] = value
580 self.data.meta[attr] = value
574 if self.colormap == 'jet':
581 if self.colormap == 'jet':
575 self.data.meta['colormap'] = 'Jet'
582 self.data.meta['colormap'] = 'Jet'
576 elif 'RdBu' in self.colormap:
583 elif 'RdBu' in self.colormap:
577 self.data.meta['colormap'] = 'RdBu'
584 self.data.meta['colormap'] = 'RdBu'
578 else:
585 else:
579 self.data.meta['colormap'] = 'Viridis'
586 self.data.meta['colormap'] = 'Viridis'
580 self.data.meta['interval'] = int(interval)
587 self.data.meta['interval'] = int(interval)
581
588
582 self.sender_queue.append(last_time)
589 self.sender_queue.append(last_time)
583
590
584 while True:
591 while True:
585 try:
592 try:
586 tm = self.sender_queue.popleft()
593 tm = self.sender_queue.popleft()
587 except IndexError:
594 except IndexError:
588 break
595 break
589 msg = self.data.jsonify(tm, self.save_code, self.plot_type)
596 msg = self.data.jsonify(tm, self.save_code, self.plot_type)
590 self.socket.send_string(msg)
597 self.socket.send_string(msg)
591 socks = dict(self.poll.poll(2000))
598 socks = dict(self.poll.poll(2000))
592 if socks.get(self.socket) == zmq.POLLIN:
599 if socks.get(self.socket) == zmq.POLLIN:
593 reply = self.socket.recv_string()
600 reply = self.socket.recv_string()
594 if reply == 'ok':
601 if reply == 'ok':
595 log.log("Response from server ok", self.name)
602 log.log("Response from server ok", self.name)
596 time.sleep(0.1)
603 time.sleep(0.1)
597 continue
604 continue
598 else:
605 else:
599 log.warning(
606 log.warning(
600 "Malformed reply from server: {}".format(reply), self.name)
607 "Malformed reply from server: {}".format(reply), self.name)
601 else:
608 else:
602 log.warning(
609 log.warning(
603 "No response from server, retrying...", self.name)
610 "No response from server, retrying...", self.name)
604 self.sender_queue.appendleft(tm)
611 self.sender_queue.appendleft(tm)
605 self.socket.setsockopt(zmq.LINGER, 0)
612 self.socket.setsockopt(zmq.LINGER, 0)
606 self.socket.close()
613 self.socket.close()
607 self.poll.unregister(self.socket)
614 self.poll.unregister(self.socket)
608 self.socket = self.context.socket(zmq.REQ)
615 self.socket = self.context.socket(zmq.REQ)
609 self.socket.connect(self.server)
616 self.socket.connect(self.server)
610 self.poll.register(self.socket, zmq.POLLIN)
617 self.poll.register(self.socket, zmq.POLLIN)
611 break
618 break
612
619
613 def setup(self):
620 def setup(self):
614 '''
621 '''
615 This method should be implemented in the child class, the following
622 This method should be implemented in the child class, the following
616 attributes should be set:
623 attributes should be set:
617
624
618 self.nrows: number of rows
625 self.nrows: number of rows
619 self.ncols: number of cols
626 self.ncols: number of cols
620 self.nplots: number of plots (channels or pairs)
627 self.nplots: number of plots (channels or pairs)
621 self.ylabel: label for Y axes
628 self.ylabel: label for Y axes
622 self.titles: list of axes title
629 self.titles: list of axes title
623
630
624 '''
631 '''
625 raise NotImplementedError
632 raise NotImplementedError
626
633
627 def plot(self):
634 def plot(self):
628 '''
635 '''
629 Must be defined in the child class, the actual plotting method
636 Must be defined in the child class, the actual plotting method
630 '''
637 '''
631 raise NotImplementedError
638 raise NotImplementedError
632
639
633 def update(self, dataOut):
640 def update(self, dataOut):
634 '''
641 '''
635 Must be defined in the child class, update self.data with new data
642 Must be defined in the child class, update self.data with new data
636 '''
643 '''
637
644
638 data = {
645 data = {
639 self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE))
646 self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE))
640 }
647 }
641 meta = {}
648 meta = {}
642
649
643 return data, meta
650 return data, meta
644
651
645 def run(self, dataOut, **kwargs):
652 def run(self, dataOut, **kwargs):
646 '''
653 '''
647 Main plotting routine
654 Main plotting routine
648 '''
655 '''
649
656
650 if self.isConfig is False:
657 if self.isConfig is False:
651 self.__setup(**kwargs)
658 self.__setup(**kwargs)
652
659
653 if self.localtime:
660 if self.localtime:
654 self.getDateTime = datetime.datetime.fromtimestamp
661 self.getDateTime = datetime.datetime.fromtimestamp
655 else:
662 else:
656 self.getDateTime = datetime.datetime.utcfromtimestamp
663 self.getDateTime = datetime.datetime.utcfromtimestamp
657
664
658 self.data.setup()
665 self.data.setup()
659 self.isConfig = True
666 self.isConfig = True
660 if self.server:
667 if self.server:
661 self.context = zmq.Context()
668 self.context = zmq.Context()
662 self.socket = self.context.socket(zmq.REQ)
669 self.socket = self.context.socket(zmq.REQ)
663 self.socket.connect(self.server)
670 self.socket.connect(self.server)
664 self.poll = zmq.Poller()
671 self.poll = zmq.Poller()
665 self.poll.register(self.socket, zmq.POLLIN)
672 self.poll.register(self.socket, zmq.POLLIN)
666
673
667 tm = getattr(dataOut, self.attr_time)
674 tm = getattr(dataOut, self.attr_time)
668
675
669 if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60:
676 if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60:
670 self.save_time = tm
677 self.save_time = tm
671 self.__plot()
678 self.__plot()
672 self.tmin += self.xrange*60*60
679 self.tmin += self.xrange*60*60
673 self.data.setup()
680 self.data.setup()
674 self.clear_figures()
681 self.clear_figures()
675
682
676 self.__update(dataOut, tm)
683 self.__update(dataOut, tm)
677
684
678 if self.isPlotConfig is False:
685 if self.isPlotConfig is False:
679 self.__setup_plot()
686 self.__setup_plot()
680 self.isPlotConfig = True
687 self.isPlotConfig = True
681 if self.xaxis == 'time':
688 if self.xaxis == 'time':
682 dt = self.getDateTime(tm)
689 dt = self.getDateTime(tm)
683 if self.xmin is None:
690 if self.xmin is None:
684 self.tmin = tm
691 self.tmin = tm
685 self.xmin = dt.hour
692 self.xmin = dt.hour
686 minutes = (self.xmin-int(self.xmin)) * 60
693 minutes = (self.xmin-int(self.xmin)) * 60
687 seconds = (minutes - int(minutes)) * 60
694 seconds = (minutes - int(minutes)) * 60
688 self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) -
695 self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) -
689 datetime.datetime(1970, 1, 1)).total_seconds()
696 datetime.datetime(1970, 1, 1)).total_seconds()
690 if self.localtime:
697 if self.localtime:
691 self.tmin += time.timezone
698 self.tmin += time.timezone
692
699
693 if self.xmin is not None and self.xmax is not None:
700 if self.xmin is not None and self.xmax is not None:
694 self.xrange = self.xmax - self.xmin
701 self.xrange = self.xmax - self.xmin
695
702
696 if self.throttle == 0:
703 if self.throttle == 0:
697 self.__plot()
704 self.__plot()
698 else:
705 else:
699 self.__throttle_plot(self.__plot)#, coerce=coerce)
706 self.__throttle_plot(self.__plot)#, coerce=coerce)
700
707
701 def close(self):
708 def close(self):
702
709
703 if self.data and not self.data.flagNoData:
710 if self.data and not self.data.flagNoData:
704 self.save_time = 0
711 self.save_time = 0
705 self.__plot()
712 self.__plot()
706 if self.data and not self.data.flagNoData and self.pause:
713 if self.data and not self.data.flagNoData and self.pause:
707 figpause(10)
714 figpause(10)
@@ -1,2378 +1,2522
1 import os
1 import os
2 import datetime
2 import datetime
3 import numpy
3 import numpy
4 from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter
4 from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter
5
5
6 from schainpy.model.graphics.jroplot_base import Plot, plt
6 from schainpy.model.graphics.jroplot_base import Plot, plt
7 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
7 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
8 from schainpy.utils import log
8 from schainpy.utils import log
9 # libreria wradlib
9 # libreria wradlib
10 import wradlib as wrl
10 import wradlib as wrl
11
11
12 EARTH_RADIUS = 6.3710e3
12 EARTH_RADIUS = 6.3710e3
13
13
14
14
15 def ll2xy(lat1, lon1, lat2, lon2):
15 def ll2xy(lat1, lon1, lat2, lon2):
16
16
17 p = 0.017453292519943295
17 p = 0.017453292519943295
18 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
18 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
19 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
19 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
20 r = 12742 * numpy.arcsin(numpy.sqrt(a))
20 r = 12742 * numpy.arcsin(numpy.sqrt(a))
21 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
21 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
22 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
22 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
23 theta = -theta + numpy.pi/2
23 theta = -theta + numpy.pi/2
24 return r*numpy.cos(theta), r*numpy.sin(theta)
24 return r*numpy.cos(theta), r*numpy.sin(theta)
25
25
26
26
27 def km2deg(km):
27 def km2deg(km):
28 '''
28 '''
29 Convert distance in km to degrees
29 Convert distance in km to degrees
30 '''
30 '''
31
31
32 return numpy.rad2deg(km/EARTH_RADIUS)
32 return numpy.rad2deg(km/EARTH_RADIUS)
33
33
34
34
35
35
36 class SpectralMomentsPlot(SpectraPlot):
36 class SpectralMomentsPlot(SpectraPlot):
37 '''
37 '''
38 Plot for Spectral Moments
38 Plot for Spectral Moments
39 '''
39 '''
40 CODE = 'spc_moments'
40 CODE = 'spc_moments'
41 # colormap = 'jet'
41 # colormap = 'jet'
42 # plot_type = 'pcolor'
42 # plot_type = 'pcolor'
43
43
44 class DobleGaussianPlot(SpectraPlot):
44 class DobleGaussianPlot(SpectraPlot):
45 '''
45 '''
46 Plot for Double Gaussian Plot
46 Plot for Double Gaussian Plot
47 '''
47 '''
48 CODE = 'gaussian_fit'
48 CODE = 'gaussian_fit'
49 # colormap = 'jet'
49 # colormap = 'jet'
50 # plot_type = 'pcolor'
50 # plot_type = 'pcolor'
51
51
52 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
52 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
53 '''
53 '''
54 Plot SpectraCut with Double Gaussian Fit
54 Plot SpectraCut with Double Gaussian Fit
55 '''
55 '''
56 CODE = 'cut_gaussian_fit'
56 CODE = 'cut_gaussian_fit'
57
57
58 class SnrPlot(RTIPlot):
58 class SnrPlot(RTIPlot):
59 '''
59 '''
60 Plot for SNR Data
60 Plot for SNR Data
61 '''
61 '''
62
62
63 CODE = 'snr'
63 CODE = 'snr'
64 colormap = 'jet'
64 colormap = 'jet'
65
65
66 def update(self, dataOut):
66 def update(self, dataOut):
67
67
68 data = {
68 data = {
69 'snr': 10*numpy.log10(dataOut.data_snr)
69 'snr': 10*numpy.log10(dataOut.data_snr)
70 }
70 }
71
71
72 return data, {}
72 return data, {}
73
73
74 class DopplerPlot(RTIPlot):
74 class DopplerPlot(RTIPlot):
75 '''
75 '''
76 Plot for DOPPLER Data (1st moment)
76 Plot for DOPPLER Data (1st moment)
77 '''
77 '''
78
78
79 CODE = 'dop'
79 CODE = 'dop'
80 colormap = 'jet'
80 colormap = 'jet'
81
81
82 def update(self, dataOut):
82 def update(self, dataOut):
83
83
84 data = {
84 data = {
85 'dop': 10*numpy.log10(dataOut.data_dop)
85 'dop': 10*numpy.log10(dataOut.data_dop)
86 }
86 }
87
87
88 return data, {}
88 return data, {}
89
89
90 class PowerPlot(RTIPlot):
90 class PowerPlot(RTIPlot):
91 '''
91 '''
92 Plot for Power Data (0 moment)
92 Plot for Power Data (0 moment)
93 '''
93 '''
94
94
95 CODE = 'pow'
95 CODE = 'pow'
96 colormap = 'jet'
96 colormap = 'jet'
97
97
98 def update(self, dataOut):
98 def update(self, dataOut):
99 data = {
99 data = {
100 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
100 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
101 }
101 }
102 return data, {}
102 return data, {}
103
103
104 class SpectralWidthPlot(RTIPlot):
104 class SpectralWidthPlot(RTIPlot):
105 '''
105 '''
106 Plot for Spectral Width Data (2nd moment)
106 Plot for Spectral Width Data (2nd moment)
107 '''
107 '''
108
108
109 CODE = 'width'
109 CODE = 'width'
110 colormap = 'jet'
110 colormap = 'jet'
111
111
112 def update(self, dataOut):
112 def update(self, dataOut):
113
113
114 data = {
114 data = {
115 'width': dataOut.data_width
115 'width': dataOut.data_width
116 }
116 }
117
117
118 return data, {}
118 return data, {}
119
119
120 class SkyMapPlot(Plot):
120 class SkyMapPlot(Plot):
121 '''
121 '''
122 Plot for meteors detection data
122 Plot for meteors detection data
123 '''
123 '''
124
124
125 CODE = 'param'
125 CODE = 'param'
126
126
127 def setup(self):
127 def setup(self):
128
128
129 self.ncols = 1
129 self.ncols = 1
130 self.nrows = 1
130 self.nrows = 1
131 self.width = 7.2
131 self.width = 7.2
132 self.height = 7.2
132 self.height = 7.2
133 self.nplots = 1
133 self.nplots = 1
134 self.xlabel = 'Zonal Zenith Angle (deg)'
134 self.xlabel = 'Zonal Zenith Angle (deg)'
135 self.ylabel = 'Meridional Zenith Angle (deg)'
135 self.ylabel = 'Meridional Zenith Angle (deg)'
136 self.polar = True
136 self.polar = True
137 self.ymin = -180
137 self.ymin = -180
138 self.ymax = 180
138 self.ymax = 180
139 self.colorbar = False
139 self.colorbar = False
140
140
141 def plot(self):
141 def plot(self):
142
142
143 arrayParameters = numpy.concatenate(self.data['param'])
143 arrayParameters = numpy.concatenate(self.data['param'])
144 error = arrayParameters[:, -1]
144 error = arrayParameters[:, -1]
145 indValid = numpy.where(error == 0)[0]
145 indValid = numpy.where(error == 0)[0]
146 finalMeteor = arrayParameters[indValid, :]
146 finalMeteor = arrayParameters[indValid, :]
147 finalAzimuth = finalMeteor[:, 3]
147 finalAzimuth = finalMeteor[:, 3]
148 finalZenith = finalMeteor[:, 4]
148 finalZenith = finalMeteor[:, 4]
149
149
150 x = finalAzimuth * numpy.pi / 180
150 x = finalAzimuth * numpy.pi / 180
151 y = finalZenith
151 y = finalZenith
152
152
153 ax = self.axes[0]
153 ax = self.axes[0]
154
154
155 if ax.firsttime:
155 if ax.firsttime:
156 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
156 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
157 else:
157 else:
158 ax.plot.set_data(x, y)
158 ax.plot.set_data(x, y)
159
159
160 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
160 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
161 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
161 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
162 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
162 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
163 dt2,
163 dt2,
164 len(x))
164 len(x))
165 self.titles[0] = title
165 self.titles[0] = title
166
166
167
167
168 class GenericRTIPlot(Plot):
168 class GenericRTIPlot(Plot):
169 '''
169 '''
170 Plot for data_xxxx object
170 Plot for data_xxxx object
171 '''
171 '''
172
172
173 CODE = 'param'
173 CODE = 'param'
174 colormap = 'viridis'
174 colormap = 'viridis'
175 plot_type = 'pcolorbuffer'
175 plot_type = 'pcolorbuffer'
176
176
177 def setup(self):
177 def setup(self):
178 self.xaxis = 'time'
178 self.xaxis = 'time'
179 self.ncols = 1
179 self.ncols = 1
180 self.nrows = self.data.shape('param')[0]
180 self.nrows = self.data.shape('param')[0]
181 self.nplots = self.nrows
181 self.nplots = self.nrows
182 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
182 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
183
183
184 if not self.xlabel:
184 if not self.xlabel:
185 self.xlabel = 'Time'
185 self.xlabel = 'Time'
186
186
187 self.ylabel = 'Range [km]'
187 self.ylabel = 'Range [km]'
188 if not self.titles:
188 if not self.titles:
189 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
189 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
190
190
191 def update(self, dataOut):
191 def update(self, dataOut):
192
192
193 data = {
193 data = {
194 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
194 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
195 }
195 }
196
196
197 meta = {}
197 meta = {}
198
198
199 return data, meta
199 return data, meta
200
200
201 def plot(self):
201 def plot(self):
202 # self.data.normalize_heights()
202 # self.data.normalize_heights()
203 self.x = self.data.times
203 self.x = self.data.times
204 self.y = self.data.yrange
204 self.y = self.data.yrange
205 self.z = self.data['param']
205 self.z = self.data['param']
206 self.z = 10*numpy.log10(self.z)
206 self.z = 10*numpy.log10(self.z)
207 self.z = numpy.ma.masked_invalid(self.z)
207 self.z = numpy.ma.masked_invalid(self.z)
208
208
209 if self.decimation is None:
209 if self.decimation is None:
210 x, y, z = self.fill_gaps(self.x, self.y, self.z)
210 x, y, z = self.fill_gaps(self.x, self.y, self.z)
211 else:
211 else:
212 x, y, z = self.fill_gaps(*self.decimate())
212 x, y, z = self.fill_gaps(*self.decimate())
213
213
214 for n, ax in enumerate(self.axes):
214 for n, ax in enumerate(self.axes):
215
215
216 self.zmax = self.zmax if self.zmax is not None else numpy.max(
216 self.zmax = self.zmax if self.zmax is not None else numpy.max(
217 self.z[n])
217 self.z[n])
218 self.zmin = self.zmin if self.zmin is not None else numpy.min(
218 self.zmin = self.zmin if self.zmin is not None else numpy.min(
219 self.z[n])
219 self.z[n])
220
220
221 if ax.firsttime:
221 if ax.firsttime:
222 if self.zlimits is not None:
222 if self.zlimits is not None:
223 self.zmin, self.zmax = self.zlimits[n]
223 self.zmin, self.zmax = self.zlimits[n]
224
224
225 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
225 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
226 vmin=self.zmin,
226 vmin=self.zmin,
227 vmax=self.zmax,
227 vmax=self.zmax,
228 cmap=self.cmaps[n]
228 cmap=self.cmaps[n]
229 )
229 )
230 else:
230 else:
231 if self.zlimits is not None:
231 if self.zlimits is not None:
232 self.zmin, self.zmax = self.zlimits[n]
232 self.zmin, self.zmax = self.zlimits[n]
233 ax.collections.remove(ax.collections[0])
233 ax.collections.remove(ax.collections[0])
234 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
234 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
235 vmin=self.zmin,
235 vmin=self.zmin,
236 vmax=self.zmax,
236 vmax=self.zmax,
237 cmap=self.cmaps[n]
237 cmap=self.cmaps[n]
238 )
238 )
239
239
240
240
241 class PolarMapPlot(Plot):
241 class PolarMapPlot(Plot):
242 '''
242 '''
243 Plot for weather radar
243 Plot for weather radar
244 '''
244 '''
245
245
246 CODE = 'param'
246 CODE = 'param'
247 colormap = 'seismic'
247 colormap = 'seismic'
248
248
249 def setup(self):
249 def setup(self):
250 self.ncols = 1
250 self.ncols = 1
251 self.nrows = 1
251 self.nrows = 1
252 self.width = 9
252 self.width = 9
253 self.height = 8
253 self.height = 8
254 self.mode = self.data.meta['mode']
254 self.mode = self.data.meta['mode']
255 if self.channels is not None:
255 if self.channels is not None:
256 self.nplots = len(self.channels)
256 self.nplots = len(self.channels)
257 self.nrows = len(self.channels)
257 self.nrows = len(self.channels)
258 else:
258 else:
259 self.nplots = self.data.shape(self.CODE)[0]
259 self.nplots = self.data.shape(self.CODE)[0]
260 self.nrows = self.nplots
260 self.nrows = self.nplots
261 self.channels = list(range(self.nplots))
261 self.channels = list(range(self.nplots))
262 if self.mode == 'E':
262 if self.mode == 'E':
263 self.xlabel = 'Longitude'
263 self.xlabel = 'Longitude'
264 self.ylabel = 'Latitude'
264 self.ylabel = 'Latitude'
265 else:
265 else:
266 self.xlabel = 'Range (km)'
266 self.xlabel = 'Range (km)'
267 self.ylabel = 'Height (km)'
267 self.ylabel = 'Height (km)'
268 self.bgcolor = 'white'
268 self.bgcolor = 'white'
269 self.cb_labels = self.data.meta['units']
269 self.cb_labels = self.data.meta['units']
270 self.lat = self.data.meta['latitude']
270 self.lat = self.data.meta['latitude']
271 self.lon = self.data.meta['longitude']
271 self.lon = self.data.meta['longitude']
272 self.xmin, self.xmax = float(
272 self.xmin, self.xmax = float(
273 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
273 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
274 self.ymin, self.ymax = float(
274 self.ymin, self.ymax = float(
275 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
275 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
276 # self.polar = True
276 # self.polar = True
277
277
278 def plot(self):
278 def plot(self):
279
279
280 for n, ax in enumerate(self.axes):
280 for n, ax in enumerate(self.axes):
281 data = self.data['param'][self.channels[n]]
281 data = self.data['param'][self.channels[n]]
282
282
283 zeniths = numpy.linspace(
283 zeniths = numpy.linspace(
284 0, self.data.meta['max_range'], data.shape[1])
284 0, self.data.meta['max_range'], data.shape[1])
285 if self.mode == 'E':
285 if self.mode == 'E':
286 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
286 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
287 r, theta = numpy.meshgrid(zeniths, azimuths)
287 r, theta = numpy.meshgrid(zeniths, azimuths)
288 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
288 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
289 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
289 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
290 x = km2deg(x) + self.lon
290 x = km2deg(x) + self.lon
291 y = km2deg(y) + self.lat
291 y = km2deg(y) + self.lat
292 else:
292 else:
293 azimuths = numpy.radians(self.data.yrange)
293 azimuths = numpy.radians(self.data.yrange)
294 r, theta = numpy.meshgrid(zeniths, azimuths)
294 r, theta = numpy.meshgrid(zeniths, azimuths)
295 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
295 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
296 self.y = zeniths
296 self.y = zeniths
297
297
298 if ax.firsttime:
298 if ax.firsttime:
299 if self.zlimits is not None:
299 if self.zlimits is not None:
300 self.zmin, self.zmax = self.zlimits[n]
300 self.zmin, self.zmax = self.zlimits[n]
301 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
301 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
302 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
302 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
303 vmin=self.zmin,
303 vmin=self.zmin,
304 vmax=self.zmax,
304 vmax=self.zmax,
305 cmap=self.cmaps[n])
305 cmap=self.cmaps[n])
306 else:
306 else:
307 if self.zlimits is not None:
307 if self.zlimits is not None:
308 self.zmin, self.zmax = self.zlimits[n]
308 self.zmin, self.zmax = self.zlimits[n]
309 ax.collections.remove(ax.collections[0])
309 ax.collections.remove(ax.collections[0])
310 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
310 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
311 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
311 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
312 vmin=self.zmin,
312 vmin=self.zmin,
313 vmax=self.zmax,
313 vmax=self.zmax,
314 cmap=self.cmaps[n])
314 cmap=self.cmaps[n])
315
315
316 if self.mode == 'A':
316 if self.mode == 'A':
317 continue
317 continue
318
318
319 # plot district names
319 # plot district names
320 f = open('/data/workspace/schain_scripts/distrito.csv')
320 f = open('/data/workspace/schain_scripts/distrito.csv')
321 for line in f:
321 for line in f:
322 label, lon, lat = [s.strip() for s in line.split(',') if s]
322 label, lon, lat = [s.strip() for s in line.split(',') if s]
323 lat = float(lat)
323 lat = float(lat)
324 lon = float(lon)
324 lon = float(lon)
325 # ax.plot(lon, lat, '.b', ms=2)
325 # ax.plot(lon, lat, '.b', ms=2)
326 ax.text(lon, lat, label.decode('utf8'), ha='center',
326 ax.text(lon, lat, label.decode('utf8'), ha='center',
327 va='bottom', size='8', color='black')
327 va='bottom', size='8', color='black')
328
328
329 # plot limites
329 # plot limites
330 limites = []
330 limites = []
331 tmp = []
331 tmp = []
332 for line in open('/data/workspace/schain_scripts/lima.csv'):
332 for line in open('/data/workspace/schain_scripts/lima.csv'):
333 if '#' in line:
333 if '#' in line:
334 if tmp:
334 if tmp:
335 limites.append(tmp)
335 limites.append(tmp)
336 tmp = []
336 tmp = []
337 continue
337 continue
338 values = line.strip().split(',')
338 values = line.strip().split(',')
339 tmp.append((float(values[0]), float(values[1])))
339 tmp.append((float(values[0]), float(values[1])))
340 for points in limites:
340 for points in limites:
341 ax.add_patch(
341 ax.add_patch(
342 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
342 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
343
343
344 # plot Cuencas
344 # plot Cuencas
345 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
345 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
346 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
346 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
347 values = [line.strip().split(',') for line in f]
347 values = [line.strip().split(',') for line in f]
348 points = [(float(s[0]), float(s[1])) for s in values]
348 points = [(float(s[0]), float(s[1])) for s in values]
349 ax.add_patch(Polygon(points, ec='b', fc='none'))
349 ax.add_patch(Polygon(points, ec='b', fc='none'))
350
350
351 # plot grid
351 # plot grid
352 for r in (15, 30, 45, 60):
352 for r in (15, 30, 45, 60):
353 ax.add_artist(plt.Circle((self.lon, self.lat),
353 ax.add_artist(plt.Circle((self.lon, self.lat),
354 km2deg(r), color='0.6', fill=False, lw=0.2))
354 km2deg(r), color='0.6', fill=False, lw=0.2))
355 ax.text(
355 ax.text(
356 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
356 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
357 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
357 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
358 '{}km'.format(r),
358 '{}km'.format(r),
359 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
359 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
360
360
361 if self.mode == 'E':
361 if self.mode == 'E':
362 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
362 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
363 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
363 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
364 else:
364 else:
365 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
365 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
366 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
366 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
367
367
368 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
368 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
369 self.titles = ['{} {}'.format(
369 self.titles = ['{} {}'.format(
370 self.data.parameters[x], title) for x in self.channels]
370 self.data.parameters[x], title) for x in self.channels]
371
371
372 class WeatherPlot(Plot):
372 class WeatherPlot(Plot):
373 CODE = 'weather'
373 CODE = 'weather'
374 plot_name = 'weather'
374 plot_name = 'weather'
375 plot_type = 'ppistyle'
375 plot_type = 'ppistyle'
376 buffering = False
376 buffering = False
377
377
378 def setup(self):
378 def setup(self):
379 self.ncols = 1
379 self.ncols = 1
380 self.nrows = 1
380 self.nrows = 1
381 self.width =8
381 self.width =8
382 self.height =8
382 self.height =8
383 self.nplots= 1
383 self.nplots= 1
384 self.ylabel= 'Range [Km]'
384 self.ylabel= 'Range [Km]'
385 self.titles= ['Weather']
385 self.titles= ['Weather']
386 self.colorbar=False
386 self.colorbar=False
387 self.ini =0
387 self.ini =0
388 self.len_azi =0
388 self.len_azi =0
389 self.buffer_ini = None
389 self.buffer_ini = None
390 self.buffer_azi = None
390 self.buffer_azi = None
391 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
391 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
392 self.flag =0
392 self.flag =0
393 self.indicador= 0
393 self.indicador= 0
394 self.last_data_azi = None
394 self.last_data_azi = None
395 self.val_mean = None
395 self.val_mean = None
396
396
397 def update(self, dataOut):
397 def update(self, dataOut):
398
398
399 data = {}
399 data = {}
400 meta = {}
400 meta = {}
401 if hasattr(dataOut, 'dataPP_POWER'):
401 if hasattr(dataOut, 'dataPP_POWER'):
402 factor = 1
402 factor = 1
403 if hasattr(dataOut, 'nFFTPoints'):
403 if hasattr(dataOut, 'nFFTPoints'):
404 factor = dataOut.normFactor
404 factor = dataOut.normFactor
405 #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape)
405 #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape)
406 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
406 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
407 data['azi'] = dataOut.data_azi
407 data['azi'] = dataOut.data_azi
408 data['ele'] = dataOut.data_ele
408 data['ele'] = dataOut.data_ele
409 return data, meta
409 return data, meta
410
410
411 def get2List(self,angulos):
411 def get2List(self,angulos):
412 list1=[]
412 list1=[]
413 list2=[]
413 list2=[]
414 for i in reversed(range(len(angulos))):
414 for i in reversed(range(len(angulos))):
415 diff_ = angulos[i]-angulos[i-1]
415 diff_ = angulos[i]-angulos[i-1]
416 if diff_ >1.5:
416 if diff_ >1.5:
417 list1.append(i-1)
417 list1.append(i-1)
418 list2.append(diff_)
418 list2.append(diff_)
419 return list(reversed(list1)),list(reversed(list2))
419 return list(reversed(list1)),list(reversed(list2))
420
420
421 def fixData360(self,list_,ang_):
421 def fixData360(self,list_,ang_):
422 if list_[0]==-1:
422 if list_[0]==-1:
423 vec = numpy.where(ang_<ang_[0])
423 vec = numpy.where(ang_<ang_[0])
424 ang_[vec] = ang_[vec]+360
424 ang_[vec] = ang_[vec]+360
425 return ang_
425 return ang_
426 return ang_
426 return ang_
427
427
428 def fixData360HL(self,angulos):
428 def fixData360HL(self,angulos):
429 vec = numpy.where(angulos>=360)
429 vec = numpy.where(angulos>=360)
430 angulos[vec]=angulos[vec]-360
430 angulos[vec]=angulos[vec]-360
431 return angulos
431 return angulos
432
432
433 def search_pos(self,pos,list_):
433 def search_pos(self,pos,list_):
434 for i in range(len(list_)):
434 for i in range(len(list_)):
435 if pos == list_[i]:
435 if pos == list_[i]:
436 return True,i
436 return True,i
437 i=None
437 i=None
438 return False,i
438 return False,i
439
439
440 def fixDataComp(self,ang_,list1_,list2_):
440 def fixDataComp(self,ang_,list1_,list2_):
441 size = len(ang_)
441 size = len(ang_)
442 size2 = 0
442 size2 = 0
443 for i in range(len(list2_)):
443 for i in range(len(list2_)):
444 size2=size2+round(list2_[i])-1
444 size2=size2+round(list2_[i])-1
445 new_size= size+size2
445 new_size= size+size2
446 ang_new = numpy.zeros(new_size)
446 ang_new = numpy.zeros(new_size)
447 ang_new2 = numpy.zeros(new_size)
447 ang_new2 = numpy.zeros(new_size)
448
448
449 tmp = 0
449 tmp = 0
450 c = 0
450 c = 0
451 for i in range(len(ang_)):
451 for i in range(len(ang_)):
452 ang_new[tmp +c] = ang_[i]
452 ang_new[tmp +c] = ang_[i]
453 ang_new2[tmp+c] = ang_[i]
453 ang_new2[tmp+c] = ang_[i]
454 condition , value = self.search_pos(i,list1_)
454 condition , value = self.search_pos(i,list1_)
455 if condition:
455 if condition:
456 pos = tmp + c + 1
456 pos = tmp + c + 1
457 for k in range(round(list2_[value])-1):
457 for k in range(round(list2_[value])-1):
458 ang_new[pos+k] = ang_new[pos+k-1]+1
458 ang_new[pos+k] = ang_new[pos+k-1]+1
459 ang_new2[pos+k] = numpy.nan
459 ang_new2[pos+k] = numpy.nan
460 tmp = pos +k
460 tmp = pos +k
461 c = 0
461 c = 0
462 c=c+1
462 c=c+1
463 return ang_new,ang_new2
463 return ang_new,ang_new2
464
464
465 def globalCheckPED(self,angulos):
465 def globalCheckPED(self,angulos):
466 l1,l2 = self.get2List(angulos)
466 l1,l2 = self.get2List(angulos)
467 if len(l1)>0:
467 if len(l1)>0:
468 angulos2 = self.fixData360(list_=l1,ang_=angulos)
468 angulos2 = self.fixData360(list_=l1,ang_=angulos)
469 l1,l2 = self.get2List(angulos2)
469 l1,l2 = self.get2List(angulos2)
470
470
471 ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2)
471 ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2)
472 ang1_ = self.fixData360HL(ang1_)
472 ang1_ = self.fixData360HL(ang1_)
473 ang2_ = self.fixData360HL(ang2_)
473 ang2_ = self.fixData360HL(ang2_)
474 else:
474 else:
475 ang1_= angulos
475 ang1_= angulos
476 ang2_= angulos
476 ang2_= angulos
477 return ang1_,ang2_
477 return ang1_,ang2_
478
478
479 def analizeDATA(self,data_azi):
479 def analizeDATA(self,data_azi):
480 list1 = []
480 list1 = []
481 list2 = []
481 list2 = []
482 dat = data_azi
482 dat = data_azi
483 for i in reversed(range(1,len(dat))):
483 for i in reversed(range(1,len(dat))):
484 if dat[i]>dat[i-1]:
484 if dat[i]>dat[i-1]:
485 diff = int(dat[i])-int(dat[i-1])
485 diff = int(dat[i])-int(dat[i-1])
486 else:
486 else:
487 diff = 360+int(dat[i])-int(dat[i-1])
487 diff = 360+int(dat[i])-int(dat[i-1])
488 if diff > 1:
488 if diff > 1:
489 list1.append(i-1)
489 list1.append(i-1)
490 list2.append(diff-1)
490 list2.append(diff-1)
491 return list1,list2
491 return list1,list2
492
492
493 def fixDATANEW(self,data_azi,data_weather):
493 def fixDATANEW(self,data_azi,data_weather):
494 list1,list2 = self.analizeDATA(data_azi)
494 list1,list2 = self.analizeDATA(data_azi)
495 if len(list1)== 0:
495 if len(list1)== 0:
496 return data_azi,data_weather
496 return data_azi,data_weather
497 else:
497 else:
498 resize = 0
498 resize = 0
499 for i in range(len(list2)):
499 for i in range(len(list2)):
500 resize= resize + list2[i]
500 resize= resize + list2[i]
501 new_data_azi = numpy.resize(data_azi,resize)
501 new_data_azi = numpy.resize(data_azi,resize)
502 new_data_weather= numpy.resize(date_weather,resize)
502 new_data_weather= numpy.resize(date_weather,resize)
503
503
504 for i in range(len(list2)):
504 for i in range(len(list2)):
505 j=0
505 j=0
506 position=list1[i]+1
506 position=list1[i]+1
507 for j in range(list2[i]):
507 for j in range(list2[i]):
508 new_data_azi[position+j]=new_data_azi[position+j-1]+1
508 new_data_azi[position+j]=new_data_azi[position+j-1]+1
509 return new_data_azi
509 return new_data_azi
510
510
511 def fixDATA(self,data_azi):
511 def fixDATA(self,data_azi):
512 data=data_azi
512 data=data_azi
513 for i in range(len(data)):
513 for i in range(len(data)):
514 if numpy.isnan(data[i]):
514 if numpy.isnan(data[i]):
515 data[i]=data[i-1]+1
515 data[i]=data[i-1]+1
516 return data
516 return data
517
517
518 def replaceNAN(self,data_weather,data_azi,val):
518 def replaceNAN(self,data_weather,data_azi,val):
519 data= data_azi
519 data= data_azi
520 data_T= data_weather
520 data_T= data_weather
521 if data.shape[0]> data_T.shape[0]:
521 if data.shape[0]> data_T.shape[0]:
522 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
522 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
523 c = 0
523 c = 0
524 for i in range(len(data)):
524 for i in range(len(data)):
525 if numpy.isnan(data[i]):
525 if numpy.isnan(data[i]):
526 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
526 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
527 else:
527 else:
528 data_N[i,:]=data_T[c,:]
528 data_N[i,:]=data_T[c,:]
529 c=c+1
529 c=c+1
530 return data_N
530 return data_N
531 else:
531 else:
532 for i in range(len(data)):
532 for i in range(len(data)):
533 if numpy.isnan(data[i]):
533 if numpy.isnan(data[i]):
534 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
534 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
535 return data_T
535 return data_T
536
536
537 def const_ploteo(self,data_weather,data_azi,step,res):
537 def const_ploteo(self,data_weather,data_azi,step,res):
538 if self.ini==0:
538 if self.ini==0:
539 #-------
539 #-------
540 n = (360/res)-len(data_azi)
540 n = (360/res)-len(data_azi)
541 #--------------------- new -------------------------
541 #--------------------- new -------------------------
542 data_azi_new ,data_azi_old= self.globalCheckPED(data_azi)
542 data_azi_new ,data_azi_old= self.globalCheckPED(data_azi)
543 #------------------------
543 #------------------------
544 start = data_azi_new[-1] + res
544 start = data_azi_new[-1] + res
545 end = data_azi_new[0] - res
545 end = data_azi_new[0] - res
546 #------ new
546 #------ new
547 self.last_data_azi = end
547 self.last_data_azi = end
548 if start>end:
548 if start>end:
549 end = end + 360
549 end = end + 360
550 azi_vacia = numpy.linspace(start,end,int(n))
550 azi_vacia = numpy.linspace(start,end,int(n))
551 azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
551 azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
552 data_azi = numpy.hstack((data_azi_new,azi_vacia))
552 data_azi = numpy.hstack((data_azi_new,azi_vacia))
553 # RADAR
553 # RADAR
554 val_mean = numpy.mean(data_weather[:,-1])
554 val_mean = numpy.mean(data_weather[:,-1])
555 self.val_mean = val_mean
555 self.val_mean = val_mean
556 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
556 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
557 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
557 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
558 data_weather = numpy.vstack((data_weather,data_weather_cmp))
558 data_weather = numpy.vstack((data_weather,data_weather_cmp))
559 else:
559 else:
560 # azimuth
560 # azimuth
561 flag=0
561 flag=0
562 start_azi = self.res_azi[0]
562 start_azi = self.res_azi[0]
563 #-----------new------------
563 #-----------new------------
564 data_azi ,data_azi_old= self.globalCheckPED(data_azi)
564 data_azi ,data_azi_old= self.globalCheckPED(data_azi)
565 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
565 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
566 #--------------------------
566 #--------------------------
567 start = data_azi[0]
567 start = data_azi[0]
568 end = data_azi[-1]
568 end = data_azi[-1]
569 self.last_data_azi= end
569 self.last_data_azi= end
570 if start< start_azi:
570 if start< start_azi:
571 start = start +360
571 start = start +360
572 if end <start_azi:
572 if end <start_azi:
573 end = end +360
573 end = end +360
574
574
575 pos_ini = int((start-start_azi)/res)
575 pos_ini = int((start-start_azi)/res)
576 len_azi = len(data_azi)
576 len_azi = len(data_azi)
577 if (360-pos_ini)<len_azi:
577 if (360-pos_ini)<len_azi:
578 if pos_ini+1==360:
578 if pos_ini+1==360:
579 pos_ini=0
579 pos_ini=0
580 else:
580 else:
581 flag=1
581 flag=1
582 dif= 360-pos_ini
582 dif= 360-pos_ini
583 comp= len_azi-dif
583 comp= len_azi-dif
584 #-----------------
584 #-----------------
585 if flag==0:
585 if flag==0:
586 # AZIMUTH
586 # AZIMUTH
587 self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
587 self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
588 # RADAR
588 # RADAR
589 self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
589 self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
590 else:
590 else:
591 # AZIMUTH
591 # AZIMUTH
592 self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
592 self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
593 self.res_azi[0:comp] = data_azi[dif:]
593 self.res_azi[0:comp] = data_azi[dif:]
594 # RADAR
594 # RADAR
595 self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
595 self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
596 self.res_weather[0:comp,:] = data_weather[dif:,:]
596 self.res_weather[0:comp,:] = data_weather[dif:,:]
597 flag=0
597 flag=0
598 data_azi = self.res_azi
598 data_azi = self.res_azi
599 data_weather = self.res_weather
599 data_weather = self.res_weather
600
600
601 return data_weather,data_azi
601 return data_weather,data_azi
602
602
603 def plot(self):
603 def plot(self):
604 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
604 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
605 data = self.data[-1]
605 data = self.data[-1]
606 r = self.data.yrange
606 r = self.data.yrange
607 delta_height = r[1]-r[0]
607 delta_height = r[1]-r[0]
608 r_mask = numpy.where(r>=0)[0]
608 r_mask = numpy.where(r>=0)[0]
609 r = numpy.arange(len(r_mask))*delta_height
609 r = numpy.arange(len(r_mask))*delta_height
610 self.y = 2*r
610 self.y = 2*r
611 # RADAR
611 # RADAR
612 #data_weather = data['weather']
612 #data_weather = data['weather']
613 # PEDESTAL
613 # PEDESTAL
614 #data_azi = data['azi']
614 #data_azi = data['azi']
615 res = 1
615 res = 1
616 # STEP
616 # STEP
617 step = (360/(res*data['weather'].shape[0]))
617 step = (360/(res*data['weather'].shape[0]))
618
618
619 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res)
619 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res)
620 self.res_ele = numpy.mean(data['ele'])
620 self.res_ele = numpy.mean(data['ele'])
621 ################# PLOTEO ###################
621 ################# PLOTEO ###################
622 for i,ax in enumerate(self.axes):
622 for i,ax in enumerate(self.axes):
623 if ax.firsttime:
623 if ax.firsttime:
624 plt.clf()
624 plt.clf()
625 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
625 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
626 else:
626 else:
627 plt.clf()
627 plt.clf()
628 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
628 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
629 caax = cgax.parasites[0]
629 caax = cgax.parasites[0]
630 paax = cgax.parasites[1]
630 paax = cgax.parasites[1]
631 cbar = plt.gcf().colorbar(pm, pad=0.075)
631 cbar = plt.gcf().colorbar(pm, pad=0.075)
632 caax.set_xlabel('x_range [km]')
632 caax.set_xlabel('x_range [km]')
633 caax.set_ylabel('y_range [km]')
633 caax.set_ylabel('y_range [km]')
634 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right')
634 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right')
635
635
636 self.ini= self.ini+1
636 self.ini= self.ini+1
637
637
638
638
639 class WeatherRHIPlot(Plot):
639 class WeatherRHIPlot(Plot):
640 CODE = 'weather'
640 CODE = 'weather'
641 plot_name = 'weather'
641 plot_name = 'weather'
642 plot_type = 'rhistyle'
642 plot_type = 'rhistyle'
643 buffering = False
643 buffering = False
644 data_ele_tmp = None
644 data_ele_tmp = None
645
645
646 def setup(self):
646 def setup(self):
647 print("********************")
647 print("********************")
648 print("********************")
648 print("********************")
649 print("********************")
649 print("********************")
650 print("SETUP WEATHER PLOT")
650 print("SETUP WEATHER PLOT")
651 self.ncols = 1
651 self.ncols = 1
652 self.nrows = 1
652 self.nrows = 1
653 self.nplots= 1
653 self.nplots= 1
654 self.ylabel= 'Range [Km]'
654 self.ylabel= 'Range [Km]'
655 self.titles= ['Weather']
655 self.titles= ['Weather']
656 if self.channels is not None:
656 if self.channels is not None:
657 self.nplots = len(self.channels)
657 self.nplots = len(self.channels)
658 self.nrows = len(self.channels)
658 self.nrows = len(self.channels)
659 else:
659 else:
660 self.nplots = self.data.shape(self.CODE)[0]
660 self.nplots = self.data.shape(self.CODE)[0]
661 self.nrows = self.nplots
661 self.nrows = self.nplots
662 self.channels = list(range(self.nplots))
662 self.channels = list(range(self.nplots))
663 print("channels",self.channels)
663 print("channels",self.channels)
664 print("que saldra", self.data.shape(self.CODE)[0])
664 print("que saldra", self.data.shape(self.CODE)[0])
665 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
665 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
666 print("self.titles",self.titles)
666 print("self.titles",self.titles)
667 self.colorbar=False
667 self.colorbar=False
668 self.width =8
668 self.width =8
669 self.height =8
669 self.height =8
670 self.ini =0
670 self.ini =0
671 self.len_azi =0
671 self.len_azi =0
672 self.buffer_ini = None
672 self.buffer_ini = None
673 self.buffer_ele = None
673 self.buffer_ele = None
674 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
674 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
675 self.flag =0
675 self.flag =0
676 self.indicador= 0
676 self.indicador= 0
677 self.last_data_ele = None
677 self.last_data_ele = None
678 self.val_mean = None
678 self.val_mean = None
679
679
680 def update(self, dataOut):
680 def update(self, dataOut):
681
681
682 data = {}
682 data = {}
683 meta = {}
683 meta = {}
684 if hasattr(dataOut, 'dataPP_POWER'):
684 if hasattr(dataOut, 'dataPP_POWER'):
685 factor = 1
685 factor = 1
686 if hasattr(dataOut, 'nFFTPoints'):
686 if hasattr(dataOut, 'nFFTPoints'):
687 factor = dataOut.normFactor
687 factor = dataOut.normFactor
688 print("dataOut",dataOut.data_360.shape)
688 print("dataOut",dataOut.data_360.shape)
689 #
689 #
690 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
690 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
691 #
691 #
692 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
692 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
693 data['azi'] = dataOut.data_azi
693 data['azi'] = dataOut.data_azi
694 data['ele'] = dataOut.data_ele
694 data['ele'] = dataOut.data_ele
695 #print("UPDATE")
695 #print("UPDATE")
696 #print("data[weather]",data['weather'].shape)
696 #print("data[weather]",data['weather'].shape)
697 #print("data[azi]",data['azi'])
697 #print("data[azi]",data['azi'])
698 return data, meta
698 return data, meta
699
699
700 def get2List(self,angulos):
700 def get2List(self,angulos):
701 list1=[]
701 list1=[]
702 list2=[]
702 list2=[]
703 for i in reversed(range(len(angulos))):
703 for i in reversed(range(len(angulos))):
704 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
704 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
705 diff_ = angulos[i]-angulos[i-1]
705 diff_ = angulos[i]-angulos[i-1]
706 if abs(diff_) >1.5:
706 if abs(diff_) >1.5:
707 list1.append(i-1)
707 list1.append(i-1)
708 list2.append(diff_)
708 list2.append(diff_)
709 return list(reversed(list1)),list(reversed(list2))
709 return list(reversed(list1)),list(reversed(list2))
710
710
711 def fixData90(self,list_,ang_):
711 def fixData90(self,list_,ang_):
712 if list_[0]==-1:
712 if list_[0]==-1:
713 vec = numpy.where(ang_<ang_[0])
713 vec = numpy.where(ang_<ang_[0])
714 ang_[vec] = ang_[vec]+90
714 ang_[vec] = ang_[vec]+90
715 return ang_
715 return ang_
716 return ang_
716 return ang_
717
717
718 def fixData90HL(self,angulos):
718 def fixData90HL(self,angulos):
719 vec = numpy.where(angulos>=90)
719 vec = numpy.where(angulos>=90)
720 angulos[vec]=angulos[vec]-90
720 angulos[vec]=angulos[vec]-90
721 return angulos
721 return angulos
722
722
723
723
724 def search_pos(self,pos,list_):
724 def search_pos(self,pos,list_):
725 for i in range(len(list_)):
725 for i in range(len(list_)):
726 if pos == list_[i]:
726 if pos == list_[i]:
727 return True,i
727 return True,i
728 i=None
728 i=None
729 return False,i
729 return False,i
730
730
731 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
731 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
732 size = len(ang_)
732 size = len(ang_)
733 size2 = 0
733 size2 = 0
734 for i in range(len(list2_)):
734 for i in range(len(list2_)):
735 size2=size2+round(abs(list2_[i]))-1
735 size2=size2+round(abs(list2_[i]))-1
736 new_size= size+size2
736 new_size= size+size2
737 ang_new = numpy.zeros(new_size)
737 ang_new = numpy.zeros(new_size)
738 ang_new2 = numpy.zeros(new_size)
738 ang_new2 = numpy.zeros(new_size)
739
739
740 tmp = 0
740 tmp = 0
741 c = 0
741 c = 0
742 for i in range(len(ang_)):
742 for i in range(len(ang_)):
743 ang_new[tmp +c] = ang_[i]
743 ang_new[tmp +c] = ang_[i]
744 ang_new2[tmp+c] = ang_[i]
744 ang_new2[tmp+c] = ang_[i]
745 condition , value = self.search_pos(i,list1_)
745 condition , value = self.search_pos(i,list1_)
746 if condition:
746 if condition:
747 pos = tmp + c + 1
747 pos = tmp + c + 1
748 for k in range(round(abs(list2_[value]))-1):
748 for k in range(round(abs(list2_[value]))-1):
749 if tipo_case==0 or tipo_case==3:#subida
749 if tipo_case==0 or tipo_case==3:#subida
750 ang_new[pos+k] = ang_new[pos+k-1]+1
750 ang_new[pos+k] = ang_new[pos+k-1]+1
751 ang_new2[pos+k] = numpy.nan
751 ang_new2[pos+k] = numpy.nan
752 elif tipo_case==1 or tipo_case==2:#bajada
752 elif tipo_case==1 or tipo_case==2:#bajada
753 ang_new[pos+k] = ang_new[pos+k-1]-1
753 ang_new[pos+k] = ang_new[pos+k-1]-1
754 ang_new2[pos+k] = numpy.nan
754 ang_new2[pos+k] = numpy.nan
755
755
756 tmp = pos +k
756 tmp = pos +k
757 c = 0
757 c = 0
758 c=c+1
758 c=c+1
759 return ang_new,ang_new2
759 return ang_new,ang_new2
760
760
761 def globalCheckPED(self,angulos,tipo_case):
761 def globalCheckPED(self,angulos,tipo_case):
762 l1,l2 = self.get2List(angulos)
762 l1,l2 = self.get2List(angulos)
763 ##print("l1",l1)
763 ##print("l1",l1)
764 ##print("l2",l2)
764 ##print("l2",l2)
765 if len(l1)>0:
765 if len(l1)>0:
766 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
766 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
767 #l1,l2 = self.get2List(angulos2)
767 #l1,l2 = self.get2List(angulos2)
768 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
768 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
769 #ang1_ = self.fixData90HL(ang1_)
769 #ang1_ = self.fixData90HL(ang1_)
770 #ang2_ = self.fixData90HL(ang2_)
770 #ang2_ = self.fixData90HL(ang2_)
771 else:
771 else:
772 ang1_= angulos
772 ang1_= angulos
773 ang2_= angulos
773 ang2_= angulos
774 return ang1_,ang2_
774 return ang1_,ang2_
775
775
776
776
777 def replaceNAN(self,data_weather,data_ele,val):
777 def replaceNAN(self,data_weather,data_ele,val):
778 data= data_ele
778 data= data_ele
779 data_T= data_weather
779 data_T= data_weather
780 if data.shape[0]> data_T.shape[0]:
780 if data.shape[0]> data_T.shape[0]:
781 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
781 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
782 c = 0
782 c = 0
783 for i in range(len(data)):
783 for i in range(len(data)):
784 if numpy.isnan(data[i]):
784 if numpy.isnan(data[i]):
785 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
785 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
786 else:
786 else:
787 data_N[i,:]=data_T[c,:]
787 data_N[i,:]=data_T[c,:]
788 c=c+1
788 c=c+1
789 return data_N
789 return data_N
790 else:
790 else:
791 for i in range(len(data)):
791 for i in range(len(data)):
792 if numpy.isnan(data[i]):
792 if numpy.isnan(data[i]):
793 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
793 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
794 return data_T
794 return data_T
795
795
796 def check_case(self,data_ele,ang_max,ang_min):
796 def check_case(self,data_ele,ang_max,ang_min):
797 start = data_ele[0]
797 start = data_ele[0]
798 end = data_ele[-1]
798 end = data_ele[-1]
799 number = (end-start)
799 number = (end-start)
800 len_ang=len(data_ele)
800 len_ang=len(data_ele)
801 print("start",start)
801 print("start",start)
802 print("end",end)
802 print("end",end)
803 print("number",number)
803 print("number",number)
804
804
805 print("len_ang",len_ang)
805 print("len_ang",len_ang)
806
806
807 #exit(1)
807 #exit(1)
808
808
809 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
809 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
810 return 0
810 return 0
811 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
811 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
812 # return 1
812 # return 1
813 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
813 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
814 return 1
814 return 1
815 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
815 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
816 return 2
816 return 2
817 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
817 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
818 return 3
818 return 3
819
819
820
820
821 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min):
821 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min):
822 ang_max= ang_max
822 ang_max= ang_max
823 ang_min= ang_min
823 ang_min= ang_min
824 data_weather=data_weather
824 data_weather=data_weather
825 val_ch=val_ch
825 val_ch=val_ch
826 ##print("*********************DATA WEATHER**************************************")
826 ##print("*********************DATA WEATHER**************************************")
827 ##print(data_weather)
827 ##print(data_weather)
828 if self.ini==0:
828 if self.ini==0:
829 '''
829 '''
830 print("**********************************************")
830 print("**********************************************")
831 print("**********************************************")
831 print("**********************************************")
832 print("***************ini**************")
832 print("***************ini**************")
833 print("**********************************************")
833 print("**********************************************")
834 print("**********************************************")
834 print("**********************************************")
835 '''
835 '''
836 #print("data_ele",data_ele)
836 #print("data_ele",data_ele)
837 #----------------------------------------------------------
837 #----------------------------------------------------------
838 tipo_case = self.check_case(data_ele,ang_max,ang_min)
838 tipo_case = self.check_case(data_ele,ang_max,ang_min)
839 print("check_case",tipo_case)
839 print("check_case",tipo_case)
840 #exit(1)
840 #exit(1)
841 #--------------------- new -------------------------
841 #--------------------- new -------------------------
842 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
842 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
843
843
844 #-------------------------CAMBIOS RHI---------------------------------
844 #-------------------------CAMBIOS RHI---------------------------------
845 start= ang_min
845 start= ang_min
846 end = ang_max
846 end = ang_max
847 n= (ang_max-ang_min)/res
847 n= (ang_max-ang_min)/res
848 #------ new
848 #------ new
849 self.start_data_ele = data_ele_new[0]
849 self.start_data_ele = data_ele_new[0]
850 self.end_data_ele = data_ele_new[-1]
850 self.end_data_ele = data_ele_new[-1]
851 if tipo_case==0 or tipo_case==3: # SUBIDA
851 if tipo_case==0 or tipo_case==3: # SUBIDA
852 n1= round(self.start_data_ele)- start
852 n1= round(self.start_data_ele)- start
853 n2= end - round(self.end_data_ele)
853 n2= end - round(self.end_data_ele)
854 print(self.start_data_ele)
854 print(self.start_data_ele)
855 print(self.end_data_ele)
855 print(self.end_data_ele)
856 if n1>0:
856 if n1>0:
857 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
857 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
858 ele1_nan= numpy.ones(n1)*numpy.nan
858 ele1_nan= numpy.ones(n1)*numpy.nan
859 data_ele = numpy.hstack((ele1,data_ele_new))
859 data_ele = numpy.hstack((ele1,data_ele_new))
860 print("ele1_nan",ele1_nan.shape)
860 print("ele1_nan",ele1_nan.shape)
861 print("data_ele_old",data_ele_old.shape)
861 print("data_ele_old",data_ele_old.shape)
862 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
862 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
863 if n2>0:
863 if n2>0:
864 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
864 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
865 ele2_nan= numpy.ones(n2)*numpy.nan
865 ele2_nan= numpy.ones(n2)*numpy.nan
866 data_ele = numpy.hstack((data_ele,ele2))
866 data_ele = numpy.hstack((data_ele,ele2))
867 print("ele2_nan",ele2_nan.shape)
867 print("ele2_nan",ele2_nan.shape)
868 print("data_ele_old",data_ele_old.shape)
868 print("data_ele_old",data_ele_old.shape)
869 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
869 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
870
870
871 if tipo_case==1 or tipo_case==2: # BAJADA
871 if tipo_case==1 or tipo_case==2: # BAJADA
872 data_ele_new = data_ele_new[::-1] # reversa
872 data_ele_new = data_ele_new[::-1] # reversa
873 data_ele_old = data_ele_old[::-1]# reversa
873 data_ele_old = data_ele_old[::-1]# reversa
874 data_weather = data_weather[::-1,:]# reversa
874 data_weather = data_weather[::-1,:]# reversa
875 vec= numpy.where(data_ele_new<ang_max)
875 vec= numpy.where(data_ele_new<ang_max)
876 data_ele_new = data_ele_new[vec]
876 data_ele_new = data_ele_new[vec]
877 data_ele_old = data_ele_old[vec]
877 data_ele_old = data_ele_old[vec]
878 data_weather = data_weather[vec[0]]
878 data_weather = data_weather[vec[0]]
879 vec2= numpy.where(0<data_ele_new)
879 vec2= numpy.where(0<data_ele_new)
880 data_ele_new = data_ele_new[vec2]
880 data_ele_new = data_ele_new[vec2]
881 data_ele_old = data_ele_old[vec2]
881 data_ele_old = data_ele_old[vec2]
882 data_weather = data_weather[vec2[0]]
882 data_weather = data_weather[vec2[0]]
883 self.start_data_ele = data_ele_new[0]
883 self.start_data_ele = data_ele_new[0]
884 self.end_data_ele = data_ele_new[-1]
884 self.end_data_ele = data_ele_new[-1]
885
885
886 n1= round(self.start_data_ele)- start
886 n1= round(self.start_data_ele)- start
887 n2= end - round(self.end_data_ele)-1
887 n2= end - round(self.end_data_ele)-1
888 print(self.start_data_ele)
888 print(self.start_data_ele)
889 print(self.end_data_ele)
889 print(self.end_data_ele)
890 if n1>0:
890 if n1>0:
891 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
891 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
892 ele1_nan= numpy.ones(n1)*numpy.nan
892 ele1_nan= numpy.ones(n1)*numpy.nan
893 data_ele = numpy.hstack((ele1,data_ele_new))
893 data_ele = numpy.hstack((ele1,data_ele_new))
894 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
894 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
895 if n2>0:
895 if n2>0:
896 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
896 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
897 ele2_nan= numpy.ones(n2)*numpy.nan
897 ele2_nan= numpy.ones(n2)*numpy.nan
898 data_ele = numpy.hstack((data_ele,ele2))
898 data_ele = numpy.hstack((data_ele,ele2))
899 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
899 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
900 # RADAR
900 # RADAR
901 # NOTA data_ele y data_weather es la variable que retorna
901 # NOTA data_ele y data_weather es la variable que retorna
902 val_mean = numpy.mean(data_weather[:,-1])
902 val_mean = numpy.mean(data_weather[:,-1])
903 self.val_mean = val_mean
903 self.val_mean = val_mean
904 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
904 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
905 self.data_ele_tmp[val_ch]= data_ele_old
905 self.data_ele_tmp[val_ch]= data_ele_old
906 else:
906 else:
907 #print("**********************************************")
907 #print("**********************************************")
908 #print("****************VARIABLE**********************")
908 #print("****************VARIABLE**********************")
909 #-------------------------CAMBIOS RHI---------------------------------
909 #-------------------------CAMBIOS RHI---------------------------------
910 #---------------------------------------------------------------------
910 #---------------------------------------------------------------------
911 ##print("INPUT data_ele",data_ele)
911 ##print("INPUT data_ele",data_ele)
912 flag=0
912 flag=0
913 start_ele = self.res_ele[0]
913 start_ele = self.res_ele[0]
914 tipo_case = self.check_case(data_ele,ang_max,ang_min)
914 tipo_case = self.check_case(data_ele,ang_max,ang_min)
915 #print("TIPO DE DATA",tipo_case)
915 #print("TIPO DE DATA",tipo_case)
916 #-----------new------------
916 #-----------new------------
917 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
917 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
918 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
918 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
919
919
920 #-------------------------------NEW RHI ITERATIVO-------------------------
920 #-------------------------------NEW RHI ITERATIVO-------------------------
921
921
922 if tipo_case==0 : # SUBIDA
922 if tipo_case==0 : # SUBIDA
923 vec = numpy.where(data_ele<ang_max)
923 vec = numpy.where(data_ele<ang_max)
924 data_ele = data_ele[vec]
924 data_ele = data_ele[vec]
925 data_ele_old = data_ele_old[vec]
925 data_ele_old = data_ele_old[vec]
926 data_weather = data_weather[vec[0]]
926 data_weather = data_weather[vec[0]]
927
927
928 vec2 = numpy.where(0<data_ele)
928 vec2 = numpy.where(0<data_ele)
929 data_ele= data_ele[vec2]
929 data_ele= data_ele[vec2]
930 data_ele_old= data_ele_old[vec2]
930 data_ele_old= data_ele_old[vec2]
931 ##print(data_ele_new)
931 ##print(data_ele_new)
932 data_weather= data_weather[vec2[0]]
932 data_weather= data_weather[vec2[0]]
933
933
934 new_i_ele = int(round(data_ele[0]))
934 new_i_ele = int(round(data_ele[0]))
935 new_f_ele = int(round(data_ele[-1]))
935 new_f_ele = int(round(data_ele[-1]))
936 #print(new_i_ele)
936 #print(new_i_ele)
937 #print(new_f_ele)
937 #print(new_f_ele)
938 #print(data_ele,len(data_ele))
938 #print(data_ele,len(data_ele))
939 #print(data_ele_old,len(data_ele_old))
939 #print(data_ele_old,len(data_ele_old))
940 if new_i_ele< 2:
940 if new_i_ele< 2:
941 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
941 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
942 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
942 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
943 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
943 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
944 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
944 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
945 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
945 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
946 data_ele = self.res_ele
946 data_ele = self.res_ele
947 data_weather = self.res_weather[val_ch]
947 data_weather = self.res_weather[val_ch]
948
948
949 elif tipo_case==1 : #BAJADA
949 elif tipo_case==1 : #BAJADA
950 data_ele = data_ele[::-1] # reversa
950 data_ele = data_ele[::-1] # reversa
951 data_ele_old = data_ele_old[::-1]# reversa
951 data_ele_old = data_ele_old[::-1]# reversa
952 data_weather = data_weather[::-1,:]# reversa
952 data_weather = data_weather[::-1,:]# reversa
953 vec= numpy.where(data_ele<ang_max)
953 vec= numpy.where(data_ele<ang_max)
954 data_ele = data_ele[vec]
954 data_ele = data_ele[vec]
955 data_ele_old = data_ele_old[vec]
955 data_ele_old = data_ele_old[vec]
956 data_weather = data_weather[vec[0]]
956 data_weather = data_weather[vec[0]]
957 vec2= numpy.where(0<data_ele)
957 vec2= numpy.where(0<data_ele)
958 data_ele = data_ele[vec2]
958 data_ele = data_ele[vec2]
959 data_ele_old = data_ele_old[vec2]
959 data_ele_old = data_ele_old[vec2]
960 data_weather = data_weather[vec2[0]]
960 data_weather = data_weather[vec2[0]]
961
961
962
962
963 new_i_ele = int(round(data_ele[0]))
963 new_i_ele = int(round(data_ele[0]))
964 new_f_ele = int(round(data_ele[-1]))
964 new_f_ele = int(round(data_ele[-1]))
965 #print(data_ele)
965 #print(data_ele)
966 #print(ang_max)
966 #print(ang_max)
967 #print(data_ele_old)
967 #print(data_ele_old)
968 if new_i_ele <= 1:
968 if new_i_ele <= 1:
969 new_i_ele = 1
969 new_i_ele = 1
970 if round(data_ele[-1])>=ang_max-1:
970 if round(data_ele[-1])>=ang_max-1:
971 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
971 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
972 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
972 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
973 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
973 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
974 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
974 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
975 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
975 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
976 data_ele = self.res_ele
976 data_ele = self.res_ele
977 data_weather = self.res_weather[val_ch]
977 data_weather = self.res_weather[val_ch]
978
978
979 elif tipo_case==2: #bajada
979 elif tipo_case==2: #bajada
980 vec = numpy.where(data_ele<ang_max)
980 vec = numpy.where(data_ele<ang_max)
981 data_ele = data_ele[vec]
981 data_ele = data_ele[vec]
982 data_weather= data_weather[vec[0]]
982 data_weather= data_weather[vec[0]]
983
983
984 len_vec = len(vec)
984 len_vec = len(vec)
985 data_ele_new = data_ele[::-1] # reversa
985 data_ele_new = data_ele[::-1] # reversa
986 data_weather = data_weather[::-1,:]
986 data_weather = data_weather[::-1,:]
987 new_i_ele = int(data_ele_new[0])
987 new_i_ele = int(data_ele_new[0])
988 new_f_ele = int(data_ele_new[-1])
988 new_f_ele = int(data_ele_new[-1])
989
989
990 n1= new_i_ele- ang_min
990 n1= new_i_ele- ang_min
991 n2= ang_max - new_f_ele-1
991 n2= ang_max - new_f_ele-1
992 if n1>0:
992 if n1>0:
993 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
993 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
994 ele1_nan= numpy.ones(n1)*numpy.nan
994 ele1_nan= numpy.ones(n1)*numpy.nan
995 data_ele = numpy.hstack((ele1,data_ele_new))
995 data_ele = numpy.hstack((ele1,data_ele_new))
996 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
996 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
997 if n2>0:
997 if n2>0:
998 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
998 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
999 ele2_nan= numpy.ones(n2)*numpy.nan
999 ele2_nan= numpy.ones(n2)*numpy.nan
1000 data_ele = numpy.hstack((data_ele,ele2))
1000 data_ele = numpy.hstack((data_ele,ele2))
1001 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1001 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1002
1002
1003 self.data_ele_tmp[val_ch] = data_ele_old
1003 self.data_ele_tmp[val_ch] = data_ele_old
1004 self.res_ele = data_ele
1004 self.res_ele = data_ele
1005 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1005 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1006 data_ele = self.res_ele
1006 data_ele = self.res_ele
1007 data_weather = self.res_weather[val_ch]
1007 data_weather = self.res_weather[val_ch]
1008
1008
1009 elif tipo_case==3:#subida
1009 elif tipo_case==3:#subida
1010 vec = numpy.where(0<data_ele)
1010 vec = numpy.where(0<data_ele)
1011 data_ele= data_ele[vec]
1011 data_ele= data_ele[vec]
1012 data_ele_new = data_ele
1012 data_ele_new = data_ele
1013 data_ele_old= data_ele_old[vec]
1013 data_ele_old= data_ele_old[vec]
1014 data_weather= data_weather[vec[0]]
1014 data_weather= data_weather[vec[0]]
1015 pos_ini = numpy.argmin(data_ele)
1015 pos_ini = numpy.argmin(data_ele)
1016 if pos_ini>0:
1016 if pos_ini>0:
1017 len_vec= len(data_ele)
1017 len_vec= len(data_ele)
1018 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1018 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1019 #print(vec3)
1019 #print(vec3)
1020 data_ele= data_ele[vec3]
1020 data_ele= data_ele[vec3]
1021 data_ele_new = data_ele
1021 data_ele_new = data_ele
1022 data_ele_old= data_ele_old[vec3]
1022 data_ele_old= data_ele_old[vec3]
1023 data_weather= data_weather[vec3]
1023 data_weather= data_weather[vec3]
1024
1024
1025 new_i_ele = int(data_ele_new[0])
1025 new_i_ele = int(data_ele_new[0])
1026 new_f_ele = int(data_ele_new[-1])
1026 new_f_ele = int(data_ele_new[-1])
1027 n1= new_i_ele- ang_min
1027 n1= new_i_ele- ang_min
1028 n2= ang_max - new_f_ele-1
1028 n2= ang_max - new_f_ele-1
1029 if n1>0:
1029 if n1>0:
1030 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1030 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1031 ele1_nan= numpy.ones(n1)*numpy.nan
1031 ele1_nan= numpy.ones(n1)*numpy.nan
1032 data_ele = numpy.hstack((ele1,data_ele_new))
1032 data_ele = numpy.hstack((ele1,data_ele_new))
1033 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1033 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1034 if n2>0:
1034 if n2>0:
1035 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1035 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1036 ele2_nan= numpy.ones(n2)*numpy.nan
1036 ele2_nan= numpy.ones(n2)*numpy.nan
1037 data_ele = numpy.hstack((data_ele,ele2))
1037 data_ele = numpy.hstack((data_ele,ele2))
1038 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1038 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1039
1039
1040 self.data_ele_tmp[val_ch] = data_ele_old
1040 self.data_ele_tmp[val_ch] = data_ele_old
1041 self.res_ele = data_ele
1041 self.res_ele = data_ele
1042 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1042 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1043 data_ele = self.res_ele
1043 data_ele = self.res_ele
1044 data_weather = self.res_weather[val_ch]
1044 data_weather = self.res_weather[val_ch]
1045 #print("self.data_ele_tmp",self.data_ele_tmp)
1045 #print("self.data_ele_tmp",self.data_ele_tmp)
1046 return data_weather,data_ele
1046 return data_weather,data_ele
1047
1047
1048
1048
1049 def plot(self):
1049 def plot(self):
1050 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1050 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1051 data = self.data[-1]
1051 data = self.data[-1]
1052 r = self.data.yrange
1052 r = self.data.yrange
1053 delta_height = r[1]-r[0]
1053 delta_height = r[1]-r[0]
1054 r_mask = numpy.where(r>=0)[0]
1054 r_mask = numpy.where(r>=0)[0]
1055 ##print("delta_height",delta_height)
1055 ##print("delta_height",delta_height)
1056 #print("r_mask",r_mask,len(r_mask))
1056 #print("r_mask",r_mask,len(r_mask))
1057 r = numpy.arange(len(r_mask))*delta_height
1057 r = numpy.arange(len(r_mask))*delta_height
1058 self.y = 2*r
1058 self.y = 2*r
1059 res = 1
1059 res = 1
1060 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1060 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1061 ang_max = self.ang_max
1061 ang_max = self.ang_max
1062 ang_min = self.ang_min
1062 ang_min = self.ang_min
1063 var_ang =ang_max - ang_min
1063 var_ang =ang_max - ang_min
1064 step = (int(var_ang)/(res*data['weather'].shape[0]))
1064 step = (int(var_ang)/(res*data['weather'].shape[0]))
1065 ###print("step",step)
1065 ###print("step",step)
1066 #--------------------------------------------------------
1066 #--------------------------------------------------------
1067 ##print('weather',data['weather'].shape)
1067 ##print('weather',data['weather'].shape)
1068 ##print('ele',data['ele'].shape)
1068 ##print('ele',data['ele'].shape)
1069
1069
1070 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1070 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1071 ###self.res_azi = numpy.mean(data['azi'])
1071 ###self.res_azi = numpy.mean(data['azi'])
1072 ###print("self.res_ele",self.res_ele)
1072 ###print("self.res_ele",self.res_ele)
1073 plt.clf()
1073 plt.clf()
1074 subplots = [121, 122]
1074 subplots = [121, 122]
1075 if self.ini==0:
1075 if self.ini==0:
1076 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1076 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1077 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1077 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1078 print("SHAPE",self.data_ele_tmp.shape)
1078 print("SHAPE",self.data_ele_tmp.shape)
1079
1079
1080 for i,ax in enumerate(self.axes):
1080 for i,ax in enumerate(self.axes):
1081 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1081 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1082 self.res_azi = numpy.mean(data['azi'])
1082 self.res_azi = numpy.mean(data['azi'])
1083 if i==0:
1083 if i==0:
1084 print("*****************************************************************************to plot**************************",self.res_weather[i].shape)
1084 print("*****************************************************************************to plot**************************",self.res_weather[i].shape)
1085 if ax.firsttime:
1085 if ax.firsttime:
1086 #plt.clf()
1086 #plt.clf()
1087 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1087 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1088 #fig=self.figures[0]
1088 #fig=self.figures[0]
1089 else:
1089 else:
1090 #plt.clf()
1090 #plt.clf()
1091 if i==0:
1091 if i==0:
1092 print(self.res_weather[i])
1092 print(self.res_weather[i])
1093 print(self.res_ele)
1093 print(self.res_ele)
1094 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1094 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1095 caax = cgax.parasites[0]
1095 caax = cgax.parasites[0]
1096 paax = cgax.parasites[1]
1096 paax = cgax.parasites[1]
1097 cbar = plt.gcf().colorbar(pm, pad=0.075)
1097 cbar = plt.gcf().colorbar(pm, pad=0.075)
1098 caax.set_xlabel('x_range [km]')
1098 caax.set_xlabel('x_range [km]')
1099 caax.set_ylabel('y_range [km]')
1099 caax.set_ylabel('y_range [km]')
1100 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1100 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1101 print("***************************self.ini****************************",self.ini)
1101 print("***************************self.ini****************************",self.ini)
1102 self.ini= self.ini+1
1102 self.ini= self.ini+1
1103
1103
1104 class WeatherRHI_vRF2_Plot(Plot):
1104 class WeatherRHI_vRF2_Plot(Plot):
1105 CODE = 'weather'
1105 CODE = 'weather'
1106 plot_name = 'weather'
1106 plot_name = 'weather'
1107 plot_type = 'rhistyle'
1107 plot_type = 'rhistyle'
1108 buffering = False
1108 buffering = False
1109 data_ele_tmp = None
1109 data_ele_tmp = None
1110
1110
1111 def setup(self):
1111 def setup(self):
1112 print("********************")
1112 print("********************")
1113 print("********************")
1113 print("********************")
1114 print("********************")
1114 print("********************")
1115 print("SETUP WEATHER PLOT")
1115 print("SETUP WEATHER PLOT")
1116 self.ncols = 1
1116 self.ncols = 1
1117 self.nrows = 1
1117 self.nrows = 1
1118 self.nplots= 1
1118 self.nplots= 1
1119 self.ylabel= 'Range [Km]'
1119 self.ylabel= 'Range [Km]'
1120 self.titles= ['Weather']
1120 self.titles= ['Weather']
1121 if self.channels is not None:
1121 if self.channels is not None:
1122 self.nplots = len(self.channels)
1122 self.nplots = len(self.channels)
1123 self.nrows = len(self.channels)
1123 self.nrows = len(self.channels)
1124 else:
1124 else:
1125 self.nplots = self.data.shape(self.CODE)[0]
1125 self.nplots = self.data.shape(self.CODE)[0]
1126 self.nrows = self.nplots
1126 self.nrows = self.nplots
1127 self.channels = list(range(self.nplots))
1127 self.channels = list(range(self.nplots))
1128 print("channels",self.channels)
1128 print("channels",self.channels)
1129 print("que saldra", self.data.shape(self.CODE)[0])
1129 print("que saldra", self.data.shape(self.CODE)[0])
1130 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1130 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1131 print("self.titles",self.titles)
1131 print("self.titles",self.titles)
1132 self.colorbar=False
1132 self.colorbar=False
1133 self.width =8
1133 self.width =8
1134 self.height =8
1134 self.height =8
1135 self.ini =0
1135 self.ini =0
1136 self.len_azi =0
1136 self.len_azi =0
1137 self.buffer_ini = None
1137 self.buffer_ini = None
1138 self.buffer_ele = None
1138 self.buffer_ele = None
1139 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1139 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1140 self.flag =0
1140 self.flag =0
1141 self.indicador= 0
1141 self.indicador= 0
1142 self.last_data_ele = None
1142 self.last_data_ele = None
1143 self.val_mean = None
1143 self.val_mean = None
1144
1144
1145 def update(self, dataOut):
1145 def update(self, dataOut):
1146
1146
1147 data = {}
1147 data = {}
1148 meta = {}
1148 meta = {}
1149 if hasattr(dataOut, 'dataPP_POWER'):
1149 if hasattr(dataOut, 'dataPP_POWER'):
1150 factor = 1
1150 factor = 1
1151 if hasattr(dataOut, 'nFFTPoints'):
1151 if hasattr(dataOut, 'nFFTPoints'):
1152 factor = dataOut.normFactor
1152 factor = dataOut.normFactor
1153 print("dataOut",dataOut.data_360.shape)
1153 print("dataOut",dataOut.data_360.shape)
1154 #
1154 #
1155 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1155 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1156 #
1156 #
1157 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1157 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1158 data['azi'] = dataOut.data_azi
1158 data['azi'] = dataOut.data_azi
1159 data['ele'] = dataOut.data_ele
1159 data['ele'] = dataOut.data_ele
1160 data['case_flag'] = dataOut.case_flag
1160 data['case_flag'] = dataOut.case_flag
1161 #print("UPDATE")
1161 #print("UPDATE")
1162 #print("data[weather]",data['weather'].shape)
1162 #print("data[weather]",data['weather'].shape)
1163 #print("data[azi]",data['azi'])
1163 #print("data[azi]",data['azi'])
1164 return data, meta
1164 return data, meta
1165
1165
1166 def get2List(self,angulos):
1166 def get2List(self,angulos):
1167 list1=[]
1167 list1=[]
1168 list2=[]
1168 list2=[]
1169 for i in reversed(range(len(angulos))):
1169 for i in reversed(range(len(angulos))):
1170 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1170 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1171 diff_ = angulos[i]-angulos[i-1]
1171 diff_ = angulos[i]-angulos[i-1]
1172 if abs(diff_) >1.5:
1172 if abs(diff_) >1.5:
1173 list1.append(i-1)
1173 list1.append(i-1)
1174 list2.append(diff_)
1174 list2.append(diff_)
1175 return list(reversed(list1)),list(reversed(list2))
1175 return list(reversed(list1)),list(reversed(list2))
1176
1176
1177 def fixData90(self,list_,ang_):
1177 def fixData90(self,list_,ang_):
1178 if list_[0]==-1:
1178 if list_[0]==-1:
1179 vec = numpy.where(ang_<ang_[0])
1179 vec = numpy.where(ang_<ang_[0])
1180 ang_[vec] = ang_[vec]+90
1180 ang_[vec] = ang_[vec]+90
1181 return ang_
1181 return ang_
1182 return ang_
1182 return ang_
1183
1183
1184 def fixData90HL(self,angulos):
1184 def fixData90HL(self,angulos):
1185 vec = numpy.where(angulos>=90)
1185 vec = numpy.where(angulos>=90)
1186 angulos[vec]=angulos[vec]-90
1186 angulos[vec]=angulos[vec]-90
1187 return angulos
1187 return angulos
1188
1188
1189
1189
1190 def search_pos(self,pos,list_):
1190 def search_pos(self,pos,list_):
1191 for i in range(len(list_)):
1191 for i in range(len(list_)):
1192 if pos == list_[i]:
1192 if pos == list_[i]:
1193 return True,i
1193 return True,i
1194 i=None
1194 i=None
1195 return False,i
1195 return False,i
1196
1196
1197 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1197 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1198 size = len(ang_)
1198 size = len(ang_)
1199 size2 = 0
1199 size2 = 0
1200 for i in range(len(list2_)):
1200 for i in range(len(list2_)):
1201 size2=size2+round(abs(list2_[i]))-1
1201 size2=size2+round(abs(list2_[i]))-1
1202 new_size= size+size2
1202 new_size= size+size2
1203 ang_new = numpy.zeros(new_size)
1203 ang_new = numpy.zeros(new_size)
1204 ang_new2 = numpy.zeros(new_size)
1204 ang_new2 = numpy.zeros(new_size)
1205
1205
1206 tmp = 0
1206 tmp = 0
1207 c = 0
1207 c = 0
1208 for i in range(len(ang_)):
1208 for i in range(len(ang_)):
1209 ang_new[tmp +c] = ang_[i]
1209 ang_new[tmp +c] = ang_[i]
1210 ang_new2[tmp+c] = ang_[i]
1210 ang_new2[tmp+c] = ang_[i]
1211 condition , value = self.search_pos(i,list1_)
1211 condition , value = self.search_pos(i,list1_)
1212 if condition:
1212 if condition:
1213 pos = tmp + c + 1
1213 pos = tmp + c + 1
1214 for k in range(round(abs(list2_[value]))-1):
1214 for k in range(round(abs(list2_[value]))-1):
1215 if tipo_case==0 or tipo_case==3:#subida
1215 if tipo_case==0 or tipo_case==3:#subida
1216 ang_new[pos+k] = ang_new[pos+k-1]+1
1216 ang_new[pos+k] = ang_new[pos+k-1]+1
1217 ang_new2[pos+k] = numpy.nan
1217 ang_new2[pos+k] = numpy.nan
1218 elif tipo_case==1 or tipo_case==2:#bajada
1218 elif tipo_case==1 or tipo_case==2:#bajada
1219 ang_new[pos+k] = ang_new[pos+k-1]-1
1219 ang_new[pos+k] = ang_new[pos+k-1]-1
1220 ang_new2[pos+k] = numpy.nan
1220 ang_new2[pos+k] = numpy.nan
1221
1221
1222 tmp = pos +k
1222 tmp = pos +k
1223 c = 0
1223 c = 0
1224 c=c+1
1224 c=c+1
1225 return ang_new,ang_new2
1225 return ang_new,ang_new2
1226
1226
1227 def globalCheckPED(self,angulos,tipo_case):
1227 def globalCheckPED(self,angulos,tipo_case):
1228 l1,l2 = self.get2List(angulos)
1228 l1,l2 = self.get2List(angulos)
1229 ##print("l1",l1)
1229 ##print("l1",l1)
1230 ##print("l2",l2)
1230 ##print("l2",l2)
1231 if len(l1)>0:
1231 if len(l1)>0:
1232 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1232 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1233 #l1,l2 = self.get2List(angulos2)
1233 #l1,l2 = self.get2List(angulos2)
1234 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1234 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1235 #ang1_ = self.fixData90HL(ang1_)
1235 #ang1_ = self.fixData90HL(ang1_)
1236 #ang2_ = self.fixData90HL(ang2_)
1236 #ang2_ = self.fixData90HL(ang2_)
1237 else:
1237 else:
1238 ang1_= angulos
1238 ang1_= angulos
1239 ang2_= angulos
1239 ang2_= angulos
1240 return ang1_,ang2_
1240 return ang1_,ang2_
1241
1241
1242
1242
1243 def replaceNAN(self,data_weather,data_ele,val):
1243 def replaceNAN(self,data_weather,data_ele,val):
1244 data= data_ele
1244 data= data_ele
1245 data_T= data_weather
1245 data_T= data_weather
1246 if data.shape[0]> data_T.shape[0]:
1246 if data.shape[0]> data_T.shape[0]:
1247 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1247 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1248 c = 0
1248 c = 0
1249 for i in range(len(data)):
1249 for i in range(len(data)):
1250 if numpy.isnan(data[i]):
1250 if numpy.isnan(data[i]):
1251 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1251 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1252 else:
1252 else:
1253 data_N[i,:]=data_T[c,:]
1253 data_N[i,:]=data_T[c,:]
1254 c=c+1
1254 c=c+1
1255 return data_N
1255 return data_N
1256 else:
1256 else:
1257 for i in range(len(data)):
1257 for i in range(len(data)):
1258 if numpy.isnan(data[i]):
1258 if numpy.isnan(data[i]):
1259 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1259 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1260 return data_T
1260 return data_T
1261
1261
1262 def check_case(self,data_ele,ang_max,ang_min):
1262 def check_case(self,data_ele,ang_max,ang_min):
1263 start = data_ele[0]
1263 start = data_ele[0]
1264 end = data_ele[-1]
1264 end = data_ele[-1]
1265 number = (end-start)
1265 number = (end-start)
1266 len_ang=len(data_ele)
1266 len_ang=len(data_ele)
1267 print("start",start)
1267 print("start",start)
1268 print("end",end)
1268 print("end",end)
1269 print("number",number)
1269 print("number",number)
1270
1270
1271 print("len_ang",len_ang)
1271 print("len_ang",len_ang)
1272
1272
1273 #exit(1)
1273 #exit(1)
1274
1274
1275 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
1275 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
1276 return 0
1276 return 0
1277 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
1277 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
1278 # return 1
1278 # return 1
1279 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
1279 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
1280 return 1
1280 return 1
1281 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
1281 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
1282 return 2
1282 return 2
1283 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
1283 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
1284 return 3
1284 return 3
1285
1285
1286
1286
1287 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1287 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1288 ang_max= ang_max
1288 ang_max= ang_max
1289 ang_min= ang_min
1289 ang_min= ang_min
1290 data_weather=data_weather
1290 data_weather=data_weather
1291 val_ch=val_ch
1291 val_ch=val_ch
1292 ##print("*********************DATA WEATHER**************************************")
1292 ##print("*********************DATA WEATHER**************************************")
1293 ##print(data_weather)
1293 ##print(data_weather)
1294 if self.ini==0:
1294 if self.ini==0:
1295 '''
1295 '''
1296 print("**********************************************")
1296 print("**********************************************")
1297 print("**********************************************")
1297 print("**********************************************")
1298 print("***************ini**************")
1298 print("***************ini**************")
1299 print("**********************************************")
1299 print("**********************************************")
1300 print("**********************************************")
1300 print("**********************************************")
1301 '''
1301 '''
1302 #print("data_ele",data_ele)
1302 #print("data_ele",data_ele)
1303 #----------------------------------------------------------
1303 #----------------------------------------------------------
1304 tipo_case = case_flag[-1]
1304 tipo_case = case_flag[-1]
1305 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1305 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1306 print("check_case",tipo_case)
1306 print("check_case",tipo_case)
1307 #exit(1)
1307 #exit(1)
1308 #--------------------- new -------------------------
1308 #--------------------- new -------------------------
1309 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1309 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1310
1310
1311 #-------------------------CAMBIOS RHI---------------------------------
1311 #-------------------------CAMBIOS RHI---------------------------------
1312 start= ang_min
1312 start= ang_min
1313 end = ang_max
1313 end = ang_max
1314 n= (ang_max-ang_min)/res
1314 n= (ang_max-ang_min)/res
1315 #------ new
1315 #------ new
1316 self.start_data_ele = data_ele_new[0]
1316 self.start_data_ele = data_ele_new[0]
1317 self.end_data_ele = data_ele_new[-1]
1317 self.end_data_ele = data_ele_new[-1]
1318 if tipo_case==0 or tipo_case==3: # SUBIDA
1318 if tipo_case==0 or tipo_case==3: # SUBIDA
1319 n1= round(self.start_data_ele)- start
1319 n1= round(self.start_data_ele)- start
1320 n2= end - round(self.end_data_ele)
1320 n2= end - round(self.end_data_ele)
1321 print(self.start_data_ele)
1321 print(self.start_data_ele)
1322 print(self.end_data_ele)
1322 print(self.end_data_ele)
1323 if n1>0:
1323 if n1>0:
1324 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1324 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1325 ele1_nan= numpy.ones(n1)*numpy.nan
1325 ele1_nan= numpy.ones(n1)*numpy.nan
1326 data_ele = numpy.hstack((ele1,data_ele_new))
1326 data_ele = numpy.hstack((ele1,data_ele_new))
1327 print("ele1_nan",ele1_nan.shape)
1327 print("ele1_nan",ele1_nan.shape)
1328 print("data_ele_old",data_ele_old.shape)
1328 print("data_ele_old",data_ele_old.shape)
1329 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1329 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1330 if n2>0:
1330 if n2>0:
1331 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1331 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1332 ele2_nan= numpy.ones(n2)*numpy.nan
1332 ele2_nan= numpy.ones(n2)*numpy.nan
1333 data_ele = numpy.hstack((data_ele,ele2))
1333 data_ele = numpy.hstack((data_ele,ele2))
1334 print("ele2_nan",ele2_nan.shape)
1334 print("ele2_nan",ele2_nan.shape)
1335 print("data_ele_old",data_ele_old.shape)
1335 print("data_ele_old",data_ele_old.shape)
1336 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1336 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1337
1337
1338 if tipo_case==1 or tipo_case==2: # BAJADA
1338 if tipo_case==1 or tipo_case==2: # BAJADA
1339 data_ele_new = data_ele_new[::-1] # reversa
1339 data_ele_new = data_ele_new[::-1] # reversa
1340 data_ele_old = data_ele_old[::-1]# reversa
1340 data_ele_old = data_ele_old[::-1]# reversa
1341 data_weather = data_weather[::-1,:]# reversa
1341 data_weather = data_weather[::-1,:]# reversa
1342 vec= numpy.where(data_ele_new<ang_max)
1342 vec= numpy.where(data_ele_new<ang_max)
1343 data_ele_new = data_ele_new[vec]
1343 data_ele_new = data_ele_new[vec]
1344 data_ele_old = data_ele_old[vec]
1344 data_ele_old = data_ele_old[vec]
1345 data_weather = data_weather[vec[0]]
1345 data_weather = data_weather[vec[0]]
1346 vec2= numpy.where(0<data_ele_new)
1346 vec2= numpy.where(0<data_ele_new)
1347 data_ele_new = data_ele_new[vec2]
1347 data_ele_new = data_ele_new[vec2]
1348 data_ele_old = data_ele_old[vec2]
1348 data_ele_old = data_ele_old[vec2]
1349 data_weather = data_weather[vec2[0]]
1349 data_weather = data_weather[vec2[0]]
1350 self.start_data_ele = data_ele_new[0]
1350 self.start_data_ele = data_ele_new[0]
1351 self.end_data_ele = data_ele_new[-1]
1351 self.end_data_ele = data_ele_new[-1]
1352
1352
1353 n1= round(self.start_data_ele)- start
1353 n1= round(self.start_data_ele)- start
1354 n2= end - round(self.end_data_ele)-1
1354 n2= end - round(self.end_data_ele)-1
1355 print(self.start_data_ele)
1355 print(self.start_data_ele)
1356 print(self.end_data_ele)
1356 print(self.end_data_ele)
1357 if n1>0:
1357 if n1>0:
1358 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1358 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1359 ele1_nan= numpy.ones(n1)*numpy.nan
1359 ele1_nan= numpy.ones(n1)*numpy.nan
1360 data_ele = numpy.hstack((ele1,data_ele_new))
1360 data_ele = numpy.hstack((ele1,data_ele_new))
1361 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1361 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1362 if n2>0:
1362 if n2>0:
1363 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1363 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1364 ele2_nan= numpy.ones(n2)*numpy.nan
1364 ele2_nan= numpy.ones(n2)*numpy.nan
1365 data_ele = numpy.hstack((data_ele,ele2))
1365 data_ele = numpy.hstack((data_ele,ele2))
1366 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1366 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1367 # RADAR
1367 # RADAR
1368 # NOTA data_ele y data_weather es la variable que retorna
1368 # NOTA data_ele y data_weather es la variable que retorna
1369 val_mean = numpy.mean(data_weather[:,-1])
1369 val_mean = numpy.mean(data_weather[:,-1])
1370 self.val_mean = val_mean
1370 self.val_mean = val_mean
1371 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1371 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1372 print("eleold",data_ele_old)
1372 print("eleold",data_ele_old)
1373 print(self.data_ele_tmp[val_ch])
1373 print(self.data_ele_tmp[val_ch])
1374 print(data_ele_old.shape[0])
1374 print(data_ele_old.shape[0])
1375 print(self.data_ele_tmp[val_ch].shape[0])
1375 print(self.data_ele_tmp[val_ch].shape[0])
1376 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
1376 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
1377 import sys
1377 import sys
1378 print("EXIT",self.ini)
1378 print("EXIT",self.ini)
1379
1379
1380 sys.exit(1)
1380 sys.exit(1)
1381 self.data_ele_tmp[val_ch]= data_ele_old
1381 self.data_ele_tmp[val_ch]= data_ele_old
1382 else:
1382 else:
1383 #print("**********************************************")
1383 #print("**********************************************")
1384 #print("****************VARIABLE**********************")
1384 #print("****************VARIABLE**********************")
1385 #-------------------------CAMBIOS RHI---------------------------------
1385 #-------------------------CAMBIOS RHI---------------------------------
1386 #---------------------------------------------------------------------
1386 #---------------------------------------------------------------------
1387 ##print("INPUT data_ele",data_ele)
1387 ##print("INPUT data_ele",data_ele)
1388 flag=0
1388 flag=0
1389 start_ele = self.res_ele[0]
1389 start_ele = self.res_ele[0]
1390 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1390 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1391 tipo_case = case_flag[-1]
1391 tipo_case = case_flag[-1]
1392 #print("TIPO DE DATA",tipo_case)
1392 #print("TIPO DE DATA",tipo_case)
1393 #-----------new------------
1393 #-----------new------------
1394 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
1394 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
1395 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1395 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1396
1396
1397 #-------------------------------NEW RHI ITERATIVO-------------------------
1397 #-------------------------------NEW RHI ITERATIVO-------------------------
1398
1398
1399 if tipo_case==0 : # SUBIDA
1399 if tipo_case==0 : # SUBIDA
1400 vec = numpy.where(data_ele<ang_max)
1400 vec = numpy.where(data_ele<ang_max)
1401 data_ele = data_ele[vec]
1401 data_ele = data_ele[vec]
1402 data_ele_old = data_ele_old[vec]
1402 data_ele_old = data_ele_old[vec]
1403 data_weather = data_weather[vec[0]]
1403 data_weather = data_weather[vec[0]]
1404
1404
1405 vec2 = numpy.where(0<data_ele)
1405 vec2 = numpy.where(0<data_ele)
1406 data_ele= data_ele[vec2]
1406 data_ele= data_ele[vec2]
1407 data_ele_old= data_ele_old[vec2]
1407 data_ele_old= data_ele_old[vec2]
1408 ##print(data_ele_new)
1408 ##print(data_ele_new)
1409 data_weather= data_weather[vec2[0]]
1409 data_weather= data_weather[vec2[0]]
1410
1410
1411 new_i_ele = int(round(data_ele[0]))
1411 new_i_ele = int(round(data_ele[0]))
1412 new_f_ele = int(round(data_ele[-1]))
1412 new_f_ele = int(round(data_ele[-1]))
1413 #print(new_i_ele)
1413 #print(new_i_ele)
1414 #print(new_f_ele)
1414 #print(new_f_ele)
1415 #print(data_ele,len(data_ele))
1415 #print(data_ele,len(data_ele))
1416 #print(data_ele_old,len(data_ele_old))
1416 #print(data_ele_old,len(data_ele_old))
1417 if new_i_ele< 2:
1417 if new_i_ele< 2:
1418 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1418 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1419 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1419 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1420 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
1420 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
1421 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
1421 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
1422 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
1422 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
1423 data_ele = self.res_ele
1423 data_ele = self.res_ele
1424 data_weather = self.res_weather[val_ch]
1424 data_weather = self.res_weather[val_ch]
1425
1425
1426 elif tipo_case==1 : #BAJADA
1426 elif tipo_case==1 : #BAJADA
1427 data_ele = data_ele[::-1] # reversa
1427 data_ele = data_ele[::-1] # reversa
1428 data_ele_old = data_ele_old[::-1]# reversa
1428 data_ele_old = data_ele_old[::-1]# reversa
1429 data_weather = data_weather[::-1,:]# reversa
1429 data_weather = data_weather[::-1,:]# reversa
1430 vec= numpy.where(data_ele<ang_max)
1430 vec= numpy.where(data_ele<ang_max)
1431 data_ele = data_ele[vec]
1431 data_ele = data_ele[vec]
1432 data_ele_old = data_ele_old[vec]
1432 data_ele_old = data_ele_old[vec]
1433 data_weather = data_weather[vec[0]]
1433 data_weather = data_weather[vec[0]]
1434 vec2= numpy.where(0<data_ele)
1434 vec2= numpy.where(0<data_ele)
1435 data_ele = data_ele[vec2]
1435 data_ele = data_ele[vec2]
1436 data_ele_old = data_ele_old[vec2]
1436 data_ele_old = data_ele_old[vec2]
1437 data_weather = data_weather[vec2[0]]
1437 data_weather = data_weather[vec2[0]]
1438
1438
1439
1439
1440 new_i_ele = int(round(data_ele[0]))
1440 new_i_ele = int(round(data_ele[0]))
1441 new_f_ele = int(round(data_ele[-1]))
1441 new_f_ele = int(round(data_ele[-1]))
1442 #print(data_ele)
1442 #print(data_ele)
1443 #print(ang_max)
1443 #print(ang_max)
1444 #print(data_ele_old)
1444 #print(data_ele_old)
1445 if new_i_ele <= 1:
1445 if new_i_ele <= 1:
1446 new_i_ele = 1
1446 new_i_ele = 1
1447 if round(data_ele[-1])>=ang_max-1:
1447 if round(data_ele[-1])>=ang_max-1:
1448 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1448 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1449 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1449 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1450 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
1450 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
1451 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
1451 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
1452 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
1452 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
1453 data_ele = self.res_ele
1453 data_ele = self.res_ele
1454 data_weather = self.res_weather[val_ch]
1454 data_weather = self.res_weather[val_ch]
1455
1455
1456 elif tipo_case==2: #bajada
1456 elif tipo_case==2: #bajada
1457 vec = numpy.where(data_ele<ang_max)
1457 vec = numpy.where(data_ele<ang_max)
1458 data_ele = data_ele[vec]
1458 data_ele = data_ele[vec]
1459 data_weather= data_weather[vec[0]]
1459 data_weather= data_weather[vec[0]]
1460
1460
1461 len_vec = len(vec)
1461 len_vec = len(vec)
1462 data_ele_new = data_ele[::-1] # reversa
1462 data_ele_new = data_ele[::-1] # reversa
1463 data_weather = data_weather[::-1,:]
1463 data_weather = data_weather[::-1,:]
1464 new_i_ele = int(data_ele_new[0])
1464 new_i_ele = int(data_ele_new[0])
1465 new_f_ele = int(data_ele_new[-1])
1465 new_f_ele = int(data_ele_new[-1])
1466
1466
1467 n1= new_i_ele- ang_min
1467 n1= new_i_ele- ang_min
1468 n2= ang_max - new_f_ele-1
1468 n2= ang_max - new_f_ele-1
1469 if n1>0:
1469 if n1>0:
1470 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1470 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1471 ele1_nan= numpy.ones(n1)*numpy.nan
1471 ele1_nan= numpy.ones(n1)*numpy.nan
1472 data_ele = numpy.hstack((ele1,data_ele_new))
1472 data_ele = numpy.hstack((ele1,data_ele_new))
1473 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1473 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1474 if n2>0:
1474 if n2>0:
1475 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1475 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1476 ele2_nan= numpy.ones(n2)*numpy.nan
1476 ele2_nan= numpy.ones(n2)*numpy.nan
1477 data_ele = numpy.hstack((data_ele,ele2))
1477 data_ele = numpy.hstack((data_ele,ele2))
1478 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1478 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1479
1479
1480 self.data_ele_tmp[val_ch] = data_ele_old
1480 self.data_ele_tmp[val_ch] = data_ele_old
1481 self.res_ele = data_ele
1481 self.res_ele = data_ele
1482 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1482 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1483 data_ele = self.res_ele
1483 data_ele = self.res_ele
1484 data_weather = self.res_weather[val_ch]
1484 data_weather = self.res_weather[val_ch]
1485
1485
1486 elif tipo_case==3:#subida
1486 elif tipo_case==3:#subida
1487 vec = numpy.where(0<data_ele)
1487 vec = numpy.where(0<data_ele)
1488 data_ele= data_ele[vec]
1488 data_ele= data_ele[vec]
1489 data_ele_new = data_ele
1489 data_ele_new = data_ele
1490 data_ele_old= data_ele_old[vec]
1490 data_ele_old= data_ele_old[vec]
1491 data_weather= data_weather[vec[0]]
1491 data_weather= data_weather[vec[0]]
1492 pos_ini = numpy.argmin(data_ele)
1492 pos_ini = numpy.argmin(data_ele)
1493 if pos_ini>0:
1493 if pos_ini>0:
1494 len_vec= len(data_ele)
1494 len_vec= len(data_ele)
1495 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1495 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1496 #print(vec3)
1496 #print(vec3)
1497 data_ele= data_ele[vec3]
1497 data_ele= data_ele[vec3]
1498 data_ele_new = data_ele
1498 data_ele_new = data_ele
1499 data_ele_old= data_ele_old[vec3]
1499 data_ele_old= data_ele_old[vec3]
1500 data_weather= data_weather[vec3]
1500 data_weather= data_weather[vec3]
1501
1501
1502 new_i_ele = int(data_ele_new[0])
1502 new_i_ele = int(data_ele_new[0])
1503 new_f_ele = int(data_ele_new[-1])
1503 new_f_ele = int(data_ele_new[-1])
1504 n1= new_i_ele- ang_min
1504 n1= new_i_ele- ang_min
1505 n2= ang_max - new_f_ele-1
1505 n2= ang_max - new_f_ele-1
1506 if n1>0:
1506 if n1>0:
1507 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1507 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1508 ele1_nan= numpy.ones(n1)*numpy.nan
1508 ele1_nan= numpy.ones(n1)*numpy.nan
1509 data_ele = numpy.hstack((ele1,data_ele_new))
1509 data_ele = numpy.hstack((ele1,data_ele_new))
1510 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1510 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1511 if n2>0:
1511 if n2>0:
1512 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1512 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1513 ele2_nan= numpy.ones(n2)*numpy.nan
1513 ele2_nan= numpy.ones(n2)*numpy.nan
1514 data_ele = numpy.hstack((data_ele,ele2))
1514 data_ele = numpy.hstack((data_ele,ele2))
1515 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1515 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1516
1516
1517 self.data_ele_tmp[val_ch] = data_ele_old
1517 self.data_ele_tmp[val_ch] = data_ele_old
1518 self.res_ele = data_ele
1518 self.res_ele = data_ele
1519 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1519 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1520 data_ele = self.res_ele
1520 data_ele = self.res_ele
1521 data_weather = self.res_weather[val_ch]
1521 data_weather = self.res_weather[val_ch]
1522 #print("self.data_ele_tmp",self.data_ele_tmp)
1522 #print("self.data_ele_tmp",self.data_ele_tmp)
1523 return data_weather,data_ele
1523 return data_weather,data_ele
1524
1524
1525
1525
1526 def plot(self):
1526 def plot(self):
1527 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1527 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1528 data = self.data[-1]
1528 data = self.data[-1]
1529 r = self.data.yrange
1529 r = self.data.yrange
1530 delta_height = r[1]-r[0]
1530 delta_height = r[1]-r[0]
1531 r_mask = numpy.where(r>=0)[0]
1531 r_mask = numpy.where(r>=0)[0]
1532 ##print("delta_height",delta_height)
1532 ##print("delta_height",delta_height)
1533 #print("r_mask",r_mask,len(r_mask))
1533 #print("r_mask",r_mask,len(r_mask))
1534 r = numpy.arange(len(r_mask))*delta_height
1534 r = numpy.arange(len(r_mask))*delta_height
1535 self.y = 2*r
1535 self.y = 2*r
1536 res = 1
1536 res = 1
1537 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1537 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1538 ang_max = self.ang_max
1538 ang_max = self.ang_max
1539 ang_min = self.ang_min
1539 ang_min = self.ang_min
1540 var_ang =ang_max - ang_min
1540 var_ang =ang_max - ang_min
1541 step = (int(var_ang)/(res*data['weather'].shape[0]))
1541 step = (int(var_ang)/(res*data['weather'].shape[0]))
1542 ###print("step",step)
1542 ###print("step",step)
1543 #--------------------------------------------------------
1543 #--------------------------------------------------------
1544 ##print('weather',data['weather'].shape)
1544 ##print('weather',data['weather'].shape)
1545 ##print('ele',data['ele'].shape)
1545 ##print('ele',data['ele'].shape)
1546
1546
1547 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1547 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1548 ###self.res_azi = numpy.mean(data['azi'])
1548 ###self.res_azi = numpy.mean(data['azi'])
1549 ###print("self.res_ele",self.res_ele)
1549 ###print("self.res_ele",self.res_ele)
1550 plt.clf()
1550 plt.clf()
1551 subplots = [121, 122]
1551 subplots = [121, 122]
1552 try:
1552 try:
1553 if self.data[-2]['ele'].max()<data['ele'].max():
1553 if self.data[-2]['ele'].max()<data['ele'].max():
1554 self.ini=0
1554 self.ini=0
1555 except:
1555 except:
1556 pass
1556 pass
1557 if self.ini==0:
1557 if self.ini==0:
1558 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1558 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1559 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1559 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1560 print("SHAPE",self.data_ele_tmp.shape)
1560 print("SHAPE",self.data_ele_tmp.shape)
1561
1561
1562 for i,ax in enumerate(self.axes):
1562 for i,ax in enumerate(self.axes):
1563 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1563 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1564 self.res_azi = numpy.mean(data['azi'])
1564 self.res_azi = numpy.mean(data['azi'])
1565
1565
1566 if ax.firsttime:
1566 if ax.firsttime:
1567 #plt.clf()
1567 #plt.clf()
1568 print("Frist Plot")
1568 print("Frist Plot")
1569 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1569 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1570 #fig=self.figures[0]
1570 #fig=self.figures[0]
1571 else:
1571 else:
1572 #plt.clf()
1572 #plt.clf()
1573 print("ELSE PLOT")
1573 print("ELSE PLOT")
1574 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1574 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1575 caax = cgax.parasites[0]
1575 caax = cgax.parasites[0]
1576 paax = cgax.parasites[1]
1576 paax = cgax.parasites[1]
1577 cbar = plt.gcf().colorbar(pm, pad=0.075)
1577 cbar = plt.gcf().colorbar(pm, pad=0.075)
1578 caax.set_xlabel('x_range [km]')
1578 caax.set_xlabel('x_range [km]')
1579 caax.set_ylabel('y_range [km]')
1579 caax.set_ylabel('y_range [km]')
1580 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1580 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1581 print("***************************self.ini****************************",self.ini)
1581 print("***************************self.ini****************************",self.ini)
1582 self.ini= self.ini+1
1582 self.ini= self.ini+1
1583
1583
1584 class WeatherRHI_vRF_Plot(Plot):
1584 class WeatherRHI_vRF_Plot(Plot):
1585 CODE = 'weather'
1585 CODE = 'weather'
1586 plot_name = 'weather'
1586 plot_name = 'weather'
1587 plot_type = 'rhistyle'
1587 plot_type = 'rhistyle'
1588 buffering = False
1588 buffering = False
1589 data_ele_tmp = None
1589 data_ele_tmp = None
1590
1590
1591 def setup(self):
1591 def setup(self):
1592 print("********************")
1592 print("********************")
1593 print("********************")
1593 print("********************")
1594 print("********************")
1594 print("********************")
1595 print("SETUP WEATHER PLOT")
1595 print("SETUP WEATHER PLOT")
1596 self.ncols = 1
1596 self.ncols = 1
1597 self.nrows = 1
1597 self.nrows = 1
1598 self.nplots= 1
1598 self.nplots= 1
1599 self.ylabel= 'Range [Km]'
1599 self.ylabel= 'Range [Km]'
1600 self.titles= ['Weather']
1600 self.titles= ['Weather']
1601 if self.channels is not None:
1601 if self.channels is not None:
1602 self.nplots = len(self.channels)
1602 self.nplots = len(self.channels)
1603 self.nrows = len(self.channels)
1603 self.nrows = len(self.channels)
1604 else:
1604 else:
1605 self.nplots = self.data.shape(self.CODE)[0]
1605 self.nplots = self.data.shape(self.CODE)[0]
1606 self.nrows = self.nplots
1606 self.nrows = self.nplots
1607 self.channels = list(range(self.nplots))
1607 self.channels = list(range(self.nplots))
1608 print("channels",self.channels)
1608 print("channels",self.channels)
1609 print("que saldra", self.data.shape(self.CODE)[0])
1609 print("que saldra", self.data.shape(self.CODE)[0])
1610 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1610 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1611 print("self.titles",self.titles)
1611 print("self.titles",self.titles)
1612 self.colorbar=False
1612 self.colorbar=False
1613 self.width =8
1613 self.width =8
1614 self.height =8
1614 self.height =8
1615 self.ini =0
1615 self.ini =0
1616 self.len_azi =0
1616 self.len_azi =0
1617 self.buffer_ini = None
1617 self.buffer_ini = None
1618 self.buffer_ele = None
1618 self.buffer_ele = None
1619 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1619 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1620 self.flag =0
1620 self.flag =0
1621 self.indicador= 0
1621 self.indicador= 0
1622 self.last_data_ele = None
1622 self.last_data_ele = None
1623 self.val_mean = None
1623 self.val_mean = None
1624
1624
1625 def update(self, dataOut):
1625 def update(self, dataOut):
1626
1626
1627 data = {}
1627 data = {}
1628 meta = {}
1628 meta = {}
1629 if hasattr(dataOut, 'dataPP_POWER'):
1629 if hasattr(dataOut, 'dataPP_POWER'):
1630 factor = 1
1630 factor = 1
1631 if hasattr(dataOut, 'nFFTPoints'):
1631 if hasattr(dataOut, 'nFFTPoints'):
1632 factor = dataOut.normFactor
1632 factor = dataOut.normFactor
1633 print("dataOut",dataOut.data_360.shape)
1633 print("dataOut",dataOut.data_360.shape)
1634 #
1634 #
1635 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1635 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1636 #
1636 #
1637 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1637 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1638 data['azi'] = dataOut.data_azi
1638 data['azi'] = dataOut.data_azi
1639 data['ele'] = dataOut.data_ele
1639 data['ele'] = dataOut.data_ele
1640 data['case_flag'] = dataOut.case_flag
1640 data['case_flag'] = dataOut.case_flag
1641 #print("UPDATE")
1641 #print("UPDATE")
1642 #print("data[weather]",data['weather'].shape)
1642 #print("data[weather]",data['weather'].shape)
1643 #print("data[azi]",data['azi'])
1643 #print("data[azi]",data['azi'])
1644 return data, meta
1644 return data, meta
1645
1645
1646 def get2List(self,angulos):
1646 def get2List(self,angulos):
1647 list1=[]
1647 list1=[]
1648 list2=[]
1648 list2=[]
1649 #print(angulos)
1649 #print(angulos)
1650 #exit(1)
1650 #exit(1)
1651 for i in reversed(range(len(angulos))):
1651 for i in reversed(range(len(angulos))):
1652 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1652 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1653 diff_ = angulos[i]-angulos[i-1]
1653 diff_ = angulos[i]-angulos[i-1]
1654 if abs(diff_) >1.5:
1654 if abs(diff_) >1.5:
1655 list1.append(i-1)
1655 list1.append(i-1)
1656 list2.append(diff_)
1656 list2.append(diff_)
1657 return list(reversed(list1)),list(reversed(list2))
1657 return list(reversed(list1)),list(reversed(list2))
1658
1658
1659 def fixData90(self,list_,ang_):
1659 def fixData90(self,list_,ang_):
1660 if list_[0]==-1:
1660 if list_[0]==-1:
1661 vec = numpy.where(ang_<ang_[0])
1661 vec = numpy.where(ang_<ang_[0])
1662 ang_[vec] = ang_[vec]+90
1662 ang_[vec] = ang_[vec]+90
1663 return ang_
1663 return ang_
1664 return ang_
1664 return ang_
1665
1665
1666 def fixData90HL(self,angulos):
1666 def fixData90HL(self,angulos):
1667 vec = numpy.where(angulos>=90)
1667 vec = numpy.where(angulos>=90)
1668 angulos[vec]=angulos[vec]-90
1668 angulos[vec]=angulos[vec]-90
1669 return angulos
1669 return angulos
1670
1670
1671
1671
1672 def search_pos(self,pos,list_):
1672 def search_pos(self,pos,list_):
1673 for i in range(len(list_)):
1673 for i in range(len(list_)):
1674 if pos == list_[i]:
1674 if pos == list_[i]:
1675 return True,i
1675 return True,i
1676 i=None
1676 i=None
1677 return False,i
1677 return False,i
1678
1678
1679 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1679 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1680 size = len(ang_)
1680 size = len(ang_)
1681 size2 = 0
1681 size2 = 0
1682 for i in range(len(list2_)):
1682 for i in range(len(list2_)):
1683 size2=size2+round(abs(list2_[i]))-1
1683 size2=size2+round(abs(list2_[i]))-1
1684 new_size= size+size2
1684 new_size= size+size2
1685 ang_new = numpy.zeros(new_size)
1685 ang_new = numpy.zeros(new_size)
1686 ang_new2 = numpy.zeros(new_size)
1686 ang_new2 = numpy.zeros(new_size)
1687
1687
1688 tmp = 0
1688 tmp = 0
1689 c = 0
1689 c = 0
1690 for i in range(len(ang_)):
1690 for i in range(len(ang_)):
1691 ang_new[tmp +c] = ang_[i]
1691 ang_new[tmp +c] = ang_[i]
1692 ang_new2[tmp+c] = ang_[i]
1692 ang_new2[tmp+c] = ang_[i]
1693 condition , value = self.search_pos(i,list1_)
1693 condition , value = self.search_pos(i,list1_)
1694 if condition:
1694 if condition:
1695 pos = tmp + c + 1
1695 pos = tmp + c + 1
1696 for k in range(round(abs(list2_[value]))-1):
1696 for k in range(round(abs(list2_[value]))-1):
1697 if tipo_case==0 or tipo_case==3:#subida
1697 if tipo_case==0 or tipo_case==3:#subida
1698 ang_new[pos+k] = ang_new[pos+k-1]+1
1698 ang_new[pos+k] = ang_new[pos+k-1]+1
1699 ang_new2[pos+k] = numpy.nan
1699 ang_new2[pos+k] = numpy.nan
1700 elif tipo_case==1 or tipo_case==2:#bajada
1700 elif tipo_case==1 or tipo_case==2:#bajada
1701 ang_new[pos+k] = ang_new[pos+k-1]-1
1701 ang_new[pos+k] = ang_new[pos+k-1]-1
1702 ang_new2[pos+k] = numpy.nan
1702 ang_new2[pos+k] = numpy.nan
1703
1703
1704 tmp = pos +k
1704 tmp = pos +k
1705 c = 0
1705 c = 0
1706 c=c+1
1706 c=c+1
1707 return ang_new,ang_new2
1707 return ang_new,ang_new2
1708
1708
1709 def globalCheckPED(self,angulos,tipo_case):
1709 def globalCheckPED(self,angulos,tipo_case):
1710 l1,l2 = self.get2List(angulos)
1710 l1,l2 = self.get2List(angulos)
1711 print("l1",l1)
1711 print("l1",l1)
1712 print("l2",l2)
1712 print("l2",l2)
1713 if len(l1)>0:
1713 if len(l1)>0:
1714 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1714 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1715 #l1,l2 = self.get2List(angulos2)
1715 #l1,l2 = self.get2List(angulos2)
1716 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1716 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1717 #ang1_ = self.fixData90HL(ang1_)
1717 #ang1_ = self.fixData90HL(ang1_)
1718 #ang2_ = self.fixData90HL(ang2_)
1718 #ang2_ = self.fixData90HL(ang2_)
1719 else:
1719 else:
1720 ang1_= angulos
1720 ang1_= angulos
1721 ang2_= angulos
1721 ang2_= angulos
1722 return ang1_,ang2_
1722 return ang1_,ang2_
1723
1723
1724
1724
1725 def replaceNAN(self,data_weather,data_ele,val):
1725 def replaceNAN(self,data_weather,data_ele,val):
1726 data= data_ele
1726 data= data_ele
1727 data_T= data_weather
1727 data_T= data_weather
1728 #print(data.shape[0])
1728 #print(data.shape[0])
1729 #print(data_T.shape[0])
1729 #print(data_T.shape[0])
1730 #exit(1)
1730 #exit(1)
1731 if data.shape[0]> data_T.shape[0]:
1731 if data.shape[0]> data_T.shape[0]:
1732 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1732 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1733 c = 0
1733 c = 0
1734 for i in range(len(data)):
1734 for i in range(len(data)):
1735 if numpy.isnan(data[i]):
1735 if numpy.isnan(data[i]):
1736 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1736 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1737 else:
1737 else:
1738 data_N[i,:]=data_T[c,:]
1738 data_N[i,:]=data_T[c,:]
1739 c=c+1
1739 c=c+1
1740 return data_N
1740 return data_N
1741 else:
1741 else:
1742 for i in range(len(data)):
1742 for i in range(len(data)):
1743 if numpy.isnan(data[i]):
1743 if numpy.isnan(data[i]):
1744 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1744 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1745 return data_T
1745 return data_T
1746
1746
1747
1747
1748 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1748 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1749 ang_max= ang_max
1749 ang_max= ang_max
1750 ang_min= ang_min
1750 ang_min= ang_min
1751 data_weather=data_weather
1751 data_weather=data_weather
1752 val_ch=val_ch
1752 val_ch=val_ch
1753 ##print("*********************DATA WEATHER**************************************")
1753 ##print("*********************DATA WEATHER**************************************")
1754 ##print(data_weather)
1754 ##print(data_weather)
1755
1755
1756 '''
1756 '''
1757 print("**********************************************")
1757 print("**********************************************")
1758 print("**********************************************")
1758 print("**********************************************")
1759 print("***************ini**************")
1759 print("***************ini**************")
1760 print("**********************************************")
1760 print("**********************************************")
1761 print("**********************************************")
1761 print("**********************************************")
1762 '''
1762 '''
1763 #print("data_ele",data_ele)
1763 #print("data_ele",data_ele)
1764 #----------------------------------------------------------
1764 #----------------------------------------------------------
1765
1765
1766 #exit(1)
1766 #exit(1)
1767 tipo_case = case_flag[-1]
1767 tipo_case = case_flag[-1]
1768 print("tipo_case",tipo_case)
1768 print("tipo_case",tipo_case)
1769 #--------------------- new -------------------------
1769 #--------------------- new -------------------------
1770 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1770 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1771
1771
1772 #-------------------------CAMBIOS RHI---------------------------------
1772 #-------------------------CAMBIOS RHI---------------------------------
1773
1773
1774 vec = numpy.where(data_ele<ang_max)
1774 vec = numpy.where(data_ele<ang_max)
1775 data_ele = data_ele[vec]
1775 data_ele = data_ele[vec]
1776 data_weather= data_weather[vec[0]]
1776 data_weather= data_weather[vec[0]]
1777
1777
1778 len_vec = len(vec)
1778 len_vec = len(vec)
1779 data_ele_new = data_ele[::-1] # reversa
1779 data_ele_new = data_ele[::-1] # reversa
1780 data_weather = data_weather[::-1,:]
1780 data_weather = data_weather[::-1,:]
1781 new_i_ele = int(data_ele_new[0])
1781 new_i_ele = int(data_ele_new[0])
1782 new_f_ele = int(data_ele_new[-1])
1782 new_f_ele = int(data_ele_new[-1])
1783
1783
1784 n1= new_i_ele- ang_min
1784 n1= new_i_ele- ang_min
1785 n2= ang_max - new_f_ele-1
1785 n2= ang_max - new_f_ele-1
1786 if n1>0:
1786 if n1>0:
1787 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1787 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1788 ele1_nan= numpy.ones(n1)*numpy.nan
1788 ele1_nan= numpy.ones(n1)*numpy.nan
1789 data_ele = numpy.hstack((ele1,data_ele_new))
1789 data_ele = numpy.hstack((ele1,data_ele_new))
1790 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1790 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1791 if n2>0:
1791 if n2>0:
1792 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1792 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1793 ele2_nan= numpy.ones(n2)*numpy.nan
1793 ele2_nan= numpy.ones(n2)*numpy.nan
1794 data_ele = numpy.hstack((data_ele,ele2))
1794 data_ele = numpy.hstack((data_ele,ele2))
1795 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1795 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1796
1796
1797
1797
1798 print("ele shape",data_ele.shape)
1798 print("ele shape",data_ele.shape)
1799 print(data_ele)
1799 print(data_ele)
1800
1800
1801 #print("self.data_ele_tmp",self.data_ele_tmp)
1801 #print("self.data_ele_tmp",self.data_ele_tmp)
1802 val_mean = numpy.mean(data_weather[:,-1])
1802 val_mean = numpy.mean(data_weather[:,-1])
1803 self.val_mean = val_mean
1803 self.val_mean = val_mean
1804 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1804 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1805 self.data_ele_tmp[val_ch]= data_ele_old
1805 self.data_ele_tmp[val_ch]= data_ele_old
1806
1806
1807
1807
1808 print("data_weather shape",data_weather.shape)
1808 print("data_weather shape",data_weather.shape)
1809 print(data_weather)
1809 print(data_weather)
1810 #exit(1)
1810 #exit(1)
1811 return data_weather,data_ele
1811 return data_weather,data_ele
1812
1812
1813
1813
1814 def plot(self):
1814 def plot(self):
1815 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1815 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1816 data = self.data[-1]
1816 data = self.data[-1]
1817 r = self.data.yrange
1817 r = self.data.yrange
1818 delta_height = r[1]-r[0]
1818 delta_height = r[1]-r[0]
1819 r_mask = numpy.where(r>=0)[0]
1819 r_mask = numpy.where(r>=0)[0]
1820 ##print("delta_height",delta_height)
1820 ##print("delta_height",delta_height)
1821 #print("r_mask",r_mask,len(r_mask))
1821 #print("r_mask",r_mask,len(r_mask))
1822 r = numpy.arange(len(r_mask))*delta_height
1822 r = numpy.arange(len(r_mask))*delta_height
1823 self.y = 2*r
1823 self.y = 2*r
1824 res = 1
1824 res = 1
1825 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1825 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1826 ang_max = self.ang_max
1826 ang_max = self.ang_max
1827 ang_min = self.ang_min
1827 ang_min = self.ang_min
1828 var_ang =ang_max - ang_min
1828 var_ang =ang_max - ang_min
1829 step = (int(var_ang)/(res*data['weather'].shape[0]))
1829 step = (int(var_ang)/(res*data['weather'].shape[0]))
1830 ###print("step",step)
1830 ###print("step",step)
1831 #--------------------------------------------------------
1831 #--------------------------------------------------------
1832 ##print('weather',data['weather'].shape)
1832 ##print('weather',data['weather'].shape)
1833 ##print('ele',data['ele'].shape)
1833 ##print('ele',data['ele'].shape)
1834
1834
1835 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1835 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1836 ###self.res_azi = numpy.mean(data['azi'])
1836 ###self.res_azi = numpy.mean(data['azi'])
1837 ###print("self.res_ele",self.res_ele)
1837 ###print("self.res_ele",self.res_ele)
1838 plt.clf()
1838 plt.clf()
1839 subplots = [121, 122]
1839 subplots = [121, 122]
1840 if self.ini==0:
1840 if self.ini==0:
1841 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1841 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1842 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1842 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1843 print("SHAPE",self.data_ele_tmp.shape)
1843 print("SHAPE",self.data_ele_tmp.shape)
1844
1844
1845 for i,ax in enumerate(self.axes):
1845 for i,ax in enumerate(self.axes):
1846 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1846 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1847 self.res_azi = numpy.mean(data['azi'])
1847 self.res_azi = numpy.mean(data['azi'])
1848
1848
1849 print(self.res_ele)
1849 print(self.res_ele)
1850 #exit(1)
1850 #exit(1)
1851 if ax.firsttime:
1851 if ax.firsttime:
1852 #plt.clf()
1852 #plt.clf()
1853 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1853 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1854 #fig=self.figures[0]
1854 #fig=self.figures[0]
1855 else:
1855 else:
1856
1856
1857 #plt.clf()
1857 #plt.clf()
1858 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1858 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1859 caax = cgax.parasites[0]
1859 caax = cgax.parasites[0]
1860 paax = cgax.parasites[1]
1860 paax = cgax.parasites[1]
1861 cbar = plt.gcf().colorbar(pm, pad=0.075)
1861 cbar = plt.gcf().colorbar(pm, pad=0.075)
1862 caax.set_xlabel('x_range [km]')
1862 caax.set_xlabel('x_range [km]')
1863 caax.set_ylabel('y_range [km]')
1863 caax.set_ylabel('y_range [km]')
1864 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1864 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1865 print("***************************self.ini****************************",self.ini)
1865 print("***************************self.ini****************************",self.ini)
1866 self.ini= self.ini+1
1866 self.ini= self.ini+1
1867
1867
1868 class WeatherRHI_vRF3_Plot(Plot):
1868 class WeatherRHI_vRF3_Plot(Plot):
1869 CODE = 'weather'
1869 CODE = 'weather'
1870 plot_name = 'weather'
1870 plot_name = 'weather'
1871 plot_type = 'rhistyle'
1871 plot_type = 'rhistyle'
1872 buffering = False
1872 buffering = False
1873 data_ele_tmp = None
1873 data_ele_tmp = None
1874
1874
1875 def setup(self):
1875 def setup(self):
1876 print("********************")
1876 print("********************")
1877 print("********************")
1877 print("********************")
1878 print("********************")
1878 print("********************")
1879 print("SETUP WEATHER PLOT")
1879 print("SETUP WEATHER PLOT")
1880 self.ncols = 1
1880 self.ncols = 1
1881 self.nrows = 1
1881 self.nrows = 1
1882 self.nplots= 1
1882 self.nplots= 1
1883 self.ylabel= 'Range [Km]'
1883 self.ylabel= 'Range [Km]'
1884 self.titles= ['Weather']
1884 self.titles= ['Weather']
1885 if self.channels is not None:
1885 if self.channels is not None:
1886 self.nplots = len(self.channels)
1886 self.nplots = len(self.channels)
1887 self.nrows = len(self.channels)
1887 self.nrows = len(self.channels)
1888 else:
1888 else:
1889 self.nplots = self.data.shape(self.CODE)[0]
1889 self.nplots = self.data.shape(self.CODE)[0]
1890 self.nrows = self.nplots
1890 self.nrows = self.nplots
1891 self.channels = list(range(self.nplots))
1891 self.channels = list(range(self.nplots))
1892 print("channels",self.channels)
1892 print("channels",self.channels)
1893 print("que saldra", self.data.shape(self.CODE)[0])
1893 print("que saldra", self.data.shape(self.CODE)[0])
1894 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1894 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1895 print("self.titles",self.titles)
1895 print("self.titles",self.titles)
1896 self.colorbar=False
1896 self.colorbar=False
1897 self.width =8
1897 self.width =8
1898 self.height =8
1898 self.height =8
1899 self.ini =0
1899 self.ini =0
1900 self.len_azi =0
1900 self.len_azi =0
1901 self.buffer_ini = None
1901 self.buffer_ini = None
1902 self.buffer_ele = None
1902 self.buffer_ele = None
1903 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1903 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1904 self.flag =0
1904 self.flag =0
1905 self.indicador= 0
1905 self.indicador= 0
1906 self.last_data_ele = None
1906 self.last_data_ele = None
1907 self.val_mean = None
1907 self.val_mean = None
1908
1908
1909 def update(self, dataOut):
1909 def update(self, dataOut):
1910
1910
1911 data = {}
1911 data = {}
1912 meta = {}
1912 meta = {}
1913 if hasattr(dataOut, 'dataPP_POWER'):
1913 if hasattr(dataOut, 'dataPP_POWER'):
1914 factor = 1
1914 factor = 1
1915 if hasattr(dataOut, 'nFFTPoints'):
1915 if hasattr(dataOut, 'nFFTPoints'):
1916 factor = dataOut.normFactor
1916 factor = dataOut.normFactor
1917 print("dataOut",dataOut.data_360.shape)
1917 print("dataOut",dataOut.data_360.shape)
1918 #
1918 #
1919 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1919 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1920 #
1920 #
1921 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1921 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1922 data['azi'] = dataOut.data_azi
1922 data['azi'] = dataOut.data_azi
1923 data['ele'] = dataOut.data_ele
1923 data['ele'] = dataOut.data_ele
1924 #data['case_flag'] = dataOut.case_flag
1924 #data['case_flag'] = dataOut.case_flag
1925 #print("UPDATE")
1925 #print("UPDATE")
1926 #print("data[weather]",data['weather'].shape)
1926 #print("data[weather]",data['weather'].shape)
1927 #print("data[azi]",data['azi'])
1927 #print("data[azi]",data['azi'])
1928 return data, meta
1928 return data, meta
1929
1929
1930 def get2List(self,angulos):
1930 def get2List(self,angulos):
1931 list1=[]
1931 list1=[]
1932 list2=[]
1932 list2=[]
1933 for i in reversed(range(len(angulos))):
1933 for i in reversed(range(len(angulos))):
1934 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1934 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1935 diff_ = angulos[i]-angulos[i-1]
1935 diff_ = angulos[i]-angulos[i-1]
1936 if abs(diff_) >1.5:
1936 if abs(diff_) >1.5:
1937 list1.append(i-1)
1937 list1.append(i-1)
1938 list2.append(diff_)
1938 list2.append(diff_)
1939 return list(reversed(list1)),list(reversed(list2))
1939 return list(reversed(list1)),list(reversed(list2))
1940
1940
1941 def fixData90(self,list_,ang_):
1941 def fixData90(self,list_,ang_):
1942 if list_[0]==-1:
1942 if list_[0]==-1:
1943 vec = numpy.where(ang_<ang_[0])
1943 vec = numpy.where(ang_<ang_[0])
1944 ang_[vec] = ang_[vec]+90
1944 ang_[vec] = ang_[vec]+90
1945 return ang_
1945 return ang_
1946 return ang_
1946 return ang_
1947
1947
1948 def fixData90HL(self,angulos):
1948 def fixData90HL(self,angulos):
1949 vec = numpy.where(angulos>=90)
1949 vec = numpy.where(angulos>=90)
1950 angulos[vec]=angulos[vec]-90
1950 angulos[vec]=angulos[vec]-90
1951 return angulos
1951 return angulos
1952
1952
1953
1953
1954 def search_pos(self,pos,list_):
1954 def search_pos(self,pos,list_):
1955 for i in range(len(list_)):
1955 for i in range(len(list_)):
1956 if pos == list_[i]:
1956 if pos == list_[i]:
1957 return True,i
1957 return True,i
1958 i=None
1958 i=None
1959 return False,i
1959 return False,i
1960
1960
1961 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1961 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1962 size = len(ang_)
1962 size = len(ang_)
1963 size2 = 0
1963 size2 = 0
1964 for i in range(len(list2_)):
1964 for i in range(len(list2_)):
1965 size2=size2+round(abs(list2_[i]))-1
1965 size2=size2+round(abs(list2_[i]))-1
1966 new_size= size+size2
1966 new_size= size+size2
1967 ang_new = numpy.zeros(new_size)
1967 ang_new = numpy.zeros(new_size)
1968 ang_new2 = numpy.zeros(new_size)
1968 ang_new2 = numpy.zeros(new_size)
1969
1969
1970 tmp = 0
1970 tmp = 0
1971 c = 0
1971 c = 0
1972 for i in range(len(ang_)):
1972 for i in range(len(ang_)):
1973 ang_new[tmp +c] = ang_[i]
1973 ang_new[tmp +c] = ang_[i]
1974 ang_new2[tmp+c] = ang_[i]
1974 ang_new2[tmp+c] = ang_[i]
1975 condition , value = self.search_pos(i,list1_)
1975 condition , value = self.search_pos(i,list1_)
1976 if condition:
1976 if condition:
1977 pos = tmp + c + 1
1977 pos = tmp + c + 1
1978 for k in range(round(abs(list2_[value]))-1):
1978 for k in range(round(abs(list2_[value]))-1):
1979 if tipo_case==0 or tipo_case==3:#subida
1979 if tipo_case==0 or tipo_case==3:#subida
1980 ang_new[pos+k] = ang_new[pos+k-1]+1
1980 ang_new[pos+k] = ang_new[pos+k-1]+1
1981 ang_new2[pos+k] = numpy.nan
1981 ang_new2[pos+k] = numpy.nan
1982 elif tipo_case==1 or tipo_case==2:#bajada
1982 elif tipo_case==1 or tipo_case==2:#bajada
1983 ang_new[pos+k] = ang_new[pos+k-1]-1
1983 ang_new[pos+k] = ang_new[pos+k-1]-1
1984 ang_new2[pos+k] = numpy.nan
1984 ang_new2[pos+k] = numpy.nan
1985
1985
1986 tmp = pos +k
1986 tmp = pos +k
1987 c = 0
1987 c = 0
1988 c=c+1
1988 c=c+1
1989 return ang_new,ang_new2
1989 return ang_new,ang_new2
1990
1990
1991 def globalCheckPED(self,angulos,tipo_case):
1991 def globalCheckPED(self,angulos,tipo_case):
1992 l1,l2 = self.get2List(angulos)
1992 l1,l2 = self.get2List(angulos)
1993 ##print("l1",l1)
1993 ##print("l1",l1)
1994 ##print("l2",l2)
1994 ##print("l2",l2)
1995 if len(l1)>0:
1995 if len(l1)>0:
1996 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1996 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1997 #l1,l2 = self.get2List(angulos2)
1997 #l1,l2 = self.get2List(angulos2)
1998 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1998 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1999 #ang1_ = self.fixData90HL(ang1_)
1999 #ang1_ = self.fixData90HL(ang1_)
2000 #ang2_ = self.fixData90HL(ang2_)
2000 #ang2_ = self.fixData90HL(ang2_)
2001 else:
2001 else:
2002 ang1_= angulos
2002 ang1_= angulos
2003 ang2_= angulos
2003 ang2_= angulos
2004 return ang1_,ang2_
2004 return ang1_,ang2_
2005
2005
2006
2006
2007 def replaceNAN(self,data_weather,data_ele,val):
2007 def replaceNAN(self,data_weather,data_ele,val):
2008 data= data_ele
2008 data= data_ele
2009 data_T= data_weather
2009 data_T= data_weather
2010
2010
2011 if data.shape[0]> data_T.shape[0]:
2011 if data.shape[0]> data_T.shape[0]:
2012 print("IF")
2012 print("IF")
2013 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
2013 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
2014 c = 0
2014 c = 0
2015 for i in range(len(data)):
2015 for i in range(len(data)):
2016 if numpy.isnan(data[i]):
2016 if numpy.isnan(data[i]):
2017 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2017 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2018 else:
2018 else:
2019 data_N[i,:]=data_T[c,:]
2019 data_N[i,:]=data_T[c,:]
2020 c=c+1
2020 c=c+1
2021 return data_N
2021 return data_N
2022 else:
2022 else:
2023 print("else")
2023 print("else")
2024 for i in range(len(data)):
2024 for i in range(len(data)):
2025 if numpy.isnan(data[i]):
2025 if numpy.isnan(data[i]):
2026 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2026 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2027 return data_T
2027 return data_T
2028
2028
2029 def check_case(self,data_ele,ang_max,ang_min):
2029 def check_case(self,data_ele,ang_max,ang_min):
2030 start = data_ele[0]
2030 start = data_ele[0]
2031 end = data_ele[-1]
2031 end = data_ele[-1]
2032 number = (end-start)
2032 number = (end-start)
2033 len_ang=len(data_ele)
2033 len_ang=len(data_ele)
2034 print("start",start)
2034 print("start",start)
2035 print("end",end)
2035 print("end",end)
2036 print("number",number)
2036 print("number",number)
2037
2037
2038 print("len_ang",len_ang)
2038 print("len_ang",len_ang)
2039
2039
2040 #exit(1)
2040 #exit(1)
2041
2041
2042 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
2042 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
2043 return 0
2043 return 0
2044 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
2044 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
2045 # return 1
2045 # return 1
2046 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
2046 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
2047 return 1
2047 return 1
2048 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
2048 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
2049 return 2
2049 return 2
2050 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
2050 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
2051 return 3
2051 return 3
2052
2052
2053
2053
2054 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
2054 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
2055 ang_max= ang_max
2055 ang_max= ang_max
2056 ang_min= ang_min
2056 ang_min= ang_min
2057 data_weather=data_weather
2057 data_weather=data_weather
2058 val_ch=val_ch
2058 val_ch=val_ch
2059 ##print("*********************DATA WEATHER**************************************")
2059 ##print("*********************DATA WEATHER**************************************")
2060 ##print(data_weather)
2060 ##print(data_weather)
2061 if self.ini==0:
2061 if self.ini==0:
2062
2062
2063 #--------------------- new -------------------------
2063 #--------------------- new -------------------------
2064 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
2064 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
2065
2065
2066 #-------------------------CAMBIOS RHI---------------------------------
2066 #-------------------------CAMBIOS RHI---------------------------------
2067 start= ang_min
2067 start= ang_min
2068 end = ang_max
2068 end = ang_max
2069 n= (ang_max-ang_min)/res
2069 n= (ang_max-ang_min)/res
2070 #------ new
2070 #------ new
2071 self.start_data_ele = data_ele_new[0]
2071 self.start_data_ele = data_ele_new[0]
2072 self.end_data_ele = data_ele_new[-1]
2072 self.end_data_ele = data_ele_new[-1]
2073 if tipo_case==0 or tipo_case==3: # SUBIDA
2073 if tipo_case==0 or tipo_case==3: # SUBIDA
2074 n1= round(self.start_data_ele)- start
2074 n1= round(self.start_data_ele)- start
2075 n2= end - round(self.end_data_ele)
2075 n2= end - round(self.end_data_ele)
2076 print(self.start_data_ele)
2076 print(self.start_data_ele)
2077 print(self.end_data_ele)
2077 print(self.end_data_ele)
2078 if n1>0:
2078 if n1>0:
2079 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2079 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2080 ele1_nan= numpy.ones(n1)*numpy.nan
2080 ele1_nan= numpy.ones(n1)*numpy.nan
2081 data_ele = numpy.hstack((ele1,data_ele_new))
2081 data_ele = numpy.hstack((ele1,data_ele_new))
2082 print("ele1_nan",ele1_nan.shape)
2082 print("ele1_nan",ele1_nan.shape)
2083 print("data_ele_old",data_ele_old.shape)
2083 print("data_ele_old",data_ele_old.shape)
2084 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2084 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2085 if n2>0:
2085 if n2>0:
2086 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2086 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2087 ele2_nan= numpy.ones(n2)*numpy.nan
2087 ele2_nan= numpy.ones(n2)*numpy.nan
2088 data_ele = numpy.hstack((data_ele,ele2))
2088 data_ele = numpy.hstack((data_ele,ele2))
2089 print("ele2_nan",ele2_nan.shape)
2089 print("ele2_nan",ele2_nan.shape)
2090 print("data_ele_old",data_ele_old.shape)
2090 print("data_ele_old",data_ele_old.shape)
2091 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2091 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2092
2092
2093 if tipo_case==1 or tipo_case==2: # BAJADA
2093 if tipo_case==1 or tipo_case==2: # BAJADA
2094 data_ele_new = data_ele_new[::-1] # reversa
2094 data_ele_new = data_ele_new[::-1] # reversa
2095 data_ele_old = data_ele_old[::-1]# reversa
2095 data_ele_old = data_ele_old[::-1]# reversa
2096 data_weather = data_weather[::-1,:]# reversa
2096 data_weather = data_weather[::-1,:]# reversa
2097 vec= numpy.where(data_ele_new<ang_max)
2097 vec= numpy.where(data_ele_new<ang_max)
2098 data_ele_new = data_ele_new[vec]
2098 data_ele_new = data_ele_new[vec]
2099 data_ele_old = data_ele_old[vec]
2099 data_ele_old = data_ele_old[vec]
2100 data_weather = data_weather[vec[0]]
2100 data_weather = data_weather[vec[0]]
2101 vec2= numpy.where(0<data_ele_new)
2101 vec2= numpy.where(0<data_ele_new)
2102 data_ele_new = data_ele_new[vec2]
2102 data_ele_new = data_ele_new[vec2]
2103 data_ele_old = data_ele_old[vec2]
2103 data_ele_old = data_ele_old[vec2]
2104 data_weather = data_weather[vec2[0]]
2104 data_weather = data_weather[vec2[0]]
2105 self.start_data_ele = data_ele_new[0]
2105 self.start_data_ele = data_ele_new[0]
2106 self.end_data_ele = data_ele_new[-1]
2106 self.end_data_ele = data_ele_new[-1]
2107
2107
2108 n1= round(self.start_data_ele)- start
2108 n1= round(self.start_data_ele)- start
2109 n2= end - round(self.end_data_ele)-1
2109 n2= end - round(self.end_data_ele)-1
2110 print(self.start_data_ele)
2110 print(self.start_data_ele)
2111 print(self.end_data_ele)
2111 print(self.end_data_ele)
2112 if n1>0:
2112 if n1>0:
2113 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2113 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2114 ele1_nan= numpy.ones(n1)*numpy.nan
2114 ele1_nan= numpy.ones(n1)*numpy.nan
2115 data_ele = numpy.hstack((ele1,data_ele_new))
2115 data_ele = numpy.hstack((ele1,data_ele_new))
2116 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2116 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2117 if n2>0:
2117 if n2>0:
2118 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2118 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2119 ele2_nan= numpy.ones(n2)*numpy.nan
2119 ele2_nan= numpy.ones(n2)*numpy.nan
2120 data_ele = numpy.hstack((data_ele,ele2))
2120 data_ele = numpy.hstack((data_ele,ele2))
2121 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2121 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2122 # RADAR
2122 # RADAR
2123 # NOTA data_ele y data_weather es la variable que retorna
2123 # NOTA data_ele y data_weather es la variable que retorna
2124 val_mean = numpy.mean(data_weather[:,-1])
2124 val_mean = numpy.mean(data_weather[:,-1])
2125 self.val_mean = val_mean
2125 self.val_mean = val_mean
2126 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2126 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2127 print("eleold",data_ele_old)
2127 print("eleold",data_ele_old)
2128 print(self.data_ele_tmp[val_ch])
2128 print(self.data_ele_tmp[val_ch])
2129 print(data_ele_old.shape[0])
2129 print(data_ele_old.shape[0])
2130 print(self.data_ele_tmp[val_ch].shape[0])
2130 print(self.data_ele_tmp[val_ch].shape[0])
2131 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
2131 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
2132 import sys
2132 import sys
2133 print("EXIT",self.ini)
2133 print("EXIT",self.ini)
2134
2134
2135 sys.exit(1)
2135 sys.exit(1)
2136 self.data_ele_tmp[val_ch]= data_ele_old
2136 self.data_ele_tmp[val_ch]= data_ele_old
2137 else:
2137 else:
2138 #print("**********************************************")
2138 #print("**********************************************")
2139 #print("****************VARIABLE**********************")
2139 #print("****************VARIABLE**********************")
2140 #-------------------------CAMBIOS RHI---------------------------------
2140 #-------------------------CAMBIOS RHI---------------------------------
2141 #---------------------------------------------------------------------
2141 #---------------------------------------------------------------------
2142 ##print("INPUT data_ele",data_ele)
2142 ##print("INPUT data_ele",data_ele)
2143 flag=0
2143 flag=0
2144 start_ele = self.res_ele[0]
2144 start_ele = self.res_ele[0]
2145 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
2145 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
2146 tipo_case = case_flag[-1]
2146 tipo_case = case_flag[-1]
2147 #print("TIPO DE DATA",tipo_case)
2147 #print("TIPO DE DATA",tipo_case)
2148 #-----------new------------
2148 #-----------new------------
2149 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
2149 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
2150 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2150 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2151
2151
2152 #-------------------------------NEW RHI ITERATIVO-------------------------
2152 #-------------------------------NEW RHI ITERATIVO-------------------------
2153
2153
2154 if tipo_case==0 : # SUBIDA
2154 if tipo_case==0 : # SUBIDA
2155 vec = numpy.where(data_ele<ang_max)
2155 vec = numpy.where(data_ele<ang_max)
2156 data_ele = data_ele[vec]
2156 data_ele = data_ele[vec]
2157 data_ele_old = data_ele_old[vec]
2157 data_ele_old = data_ele_old[vec]
2158 data_weather = data_weather[vec[0]]
2158 data_weather = data_weather[vec[0]]
2159
2159
2160 vec2 = numpy.where(0<data_ele)
2160 vec2 = numpy.where(0<data_ele)
2161 data_ele= data_ele[vec2]
2161 data_ele= data_ele[vec2]
2162 data_ele_old= data_ele_old[vec2]
2162 data_ele_old= data_ele_old[vec2]
2163 ##print(data_ele_new)
2163 ##print(data_ele_new)
2164 data_weather= data_weather[vec2[0]]
2164 data_weather= data_weather[vec2[0]]
2165
2165
2166 new_i_ele = int(round(data_ele[0]))
2166 new_i_ele = int(round(data_ele[0]))
2167 new_f_ele = int(round(data_ele[-1]))
2167 new_f_ele = int(round(data_ele[-1]))
2168 #print(new_i_ele)
2168 #print(new_i_ele)
2169 #print(new_f_ele)
2169 #print(new_f_ele)
2170 #print(data_ele,len(data_ele))
2170 #print(data_ele,len(data_ele))
2171 #print(data_ele_old,len(data_ele_old))
2171 #print(data_ele_old,len(data_ele_old))
2172 if new_i_ele< 2:
2172 if new_i_ele< 2:
2173 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2173 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2174 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2174 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2175 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
2175 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
2176 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
2176 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
2177 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
2177 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
2178 data_ele = self.res_ele
2178 data_ele = self.res_ele
2179 data_weather = self.res_weather[val_ch]
2179 data_weather = self.res_weather[val_ch]
2180
2180
2181 elif tipo_case==1 : #BAJADA
2181 elif tipo_case==1 : #BAJADA
2182 data_ele = data_ele[::-1] # reversa
2182 data_ele = data_ele[::-1] # reversa
2183 data_ele_old = data_ele_old[::-1]# reversa
2183 data_ele_old = data_ele_old[::-1]# reversa
2184 data_weather = data_weather[::-1,:]# reversa
2184 data_weather = data_weather[::-1,:]# reversa
2185 vec= numpy.where(data_ele<ang_max)
2185 vec= numpy.where(data_ele<ang_max)
2186 data_ele = data_ele[vec]
2186 data_ele = data_ele[vec]
2187 data_ele_old = data_ele_old[vec]
2187 data_ele_old = data_ele_old[vec]
2188 data_weather = data_weather[vec[0]]
2188 data_weather = data_weather[vec[0]]
2189 vec2= numpy.where(0<data_ele)
2189 vec2= numpy.where(0<data_ele)
2190 data_ele = data_ele[vec2]
2190 data_ele = data_ele[vec2]
2191 data_ele_old = data_ele_old[vec2]
2191 data_ele_old = data_ele_old[vec2]
2192 data_weather = data_weather[vec2[0]]
2192 data_weather = data_weather[vec2[0]]
2193
2193
2194
2194
2195 new_i_ele = int(round(data_ele[0]))
2195 new_i_ele = int(round(data_ele[0]))
2196 new_f_ele = int(round(data_ele[-1]))
2196 new_f_ele = int(round(data_ele[-1]))
2197 #print(data_ele)
2197 #print(data_ele)
2198 #print(ang_max)
2198 #print(ang_max)
2199 #print(data_ele_old)
2199 #print(data_ele_old)
2200 if new_i_ele <= 1:
2200 if new_i_ele <= 1:
2201 new_i_ele = 1
2201 new_i_ele = 1
2202 if round(data_ele[-1])>=ang_max-1:
2202 if round(data_ele[-1])>=ang_max-1:
2203 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2203 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2204 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2204 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2205 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
2205 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
2206 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
2206 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
2207 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
2207 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
2208 data_ele = self.res_ele
2208 data_ele = self.res_ele
2209 data_weather = self.res_weather[val_ch]
2209 data_weather = self.res_weather[val_ch]
2210
2210
2211 elif tipo_case==2: #bajada
2211 elif tipo_case==2: #bajada
2212 vec = numpy.where(data_ele<ang_max)
2212 vec = numpy.where(data_ele<ang_max)
2213 data_ele = data_ele[vec]
2213 data_ele = data_ele[vec]
2214 data_weather= data_weather[vec[0]]
2214 data_weather= data_weather[vec[0]]
2215
2215
2216 len_vec = len(vec)
2216 len_vec = len(vec)
2217 data_ele_new = data_ele[::-1] # reversa
2217 data_ele_new = data_ele[::-1] # reversa
2218 data_weather = data_weather[::-1,:]
2218 data_weather = data_weather[::-1,:]
2219 new_i_ele = int(data_ele_new[0])
2219 new_i_ele = int(data_ele_new[0])
2220 new_f_ele = int(data_ele_new[-1])
2220 new_f_ele = int(data_ele_new[-1])
2221
2221
2222 n1= new_i_ele- ang_min
2222 n1= new_i_ele- ang_min
2223 n2= ang_max - new_f_ele-1
2223 n2= ang_max - new_f_ele-1
2224 if n1>0:
2224 if n1>0:
2225 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2225 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2226 ele1_nan= numpy.ones(n1)*numpy.nan
2226 ele1_nan= numpy.ones(n1)*numpy.nan
2227 data_ele = numpy.hstack((ele1,data_ele_new))
2227 data_ele = numpy.hstack((ele1,data_ele_new))
2228 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2228 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2229 if n2>0:
2229 if n2>0:
2230 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2230 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2231 ele2_nan= numpy.ones(n2)*numpy.nan
2231 ele2_nan= numpy.ones(n2)*numpy.nan
2232 data_ele = numpy.hstack((data_ele,ele2))
2232 data_ele = numpy.hstack((data_ele,ele2))
2233 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2233 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2234
2234
2235 self.data_ele_tmp[val_ch] = data_ele_old
2235 self.data_ele_tmp[val_ch] = data_ele_old
2236 self.res_ele = data_ele
2236 self.res_ele = data_ele
2237 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2237 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2238 data_ele = self.res_ele
2238 data_ele = self.res_ele
2239 data_weather = self.res_weather[val_ch]
2239 data_weather = self.res_weather[val_ch]
2240
2240
2241 elif tipo_case==3:#subida
2241 elif tipo_case==3:#subida
2242 vec = numpy.where(0<data_ele)
2242 vec = numpy.where(0<data_ele)
2243 data_ele= data_ele[vec]
2243 data_ele= data_ele[vec]
2244 data_ele_new = data_ele
2244 data_ele_new = data_ele
2245 data_ele_old= data_ele_old[vec]
2245 data_ele_old= data_ele_old[vec]
2246 data_weather= data_weather[vec[0]]
2246 data_weather= data_weather[vec[0]]
2247 pos_ini = numpy.argmin(data_ele)
2247 pos_ini = numpy.argmin(data_ele)
2248 if pos_ini>0:
2248 if pos_ini>0:
2249 len_vec= len(data_ele)
2249 len_vec= len(data_ele)
2250 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
2250 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
2251 #print(vec3)
2251 #print(vec3)
2252 data_ele= data_ele[vec3]
2252 data_ele= data_ele[vec3]
2253 data_ele_new = data_ele
2253 data_ele_new = data_ele
2254 data_ele_old= data_ele_old[vec3]
2254 data_ele_old= data_ele_old[vec3]
2255 data_weather= data_weather[vec3]
2255 data_weather= data_weather[vec3]
2256
2256
2257 new_i_ele = int(data_ele_new[0])
2257 new_i_ele = int(data_ele_new[0])
2258 new_f_ele = int(data_ele_new[-1])
2258 new_f_ele = int(data_ele_new[-1])
2259 n1= new_i_ele- ang_min
2259 n1= new_i_ele- ang_min
2260 n2= ang_max - new_f_ele-1
2260 n2= ang_max - new_f_ele-1
2261 if n1>0:
2261 if n1>0:
2262 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2262 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2263 ele1_nan= numpy.ones(n1)*numpy.nan
2263 ele1_nan= numpy.ones(n1)*numpy.nan
2264 data_ele = numpy.hstack((ele1,data_ele_new))
2264 data_ele = numpy.hstack((ele1,data_ele_new))
2265 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2265 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2266 if n2>0:
2266 if n2>0:
2267 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2267 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2268 ele2_nan= numpy.ones(n2)*numpy.nan
2268 ele2_nan= numpy.ones(n2)*numpy.nan
2269 data_ele = numpy.hstack((data_ele,ele2))
2269 data_ele = numpy.hstack((data_ele,ele2))
2270 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2270 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2271
2271
2272 self.data_ele_tmp[val_ch] = data_ele_old
2272 self.data_ele_tmp[val_ch] = data_ele_old
2273 self.res_ele = data_ele
2273 self.res_ele = data_ele
2274 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2274 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2275 data_ele = self.res_ele
2275 data_ele = self.res_ele
2276 data_weather = self.res_weather[val_ch]
2276 data_weather = self.res_weather[val_ch]
2277 #print("self.data_ele_tmp",self.data_ele_tmp)
2277 #print("self.data_ele_tmp",self.data_ele_tmp)
2278 return data_weather,data_ele
2278 return data_weather,data_ele
2279
2279
2280 def const_ploteo_vRF(self,val_ch,data_weather,data_ele,res,ang_max,ang_min):
2280 def const_ploteo_vRF(self,val_ch,data_weather,data_ele,res,ang_max,ang_min):
2281
2281
2282 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,1)
2282 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,1)
2283
2283
2284 data_ele = data_ele_old.copy()
2284 data_ele = data_ele_old.copy()
2285
2285
2286 diff_1 = ang_max - data_ele[0]
2286 diff_1 = ang_max - data_ele[0]
2287 angles_1_nan = numpy.linspace(ang_max,data_ele[0]+1,int(diff_1)-1)#*numpy.nan
2287 angles_1_nan = numpy.linspace(ang_max,data_ele[0]+1,int(diff_1)-1)#*numpy.nan
2288
2288
2289 diff_2 = data_ele[-1]-ang_min
2289 diff_2 = data_ele[-1]-ang_min
2290 angles_2_nan = numpy.linspace(data_ele[-1]-1,ang_min,int(diff_2)-1)#*numpy.nan
2290 angles_2_nan = numpy.linspace(data_ele[-1]-1,ang_min,int(diff_2)-1)#*numpy.nan
2291
2291
2292 angles_filled = numpy.concatenate((angles_1_nan,data_ele,angles_2_nan))
2292 angles_filled = numpy.concatenate((angles_1_nan,data_ele,angles_2_nan))
2293
2293
2294 print(angles_filled)
2294 print(angles_filled)
2295
2295
2296 data_1_nan = numpy.ones([angles_1_nan.shape[0],len(self.r_mask)])*numpy.nan
2296 data_1_nan = numpy.ones([angles_1_nan.shape[0],len(self.r_mask)])*numpy.nan
2297 data_2_nan = numpy.ones([angles_2_nan.shape[0],len(self.r_mask)])*numpy.nan
2297 data_2_nan = numpy.ones([angles_2_nan.shape[0],len(self.r_mask)])*numpy.nan
2298
2298
2299 data_filled = numpy.concatenate((data_1_nan,data_weather,data_2_nan),axis=0)
2299 data_filled = numpy.concatenate((data_1_nan,data_weather,data_2_nan),axis=0)
2300 #val_mean = numpy.mean(data_weather[:,-1])
2300 #val_mean = numpy.mean(data_weather[:,-1])
2301 #self.val_mean = val_mean
2301 #self.val_mean = val_mean
2302 print(data_filled)
2302 print(data_filled)
2303 data_filled = self.replaceNAN(data_weather=data_filled,data_ele=angles_filled,val=numpy.nan)
2303 data_filled = self.replaceNAN(data_weather=data_filled,data_ele=angles_filled,val=numpy.nan)
2304
2304
2305 print(data_filled)
2305 print(data_filled)
2306 print(data_filled.shape)
2306 print(data_filled.shape)
2307 print(angles_filled.shape)
2307 print(angles_filled.shape)
2308
2308
2309 return data_filled,angles_filled
2309 return data_filled,angles_filled
2310
2310
2311 def plot(self):
2311 def plot(self):
2312 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
2312 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
2313 data = self.data[-1]
2313 data = self.data[-1]
2314 r = self.data.yrange
2314 r = self.data.yrange
2315 delta_height = r[1]-r[0]
2315 delta_height = r[1]-r[0]
2316 r_mask = numpy.where(r>=0)[0]
2316 r_mask = numpy.where(r>=0)[0]
2317 self.r_mask =r_mask
2317 self.r_mask =r_mask
2318 ##print("delta_height",delta_height)
2318 ##print("delta_height",delta_height)
2319 #print("r_mask",r_mask,len(r_mask))
2319 #print("r_mask",r_mask,len(r_mask))
2320 r = numpy.arange(len(r_mask))*delta_height
2320 r = numpy.arange(len(r_mask))*delta_height
2321 self.y = 2*r
2321 self.y = 2*r
2322 res = 1
2322 res = 1
2323 ###print("data['weather'].shape[0]",data['weather'].shape[0])
2323 ###print("data['weather'].shape[0]",data['weather'].shape[0])
2324 ang_max = self.ang_max
2324 ang_max = self.ang_max
2325 ang_min = self.ang_min
2325 ang_min = self.ang_min
2326 var_ang =ang_max - ang_min
2326 var_ang =ang_max - ang_min
2327 step = (int(var_ang)/(res*data['weather'].shape[0]))
2327 step = (int(var_ang)/(res*data['weather'].shape[0]))
2328 ###print("step",step)
2328 ###print("step",step)
2329 #--------------------------------------------------------
2329 #--------------------------------------------------------
2330 ##print('weather',data['weather'].shape)
2330 ##print('weather',data['weather'].shape)
2331 ##print('ele',data['ele'].shape)
2331 ##print('ele',data['ele'].shape)
2332
2332
2333 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
2333 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
2334 ###self.res_azi = numpy.mean(data['azi'])
2334 ###self.res_azi = numpy.mean(data['azi'])
2335 ###print("self.res_ele",self.res_ele)
2335 ###print("self.res_ele",self.res_ele)
2336
2336
2337 plt.clf()
2337 plt.clf()
2338 subplots = [121, 122]
2338 subplots = [121, 122]
2339 #if self.ini==0:
2339 #if self.ini==0:
2340 #self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
2340 #self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
2341 #print("SHAPE",self.data_ele_tmp.shape)
2341 #print("SHAPE",self.data_ele_tmp.shape)
2342
2342
2343 for i,ax in enumerate(self.axes):
2343 for i,ax in enumerate(self.axes):
2344 res_weather, self.res_ele = self.const_ploteo_vRF(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],res=res,ang_max=ang_max,ang_min=ang_min)
2344 res_weather, self.res_ele = self.const_ploteo_vRF(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],res=res,ang_max=ang_max,ang_min=ang_min)
2345 self.res_azi = numpy.mean(data['azi'])
2345 self.res_azi = numpy.mean(data['azi'])
2346
2346
2347 if ax.firsttime:
2347 if ax.firsttime:
2348 #plt.clf()
2348 #plt.clf()
2349 print("Frist Plot")
2349 print("Frist Plot")
2350 print(data['weather'][i][:,r_mask].shape)
2350 print(data['weather'][i][:,r_mask].shape)
2351 print(data['ele'].shape)
2351 print(data['ele'].shape)
2352 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2352 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2353 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2353 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2354 gh = cgax.get_grid_helper()
2354 gh = cgax.get_grid_helper()
2355 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2355 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2356 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2356 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2357 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2357 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2358
2358
2359
2359
2360 #fig=self.figures[0]
2360 #fig=self.figures[0]
2361 else:
2361 else:
2362 #plt.clf()
2362 #plt.clf()
2363 print("ELSE PLOT")
2363 print("ELSE PLOT")
2364 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2364 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2365 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2365 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2366 gh = cgax.get_grid_helper()
2366 gh = cgax.get_grid_helper()
2367 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2367 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2368 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2368 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2369 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2369 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2370
2370
2371 caax = cgax.parasites[0]
2371 caax = cgax.parasites[0]
2372 paax = cgax.parasites[1]
2372 paax = cgax.parasites[1]
2373 cbar = plt.gcf().colorbar(pm, pad=0.075)
2373 cbar = plt.gcf().colorbar(pm, pad=0.075)
2374 caax.set_xlabel('x_range [km]')
2374 caax.set_xlabel('x_range [km]')
2375 caax.set_ylabel('y_range [km]')
2375 caax.set_ylabel('y_range [km]')
2376 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
2376 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
2377 print("***************************self.ini****************************",self.ini)
2377 print("***************************self.ini****************************",self.ini)
2378 self.ini= self.ini+1
2378 self.ini= self.ini+1
2379
2380 class WeatherRHI_vRF4_Plot(Plot):
2381 CODE = 'weather'
2382 plot_name = 'weather'
2383 #plot_type = 'rhistyle'
2384 buffering = False
2385 data_ele_tmp = None
2386
2387 def setup(self):
2388
2389 self.ncols = 1
2390 self.nrows = 1
2391 self.nplots= 1
2392 self.ylabel= 'Range [Km]'
2393 self.titles= ['Weather']
2394 self.polar = True
2395 if self.channels is not None:
2396 self.nplots = len(self.channels)
2397 self.nrows = len(self.channels)
2398 else:
2399 self.nplots = self.data.shape(self.CODE)[0]
2400 self.nrows = self.nplots
2401 self.channels = list(range(self.nplots))
2402 #print("JERE")
2403 #exit(1)
2404 #print("channels",self.channels)
2405 #print("que saldra", self.data.shape(self.CODE)[0])
2406 #self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
2407
2408 #print("self.titles",self.titles)
2409 if self.CODE == 'Power':
2410 self.cb_label = r'Power (dB)'
2411 elif self.CODE == 'Doppler':
2412 self.cb_label = r'Velocity (m/s)'
2413 self.colorbar=True
2414 self.width =8
2415 self.height =8
2416 self.ini =0
2417 self.len_azi =0
2418 self.buffer_ini = None
2419 self.buffer_ele = None
2420 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
2421 self.flag =0
2422 self.indicador= 0
2423 self.last_data_ele = None
2424 self.val_mean = None
2425
2426 def update(self, dataOut):
2427
2428 if self.mode == 'Power':
2429 self.CODE = 'Power'
2430 elif self.mode == 'Doppler':
2431 self.CODE = 'Doppler'
2432
2433 data = {}
2434 meta = {}
2435 if hasattr(dataOut, 'dataPP_POWER'):
2436 factor = 1
2437 if hasattr(dataOut, 'nFFTPoints'):
2438 factor = dataOut.normFactor
2439
2440 if self.CODE == 'Power':
2441 data[self.CODE] = 10*numpy.log10(dataOut.data_360_Power/(factor))
2442 elif self.CODE == 'Doppler':
2443 data[self.CODE] = dataOut.data_360_Velocity/(factor)
2444
2445 data['azi'] = dataOut.data_azi
2446 data['ele'] = dataOut.data_ele
2447
2448 return data, meta
2449
2450 def plot(self):
2451 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
2452 data = self.data[-1]
2453 r = self.data.yrange
2454 delta_height = r[1]-r[0]
2455 r_mask = numpy.where(r>=0)[0]
2456 self.r_mask =r_mask
2457 r = numpy.arange(len(r_mask))*delta_height
2458 self.y = 2*r
2459 res = 1
2460 ang_max = self.ang_max
2461 ang_min = self.ang_min
2462 var_ang =ang_max - ang_min
2463 step = (int(var_ang)/(res*data[self.CODE].shape[0]))
2464
2465 z = data[self.CODE][self.channels[0]][:,r_mask]
2466
2467 #print(z[2,:])
2468 self.titles = []
2469
2470 #exit(1)
2471
2472 if self.CODE == 'Power':
2473 cmap = 'jet'
2474 elif self.CODE == 'Doppler':
2475 cmap = 'RdBu'
2476
2477 self.ymax = self.ymax if self.ymax else numpy.nanmax(r)
2478 self.ymin = self.ymin if self.ymin else numpy.nanmin(r)
2479 self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
2480 self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
2481
2482 #plt.clf()
2483 subplots = [121, 122]
2484
2485 r, theta = numpy.meshgrid(r, numpy.radians(data['ele']) )
2486
2487 points_cb = 200
2488 mylevs_cbar = list(numpy.linspace(self.zmin,self.zmax,points_cb)) #niveles de la barra de colores
2489
2490 for i,ax in enumerate(self.axes):
2491
2492 if ax.firsttime:
2493 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
2494 ax.plt = ax.contourf(theta, r, z, points_cb, cmap=cmap, vmin=self.zmin, vmax=self.zmax, levels=mylevs_cbar)
2495 #print(ax.plt)
2496 #exit(1)
2497 '''
2498 self.figures[-1].colorbar(plt, orientation="vertical", fraction=0.025, pad=0.07)
2499 print(self.figures[0])
2500 print(self.figures)
2501 print(plt)
2502 print(ax)
2503 exit(1)
2504 '''
2505
2506 else:
2507 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
2508 ax.plt = ax.contourf(theta, r, z, points_cb, cmap=cmap, vmin=self.zmin, vmax=self.zmax, levels=mylevs_cbar)
2509 #self.figures[0].colorbar(plt, orientation="vertical", fraction=0.025, pad=0.07)
2510
2511 #print(self.titles)
2512 if len(self.channels) !=1:
2513 self.titles = ['{} Azi: {} Channel {}'.format(self.CODE.upper(), str(round(numpy.mean(data['azi']),2)), x) for x in range(self.nrows)]
2514 else:
2515 self.titles = ['{} Azi: {} Channel {}'.format(self.CODE.upper(), str(round(numpy.mean(data['azi']),2)), self.channels[0])]
2516 #self.titles.append('Azi: {}'.format(str(round(numpy.mean(data['azi']),2))))
2517 #self.titles.append(str(round(numpy.mean(data['azi']),2)))
2518 #print(self.titles)
2519 #plt.text(1.0, 1.05, str(thisDatetime)+ " Azi: "+str(round(numpy.mean(data['azi']),2)), transform=caax.transAxes, va='bottom',ha='right')
2520 #print("***************************self.ini****************************",self.ini)
2521 #self.figures[-1].colorbar(plt, orientation="vertical", fraction=0.025, pad=0.07)
2522 #self.ini= self.ini+1
@@ -1,703 +1,714
1 import os
1 import os
2 import time
2 import time
3 import datetime
3 import datetime
4
4
5 import numpy
5 import numpy
6 import h5py
6 import h5py
7
7
8 import schainpy.admin
8 import schainpy.admin
9 from schainpy.model.data.jrodata import *
9 from schainpy.model.data.jrodata import *
10 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
10 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
11 from schainpy.model.io.jroIO_base import *
11 from schainpy.model.io.jroIO_base import *
12 from schainpy.utils import log
12 from schainpy.utils import log
13
13
14
14
15 class HDFReader(Reader, ProcessingUnit):
15 class HDFReader(Reader, ProcessingUnit):
16 """Processing unit to read HDF5 format files
16 """Processing unit to read HDF5 format files
17
17
18 This unit reads HDF5 files created with `HDFWriter` operation contains
18 This unit reads HDF5 files created with `HDFWriter` operation contains
19 by default two groups Data and Metadata all variables would be saved as `dataOut`
19 by default two groups Data and Metadata all variables would be saved as `dataOut`
20 attributes.
20 attributes.
21 It is possible to read any HDF5 file by given the structure in the `description`
21 It is possible to read any HDF5 file by given the structure in the `description`
22 parameter, also you can add extra values to metadata with the parameter `extras`.
22 parameter, also you can add extra values to metadata with the parameter `extras`.
23
23
24 Parameters:
24 Parameters:
25 -----------
25 -----------
26 path : str
26 path : str
27 Path where files are located.
27 Path where files are located.
28 startDate : date
28 startDate : date
29 Start date of the files
29 Start date of the files
30 endDate : list
30 endDate : list
31 End date of the files
31 End date of the files
32 startTime : time
32 startTime : time
33 Start time of the files
33 Start time of the files
34 endTime : time
34 endTime : time
35 End time of the files
35 End time of the files
36 description : dict, optional
36 description : dict, optional
37 Dictionary with the description of the HDF5 file
37 Dictionary with the description of the HDF5 file
38 extras : dict, optional
38 extras : dict, optional
39 Dictionary with extra metadata to be be added to `dataOut`
39 Dictionary with extra metadata to be be added to `dataOut`
40
40
41 Examples
41 Examples
42 --------
42 --------
43
43
44 desc = {
44 desc = {
45 'Data': {
45 'Data': {
46 'data_output': ['u', 'v', 'w'],
46 'data_output': ['u', 'v', 'w'],
47 'utctime': 'timestamps',
47 'utctime': 'timestamps',
48 } ,
48 } ,
49 'Metadata': {
49 'Metadata': {
50 'heightList': 'heights'
50 'heightList': 'heights'
51 }
51 }
52 }
52 }
53
53
54 desc = {
54 desc = {
55 'Data': {
55 'Data': {
56 'data_output': 'winds',
56 'data_output': 'winds',
57 'utctime': 'timestamps'
57 'utctime': 'timestamps'
58 },
58 },
59 'Metadata': {
59 'Metadata': {
60 'heightList': 'heights'
60 'heightList': 'heights'
61 }
61 }
62 }
62 }
63
63
64 extras = {
64 extras = {
65 'timeZone': 300
65 'timeZone': 300
66 }
66 }
67
67
68 reader = project.addReadUnit(
68 reader = project.addReadUnit(
69 name='HDFReader',
69 name='HDFReader',
70 path='/path/to/files',
70 path='/path/to/files',
71 startDate='2019/01/01',
71 startDate='2019/01/01',
72 endDate='2019/01/31',
72 endDate='2019/01/31',
73 startTime='00:00:00',
73 startTime='00:00:00',
74 endTime='23:59:59',
74 endTime='23:59:59',
75 # description=json.dumps(desc),
75 # description=json.dumps(desc),
76 # extras=json.dumps(extras),
76 # extras=json.dumps(extras),
77 )
77 )
78
78
79 """
79 """
80
80
81 __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'description', 'extras']
81 __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'description', 'extras']
82
82
83 def __init__(self):
83 def __init__(self):
84 ProcessingUnit.__init__(self)
84 ProcessingUnit.__init__(self)
85 self.dataOut = Parameters()
85 self.dataOut = Parameters()
86 self.ext = ".hdf5"
86 self.ext = ".hdf5"
87 self.optchar = "D"
87 self.optchar = "D"
88 self.meta = {}
88 self.meta = {}
89 self.data = {}
89 self.data = {}
90 self.open_file = h5py.File
90 self.open_file = h5py.File
91 self.open_mode = 'r'
91 self.open_mode = 'r'
92 self.description = {}
92 self.description = {}
93 self.extras = {}
93 self.extras = {}
94 self.filefmt = "*%Y%j***"
94 self.filefmt = "*%Y%j***"
95 self.folderfmt = "*%Y%j"
95 self.folderfmt = "*%Y%j"
96 self.utcoffset = 0
96 self.utcoffset = 0
97
97
98 def setup(self, **kwargs):
98 def setup(self, **kwargs):
99
99
100 self.set_kwargs(**kwargs)
100 self.set_kwargs(**kwargs)
101 if not self.ext.startswith('.'):
101 if not self.ext.startswith('.'):
102 self.ext = '.{}'.format(self.ext)
102 self.ext = '.{}'.format(self.ext)
103
103
104 if self.online:
104 if self.online:
105 log.log("Searching files in online mode...", self.name)
105 log.log("Searching files in online mode...", self.name)
106
106
107 for nTries in range(self.nTries):
107 for nTries in range(self.nTries):
108 fullpath = self.searchFilesOnLine(self.path, self.startDate,
108 fullpath = self.searchFilesOnLine(self.path, self.startDate,
109 self.endDate, self.expLabel, self.ext, self.walk,
109 self.endDate, self.expLabel, self.ext, self.walk,
110 self.filefmt, self.folderfmt)
110 self.filefmt, self.folderfmt)
111 try:
111 try:
112 fullpath = next(fullpath)
112 fullpath = next(fullpath)
113 except:
113 except:
114 fullpath = None
114 fullpath = None
115
115
116 if fullpath:
116 if fullpath:
117 break
117 break
118
118
119 log.warning(
119 log.warning(
120 'Waiting {} sec for a valid file in {}: try {} ...'.format(
120 'Waiting {} sec for a valid file in {}: try {} ...'.format(
121 self.delay, self.path, nTries + 1),
121 self.delay, self.path, nTries + 1),
122 self.name)
122 self.name)
123 time.sleep(self.delay)
123 time.sleep(self.delay)
124
124
125 if not(fullpath):
125 if not(fullpath):
126 raise schainpy.admin.SchainError(
126 raise schainpy.admin.SchainError(
127 'There isn\'t any valid file in {}'.format(self.path))
127 'There isn\'t any valid file in {}'.format(self.path))
128
128
129 pathname, filename = os.path.split(fullpath)
129 pathname, filename = os.path.split(fullpath)
130 self.year = int(filename[1:5])
130 self.year = int(filename[1:5])
131 self.doy = int(filename[5:8])
131 self.doy = int(filename[5:8])
132 self.set = int(filename[8:11]) - 1
132 self.set = int(filename[8:11]) - 1
133 else:
133 else:
134 log.log("Searching files in {}".format(self.path), self.name)
134 log.log("Searching files in {}".format(self.path), self.name)
135 self.filenameList = self.searchFilesOffLine(self.path, self.startDate,
135 self.filenameList = self.searchFilesOffLine(self.path, self.startDate,
136 self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt)
136 self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt)
137
137
138 self.setNextFile()
138 self.setNextFile()
139
139
140 return
140 return
141
141
142 def readFirstHeader(self):
142 def readFirstHeader(self):
143 '''Read metadata and data'''
143 '''Read metadata and data'''
144
144
145 self.__readMetadata()
145 self.__readMetadata()
146 self.__readData()
146 self.__readData()
147 self.__setBlockList()
147 self.__setBlockList()
148
148
149 if 'type' in self.meta:
149 if 'type' in self.meta:
150 self.dataOut = eval(self.meta['type'])()
150 self.dataOut = eval(self.meta['type'])()
151
151
152 for attr in self.meta:
152 for attr in self.meta:
153 setattr(self.dataOut, attr, self.meta[attr])
153 setattr(self.dataOut, attr, self.meta[attr])
154
154
155 self.blockIndex = 0
155 self.blockIndex = 0
156
156
157 return
157 return
158
158
159 def __setBlockList(self):
159 def __setBlockList(self):
160 '''
160 '''
161 Selects the data within the times defined
161 Selects the data within the times defined
162
162
163 self.fp
163 self.fp
164 self.startTime
164 self.startTime
165 self.endTime
165 self.endTime
166 self.blockList
166 self.blockList
167 self.blocksPerFile
167 self.blocksPerFile
168
168
169 '''
169 '''
170
170
171 startTime = self.startTime
171 startTime = self.startTime
172 endTime = self.endTime
172 endTime = self.endTime
173 thisUtcTime = self.data['utctime'] + self.utcoffset
173 thisUtcTime = self.data['utctime'] + self.utcoffset
174 self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1])
174 self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1])
175 thisDatetime = datetime.datetime.utcfromtimestamp(thisUtcTime[0])
175 thisDatetime = datetime.datetime.utcfromtimestamp(thisUtcTime[0])
176
176
177 thisDate = thisDatetime.date()
177 thisDate = thisDatetime.date()
178 thisTime = thisDatetime.time()
178 thisTime = thisDatetime.time()
179
179
180 startUtcTime = (datetime.datetime.combine(thisDate, startTime) - datetime.datetime(1970, 1, 1)).total_seconds()
180 startUtcTime = (datetime.datetime.combine(thisDate, startTime) - datetime.datetime(1970, 1, 1)).total_seconds()
181 endUtcTime = (datetime.datetime.combine(thisDate, endTime) - datetime.datetime(1970, 1, 1)).total_seconds()
181 endUtcTime = (datetime.datetime.combine(thisDate, endTime) - datetime.datetime(1970, 1, 1)).total_seconds()
182
182
183 ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0]
183 ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0]
184
184
185 self.blockList = ind
185 self.blockList = ind
186 self.blocksPerFile = len(ind)
186 self.blocksPerFile = len(ind)
187 return
187 return
188
188
189 def __readMetadata(self):
189 def __readMetadata(self):
190 '''
190 '''
191 Reads Metadata
191 Reads Metadata
192 '''
192 '''
193
193
194 meta = {}
194 meta = {}
195
195
196 if self.description:
196 if self.description:
197 for key, value in self.description['Metadata'].items():
197 for key, value in self.description['Metadata'].items():
198 meta[key] = self.fp[value][()]
198 meta[key] = self.fp[value][()]
199 else:
199 else:
200 grp = self.fp['Metadata']
200 grp = self.fp['Metadata']
201 for name in grp:
201 for name in grp:
202 meta[name] = grp[name][()]
202 meta[name] = grp[name][()]
203
203
204 if self.extras:
204 if self.extras:
205 for key, value in self.extras.items():
205 for key, value in self.extras.items():
206 meta[key] = value
206 meta[key] = value
207 self.meta = meta
207 self.meta = meta
208
208
209 return
209 return
210
210
211 def __readData(self):
211 def __readData(self):
212
212
213 data = {}
213 data = {}
214
214
215 if self.description:
215 if self.description:
216 for key, value in self.description['Data'].items():
216 for key, value in self.description['Data'].items():
217 if isinstance(value, str):
217 if isinstance(value, str):
218 if isinstance(self.fp[value], h5py.Dataset):
218 if isinstance(self.fp[value], h5py.Dataset):
219 data[key] = self.fp[value][()]
219 data[key] = self.fp[value][()]
220 elif isinstance(self.fp[value], h5py.Group):
220 elif isinstance(self.fp[value], h5py.Group):
221 array = []
221 array = []
222 for ch in self.fp[value]:
222 for ch in self.fp[value]:
223 array.append(self.fp[value][ch][()])
223 array.append(self.fp[value][ch][()])
224 data[key] = numpy.array(array)
224 data[key] = numpy.array(array)
225 elif isinstance(value, list):
225 elif isinstance(value, list):
226 array = []
226 array = []
227 for ch in value:
227 for ch in value:
228 array.append(self.fp[ch][()])
228 array.append(self.fp[ch][()])
229 data[key] = numpy.array(array)
229 data[key] = numpy.array(array)
230 else:
230 else:
231 grp = self.fp['Data']
231 grp = self.fp['Data']
232 for name in grp:
232 for name in grp:
233 if isinstance(grp[name], h5py.Dataset):
233 if isinstance(grp[name], h5py.Dataset):
234 array = grp[name][()]
234 array = grp[name][()]
235 elif isinstance(grp[name], h5py.Group):
235 elif isinstance(grp[name], h5py.Group):
236 array = []
236 array = []
237 for ch in grp[name]:
237 for ch in grp[name]:
238 array.append(grp[name][ch][()])
238 array.append(grp[name][ch][()])
239 array = numpy.array(array)
239 array = numpy.array(array)
240 else:
240 else:
241 log.warning('Unknown type: {}'.format(name))
241 log.warning('Unknown type: {}'.format(name))
242
242
243 if name in self.description:
243 if name in self.description:
244 key = self.description[name]
244 key = self.description[name]
245 else:
245 else:
246 key = name
246 key = name
247 data[key] = array
247 data[key] = array
248
248
249 self.data = data
249 self.data = data
250 return
250 return
251
251
252 def getData(self):
252 def getData(self):
253
253
254 for attr in self.data:
254 for attr in self.data:
255 if self.data[attr].ndim == 1:
255 if self.data[attr].ndim == 1:
256 setattr(self.dataOut, attr, self.data[attr][self.blockIndex])
256 setattr(self.dataOut, attr, self.data[attr][self.blockIndex])
257 else:
257 else:
258 setattr(self.dataOut, attr, self.data[attr][:, self.blockIndex])
258 setattr(self.dataOut, attr, self.data[attr][:, self.blockIndex])
259
259
260 self.dataOut.flagNoData = False
260 self.dataOut.flagNoData = False
261 self.blockIndex += 1
261 self.blockIndex += 1
262
262
263 log.log("Block No. {}/{} -> {}".format(
263 log.log("Block No. {}/{} -> {}".format(
264 self.blockIndex,
264 self.blockIndex,
265 self.blocksPerFile,
265 self.blocksPerFile,
266 self.dataOut.datatime.ctime()), self.name)
266 self.dataOut.datatime.ctime()), self.name)
267
267
268 return
268 return
269
269
270 def run(self, **kwargs):
270 def run(self, **kwargs):
271
271
272 if not(self.isConfig):
272 if not(self.isConfig):
273 self.setup(**kwargs)
273 self.setup(**kwargs)
274 self.isConfig = True
274 self.isConfig = True
275
275
276 if self.blockIndex == self.blocksPerFile:
276 if self.blockIndex == self.blocksPerFile:
277 self.setNextFile()
277 self.setNextFile()
278
278
279 self.getData()
279 self.getData()
280
280
281 return
281 return
282
282
283 @MPDecorator
283 @MPDecorator
284 class HDFWriter(Operation):
284 class HDFWriter(Operation):
285 """Operation to write HDF5 files.
285 """Operation to write HDF5 files.
286
286
287 The HDF5 file contains by default two groups Data and Metadata where
287 The HDF5 file contains by default two groups Data and Metadata where
288 you can save any `dataOut` attribute specified by `dataList` and `metadataList`
288 you can save any `dataOut` attribute specified by `dataList` and `metadataList`
289 parameters, data attributes are normaly time dependent where the metadata
289 parameters, data attributes are normaly time dependent where the metadata
290 are not.
290 are not.
291 It is possible to customize the structure of the HDF5 file with the
291 It is possible to customize the structure of the HDF5 file with the
292 optional description parameter see the examples.
292 optional description parameter see the examples.
293
293
294 Parameters:
294 Parameters:
295 -----------
295 -----------
296 path : str
296 path : str
297 Path where files will be saved.
297 Path where files will be saved.
298 blocksPerFile : int
298 blocksPerFile : int
299 Number of blocks per file
299 Number of blocks per file
300 metadataList : list
300 metadataList : list
301 List of the dataOut attributes that will be saved as metadata
301 List of the dataOut attributes that will be saved as metadata
302 dataList : int
302 dataList : int
303 List of the dataOut attributes that will be saved as data
303 List of the dataOut attributes that will be saved as data
304 setType : bool
304 setType : bool
305 If True the name of the files corresponds to the timestamp of the data
305 If True the name of the files corresponds to the timestamp of the data
306 description : dict, optional
306 description : dict, optional
307 Dictionary with the desired description of the HDF5 file
307 Dictionary with the desired description of the HDF5 file
308
308
309 Examples
309 Examples
310 --------
310 --------
311
311
312 desc = {
312 desc = {
313 'data_output': {'winds': ['z', 'w', 'v']},
313 'data_output': {'winds': ['z', 'w', 'v']},
314 'utctime': 'timestamps',
314 'utctime': 'timestamps',
315 'heightList': 'heights'
315 'heightList': 'heights'
316 }
316 }
317 desc = {
317 desc = {
318 'data_output': ['z', 'w', 'v'],
318 'data_output': ['z', 'w', 'v'],
319 'utctime': 'timestamps',
319 'utctime': 'timestamps',
320 'heightList': 'heights'
320 'heightList': 'heights'
321 }
321 }
322 desc = {
322 desc = {
323 'Data': {
323 'Data': {
324 'data_output': 'winds',
324 'data_output': 'winds',
325 'utctime': 'timestamps'
325 'utctime': 'timestamps'
326 },
326 },
327 'Metadata': {
327 'Metadata': {
328 'heightList': 'heights'
328 'heightList': 'heights'
329 }
329 }
330 }
330 }
331
331
332 writer = proc_unit.addOperation(name='HDFWriter')
332 writer = proc_unit.addOperation(name='HDFWriter')
333 writer.addParameter(name='path', value='/path/to/file')
333 writer.addParameter(name='path', value='/path/to/file')
334 writer.addParameter(name='blocksPerFile', value='32')
334 writer.addParameter(name='blocksPerFile', value='32')
335 writer.addParameter(name='metadataList', value='heightList,timeZone')
335 writer.addParameter(name='metadataList', value='heightList,timeZone')
336 writer.addParameter(name='dataList',value='data_output,utctime')
336 writer.addParameter(name='dataList',value='data_output,utctime')
337 # writer.addParameter(name='description',value=json.dumps(desc))
337 # writer.addParameter(name='description',value=json.dumps(desc))
338
338
339 """
339 """
340
340
341 ext = ".hdf5"
341 ext = ".hdf5"
342 optchar = "D"
342 optchar = "D"
343 filename = None
343 filename = None
344 path = None
344 path = None
345 setFile = None
345 setFile = None
346 fp = None
346 fp = None
347 firsttime = True
347 firsttime = True
348 #Configurations
348 #Configurations
349 blocksPerFile = None
349 blocksPerFile = None
350 blockIndex = None
350 blockIndex = None
351 dataOut = None
351 dataOut = None
352 #Data Arrays
352 #Data Arrays
353 dataList = None
353 dataList = None
354 metadataList = None
354 metadataList = None
355 currentDay = None
355 currentDay = None
356 lastTime = None
356 lastTime = None
357 last_Azipos = None
357 last_Azipos = None
358 last_Elepos = None
358 last_Elepos = None
359 mode = None
359 mode = None
360 #-----------------------
360 #-----------------------
361 Typename = None
361 Typename = None
362
362
363
363
364
364
365 def __init__(self):
365 def __init__(self):
366
366
367 Operation.__init__(self)
367 Operation.__init__(self)
368 return
368 return
369
369
370
370
371 def set_kwargs(self, **kwargs):
371 def set_kwargs(self, **kwargs):
372
372
373 for key, value in kwargs.items():
373 for key, value in kwargs.items():
374 setattr(self, key, value)
374 setattr(self, key, value)
375
375
376 def set_kwargs_obj(self,obj, **kwargs):
376 def set_kwargs_obj(self,obj, **kwargs):
377
377
378 for key, value in kwargs.items():
378 for key, value in kwargs.items():
379 setattr(obj, key, value)
379 setattr(obj, key, value)
380
380
381 def generalFlag(self):
381 def generalFlag(self):
382 ####rint("GENERALFLAG")
382 ####rint("GENERALFLAG")
383 if self.mode== "weather":
383 if self.mode== "weather":
384 if self.last_Azipos == None:
384 if self.last_Azipos == None:
385 tmp = self.dataOut.azimuth
385 tmp = self.dataOut.azimuth
386 ####print("ang azimuth writer",tmp)
386 ####print("ang azimuth writer",tmp)
387 self.last_Azipos = tmp
387 self.last_Azipos = tmp
388 flag = False
388 flag = False
389 return flag
389 return flag
390 ####print("ang_azimuth writer",self.dataOut.azimuth)
390 ####print("ang_azimuth writer",self.dataOut.azimuth)
391 result = self.dataOut.azimuth - self.last_Azipos
391 result = self.dataOut.azimuth - self.last_Azipos
392 self.last_Azipos = self.dataOut.azimuth
392 self.last_Azipos = self.dataOut.azimuth
393 if result<0:
393 if result<0:
394 flag = True
394 flag = True
395 return flag
395 return flag
396
396
397 def generalFlag_vRF(self):
398 ####rint("GENERALFLAG")
399
400 try:
401 self.dataOut.flagBlock360Done
402 return self.dataOut.flagBlock360Done
403 except:
404 return 0
405
406
397 def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, description=None,type_data=None,**kwargs):
407 def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, description=None,type_data=None,**kwargs):
398 self.path = path
408 self.path = path
399 self.blocksPerFile = blocksPerFile
409 self.blocksPerFile = blocksPerFile
400 self.metadataList = metadataList
410 self.metadataList = metadataList
401 self.dataList = [s.strip() for s in dataList]
411 self.dataList = [s.strip() for s in dataList]
412 self.setType = setType
402 if self.mode == "weather":
413 if self.mode == "weather":
403 self.setType = "weather"
414 self.setType = "weather"
404 #----------------------------------------
415 #----------------------------------------
405 self.set_kwargs(**kwargs)
416 self.set_kwargs(**kwargs)
406 self.set_kwargs_obj(self.dataOut,**kwargs)
417 self.set_kwargs_obj(self.dataOut,**kwargs)
407 #print("-----------------------------------------------------------",self.Typename)
418 #print("-----------------------------------------------------------",self.Typename)
408 #print("hola",self.ContactInformation)
419 #print("hola",self.ContactInformation)
409
420
410 self.description = description
421 self.description = description
411 self.type_data=type_data
422 self.type_data=type_data
412
423
413 if self.metadataList is None:
424 if self.metadataList is None:
414 self.metadataList = self.dataOut.metadata_list
425 self.metadataList = self.dataOut.metadata_list
415
426
416 tableList = []
427 tableList = []
417 dsList = []
428 dsList = []
418
429
419 for i in range(len(self.dataList)):
430 for i in range(len(self.dataList)):
420 dsDict = {}
431 dsDict = {}
421 if hasattr(self.dataOut, self.dataList[i]):
432 if hasattr(self.dataOut, self.dataList[i]):
422 dataAux = getattr(self.dataOut, self.dataList[i])
433 dataAux = getattr(self.dataOut, self.dataList[i])
423 dsDict['variable'] = self.dataList[i]
434 dsDict['variable'] = self.dataList[i]
424 else:
435 else:
425 log.warning('Attribute {} not found in dataOut', self.name)
436 log.warning('Attribute {} not found in dataOut', self.name)
426 continue
437 continue
427
438
428 if dataAux is None:
439 if dataAux is None:
429 continue
440 continue
430 elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)):
441 elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)):
431 dsDict['nDim'] = 0
442 dsDict['nDim'] = 0
432 else:
443 else:
433 dsDict['nDim'] = len(dataAux.shape)
444 dsDict['nDim'] = len(dataAux.shape)
434 dsDict['shape'] = dataAux.shape
445 dsDict['shape'] = dataAux.shape
435 dsDict['dsNumber'] = dataAux.shape[0]
446 dsDict['dsNumber'] = dataAux.shape[0]
436 dsDict['dtype'] = dataAux.dtype
447 dsDict['dtype'] = dataAux.dtype
437
448
438 dsList.append(dsDict)
449 dsList.append(dsDict)
439
450
440 self.dsList = dsList
451 self.dsList = dsList
441 self.currentDay = self.dataOut.datatime.date()
452 self.currentDay = self.dataOut.datatime.date()
442
453
443 def timeFlag(self):
454 def timeFlag(self):
444 currentTime = self.dataOut.utctime
455 currentTime = self.dataOut.utctime
445 timeTuple = time.localtime(currentTime)
456 timeTuple = time.localtime(currentTime)
446 dataDay = timeTuple.tm_yday
457 dataDay = timeTuple.tm_yday
447
458
448 if self.lastTime is None:
459 if self.lastTime is None:
449 self.lastTime = currentTime
460 self.lastTime = currentTime
450 self.currentDay = dataDay
461 self.currentDay = dataDay
451 return False
462 return False
452
463
453 timeDiff = currentTime - self.lastTime
464 timeDiff = currentTime - self.lastTime
454
465
455 #Si el dia es diferente o si la diferencia entre un dato y otro supera la hora
466 #Si el dia es diferente o si la diferencia entre un dato y otro supera la hora
456 if dataDay != self.currentDay:
467 if dataDay != self.currentDay:
457 self.currentDay = dataDay
468 self.currentDay = dataDay
458 return True
469 return True
459 elif timeDiff > 3*60*60:
470 elif timeDiff > 3*60*60:
460 self.lastTime = currentTime
471 self.lastTime = currentTime
461 return True
472 return True
462 else:
473 else:
463 self.lastTime = currentTime
474 self.lastTime = currentTime
464 return False
475 return False
465
476
466 def run(self, dataOut, path, blocksPerFile=10, metadataList=None,
477 def run(self, dataOut, path, blocksPerFile=10, metadataList=None,
467 dataList=[], setType=None, description={},mode= None,type_data=None,**kwargs):
478 dataList=[], setType=None, description={},mode= None,type_data=None,**kwargs):
468
479
469 ###print("VOY A ESCRIBIR----------------------")
480 ###print("VOY A ESCRIBIR----------------------")
470 #print("CHECKTHIS------------------------------------------------------------------*****---",**kwargs)
481 #print("CHECKTHIS------------------------------------------------------------------*****---",**kwargs)
471 self.dataOut = dataOut
482 self.dataOut = dataOut
472 self.mode = mode
483 self.mode = mode
473 if not(self.isConfig):
484 if not(self.isConfig):
474 self.setup(path=path, blocksPerFile=blocksPerFile,
485 self.setup(path=path, blocksPerFile=blocksPerFile,
475 metadataList=metadataList, dataList=dataList,
486 metadataList=metadataList, dataList=dataList,
476 setType=setType, description=description,type_data=type_data,**kwargs)
487 setType=setType, description=description,type_data=type_data,**kwargs)
477
488
478 self.isConfig = True
489 self.isConfig = True
479 self.setNextFile()
490 self.setNextFile()
480
491
481 self.putData()
492 self.putData()
482 return
493 return
483
494
484 def setNextFile(self):
495 def setNextFile(self):
485 ###print("HELLO WORLD--------------------------------")
496 ###print("HELLO WORLD--------------------------------")
486 ext = self.ext
497 ext = self.ext
487 path = self.path
498 path = self.path
488 setFile = self.setFile
499 setFile = self.setFile
489 type_data = self.type_data
500 type_data = self.type_data
490
501
491 timeTuple = time.localtime(self.dataOut.utctime)
502 timeTuple = time.localtime(self.dataOut.utctime)
492 subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday)
503 subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday)
493 fullpath = os.path.join(path, subfolder)
504 fullpath = os.path.join(path, subfolder)
494
505
495 if os.path.exists(fullpath):
506 if os.path.exists(fullpath):
496 filesList = os.listdir(fullpath)
507 filesList = os.listdir(fullpath)
497 filesList = [k for k in filesList if k.startswith(self.optchar)]
508 filesList = [k for k in filesList if k.startswith(self.optchar)]
498 if len( filesList ) > 0:
509 if len( filesList ) > 0:
499 filesList = sorted(filesList, key=str.lower)
510 filesList = sorted(filesList, key=str.lower)
500 filen = filesList[-1]
511 filen = filesList[-1]
501 # el filename debera tener el siguiente formato
512 # el filename debera tener el siguiente formato
502 # 0 1234 567 89A BCDE (hex)
513 # 0 1234 567 89A BCDE (hex)
503 # x YYYY DDD SSS .ext
514 # x YYYY DDD SSS .ext
504 if isNumber(filen[8:11]):
515 if isNumber(filen[8:11]):
505 setFile = int(filen[8:11]) #inicializo mi contador de seteo al seteo del ultimo file
516 setFile = int(filen[8:11]) #inicializo mi contador de seteo al seteo del ultimo file
506 else:
517 else:
507 setFile = -1
518 setFile = -1
508 else:
519 else:
509 setFile = -1 #inicializo mi contador de seteo
520 setFile = -1 #inicializo mi contador de seteo
510 else:
521 else:
511 os.makedirs(fullpath)
522 os.makedirs(fullpath)
512 setFile = -1 #inicializo mi contador de seteo
523 setFile = -1 #inicializo mi contador de seteo
513
524
514 ###print("**************************",self.setType)
525 ###print("**************************",self.setType)
515 if self.setType is None:
526 if self.setType is None:
516 setFile += 1
527 setFile += 1
517 file = '%s%4.4d%3.3d%03d%s' % (self.optchar,
528 file = '%s%4.4d%3.3d%03d%s' % (self.optchar,
518 timeTuple.tm_year,
529 timeTuple.tm_year,
519 timeTuple.tm_yday,
530 timeTuple.tm_yday,
520 setFile,
531 setFile,
521 ext )
532 ext )
522 elif self.setType == "weather":
533 elif self.setType == "weather":
523 print("HOLA AMIGOS")
534 print("HOLA AMIGOS")
524 wr_exp = self.dataOut.wr_exp
535 wr_exp = self.dataOut.wr_exp
525 if wr_exp== "PPI":
536 if wr_exp== "PPI":
526 wr_type = 'E'
537 wr_type = 'E'
527 ang_ = numpy.mean(self.dataOut.elevation)
538 ang_ = numpy.mean(self.dataOut.elevation)
528 else:
539 else:
529 wr_type = 'A'
540 wr_type = 'A'
530 ang_ = numpy.mean(self.dataOut.azimuth)
541 ang_ = numpy.mean(self.dataOut.azimuth)
531
542
532 wr_writer = '%s%s%2.1f%s'%('-',
543 wr_writer = '%s%s%2.1f%s'%('-',
533 wr_type,
544 wr_type,
534 ang_,
545 ang_,
535 '-')
546 '-')
536 ###print("wr_writer********************",wr_writer)
547 ###print("wr_writer********************",wr_writer)
537 file = '%s%4.4d%2.2d%2.2d%s%2.2d%2.2d%2.2d%s%s%s' % (self.optchar,
548 file = '%s%4.4d%2.2d%2.2d%s%2.2d%2.2d%2.2d%s%s%s' % (self.optchar,
538 timeTuple.tm_year,
549 timeTuple.tm_year,
539 timeTuple.tm_mon,
550 timeTuple.tm_mon,
540 timeTuple.tm_mday,
551 timeTuple.tm_mday,
541 '-',
552 '-',
542 timeTuple.tm_hour,
553 timeTuple.tm_hour,
543 timeTuple.tm_min,
554 timeTuple.tm_min,
544 timeTuple.tm_sec,
555 timeTuple.tm_sec,
545 wr_writer,
556 wr_writer,
546 type_data,
557 type_data,
547 ext )
558 ext )
548 ###print("FILENAME", file)
559 ###print("FILENAME", file)
549
560
550
561
551 else:
562 else:
552 setFile = timeTuple.tm_hour*60+timeTuple.tm_min
563 setFile = timeTuple.tm_hour*60+timeTuple.tm_min
553 file = '%s%4.4d%3.3d%04d%s' % (self.optchar,
564 file = '%s%4.4d%3.3d%04d%s' % (self.optchar,
554 timeTuple.tm_year,
565 timeTuple.tm_year,
555 timeTuple.tm_yday,
566 timeTuple.tm_yday,
556 setFile,
567 setFile,
557 ext )
568 ext )
558
569
559 self.filename = os.path.join( path, subfolder, file )
570 self.filename = os.path.join( path, subfolder, file )
560
571
561 #Setting HDF5 File
572 #Setting HDF5 File
562
573
563 self.fp = h5py.File(self.filename, 'w')
574 self.fp = h5py.File(self.filename, 'w')
564 #write metadata
575 #write metadata
565 self.writeMetadata(self.fp)
576 self.writeMetadata(self.fp)
566 #Write data
577 #Write data
567 self.writeData(self.fp)
578 self.writeData(self.fp)
568
579
569 def getLabel(self, name, x=None):
580 def getLabel(self, name, x=None):
570
581
571 if x is None:
582 if x is None:
572 if 'Data' in self.description:
583 if 'Data' in self.description:
573 data = self.description['Data']
584 data = self.description['Data']
574 if 'Metadata' in self.description:
585 if 'Metadata' in self.description:
575 data.update(self.description['Metadata'])
586 data.update(self.description['Metadata'])
576 else:
587 else:
577 data = self.description
588 data = self.description
578 if name in data:
589 if name in data:
579 if isinstance(data[name], str):
590 if isinstance(data[name], str):
580 return data[name]
591 return data[name]
581 elif isinstance(data[name], list):
592 elif isinstance(data[name], list):
582 return None
593 return None
583 elif isinstance(data[name], dict):
594 elif isinstance(data[name], dict):
584 for key, value in data[name].items():
595 for key, value in data[name].items():
585 return key
596 return key
586 return name
597 return name
587 else:
598 else:
588 if 'Metadata' in self.description:
599 if 'Metadata' in self.description:
589 meta = self.description['Metadata']
600 meta = self.description['Metadata']
590 else:
601 else:
591 meta = self.description
602 meta = self.description
592 if name in meta:
603 if name in meta:
593 if isinstance(meta[name], list):
604 if isinstance(meta[name], list):
594 return meta[name][x]
605 return meta[name][x]
595 elif isinstance(meta[name], dict):
606 elif isinstance(meta[name], dict):
596 for key, value in meta[name].items():
607 for key, value in meta[name].items():
597 return value[x]
608 return value[x]
598 if 'cspc' in name:
609 if 'cspc' in name:
599 return 'pair{:02d}'.format(x)
610 return 'pair{:02d}'.format(x)
600 else:
611 else:
601 return 'channel{:02d}'.format(x)
612 return 'channel{:02d}'.format(x)
602
613
603 def writeMetadata(self, fp):
614 def writeMetadata(self, fp):
604
615
605 if self.description:
616 if self.description:
606 if 'Metadata' in self.description:
617 if 'Metadata' in self.description:
607 grp = fp.create_group('Metadata')
618 grp = fp.create_group('Metadata')
608 else:
619 else:
609 grp = fp
620 grp = fp
610 else:
621 else:
611 grp = fp.create_group('Metadata')
622 grp = fp.create_group('Metadata')
612
623
613 for i in range(len(self.metadataList)):
624 for i in range(len(self.metadataList)):
614 if not hasattr(self.dataOut, self.metadataList[i]):
625 if not hasattr(self.dataOut, self.metadataList[i]):
615 log.warning('Metadata: `{}` not found'.format(self.metadataList[i]), self.name)
626 log.warning('Metadata: `{}` not found'.format(self.metadataList[i]), self.name)
616 continue
627 continue
617 value = getattr(self.dataOut, self.metadataList[i])
628 value = getattr(self.dataOut, self.metadataList[i])
618 if isinstance(value, bool):
629 if isinstance(value, bool):
619 if value is True:
630 if value is True:
620 value = 1
631 value = 1
621 else:
632 else:
622 value = 0
633 value = 0
623 grp.create_dataset(self.getLabel(self.metadataList[i]), data=value)
634 grp.create_dataset(self.getLabel(self.metadataList[i]), data=value)
624 return
635 return
625
636
626 def writeData(self, fp):
637 def writeData(self, fp):
627
638 print("writing data")
628 if self.description:
639 if self.description:
629 if 'Data' in self.description:
640 if 'Data' in self.description:
630 grp = fp.create_group('Data')
641 grp = fp.create_group('Data')
631 else:
642 else:
632 grp = fp
643 grp = fp
633 else:
644 else:
634 grp = fp.create_group('Data')
645 grp = fp.create_group('Data')
635
646
636 dtsets = []
647 dtsets = []
637 data = []
648 data = []
638
649
639 for dsInfo in self.dsList:
650 for dsInfo in self.dsList:
640 if dsInfo['nDim'] == 0:
651 if dsInfo['nDim'] == 0:
641 ds = grp.create_dataset(
652 ds = grp.create_dataset(
642 self.getLabel(dsInfo['variable']),
653 self.getLabel(dsInfo['variable']),
643 (self.blocksPerFile, ),
654 (self.blocksPerFile, ),
644 chunks=True,
655 chunks=True,
645 dtype=numpy.float64)
656 dtype=numpy.float64)
646 dtsets.append(ds)
657 dtsets.append(ds)
647 data.append((dsInfo['variable'], -1))
658 data.append((dsInfo['variable'], -1))
648 else:
659 else:
649 label = self.getLabel(dsInfo['variable'])
660 label = self.getLabel(dsInfo['variable'])
650 if label is not None:
661 if label is not None:
651 sgrp = grp.create_group(label)
662 sgrp = grp.create_group(label)
652 else:
663 else:
653 sgrp = grp
664 sgrp = grp
654 for i in range(dsInfo['dsNumber']):
665 for i in range(dsInfo['dsNumber']):
655 ds = sgrp.create_dataset(
666 ds = sgrp.create_dataset(
656 self.getLabel(dsInfo['variable'], i),
667 self.getLabel(dsInfo['variable'], i),
657 (self.blocksPerFile, ) + dsInfo['shape'][1:],
668 (self.blocksPerFile, ) + dsInfo['shape'][1:],
658 chunks=True,
669 chunks=True,
659 dtype=dsInfo['dtype'])
670 dtype=dsInfo['dtype'])
660 dtsets.append(ds)
671 dtsets.append(ds)
661 data.append((dsInfo['variable'], i))
672 data.append((dsInfo['variable'], i))
662 fp.flush()
673 fp.flush()
663
674
664 log.log('Creating file: {}'.format(fp.filename), self.name)
675 log.log('Creating file: {}'.format(fp.filename), self.name)
665
676
666 self.ds = dtsets
677 self.ds = dtsets
667 self.data = data
678 self.data = data
668 self.firsttime = True
679 self.firsttime = True
669 self.blockIndex = 0
680 self.blockIndex = 0
670 return
681 return
671
682
672 def putData(self):
683 def putData(self):
673 ###print("**************************PUT DATA***************************************************")
684 ###print("**************************PUT DATA***************************************************")
674 if (self.blockIndex == self.blocksPerFile) or self.timeFlag() or self.generalFlag():
685 if (self.blockIndex == self.blocksPerFile) or self.timeFlag():# or self.generalFlag_vRF():
675 self.closeFile()
686 self.closeFile()
676 self.setNextFile()
687 self.setNextFile()
677
688
678 for i, ds in enumerate(self.ds):
689 for i, ds in enumerate(self.ds):
679 attr, ch = self.data[i]
690 attr, ch = self.data[i]
680 if ch == -1:
691 if ch == -1:
681 ds[self.blockIndex] = getattr(self.dataOut, attr)
692 ds[self.blockIndex] = getattr(self.dataOut, attr)
682 else:
693 else:
683 ds[self.blockIndex] = getattr(self.dataOut, attr)[ch]
694 ds[self.blockIndex] = getattr(self.dataOut, attr)[ch]
684
695
685 self.fp.flush()
696 self.fp.flush()
686 self.blockIndex += 1
697 self.blockIndex += 1
687 log.log('Block No. {}/{}'.format(self.blockIndex, self.blocksPerFile), self.name)
698 log.log('Block No. {}/{}'.format(self.blockIndex, self.blocksPerFile), self.name)
688
699
689 return
700 return
690
701
691 def closeFile(self):
702 def closeFile(self):
692
703
693 if self.blockIndex != self.blocksPerFile:
704 if self.blockIndex != self.blocksPerFile:
694 for ds in self.ds:
705 for ds in self.ds:
695 ds.resize(self.blockIndex, axis=0)
706 ds.resize(self.blockIndex, axis=0)
696
707
697 if self.fp:
708 if self.fp:
698 self.fp.flush()
709 self.fp.flush()
699 self.fp.close()
710 self.fp.close()
700
711
701 def close(self):
712 def close(self):
702
713
703 self.closeFile()
714 self.closeFile()
@@ -1,206 +1,208
1 '''
1 '''
2 Base clases to create Processing units and operations, the MPDecorator
2 Base clases to create Processing units and operations, the MPDecorator
3 must be used in plotting and writing operations to allow to run as an
3 must be used in plotting and writing operations to allow to run as an
4 external process.
4 external process.
5 '''
5 '''
6
6
7 import os
7 import inspect
8 import inspect
8 import zmq
9 import zmq
9 import time
10 import time
10 import pickle
11 import pickle
11 import traceback
12 import traceback
12 from threading import Thread
13 from threading import Thread
13 from multiprocessing import Process, Queue
14 from multiprocessing import Process, Queue
14 from schainpy.utils import log
15 from schainpy.utils import log
15
16
17 QUEUE_SIZE = int(os.environ.get('QUEUE_MAX_SIZE', '10'))
16
18
17 class ProcessingUnit(object):
19 class ProcessingUnit(object):
18 '''
20 '''
19 Base class to create Signal Chain Units
21 Base class to create Signal Chain Units
20 '''
22 '''
21
23
22 proc_type = 'processing'
24 proc_type = 'processing'
23
25
24 def __init__(self):
26 def __init__(self):
25
27
26 self.dataIn = None
28 self.dataIn = None
27 self.dataOut = None
29 self.dataOut = None
28 self.isConfig = False
30 self.isConfig = False
29 self.operations = []
31 self.operations = []
30
32
31 def setInput(self, unit):
33 def setInput(self, unit):
32
34
33 self.dataIn = unit.dataOut
35 self.dataIn = unit.dataOut
34
36
35 def getAllowedArgs(self):
37 def getAllowedArgs(self):
36 if hasattr(self, '__attrs__'):
38 if hasattr(self, '__attrs__'):
37 return self.__attrs__
39 return self.__attrs__
38 else:
40 else:
39 return inspect.getargspec(self.run).args
41 return inspect.getargspec(self.run).args
40
42
41 def addOperation(self, conf, operation):
43 def addOperation(self, conf, operation):
42 '''
44 '''
43 '''
45 '''
44
46
45 self.operations.append((operation, conf.type, conf.getKwargs()))
47 self.operations.append((operation, conf.type, conf.getKwargs()))
46
48
47 def getOperationObj(self, objId):
49 def getOperationObj(self, objId):
48
50
49 if objId not in list(self.operations.keys()):
51 if objId not in list(self.operations.keys()):
50 return None
52 return None
51
53
52 return self.operations[objId]
54 return self.operations[objId]
53
55
54 def call(self, **kwargs):
56 def call(self, **kwargs):
55 '''
57 '''
56 '''
58 '''
57
59
58 try:
60 try:
59 if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error:
61 if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error:
60 return self.dataIn.isReady()
62 return self.dataIn.isReady()
61 elif self.dataIn is None or not self.dataIn.error:
63 elif self.dataIn is None or not self.dataIn.error:
62 self.run(**kwargs)
64 self.run(**kwargs)
63 elif self.dataIn.error:
65 elif self.dataIn.error:
64 self.dataOut.error = self.dataIn.error
66 self.dataOut.error = self.dataIn.error
65 self.dataOut.flagNoData = True
67 self.dataOut.flagNoData = True
66 except:
68 except:
67 err = traceback.format_exc()
69 err = traceback.format_exc()
68 if 'SchainWarning' in err:
70 if 'SchainWarning' in err:
69 log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), self.name)
71 log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), self.name)
70 elif 'SchainError' in err:
72 elif 'SchainError' in err:
71 log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), self.name)
73 log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), self.name)
72 else:
74 else:
73 log.error(err, self.name)
75 log.error(err, self.name)
74 self.dataOut.error = True
76 self.dataOut.error = True
75 ##### correcion de la declaracion Out
77 ##### correcion de la declaracion Out
76 for op, optype, opkwargs in self.operations:
78 for op, optype, opkwargs in self.operations:
77 aux = self.dataOut.copy()
79 aux = self.dataOut.copy()
78 if optype == 'other' and not self.dataOut.flagNoData:
80 if optype == 'other' and not self.dataOut.flagNoData:
79 self.dataOut = op.run(self.dataOut, **opkwargs)
81 self.dataOut = op.run(self.dataOut, **opkwargs)
80 elif optype == 'external' and not self.dataOut.flagNoData:
82 elif optype == 'external' and not self.dataOut.flagNoData:
81 #op.queue.put(self.dataOut)
83 #op.queue.put(self.dataOut)
82 op.queue.put(aux)
84 op.queue.put(aux)
83 elif optype == 'external' and self.dataOut.error:
85 elif optype == 'external' and self.dataOut.error:
84 #op.queue.put(self.dataOut)
86 #op.queue.put(self.dataOut)
85 op.queue.put(aux)
87 op.queue.put(aux)
86
88
87 return 'Error' if self.dataOut.error else self.dataOut.isReady()
89 return 'Error' if self.dataOut.error else self.dataOut.isReady()
88
90
89 def setup(self):
91 def setup(self):
90
92
91 raise NotImplementedError
93 raise NotImplementedError
92
94
93 def run(self):
95 def run(self):
94
96
95 raise NotImplementedError
97 raise NotImplementedError
96
98
97 def close(self):
99 def close(self):
98
100
99 return
101 return
100
102
101
103
102 class Operation(object):
104 class Operation(object):
103
105
104 '''
106 '''
105 '''
107 '''
106
108
107 proc_type = 'operation'
109 proc_type = 'operation'
108
110
109 def __init__(self):
111 def __init__(self):
110
112
111 self.id = None
113 self.id = None
112 self.isConfig = False
114 self.isConfig = False
113
115
114 if not hasattr(self, 'name'):
116 if not hasattr(self, 'name'):
115 self.name = self.__class__.__name__
117 self.name = self.__class__.__name__
116
118
117 def getAllowedArgs(self):
119 def getAllowedArgs(self):
118 if hasattr(self, '__attrs__'):
120 if hasattr(self, '__attrs__'):
119 return self.__attrs__
121 return self.__attrs__
120 else:
122 else:
121 return inspect.getargspec(self.run).args
123 return inspect.getargspec(self.run).args
122
124
123 def setup(self):
125 def setup(self):
124
126
125 self.isConfig = True
127 self.isConfig = True
126
128
127 raise NotImplementedError
129 raise NotImplementedError
128
130
129 def run(self, dataIn, **kwargs):
131 def run(self, dataIn, **kwargs):
130 """
132 """
131 Realiza las operaciones necesarias sobre la dataIn.data y actualiza los
133 Realiza las operaciones necesarias sobre la dataIn.data y actualiza los
132 atributos del objeto dataIn.
134 atributos del objeto dataIn.
133
135
134 Input:
136 Input:
135
137
136 dataIn : objeto del tipo JROData
138 dataIn : objeto del tipo JROData
137
139
138 Return:
140 Return:
139
141
140 None
142 None
141
143
142 Affected:
144 Affected:
143 __buffer : buffer de recepcion de datos.
145 __buffer : buffer de recepcion de datos.
144
146
145 """
147 """
146 if not self.isConfig:
148 if not self.isConfig:
147 self.setup(**kwargs)
149 self.setup(**kwargs)
148
150
149 raise NotImplementedError
151 raise NotImplementedError
150
152
151 def close(self):
153 def close(self):
152
154
153 return
155 return
154
156
155
157
156 def MPDecorator(BaseClass):
158 def MPDecorator(BaseClass):
157 """
159 """
158 Multiprocessing class decorator
160 Multiprocessing class decorator
159
161
160 This function add multiprocessing features to a BaseClass.
162 This function add multiprocessing features to a BaseClass.
161 """
163 """
162
164
163 class MPClass(BaseClass, Process):
165 class MPClass(BaseClass, Process):
164
166
165 def __init__(self, *args, **kwargs):
167 def __init__(self, *args, **kwargs):
166 super(MPClass, self).__init__()
168 super(MPClass, self).__init__()
167 Process.__init__(self)
169 Process.__init__(self)
168
170
169 self.args = args
171 self.args = args
170 self.kwargs = kwargs
172 self.kwargs = kwargs
171 self.t = time.time()
173 self.t = time.time()
172 self.op_type = 'external'
174 self.op_type = 'external'
173 self.name = BaseClass.__name__
175 self.name = BaseClass.__name__
174 self.__doc__ = BaseClass.__doc__
176 self.__doc__ = BaseClass.__doc__
175
177
176 if 'plot' in self.name.lower() and not self.name.endswith('_'):
178 if 'plot' in self.name.lower() and not self.name.endswith('_'):
177 self.name = '{}{}'.format(self.CODE.upper(), 'Plot')
179 self.name = '{}{}'.format(self.CODE.upper(), 'Plot')
178
180
179 self.start_time = time.time()
181 self.start_time = time.time()
180 self.err_queue = args[3]
182 self.err_queue = args[3]
181 self.queue = Queue(maxsize=1)
183 self.queue = Queue(maxsize=QUEUE_SIZE)
182 self.myrun = BaseClass.run
184 self.myrun = BaseClass.run
183
185
184 def run(self):
186 def run(self):
185
187
186 while True:
188 while True:
187
189
188 dataOut = self.queue.get()
190 dataOut = self.queue.get()
189
191
190 if not dataOut.error:
192 if not dataOut.error:
191 try:
193 try:
192 BaseClass.run(self, dataOut, **self.kwargs)
194 BaseClass.run(self, dataOut, **self.kwargs)
193 except:
195 except:
194 err = traceback.format_exc()
196 err = traceback.format_exc()
195 log.error(err, self.name)
197 log.error(err, self.name)
196 else:
198 else:
197 break
199 break
198
200
199 self.close()
201 self.close()
200
202
201 def close(self):
203 def close(self):
202
204
203 BaseClass.close(self)
205 BaseClass.close(self)
204 log.success('Done...(Time:{:4.2f} secs)'.format(time.time()-self.start_time), self.name)
206 log.success('Done...(Time:{:4.2f} secs)'.format(time.time()-self.start_time), self.name)
205
207
206 return MPClass
208 return MPClass
1 NO CONTENT: modified file
NO CONTENT: modified file
The requested commit or file is too big and content was truncated. Show full diff
General Comments 0
You need to be logged in to leave comments. Login now