##// END OF EJS Templates
New RHI Plot and Block 360 stores more parameters
rflores -
r1442:f9eef645eb53
parent child
Show More
@@ -1,707 +1,714
1 1 # Copyright (c) 2012-2020 Jicamarca Radio Observatory
2 2 # All rights reserved.
3 3 #
4 4 # Distributed under the terms of the BSD 3-clause license.
5 5 """Base class to create plot operations
6 6
7 7 """
8 8
9 9 import os
10 10 import sys
11 11 import zmq
12 12 import time
13 13 import numpy
14 14 import datetime
15 15 from collections import deque
16 16 from functools import wraps
17 17 from threading import Thread
18 18 import matplotlib
19 19
20 20 if 'BACKEND' in os.environ:
21 21 matplotlib.use(os.environ['BACKEND'])
22 22 elif 'linux' in sys.platform:
23 23 matplotlib.use("TkAgg")
24 24 elif 'darwin' in sys.platform:
25 25 matplotlib.use('MacOSX')
26 26 else:
27 27 from schainpy.utils import log
28 28 log.warning('Using default Backend="Agg"', 'INFO')
29 29 matplotlib.use('Agg')
30 30
31 31 import matplotlib.pyplot as plt
32 32 from matplotlib.patches import Polygon
33 33 from mpl_toolkits.axes_grid1 import make_axes_locatable
34 34 from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator
35 35
36 36 from schainpy.model.data.jrodata import PlotterData
37 37 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
38 38 from schainpy.utils import log
39 39
40 40 jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90]
41 41 blu_values = matplotlib.pyplot.get_cmap(
42 42 'seismic_r', 20)(numpy.arange(20))[10:15]
43 43 ncmap = matplotlib.colors.LinearSegmentedColormap.from_list(
44 44 'jro', numpy.vstack((blu_values, jet_values)))
45 45 matplotlib.pyplot.register_cmap(cmap=ncmap)
46 46
47 47 CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis',
48 48 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')]
49 49
50 50 EARTH_RADIUS = 6.3710e3
51 51
52 52 def ll2xy(lat1, lon1, lat2, lon2):
53 53
54 54 p = 0.017453292519943295
55 55 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
56 56 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
57 57 r = 12742 * numpy.arcsin(numpy.sqrt(a))
58 58 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
59 59 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
60 60 theta = -theta + numpy.pi/2
61 61 return r*numpy.cos(theta), r*numpy.sin(theta)
62 62
63 63
64 64 def km2deg(km):
65 65 '''
66 66 Convert distance in km to degrees
67 67 '''
68 68
69 69 return numpy.rad2deg(km/EARTH_RADIUS)
70 70
71 71
72 72 def figpause(interval):
73 73 backend = plt.rcParams['backend']
74 74 if backend in matplotlib.rcsetup.interactive_bk:
75 75 figManager = matplotlib._pylab_helpers.Gcf.get_active()
76 76 if figManager is not None:
77 77 canvas = figManager.canvas
78 78 if canvas.figure.stale:
79 79 canvas.draw()
80 80 try:
81 81 canvas.start_event_loop(interval)
82 82 except:
83 83 pass
84 84 return
85 85
86 86 def popup(message):
87 87 '''
88 88 '''
89 89
90 90 fig = plt.figure(figsize=(12, 8), facecolor='r')
91 91 text = '\n'.join([s.strip() for s in message.split(':')])
92 92 fig.text(0.01, 0.5, text, ha='left', va='center',
93 93 size='20', weight='heavy', color='w')
94 94 fig.show()
95 95 figpause(1000)
96 96
97 97
98 98 class Throttle(object):
99 99 '''
100 100 Decorator that prevents a function from being called more than once every
101 101 time period.
102 102 To create a function that cannot be called more than once a minute, but
103 103 will sleep until it can be called:
104 104 @Throttle(minutes=1)
105 105 def foo():
106 106 pass
107 107
108 108 for i in range(10):
109 109 foo()
110 110 print "This function has run %s times." % i
111 111 '''
112 112
113 113 def __init__(self, seconds=0, minutes=0, hours=0):
114 114 self.throttle_period = datetime.timedelta(
115 115 seconds=seconds, minutes=minutes, hours=hours
116 116 )
117 117
118 118 self.time_of_last_call = datetime.datetime.min
119 119
120 120 def __call__(self, fn):
121 121 @wraps(fn)
122 122 def wrapper(*args, **kwargs):
123 123 coerce = kwargs.pop('coerce', None)
124 124 if coerce:
125 125 self.time_of_last_call = datetime.datetime.now()
126 126 return fn(*args, **kwargs)
127 127 else:
128 128 now = datetime.datetime.now()
129 129 time_since_last_call = now - self.time_of_last_call
130 130 time_left = self.throttle_period - time_since_last_call
131 131
132 132 if time_left > datetime.timedelta(seconds=0):
133 133 return
134 134
135 135 self.time_of_last_call = datetime.datetime.now()
136 136 return fn(*args, **kwargs)
137 137
138 138 return wrapper
139 139
140 140 def apply_throttle(value):
141 141
142 142 @Throttle(seconds=value)
143 143 def fnThrottled(fn):
144 144 fn()
145 145
146 146 return fnThrottled
147 147
148 148
149 149 @MPDecorator
150 150 class Plot(Operation):
151 151 """Base class for Schain plotting operations
152 152
153 153 This class should never be use directtly you must subclass a new operation,
154 154 children classes must be defined as follow:
155 155
156 156 ExamplePlot(Plot):
157 157
158 158 CODE = 'code'
159 159 colormap = 'jet'
160 160 plot_type = 'pcolor' # options are ('pcolor', 'pcolorbuffer', 'scatter', 'scatterbuffer')
161 161
162 162 def setup(self):
163 163 pass
164 164
165 165 def plot(self):
166 166 pass
167 167
168 168 """
169 169
170 170 CODE = 'Figure'
171 171 colormap = 'jet'
172 172 bgcolor = 'white'
173 173 buffering = True
174 174 __missing = 1E30
175 175
176 176 __attrs__ = ['show', 'save', 'ymin', 'ymax', 'zmin', 'zmax', 'title',
177 177 'showprofile']
178 178
179 179 def __init__(self):
180 180
181 181 Operation.__init__(self)
182 182 self.isConfig = False
183 183 self.isPlotConfig = False
184 184 self.save_time = 0
185 185 self.sender_time = 0
186 186 self.data = None
187 187 self.firsttime = True
188 188 self.sender_queue = deque(maxlen=10)
189 189 self.plots_adjust = {'left': 0.125, 'right': 0.9, 'bottom': 0.15, 'top': 0.9, 'wspace': 0.2, 'hspace': 0.2}
190 190
191 191 def __fmtTime(self, x, pos):
192 192 '''
193 193 '''
194 194
195 195 return '{}'.format(self.getDateTime(x).strftime('%H:%M'))
196 196
197 197 def __setup(self, **kwargs):
198 198 '''
199 199 Initialize variables
200 200 '''
201 201
202 202 self.figures = []
203 203 self.axes = []
204 204 self.cb_axes = []
205 205 self.localtime = kwargs.pop('localtime', True)
206 206 self.show = kwargs.get('show', True)
207 207 self.save = kwargs.get('save', False)
208 208 self.save_period = kwargs.get('save_period', 0)
209 209 self.colormap = kwargs.get('colormap', self.colormap)
210 210 self.colormap_coh = kwargs.get('colormap_coh', 'jet')
211 211 self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r')
212 212 self.colormaps = kwargs.get('colormaps', None)
213 213 self.bgcolor = kwargs.get('bgcolor', self.bgcolor)
214 214 self.showprofile = kwargs.get('showprofile', False)
215 215 self.title = kwargs.get('wintitle', self.CODE.upper())
216 216 self.cb_label = kwargs.get('cb_label', None)
217 217 self.cb_labels = kwargs.get('cb_labels', None)
218 218 self.labels = kwargs.get('labels', None)
219 219 self.xaxis = kwargs.get('xaxis', 'frequency')
220 220 self.zmin = kwargs.get('zmin', None)
221 221 self.zmax = kwargs.get('zmax', None)
222 222 self.zlimits = kwargs.get('zlimits', None)
223 223 self.xmin = kwargs.get('xmin', None)
224 224 self.xmax = kwargs.get('xmax', None)
225 225 self.xrange = kwargs.get('xrange', 12)
226 226 self.xscale = kwargs.get('xscale', None)
227 227 self.ymin = kwargs.get('ymin', None)
228 228 self.ymax = kwargs.get('ymax', None)
229 229 self.yscale = kwargs.get('yscale', None)
230 230 self.xlabel = kwargs.get('xlabel', None)
231 231 self.attr_time = kwargs.get('attr_time', 'utctime')
232 232 self.attr_data = kwargs.get('attr_data', 'data_param')
233 233 self.decimation = kwargs.get('decimation', None)
234 234 self.oneFigure = kwargs.get('oneFigure', True)
235 235 self.width = kwargs.get('width', None)
236 236 self.height = kwargs.get('height', None)
237 237 self.colorbar = kwargs.get('colorbar', True)
238 238 self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1])
239 239 self.channels = kwargs.get('channels', None)
240 240 self.titles = kwargs.get('titles', [])
241 241 self.polar = False
242 242 self.type = kwargs.get('type', 'iq')
243 243 self.grid = kwargs.get('grid', False)
244 244 self.pause = kwargs.get('pause', False)
245 245 self.save_code = kwargs.get('save_code', self.CODE)
246 246 self.throttle = kwargs.get('throttle', 0)
247 247 self.exp_code = kwargs.get('exp_code', None)
248 248 self.server = kwargs.get('server', False)
249 249 self.sender_period = kwargs.get('sender_period', 60)
250 250 self.tag = kwargs.get('tag', '')
251 251 self.height_index = kwargs.get('height_index', None)
252 252 self.__throttle_plot = apply_throttle(self.throttle)
253 253 code = self.attr_data if self.attr_data else self.CODE
254 254 self.data = PlotterData(self.CODE, self.exp_code, self.localtime)
255 255 self.ang_min = kwargs.get('ang_min', None)
256 256 self.ang_max = kwargs.get('ang_max', None)
257 self.mode = kwargs.get('mode', None)
257 258
258 259
259 260 if self.server:
260 261 if not self.server.startswith('tcp://'):
261 262 self.server = 'tcp://{}'.format(self.server)
262 263 log.success(
263 264 'Sending to server: {}'.format(self.server),
264 265 self.name
265 266 )
266 267
267 268 if isinstance(self.attr_data, str):
268 269 self.attr_data = [self.attr_data]
269 270
270 271 def __setup_plot(self):
271 272 '''
272 273 Common setup for all figures, here figures and axes are created
273 274 '''
274 275
275 276 self.setup()
276 277
277 278 self.time_label = 'LT' if self.localtime else 'UTC'
278 279
279 280 if self.width is None:
280 281 self.width = 8
281 282
282 283 self.figures = []
283 284 self.axes = []
284 285 self.cb_axes = []
285 286 self.pf_axes = []
286 287 self.cmaps = []
287 288
288 289 size = '15%' if self.ncols == 1 else '30%'
289 290 pad = '4%' if self.ncols == 1 else '8%'
290 291
291 292 if self.oneFigure:
292 293 if self.height is None:
293 294 self.height = 1.4 * self.nrows + 1
294 295 fig = plt.figure(figsize=(self.width, self.height),
295 296 edgecolor='k',
296 297 facecolor='w')
297 298 self.figures.append(fig)
298 299 for n in range(self.nplots):
299 300 ax = fig.add_subplot(self.nrows, self.ncols,
300 301 n + 1, polar=self.polar)
301 302 ax.tick_params(labelsize=8)
302 303 ax.firsttime = True
303 304 ax.index = 0
304 305 ax.press = None
305 306 self.axes.append(ax)
306 307 if self.showprofile:
307 308 cax = self.__add_axes(ax, size=size, pad=pad)
308 309 cax.tick_params(labelsize=8)
309 310 self.pf_axes.append(cax)
310 311 else:
311 312 if self.height is None:
312 313 self.height = 3
313 314 for n in range(self.nplots):
314 315 fig = plt.figure(figsize=(self.width, self.height),
315 316 edgecolor='k',
316 317 facecolor='w')
317 318 ax = fig.add_subplot(1, 1, 1, polar=self.polar)
318 319 ax.tick_params(labelsize=8)
319 320 ax.firsttime = True
320 321 ax.index = 0
321 322 ax.press = None
322 323 self.figures.append(fig)
323 324 self.axes.append(ax)
324 325 if self.showprofile:
325 326 cax = self.__add_axes(ax, size=size, pad=pad)
326 327 cax.tick_params(labelsize=8)
327 328 self.pf_axes.append(cax)
328 329
329 330 for n in range(self.nrows):
330 331 if self.colormaps is not None:
331 332 cmap = plt.get_cmap(self.colormaps[n])
332 333 else:
333 334 cmap = plt.get_cmap(self.colormap)
334 335 cmap.set_bad(self.bgcolor, 1.)
335 336 self.cmaps.append(cmap)
336 337
337 338 def __add_axes(self, ax, size='30%', pad='8%'):
338 339 '''
339 340 Add new axes to the given figure
340 341 '''
341 342 divider = make_axes_locatable(ax)
342 343 nax = divider.new_horizontal(size=size, pad=pad)
343 344 ax.figure.add_axes(nax)
344 345 return nax
345 346
346 347 def fill_gaps(self, x_buffer, y_buffer, z_buffer):
347 348 '''
348 349 Create a masked array for missing data
349 350 '''
350 351 if x_buffer.shape[0] < 2:
351 352 return x_buffer, y_buffer, z_buffer
352 353
353 354 deltas = x_buffer[1:] - x_buffer[0:-1]
354 355 x_median = numpy.median(deltas)
355 356
356 357 index = numpy.where(deltas > 5 * x_median)
357 358
358 359 if len(index[0]) != 0:
359 360 z_buffer[::, index[0], ::] = self.__missing
360 361 z_buffer = numpy.ma.masked_inside(z_buffer,
361 362 0.99 * self.__missing,
362 363 1.01 * self.__missing)
363 364
364 365 return x_buffer, y_buffer, z_buffer
365 366
366 367 def decimate(self):
367 368
368 369 # dx = int(len(self.x)/self.__MAXNUMX) + 1
369 370 dy = int(len(self.y) / self.decimation) + 1
370 371
371 372 # x = self.x[::dx]
372 373 x = self.x
373 374 y = self.y[::dy]
374 375 z = self.z[::, ::, ::dy]
375 376
376 377 return x, y, z
377 378
378 379 def format(self):
379 380 '''
380 381 Set min and max values, labels, ticks and titles
381 382 '''
382 383
383 384 for n, ax in enumerate(self.axes):
384 385 if ax.firsttime:
385 386 if self.xaxis != 'time':
386 387 xmin = self.xmin
387 388 xmax = self.xmax
388 389 else:
389 390 xmin = self.tmin
390 391 xmax = self.tmin + self.xrange*60*60
391 392 ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime))
392 393 ax.xaxis.set_major_locator(LinearLocator(9))
393 394 ymin = self.ymin if self.ymin is not None else numpy.nanmin(self.y[numpy.isfinite(self.y)])
394 395 ymax = self.ymax if self.ymax is not None else numpy.nanmax(self.y[numpy.isfinite(self.y)])
395 396 ax.set_facecolor(self.bgcolor)
396 397 if self.xscale:
397 398 ax.xaxis.set_major_formatter(FuncFormatter(
398 399 lambda x, pos: '{0:g}'.format(x*self.xscale)))
399 400 if self.yscale:
400 401 ax.yaxis.set_major_formatter(FuncFormatter(
401 402 lambda x, pos: '{0:g}'.format(x*self.yscale)))
402 403 if self.xlabel is not None:
403 404 ax.set_xlabel(self.xlabel)
404 405 if self.ylabel is not None:
405 406 ax.set_ylabel(self.ylabel)
406 407 if self.showprofile:
407 408 self.pf_axes[n].set_ylim(ymin, ymax)
408 409 self.pf_axes[n].set_xlim(self.zmin, self.zmax)
409 410 self.pf_axes[n].set_xlabel('dB')
410 411 self.pf_axes[n].grid(b=True, axis='x')
411 412 [tick.set_visible(False)
412 413 for tick in self.pf_axes[n].get_yticklabels()]
413 414 if self.colorbar:
414 415 ax.cbar = plt.colorbar(
415 416 ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10)
416 417 ax.cbar.ax.tick_params(labelsize=8)
417 418 ax.cbar.ax.press = None
418 419 if self.cb_label:
419 420 ax.cbar.set_label(self.cb_label, size=8)
420 421 elif self.cb_labels:
421 422 ax.cbar.set_label(self.cb_labels[n], size=8)
422 423 else:
423 424 ax.cbar = None
424 425 ax.set_xlim(xmin, xmax)
425 426 ax.set_ylim(ymin, ymax)
426 427 ax.firsttime = False
427 428 if self.grid:
428 429 ax.grid(True)
429 430 if not self.polar:
430 431 ax.set_title('{} {} {}'.format(
431 432 self.titles[n],
432 433 self.getDateTime(self.data.max_time).strftime(
433 434 '%Y-%m-%d %H:%M:%S'),
434 435 self.time_label),
435 436 size=8)
436 437 else:
437 ax.set_title('{}'.format(self.titles[n]), size=8)
438 ax.set_ylim(0, 90)
439 ax.set_yticks(numpy.arange(0, 90, 20))
438 #ax.set_title('{}'.format(self.titles[n]), size=8)
439 ax.set_title('{} {} {}'.format(
440 self.titles[n],
441 self.getDateTime(self.data.max_time).strftime(
442 '%Y-%m-%d %H:%M:%S'),
443 self.time_label),
444 size=8)
445 ax.set_ylim(0, self.ymax)
446 #ax.set_yticks(numpy.arange(0, self.ymax, 20))
440 447 ax.yaxis.labelpad = 40
441 448
442 449 if self.firsttime:
443 450 for n, fig in enumerate(self.figures):
444 451 fig.subplots_adjust(**self.plots_adjust)
445 452 self.firsttime = False
446 453
447 454 def clear_figures(self):
448 455 '''
449 456 Reset axes for redraw plots
450 457 '''
451 458
452 459 for ax in self.axes+self.pf_axes+self.cb_axes:
453 460 ax.clear()
454 461 ax.firsttime = True
455 462 if hasattr(ax, 'cbar') and ax.cbar:
456 463 ax.cbar.remove()
457 464
458 465 def __plot(self):
459 466 '''
460 467 Main function to plot, format and save figures
461 468 '''
462 469
463 470 self.plot()
464 471 self.format()
465 472
466 473 for n, fig in enumerate(self.figures):
467 474 if self.nrows == 0 or self.nplots == 0:
468 475 log.warning('No data', self.name)
469 476 fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center')
470 477 fig.canvas.manager.set_window_title(self.CODE)
471 478 continue
472 479
473 480 fig.canvas.manager.set_window_title('{} - {}'.format(self.title,
474 481 self.getDateTime(self.data.max_time).strftime('%Y/%m/%d')))
475 482 fig.canvas.draw()
476 483 if self.show:
477 484 fig.show()
478 485 figpause(0.01)
479 486
480 487 if self.save:
481 488 self.save_figure(n)
482 489
483 490 if self.server:
484 491 self.send_to_server()
485 492
486 493 def __update(self, dataOut, timestamp):
487 494 '''
488 495 '''
489 496
490 497 metadata = {
491 498 'yrange': dataOut.heightList,
492 499 'interval': dataOut.timeInterval,
493 500 'channels': dataOut.channelList
494 501 }
495 502
496 503 data, meta = self.update(dataOut)
497 504 metadata.update(meta)
498 505 self.data.update(data, timestamp, metadata)
499 506
500 507 def save_figure(self, n):
501 508 '''
502 509 '''
503 510 if self.oneFigure:
504 511 if (self.data.max_time - self.save_time) <= self.save_period:
505 512 return
506 513
507 514 self.save_time = self.data.max_time
508 515
509 516 fig = self.figures[n]
510 517 if self.throttle == 0:
511 518 if self.oneFigure:
512 519 figname = os.path.join(
513 520 self.save,
514 521 self.save_code,
515 522 '{}_{}.png'.format(
516 523 self.save_code,
517 524 self.getDateTime(self.data.max_time).strftime(
518 525 '%Y%m%d_%H%M%S'
519 526 ),
520 527 )
521 528 )
522 529 else:
523 530 figname = os.path.join(
524 531 self.save,
525 532 self.save_code,
526 533 '{}_ch{}_{}.png'.format(
527 534 self.save_code,n,
528 535 self.getDateTime(self.data.max_time).strftime(
529 536 '%Y%m%d_%H%M%S'
530 537 ),
531 538 )
532 539 )
533 540 log.log('Saving figure: {}'.format(figname), self.name)
534 541 if not os.path.isdir(os.path.dirname(figname)):
535 542 os.makedirs(os.path.dirname(figname))
536 543 fig.savefig(figname)
537 544
538 545 figname = os.path.join(
539 546 self.save,
540 547 '{}_{}.png'.format(
541 548 self.save_code,
542 549 self.getDateTime(self.data.min_time).strftime(
543 550 '%Y%m%d'
544 551 ),
545 552 )
546 553 )
547 554
548 555 log.log('Saving figure: {}'.format(figname), self.name)
549 556 if not os.path.isdir(os.path.dirname(figname)):
550 557 os.makedirs(os.path.dirname(figname))
551 558 fig.savefig(figname)
552 559
553 560 def send_to_server(self):
554 561 '''
555 562 '''
556 563
557 564 if self.exp_code == None:
558 565 log.warning('Missing `exp_code` skipping sending to server...')
559 566
560 567 last_time = self.data.max_time
561 568 interval = last_time - self.sender_time
562 569 if interval < self.sender_period:
563 570 return
564 571
565 572 self.sender_time = last_time
566 573
567 574 attrs = ['titles', 'zmin', 'zmax', 'tag', 'ymin', 'ymax']
568 575 for attr in attrs:
569 576 value = getattr(self, attr)
570 577 if value:
571 578 if isinstance(value, (numpy.float32, numpy.float64)):
572 579 value = round(float(value), 2)
573 580 self.data.meta[attr] = value
574 581 if self.colormap == 'jet':
575 582 self.data.meta['colormap'] = 'Jet'
576 583 elif 'RdBu' in self.colormap:
577 584 self.data.meta['colormap'] = 'RdBu'
578 585 else:
579 586 self.data.meta['colormap'] = 'Viridis'
580 587 self.data.meta['interval'] = int(interval)
581 588
582 589 self.sender_queue.append(last_time)
583 590
584 591 while True:
585 592 try:
586 593 tm = self.sender_queue.popleft()
587 594 except IndexError:
588 595 break
589 596 msg = self.data.jsonify(tm, self.save_code, self.plot_type)
590 597 self.socket.send_string(msg)
591 598 socks = dict(self.poll.poll(2000))
592 599 if socks.get(self.socket) == zmq.POLLIN:
593 600 reply = self.socket.recv_string()
594 601 if reply == 'ok':
595 602 log.log("Response from server ok", self.name)
596 603 time.sleep(0.1)
597 604 continue
598 605 else:
599 606 log.warning(
600 607 "Malformed reply from server: {}".format(reply), self.name)
601 608 else:
602 609 log.warning(
603 610 "No response from server, retrying...", self.name)
604 611 self.sender_queue.appendleft(tm)
605 612 self.socket.setsockopt(zmq.LINGER, 0)
606 613 self.socket.close()
607 614 self.poll.unregister(self.socket)
608 615 self.socket = self.context.socket(zmq.REQ)
609 616 self.socket.connect(self.server)
610 617 self.poll.register(self.socket, zmq.POLLIN)
611 618 break
612 619
613 620 def setup(self):
614 621 '''
615 622 This method should be implemented in the child class, the following
616 623 attributes should be set:
617 624
618 625 self.nrows: number of rows
619 626 self.ncols: number of cols
620 627 self.nplots: number of plots (channels or pairs)
621 628 self.ylabel: label for Y axes
622 629 self.titles: list of axes title
623 630
624 631 '''
625 632 raise NotImplementedError
626 633
627 634 def plot(self):
628 635 '''
629 636 Must be defined in the child class, the actual plotting method
630 637 '''
631 638 raise NotImplementedError
632 639
633 640 def update(self, dataOut):
634 641 '''
635 642 Must be defined in the child class, update self.data with new data
636 643 '''
637 644
638 645 data = {
639 646 self.CODE: getattr(dataOut, 'data_{}'.format(self.CODE))
640 647 }
641 648 meta = {}
642 649
643 650 return data, meta
644 651
645 652 def run(self, dataOut, **kwargs):
646 653 '''
647 654 Main plotting routine
648 655 '''
649 656
650 657 if self.isConfig is False:
651 658 self.__setup(**kwargs)
652 659
653 660 if self.localtime:
654 661 self.getDateTime = datetime.datetime.fromtimestamp
655 662 else:
656 663 self.getDateTime = datetime.datetime.utcfromtimestamp
657 664
658 665 self.data.setup()
659 666 self.isConfig = True
660 667 if self.server:
661 668 self.context = zmq.Context()
662 669 self.socket = self.context.socket(zmq.REQ)
663 670 self.socket.connect(self.server)
664 671 self.poll = zmq.Poller()
665 672 self.poll.register(self.socket, zmq.POLLIN)
666 673
667 674 tm = getattr(dataOut, self.attr_time)
668 675
669 676 if self.data and 'time' in self.xaxis and (tm - self.tmin) >= self.xrange*60*60:
670 677 self.save_time = tm
671 678 self.__plot()
672 679 self.tmin += self.xrange*60*60
673 680 self.data.setup()
674 681 self.clear_figures()
675 682
676 683 self.__update(dataOut, tm)
677 684
678 685 if self.isPlotConfig is False:
679 686 self.__setup_plot()
680 687 self.isPlotConfig = True
681 688 if self.xaxis == 'time':
682 689 dt = self.getDateTime(tm)
683 690 if self.xmin is None:
684 691 self.tmin = tm
685 692 self.xmin = dt.hour
686 693 minutes = (self.xmin-int(self.xmin)) * 60
687 694 seconds = (minutes - int(minutes)) * 60
688 695 self.tmin = (dt.replace(hour=int(self.xmin), minute=int(minutes), second=int(seconds)) -
689 696 datetime.datetime(1970, 1, 1)).total_seconds()
690 697 if self.localtime:
691 698 self.tmin += time.timezone
692 699
693 700 if self.xmin is not None and self.xmax is not None:
694 701 self.xrange = self.xmax - self.xmin
695 702
696 703 if self.throttle == 0:
697 704 self.__plot()
698 705 else:
699 706 self.__throttle_plot(self.__plot)#, coerce=coerce)
700 707
701 708 def close(self):
702 709
703 710 if self.data and not self.data.flagNoData:
704 711 self.save_time = 0
705 712 self.__plot()
706 713 if self.data and not self.data.flagNoData and self.pause:
707 714 figpause(10)
@@ -1,2378 +1,2522
1 1 import os
2 2 import datetime
3 3 import numpy
4 4 from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter
5 5
6 6 from schainpy.model.graphics.jroplot_base import Plot, plt
7 7 from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot
8 8 from schainpy.utils import log
9 9 # libreria wradlib
10 10 import wradlib as wrl
11 11
12 12 EARTH_RADIUS = 6.3710e3
13 13
14 14
15 15 def ll2xy(lat1, lon1, lat2, lon2):
16 16
17 17 p = 0.017453292519943295
18 18 a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \
19 19 numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
20 20 r = 12742 * numpy.arcsin(numpy.sqrt(a))
21 21 theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)
22 22 * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
23 23 theta = -theta + numpy.pi/2
24 24 return r*numpy.cos(theta), r*numpy.sin(theta)
25 25
26 26
27 27 def km2deg(km):
28 28 '''
29 29 Convert distance in km to degrees
30 30 '''
31 31
32 32 return numpy.rad2deg(km/EARTH_RADIUS)
33 33
34 34
35 35
36 36 class SpectralMomentsPlot(SpectraPlot):
37 37 '''
38 38 Plot for Spectral Moments
39 39 '''
40 40 CODE = 'spc_moments'
41 41 # colormap = 'jet'
42 42 # plot_type = 'pcolor'
43 43
44 44 class DobleGaussianPlot(SpectraPlot):
45 45 '''
46 46 Plot for Double Gaussian Plot
47 47 '''
48 48 CODE = 'gaussian_fit'
49 49 # colormap = 'jet'
50 50 # plot_type = 'pcolor'
51 51
52 52 class DoubleGaussianSpectraCutPlot(SpectraCutPlot):
53 53 '''
54 54 Plot SpectraCut with Double Gaussian Fit
55 55 '''
56 56 CODE = 'cut_gaussian_fit'
57 57
58 58 class SnrPlot(RTIPlot):
59 59 '''
60 60 Plot for SNR Data
61 61 '''
62 62
63 63 CODE = 'snr'
64 64 colormap = 'jet'
65 65
66 66 def update(self, dataOut):
67 67
68 68 data = {
69 69 'snr': 10*numpy.log10(dataOut.data_snr)
70 70 }
71 71
72 72 return data, {}
73 73
74 74 class DopplerPlot(RTIPlot):
75 75 '''
76 76 Plot for DOPPLER Data (1st moment)
77 77 '''
78 78
79 79 CODE = 'dop'
80 80 colormap = 'jet'
81 81
82 82 def update(self, dataOut):
83 83
84 84 data = {
85 85 'dop': 10*numpy.log10(dataOut.data_dop)
86 86 }
87 87
88 88 return data, {}
89 89
90 90 class PowerPlot(RTIPlot):
91 91 '''
92 92 Plot for Power Data (0 moment)
93 93 '''
94 94
95 95 CODE = 'pow'
96 96 colormap = 'jet'
97 97
98 98 def update(self, dataOut):
99 99 data = {
100 100 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor)
101 101 }
102 102 return data, {}
103 103
104 104 class SpectralWidthPlot(RTIPlot):
105 105 '''
106 106 Plot for Spectral Width Data (2nd moment)
107 107 '''
108 108
109 109 CODE = 'width'
110 110 colormap = 'jet'
111 111
112 112 def update(self, dataOut):
113 113
114 114 data = {
115 115 'width': dataOut.data_width
116 116 }
117 117
118 118 return data, {}
119 119
120 120 class SkyMapPlot(Plot):
121 121 '''
122 122 Plot for meteors detection data
123 123 '''
124 124
125 125 CODE = 'param'
126 126
127 127 def setup(self):
128 128
129 129 self.ncols = 1
130 130 self.nrows = 1
131 131 self.width = 7.2
132 132 self.height = 7.2
133 133 self.nplots = 1
134 134 self.xlabel = 'Zonal Zenith Angle (deg)'
135 135 self.ylabel = 'Meridional Zenith Angle (deg)'
136 136 self.polar = True
137 137 self.ymin = -180
138 138 self.ymax = 180
139 139 self.colorbar = False
140 140
141 141 def plot(self):
142 142
143 143 arrayParameters = numpy.concatenate(self.data['param'])
144 144 error = arrayParameters[:, -1]
145 145 indValid = numpy.where(error == 0)[0]
146 146 finalMeteor = arrayParameters[indValid, :]
147 147 finalAzimuth = finalMeteor[:, 3]
148 148 finalZenith = finalMeteor[:, 4]
149 149
150 150 x = finalAzimuth * numpy.pi / 180
151 151 y = finalZenith
152 152
153 153 ax = self.axes[0]
154 154
155 155 if ax.firsttime:
156 156 ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
157 157 else:
158 158 ax.plot.set_data(x, y)
159 159
160 160 dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S')
161 161 dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S')
162 162 title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
163 163 dt2,
164 164 len(x))
165 165 self.titles[0] = title
166 166
167 167
168 168 class GenericRTIPlot(Plot):
169 169 '''
170 170 Plot for data_xxxx object
171 171 '''
172 172
173 173 CODE = 'param'
174 174 colormap = 'viridis'
175 175 plot_type = 'pcolorbuffer'
176 176
177 177 def setup(self):
178 178 self.xaxis = 'time'
179 179 self.ncols = 1
180 180 self.nrows = self.data.shape('param')[0]
181 181 self.nplots = self.nrows
182 182 self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95})
183 183
184 184 if not self.xlabel:
185 185 self.xlabel = 'Time'
186 186
187 187 self.ylabel = 'Range [km]'
188 188 if not self.titles:
189 189 self.titles = ['Param {}'.format(x) for x in range(self.nrows)]
190 190
191 191 def update(self, dataOut):
192 192
193 193 data = {
194 194 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0)
195 195 }
196 196
197 197 meta = {}
198 198
199 199 return data, meta
200 200
201 201 def plot(self):
202 202 # self.data.normalize_heights()
203 203 self.x = self.data.times
204 204 self.y = self.data.yrange
205 205 self.z = self.data['param']
206 206 self.z = 10*numpy.log10(self.z)
207 207 self.z = numpy.ma.masked_invalid(self.z)
208 208
209 209 if self.decimation is None:
210 210 x, y, z = self.fill_gaps(self.x, self.y, self.z)
211 211 else:
212 212 x, y, z = self.fill_gaps(*self.decimate())
213 213
214 214 for n, ax in enumerate(self.axes):
215 215
216 216 self.zmax = self.zmax if self.zmax is not None else numpy.max(
217 217 self.z[n])
218 218 self.zmin = self.zmin if self.zmin is not None else numpy.min(
219 219 self.z[n])
220 220
221 221 if ax.firsttime:
222 222 if self.zlimits is not None:
223 223 self.zmin, self.zmax = self.zlimits[n]
224 224
225 225 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
226 226 vmin=self.zmin,
227 227 vmax=self.zmax,
228 228 cmap=self.cmaps[n]
229 229 )
230 230 else:
231 231 if self.zlimits is not None:
232 232 self.zmin, self.zmax = self.zlimits[n]
233 233 ax.collections.remove(ax.collections[0])
234 234 ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
235 235 vmin=self.zmin,
236 236 vmax=self.zmax,
237 237 cmap=self.cmaps[n]
238 238 )
239 239
240 240
241 241 class PolarMapPlot(Plot):
242 242 '''
243 243 Plot for weather radar
244 244 '''
245 245
246 246 CODE = 'param'
247 247 colormap = 'seismic'
248 248
249 249 def setup(self):
250 250 self.ncols = 1
251 251 self.nrows = 1
252 252 self.width = 9
253 253 self.height = 8
254 254 self.mode = self.data.meta['mode']
255 255 if self.channels is not None:
256 256 self.nplots = len(self.channels)
257 257 self.nrows = len(self.channels)
258 258 else:
259 259 self.nplots = self.data.shape(self.CODE)[0]
260 260 self.nrows = self.nplots
261 261 self.channels = list(range(self.nplots))
262 262 if self.mode == 'E':
263 263 self.xlabel = 'Longitude'
264 264 self.ylabel = 'Latitude'
265 265 else:
266 266 self.xlabel = 'Range (km)'
267 267 self.ylabel = 'Height (km)'
268 268 self.bgcolor = 'white'
269 269 self.cb_labels = self.data.meta['units']
270 270 self.lat = self.data.meta['latitude']
271 271 self.lon = self.data.meta['longitude']
272 272 self.xmin, self.xmax = float(
273 273 km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
274 274 self.ymin, self.ymax = float(
275 275 km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
276 276 # self.polar = True
277 277
278 278 def plot(self):
279 279
280 280 for n, ax in enumerate(self.axes):
281 281 data = self.data['param'][self.channels[n]]
282 282
283 283 zeniths = numpy.linspace(
284 284 0, self.data.meta['max_range'], data.shape[1])
285 285 if self.mode == 'E':
286 286 azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2
287 287 r, theta = numpy.meshgrid(zeniths, azimuths)
288 288 x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(
289 289 theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
290 290 x = km2deg(x) + self.lon
291 291 y = km2deg(y) + self.lat
292 292 else:
293 293 azimuths = numpy.radians(self.data.yrange)
294 294 r, theta = numpy.meshgrid(zeniths, azimuths)
295 295 x, y = r*numpy.cos(theta), r*numpy.sin(theta)
296 296 self.y = zeniths
297 297
298 298 if ax.firsttime:
299 299 if self.zlimits is not None:
300 300 self.zmin, self.zmax = self.zlimits[n]
301 301 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
302 302 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
303 303 vmin=self.zmin,
304 304 vmax=self.zmax,
305 305 cmap=self.cmaps[n])
306 306 else:
307 307 if self.zlimits is not None:
308 308 self.zmin, self.zmax = self.zlimits[n]
309 309 ax.collections.remove(ax.collections[0])
310 310 ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
311 311 x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
312 312 vmin=self.zmin,
313 313 vmax=self.zmax,
314 314 cmap=self.cmaps[n])
315 315
316 316 if self.mode == 'A':
317 317 continue
318 318
319 319 # plot district names
320 320 f = open('/data/workspace/schain_scripts/distrito.csv')
321 321 for line in f:
322 322 label, lon, lat = [s.strip() for s in line.split(',') if s]
323 323 lat = float(lat)
324 324 lon = float(lon)
325 325 # ax.plot(lon, lat, '.b', ms=2)
326 326 ax.text(lon, lat, label.decode('utf8'), ha='center',
327 327 va='bottom', size='8', color='black')
328 328
329 329 # plot limites
330 330 limites = []
331 331 tmp = []
332 332 for line in open('/data/workspace/schain_scripts/lima.csv'):
333 333 if '#' in line:
334 334 if tmp:
335 335 limites.append(tmp)
336 336 tmp = []
337 337 continue
338 338 values = line.strip().split(',')
339 339 tmp.append((float(values[0]), float(values[1])))
340 340 for points in limites:
341 341 ax.add_patch(
342 342 Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
343 343
344 344 # plot Cuencas
345 345 for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
346 346 f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
347 347 values = [line.strip().split(',') for line in f]
348 348 points = [(float(s[0]), float(s[1])) for s in values]
349 349 ax.add_patch(Polygon(points, ec='b', fc='none'))
350 350
351 351 # plot grid
352 352 for r in (15, 30, 45, 60):
353 353 ax.add_artist(plt.Circle((self.lon, self.lat),
354 354 km2deg(r), color='0.6', fill=False, lw=0.2))
355 355 ax.text(
356 356 self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
357 357 self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
358 358 '{}km'.format(r),
359 359 ha='center', va='bottom', size='8', color='0.6', weight='heavy')
360 360
361 361 if self.mode == 'E':
362 362 title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
363 363 label = 'E{:02d}'.format(int(self.data.meta['elevation']))
364 364 else:
365 365 title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
366 366 label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
367 367
368 368 self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
369 369 self.titles = ['{} {}'.format(
370 370 self.data.parameters[x], title) for x in self.channels]
371 371
372 372 class WeatherPlot(Plot):
373 373 CODE = 'weather'
374 374 plot_name = 'weather'
375 375 plot_type = 'ppistyle'
376 376 buffering = False
377 377
378 378 def setup(self):
379 379 self.ncols = 1
380 380 self.nrows = 1
381 381 self.width =8
382 382 self.height =8
383 383 self.nplots= 1
384 384 self.ylabel= 'Range [Km]'
385 385 self.titles= ['Weather']
386 386 self.colorbar=False
387 387 self.ini =0
388 388 self.len_azi =0
389 389 self.buffer_ini = None
390 390 self.buffer_azi = None
391 391 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
392 392 self.flag =0
393 393 self.indicador= 0
394 394 self.last_data_azi = None
395 395 self.val_mean = None
396 396
397 397 def update(self, dataOut):
398 398
399 399 data = {}
400 400 meta = {}
401 401 if hasattr(dataOut, 'dataPP_POWER'):
402 402 factor = 1
403 403 if hasattr(dataOut, 'nFFTPoints'):
404 404 factor = dataOut.normFactor
405 405 #print("DIME EL SHAPE PORFAVOR",dataOut.data_360.shape)
406 406 data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
407 407 data['azi'] = dataOut.data_azi
408 408 data['ele'] = dataOut.data_ele
409 409 return data, meta
410 410
411 411 def get2List(self,angulos):
412 412 list1=[]
413 413 list2=[]
414 414 for i in reversed(range(len(angulos))):
415 415 diff_ = angulos[i]-angulos[i-1]
416 416 if diff_ >1.5:
417 417 list1.append(i-1)
418 418 list2.append(diff_)
419 419 return list(reversed(list1)),list(reversed(list2))
420 420
421 421 def fixData360(self,list_,ang_):
422 422 if list_[0]==-1:
423 423 vec = numpy.where(ang_<ang_[0])
424 424 ang_[vec] = ang_[vec]+360
425 425 return ang_
426 426 return ang_
427 427
428 428 def fixData360HL(self,angulos):
429 429 vec = numpy.where(angulos>=360)
430 430 angulos[vec]=angulos[vec]-360
431 431 return angulos
432 432
433 433 def search_pos(self,pos,list_):
434 434 for i in range(len(list_)):
435 435 if pos == list_[i]:
436 436 return True,i
437 437 i=None
438 438 return False,i
439 439
440 440 def fixDataComp(self,ang_,list1_,list2_):
441 441 size = len(ang_)
442 442 size2 = 0
443 443 for i in range(len(list2_)):
444 444 size2=size2+round(list2_[i])-1
445 445 new_size= size+size2
446 446 ang_new = numpy.zeros(new_size)
447 447 ang_new2 = numpy.zeros(new_size)
448 448
449 449 tmp = 0
450 450 c = 0
451 451 for i in range(len(ang_)):
452 452 ang_new[tmp +c] = ang_[i]
453 453 ang_new2[tmp+c] = ang_[i]
454 454 condition , value = self.search_pos(i,list1_)
455 455 if condition:
456 456 pos = tmp + c + 1
457 457 for k in range(round(list2_[value])-1):
458 458 ang_new[pos+k] = ang_new[pos+k-1]+1
459 459 ang_new2[pos+k] = numpy.nan
460 460 tmp = pos +k
461 461 c = 0
462 462 c=c+1
463 463 return ang_new,ang_new2
464 464
465 465 def globalCheckPED(self,angulos):
466 466 l1,l2 = self.get2List(angulos)
467 467 if len(l1)>0:
468 468 angulos2 = self.fixData360(list_=l1,ang_=angulos)
469 469 l1,l2 = self.get2List(angulos2)
470 470
471 471 ang1_,ang2_ = self.fixDataComp(ang_=angulos2,list1_=l1,list2_=l2)
472 472 ang1_ = self.fixData360HL(ang1_)
473 473 ang2_ = self.fixData360HL(ang2_)
474 474 else:
475 475 ang1_= angulos
476 476 ang2_= angulos
477 477 return ang1_,ang2_
478 478
479 479 def analizeDATA(self,data_azi):
480 480 list1 = []
481 481 list2 = []
482 482 dat = data_azi
483 483 for i in reversed(range(1,len(dat))):
484 484 if dat[i]>dat[i-1]:
485 485 diff = int(dat[i])-int(dat[i-1])
486 486 else:
487 487 diff = 360+int(dat[i])-int(dat[i-1])
488 488 if diff > 1:
489 489 list1.append(i-1)
490 490 list2.append(diff-1)
491 491 return list1,list2
492 492
493 493 def fixDATANEW(self,data_azi,data_weather):
494 494 list1,list2 = self.analizeDATA(data_azi)
495 495 if len(list1)== 0:
496 496 return data_azi,data_weather
497 497 else:
498 498 resize = 0
499 499 for i in range(len(list2)):
500 500 resize= resize + list2[i]
501 501 new_data_azi = numpy.resize(data_azi,resize)
502 502 new_data_weather= numpy.resize(date_weather,resize)
503 503
504 504 for i in range(len(list2)):
505 505 j=0
506 506 position=list1[i]+1
507 507 for j in range(list2[i]):
508 508 new_data_azi[position+j]=new_data_azi[position+j-1]+1
509 509 return new_data_azi
510 510
511 511 def fixDATA(self,data_azi):
512 512 data=data_azi
513 513 for i in range(len(data)):
514 514 if numpy.isnan(data[i]):
515 515 data[i]=data[i-1]+1
516 516 return data
517 517
518 518 def replaceNAN(self,data_weather,data_azi,val):
519 519 data= data_azi
520 520 data_T= data_weather
521 521 if data.shape[0]> data_T.shape[0]:
522 522 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
523 523 c = 0
524 524 for i in range(len(data)):
525 525 if numpy.isnan(data[i]):
526 526 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
527 527 else:
528 528 data_N[i,:]=data_T[c,:]
529 529 c=c+1
530 530 return data_N
531 531 else:
532 532 for i in range(len(data)):
533 533 if numpy.isnan(data[i]):
534 534 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
535 535 return data_T
536 536
537 537 def const_ploteo(self,data_weather,data_azi,step,res):
538 538 if self.ini==0:
539 539 #-------
540 540 n = (360/res)-len(data_azi)
541 541 #--------------------- new -------------------------
542 542 data_azi_new ,data_azi_old= self.globalCheckPED(data_azi)
543 543 #------------------------
544 544 start = data_azi_new[-1] + res
545 545 end = data_azi_new[0] - res
546 546 #------ new
547 547 self.last_data_azi = end
548 548 if start>end:
549 549 end = end + 360
550 550 azi_vacia = numpy.linspace(start,end,int(n))
551 551 azi_vacia = numpy.where(azi_vacia>360,azi_vacia-360,azi_vacia)
552 552 data_azi = numpy.hstack((data_azi_new,azi_vacia))
553 553 # RADAR
554 554 val_mean = numpy.mean(data_weather[:,-1])
555 555 self.val_mean = val_mean
556 556 data_weather_cmp = numpy.ones([(360-data_weather.shape[0]),data_weather.shape[1]])*val_mean
557 557 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
558 558 data_weather = numpy.vstack((data_weather,data_weather_cmp))
559 559 else:
560 560 # azimuth
561 561 flag=0
562 562 start_azi = self.res_azi[0]
563 563 #-----------new------------
564 564 data_azi ,data_azi_old= self.globalCheckPED(data_azi)
565 565 data_weather = self.replaceNAN(data_weather=data_weather,data_azi=data_azi_old,val=self.val_mean)
566 566 #--------------------------
567 567 start = data_azi[0]
568 568 end = data_azi[-1]
569 569 self.last_data_azi= end
570 570 if start< start_azi:
571 571 start = start +360
572 572 if end <start_azi:
573 573 end = end +360
574 574
575 575 pos_ini = int((start-start_azi)/res)
576 576 len_azi = len(data_azi)
577 577 if (360-pos_ini)<len_azi:
578 578 if pos_ini+1==360:
579 579 pos_ini=0
580 580 else:
581 581 flag=1
582 582 dif= 360-pos_ini
583 583 comp= len_azi-dif
584 584 #-----------------
585 585 if flag==0:
586 586 # AZIMUTH
587 587 self.res_azi[pos_ini:pos_ini+len_azi] = data_azi
588 588 # RADAR
589 589 self.res_weather[pos_ini:pos_ini+len_azi,:] = data_weather
590 590 else:
591 591 # AZIMUTH
592 592 self.res_azi[pos_ini:pos_ini+dif] = data_azi[0:dif]
593 593 self.res_azi[0:comp] = data_azi[dif:]
594 594 # RADAR
595 595 self.res_weather[pos_ini:pos_ini+dif,:] = data_weather[0:dif,:]
596 596 self.res_weather[0:comp,:] = data_weather[dif:,:]
597 597 flag=0
598 598 data_azi = self.res_azi
599 599 data_weather = self.res_weather
600 600
601 601 return data_weather,data_azi
602 602
603 603 def plot(self):
604 604 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
605 605 data = self.data[-1]
606 606 r = self.data.yrange
607 607 delta_height = r[1]-r[0]
608 608 r_mask = numpy.where(r>=0)[0]
609 609 r = numpy.arange(len(r_mask))*delta_height
610 610 self.y = 2*r
611 611 # RADAR
612 612 #data_weather = data['weather']
613 613 # PEDESTAL
614 614 #data_azi = data['azi']
615 615 res = 1
616 616 # STEP
617 617 step = (360/(res*data['weather'].shape[0]))
618 618
619 619 self.res_weather, self.res_azi = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_azi=data['azi'],step=step,res=res)
620 620 self.res_ele = numpy.mean(data['ele'])
621 621 ################# PLOTEO ###################
622 622 for i,ax in enumerate(self.axes):
623 623 if ax.firsttime:
624 624 plt.clf()
625 625 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
626 626 else:
627 627 plt.clf()
628 628 cgax, pm = wrl.vis.plot_ppi(self.res_weather,r=r,az=self.res_azi,fig=self.figures[0], proj='cg', vmin=20, vmax=80)
629 629 caax = cgax.parasites[0]
630 630 paax = cgax.parasites[1]
631 631 cbar = plt.gcf().colorbar(pm, pad=0.075)
632 632 caax.set_xlabel('x_range [km]')
633 633 caax.set_ylabel('y_range [km]')
634 634 plt.text(1.0, 1.05, 'Azimuth '+str(thisDatetime)+" Step "+str(self.ini)+ " Elev: "+str(round(self.res_ele,2)), transform=caax.transAxes, va='bottom',ha='right')
635 635
636 636 self.ini= self.ini+1
637 637
638 638
639 639 class WeatherRHIPlot(Plot):
640 640 CODE = 'weather'
641 641 plot_name = 'weather'
642 642 plot_type = 'rhistyle'
643 643 buffering = False
644 644 data_ele_tmp = None
645 645
646 646 def setup(self):
647 647 print("********************")
648 648 print("********************")
649 649 print("********************")
650 650 print("SETUP WEATHER PLOT")
651 651 self.ncols = 1
652 652 self.nrows = 1
653 653 self.nplots= 1
654 654 self.ylabel= 'Range [Km]'
655 655 self.titles= ['Weather']
656 656 if self.channels is not None:
657 657 self.nplots = len(self.channels)
658 658 self.nrows = len(self.channels)
659 659 else:
660 660 self.nplots = self.data.shape(self.CODE)[0]
661 661 self.nrows = self.nplots
662 662 self.channels = list(range(self.nplots))
663 663 print("channels",self.channels)
664 664 print("que saldra", self.data.shape(self.CODE)[0])
665 665 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
666 666 print("self.titles",self.titles)
667 667 self.colorbar=False
668 668 self.width =8
669 669 self.height =8
670 670 self.ini =0
671 671 self.len_azi =0
672 672 self.buffer_ini = None
673 673 self.buffer_ele = None
674 674 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
675 675 self.flag =0
676 676 self.indicador= 0
677 677 self.last_data_ele = None
678 678 self.val_mean = None
679 679
680 680 def update(self, dataOut):
681 681
682 682 data = {}
683 683 meta = {}
684 684 if hasattr(dataOut, 'dataPP_POWER'):
685 685 factor = 1
686 686 if hasattr(dataOut, 'nFFTPoints'):
687 687 factor = dataOut.normFactor
688 688 print("dataOut",dataOut.data_360.shape)
689 689 #
690 690 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
691 691 #
692 692 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
693 693 data['azi'] = dataOut.data_azi
694 694 data['ele'] = dataOut.data_ele
695 695 #print("UPDATE")
696 696 #print("data[weather]",data['weather'].shape)
697 697 #print("data[azi]",data['azi'])
698 698 return data, meta
699 699
700 700 def get2List(self,angulos):
701 701 list1=[]
702 702 list2=[]
703 703 for i in reversed(range(len(angulos))):
704 704 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
705 705 diff_ = angulos[i]-angulos[i-1]
706 706 if abs(diff_) >1.5:
707 707 list1.append(i-1)
708 708 list2.append(diff_)
709 709 return list(reversed(list1)),list(reversed(list2))
710 710
711 711 def fixData90(self,list_,ang_):
712 712 if list_[0]==-1:
713 713 vec = numpy.where(ang_<ang_[0])
714 714 ang_[vec] = ang_[vec]+90
715 715 return ang_
716 716 return ang_
717 717
718 718 def fixData90HL(self,angulos):
719 719 vec = numpy.where(angulos>=90)
720 720 angulos[vec]=angulos[vec]-90
721 721 return angulos
722 722
723 723
724 724 def search_pos(self,pos,list_):
725 725 for i in range(len(list_)):
726 726 if pos == list_[i]:
727 727 return True,i
728 728 i=None
729 729 return False,i
730 730
731 731 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
732 732 size = len(ang_)
733 733 size2 = 0
734 734 for i in range(len(list2_)):
735 735 size2=size2+round(abs(list2_[i]))-1
736 736 new_size= size+size2
737 737 ang_new = numpy.zeros(new_size)
738 738 ang_new2 = numpy.zeros(new_size)
739 739
740 740 tmp = 0
741 741 c = 0
742 742 for i in range(len(ang_)):
743 743 ang_new[tmp +c] = ang_[i]
744 744 ang_new2[tmp+c] = ang_[i]
745 745 condition , value = self.search_pos(i,list1_)
746 746 if condition:
747 747 pos = tmp + c + 1
748 748 for k in range(round(abs(list2_[value]))-1):
749 749 if tipo_case==0 or tipo_case==3:#subida
750 750 ang_new[pos+k] = ang_new[pos+k-1]+1
751 751 ang_new2[pos+k] = numpy.nan
752 752 elif tipo_case==1 or tipo_case==2:#bajada
753 753 ang_new[pos+k] = ang_new[pos+k-1]-1
754 754 ang_new2[pos+k] = numpy.nan
755 755
756 756 tmp = pos +k
757 757 c = 0
758 758 c=c+1
759 759 return ang_new,ang_new2
760 760
761 761 def globalCheckPED(self,angulos,tipo_case):
762 762 l1,l2 = self.get2List(angulos)
763 763 ##print("l1",l1)
764 764 ##print("l2",l2)
765 765 if len(l1)>0:
766 766 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
767 767 #l1,l2 = self.get2List(angulos2)
768 768 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
769 769 #ang1_ = self.fixData90HL(ang1_)
770 770 #ang2_ = self.fixData90HL(ang2_)
771 771 else:
772 772 ang1_= angulos
773 773 ang2_= angulos
774 774 return ang1_,ang2_
775 775
776 776
777 777 def replaceNAN(self,data_weather,data_ele,val):
778 778 data= data_ele
779 779 data_T= data_weather
780 780 if data.shape[0]> data_T.shape[0]:
781 781 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
782 782 c = 0
783 783 for i in range(len(data)):
784 784 if numpy.isnan(data[i]):
785 785 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
786 786 else:
787 787 data_N[i,:]=data_T[c,:]
788 788 c=c+1
789 789 return data_N
790 790 else:
791 791 for i in range(len(data)):
792 792 if numpy.isnan(data[i]):
793 793 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
794 794 return data_T
795 795
796 796 def check_case(self,data_ele,ang_max,ang_min):
797 797 start = data_ele[0]
798 798 end = data_ele[-1]
799 799 number = (end-start)
800 800 len_ang=len(data_ele)
801 801 print("start",start)
802 802 print("end",end)
803 803 print("number",number)
804 804
805 805 print("len_ang",len_ang)
806 806
807 807 #exit(1)
808 808
809 809 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
810 810 return 0
811 811 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
812 812 # return 1
813 813 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
814 814 return 1
815 815 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
816 816 return 2
817 817 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
818 818 return 3
819 819
820 820
821 821 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min):
822 822 ang_max= ang_max
823 823 ang_min= ang_min
824 824 data_weather=data_weather
825 825 val_ch=val_ch
826 826 ##print("*********************DATA WEATHER**************************************")
827 827 ##print(data_weather)
828 828 if self.ini==0:
829 829 '''
830 830 print("**********************************************")
831 831 print("**********************************************")
832 832 print("***************ini**************")
833 833 print("**********************************************")
834 834 print("**********************************************")
835 835 '''
836 836 #print("data_ele",data_ele)
837 837 #----------------------------------------------------------
838 838 tipo_case = self.check_case(data_ele,ang_max,ang_min)
839 839 print("check_case",tipo_case)
840 840 #exit(1)
841 841 #--------------------- new -------------------------
842 842 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
843 843
844 844 #-------------------------CAMBIOS RHI---------------------------------
845 845 start= ang_min
846 846 end = ang_max
847 847 n= (ang_max-ang_min)/res
848 848 #------ new
849 849 self.start_data_ele = data_ele_new[0]
850 850 self.end_data_ele = data_ele_new[-1]
851 851 if tipo_case==0 or tipo_case==3: # SUBIDA
852 852 n1= round(self.start_data_ele)- start
853 853 n2= end - round(self.end_data_ele)
854 854 print(self.start_data_ele)
855 855 print(self.end_data_ele)
856 856 if n1>0:
857 857 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
858 858 ele1_nan= numpy.ones(n1)*numpy.nan
859 859 data_ele = numpy.hstack((ele1,data_ele_new))
860 860 print("ele1_nan",ele1_nan.shape)
861 861 print("data_ele_old",data_ele_old.shape)
862 862 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
863 863 if n2>0:
864 864 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
865 865 ele2_nan= numpy.ones(n2)*numpy.nan
866 866 data_ele = numpy.hstack((data_ele,ele2))
867 867 print("ele2_nan",ele2_nan.shape)
868 868 print("data_ele_old",data_ele_old.shape)
869 869 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
870 870
871 871 if tipo_case==1 or tipo_case==2: # BAJADA
872 872 data_ele_new = data_ele_new[::-1] # reversa
873 873 data_ele_old = data_ele_old[::-1]# reversa
874 874 data_weather = data_weather[::-1,:]# reversa
875 875 vec= numpy.where(data_ele_new<ang_max)
876 876 data_ele_new = data_ele_new[vec]
877 877 data_ele_old = data_ele_old[vec]
878 878 data_weather = data_weather[vec[0]]
879 879 vec2= numpy.where(0<data_ele_new)
880 880 data_ele_new = data_ele_new[vec2]
881 881 data_ele_old = data_ele_old[vec2]
882 882 data_weather = data_weather[vec2[0]]
883 883 self.start_data_ele = data_ele_new[0]
884 884 self.end_data_ele = data_ele_new[-1]
885 885
886 886 n1= round(self.start_data_ele)- start
887 887 n2= end - round(self.end_data_ele)-1
888 888 print(self.start_data_ele)
889 889 print(self.end_data_ele)
890 890 if n1>0:
891 891 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
892 892 ele1_nan= numpy.ones(n1)*numpy.nan
893 893 data_ele = numpy.hstack((ele1,data_ele_new))
894 894 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
895 895 if n2>0:
896 896 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
897 897 ele2_nan= numpy.ones(n2)*numpy.nan
898 898 data_ele = numpy.hstack((data_ele,ele2))
899 899 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
900 900 # RADAR
901 901 # NOTA data_ele y data_weather es la variable que retorna
902 902 val_mean = numpy.mean(data_weather[:,-1])
903 903 self.val_mean = val_mean
904 904 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
905 905 self.data_ele_tmp[val_ch]= data_ele_old
906 906 else:
907 907 #print("**********************************************")
908 908 #print("****************VARIABLE**********************")
909 909 #-------------------------CAMBIOS RHI---------------------------------
910 910 #---------------------------------------------------------------------
911 911 ##print("INPUT data_ele",data_ele)
912 912 flag=0
913 913 start_ele = self.res_ele[0]
914 914 tipo_case = self.check_case(data_ele,ang_max,ang_min)
915 915 #print("TIPO DE DATA",tipo_case)
916 916 #-----------new------------
917 917 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
918 918 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
919 919
920 920 #-------------------------------NEW RHI ITERATIVO-------------------------
921 921
922 922 if tipo_case==0 : # SUBIDA
923 923 vec = numpy.where(data_ele<ang_max)
924 924 data_ele = data_ele[vec]
925 925 data_ele_old = data_ele_old[vec]
926 926 data_weather = data_weather[vec[0]]
927 927
928 928 vec2 = numpy.where(0<data_ele)
929 929 data_ele= data_ele[vec2]
930 930 data_ele_old= data_ele_old[vec2]
931 931 ##print(data_ele_new)
932 932 data_weather= data_weather[vec2[0]]
933 933
934 934 new_i_ele = int(round(data_ele[0]))
935 935 new_f_ele = int(round(data_ele[-1]))
936 936 #print(new_i_ele)
937 937 #print(new_f_ele)
938 938 #print(data_ele,len(data_ele))
939 939 #print(data_ele_old,len(data_ele_old))
940 940 if new_i_ele< 2:
941 941 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
942 942 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
943 943 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
944 944 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
945 945 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
946 946 data_ele = self.res_ele
947 947 data_weather = self.res_weather[val_ch]
948 948
949 949 elif tipo_case==1 : #BAJADA
950 950 data_ele = data_ele[::-1] # reversa
951 951 data_ele_old = data_ele_old[::-1]# reversa
952 952 data_weather = data_weather[::-1,:]# reversa
953 953 vec= numpy.where(data_ele<ang_max)
954 954 data_ele = data_ele[vec]
955 955 data_ele_old = data_ele_old[vec]
956 956 data_weather = data_weather[vec[0]]
957 957 vec2= numpy.where(0<data_ele)
958 958 data_ele = data_ele[vec2]
959 959 data_ele_old = data_ele_old[vec2]
960 960 data_weather = data_weather[vec2[0]]
961 961
962 962
963 963 new_i_ele = int(round(data_ele[0]))
964 964 new_f_ele = int(round(data_ele[-1]))
965 965 #print(data_ele)
966 966 #print(ang_max)
967 967 #print(data_ele_old)
968 968 if new_i_ele <= 1:
969 969 new_i_ele = 1
970 970 if round(data_ele[-1])>=ang_max-1:
971 971 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
972 972 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
973 973 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
974 974 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
975 975 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
976 976 data_ele = self.res_ele
977 977 data_weather = self.res_weather[val_ch]
978 978
979 979 elif tipo_case==2: #bajada
980 980 vec = numpy.where(data_ele<ang_max)
981 981 data_ele = data_ele[vec]
982 982 data_weather= data_weather[vec[0]]
983 983
984 984 len_vec = len(vec)
985 985 data_ele_new = data_ele[::-1] # reversa
986 986 data_weather = data_weather[::-1,:]
987 987 new_i_ele = int(data_ele_new[0])
988 988 new_f_ele = int(data_ele_new[-1])
989 989
990 990 n1= new_i_ele- ang_min
991 991 n2= ang_max - new_f_ele-1
992 992 if n1>0:
993 993 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
994 994 ele1_nan= numpy.ones(n1)*numpy.nan
995 995 data_ele = numpy.hstack((ele1,data_ele_new))
996 996 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
997 997 if n2>0:
998 998 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
999 999 ele2_nan= numpy.ones(n2)*numpy.nan
1000 1000 data_ele = numpy.hstack((data_ele,ele2))
1001 1001 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1002 1002
1003 1003 self.data_ele_tmp[val_ch] = data_ele_old
1004 1004 self.res_ele = data_ele
1005 1005 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1006 1006 data_ele = self.res_ele
1007 1007 data_weather = self.res_weather[val_ch]
1008 1008
1009 1009 elif tipo_case==3:#subida
1010 1010 vec = numpy.where(0<data_ele)
1011 1011 data_ele= data_ele[vec]
1012 1012 data_ele_new = data_ele
1013 1013 data_ele_old= data_ele_old[vec]
1014 1014 data_weather= data_weather[vec[0]]
1015 1015 pos_ini = numpy.argmin(data_ele)
1016 1016 if pos_ini>0:
1017 1017 len_vec= len(data_ele)
1018 1018 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1019 1019 #print(vec3)
1020 1020 data_ele= data_ele[vec3]
1021 1021 data_ele_new = data_ele
1022 1022 data_ele_old= data_ele_old[vec3]
1023 1023 data_weather= data_weather[vec3]
1024 1024
1025 1025 new_i_ele = int(data_ele_new[0])
1026 1026 new_f_ele = int(data_ele_new[-1])
1027 1027 n1= new_i_ele- ang_min
1028 1028 n2= ang_max - new_f_ele-1
1029 1029 if n1>0:
1030 1030 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1031 1031 ele1_nan= numpy.ones(n1)*numpy.nan
1032 1032 data_ele = numpy.hstack((ele1,data_ele_new))
1033 1033 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1034 1034 if n2>0:
1035 1035 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1036 1036 ele2_nan= numpy.ones(n2)*numpy.nan
1037 1037 data_ele = numpy.hstack((data_ele,ele2))
1038 1038 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1039 1039
1040 1040 self.data_ele_tmp[val_ch] = data_ele_old
1041 1041 self.res_ele = data_ele
1042 1042 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1043 1043 data_ele = self.res_ele
1044 1044 data_weather = self.res_weather[val_ch]
1045 1045 #print("self.data_ele_tmp",self.data_ele_tmp)
1046 1046 return data_weather,data_ele
1047 1047
1048 1048
1049 1049 def plot(self):
1050 1050 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1051 1051 data = self.data[-1]
1052 1052 r = self.data.yrange
1053 1053 delta_height = r[1]-r[0]
1054 1054 r_mask = numpy.where(r>=0)[0]
1055 1055 ##print("delta_height",delta_height)
1056 1056 #print("r_mask",r_mask,len(r_mask))
1057 1057 r = numpy.arange(len(r_mask))*delta_height
1058 1058 self.y = 2*r
1059 1059 res = 1
1060 1060 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1061 1061 ang_max = self.ang_max
1062 1062 ang_min = self.ang_min
1063 1063 var_ang =ang_max - ang_min
1064 1064 step = (int(var_ang)/(res*data['weather'].shape[0]))
1065 1065 ###print("step",step)
1066 1066 #--------------------------------------------------------
1067 1067 ##print('weather',data['weather'].shape)
1068 1068 ##print('ele',data['ele'].shape)
1069 1069
1070 1070 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1071 1071 ###self.res_azi = numpy.mean(data['azi'])
1072 1072 ###print("self.res_ele",self.res_ele)
1073 1073 plt.clf()
1074 1074 subplots = [121, 122]
1075 1075 if self.ini==0:
1076 1076 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1077 1077 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1078 1078 print("SHAPE",self.data_ele_tmp.shape)
1079 1079
1080 1080 for i,ax in enumerate(self.axes):
1081 1081 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1082 1082 self.res_azi = numpy.mean(data['azi'])
1083 1083 if i==0:
1084 1084 print("*****************************************************************************to plot**************************",self.res_weather[i].shape)
1085 1085 if ax.firsttime:
1086 1086 #plt.clf()
1087 1087 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1088 1088 #fig=self.figures[0]
1089 1089 else:
1090 1090 #plt.clf()
1091 1091 if i==0:
1092 1092 print(self.res_weather[i])
1093 1093 print(self.res_ele)
1094 1094 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1095 1095 caax = cgax.parasites[0]
1096 1096 paax = cgax.parasites[1]
1097 1097 cbar = plt.gcf().colorbar(pm, pad=0.075)
1098 1098 caax.set_xlabel('x_range [km]')
1099 1099 caax.set_ylabel('y_range [km]')
1100 1100 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1101 1101 print("***************************self.ini****************************",self.ini)
1102 1102 self.ini= self.ini+1
1103 1103
1104 1104 class WeatherRHI_vRF2_Plot(Plot):
1105 1105 CODE = 'weather'
1106 1106 plot_name = 'weather'
1107 1107 plot_type = 'rhistyle'
1108 1108 buffering = False
1109 1109 data_ele_tmp = None
1110 1110
1111 1111 def setup(self):
1112 1112 print("********************")
1113 1113 print("********************")
1114 1114 print("********************")
1115 1115 print("SETUP WEATHER PLOT")
1116 1116 self.ncols = 1
1117 1117 self.nrows = 1
1118 1118 self.nplots= 1
1119 1119 self.ylabel= 'Range [Km]'
1120 1120 self.titles= ['Weather']
1121 1121 if self.channels is not None:
1122 1122 self.nplots = len(self.channels)
1123 1123 self.nrows = len(self.channels)
1124 1124 else:
1125 1125 self.nplots = self.data.shape(self.CODE)[0]
1126 1126 self.nrows = self.nplots
1127 1127 self.channels = list(range(self.nplots))
1128 1128 print("channels",self.channels)
1129 1129 print("que saldra", self.data.shape(self.CODE)[0])
1130 1130 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1131 1131 print("self.titles",self.titles)
1132 1132 self.colorbar=False
1133 1133 self.width =8
1134 1134 self.height =8
1135 1135 self.ini =0
1136 1136 self.len_azi =0
1137 1137 self.buffer_ini = None
1138 1138 self.buffer_ele = None
1139 1139 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1140 1140 self.flag =0
1141 1141 self.indicador= 0
1142 1142 self.last_data_ele = None
1143 1143 self.val_mean = None
1144 1144
1145 1145 def update(self, dataOut):
1146 1146
1147 1147 data = {}
1148 1148 meta = {}
1149 1149 if hasattr(dataOut, 'dataPP_POWER'):
1150 1150 factor = 1
1151 1151 if hasattr(dataOut, 'nFFTPoints'):
1152 1152 factor = dataOut.normFactor
1153 1153 print("dataOut",dataOut.data_360.shape)
1154 1154 #
1155 1155 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1156 1156 #
1157 1157 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1158 1158 data['azi'] = dataOut.data_azi
1159 1159 data['ele'] = dataOut.data_ele
1160 1160 data['case_flag'] = dataOut.case_flag
1161 1161 #print("UPDATE")
1162 1162 #print("data[weather]",data['weather'].shape)
1163 1163 #print("data[azi]",data['azi'])
1164 1164 return data, meta
1165 1165
1166 1166 def get2List(self,angulos):
1167 1167 list1=[]
1168 1168 list2=[]
1169 1169 for i in reversed(range(len(angulos))):
1170 1170 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1171 1171 diff_ = angulos[i]-angulos[i-1]
1172 1172 if abs(diff_) >1.5:
1173 1173 list1.append(i-1)
1174 1174 list2.append(diff_)
1175 1175 return list(reversed(list1)),list(reversed(list2))
1176 1176
1177 1177 def fixData90(self,list_,ang_):
1178 1178 if list_[0]==-1:
1179 1179 vec = numpy.where(ang_<ang_[0])
1180 1180 ang_[vec] = ang_[vec]+90
1181 1181 return ang_
1182 1182 return ang_
1183 1183
1184 1184 def fixData90HL(self,angulos):
1185 1185 vec = numpy.where(angulos>=90)
1186 1186 angulos[vec]=angulos[vec]-90
1187 1187 return angulos
1188 1188
1189 1189
1190 1190 def search_pos(self,pos,list_):
1191 1191 for i in range(len(list_)):
1192 1192 if pos == list_[i]:
1193 1193 return True,i
1194 1194 i=None
1195 1195 return False,i
1196 1196
1197 1197 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1198 1198 size = len(ang_)
1199 1199 size2 = 0
1200 1200 for i in range(len(list2_)):
1201 1201 size2=size2+round(abs(list2_[i]))-1
1202 1202 new_size= size+size2
1203 1203 ang_new = numpy.zeros(new_size)
1204 1204 ang_new2 = numpy.zeros(new_size)
1205 1205
1206 1206 tmp = 0
1207 1207 c = 0
1208 1208 for i in range(len(ang_)):
1209 1209 ang_new[tmp +c] = ang_[i]
1210 1210 ang_new2[tmp+c] = ang_[i]
1211 1211 condition , value = self.search_pos(i,list1_)
1212 1212 if condition:
1213 1213 pos = tmp + c + 1
1214 1214 for k in range(round(abs(list2_[value]))-1):
1215 1215 if tipo_case==0 or tipo_case==3:#subida
1216 1216 ang_new[pos+k] = ang_new[pos+k-1]+1
1217 1217 ang_new2[pos+k] = numpy.nan
1218 1218 elif tipo_case==1 or tipo_case==2:#bajada
1219 1219 ang_new[pos+k] = ang_new[pos+k-1]-1
1220 1220 ang_new2[pos+k] = numpy.nan
1221 1221
1222 1222 tmp = pos +k
1223 1223 c = 0
1224 1224 c=c+1
1225 1225 return ang_new,ang_new2
1226 1226
1227 1227 def globalCheckPED(self,angulos,tipo_case):
1228 1228 l1,l2 = self.get2List(angulos)
1229 1229 ##print("l1",l1)
1230 1230 ##print("l2",l2)
1231 1231 if len(l1)>0:
1232 1232 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1233 1233 #l1,l2 = self.get2List(angulos2)
1234 1234 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1235 1235 #ang1_ = self.fixData90HL(ang1_)
1236 1236 #ang2_ = self.fixData90HL(ang2_)
1237 1237 else:
1238 1238 ang1_= angulos
1239 1239 ang2_= angulos
1240 1240 return ang1_,ang2_
1241 1241
1242 1242
1243 1243 def replaceNAN(self,data_weather,data_ele,val):
1244 1244 data= data_ele
1245 1245 data_T= data_weather
1246 1246 if data.shape[0]> data_T.shape[0]:
1247 1247 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1248 1248 c = 0
1249 1249 for i in range(len(data)):
1250 1250 if numpy.isnan(data[i]):
1251 1251 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1252 1252 else:
1253 1253 data_N[i,:]=data_T[c,:]
1254 1254 c=c+1
1255 1255 return data_N
1256 1256 else:
1257 1257 for i in range(len(data)):
1258 1258 if numpy.isnan(data[i]):
1259 1259 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1260 1260 return data_T
1261 1261
1262 1262 def check_case(self,data_ele,ang_max,ang_min):
1263 1263 start = data_ele[0]
1264 1264 end = data_ele[-1]
1265 1265 number = (end-start)
1266 1266 len_ang=len(data_ele)
1267 1267 print("start",start)
1268 1268 print("end",end)
1269 1269 print("number",number)
1270 1270
1271 1271 print("len_ang",len_ang)
1272 1272
1273 1273 #exit(1)
1274 1274
1275 1275 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
1276 1276 return 0
1277 1277 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
1278 1278 # return 1
1279 1279 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
1280 1280 return 1
1281 1281 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
1282 1282 return 2
1283 1283 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
1284 1284 return 3
1285 1285
1286 1286
1287 1287 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1288 1288 ang_max= ang_max
1289 1289 ang_min= ang_min
1290 1290 data_weather=data_weather
1291 1291 val_ch=val_ch
1292 1292 ##print("*********************DATA WEATHER**************************************")
1293 1293 ##print(data_weather)
1294 1294 if self.ini==0:
1295 1295 '''
1296 1296 print("**********************************************")
1297 1297 print("**********************************************")
1298 1298 print("***************ini**************")
1299 1299 print("**********************************************")
1300 1300 print("**********************************************")
1301 1301 '''
1302 1302 #print("data_ele",data_ele)
1303 1303 #----------------------------------------------------------
1304 1304 tipo_case = case_flag[-1]
1305 1305 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1306 1306 print("check_case",tipo_case)
1307 1307 #exit(1)
1308 1308 #--------------------- new -------------------------
1309 1309 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1310 1310
1311 1311 #-------------------------CAMBIOS RHI---------------------------------
1312 1312 start= ang_min
1313 1313 end = ang_max
1314 1314 n= (ang_max-ang_min)/res
1315 1315 #------ new
1316 1316 self.start_data_ele = data_ele_new[0]
1317 1317 self.end_data_ele = data_ele_new[-1]
1318 1318 if tipo_case==0 or tipo_case==3: # SUBIDA
1319 1319 n1= round(self.start_data_ele)- start
1320 1320 n2= end - round(self.end_data_ele)
1321 1321 print(self.start_data_ele)
1322 1322 print(self.end_data_ele)
1323 1323 if n1>0:
1324 1324 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1325 1325 ele1_nan= numpy.ones(n1)*numpy.nan
1326 1326 data_ele = numpy.hstack((ele1,data_ele_new))
1327 1327 print("ele1_nan",ele1_nan.shape)
1328 1328 print("data_ele_old",data_ele_old.shape)
1329 1329 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1330 1330 if n2>0:
1331 1331 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1332 1332 ele2_nan= numpy.ones(n2)*numpy.nan
1333 1333 data_ele = numpy.hstack((data_ele,ele2))
1334 1334 print("ele2_nan",ele2_nan.shape)
1335 1335 print("data_ele_old",data_ele_old.shape)
1336 1336 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1337 1337
1338 1338 if tipo_case==1 or tipo_case==2: # BAJADA
1339 1339 data_ele_new = data_ele_new[::-1] # reversa
1340 1340 data_ele_old = data_ele_old[::-1]# reversa
1341 1341 data_weather = data_weather[::-1,:]# reversa
1342 1342 vec= numpy.where(data_ele_new<ang_max)
1343 1343 data_ele_new = data_ele_new[vec]
1344 1344 data_ele_old = data_ele_old[vec]
1345 1345 data_weather = data_weather[vec[0]]
1346 1346 vec2= numpy.where(0<data_ele_new)
1347 1347 data_ele_new = data_ele_new[vec2]
1348 1348 data_ele_old = data_ele_old[vec2]
1349 1349 data_weather = data_weather[vec2[0]]
1350 1350 self.start_data_ele = data_ele_new[0]
1351 1351 self.end_data_ele = data_ele_new[-1]
1352 1352
1353 1353 n1= round(self.start_data_ele)- start
1354 1354 n2= end - round(self.end_data_ele)-1
1355 1355 print(self.start_data_ele)
1356 1356 print(self.end_data_ele)
1357 1357 if n1>0:
1358 1358 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
1359 1359 ele1_nan= numpy.ones(n1)*numpy.nan
1360 1360 data_ele = numpy.hstack((ele1,data_ele_new))
1361 1361 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
1362 1362 if n2>0:
1363 1363 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
1364 1364 ele2_nan= numpy.ones(n2)*numpy.nan
1365 1365 data_ele = numpy.hstack((data_ele,ele2))
1366 1366 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1367 1367 # RADAR
1368 1368 # NOTA data_ele y data_weather es la variable que retorna
1369 1369 val_mean = numpy.mean(data_weather[:,-1])
1370 1370 self.val_mean = val_mean
1371 1371 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1372 1372 print("eleold",data_ele_old)
1373 1373 print(self.data_ele_tmp[val_ch])
1374 1374 print(data_ele_old.shape[0])
1375 1375 print(self.data_ele_tmp[val_ch].shape[0])
1376 1376 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
1377 1377 import sys
1378 1378 print("EXIT",self.ini)
1379 1379
1380 1380 sys.exit(1)
1381 1381 self.data_ele_tmp[val_ch]= data_ele_old
1382 1382 else:
1383 1383 #print("**********************************************")
1384 1384 #print("****************VARIABLE**********************")
1385 1385 #-------------------------CAMBIOS RHI---------------------------------
1386 1386 #---------------------------------------------------------------------
1387 1387 ##print("INPUT data_ele",data_ele)
1388 1388 flag=0
1389 1389 start_ele = self.res_ele[0]
1390 1390 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
1391 1391 tipo_case = case_flag[-1]
1392 1392 #print("TIPO DE DATA",tipo_case)
1393 1393 #-----------new------------
1394 1394 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
1395 1395 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1396 1396
1397 1397 #-------------------------------NEW RHI ITERATIVO-------------------------
1398 1398
1399 1399 if tipo_case==0 : # SUBIDA
1400 1400 vec = numpy.where(data_ele<ang_max)
1401 1401 data_ele = data_ele[vec]
1402 1402 data_ele_old = data_ele_old[vec]
1403 1403 data_weather = data_weather[vec[0]]
1404 1404
1405 1405 vec2 = numpy.where(0<data_ele)
1406 1406 data_ele= data_ele[vec2]
1407 1407 data_ele_old= data_ele_old[vec2]
1408 1408 ##print(data_ele_new)
1409 1409 data_weather= data_weather[vec2[0]]
1410 1410
1411 1411 new_i_ele = int(round(data_ele[0]))
1412 1412 new_f_ele = int(round(data_ele[-1]))
1413 1413 #print(new_i_ele)
1414 1414 #print(new_f_ele)
1415 1415 #print(data_ele,len(data_ele))
1416 1416 #print(data_ele_old,len(data_ele_old))
1417 1417 if new_i_ele< 2:
1418 1418 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1419 1419 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1420 1420 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
1421 1421 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
1422 1422 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
1423 1423 data_ele = self.res_ele
1424 1424 data_weather = self.res_weather[val_ch]
1425 1425
1426 1426 elif tipo_case==1 : #BAJADA
1427 1427 data_ele = data_ele[::-1] # reversa
1428 1428 data_ele_old = data_ele_old[::-1]# reversa
1429 1429 data_weather = data_weather[::-1,:]# reversa
1430 1430 vec= numpy.where(data_ele<ang_max)
1431 1431 data_ele = data_ele[vec]
1432 1432 data_ele_old = data_ele_old[vec]
1433 1433 data_weather = data_weather[vec[0]]
1434 1434 vec2= numpy.where(0<data_ele)
1435 1435 data_ele = data_ele[vec2]
1436 1436 data_ele_old = data_ele_old[vec2]
1437 1437 data_weather = data_weather[vec2[0]]
1438 1438
1439 1439
1440 1440 new_i_ele = int(round(data_ele[0]))
1441 1441 new_f_ele = int(round(data_ele[-1]))
1442 1442 #print(data_ele)
1443 1443 #print(ang_max)
1444 1444 #print(data_ele_old)
1445 1445 if new_i_ele <= 1:
1446 1446 new_i_ele = 1
1447 1447 if round(data_ele[-1])>=ang_max-1:
1448 1448 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
1449 1449 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
1450 1450 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
1451 1451 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
1452 1452 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
1453 1453 data_ele = self.res_ele
1454 1454 data_weather = self.res_weather[val_ch]
1455 1455
1456 1456 elif tipo_case==2: #bajada
1457 1457 vec = numpy.where(data_ele<ang_max)
1458 1458 data_ele = data_ele[vec]
1459 1459 data_weather= data_weather[vec[0]]
1460 1460
1461 1461 len_vec = len(vec)
1462 1462 data_ele_new = data_ele[::-1] # reversa
1463 1463 data_weather = data_weather[::-1,:]
1464 1464 new_i_ele = int(data_ele_new[0])
1465 1465 new_f_ele = int(data_ele_new[-1])
1466 1466
1467 1467 n1= new_i_ele- ang_min
1468 1468 n2= ang_max - new_f_ele-1
1469 1469 if n1>0:
1470 1470 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1471 1471 ele1_nan= numpy.ones(n1)*numpy.nan
1472 1472 data_ele = numpy.hstack((ele1,data_ele_new))
1473 1473 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1474 1474 if n2>0:
1475 1475 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1476 1476 ele2_nan= numpy.ones(n2)*numpy.nan
1477 1477 data_ele = numpy.hstack((data_ele,ele2))
1478 1478 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1479 1479
1480 1480 self.data_ele_tmp[val_ch] = data_ele_old
1481 1481 self.res_ele = data_ele
1482 1482 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1483 1483 data_ele = self.res_ele
1484 1484 data_weather = self.res_weather[val_ch]
1485 1485
1486 1486 elif tipo_case==3:#subida
1487 1487 vec = numpy.where(0<data_ele)
1488 1488 data_ele= data_ele[vec]
1489 1489 data_ele_new = data_ele
1490 1490 data_ele_old= data_ele_old[vec]
1491 1491 data_weather= data_weather[vec[0]]
1492 1492 pos_ini = numpy.argmin(data_ele)
1493 1493 if pos_ini>0:
1494 1494 len_vec= len(data_ele)
1495 1495 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
1496 1496 #print(vec3)
1497 1497 data_ele= data_ele[vec3]
1498 1498 data_ele_new = data_ele
1499 1499 data_ele_old= data_ele_old[vec3]
1500 1500 data_weather= data_weather[vec3]
1501 1501
1502 1502 new_i_ele = int(data_ele_new[0])
1503 1503 new_f_ele = int(data_ele_new[-1])
1504 1504 n1= new_i_ele- ang_min
1505 1505 n2= ang_max - new_f_ele-1
1506 1506 if n1>0:
1507 1507 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1508 1508 ele1_nan= numpy.ones(n1)*numpy.nan
1509 1509 data_ele = numpy.hstack((ele1,data_ele_new))
1510 1510 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1511 1511 if n2>0:
1512 1512 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1513 1513 ele2_nan= numpy.ones(n2)*numpy.nan
1514 1514 data_ele = numpy.hstack((data_ele,ele2))
1515 1515 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1516 1516
1517 1517 self.data_ele_tmp[val_ch] = data_ele_old
1518 1518 self.res_ele = data_ele
1519 1519 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1520 1520 data_ele = self.res_ele
1521 1521 data_weather = self.res_weather[val_ch]
1522 1522 #print("self.data_ele_tmp",self.data_ele_tmp)
1523 1523 return data_weather,data_ele
1524 1524
1525 1525
1526 1526 def plot(self):
1527 1527 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1528 1528 data = self.data[-1]
1529 1529 r = self.data.yrange
1530 1530 delta_height = r[1]-r[0]
1531 1531 r_mask = numpy.where(r>=0)[0]
1532 1532 ##print("delta_height",delta_height)
1533 1533 #print("r_mask",r_mask,len(r_mask))
1534 1534 r = numpy.arange(len(r_mask))*delta_height
1535 1535 self.y = 2*r
1536 1536 res = 1
1537 1537 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1538 1538 ang_max = self.ang_max
1539 1539 ang_min = self.ang_min
1540 1540 var_ang =ang_max - ang_min
1541 1541 step = (int(var_ang)/(res*data['weather'].shape[0]))
1542 1542 ###print("step",step)
1543 1543 #--------------------------------------------------------
1544 1544 ##print('weather',data['weather'].shape)
1545 1545 ##print('ele',data['ele'].shape)
1546 1546
1547 1547 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1548 1548 ###self.res_azi = numpy.mean(data['azi'])
1549 1549 ###print("self.res_ele",self.res_ele)
1550 1550 plt.clf()
1551 1551 subplots = [121, 122]
1552 1552 try:
1553 1553 if self.data[-2]['ele'].max()<data['ele'].max():
1554 1554 self.ini=0
1555 1555 except:
1556 1556 pass
1557 1557 if self.ini==0:
1558 1558 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1559 1559 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1560 1560 print("SHAPE",self.data_ele_tmp.shape)
1561 1561
1562 1562 for i,ax in enumerate(self.axes):
1563 1563 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1564 1564 self.res_azi = numpy.mean(data['azi'])
1565 1565
1566 1566 if ax.firsttime:
1567 1567 #plt.clf()
1568 1568 print("Frist Plot")
1569 1569 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1570 1570 #fig=self.figures[0]
1571 1571 else:
1572 1572 #plt.clf()
1573 1573 print("ELSE PLOT")
1574 1574 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1575 1575 caax = cgax.parasites[0]
1576 1576 paax = cgax.parasites[1]
1577 1577 cbar = plt.gcf().colorbar(pm, pad=0.075)
1578 1578 caax.set_xlabel('x_range [km]')
1579 1579 caax.set_ylabel('y_range [km]')
1580 1580 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1581 1581 print("***************************self.ini****************************",self.ini)
1582 1582 self.ini= self.ini+1
1583 1583
1584 1584 class WeatherRHI_vRF_Plot(Plot):
1585 1585 CODE = 'weather'
1586 1586 plot_name = 'weather'
1587 1587 plot_type = 'rhistyle'
1588 1588 buffering = False
1589 1589 data_ele_tmp = None
1590 1590
1591 1591 def setup(self):
1592 1592 print("********************")
1593 1593 print("********************")
1594 1594 print("********************")
1595 1595 print("SETUP WEATHER PLOT")
1596 1596 self.ncols = 1
1597 1597 self.nrows = 1
1598 1598 self.nplots= 1
1599 1599 self.ylabel= 'Range [Km]'
1600 1600 self.titles= ['Weather']
1601 1601 if self.channels is not None:
1602 1602 self.nplots = len(self.channels)
1603 1603 self.nrows = len(self.channels)
1604 1604 else:
1605 1605 self.nplots = self.data.shape(self.CODE)[0]
1606 1606 self.nrows = self.nplots
1607 1607 self.channels = list(range(self.nplots))
1608 1608 print("channels",self.channels)
1609 1609 print("que saldra", self.data.shape(self.CODE)[0])
1610 1610 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1611 1611 print("self.titles",self.titles)
1612 1612 self.colorbar=False
1613 1613 self.width =8
1614 1614 self.height =8
1615 1615 self.ini =0
1616 1616 self.len_azi =0
1617 1617 self.buffer_ini = None
1618 1618 self.buffer_ele = None
1619 1619 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1620 1620 self.flag =0
1621 1621 self.indicador= 0
1622 1622 self.last_data_ele = None
1623 1623 self.val_mean = None
1624 1624
1625 1625 def update(self, dataOut):
1626 1626
1627 1627 data = {}
1628 1628 meta = {}
1629 1629 if hasattr(dataOut, 'dataPP_POWER'):
1630 1630 factor = 1
1631 1631 if hasattr(dataOut, 'nFFTPoints'):
1632 1632 factor = dataOut.normFactor
1633 1633 print("dataOut",dataOut.data_360.shape)
1634 1634 #
1635 1635 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1636 1636 #
1637 1637 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1638 1638 data['azi'] = dataOut.data_azi
1639 1639 data['ele'] = dataOut.data_ele
1640 1640 data['case_flag'] = dataOut.case_flag
1641 1641 #print("UPDATE")
1642 1642 #print("data[weather]",data['weather'].shape)
1643 1643 #print("data[azi]",data['azi'])
1644 1644 return data, meta
1645 1645
1646 1646 def get2List(self,angulos):
1647 1647 list1=[]
1648 1648 list2=[]
1649 1649 #print(angulos)
1650 1650 #exit(1)
1651 1651 for i in reversed(range(len(angulos))):
1652 1652 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1653 1653 diff_ = angulos[i]-angulos[i-1]
1654 1654 if abs(diff_) >1.5:
1655 1655 list1.append(i-1)
1656 1656 list2.append(diff_)
1657 1657 return list(reversed(list1)),list(reversed(list2))
1658 1658
1659 1659 def fixData90(self,list_,ang_):
1660 1660 if list_[0]==-1:
1661 1661 vec = numpy.where(ang_<ang_[0])
1662 1662 ang_[vec] = ang_[vec]+90
1663 1663 return ang_
1664 1664 return ang_
1665 1665
1666 1666 def fixData90HL(self,angulos):
1667 1667 vec = numpy.where(angulos>=90)
1668 1668 angulos[vec]=angulos[vec]-90
1669 1669 return angulos
1670 1670
1671 1671
1672 1672 def search_pos(self,pos,list_):
1673 1673 for i in range(len(list_)):
1674 1674 if pos == list_[i]:
1675 1675 return True,i
1676 1676 i=None
1677 1677 return False,i
1678 1678
1679 1679 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1680 1680 size = len(ang_)
1681 1681 size2 = 0
1682 1682 for i in range(len(list2_)):
1683 1683 size2=size2+round(abs(list2_[i]))-1
1684 1684 new_size= size+size2
1685 1685 ang_new = numpy.zeros(new_size)
1686 1686 ang_new2 = numpy.zeros(new_size)
1687 1687
1688 1688 tmp = 0
1689 1689 c = 0
1690 1690 for i in range(len(ang_)):
1691 1691 ang_new[tmp +c] = ang_[i]
1692 1692 ang_new2[tmp+c] = ang_[i]
1693 1693 condition , value = self.search_pos(i,list1_)
1694 1694 if condition:
1695 1695 pos = tmp + c + 1
1696 1696 for k in range(round(abs(list2_[value]))-1):
1697 1697 if tipo_case==0 or tipo_case==3:#subida
1698 1698 ang_new[pos+k] = ang_new[pos+k-1]+1
1699 1699 ang_new2[pos+k] = numpy.nan
1700 1700 elif tipo_case==1 or tipo_case==2:#bajada
1701 1701 ang_new[pos+k] = ang_new[pos+k-1]-1
1702 1702 ang_new2[pos+k] = numpy.nan
1703 1703
1704 1704 tmp = pos +k
1705 1705 c = 0
1706 1706 c=c+1
1707 1707 return ang_new,ang_new2
1708 1708
1709 1709 def globalCheckPED(self,angulos,tipo_case):
1710 1710 l1,l2 = self.get2List(angulos)
1711 1711 print("l1",l1)
1712 1712 print("l2",l2)
1713 1713 if len(l1)>0:
1714 1714 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1715 1715 #l1,l2 = self.get2List(angulos2)
1716 1716 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1717 1717 #ang1_ = self.fixData90HL(ang1_)
1718 1718 #ang2_ = self.fixData90HL(ang2_)
1719 1719 else:
1720 1720 ang1_= angulos
1721 1721 ang2_= angulos
1722 1722 return ang1_,ang2_
1723 1723
1724 1724
1725 1725 def replaceNAN(self,data_weather,data_ele,val):
1726 1726 data= data_ele
1727 1727 data_T= data_weather
1728 1728 #print(data.shape[0])
1729 1729 #print(data_T.shape[0])
1730 1730 #exit(1)
1731 1731 if data.shape[0]> data_T.shape[0]:
1732 1732 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
1733 1733 c = 0
1734 1734 for i in range(len(data)):
1735 1735 if numpy.isnan(data[i]):
1736 1736 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1737 1737 else:
1738 1738 data_N[i,:]=data_T[c,:]
1739 1739 c=c+1
1740 1740 return data_N
1741 1741 else:
1742 1742 for i in range(len(data)):
1743 1743 if numpy.isnan(data[i]):
1744 1744 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
1745 1745 return data_T
1746 1746
1747 1747
1748 1748 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
1749 1749 ang_max= ang_max
1750 1750 ang_min= ang_min
1751 1751 data_weather=data_weather
1752 1752 val_ch=val_ch
1753 1753 ##print("*********************DATA WEATHER**************************************")
1754 1754 ##print(data_weather)
1755 1755
1756 1756 '''
1757 1757 print("**********************************************")
1758 1758 print("**********************************************")
1759 1759 print("***************ini**************")
1760 1760 print("**********************************************")
1761 1761 print("**********************************************")
1762 1762 '''
1763 1763 #print("data_ele",data_ele)
1764 1764 #----------------------------------------------------------
1765 1765
1766 1766 #exit(1)
1767 1767 tipo_case = case_flag[-1]
1768 1768 print("tipo_case",tipo_case)
1769 1769 #--------------------- new -------------------------
1770 1770 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
1771 1771
1772 1772 #-------------------------CAMBIOS RHI---------------------------------
1773 1773
1774 1774 vec = numpy.where(data_ele<ang_max)
1775 1775 data_ele = data_ele[vec]
1776 1776 data_weather= data_weather[vec[0]]
1777 1777
1778 1778 len_vec = len(vec)
1779 1779 data_ele_new = data_ele[::-1] # reversa
1780 1780 data_weather = data_weather[::-1,:]
1781 1781 new_i_ele = int(data_ele_new[0])
1782 1782 new_f_ele = int(data_ele_new[-1])
1783 1783
1784 1784 n1= new_i_ele- ang_min
1785 1785 n2= ang_max - new_f_ele-1
1786 1786 if n1>0:
1787 1787 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
1788 1788 ele1_nan= numpy.ones(n1)*numpy.nan
1789 1789 data_ele = numpy.hstack((ele1,data_ele_new))
1790 1790 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
1791 1791 if n2>0:
1792 1792 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
1793 1793 ele2_nan= numpy.ones(n2)*numpy.nan
1794 1794 data_ele = numpy.hstack((data_ele,ele2))
1795 1795 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
1796 1796
1797 1797
1798 1798 print("ele shape",data_ele.shape)
1799 1799 print(data_ele)
1800 1800
1801 1801 #print("self.data_ele_tmp",self.data_ele_tmp)
1802 1802 val_mean = numpy.mean(data_weather[:,-1])
1803 1803 self.val_mean = val_mean
1804 1804 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
1805 1805 self.data_ele_tmp[val_ch]= data_ele_old
1806 1806
1807 1807
1808 1808 print("data_weather shape",data_weather.shape)
1809 1809 print(data_weather)
1810 1810 #exit(1)
1811 1811 return data_weather,data_ele
1812 1812
1813 1813
1814 1814 def plot(self):
1815 1815 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
1816 1816 data = self.data[-1]
1817 1817 r = self.data.yrange
1818 1818 delta_height = r[1]-r[0]
1819 1819 r_mask = numpy.where(r>=0)[0]
1820 1820 ##print("delta_height",delta_height)
1821 1821 #print("r_mask",r_mask,len(r_mask))
1822 1822 r = numpy.arange(len(r_mask))*delta_height
1823 1823 self.y = 2*r
1824 1824 res = 1
1825 1825 ###print("data['weather'].shape[0]",data['weather'].shape[0])
1826 1826 ang_max = self.ang_max
1827 1827 ang_min = self.ang_min
1828 1828 var_ang =ang_max - ang_min
1829 1829 step = (int(var_ang)/(res*data['weather'].shape[0]))
1830 1830 ###print("step",step)
1831 1831 #--------------------------------------------------------
1832 1832 ##print('weather',data['weather'].shape)
1833 1833 ##print('ele',data['ele'].shape)
1834 1834
1835 1835 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
1836 1836 ###self.res_azi = numpy.mean(data['azi'])
1837 1837 ###print("self.res_ele",self.res_ele)
1838 1838 plt.clf()
1839 1839 subplots = [121, 122]
1840 1840 if self.ini==0:
1841 1841 self.data_ele_tmp = numpy.ones([self.nplots,int(var_ang)])*numpy.nan
1842 1842 self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
1843 1843 print("SHAPE",self.data_ele_tmp.shape)
1844 1844
1845 1845 for i,ax in enumerate(self.axes):
1846 1846 self.res_weather[i], self.res_ele = self.const_ploteo(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min,case_flag=self.data['case_flag'])
1847 1847 self.res_azi = numpy.mean(data['azi'])
1848 1848
1849 1849 print(self.res_ele)
1850 1850 #exit(1)
1851 1851 if ax.firsttime:
1852 1852 #plt.clf()
1853 1853 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1854 1854 #fig=self.figures[0]
1855 1855 else:
1856 1856
1857 1857 #plt.clf()
1858 1858 cgax, pm = wrl.vis.plot_rhi(self.res_weather[i],r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
1859 1859 caax = cgax.parasites[0]
1860 1860 paax = cgax.parasites[1]
1861 1861 cbar = plt.gcf().colorbar(pm, pad=0.075)
1862 1862 caax.set_xlabel('x_range [km]')
1863 1863 caax.set_ylabel('y_range [km]')
1864 1864 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
1865 1865 print("***************************self.ini****************************",self.ini)
1866 1866 self.ini= self.ini+1
1867 1867
1868 1868 class WeatherRHI_vRF3_Plot(Plot):
1869 1869 CODE = 'weather'
1870 1870 plot_name = 'weather'
1871 1871 plot_type = 'rhistyle'
1872 1872 buffering = False
1873 1873 data_ele_tmp = None
1874 1874
1875 1875 def setup(self):
1876 1876 print("********************")
1877 1877 print("********************")
1878 1878 print("********************")
1879 1879 print("SETUP WEATHER PLOT")
1880 1880 self.ncols = 1
1881 1881 self.nrows = 1
1882 1882 self.nplots= 1
1883 1883 self.ylabel= 'Range [Km]'
1884 1884 self.titles= ['Weather']
1885 1885 if self.channels is not None:
1886 1886 self.nplots = len(self.channels)
1887 1887 self.nrows = len(self.channels)
1888 1888 else:
1889 1889 self.nplots = self.data.shape(self.CODE)[0]
1890 1890 self.nrows = self.nplots
1891 1891 self.channels = list(range(self.nplots))
1892 1892 print("channels",self.channels)
1893 1893 print("que saldra", self.data.shape(self.CODE)[0])
1894 1894 self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
1895 1895 print("self.titles",self.titles)
1896 1896 self.colorbar=False
1897 1897 self.width =8
1898 1898 self.height =8
1899 1899 self.ini =0
1900 1900 self.len_azi =0
1901 1901 self.buffer_ini = None
1902 1902 self.buffer_ele = None
1903 1903 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
1904 1904 self.flag =0
1905 1905 self.indicador= 0
1906 1906 self.last_data_ele = None
1907 1907 self.val_mean = None
1908 1908
1909 1909 def update(self, dataOut):
1910 1910
1911 1911 data = {}
1912 1912 meta = {}
1913 1913 if hasattr(dataOut, 'dataPP_POWER'):
1914 1914 factor = 1
1915 1915 if hasattr(dataOut, 'nFFTPoints'):
1916 1916 factor = dataOut.normFactor
1917 1917 print("dataOut",dataOut.data_360.shape)
1918 1918 #
1919 1919 data['weather'] = 10*numpy.log10(dataOut.data_360/(factor))
1920 1920 #
1921 1921 #data['weather'] = 10*numpy.log10(dataOut.data_360[1]/(factor))
1922 1922 data['azi'] = dataOut.data_azi
1923 1923 data['ele'] = dataOut.data_ele
1924 1924 #data['case_flag'] = dataOut.case_flag
1925 1925 #print("UPDATE")
1926 1926 #print("data[weather]",data['weather'].shape)
1927 1927 #print("data[azi]",data['azi'])
1928 1928 return data, meta
1929 1929
1930 1930 def get2List(self,angulos):
1931 1931 list1=[]
1932 1932 list2=[]
1933 1933 for i in reversed(range(len(angulos))):
1934 1934 if not i==0:#el caso de i=0 evalula el primero de la lista con el ultimo y no es relevante
1935 1935 diff_ = angulos[i]-angulos[i-1]
1936 1936 if abs(diff_) >1.5:
1937 1937 list1.append(i-1)
1938 1938 list2.append(diff_)
1939 1939 return list(reversed(list1)),list(reversed(list2))
1940 1940
1941 1941 def fixData90(self,list_,ang_):
1942 1942 if list_[0]==-1:
1943 1943 vec = numpy.where(ang_<ang_[0])
1944 1944 ang_[vec] = ang_[vec]+90
1945 1945 return ang_
1946 1946 return ang_
1947 1947
1948 1948 def fixData90HL(self,angulos):
1949 1949 vec = numpy.where(angulos>=90)
1950 1950 angulos[vec]=angulos[vec]-90
1951 1951 return angulos
1952 1952
1953 1953
1954 1954 def search_pos(self,pos,list_):
1955 1955 for i in range(len(list_)):
1956 1956 if pos == list_[i]:
1957 1957 return True,i
1958 1958 i=None
1959 1959 return False,i
1960 1960
1961 1961 def fixDataComp(self,ang_,list1_,list2_,tipo_case):
1962 1962 size = len(ang_)
1963 1963 size2 = 0
1964 1964 for i in range(len(list2_)):
1965 1965 size2=size2+round(abs(list2_[i]))-1
1966 1966 new_size= size+size2
1967 1967 ang_new = numpy.zeros(new_size)
1968 1968 ang_new2 = numpy.zeros(new_size)
1969 1969
1970 1970 tmp = 0
1971 1971 c = 0
1972 1972 for i in range(len(ang_)):
1973 1973 ang_new[tmp +c] = ang_[i]
1974 1974 ang_new2[tmp+c] = ang_[i]
1975 1975 condition , value = self.search_pos(i,list1_)
1976 1976 if condition:
1977 1977 pos = tmp + c + 1
1978 1978 for k in range(round(abs(list2_[value]))-1):
1979 1979 if tipo_case==0 or tipo_case==3:#subida
1980 1980 ang_new[pos+k] = ang_new[pos+k-1]+1
1981 1981 ang_new2[pos+k] = numpy.nan
1982 1982 elif tipo_case==1 or tipo_case==2:#bajada
1983 1983 ang_new[pos+k] = ang_new[pos+k-1]-1
1984 1984 ang_new2[pos+k] = numpy.nan
1985 1985
1986 1986 tmp = pos +k
1987 1987 c = 0
1988 1988 c=c+1
1989 1989 return ang_new,ang_new2
1990 1990
1991 1991 def globalCheckPED(self,angulos,tipo_case):
1992 1992 l1,l2 = self.get2List(angulos)
1993 1993 ##print("l1",l1)
1994 1994 ##print("l2",l2)
1995 1995 if len(l1)>0:
1996 1996 #angulos2 = self.fixData90(list_=l1,ang_=angulos)
1997 1997 #l1,l2 = self.get2List(angulos2)
1998 1998 ang1_,ang2_ = self.fixDataComp(ang_=angulos,list1_=l1,list2_=l2,tipo_case=tipo_case)
1999 1999 #ang1_ = self.fixData90HL(ang1_)
2000 2000 #ang2_ = self.fixData90HL(ang2_)
2001 2001 else:
2002 2002 ang1_= angulos
2003 2003 ang2_= angulos
2004 2004 return ang1_,ang2_
2005 2005
2006 2006
2007 2007 def replaceNAN(self,data_weather,data_ele,val):
2008 2008 data= data_ele
2009 2009 data_T= data_weather
2010 2010
2011 2011 if data.shape[0]> data_T.shape[0]:
2012 2012 print("IF")
2013 2013 data_N = numpy.ones( [data.shape[0],data_T.shape[1]])
2014 2014 c = 0
2015 2015 for i in range(len(data)):
2016 2016 if numpy.isnan(data[i]):
2017 2017 data_N[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2018 2018 else:
2019 2019 data_N[i,:]=data_T[c,:]
2020 2020 c=c+1
2021 2021 return data_N
2022 2022 else:
2023 2023 print("else")
2024 2024 for i in range(len(data)):
2025 2025 if numpy.isnan(data[i]):
2026 2026 data_T[i,:]=numpy.ones(data_T.shape[1])*numpy.nan
2027 2027 return data_T
2028 2028
2029 2029 def check_case(self,data_ele,ang_max,ang_min):
2030 2030 start = data_ele[0]
2031 2031 end = data_ele[-1]
2032 2032 number = (end-start)
2033 2033 len_ang=len(data_ele)
2034 2034 print("start",start)
2035 2035 print("end",end)
2036 2036 print("number",number)
2037 2037
2038 2038 print("len_ang",len_ang)
2039 2039
2040 2040 #exit(1)
2041 2041
2042 2042 if start<end and (round(abs(number)+1)>=len_ang or (numpy.argmin(data_ele)==0)):#caso subida
2043 2043 return 0
2044 2044 #elif start>end and (round(abs(number)+1)>=len_ang or(numpy.argmax(data_ele)==0)):#caso bajada
2045 2045 # return 1
2046 2046 elif round(abs(number)+1)>=len_ang and (start>end or(numpy.argmax(data_ele)==0)):#caso bajada
2047 2047 return 1
2048 2048 elif round(abs(number)+1)<len_ang and data_ele[-2]>data_ele[-1]:# caso BAJADA CAMBIO ANG MAX
2049 2049 return 2
2050 2050 elif round(abs(number)+1)<len_ang and data_ele[-2]<data_ele[-1] :# caso SUBIDA CAMBIO ANG MIN
2051 2051 return 3
2052 2052
2053 2053
2054 2054 def const_ploteo(self,val_ch,data_weather,data_ele,step,res,ang_max,ang_min,case_flag):
2055 2055 ang_max= ang_max
2056 2056 ang_min= ang_min
2057 2057 data_weather=data_weather
2058 2058 val_ch=val_ch
2059 2059 ##print("*********************DATA WEATHER**************************************")
2060 2060 ##print(data_weather)
2061 2061 if self.ini==0:
2062 2062
2063 2063 #--------------------- new -------------------------
2064 2064 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,tipo_case)
2065 2065
2066 2066 #-------------------------CAMBIOS RHI---------------------------------
2067 2067 start= ang_min
2068 2068 end = ang_max
2069 2069 n= (ang_max-ang_min)/res
2070 2070 #------ new
2071 2071 self.start_data_ele = data_ele_new[0]
2072 2072 self.end_data_ele = data_ele_new[-1]
2073 2073 if tipo_case==0 or tipo_case==3: # SUBIDA
2074 2074 n1= round(self.start_data_ele)- start
2075 2075 n2= end - round(self.end_data_ele)
2076 2076 print(self.start_data_ele)
2077 2077 print(self.end_data_ele)
2078 2078 if n1>0:
2079 2079 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2080 2080 ele1_nan= numpy.ones(n1)*numpy.nan
2081 2081 data_ele = numpy.hstack((ele1,data_ele_new))
2082 2082 print("ele1_nan",ele1_nan.shape)
2083 2083 print("data_ele_old",data_ele_old.shape)
2084 2084 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2085 2085 if n2>0:
2086 2086 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2087 2087 ele2_nan= numpy.ones(n2)*numpy.nan
2088 2088 data_ele = numpy.hstack((data_ele,ele2))
2089 2089 print("ele2_nan",ele2_nan.shape)
2090 2090 print("data_ele_old",data_ele_old.shape)
2091 2091 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2092 2092
2093 2093 if tipo_case==1 or tipo_case==2: # BAJADA
2094 2094 data_ele_new = data_ele_new[::-1] # reversa
2095 2095 data_ele_old = data_ele_old[::-1]# reversa
2096 2096 data_weather = data_weather[::-1,:]# reversa
2097 2097 vec= numpy.where(data_ele_new<ang_max)
2098 2098 data_ele_new = data_ele_new[vec]
2099 2099 data_ele_old = data_ele_old[vec]
2100 2100 data_weather = data_weather[vec[0]]
2101 2101 vec2= numpy.where(0<data_ele_new)
2102 2102 data_ele_new = data_ele_new[vec2]
2103 2103 data_ele_old = data_ele_old[vec2]
2104 2104 data_weather = data_weather[vec2[0]]
2105 2105 self.start_data_ele = data_ele_new[0]
2106 2106 self.end_data_ele = data_ele_new[-1]
2107 2107
2108 2108 n1= round(self.start_data_ele)- start
2109 2109 n2= end - round(self.end_data_ele)-1
2110 2110 print(self.start_data_ele)
2111 2111 print(self.end_data_ele)
2112 2112 if n1>0:
2113 2113 ele1= numpy.linspace(ang_min+1,self.start_data_ele-1,n1)
2114 2114 ele1_nan= numpy.ones(n1)*numpy.nan
2115 2115 data_ele = numpy.hstack((ele1,data_ele_new))
2116 2116 data_ele_old = numpy.hstack((ele1_nan,data_ele_old))
2117 2117 if n2>0:
2118 2118 ele2= numpy.linspace(self.end_data_ele+1,end,n2)
2119 2119 ele2_nan= numpy.ones(n2)*numpy.nan
2120 2120 data_ele = numpy.hstack((data_ele,ele2))
2121 2121 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2122 2122 # RADAR
2123 2123 # NOTA data_ele y data_weather es la variable que retorna
2124 2124 val_mean = numpy.mean(data_weather[:,-1])
2125 2125 self.val_mean = val_mean
2126 2126 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2127 2127 print("eleold",data_ele_old)
2128 2128 print(self.data_ele_tmp[val_ch])
2129 2129 print(data_ele_old.shape[0])
2130 2130 print(self.data_ele_tmp[val_ch].shape[0])
2131 2131 if (data_ele_old.shape[0]==91 or self.data_ele_tmp[val_ch].shape[0]==91):
2132 2132 import sys
2133 2133 print("EXIT",self.ini)
2134 2134
2135 2135 sys.exit(1)
2136 2136 self.data_ele_tmp[val_ch]= data_ele_old
2137 2137 else:
2138 2138 #print("**********************************************")
2139 2139 #print("****************VARIABLE**********************")
2140 2140 #-------------------------CAMBIOS RHI---------------------------------
2141 2141 #---------------------------------------------------------------------
2142 2142 ##print("INPUT data_ele",data_ele)
2143 2143 flag=0
2144 2144 start_ele = self.res_ele[0]
2145 2145 #tipo_case = self.check_case(data_ele,ang_max,ang_min)
2146 2146 tipo_case = case_flag[-1]
2147 2147 #print("TIPO DE DATA",tipo_case)
2148 2148 #-----------new------------
2149 2149 data_ele ,data_ele_old = self.globalCheckPED(data_ele,tipo_case)
2150 2150 data_weather = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2151 2151
2152 2152 #-------------------------------NEW RHI ITERATIVO-------------------------
2153 2153
2154 2154 if tipo_case==0 : # SUBIDA
2155 2155 vec = numpy.where(data_ele<ang_max)
2156 2156 data_ele = data_ele[vec]
2157 2157 data_ele_old = data_ele_old[vec]
2158 2158 data_weather = data_weather[vec[0]]
2159 2159
2160 2160 vec2 = numpy.where(0<data_ele)
2161 2161 data_ele= data_ele[vec2]
2162 2162 data_ele_old= data_ele_old[vec2]
2163 2163 ##print(data_ele_new)
2164 2164 data_weather= data_weather[vec2[0]]
2165 2165
2166 2166 new_i_ele = int(round(data_ele[0]))
2167 2167 new_f_ele = int(round(data_ele[-1]))
2168 2168 #print(new_i_ele)
2169 2169 #print(new_f_ele)
2170 2170 #print(data_ele,len(data_ele))
2171 2171 #print(data_ele_old,len(data_ele_old))
2172 2172 if new_i_ele< 2:
2173 2173 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2174 2174 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2175 2175 self.data_ele_tmp[val_ch][new_i_ele:new_i_ele+len(data_ele)]=data_ele_old
2176 2176 self.res_ele[new_i_ele:new_i_ele+len(data_ele)]= data_ele
2177 2177 self.res_weather[val_ch][new_i_ele:new_i_ele+len(data_ele),:]= data_weather
2178 2178 data_ele = self.res_ele
2179 2179 data_weather = self.res_weather[val_ch]
2180 2180
2181 2181 elif tipo_case==1 : #BAJADA
2182 2182 data_ele = data_ele[::-1] # reversa
2183 2183 data_ele_old = data_ele_old[::-1]# reversa
2184 2184 data_weather = data_weather[::-1,:]# reversa
2185 2185 vec= numpy.where(data_ele<ang_max)
2186 2186 data_ele = data_ele[vec]
2187 2187 data_ele_old = data_ele_old[vec]
2188 2188 data_weather = data_weather[vec[0]]
2189 2189 vec2= numpy.where(0<data_ele)
2190 2190 data_ele = data_ele[vec2]
2191 2191 data_ele_old = data_ele_old[vec2]
2192 2192 data_weather = data_weather[vec2[0]]
2193 2193
2194 2194
2195 2195 new_i_ele = int(round(data_ele[0]))
2196 2196 new_f_ele = int(round(data_ele[-1]))
2197 2197 #print(data_ele)
2198 2198 #print(ang_max)
2199 2199 #print(data_ele_old)
2200 2200 if new_i_ele <= 1:
2201 2201 new_i_ele = 1
2202 2202 if round(data_ele[-1])>=ang_max-1:
2203 2203 self.data_ele_tmp[val_ch] = numpy.ones(ang_max-ang_min)*numpy.nan
2204 2204 self.res_weather[val_ch] = self.replaceNAN(data_weather=self.res_weather[val_ch],data_ele=self.data_ele_tmp[val_ch],val=self.val_mean)
2205 2205 self.data_ele_tmp[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1]=data_ele_old
2206 2206 self.res_ele[new_i_ele-1:new_i_ele+len(data_ele)-1]= data_ele
2207 2207 self.res_weather[val_ch][new_i_ele-1:new_i_ele+len(data_ele)-1,:]= data_weather
2208 2208 data_ele = self.res_ele
2209 2209 data_weather = self.res_weather[val_ch]
2210 2210
2211 2211 elif tipo_case==2: #bajada
2212 2212 vec = numpy.where(data_ele<ang_max)
2213 2213 data_ele = data_ele[vec]
2214 2214 data_weather= data_weather[vec[0]]
2215 2215
2216 2216 len_vec = len(vec)
2217 2217 data_ele_new = data_ele[::-1] # reversa
2218 2218 data_weather = data_weather[::-1,:]
2219 2219 new_i_ele = int(data_ele_new[0])
2220 2220 new_f_ele = int(data_ele_new[-1])
2221 2221
2222 2222 n1= new_i_ele- ang_min
2223 2223 n2= ang_max - new_f_ele-1
2224 2224 if n1>0:
2225 2225 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2226 2226 ele1_nan= numpy.ones(n1)*numpy.nan
2227 2227 data_ele = numpy.hstack((ele1,data_ele_new))
2228 2228 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2229 2229 if n2>0:
2230 2230 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2231 2231 ele2_nan= numpy.ones(n2)*numpy.nan
2232 2232 data_ele = numpy.hstack((data_ele,ele2))
2233 2233 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2234 2234
2235 2235 self.data_ele_tmp[val_ch] = data_ele_old
2236 2236 self.res_ele = data_ele
2237 2237 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2238 2238 data_ele = self.res_ele
2239 2239 data_weather = self.res_weather[val_ch]
2240 2240
2241 2241 elif tipo_case==3:#subida
2242 2242 vec = numpy.where(0<data_ele)
2243 2243 data_ele= data_ele[vec]
2244 2244 data_ele_new = data_ele
2245 2245 data_ele_old= data_ele_old[vec]
2246 2246 data_weather= data_weather[vec[0]]
2247 2247 pos_ini = numpy.argmin(data_ele)
2248 2248 if pos_ini>0:
2249 2249 len_vec= len(data_ele)
2250 2250 vec3 = numpy.linspace(pos_ini,len_vec-1,len_vec-pos_ini).astype(int)
2251 2251 #print(vec3)
2252 2252 data_ele= data_ele[vec3]
2253 2253 data_ele_new = data_ele
2254 2254 data_ele_old= data_ele_old[vec3]
2255 2255 data_weather= data_weather[vec3]
2256 2256
2257 2257 new_i_ele = int(data_ele_new[0])
2258 2258 new_f_ele = int(data_ele_new[-1])
2259 2259 n1= new_i_ele- ang_min
2260 2260 n2= ang_max - new_f_ele-1
2261 2261 if n1>0:
2262 2262 ele1= numpy.linspace(ang_min+1,new_i_ele-1,n1)
2263 2263 ele1_nan= numpy.ones(n1)*numpy.nan
2264 2264 data_ele = numpy.hstack((ele1,data_ele_new))
2265 2265 data_ele_old = numpy.hstack((ele1_nan,data_ele_new))
2266 2266 if n2>0:
2267 2267 ele2= numpy.linspace(new_f_ele+1,ang_max,n2)
2268 2268 ele2_nan= numpy.ones(n2)*numpy.nan
2269 2269 data_ele = numpy.hstack((data_ele,ele2))
2270 2270 data_ele_old = numpy.hstack((data_ele_old,ele2_nan))
2271 2271
2272 2272 self.data_ele_tmp[val_ch] = data_ele_old
2273 2273 self.res_ele = data_ele
2274 2274 self.res_weather[val_ch] = self.replaceNAN(data_weather=data_weather,data_ele=data_ele_old,val=self.val_mean)
2275 2275 data_ele = self.res_ele
2276 2276 data_weather = self.res_weather[val_ch]
2277 2277 #print("self.data_ele_tmp",self.data_ele_tmp)
2278 2278 return data_weather,data_ele
2279 2279
2280 2280 def const_ploteo_vRF(self,val_ch,data_weather,data_ele,res,ang_max,ang_min):
2281 2281
2282 2282 data_ele_new ,data_ele_old= self.globalCheckPED(data_ele,1)
2283 2283
2284 2284 data_ele = data_ele_old.copy()
2285 2285
2286 2286 diff_1 = ang_max - data_ele[0]
2287 2287 angles_1_nan = numpy.linspace(ang_max,data_ele[0]+1,int(diff_1)-1)#*numpy.nan
2288 2288
2289 2289 diff_2 = data_ele[-1]-ang_min
2290 2290 angles_2_nan = numpy.linspace(data_ele[-1]-1,ang_min,int(diff_2)-1)#*numpy.nan
2291 2291
2292 2292 angles_filled = numpy.concatenate((angles_1_nan,data_ele,angles_2_nan))
2293 2293
2294 2294 print(angles_filled)
2295 2295
2296 2296 data_1_nan = numpy.ones([angles_1_nan.shape[0],len(self.r_mask)])*numpy.nan
2297 2297 data_2_nan = numpy.ones([angles_2_nan.shape[0],len(self.r_mask)])*numpy.nan
2298 2298
2299 2299 data_filled = numpy.concatenate((data_1_nan,data_weather,data_2_nan),axis=0)
2300 2300 #val_mean = numpy.mean(data_weather[:,-1])
2301 2301 #self.val_mean = val_mean
2302 2302 print(data_filled)
2303 2303 data_filled = self.replaceNAN(data_weather=data_filled,data_ele=angles_filled,val=numpy.nan)
2304 2304
2305 2305 print(data_filled)
2306 2306 print(data_filled.shape)
2307 2307 print(angles_filled.shape)
2308 2308
2309 2309 return data_filled,angles_filled
2310 2310
2311 2311 def plot(self):
2312 2312 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
2313 2313 data = self.data[-1]
2314 2314 r = self.data.yrange
2315 2315 delta_height = r[1]-r[0]
2316 2316 r_mask = numpy.where(r>=0)[0]
2317 2317 self.r_mask =r_mask
2318 2318 ##print("delta_height",delta_height)
2319 2319 #print("r_mask",r_mask,len(r_mask))
2320 2320 r = numpy.arange(len(r_mask))*delta_height
2321 2321 self.y = 2*r
2322 2322 res = 1
2323 2323 ###print("data['weather'].shape[0]",data['weather'].shape[0])
2324 2324 ang_max = self.ang_max
2325 2325 ang_min = self.ang_min
2326 2326 var_ang =ang_max - ang_min
2327 2327 step = (int(var_ang)/(res*data['weather'].shape[0]))
2328 2328 ###print("step",step)
2329 2329 #--------------------------------------------------------
2330 2330 ##print('weather',data['weather'].shape)
2331 2331 ##print('ele',data['ele'].shape)
2332 2332
2333 2333 ###self.res_weather, self.res_ele = self.const_ploteo(data_weather=data['weather'][:,r_mask],data_ele=data['ele'],step=step,res=res,ang_max=ang_max,ang_min=ang_min)
2334 2334 ###self.res_azi = numpy.mean(data['azi'])
2335 2335 ###print("self.res_ele",self.res_ele)
2336 2336
2337 2337 plt.clf()
2338 2338 subplots = [121, 122]
2339 2339 #if self.ini==0:
2340 2340 #self.res_weather= numpy.ones([self.nplots,int(var_ang),len(r_mask)])*numpy.nan
2341 2341 #print("SHAPE",self.data_ele_tmp.shape)
2342 2342
2343 2343 for i,ax in enumerate(self.axes):
2344 2344 res_weather, self.res_ele = self.const_ploteo_vRF(val_ch=i, data_weather=data['weather'][i][:,r_mask],data_ele=data['ele'],res=res,ang_max=ang_max,ang_min=ang_min)
2345 2345 self.res_azi = numpy.mean(data['azi'])
2346 2346
2347 2347 if ax.firsttime:
2348 2348 #plt.clf()
2349 2349 print("Frist Plot")
2350 2350 print(data['weather'][i][:,r_mask].shape)
2351 2351 print(data['ele'].shape)
2352 2352 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2353 2353 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2354 2354 gh = cgax.get_grid_helper()
2355 2355 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2356 2356 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2357 2357 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2358 2358
2359 2359
2360 2360 #fig=self.figures[0]
2361 2361 else:
2362 2362 #plt.clf()
2363 2363 print("ELSE PLOT")
2364 2364 cgax, pm = wrl.vis.plot_rhi(res_weather,r=r,th=self.res_ele,ax=subplots[i], proj='cg',vmin=20, vmax=80)
2365 2365 #cgax, pm = wrl.vis.plot_rhi(data['weather'][i][:,r_mask],r=r,th=data['ele'],ax=subplots[i], proj='cg',vmin=20, vmax=80)
2366 2366 gh = cgax.get_grid_helper()
2367 2367 locs = numpy.linspace(ang_min,ang_max,var_ang+1)
2368 2368 gh.grid_finder.grid_locator1 = FixedLocator(locs)
2369 2369 gh.grid_finder.tick_formatter1 = DictFormatter(dict([(i, r"${0:.0f}^\circ$".format(i)) for i in locs]))
2370 2370
2371 2371 caax = cgax.parasites[0]
2372 2372 paax = cgax.parasites[1]
2373 2373 cbar = plt.gcf().colorbar(pm, pad=0.075)
2374 2374 caax.set_xlabel('x_range [km]')
2375 2375 caax.set_ylabel('y_range [km]')
2376 2376 plt.text(1.0, 1.05, 'Elevacion '+str(thisDatetime)+" Step "+str(self.ini)+ " Azi: "+str(round(self.res_azi,2)), transform=caax.transAxes, va='bottom',ha='right')
2377 2377 print("***************************self.ini****************************",self.ini)
2378 2378 self.ini= self.ini+1
2379
2380 class WeatherRHI_vRF4_Plot(Plot):
2381 CODE = 'weather'
2382 plot_name = 'weather'
2383 #plot_type = 'rhistyle'
2384 buffering = False
2385 data_ele_tmp = None
2386
2387 def setup(self):
2388
2389 self.ncols = 1
2390 self.nrows = 1
2391 self.nplots= 1
2392 self.ylabel= 'Range [Km]'
2393 self.titles= ['Weather']
2394 self.polar = True
2395 if self.channels is not None:
2396 self.nplots = len(self.channels)
2397 self.nrows = len(self.channels)
2398 else:
2399 self.nplots = self.data.shape(self.CODE)[0]
2400 self.nrows = self.nplots
2401 self.channels = list(range(self.nplots))
2402 #print("JERE")
2403 #exit(1)
2404 #print("channels",self.channels)
2405 #print("que saldra", self.data.shape(self.CODE)[0])
2406 #self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)]
2407
2408 #print("self.titles",self.titles)
2409 if self.CODE == 'Power':
2410 self.cb_label = r'Power (dB)'
2411 elif self.CODE == 'Doppler':
2412 self.cb_label = r'Velocity (m/s)'
2413 self.colorbar=True
2414 self.width =8
2415 self.height =8
2416 self.ini =0
2417 self.len_azi =0
2418 self.buffer_ini = None
2419 self.buffer_ele = None
2420 self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08})
2421 self.flag =0
2422 self.indicador= 0
2423 self.last_data_ele = None
2424 self.val_mean = None
2425
2426 def update(self, dataOut):
2427
2428 if self.mode == 'Power':
2429 self.CODE = 'Power'
2430 elif self.mode == 'Doppler':
2431 self.CODE = 'Doppler'
2432
2433 data = {}
2434 meta = {}
2435 if hasattr(dataOut, 'dataPP_POWER'):
2436 factor = 1
2437 if hasattr(dataOut, 'nFFTPoints'):
2438 factor = dataOut.normFactor
2439
2440 if self.CODE == 'Power':
2441 data[self.CODE] = 10*numpy.log10(dataOut.data_360_Power/(factor))
2442 elif self.CODE == 'Doppler':
2443 data[self.CODE] = dataOut.data_360_Velocity/(factor)
2444
2445 data['azi'] = dataOut.data_azi
2446 data['ele'] = dataOut.data_ele
2447
2448 return data, meta
2449
2450 def plot(self):
2451 thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]).strftime('%Y-%m-%d %H:%M:%S')
2452 data = self.data[-1]
2453 r = self.data.yrange
2454 delta_height = r[1]-r[0]
2455 r_mask = numpy.where(r>=0)[0]
2456 self.r_mask =r_mask
2457 r = numpy.arange(len(r_mask))*delta_height
2458 self.y = 2*r
2459 res = 1
2460 ang_max = self.ang_max
2461 ang_min = self.ang_min
2462 var_ang =ang_max - ang_min
2463 step = (int(var_ang)/(res*data[self.CODE].shape[0]))
2464
2465 z = data[self.CODE][self.channels[0]][:,r_mask]
2466
2467 #print(z[2,:])
2468 self.titles = []
2469
2470 #exit(1)
2471
2472 if self.CODE == 'Power':
2473 cmap = 'jet'
2474 elif self.CODE == 'Doppler':
2475 cmap = 'RdBu'
2476
2477 self.ymax = self.ymax if self.ymax else numpy.nanmax(r)
2478 self.ymin = self.ymin if self.ymin else numpy.nanmin(r)
2479 self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
2480 self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
2481
2482 #plt.clf()
2483 subplots = [121, 122]
2484
2485 r, theta = numpy.meshgrid(r, numpy.radians(data['ele']) )
2486
2487 points_cb = 200
2488 mylevs_cbar = list(numpy.linspace(self.zmin,self.zmax,points_cb)) #niveles de la barra de colores
2489
2490 for i,ax in enumerate(self.axes):
2491
2492 if ax.firsttime:
2493 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
2494 ax.plt = ax.contourf(theta, r, z, points_cb, cmap=cmap, vmin=self.zmin, vmax=self.zmax, levels=mylevs_cbar)
2495 #print(ax.plt)
2496 #exit(1)
2497 '''
2498 self.figures[-1].colorbar(plt, orientation="vertical", fraction=0.025, pad=0.07)
2499 print(self.figures[0])
2500 print(self.figures)
2501 print(plt)
2502 print(ax)
2503 exit(1)
2504 '''
2505
2506 else:
2507 ax.set_xlim(numpy.radians(self.ang_min),numpy.radians(self.ang_max))
2508 ax.plt = ax.contourf(theta, r, z, points_cb, cmap=cmap, vmin=self.zmin, vmax=self.zmax, levels=mylevs_cbar)
2509 #self.figures[0].colorbar(plt, orientation="vertical", fraction=0.025, pad=0.07)
2510
2511 #print(self.titles)
2512 if len(self.channels) !=1:
2513 self.titles = ['{} Azi: {} Channel {}'.format(self.CODE.upper(), str(round(numpy.mean(data['azi']),2)), x) for x in range(self.nrows)]
2514 else:
2515 self.titles = ['{} Azi: {} Channel {}'.format(self.CODE.upper(), str(round(numpy.mean(data['azi']),2)), self.channels[0])]
2516 #self.titles.append('Azi: {}'.format(str(round(numpy.mean(data['azi']),2))))
2517 #self.titles.append(str(round(numpy.mean(data['azi']),2)))
2518 #print(self.titles)
2519 #plt.text(1.0, 1.05, str(thisDatetime)+ " Azi: "+str(round(numpy.mean(data['azi']),2)), transform=caax.transAxes, va='bottom',ha='right')
2520 #print("***************************self.ini****************************",self.ini)
2521 #self.figures[-1].colorbar(plt, orientation="vertical", fraction=0.025, pad=0.07)
2522 #self.ini= self.ini+1
@@ -1,703 +1,714
1 1 import os
2 2 import time
3 3 import datetime
4 4
5 5 import numpy
6 6 import h5py
7 7
8 8 import schainpy.admin
9 9 from schainpy.model.data.jrodata import *
10 10 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
11 11 from schainpy.model.io.jroIO_base import *
12 12 from schainpy.utils import log
13 13
14 14
15 15 class HDFReader(Reader, ProcessingUnit):
16 16 """Processing unit to read HDF5 format files
17 17
18 18 This unit reads HDF5 files created with `HDFWriter` operation contains
19 19 by default two groups Data and Metadata all variables would be saved as `dataOut`
20 20 attributes.
21 21 It is possible to read any HDF5 file by given the structure in the `description`
22 22 parameter, also you can add extra values to metadata with the parameter `extras`.
23 23
24 24 Parameters:
25 25 -----------
26 26 path : str
27 27 Path where files are located.
28 28 startDate : date
29 29 Start date of the files
30 30 endDate : list
31 31 End date of the files
32 32 startTime : time
33 33 Start time of the files
34 34 endTime : time
35 35 End time of the files
36 36 description : dict, optional
37 37 Dictionary with the description of the HDF5 file
38 38 extras : dict, optional
39 39 Dictionary with extra metadata to be be added to `dataOut`
40 40
41 41 Examples
42 42 --------
43 43
44 44 desc = {
45 45 'Data': {
46 46 'data_output': ['u', 'v', 'w'],
47 47 'utctime': 'timestamps',
48 48 } ,
49 49 'Metadata': {
50 50 'heightList': 'heights'
51 51 }
52 52 }
53 53
54 54 desc = {
55 55 'Data': {
56 56 'data_output': 'winds',
57 57 'utctime': 'timestamps'
58 58 },
59 59 'Metadata': {
60 60 'heightList': 'heights'
61 61 }
62 62 }
63 63
64 64 extras = {
65 65 'timeZone': 300
66 66 }
67 67
68 68 reader = project.addReadUnit(
69 69 name='HDFReader',
70 70 path='/path/to/files',
71 71 startDate='2019/01/01',
72 72 endDate='2019/01/31',
73 73 startTime='00:00:00',
74 74 endTime='23:59:59',
75 75 # description=json.dumps(desc),
76 76 # extras=json.dumps(extras),
77 77 )
78 78
79 79 """
80 80
81 81 __attrs__ = ['path', 'startDate', 'endDate', 'startTime', 'endTime', 'description', 'extras']
82 82
83 83 def __init__(self):
84 84 ProcessingUnit.__init__(self)
85 85 self.dataOut = Parameters()
86 86 self.ext = ".hdf5"
87 87 self.optchar = "D"
88 88 self.meta = {}
89 89 self.data = {}
90 90 self.open_file = h5py.File
91 91 self.open_mode = 'r'
92 92 self.description = {}
93 93 self.extras = {}
94 94 self.filefmt = "*%Y%j***"
95 95 self.folderfmt = "*%Y%j"
96 96 self.utcoffset = 0
97 97
98 98 def setup(self, **kwargs):
99 99
100 100 self.set_kwargs(**kwargs)
101 101 if not self.ext.startswith('.'):
102 102 self.ext = '.{}'.format(self.ext)
103 103
104 104 if self.online:
105 105 log.log("Searching files in online mode...", self.name)
106 106
107 107 for nTries in range(self.nTries):
108 108 fullpath = self.searchFilesOnLine(self.path, self.startDate,
109 109 self.endDate, self.expLabel, self.ext, self.walk,
110 110 self.filefmt, self.folderfmt)
111 111 try:
112 112 fullpath = next(fullpath)
113 113 except:
114 114 fullpath = None
115 115
116 116 if fullpath:
117 117 break
118 118
119 119 log.warning(
120 120 'Waiting {} sec for a valid file in {}: try {} ...'.format(
121 121 self.delay, self.path, nTries + 1),
122 122 self.name)
123 123 time.sleep(self.delay)
124 124
125 125 if not(fullpath):
126 126 raise schainpy.admin.SchainError(
127 127 'There isn\'t any valid file in {}'.format(self.path))
128 128
129 129 pathname, filename = os.path.split(fullpath)
130 130 self.year = int(filename[1:5])
131 131 self.doy = int(filename[5:8])
132 132 self.set = int(filename[8:11]) - 1
133 133 else:
134 134 log.log("Searching files in {}".format(self.path), self.name)
135 135 self.filenameList = self.searchFilesOffLine(self.path, self.startDate,
136 136 self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt)
137 137
138 138 self.setNextFile()
139 139
140 140 return
141 141
142 142 def readFirstHeader(self):
143 143 '''Read metadata and data'''
144 144
145 145 self.__readMetadata()
146 146 self.__readData()
147 147 self.__setBlockList()
148 148
149 149 if 'type' in self.meta:
150 150 self.dataOut = eval(self.meta['type'])()
151 151
152 152 for attr in self.meta:
153 153 setattr(self.dataOut, attr, self.meta[attr])
154 154
155 155 self.blockIndex = 0
156 156
157 157 return
158 158
159 159 def __setBlockList(self):
160 160 '''
161 161 Selects the data within the times defined
162 162
163 163 self.fp
164 164 self.startTime
165 165 self.endTime
166 166 self.blockList
167 167 self.blocksPerFile
168 168
169 169 '''
170 170
171 171 startTime = self.startTime
172 172 endTime = self.endTime
173 173 thisUtcTime = self.data['utctime'] + self.utcoffset
174 174 self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1])
175 175 thisDatetime = datetime.datetime.utcfromtimestamp(thisUtcTime[0])
176 176
177 177 thisDate = thisDatetime.date()
178 178 thisTime = thisDatetime.time()
179 179
180 180 startUtcTime = (datetime.datetime.combine(thisDate, startTime) - datetime.datetime(1970, 1, 1)).total_seconds()
181 181 endUtcTime = (datetime.datetime.combine(thisDate, endTime) - datetime.datetime(1970, 1, 1)).total_seconds()
182 182
183 183 ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0]
184 184
185 185 self.blockList = ind
186 186 self.blocksPerFile = len(ind)
187 187 return
188 188
189 189 def __readMetadata(self):
190 190 '''
191 191 Reads Metadata
192 192 '''
193 193
194 194 meta = {}
195 195
196 196 if self.description:
197 197 for key, value in self.description['Metadata'].items():
198 198 meta[key] = self.fp[value][()]
199 199 else:
200 200 grp = self.fp['Metadata']
201 201 for name in grp:
202 202 meta[name] = grp[name][()]
203 203
204 204 if self.extras:
205 205 for key, value in self.extras.items():
206 206 meta[key] = value
207 207 self.meta = meta
208 208
209 209 return
210 210
211 211 def __readData(self):
212 212
213 213 data = {}
214 214
215 215 if self.description:
216 216 for key, value in self.description['Data'].items():
217 217 if isinstance(value, str):
218 218 if isinstance(self.fp[value], h5py.Dataset):
219 219 data[key] = self.fp[value][()]
220 220 elif isinstance(self.fp[value], h5py.Group):
221 221 array = []
222 222 for ch in self.fp[value]:
223 223 array.append(self.fp[value][ch][()])
224 224 data[key] = numpy.array(array)
225 225 elif isinstance(value, list):
226 226 array = []
227 227 for ch in value:
228 228 array.append(self.fp[ch][()])
229 229 data[key] = numpy.array(array)
230 230 else:
231 231 grp = self.fp['Data']
232 232 for name in grp:
233 233 if isinstance(grp[name], h5py.Dataset):
234 234 array = grp[name][()]
235 235 elif isinstance(grp[name], h5py.Group):
236 236 array = []
237 237 for ch in grp[name]:
238 238 array.append(grp[name][ch][()])
239 239 array = numpy.array(array)
240 240 else:
241 241 log.warning('Unknown type: {}'.format(name))
242 242
243 243 if name in self.description:
244 244 key = self.description[name]
245 245 else:
246 246 key = name
247 247 data[key] = array
248 248
249 249 self.data = data
250 250 return
251 251
252 252 def getData(self):
253 253
254 254 for attr in self.data:
255 255 if self.data[attr].ndim == 1:
256 256 setattr(self.dataOut, attr, self.data[attr][self.blockIndex])
257 257 else:
258 258 setattr(self.dataOut, attr, self.data[attr][:, self.blockIndex])
259 259
260 260 self.dataOut.flagNoData = False
261 261 self.blockIndex += 1
262 262
263 263 log.log("Block No. {}/{} -> {}".format(
264 264 self.blockIndex,
265 265 self.blocksPerFile,
266 266 self.dataOut.datatime.ctime()), self.name)
267 267
268 268 return
269 269
270 270 def run(self, **kwargs):
271 271
272 272 if not(self.isConfig):
273 273 self.setup(**kwargs)
274 274 self.isConfig = True
275 275
276 276 if self.blockIndex == self.blocksPerFile:
277 277 self.setNextFile()
278 278
279 279 self.getData()
280 280
281 281 return
282 282
283 283 @MPDecorator
284 284 class HDFWriter(Operation):
285 285 """Operation to write HDF5 files.
286 286
287 287 The HDF5 file contains by default two groups Data and Metadata where
288 288 you can save any `dataOut` attribute specified by `dataList` and `metadataList`
289 289 parameters, data attributes are normaly time dependent where the metadata
290 290 are not.
291 291 It is possible to customize the structure of the HDF5 file with the
292 292 optional description parameter see the examples.
293 293
294 294 Parameters:
295 295 -----------
296 296 path : str
297 297 Path where files will be saved.
298 298 blocksPerFile : int
299 299 Number of blocks per file
300 300 metadataList : list
301 301 List of the dataOut attributes that will be saved as metadata
302 302 dataList : int
303 303 List of the dataOut attributes that will be saved as data
304 304 setType : bool
305 305 If True the name of the files corresponds to the timestamp of the data
306 306 description : dict, optional
307 307 Dictionary with the desired description of the HDF5 file
308 308
309 309 Examples
310 310 --------
311 311
312 312 desc = {
313 313 'data_output': {'winds': ['z', 'w', 'v']},
314 314 'utctime': 'timestamps',
315 315 'heightList': 'heights'
316 316 }
317 317 desc = {
318 318 'data_output': ['z', 'w', 'v'],
319 319 'utctime': 'timestamps',
320 320 'heightList': 'heights'
321 321 }
322 322 desc = {
323 323 'Data': {
324 324 'data_output': 'winds',
325 325 'utctime': 'timestamps'
326 326 },
327 327 'Metadata': {
328 328 'heightList': 'heights'
329 329 }
330 330 }
331 331
332 332 writer = proc_unit.addOperation(name='HDFWriter')
333 333 writer.addParameter(name='path', value='/path/to/file')
334 334 writer.addParameter(name='blocksPerFile', value='32')
335 335 writer.addParameter(name='metadataList', value='heightList,timeZone')
336 336 writer.addParameter(name='dataList',value='data_output,utctime')
337 337 # writer.addParameter(name='description',value=json.dumps(desc))
338 338
339 339 """
340 340
341 341 ext = ".hdf5"
342 342 optchar = "D"
343 343 filename = None
344 344 path = None
345 345 setFile = None
346 346 fp = None
347 347 firsttime = True
348 348 #Configurations
349 349 blocksPerFile = None
350 350 blockIndex = None
351 351 dataOut = None
352 352 #Data Arrays
353 353 dataList = None
354 354 metadataList = None
355 355 currentDay = None
356 356 lastTime = None
357 357 last_Azipos = None
358 358 last_Elepos = None
359 359 mode = None
360 360 #-----------------------
361 361 Typename = None
362 362
363 363
364 364
365 365 def __init__(self):
366 366
367 367 Operation.__init__(self)
368 368 return
369 369
370 370
371 371 def set_kwargs(self, **kwargs):
372 372
373 373 for key, value in kwargs.items():
374 374 setattr(self, key, value)
375 375
376 376 def set_kwargs_obj(self,obj, **kwargs):
377 377
378 378 for key, value in kwargs.items():
379 379 setattr(obj, key, value)
380 380
381 381 def generalFlag(self):
382 382 ####rint("GENERALFLAG")
383 383 if self.mode== "weather":
384 384 if self.last_Azipos == None:
385 385 tmp = self.dataOut.azimuth
386 386 ####print("ang azimuth writer",tmp)
387 387 self.last_Azipos = tmp
388 388 flag = False
389 389 return flag
390 390 ####print("ang_azimuth writer",self.dataOut.azimuth)
391 391 result = self.dataOut.azimuth - self.last_Azipos
392 392 self.last_Azipos = self.dataOut.azimuth
393 393 if result<0:
394 394 flag = True
395 395 return flag
396 396
397 def generalFlag_vRF(self):
398 ####rint("GENERALFLAG")
399
400 try:
401 self.dataOut.flagBlock360Done
402 return self.dataOut.flagBlock360Done
403 except:
404 return 0
405
406
397 407 def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None, description=None,type_data=None,**kwargs):
398 408 self.path = path
399 409 self.blocksPerFile = blocksPerFile
400 410 self.metadataList = metadataList
401 411 self.dataList = [s.strip() for s in dataList]
412 self.setType = setType
402 413 if self.mode == "weather":
403 414 self.setType = "weather"
404 415 #----------------------------------------
405 416 self.set_kwargs(**kwargs)
406 417 self.set_kwargs_obj(self.dataOut,**kwargs)
407 418 #print("-----------------------------------------------------------",self.Typename)
408 419 #print("hola",self.ContactInformation)
409 420
410 421 self.description = description
411 422 self.type_data=type_data
412 423
413 424 if self.metadataList is None:
414 425 self.metadataList = self.dataOut.metadata_list
415 426
416 427 tableList = []
417 428 dsList = []
418 429
419 430 for i in range(len(self.dataList)):
420 431 dsDict = {}
421 432 if hasattr(self.dataOut, self.dataList[i]):
422 433 dataAux = getattr(self.dataOut, self.dataList[i])
423 434 dsDict['variable'] = self.dataList[i]
424 435 else:
425 436 log.warning('Attribute {} not found in dataOut', self.name)
426 437 continue
427 438
428 439 if dataAux is None:
429 440 continue
430 441 elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)):
431 442 dsDict['nDim'] = 0
432 443 else:
433 444 dsDict['nDim'] = len(dataAux.shape)
434 445 dsDict['shape'] = dataAux.shape
435 446 dsDict['dsNumber'] = dataAux.shape[0]
436 447 dsDict['dtype'] = dataAux.dtype
437 448
438 449 dsList.append(dsDict)
439 450
440 451 self.dsList = dsList
441 452 self.currentDay = self.dataOut.datatime.date()
442 453
443 454 def timeFlag(self):
444 455 currentTime = self.dataOut.utctime
445 456 timeTuple = time.localtime(currentTime)
446 457 dataDay = timeTuple.tm_yday
447 458
448 459 if self.lastTime is None:
449 460 self.lastTime = currentTime
450 461 self.currentDay = dataDay
451 462 return False
452 463
453 464 timeDiff = currentTime - self.lastTime
454 465
455 466 #Si el dia es diferente o si la diferencia entre un dato y otro supera la hora
456 467 if dataDay != self.currentDay:
457 468 self.currentDay = dataDay
458 469 return True
459 470 elif timeDiff > 3*60*60:
460 471 self.lastTime = currentTime
461 472 return True
462 473 else:
463 474 self.lastTime = currentTime
464 475 return False
465 476
466 477 def run(self, dataOut, path, blocksPerFile=10, metadataList=None,
467 478 dataList=[], setType=None, description={},mode= None,type_data=None,**kwargs):
468 479
469 480 ###print("VOY A ESCRIBIR----------------------")
470 481 #print("CHECKTHIS------------------------------------------------------------------*****---",**kwargs)
471 482 self.dataOut = dataOut
472 483 self.mode = mode
473 484 if not(self.isConfig):
474 485 self.setup(path=path, blocksPerFile=blocksPerFile,
475 486 metadataList=metadataList, dataList=dataList,
476 487 setType=setType, description=description,type_data=type_data,**kwargs)
477 488
478 489 self.isConfig = True
479 490 self.setNextFile()
480 491
481 492 self.putData()
482 493 return
483 494
484 495 def setNextFile(self):
485 496 ###print("HELLO WORLD--------------------------------")
486 497 ext = self.ext
487 498 path = self.path
488 499 setFile = self.setFile
489 500 type_data = self.type_data
490 501
491 502 timeTuple = time.localtime(self.dataOut.utctime)
492 503 subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday)
493 504 fullpath = os.path.join(path, subfolder)
494 505
495 506 if os.path.exists(fullpath):
496 507 filesList = os.listdir(fullpath)
497 508 filesList = [k for k in filesList if k.startswith(self.optchar)]
498 509 if len( filesList ) > 0:
499 510 filesList = sorted(filesList, key=str.lower)
500 511 filen = filesList[-1]
501 512 # el filename debera tener el siguiente formato
502 513 # 0 1234 567 89A BCDE (hex)
503 514 # x YYYY DDD SSS .ext
504 515 if isNumber(filen[8:11]):
505 516 setFile = int(filen[8:11]) #inicializo mi contador de seteo al seteo del ultimo file
506 517 else:
507 518 setFile = -1
508 519 else:
509 520 setFile = -1 #inicializo mi contador de seteo
510 521 else:
511 522 os.makedirs(fullpath)
512 523 setFile = -1 #inicializo mi contador de seteo
513 524
514 525 ###print("**************************",self.setType)
515 526 if self.setType is None:
516 527 setFile += 1
517 528 file = '%s%4.4d%3.3d%03d%s' % (self.optchar,
518 529 timeTuple.tm_year,
519 530 timeTuple.tm_yday,
520 531 setFile,
521 532 ext )
522 533 elif self.setType == "weather":
523 534 print("HOLA AMIGOS")
524 535 wr_exp = self.dataOut.wr_exp
525 536 if wr_exp== "PPI":
526 537 wr_type = 'E'
527 538 ang_ = numpy.mean(self.dataOut.elevation)
528 539 else:
529 540 wr_type = 'A'
530 541 ang_ = numpy.mean(self.dataOut.azimuth)
531 542
532 543 wr_writer = '%s%s%2.1f%s'%('-',
533 544 wr_type,
534 545 ang_,
535 546 '-')
536 547 ###print("wr_writer********************",wr_writer)
537 548 file = '%s%4.4d%2.2d%2.2d%s%2.2d%2.2d%2.2d%s%s%s' % (self.optchar,
538 549 timeTuple.tm_year,
539 550 timeTuple.tm_mon,
540 551 timeTuple.tm_mday,
541 552 '-',
542 553 timeTuple.tm_hour,
543 554 timeTuple.tm_min,
544 555 timeTuple.tm_sec,
545 556 wr_writer,
546 557 type_data,
547 558 ext )
548 559 ###print("FILENAME", file)
549 560
550 561
551 562 else:
552 563 setFile = timeTuple.tm_hour*60+timeTuple.tm_min
553 564 file = '%s%4.4d%3.3d%04d%s' % (self.optchar,
554 565 timeTuple.tm_year,
555 566 timeTuple.tm_yday,
556 567 setFile,
557 568 ext )
558 569
559 570 self.filename = os.path.join( path, subfolder, file )
560 571
561 572 #Setting HDF5 File
562 573
563 574 self.fp = h5py.File(self.filename, 'w')
564 575 #write metadata
565 576 self.writeMetadata(self.fp)
566 577 #Write data
567 578 self.writeData(self.fp)
568 579
569 580 def getLabel(self, name, x=None):
570 581
571 582 if x is None:
572 583 if 'Data' in self.description:
573 584 data = self.description['Data']
574 585 if 'Metadata' in self.description:
575 586 data.update(self.description['Metadata'])
576 587 else:
577 588 data = self.description
578 589 if name in data:
579 590 if isinstance(data[name], str):
580 591 return data[name]
581 592 elif isinstance(data[name], list):
582 593 return None
583 594 elif isinstance(data[name], dict):
584 595 for key, value in data[name].items():
585 596 return key
586 597 return name
587 598 else:
588 599 if 'Metadata' in self.description:
589 600 meta = self.description['Metadata']
590 601 else:
591 602 meta = self.description
592 603 if name in meta:
593 604 if isinstance(meta[name], list):
594 605 return meta[name][x]
595 606 elif isinstance(meta[name], dict):
596 607 for key, value in meta[name].items():
597 608 return value[x]
598 609 if 'cspc' in name:
599 610 return 'pair{:02d}'.format(x)
600 611 else:
601 612 return 'channel{:02d}'.format(x)
602 613
603 614 def writeMetadata(self, fp):
604 615
605 616 if self.description:
606 617 if 'Metadata' in self.description:
607 618 grp = fp.create_group('Metadata')
608 619 else:
609 620 grp = fp
610 621 else:
611 622 grp = fp.create_group('Metadata')
612 623
613 624 for i in range(len(self.metadataList)):
614 625 if not hasattr(self.dataOut, self.metadataList[i]):
615 626 log.warning('Metadata: `{}` not found'.format(self.metadataList[i]), self.name)
616 627 continue
617 628 value = getattr(self.dataOut, self.metadataList[i])
618 629 if isinstance(value, bool):
619 630 if value is True:
620 631 value = 1
621 632 else:
622 633 value = 0
623 634 grp.create_dataset(self.getLabel(self.metadataList[i]), data=value)
624 635 return
625 636
626 637 def writeData(self, fp):
627
638 print("writing data")
628 639 if self.description:
629 640 if 'Data' in self.description:
630 641 grp = fp.create_group('Data')
631 642 else:
632 643 grp = fp
633 644 else:
634 645 grp = fp.create_group('Data')
635 646
636 647 dtsets = []
637 648 data = []
638 649
639 650 for dsInfo in self.dsList:
640 651 if dsInfo['nDim'] == 0:
641 652 ds = grp.create_dataset(
642 653 self.getLabel(dsInfo['variable']),
643 654 (self.blocksPerFile, ),
644 655 chunks=True,
645 656 dtype=numpy.float64)
646 657 dtsets.append(ds)
647 658 data.append((dsInfo['variable'], -1))
648 659 else:
649 660 label = self.getLabel(dsInfo['variable'])
650 661 if label is not None:
651 662 sgrp = grp.create_group(label)
652 663 else:
653 664 sgrp = grp
654 665 for i in range(dsInfo['dsNumber']):
655 666 ds = sgrp.create_dataset(
656 667 self.getLabel(dsInfo['variable'], i),
657 668 (self.blocksPerFile, ) + dsInfo['shape'][1:],
658 669 chunks=True,
659 670 dtype=dsInfo['dtype'])
660 671 dtsets.append(ds)
661 672 data.append((dsInfo['variable'], i))
662 673 fp.flush()
663 674
664 675 log.log('Creating file: {}'.format(fp.filename), self.name)
665 676
666 677 self.ds = dtsets
667 678 self.data = data
668 679 self.firsttime = True
669 680 self.blockIndex = 0
670 681 return
671 682
672 683 def putData(self):
673 684 ###print("**************************PUT DATA***************************************************")
674 if (self.blockIndex == self.blocksPerFile) or self.timeFlag() or self.generalFlag():
685 if (self.blockIndex == self.blocksPerFile) or self.timeFlag():# or self.generalFlag_vRF():
675 686 self.closeFile()
676 687 self.setNextFile()
677 688
678 689 for i, ds in enumerate(self.ds):
679 690 attr, ch = self.data[i]
680 691 if ch == -1:
681 692 ds[self.blockIndex] = getattr(self.dataOut, attr)
682 693 else:
683 694 ds[self.blockIndex] = getattr(self.dataOut, attr)[ch]
684 695
685 696 self.fp.flush()
686 697 self.blockIndex += 1
687 698 log.log('Block No. {}/{}'.format(self.blockIndex, self.blocksPerFile), self.name)
688 699
689 700 return
690 701
691 702 def closeFile(self):
692 703
693 704 if self.blockIndex != self.blocksPerFile:
694 705 for ds in self.ds:
695 706 ds.resize(self.blockIndex, axis=0)
696 707
697 708 if self.fp:
698 709 self.fp.flush()
699 710 self.fp.close()
700 711
701 712 def close(self):
702 713
703 714 self.closeFile()
@@ -1,206 +1,208
1 1 '''
2 2 Base clases to create Processing units and operations, the MPDecorator
3 3 must be used in plotting and writing operations to allow to run as an
4 4 external process.
5 5 '''
6 6
7 import os
7 8 import inspect
8 9 import zmq
9 10 import time
10 11 import pickle
11 12 import traceback
12 13 from threading import Thread
13 14 from multiprocessing import Process, Queue
14 15 from schainpy.utils import log
15 16
17 QUEUE_SIZE = int(os.environ.get('QUEUE_MAX_SIZE', '10'))
16 18
17 19 class ProcessingUnit(object):
18 20 '''
19 21 Base class to create Signal Chain Units
20 22 '''
21 23
22 24 proc_type = 'processing'
23 25
24 26 def __init__(self):
25 27
26 28 self.dataIn = None
27 29 self.dataOut = None
28 30 self.isConfig = False
29 31 self.operations = []
30 32
31 33 def setInput(self, unit):
32 34
33 35 self.dataIn = unit.dataOut
34 36
35 37 def getAllowedArgs(self):
36 38 if hasattr(self, '__attrs__'):
37 39 return self.__attrs__
38 40 else:
39 41 return inspect.getargspec(self.run).args
40 42
41 43 def addOperation(self, conf, operation):
42 44 '''
43 45 '''
44 46
45 47 self.operations.append((operation, conf.type, conf.getKwargs()))
46 48
47 49 def getOperationObj(self, objId):
48 50
49 51 if objId not in list(self.operations.keys()):
50 52 return None
51 53
52 54 return self.operations[objId]
53 55
54 56 def call(self, **kwargs):
55 57 '''
56 58 '''
57 59
58 60 try:
59 61 if self.dataIn is not None and self.dataIn.flagNoData and not self.dataIn.error:
60 62 return self.dataIn.isReady()
61 63 elif self.dataIn is None or not self.dataIn.error:
62 64 self.run(**kwargs)
63 65 elif self.dataIn.error:
64 66 self.dataOut.error = self.dataIn.error
65 67 self.dataOut.flagNoData = True
66 68 except:
67 69 err = traceback.format_exc()
68 70 if 'SchainWarning' in err:
69 71 log.warning(err.split('SchainWarning:')[-1].split('\n')[0].strip(), self.name)
70 72 elif 'SchainError' in err:
71 73 log.error(err.split('SchainError:')[-1].split('\n')[0].strip(), self.name)
72 74 else:
73 75 log.error(err, self.name)
74 76 self.dataOut.error = True
75 77 ##### correcion de la declaracion Out
76 78 for op, optype, opkwargs in self.operations:
77 79 aux = self.dataOut.copy()
78 80 if optype == 'other' and not self.dataOut.flagNoData:
79 81 self.dataOut = op.run(self.dataOut, **opkwargs)
80 82 elif optype == 'external' and not self.dataOut.flagNoData:
81 83 #op.queue.put(self.dataOut)
82 84 op.queue.put(aux)
83 85 elif optype == 'external' and self.dataOut.error:
84 86 #op.queue.put(self.dataOut)
85 87 op.queue.put(aux)
86 88
87 89 return 'Error' if self.dataOut.error else self.dataOut.isReady()
88 90
89 91 def setup(self):
90 92
91 93 raise NotImplementedError
92 94
93 95 def run(self):
94 96
95 97 raise NotImplementedError
96 98
97 99 def close(self):
98 100
99 101 return
100 102
101 103
102 104 class Operation(object):
103 105
104 106 '''
105 107 '''
106 108
107 109 proc_type = 'operation'
108 110
109 111 def __init__(self):
110 112
111 113 self.id = None
112 114 self.isConfig = False
113 115
114 116 if not hasattr(self, 'name'):
115 117 self.name = self.__class__.__name__
116 118
117 119 def getAllowedArgs(self):
118 120 if hasattr(self, '__attrs__'):
119 121 return self.__attrs__
120 122 else:
121 123 return inspect.getargspec(self.run).args
122 124
123 125 def setup(self):
124 126
125 127 self.isConfig = True
126 128
127 129 raise NotImplementedError
128 130
129 131 def run(self, dataIn, **kwargs):
130 132 """
131 133 Realiza las operaciones necesarias sobre la dataIn.data y actualiza los
132 134 atributos del objeto dataIn.
133 135
134 136 Input:
135 137
136 138 dataIn : objeto del tipo JROData
137 139
138 140 Return:
139 141
140 142 None
141 143
142 144 Affected:
143 145 __buffer : buffer de recepcion de datos.
144 146
145 147 """
146 148 if not self.isConfig:
147 149 self.setup(**kwargs)
148 150
149 151 raise NotImplementedError
150 152
151 153 def close(self):
152 154
153 155 return
154 156
155 157
156 158 def MPDecorator(BaseClass):
157 159 """
158 160 Multiprocessing class decorator
159 161
160 162 This function add multiprocessing features to a BaseClass.
161 163 """
162 164
163 165 class MPClass(BaseClass, Process):
164 166
165 167 def __init__(self, *args, **kwargs):
166 168 super(MPClass, self).__init__()
167 169 Process.__init__(self)
168 170
169 171 self.args = args
170 172 self.kwargs = kwargs
171 173 self.t = time.time()
172 174 self.op_type = 'external'
173 175 self.name = BaseClass.__name__
174 176 self.__doc__ = BaseClass.__doc__
175 177
176 178 if 'plot' in self.name.lower() and not self.name.endswith('_'):
177 179 self.name = '{}{}'.format(self.CODE.upper(), 'Plot')
178 180
179 181 self.start_time = time.time()
180 182 self.err_queue = args[3]
181 self.queue = Queue(maxsize=1)
183 self.queue = Queue(maxsize=QUEUE_SIZE)
182 184 self.myrun = BaseClass.run
183 185
184 186 def run(self):
185 187
186 188 while True:
187 189
188 190 dataOut = self.queue.get()
189 191
190 192 if not dataOut.error:
191 193 try:
192 194 BaseClass.run(self, dataOut, **self.kwargs)
193 195 except:
194 196 err = traceback.format_exc()
195 197 log.error(err, self.name)
196 198 else:
197 199 break
198 200
199 201 self.close()
200 202
201 203 def close(self):
202 204
203 205 BaseClass.close(self)
204 206 log.success('Done...(Time:{:4.2f} secs)'.format(time.time()-self.start_time), self.name)
205 207
206 208 return MPClass
@@ -1,4708 +1,4821
1 1
2 2 import os
3 3 import time
4 4 import math
5 5
6 6 import re
7 7 import datetime
8 8 import copy
9 9 import sys
10 10 import importlib
11 11 import itertools
12 12
13 13 from multiprocessing import Pool, TimeoutError
14 14 from multiprocessing.pool import ThreadPool
15 15 import numpy
16 16 import glob
17 17 import scipy
18 18 import h5py
19 19 from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters
20 20 from .jroproc_base import ProcessingUnit, Operation, MPDecorator
21 21 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
22 22 from scipy import asarray as ar,exp
23 23 from scipy.optimize import curve_fit
24 24 from schainpy.utils import log
25 25 import schainpy.admin
26 26 import warnings
27 27 from scipy import optimize, interpolate, signal, stats, ndimage
28 28 from scipy.optimize.optimize import OptimizeWarning
29 29 warnings.filterwarnings('ignore')
30 30
31 31
32 32 SPEED_OF_LIGHT = 299792458
33 33
34 34 '''solving pickling issue'''
35 35
36 36 def _pickle_method(method):
37 37 func_name = method.__func__.__name__
38 38 obj = method.__self__
39 39 cls = method.__self__.__class__
40 40 return _unpickle_method, (func_name, obj, cls)
41 41
42 42 def _unpickle_method(func_name, obj, cls):
43 43 for cls in cls.mro():
44 44 try:
45 45 func = cls.__dict__[func_name]
46 46 except KeyError:
47 47 pass
48 48 else:
49 49 break
50 50 return func.__get__(obj, cls)
51 51
52 52 def isNumber(str):
53 53 try:
54 54 float(str)
55 55 return True
56 56 except:
57 57 return False
58 58
59 59 class ParametersProc(ProcessingUnit):
60 60
61 61 METHODS = {}
62 62 nSeconds = None
63 63
64 64 def __init__(self):
65 65 ProcessingUnit.__init__(self)
66 66
67 67 # self.objectDict = {}
68 68 self.buffer = None
69 69 self.firstdatatime = None
70 70 self.profIndex = 0
71 71 self.dataOut = Parameters()
72 72 self.setupReq = False #Agregar a todas las unidades de proc
73 73
74 74 def __updateObjFromInput(self):
75 75
76 76 self.dataOut.inputUnit = self.dataIn.type
77 77
78 78 self.dataOut.timeZone = self.dataIn.timeZone
79 79 self.dataOut.dstFlag = self.dataIn.dstFlag
80 80 self.dataOut.errorCount = self.dataIn.errorCount
81 81 self.dataOut.useLocalTime = self.dataIn.useLocalTime
82 82
83 83 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
84 84 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
85 85 self.dataOut.channelList = self.dataIn.channelList
86 86 self.dataOut.heightList = self.dataIn.heightList
87 87 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
88 88 # self.dataOut.nHeights = self.dataIn.nHeights
89 89 # self.dataOut.nChannels = self.dataIn.nChannels
90 90 # self.dataOut.nBaud = self.dataIn.nBaud
91 91 # self.dataOut.nCode = self.dataIn.nCode
92 92 # self.dataOut.code = self.dataIn.code
93 93 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
94 94 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
95 95 # self.dataOut.utctime = self.firstdatatime
96 96 self.dataOut.utctime = self.dataIn.utctime
97 97 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
98 98 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
99 99 self.dataOut.nCohInt = self.dataIn.nCohInt
100 100 # self.dataOut.nIncohInt = 1
101 101 # self.dataOut.ippSeconds = self.dataIn.ippSeconds
102 102 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
103 103 self.dataOut.timeInterval1 = self.dataIn.timeInterval
104 104 self.dataOut.heightList = self.dataIn.heightList
105 105 self.dataOut.frequency = self.dataIn.frequency
106 106 # self.dataOut.noise = self.dataIn.noise
107 107
108 108 def run(self):
109 109
110 110
111 111 #print("HOLA MUNDO SOY YO")
112 112 #---------------------- Voltage Data ---------------------------
113 113
114 114 if self.dataIn.type == "Voltage":
115 115
116 116 self.__updateObjFromInput()
117 117 self.dataOut.data_pre = self.dataIn.data.copy()
118 118 self.dataOut.flagNoData = False
119 119 self.dataOut.utctimeInit = self.dataIn.utctime
120 120 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
121 121
122 122 if hasattr(self.dataIn, 'flagDataAsBlock'):
123 123 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
124 124
125 125 if hasattr(self.dataIn, 'profileIndex'):
126 126 self.dataOut.profileIndex = self.dataIn.profileIndex
127 127
128 128 if hasattr(self.dataIn, 'dataPP_POW'):
129 129 self.dataOut.dataPP_POW = self.dataIn.dataPP_POW
130 130
131 131 if hasattr(self.dataIn, 'dataPP_POWER'):
132 132 self.dataOut.dataPP_POWER = self.dataIn.dataPP_POWER
133 133
134 134 if hasattr(self.dataIn, 'dataPP_DOP'):
135 135 self.dataOut.dataPP_DOP = self.dataIn.dataPP_DOP
136 136
137 137 if hasattr(self.dataIn, 'dataPP_SNR'):
138 138 self.dataOut.dataPP_SNR = self.dataIn.dataPP_SNR
139 139
140 140 if hasattr(self.dataIn, 'dataPP_WIDTH'):
141 141 self.dataOut.dataPP_WIDTH = self.dataIn.dataPP_WIDTH
142 142 return
143 143
144 144 #---------------------- Spectra Data ---------------------------
145 145
146 146 if self.dataIn.type == "Spectra":
147 147 #print("que paso en spectra")
148 148 self.dataOut.data_pre = [self.dataIn.data_spc, self.dataIn.data_cspc]
149 149 self.dataOut.data_spc = self.dataIn.data_spc
150 150 self.dataOut.data_cspc = self.dataIn.data_cspc
151 151 self.dataOut.nProfiles = self.dataIn.nProfiles
152 152 self.dataOut.nIncohInt = self.dataIn.nIncohInt
153 153 self.dataOut.nFFTPoints = self.dataIn.nFFTPoints
154 154 self.dataOut.ippFactor = self.dataIn.ippFactor
155 155 self.dataOut.abscissaList = self.dataIn.getVelRange(1)
156 156 self.dataOut.spc_noise = self.dataIn.getNoise()
157 157 self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1))
158 158 # self.dataOut.normFactor = self.dataIn.normFactor
159 159 self.dataOut.pairsList = self.dataIn.pairsList
160 160 self.dataOut.groupList = self.dataIn.pairsList
161 161 self.dataOut.flagNoData = False
162 162
163 163 if hasattr(self.dataIn, 'flagDataAsBlock'):
164 164 self.dataOut.flagDataAsBlock = self.dataIn.flagDataAsBlock
165 165
166 166 if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
167 167 self.dataOut.ChanDist = self.dataIn.ChanDist
168 168 else: self.dataOut.ChanDist = None
169 169
170 170 #if hasattr(self.dataIn, 'VelRange'): #Velocities range
171 171 # self.dataOut.VelRange = self.dataIn.VelRange
172 172 #else: self.dataOut.VelRange = None
173 173
174 174 if hasattr(self.dataIn, 'RadarConst'): #Radar Constant
175 175 self.dataOut.RadarConst = self.dataIn.RadarConst
176 176
177 177 if hasattr(self.dataIn, 'NPW'): #NPW
178 178 self.dataOut.NPW = self.dataIn.NPW
179 179
180 180 if hasattr(self.dataIn, 'COFA'): #COFA
181 181 self.dataOut.COFA = self.dataIn.COFA
182 182
183 183
184 184
185 185 #---------------------- Correlation Data ---------------------------
186 186
187 187 if self.dataIn.type == "Correlation":
188 188 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
189 189
190 190 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
191 191 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
192 192 self.dataOut.groupList = (acf_pairs, ccf_pairs)
193 193
194 194 self.dataOut.abscissaList = self.dataIn.lagRange
195 195 self.dataOut.noise = self.dataIn.noise
196 196 self.dataOut.data_snr = self.dataIn.SNR
197 197 self.dataOut.flagNoData = False
198 198 self.dataOut.nAvg = self.dataIn.nAvg
199 199
200 200 #---------------------- Parameters Data ---------------------------
201 201
202 202 if self.dataIn.type == "Parameters":
203 203 self.dataOut.copy(self.dataIn)
204 204 self.dataOut.flagNoData = False
205 205 #print("yo si entre")
206 206
207 207 return True
208 208
209 209 self.__updateObjFromInput()
210 210 #print("yo si entre2")
211 211
212 212 self.dataOut.utctimeInit = self.dataIn.utctime
213 213 self.dataOut.paramInterval = self.dataIn.timeInterval
214 214 #print("soy spectra ",self.dataOut.utctimeInit)
215 215 return
216 216
217 217
218 218 def target(tups):
219 219
220 220 obj, args = tups
221 221
222 222 return obj.FitGau(args)
223 223
224 224 class RemoveWideGC(Operation):
225 225 ''' This class remove the wide clutter and replace it with a simple interpolation points
226 226 This mainly applies to CLAIRE radar
227 227
228 228 ClutterWidth : Width to look for the clutter peak
229 229
230 230 Input:
231 231
232 232 self.dataOut.data_pre : SPC and CSPC
233 233 self.dataOut.spc_range : To select wind and rainfall velocities
234 234
235 235 Affected:
236 236
237 237 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
238 238
239 239 Written by D. ScipiΓ³n 25.02.2021
240 240 '''
241 241 def __init__(self):
242 242 Operation.__init__(self)
243 243 self.i = 0
244 244 self.ich = 0
245 245 self.ir = 0
246 246
247 247 def run(self, dataOut, ClutterWidth=2.5):
248 248 # print ('Entering RemoveWideGC ... ')
249 249
250 250 self.spc = dataOut.data_pre[0].copy()
251 251 self.spc_out = dataOut.data_pre[0].copy()
252 252 self.Num_Chn = self.spc.shape[0]
253 253 self.Num_Hei = self.spc.shape[2]
254 254 VelRange = dataOut.spc_range[2][:-1]
255 255 dv = VelRange[1]-VelRange[0]
256 256
257 257 # Find the velocities that corresponds to zero
258 258 gc_values = numpy.squeeze(numpy.where(numpy.abs(VelRange) <= ClutterWidth))
259 259
260 260 # Removing novalid data from the spectra
261 261 for ich in range(self.Num_Chn) :
262 262 for ir in range(self.Num_Hei) :
263 263 # Estimate the noise at each range
264 264 HSn = hildebrand_sekhon(self.spc[ich,:,ir],dataOut.nIncohInt)
265 265
266 266 # Removing the noise floor at each range
267 267 novalid = numpy.where(self.spc[ich,:,ir] < HSn)
268 268 self.spc[ich,novalid,ir] = HSn
269 269
270 270 junk = numpy.append(numpy.insert(numpy.squeeze(self.spc[ich,gc_values,ir]),0,HSn),HSn)
271 271 j1index = numpy.squeeze(numpy.where(numpy.diff(junk)>0))
272 272 j2index = numpy.squeeze(numpy.where(numpy.diff(junk)<0))
273 273 if ((numpy.size(j1index)<=1) | (numpy.size(j2index)<=1)) :
274 274 continue
275 275 junk3 = numpy.squeeze(numpy.diff(j1index))
276 276 junk4 = numpy.squeeze(numpy.diff(j2index))
277 277
278 278 valleyindex = j2index[numpy.where(junk4>1)]
279 279 peakindex = j1index[numpy.where(junk3>1)]
280 280
281 281 isvalid = numpy.squeeze(numpy.where(numpy.abs(VelRange[gc_values[peakindex]]) <= 2.5*dv))
282 282 if numpy.size(isvalid) == 0 :
283 283 continue
284 284 if numpy.size(isvalid) >1 :
285 285 vindex = numpy.argmax(self.spc[ich,gc_values[peakindex[isvalid]],ir])
286 286 isvalid = isvalid[vindex]
287 287
288 288 # clutter peak
289 289 gcpeak = peakindex[isvalid]
290 290 vl = numpy.where(valleyindex < gcpeak)
291 291 if numpy.size(vl) == 0:
292 292 continue
293 293 gcvl = valleyindex[vl[0][-1]]
294 294 vr = numpy.where(valleyindex > gcpeak)
295 295 if numpy.size(vr) == 0:
296 296 continue
297 297 gcvr = valleyindex[vr[0][0]]
298 298
299 299 # Removing the clutter
300 300 interpindex = numpy.array([gc_values[gcvl], gc_values[gcvr]])
301 301 gcindex = gc_values[gcvl+1:gcvr-1]
302 302 self.spc_out[ich,gcindex,ir] = numpy.interp(VelRange[gcindex],VelRange[interpindex],self.spc[ich,interpindex,ir])
303 303
304 304 dataOut.data_pre[0] = self.spc_out
305 305 #print ('Leaving RemoveWideGC ... ')
306 306 return dataOut
307 307
308 308 class SpectralFilters(Operation):
309 309 ''' This class allows to replace the novalid values with noise for each channel
310 310 This applies to CLAIRE RADAR
311 311
312 312 PositiveLimit : RightLimit of novalid data
313 313 NegativeLimit : LeftLimit of novalid data
314 314
315 315 Input:
316 316
317 317 self.dataOut.data_pre : SPC and CSPC
318 318 self.dataOut.spc_range : To select wind and rainfall velocities
319 319
320 320 Affected:
321 321
322 322 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
323 323
324 324 Written by D. ScipiΓ³n 29.01.2021
325 325 '''
326 326 def __init__(self):
327 327 Operation.__init__(self)
328 328 self.i = 0
329 329
330 330 def run(self, dataOut, ):
331 331
332 332 self.spc = dataOut.data_pre[0].copy()
333 333 self.Num_Chn = self.spc.shape[0]
334 334 VelRange = dataOut.spc_range[2]
335 335
336 336 # novalid corresponds to data within the Negative and PositiveLimit
337 337
338 338
339 339 # Removing novalid data from the spectra
340 340 for i in range(self.Num_Chn):
341 341 self.spc[i,novalid,:] = dataOut.noise[i]
342 342 dataOut.data_pre[0] = self.spc
343 343 return dataOut
344 344
345 345 class GaussianFit(Operation):
346 346
347 347 '''
348 348 Function that fit of one and two generalized gaussians (gg) based
349 349 on the PSD shape across an "power band" identified from a cumsum of
350 350 the measured spectrum - noise.
351 351
352 352 Input:
353 353 self.dataOut.data_pre : SelfSpectra
354 354
355 355 Output:
356 356 self.dataOut.SPCparam : SPC_ch1, SPC_ch2
357 357
358 358 '''
359 359 def __init__(self):
360 360 Operation.__init__(self)
361 361 self.i=0
362 362
363 363
364 364 # def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points
365 365 def run(self, dataOut, SNRdBlimit=-9, method='generalized'):
366 366 """This routine will find a couple of generalized Gaussians to a power spectrum
367 367 methods: generalized, squared
368 368 input: spc
369 369 output:
370 370 noise, amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1
371 371 """
372 372 print ('Entering ',method,' double Gaussian fit')
373 373 self.spc = dataOut.data_pre[0].copy()
374 374 self.Num_Hei = self.spc.shape[2]
375 375 self.Num_Bin = self.spc.shape[1]
376 376 self.Num_Chn = self.spc.shape[0]
377 377
378 378 start_time = time.time()
379 379
380 380 pool = Pool(processes=self.Num_Chn)
381 381 args = [(dataOut.spc_range[2], ich, dataOut.spc_noise[ich], dataOut.nIncohInt, SNRdBlimit) for ich in range(self.Num_Chn)]
382 382 objs = [self for __ in range(self.Num_Chn)]
383 383 attrs = list(zip(objs, args))
384 384 DGauFitParam = pool.map(target, attrs)
385 385 # Parameters:
386 386 # 0. Noise, 1. Amplitude, 2. Shift, 3. Width 4. Power
387 387 dataOut.DGauFitParams = numpy.asarray(DGauFitParam)
388 388
389 389 # Double Gaussian Curves
390 390 gau0 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
391 391 gau0[:] = numpy.NaN
392 392 gau1 = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
393 393 gau1[:] = numpy.NaN
394 394 x_mtr = numpy.transpose(numpy.tile(dataOut.getVelRange(1)[:-1], (self.Num_Hei,1)))
395 395 for iCh in range(self.Num_Chn):
396 396 N0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,0]] * self.Num_Bin))
397 397 N1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][0,:,1]] * self.Num_Bin))
398 398 A0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,0]] * self.Num_Bin))
399 399 A1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][1,:,1]] * self.Num_Bin))
400 400 v0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,0]] * self.Num_Bin))
401 401 v1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][2,:,1]] * self.Num_Bin))
402 402 s0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,0]] * self.Num_Bin))
403 403 s1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][3,:,1]] * self.Num_Bin))
404 404 if method == 'genealized':
405 405 p0 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,0]] * self.Num_Bin))
406 406 p1 = numpy.transpose(numpy.transpose([dataOut.DGauFitParams[iCh][4,:,1]] * self.Num_Bin))
407 407 elif method == 'squared':
408 408 p0 = 2.
409 409 p1 = 2.
410 410 gau0[iCh] = A0*numpy.exp(-0.5*numpy.abs((x_mtr-v0)/s0)**p0)+N0
411 411 gau1[iCh] = A1*numpy.exp(-0.5*numpy.abs((x_mtr-v1)/s1)**p1)+N1
412 412 dataOut.GaussFit0 = gau0
413 413 dataOut.GaussFit1 = gau1
414 414
415 415 print('Leaving ',method ,' double Gaussian fit')
416 416 return dataOut
417 417
418 418 def FitGau(self, X):
419 419 # print('Entering FitGau')
420 420 # Assigning the variables
421 421 Vrange, ch, wnoise, num_intg, SNRlimit = X
422 422 # Noise Limits
423 423 noisebl = wnoise * 0.9
424 424 noisebh = wnoise * 1.1
425 425 # Radar Velocity
426 426 Va = max(Vrange)
427 427 deltav = Vrange[1] - Vrange[0]
428 428 x = numpy.arange(self.Num_Bin)
429 429
430 430 # print ('stop 0')
431 431
432 432 # 5 parameters, 2 Gaussians
433 433 DGauFitParam = numpy.zeros([5, self.Num_Hei,2])
434 434 DGauFitParam[:] = numpy.NaN
435 435
436 436 # SPCparam = []
437 437 # SPC_ch1 = numpy.zeros([self.Num_Bin,self.Num_Hei])
438 438 # SPC_ch2 = numpy.zeros([self.Num_Bin,self.Num_Hei])
439 439 # SPC_ch1[:] = 0 #numpy.NaN
440 440 # SPC_ch2[:] = 0 #numpy.NaN
441 441 # print ('stop 1')
442 442 for ht in range(self.Num_Hei):
443 443 # print (ht)
444 444 # print ('stop 2')
445 445 # Spectra at each range
446 446 spc = numpy.asarray(self.spc)[ch,:,ht]
447 447 snr = ( spc.mean() - wnoise ) / wnoise
448 448 snrdB = 10.*numpy.log10(snr)
449 449
450 450 #print ('stop 3')
451 451 if snrdB < SNRlimit :
452 452 # snr = numpy.NaN
453 453 # SPC_ch1[:,ht] = 0#numpy.NaN
454 454 # SPC_ch1[:,ht] = 0#numpy.NaN
455 455 # SPCparam = (SPC_ch1,SPC_ch2)
456 456 # print ('SNR less than SNRth')
457 457 continue
458 458 # wnoise = hildebrand_sekhon(spc,num_intg)
459 459 # print ('stop 2.01')
460 460 #############################################
461 461 # normalizing spc and noise
462 462 # This part differs from gg1
463 463 # spc_norm_max = max(spc) #commented by D. ScipiΓ³n 19.03.2021
464 464 #spc = spc / spc_norm_max
465 465 # pnoise = pnoise #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
466 466 #############################################
467 467
468 468 # print ('stop 2.1')
469 469 fatspectra=1.0
470 470 # noise per channel.... we might want to use the noise at each range
471 471
472 472 # wnoise = noise_ #/ spc_norm_max #commented by D. ScipiΓ³n 19.03.2021
473 473 #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used
474 474 #if wnoise>1.1*pnoise: # to be tested later
475 475 # wnoise=pnoise
476 476 # noisebl = wnoise*0.9
477 477 # noisebh = wnoise*1.1
478 478 spc = spc - wnoise # signal
479 479
480 480 # print ('stop 2.2')
481 481 minx = numpy.argmin(spc)
482 482 #spcs=spc.copy()
483 483 spcs = numpy.roll(spc,-minx)
484 484 cum = numpy.cumsum(spcs)
485 485 # tot_noise = wnoise * self.Num_Bin #64;
486 486
487 487 # print ('stop 2.3')
488 488 # snr = sum(spcs) / tot_noise
489 489 # snrdB = 10.*numpy.log10(snr)
490 490 #print ('stop 3')
491 491 # if snrdB < SNRlimit :
492 492 # snr = numpy.NaN
493 493 # SPC_ch1[:,ht] = 0#numpy.NaN
494 494 # SPC_ch1[:,ht] = 0#numpy.NaN
495 495 # SPCparam = (SPC_ch1,SPC_ch2)
496 496 # print ('SNR less than SNRth')
497 497 # continue
498 498
499 499
500 500 #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4:
501 501 # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
502 502 # print ('stop 4')
503 503 cummax = max(cum)
504 504 epsi = 0.08 * fatspectra # cumsum to narrow down the energy region
505 505 cumlo = cummax * epsi
506 506 cumhi = cummax * (1-epsi)
507 507 powerindex = numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0])
508 508
509 509 # print ('stop 5')
510 510 if len(powerindex) < 1:# case for powerindex 0
511 511 # print ('powerindex < 1')
512 512 continue
513 513 powerlo = powerindex[0]
514 514 powerhi = powerindex[-1]
515 515 powerwidth = powerhi-powerlo
516 516 if powerwidth <= 1:
517 517 # print('powerwidth <= 1')
518 518 continue
519 519
520 520 # print ('stop 6')
521 521 firstpeak = powerlo + powerwidth/10.# first gaussian energy location
522 522 secondpeak = powerhi - powerwidth/10. #second gaussian energy location
523 523 midpeak = (firstpeak + secondpeak)/2.
524 524 firstamp = spcs[int(firstpeak)]
525 525 secondamp = spcs[int(secondpeak)]
526 526 midamp = spcs[int(midpeak)]
527 527
528 528 y_data = spc + wnoise
529 529
530 530 ''' single Gaussian '''
531 531 shift0 = numpy.mod(midpeak+minx, self.Num_Bin )
532 532 width0 = powerwidth/4.#Initialization entire power of spectrum divided by 4
533 533 power0 = 2.
534 534 amplitude0 = midamp
535 535 state0 = [shift0,width0,amplitude0,power0,wnoise]
536 536 bnds = ((0,self.Num_Bin-1),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
537 537 lsq1 = fmin_l_bfgs_b(self.misfit1, state0, args=(y_data,x,num_intg), bounds=bnds, approx_grad=True)
538 538 # print ('stop 7.1')
539 539 # print (bnds)
540 540
541 541 chiSq1=lsq1[1]
542 542
543 543 # print ('stop 8')
544 544 if fatspectra<1.0 and powerwidth<4:
545 545 choice=0
546 546 Amplitude0=lsq1[0][2]
547 547 shift0=lsq1[0][0]
548 548 width0=lsq1[0][1]
549 549 p0=lsq1[0][3]
550 550 Amplitude1=0.
551 551 shift1=0.
552 552 width1=0.
553 553 p1=0.
554 554 noise=lsq1[0][4]
555 555 #return (numpy.array([shift0,width0,Amplitude0,p0]),
556 556 # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
557 557
558 558 # print ('stop 9')
559 559 ''' two Gaussians '''
560 560 #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
561 561 shift0 = numpy.mod(firstpeak+minx, self.Num_Bin )
562 562 shift1 = numpy.mod(secondpeak+minx, self.Num_Bin )
563 563 width0 = powerwidth/6.
564 564 width1 = width0
565 565 power0 = 2.
566 566 power1 = power0
567 567 amplitude0 = firstamp
568 568 amplitude1 = secondamp
569 569 state0 = [shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise]
570 570 #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
571 571 bnds=((0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(0,self.Num_Bin-1),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
572 572 #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5))
573 573
574 574 # print ('stop 10')
575 575 lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True )
576 576
577 577 # print ('stop 11')
578 578 chiSq2 = lsq2[1]
579 579
580 580 # print ('stop 12')
581 581
582 582 oneG = (chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10)
583 583
584 584 # print ('stop 13')
585 585 if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error
586 586 if oneG:
587 587 choice = 0
588 588 else:
589 589 w1 = lsq2[0][1]; w2 = lsq2[0][5]
590 590 a1 = lsq2[0][2]; a2 = lsq2[0][6]
591 591 p1 = lsq2[0][3]; p2 = lsq2[0][7]
592 592 s1 = (2**(1+1./p1))*scipy.special.gamma(1./p1)/p1
593 593 s2 = (2**(1+1./p2))*scipy.special.gamma(1./p2)/p2
594 594 gp1 = a1*w1*s1; gp2 = a2*w2*s2 # power content of each ggaussian with proper p scaling
595 595
596 596 if gp1>gp2:
597 597 if a1>0.7*a2:
598 598 choice = 1
599 599 else:
600 600 choice = 2
601 601 elif gp2>gp1:
602 602 if a2>0.7*a1:
603 603 choice = 2
604 604 else:
605 605 choice = 1
606 606 else:
607 607 choice = numpy.argmax([a1,a2])+1
608 608 #else:
609 609 #choice=argmin([std2a,std2b])+1
610 610
611 611 else: # with low SNR go to the most energetic peak
612 612 choice = numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]])
613 613
614 614 # print ('stop 14')
615 615 shift0 = lsq2[0][0]
616 616 vel0 = Vrange[0] + shift0 * deltav
617 617 shift1 = lsq2[0][4]
618 618 # vel1=Vrange[0] + shift1 * deltav
619 619
620 620 # max_vel = 1.0
621 621 # Va = max(Vrange)
622 622 # deltav = Vrange[1]-Vrange[0]
623 623 # print ('stop 15')
624 624 #first peak will be 0, second peak will be 1
625 625 # if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range # Commented by D.ScipiΓ³n 19.03.2021
626 626 if vel0 > -Va and vel0 < Va : #first peak is in the correct range
627 627 shift0 = lsq2[0][0]
628 628 width0 = lsq2[0][1]
629 629 Amplitude0 = lsq2[0][2]
630 630 p0 = lsq2[0][3]
631 631
632 632 shift1 = lsq2[0][4]
633 633 width1 = lsq2[0][5]
634 634 Amplitude1 = lsq2[0][6]
635 635 p1 = lsq2[0][7]
636 636 noise = lsq2[0][8]
637 637 else:
638 638 shift1 = lsq2[0][0]
639 639 width1 = lsq2[0][1]
640 640 Amplitude1 = lsq2[0][2]
641 641 p1 = lsq2[0][3]
642 642
643 643 shift0 = lsq2[0][4]
644 644 width0 = lsq2[0][5]
645 645 Amplitude0 = lsq2[0][6]
646 646 p0 = lsq2[0][7]
647 647 noise = lsq2[0][8]
648 648
649 649 if Amplitude0<0.05: # in case the peak is noise
650 650 shift0,width0,Amplitude0,p0 = 4*[numpy.NaN]
651 651 if Amplitude1<0.05:
652 652 shift1,width1,Amplitude1,p1 = 4*[numpy.NaN]
653 653
654 654 # print ('stop 16 ')
655 655 # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0)/width0)**p0)
656 656 # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1)/width1)**p1)
657 657 # SPCparam = (SPC_ch1,SPC_ch2)
658 658
659 659 DGauFitParam[0,ht,0] = noise
660 660 DGauFitParam[0,ht,1] = noise
661 661 DGauFitParam[1,ht,0] = Amplitude0
662 662 DGauFitParam[1,ht,1] = Amplitude1
663 663 DGauFitParam[2,ht,0] = Vrange[0] + shift0 * deltav
664 664 DGauFitParam[2,ht,1] = Vrange[0] + shift1 * deltav
665 665 DGauFitParam[3,ht,0] = width0 * deltav
666 666 DGauFitParam[3,ht,1] = width1 * deltav
667 667 DGauFitParam[4,ht,0] = p0
668 668 DGauFitParam[4,ht,1] = p1
669 669
670 670 # print (DGauFitParam.shape)
671 671 # print ('Leaving FitGau')
672 672 return DGauFitParam
673 673 # return SPCparam
674 674 # return GauSPC
675 675
676 676 def y_model1(self,x,state):
677 677 shift0, width0, amplitude0, power0, noise = state
678 678 model0 = amplitude0*numpy.exp(-0.5*abs((x - shift0)/width0)**power0)
679 679 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
680 680 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
681 681 return model0 + model0u + model0d + noise
682 682
683 683 def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist
684 684 shift0, width0, amplitude0, power0, shift1, width1, amplitude1, power1, noise = state
685 685 model0 = amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
686 686 model0u = amplitude0*numpy.exp(-0.5*abs((x - shift0 - self.Num_Bin)/width0)**power0)
687 687 model0d = amplitude0*numpy.exp(-0.5*abs((x - shift0 + self.Num_Bin)/width0)**power0)
688 688
689 689 model1 = amplitude1*numpy.exp(-0.5*abs((x - shift1)/width1)**power1)
690 690 model1u = amplitude1*numpy.exp(-0.5*abs((x - shift1 - self.Num_Bin)/width1)**power1)
691 691 model1d = amplitude1*numpy.exp(-0.5*abs((x - shift1 + self.Num_Bin)/width1)**power1)
692 692 return model0 + model0u + model0d + model1 + model1u + model1d + noise
693 693
694 694 def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is.
695 695
696 696 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented
697 697
698 698 def misfit2(self,state,y_data,x,num_intg):
699 699 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.)
700 700
701 701
702 702
703 703 class PrecipitationProc(Operation):
704 704
705 705 '''
706 706 Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R)
707 707
708 708 Input:
709 709 self.dataOut.data_pre : SelfSpectra
710 710
711 711 Output:
712 712
713 713 self.dataOut.data_output : Reflectivity factor, rainfall Rate
714 714
715 715
716 716 Parameters affected:
717 717 '''
718 718
719 719 def __init__(self):
720 720 Operation.__init__(self)
721 721 self.i=0
722 722
723 723 def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118,
724 724 tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km2 = 0.93, Altitude=3350,SNRdBlimit=-30):
725 725
726 726 # print ('Entering PrecepitationProc ... ')
727 727
728 728 if radar == "MIRA35C" :
729 729
730 730 self.spc = dataOut.data_pre[0].copy()
731 731 self.Num_Hei = self.spc.shape[2]
732 732 self.Num_Bin = self.spc.shape[1]
733 733 self.Num_Chn = self.spc.shape[0]
734 734 Ze = self.dBZeMODE2(dataOut)
735 735
736 736 else:
737 737
738 738 self.spc = dataOut.data_pre[0].copy()
739 739
740 740 #NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX
741 741 self.spc[:,:,0:7]= numpy.NaN
742 742
743 743 self.Num_Hei = self.spc.shape[2]
744 744 self.Num_Bin = self.spc.shape[1]
745 745 self.Num_Chn = self.spc.shape[0]
746 746
747 747 VelRange = dataOut.spc_range[2]
748 748
749 749 ''' Se obtiene la constante del RADAR '''
750 750
751 751 self.Pt = Pt
752 752 self.Gt = Gt
753 753 self.Gr = Gr
754 754 self.Lambda = Lambda
755 755 self.aL = aL
756 756 self.tauW = tauW
757 757 self.ThetaT = ThetaT
758 758 self.ThetaR = ThetaR
759 759 self.GSys = 10**(36.63/10) # Ganancia de los LNA 36.63 dB
760 760 self.lt = 10**(1.67/10) # Perdida en cables Tx 1.67 dB
761 761 self.lr = 10**(5.73/10) # Perdida en cables Rx 5.73 dB
762 762
763 763 Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
764 764 Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR)
765 765 RadarConstant = 10e-26 * Numerator / Denominator #
766 766 ExpConstant = 10**(40/10) #Constante Experimental
767 767
768 768 SignalPower = numpy.zeros([self.Num_Chn,self.Num_Bin,self.Num_Hei])
769 769 for i in range(self.Num_Chn):
770 770 SignalPower[i,:,:] = self.spc[i,:,:] - dataOut.noise[i]
771 771 SignalPower[numpy.where(SignalPower < 0)] = 1e-20
772 772
773 773 SPCmean = numpy.mean(SignalPower, 0)
774 774 Pr = SPCmean[:,:]/dataOut.normFactor
775 775
776 776 # Declaring auxiliary variables
777 777 Range = dataOut.heightList*1000. #Range in m
778 778 # replicate the heightlist to obtain a matrix [Num_Bin,Num_Hei]
779 779 rMtrx = numpy.transpose(numpy.transpose([dataOut.heightList*1000.] * self.Num_Bin))
780 780 zMtrx = rMtrx+Altitude
781 781 # replicate the VelRange to obtain a matrix [Num_Bin,Num_Hei]
782 782 VelMtrx = numpy.transpose(numpy.tile(VelRange[:-1], (self.Num_Hei,1)))
783 783
784 784 # height dependence to air density Foote and Du Toit (1969)
785 785 delv_z = 1 + 3.68e-5 * zMtrx + 1.71e-9 * zMtrx**2
786 786 VMtrx = VelMtrx / delv_z #Normalized velocity
787 787 VMtrx[numpy.where(VMtrx> 9.6)] = numpy.NaN
788 788 # Diameter is related to the fall speed of falling drops
789 789 D_Vz = -1.667 * numpy.log( 0.9369 - 0.097087 * VMtrx ) # D in [mm]
790 790 # Only valid for D>= 0.16 mm
791 791 D_Vz[numpy.where(D_Vz < 0.16)] = numpy.NaN
792 792
793 793 #Calculate Radar Reflectivity ETAn
794 794 ETAn = (RadarConstant *ExpConstant) * Pr * rMtrx**2 #Reflectivity (ETA)
795 795 ETAd = ETAn * 6.18 * exp( -0.6 * D_Vz ) * delv_z
796 796 # Radar Cross Section
797 797 sigmaD = Km2 * (D_Vz * 1e-3 )**6 * numpy.pi**5 / Lambda**4
798 798 # Drop Size Distribution
799 799 DSD = ETAn / sigmaD
800 800 # Equivalente Reflectivy
801 801 Ze_eqn = numpy.nansum( DSD * D_Vz**6 ,axis=0)
802 802 Ze_org = numpy.nansum(ETAn * Lambda**4, axis=0) / (1e-18*numpy.pi**5 * Km2) # [mm^6 /m^3]
803 803 # RainFall Rate
804 804 RR = 0.0006*numpy.pi * numpy.nansum( D_Vz**3 * DSD * VelMtrx ,0) #mm/hr
805 805
806 806 # Censoring the data
807 807 # Removing data with SNRth < 0dB se debe considerar el SNR por canal
808 808 SNRth = 10**(SNRdBlimit/10) #-30dB
809 809 novalid = numpy.where((dataOut.data_snr[0,:] <SNRth) | (dataOut.data_snr[1,:] <SNRth) | (dataOut.data_snr[2,:] <SNRth)) # AND condition. Maybe OR condition better
810 810 W = numpy.nanmean(dataOut.data_dop,0)
811 811 W[novalid] = numpy.NaN
812 812 Ze_org[novalid] = numpy.NaN
813 813 RR[novalid] = numpy.NaN
814 814
815 815 dataOut.data_output = RR[8]
816 816 dataOut.data_param = numpy.ones([3,self.Num_Hei])
817 817 dataOut.channelList = [0,1,2]
818 818
819 819 dataOut.data_param[0]=10*numpy.log10(Ze_org)
820 820 dataOut.data_param[1]=-W
821 821 dataOut.data_param[2]=RR
822 822
823 823 # print ('Leaving PrecepitationProc ... ')
824 824 return dataOut
825 825
826 826 def dBZeMODE2(self, dataOut): # Processing for MIRA35C
827 827
828 828 NPW = dataOut.NPW
829 829 COFA = dataOut.COFA
830 830
831 831 SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]])
832 832 RadarConst = dataOut.RadarConst
833 833 #frequency = 34.85*10**9
834 834
835 835 ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei]))
836 836 data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN
837 837
838 838 ETA = numpy.sum(SNR,1)
839 839
840 840 ETA = numpy.where(ETA != 0. , ETA, numpy.NaN)
841 841
842 842 Ze = numpy.ones([self.Num_Chn, self.Num_Hei] )
843 843
844 844 for r in range(self.Num_Hei):
845 845
846 846 Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2)
847 847 #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2)
848 848
849 849 return Ze
850 850
851 851 # def GetRadarConstant(self):
852 852 #
853 853 # """
854 854 # Constants:
855 855 #
856 856 # Pt: Transmission Power dB 5kW 5000
857 857 # Gt: Transmission Gain dB 24.7 dB 295.1209
858 858 # Gr: Reception Gain dB 18.5 dB 70.7945
859 859 # Lambda: Wavelenght m 0.6741 m 0.6741
860 860 # aL: Attenuation loses dB 4dB 2.5118
861 861 # tauW: Width of transmission pulse s 4us 4e-6
862 862 # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317
863 863 # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087
864 864 #
865 865 # """
866 866 #
867 867 # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
868 868 # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR)
869 869 # RadarConstant = Numerator / Denominator
870 870 #
871 871 # return RadarConstant
872 872
873 873
874 874
875 875 class FullSpectralAnalysis(Operation):
876 876
877 877 """
878 878 Function that implements Full Spectral Analysis technique.
879 879
880 880 Input:
881 881 self.dataOut.data_pre : SelfSpectra and CrossSpectra data
882 882 self.dataOut.groupList : Pairlist of channels
883 883 self.dataOut.ChanDist : Physical distance between receivers
884 884
885 885
886 886 Output:
887 887
888 888 self.dataOut.data_output : Zonal wind, Meridional wind, and Vertical wind
889 889
890 890
891 891 Parameters affected: Winds, height range, SNR
892 892
893 893 """
894 894 def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRdBlimit=-30,
895 895 minheight=None, maxheight=None, NegativeLimit=None, PositiveLimit=None):
896 896
897 897 spc = dataOut.data_pre[0].copy()
898 898 cspc = dataOut.data_pre[1]
899 899 nHeights = spc.shape[2]
900 900
901 901 # first_height = 0.75 #km (ref: data header 20170822)
902 902 # resolution_height = 0.075 #km
903 903 '''
904 904 finding height range. check this when radar parameters are changed!
905 905 '''
906 906 if maxheight is not None:
907 907 # range_max = math.ceil((maxheight - first_height) / resolution_height) # theoretical
908 908 range_max = math.ceil(13.26 * maxheight - 3) # empirical, works better
909 909 else:
910 910 range_max = nHeights
911 911 if minheight is not None:
912 912 # range_min = int((minheight - first_height) / resolution_height) # theoretical
913 913 range_min = int(13.26 * minheight - 5) # empirical, works better
914 914 if range_min < 0:
915 915 range_min = 0
916 916 else:
917 917 range_min = 0
918 918
919 919 pairsList = dataOut.groupList
920 920 if dataOut.ChanDist is not None :
921 921 ChanDist = dataOut.ChanDist
922 922 else:
923 923 ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]])
924 924
925 925 # 4 variables: zonal, meridional, vertical, and average SNR
926 926 data_param = numpy.zeros([4,nHeights]) * numpy.NaN
927 927 velocityX = numpy.zeros([nHeights]) * numpy.NaN
928 928 velocityY = numpy.zeros([nHeights]) * numpy.NaN
929 929 velocityZ = numpy.zeros([nHeights]) * numpy.NaN
930 930
931 931 dbSNR = 10*numpy.log10(numpy.average(dataOut.data_snr,0))
932 932
933 933 '''***********************************************WIND ESTIMATION**************************************'''
934 934 for Height in range(nHeights):
935 935
936 936 if Height >= range_min and Height < range_max:
937 937 # error_code will be useful in future analysis
938 938 [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList,
939 939 ChanDist, Height, dataOut.noise, dataOut.spc_range, dbSNR[Height], SNRdBlimit, NegativeLimit, PositiveLimit,dataOut.frequency)
940 940
941 941 if abs(Vzon) < 100. and abs(Vmer) < 100.:
942 942 velocityX[Height] = Vzon
943 943 velocityY[Height] = -Vmer
944 944 velocityZ[Height] = Vver
945 945
946 946 # Censoring data with SNR threshold
947 947 dbSNR [dbSNR < SNRdBlimit] = numpy.NaN
948 948
949 949 data_param[0] = velocityX
950 950 data_param[1] = velocityY
951 951 data_param[2] = velocityZ
952 952 data_param[3] = dbSNR
953 953 dataOut.data_param = data_param
954 954 return dataOut
955 955
956 956 def moving_average(self,x, N=2):
957 957 """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """
958 958 return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
959 959
960 960 def gaus(self,xSamples,Amp,Mu,Sigma):
961 961 return Amp * numpy.exp(-0.5*((xSamples - Mu)/Sigma)**2)
962 962
963 963 def Moments(self, ySamples, xSamples):
964 964 Power = numpy.nanmean(ySamples) # Power, 0th Moment
965 965 yNorm = ySamples / numpy.nansum(ySamples)
966 966 RadVel = numpy.nansum(xSamples * yNorm) # Radial Velocity, 1st Moment
967 967 Sigma2 = numpy.nansum(yNorm * (xSamples - RadVel)**2) # Spectral Width, 2nd Moment
968 968 StdDev = numpy.sqrt(numpy.abs(Sigma2)) # Desv. Estandar, Ancho espectral
969 969 return numpy.array([Power,RadVel,StdDev])
970 970
971 971 def StopWindEstimation(self, error_code):
972 972 Vzon = numpy.NaN
973 973 Vmer = numpy.NaN
974 974 Vver = numpy.NaN
975 975 return Vzon, Vmer, Vver, error_code
976 976
977 977 def AntiAliasing(self, interval, maxstep):
978 978 """
979 979 function to prevent errors from aliased values when computing phaseslope
980 980 """
981 981 antialiased = numpy.zeros(len(interval))
982 982 copyinterval = interval.copy()
983 983
984 984 antialiased[0] = copyinterval[0]
985 985
986 986 for i in range(1,len(antialiased)):
987 987 step = interval[i] - interval[i-1]
988 988 if step > maxstep:
989 989 copyinterval -= 2*numpy.pi
990 990 antialiased[i] = copyinterval[i]
991 991 elif step < maxstep*(-1):
992 992 copyinterval += 2*numpy.pi
993 993 antialiased[i] = copyinterval[i]
994 994 else:
995 995 antialiased[i] = copyinterval[i].copy()
996 996
997 997 return antialiased
998 998
999 999 def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit, NegativeLimit, PositiveLimit, radfreq):
1000 1000 """
1001 1001 Function that Calculates Zonal, Meridional and Vertical wind velocities.
1002 1002 Initial Version by E. Bocanegra updated by J. Zibell until Nov. 2019.
1003 1003
1004 1004 Input:
1005 1005 spc, cspc : self spectra and cross spectra data. In Briggs notation something like S_i*(S_i)_conj, (S_j)_conj respectively.
1006 1006 pairsList : Pairlist of channels
1007 1007 ChanDist : array of xi_ij and eta_ij
1008 1008 Height : height at which data is processed
1009 1009 noise : noise in [channels] format for specific height
1010 1010 Abbsisarange : range of the frequencies or velocities
1011 1011 dbSNR, SNRlimit : signal to noise ratio in db, lower limit
1012 1012
1013 1013 Output:
1014 1014 Vzon, Vmer, Vver : wind velocities
1015 1015 error_code : int that states where code is terminated
1016 1016
1017 1017 0 : no error detected
1018 1018 1 : Gaussian of mean spc exceeds widthlimit
1019 1019 2 : no Gaussian of mean spc found
1020 1020 3 : SNR to low or velocity to high -> prec. e.g.
1021 1021 4 : at least one Gaussian of cspc exceeds widthlimit
1022 1022 5 : zero out of three cspc Gaussian fits converged
1023 1023 6 : phase slope fit could not be found
1024 1024 7 : arrays used to fit phase have different length
1025 1025 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc)
1026 1026
1027 1027 """
1028 1028
1029 1029 error_code = 0
1030 1030
1031 1031 nChan = spc.shape[0]
1032 1032 nProf = spc.shape[1]
1033 1033 nPair = cspc.shape[0]
1034 1034
1035 1035 SPC_Samples = numpy.zeros([nChan, nProf]) # for normalized spc values for one height
1036 1036 CSPC_Samples = numpy.zeros([nPair, nProf], dtype=numpy.complex_) # for normalized cspc values
1037 1037 phase = numpy.zeros([nPair, nProf]) # phase between channels
1038 1038 PhaseSlope = numpy.zeros(nPair) # slope of the phases, channelwise
1039 1039 PhaseInter = numpy.zeros(nPair) # intercept to the slope of the phases, channelwise
1040 1040 xFrec = AbbsisaRange[0][:-1] # frequency range
1041 1041 xVel = AbbsisaRange[2][:-1] # velocity range
1042 1042 xSamples = xFrec # the frequency range is taken
1043 1043 delta_x = xSamples[1] - xSamples[0] # delta_f or delta_x
1044 1044
1045 1045 # only consider velocities with in NegativeLimit and PositiveLimit
1046 1046 if (NegativeLimit is None):
1047 1047 NegativeLimit = numpy.min(xVel)
1048 1048 if (PositiveLimit is None):
1049 1049 PositiveLimit = numpy.max(xVel)
1050 1050 xvalid = numpy.where((xVel > NegativeLimit) & (xVel < PositiveLimit))
1051 1051 xSamples_zoom = xSamples[xvalid]
1052 1052
1053 1053 '''Getting Eij and Nij'''
1054 1054 Xi01, Xi02, Xi12 = ChanDist[:,0]
1055 1055 Eta01, Eta02, Eta12 = ChanDist[:,1]
1056 1056
1057 1057 # spwd limit - updated by D. ScipiΓ³n 30.03.2021
1058 1058 widthlimit = 10
1059 1059 '''************************* SPC is normalized ********************************'''
1060 1060 spc_norm = spc.copy()
1061 1061 # For each channel
1062 1062 for i in range(nChan):
1063 1063 spc_sub = spc_norm[i,:] - noise[i] # only the signal power
1064 1064 SPC_Samples[i] = spc_sub / (numpy.nansum(spc_sub) * delta_x)
1065 1065
1066 1066 '''********************** FITTING MEAN SPC GAUSSIAN **********************'''
1067 1067
1068 1068 """ the gaussian of the mean: first subtract noise, then normalize. this is legal because
1069 1069 you only fit the curve and don't need the absolute value of height for calculation,
1070 1070 only for estimation of width. for normalization of cross spectra, you need initial,
1071 1071 unnormalized self-spectra With noise.
1072 1072
1073 1073 Technically, you don't even need to normalize the self-spectra, as you only need the
1074 1074 width of the peak. However, it was left this way. Note that the normalization has a flaw:
1075 1075 due to subtraction of the noise, some values are below zero. Raw "spc" values should be
1076 1076 >= 0, as it is the modulus squared of the signals (complex * it's conjugate)
1077 1077 """
1078 1078 # initial conditions
1079 1079 popt = [1e-10,0,1e-10]
1080 1080 # Spectra average
1081 1081 SPCMean = numpy.average(SPC_Samples,0)
1082 1082 # Moments in frequency
1083 1083 SPCMoments = self.Moments(SPCMean[xvalid], xSamples_zoom)
1084 1084
1085 1085 # Gauss Fit SPC in frequency domain
1086 1086 if dbSNR > SNRlimit: # only if SNR > SNRth
1087 1087 try:
1088 1088 popt,pcov = curve_fit(self.gaus,xSamples_zoom,SPCMean[xvalid],p0=SPCMoments)
1089 1089 if popt[2] <= 0 or popt[2] > widthlimit: # CONDITION
1090 1090 return self.StopWindEstimation(error_code = 1)
1091 1091 FitGauss = self.gaus(xSamples_zoom,*popt)
1092 1092 except :#RuntimeError:
1093 1093 return self.StopWindEstimation(error_code = 2)
1094 1094 else:
1095 1095 return self.StopWindEstimation(error_code = 3)
1096 1096
1097 1097 '''***************************** CSPC Normalization *************************
1098 1098 The Spc spectra are used to normalize the crossspectra. Peaks from precipitation
1099 1099 influence the norm which is not desired. First, a range is identified where the
1100 1100 wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area
1101 1101 around it gets cut off and values replaced by mean determined by the boundary
1102 1102 data -> sum_noise (spc is not normalized here, thats why the noise is important)
1103 1103
1104 1104 The sums are then added and multiplied by range/datapoints, because you need
1105 1105 an integral and not a sum for normalization.
1106 1106
1107 1107 A norm is found according to Briggs 92.
1108 1108 '''
1109 1109 # for each pair
1110 1110 for i in range(nPair):
1111 1111 cspc_norm = cspc[i,:].copy()
1112 1112 chan_index0 = pairsList[i][0]
1113 1113 chan_index1 = pairsList[i][1]
1114 1114 CSPC_Samples[i] = cspc_norm / (numpy.sqrt(numpy.nansum(spc_norm[chan_index0])*numpy.nansum(spc_norm[chan_index1])) * delta_x)
1115 1115 phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real)
1116 1116
1117 1117 CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0,xvalid]), xSamples_zoom),
1118 1118 self.Moments(numpy.abs(CSPC_Samples[1,xvalid]), xSamples_zoom),
1119 1119 self.Moments(numpy.abs(CSPC_Samples[2,xvalid]), xSamples_zoom)])
1120 1120
1121 1121 popt01, popt02, popt12 = [1e-10,0,1e-10], [1e-10,0,1e-10] ,[1e-10,0,1e-10]
1122 1122 FitGauss01, FitGauss02, FitGauss12 = numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples)), numpy.zeros(len(xSamples))
1123 1123
1124 1124 '''*******************************FIT GAUSS CSPC************************************'''
1125 1125 try:
1126 1126 popt01,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[0][xvalid]),p0=CSPCmoments[0])
1127 1127 if popt01[2] > widthlimit: # CONDITION
1128 1128 return self.StopWindEstimation(error_code = 4)
1129 1129 popt02,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[1][xvalid]),p0=CSPCmoments[1])
1130 1130 if popt02[2] > widthlimit: # CONDITION
1131 1131 return self.StopWindEstimation(error_code = 4)
1132 1132 popt12,pcov = curve_fit(self.gaus,xSamples_zoom,numpy.abs(CSPC_Samples[2][xvalid]),p0=CSPCmoments[2])
1133 1133 if popt12[2] > widthlimit: # CONDITION
1134 1134 return self.StopWindEstimation(error_code = 4)
1135 1135
1136 1136 FitGauss01 = self.gaus(xSamples_zoom, *popt01)
1137 1137 FitGauss02 = self.gaus(xSamples_zoom, *popt02)
1138 1138 FitGauss12 = self.gaus(xSamples_zoom, *popt12)
1139 1139 except:
1140 1140 return self.StopWindEstimation(error_code = 5)
1141 1141
1142 1142
1143 1143 '''************* Getting Fij ***************'''
1144 1144 # x-axis point of the gaussian where the center is located from GaussFit of spectra
1145 1145 GaussCenter = popt[1]
1146 1146 ClosestCenter = xSamples_zoom[numpy.abs(xSamples_zoom-GaussCenter).argmin()]
1147 1147 PointGauCenter = numpy.where(xSamples_zoom==ClosestCenter)[0][0]
1148 1148
1149 1149 # Point where e^-1 is located in the gaussian
1150 1150 PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1)
1151 1151 FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # The closest point to"Peminus1" in "FitGauss"
1152 1152 PointFij = numpy.where(FitGauss==FijClosest)[0][0]
1153 1153 Fij = numpy.abs(xSamples_zoom[PointFij] - xSamples_zoom[PointGauCenter])
1154 1154
1155 1155 '''********** Taking frequency ranges from mean SPCs **********'''
1156 1156 GauWidth = popt[2] * 3/2 # Bandwidth of Gau01
1157 1157 Range = numpy.empty(2)
1158 1158 Range[0] = GaussCenter - GauWidth
1159 1159 Range[1] = GaussCenter + GauWidth
1160 1160 # Point in x-axis where the bandwidth is located (min:max)
1161 1161 ClosRangeMin = xSamples_zoom[numpy.abs(xSamples_zoom-Range[0]).argmin()]
1162 1162 ClosRangeMax = xSamples_zoom[numpy.abs(xSamples_zoom-Range[1]).argmin()]
1163 1163 PointRangeMin = numpy.where(xSamples_zoom==ClosRangeMin)[0][0]
1164 1164 PointRangeMax = numpy.where(xSamples_zoom==ClosRangeMax)[0][0]
1165 1165 Range = numpy.array([ PointRangeMin, PointRangeMax ])
1166 1166 FrecRange = xSamples_zoom[ Range[0] : Range[1] ]
1167 1167
1168 1168 '''************************** Getting Phase Slope ***************************'''
1169 1169 for i in range(nPair):
1170 1170 if len(FrecRange) > 5:
1171 1171 PhaseRange = phase[i, xvalid[0][Range[0]:Range[1]]].copy()
1172 1172 mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange)
1173 1173 if len(FrecRange) == len(PhaseRange):
1174 1174 try:
1175 1175 slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5))
1176 1176 PhaseSlope[i] = slope
1177 1177 PhaseInter[i] = intercept
1178 1178 except:
1179 1179 return self.StopWindEstimation(error_code = 6)
1180 1180 else:
1181 1181 return self.StopWindEstimation(error_code = 7)
1182 1182 else:
1183 1183 return self.StopWindEstimation(error_code = 8)
1184 1184
1185 1185 '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***'''
1186 1186
1187 1187 '''Getting constant C'''
1188 1188 cC=(Fij*numpy.pi)**2
1189 1189
1190 1190 '''****** Getting constants F and G ******'''
1191 1191 MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]])
1192 1192 # MijEijNij = numpy.array([[Xi01,Eta01], [Xi02,Eta02], [Xi12,Eta12]])
1193 1193 # MijResult0 = (-PhaseSlope[0] * cC) / (2*numpy.pi)
1194 1194 MijResult1 = (-PhaseSlope[1] * cC) / (2*numpy.pi)
1195 1195 MijResult2 = (-PhaseSlope[2] * cC) / (2*numpy.pi)
1196 1196 # MijResults = numpy.array([MijResult0, MijResult1, MijResult2])
1197 1197 MijResults = numpy.array([MijResult1, MijResult2])
1198 1198 (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
1199 1199
1200 1200 '''****** Getting constants A, B and H ******'''
1201 1201 W01 = numpy.nanmax( FitGauss01 )
1202 1202 W02 = numpy.nanmax( FitGauss02 )
1203 1203 W12 = numpy.nanmax( FitGauss12 )
1204 1204
1205 1205 WijResult01 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC))
1206 1206 WijResult02 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC))
1207 1207 WijResult12 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC))
1208 1208 WijResults = numpy.array([WijResult01, WijResult02, WijResult12])
1209 1209
1210 1210 WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ])
1211 1211 (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
1212 1212
1213 1213 VxVy = numpy.array([[cA,cH],[cH,cB]])
1214 1214 VxVyResults = numpy.array([-cF,-cG])
1215 1215 (Vmer,Vzon) = numpy.linalg.solve(VxVy, VxVyResults)
1216 1216 Vver = -SPCMoments[1]*SPEED_OF_LIGHT/(2*radfreq)
1217 1217 error_code = 0
1218 1218
1219 1219 return Vzon, Vmer, Vver, error_code
1220 1220
1221 1221 class SpectralMoments(Operation):
1222 1222
1223 1223 '''
1224 1224 Function SpectralMoments()
1225 1225
1226 1226 Calculates moments (power, mean, standard deviation) and SNR of the signal
1227 1227
1228 1228 Type of dataIn: Spectra
1229 1229
1230 1230 Configuration Parameters:
1231 1231
1232 1232 dirCosx : Cosine director in X axis
1233 1233 dirCosy : Cosine director in Y axis
1234 1234
1235 1235 elevation :
1236 1236 azimuth :
1237 1237
1238 1238 Input:
1239 1239 channelList : simple channel list to select e.g. [2,3,7]
1240 1240 self.dataOut.data_pre : Spectral data
1241 1241 self.dataOut.abscissaList : List of frequencies
1242 1242 self.dataOut.noise : Noise level per channel
1243 1243
1244 1244 Affected:
1245 1245 self.dataOut.moments : Parameters per channel
1246 1246 self.dataOut.data_snr : SNR per channel
1247 1247
1248 1248 '''
1249 1249
1250 1250 def run(self, dataOut):
1251 1251
1252 1252 data = dataOut.data_pre[0]
1253 1253 absc = dataOut.abscissaList[:-1]
1254 1254 noise = dataOut.noise
1255 1255 nChannel = data.shape[0]
1256 1256 data_param = numpy.zeros((nChannel, 4, data.shape[2]))
1257 1257
1258 1258 for ind in range(nChannel):
1259 1259 data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] )
1260 1260
1261 1261 dataOut.moments = data_param[:,1:,:]
1262 1262 dataOut.data_snr = data_param[:,0]
1263 1263 dataOut.data_pow = data_param[:,1]
1264 1264 dataOut.data_dop = data_param[:,2]
1265 1265 dataOut.data_width = data_param[:,3]
1266 1266 return dataOut
1267 1267
1268 1268 def __calculateMoments(self, oldspec, oldfreq, n0,
1269 1269 nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
1270 1270
1271 1271 if (nicoh is None): nicoh = 1
1272 1272 if (graph is None): graph = 0
1273 1273 if (smooth is None): smooth = 0
1274 1274 elif (self.smooth < 3): smooth = 0
1275 1275
1276 1276 if (type1 is None): type1 = 0
1277 1277 if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1
1278 1278 if (snrth is None): snrth = -3
1279 1279 if (dc is None): dc = 0
1280 1280 if (aliasing is None): aliasing = 0
1281 1281 if (oldfd is None): oldfd = 0
1282 1282 if (wwauto is None): wwauto = 0
1283 1283
1284 1284 if (n0 < 1.e-20): n0 = 1.e-20
1285 1285
1286 1286 freq = oldfreq
1287 1287 vec_power = numpy.zeros(oldspec.shape[1])
1288 1288 vec_fd = numpy.zeros(oldspec.shape[1])
1289 1289 vec_w = numpy.zeros(oldspec.shape[1])
1290 1290 vec_snr = numpy.zeros(oldspec.shape[1])
1291 1291
1292 1292 # oldspec = numpy.ma.masked_invalid(oldspec)
1293 1293 for ind in range(oldspec.shape[1]):
1294 1294
1295 1295 spec = oldspec[:,ind]
1296 1296 aux = spec*fwindow
1297 1297 max_spec = aux.max()
1298 1298 m = aux.tolist().index(max_spec)
1299 1299
1300 1300 # Smooth
1301 1301 if (smooth == 0):
1302 1302 spec2 = spec
1303 1303 else:
1304 1304 spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
1305 1305
1306 1306 # Moments Estimation
1307 1307 bb = spec2[numpy.arange(m,spec2.size)]
1308 1308 bb = (bb<n0).nonzero()
1309 1309 bb = bb[0]
1310 1310
1311 1311 ss = spec2[numpy.arange(0,m + 1)]
1312 1312 ss = (ss<n0).nonzero()
1313 1313 ss = ss[0]
1314 1314
1315 1315 if (bb.size == 0):
1316 1316 bb0 = spec.size - 1 - m
1317 1317 else:
1318 1318 bb0 = bb[0] - 1
1319 1319 if (bb0 < 0):
1320 1320 bb0 = 0
1321 1321
1322 1322 if (ss.size == 0):
1323 1323 ss1 = 1
1324 1324 else:
1325 1325 ss1 = max(ss) + 1
1326 1326
1327 1327 if (ss1 > m):
1328 1328 ss1 = m
1329 1329
1330 1330 #valid = numpy.arange(int(m + bb0 - ss1 + 1)) + ss1
1331 1331 valid = numpy.arange(1,oldspec.shape[0])# valid perfil completo igual pulsepair
1332 1332 signal_power = ((spec2[valid] - n0) * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1333 1333 total_power = (spec2[valid] * fwindow[valid]).mean() # D. ScipiΓ³n added with correct definition
1334 1334 power = ((spec2[valid] - n0) * fwindow[valid]).sum()
1335 1335 fd = ((spec2[valid]- n0)*freq[valid] * fwindow[valid]).sum() / power
1336 1336 w = numpy.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum() / power)
1337 1337 snr = (spec2.mean()-n0)/n0
1338 1338 if (snr < 1.e-20) :
1339 1339 snr = 1.e-20
1340 1340
1341 1341 # vec_power[ind] = power #D. ScipiΓ³n replaced with the line below
1342 1342 vec_power[ind] = total_power
1343 1343 vec_fd[ind] = fd
1344 1344 vec_w[ind] = w
1345 1345 vec_snr[ind] = snr
1346 1346
1347 1347 return numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
1348 1348
1349 1349 #------------------ Get SA Parameters --------------------------
1350 1350
1351 1351 def GetSAParameters(self):
1352 1352 #SA en frecuencia
1353 1353 pairslist = self.dataOut.groupList
1354 1354 num_pairs = len(pairslist)
1355 1355
1356 1356 vel = self.dataOut.abscissaList
1357 1357 spectra = self.dataOut.data_pre
1358 1358 cspectra = self.dataIn.data_cspc
1359 1359 delta_v = vel[1] - vel[0]
1360 1360
1361 1361 #Calculating the power spectrum
1362 1362 spc_pow = numpy.sum(spectra, 3)*delta_v
1363 1363 #Normalizing Spectra
1364 1364 norm_spectra = spectra/spc_pow
1365 1365 #Calculating the norm_spectra at peak
1366 1366 max_spectra = numpy.max(norm_spectra, 3)
1367 1367
1368 1368 #Normalizing Cross Spectra
1369 1369 norm_cspectra = numpy.zeros(cspectra.shape)
1370 1370
1371 1371 for i in range(num_chan):
1372 1372 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
1373 1373
1374 1374 max_cspectra = numpy.max(norm_cspectra,2)
1375 1375 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
1376 1376
1377 1377 for i in range(num_pairs):
1378 1378 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
1379 1379 #------------------- Get Lags ----------------------------------
1380 1380
1381 1381 class SALags(Operation):
1382 1382 '''
1383 1383 Function GetMoments()
1384 1384
1385 1385 Input:
1386 1386 self.dataOut.data_pre
1387 1387 self.dataOut.abscissaList
1388 1388 self.dataOut.noise
1389 1389 self.dataOut.normFactor
1390 1390 self.dataOut.data_snr
1391 1391 self.dataOut.groupList
1392 1392 self.dataOut.nChannels
1393 1393
1394 1394 Affected:
1395 1395 self.dataOut.data_param
1396 1396
1397 1397 '''
1398 1398 def run(self, dataOut):
1399 1399 data_acf = dataOut.data_pre[0]
1400 1400 data_ccf = dataOut.data_pre[1]
1401 1401 normFactor_acf = dataOut.normFactor[0]
1402 1402 normFactor_ccf = dataOut.normFactor[1]
1403 1403 pairs_acf = dataOut.groupList[0]
1404 1404 pairs_ccf = dataOut.groupList[1]
1405 1405
1406 1406 nHeights = dataOut.nHeights
1407 1407 absc = dataOut.abscissaList
1408 1408 noise = dataOut.noise
1409 1409 SNR = dataOut.data_snr
1410 1410 nChannels = dataOut.nChannels
1411 1411 # pairsList = dataOut.groupList
1412 1412 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels)
1413 1413
1414 1414 for l in range(len(pairs_acf)):
1415 1415 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
1416 1416
1417 1417 for l in range(len(pairs_ccf)):
1418 1418 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
1419 1419
1420 1420 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
1421 1421 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
1422 1422 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
1423 1423 return
1424 1424
1425 1425 # def __getPairsAutoCorr(self, pairsList, nChannels):
1426 1426 #
1427 1427 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1428 1428 #
1429 1429 # for l in range(len(pairsList)):
1430 1430 # firstChannel = pairsList[l][0]
1431 1431 # secondChannel = pairsList[l][1]
1432 1432 #
1433 1433 # #Obteniendo pares de Autocorrelacion
1434 1434 # if firstChannel == secondChannel:
1435 1435 # pairsAutoCorr[firstChannel] = int(l)
1436 1436 #
1437 1437 # pairsAutoCorr = pairsAutoCorr.astype(int)
1438 1438 #
1439 1439 # pairsCrossCorr = range(len(pairsList))
1440 1440 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1441 1441 #
1442 1442 # return pairsAutoCorr, pairsCrossCorr
1443 1443
1444 1444 def __calculateTaus(self, data_acf, data_ccf, lagRange):
1445 1445
1446 1446 lag0 = data_acf.shape[1]/2
1447 1447 #Funcion de Autocorrelacion
1448 1448 mean_acf = stats.nanmean(data_acf, axis = 0)
1449 1449
1450 1450 #Obtencion Indice de TauCross
1451 1451 ind_ccf = data_ccf.argmax(axis = 1)
1452 1452 #Obtencion Indice de TauAuto
1453 1453 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
1454 1454 ccf_lag0 = data_ccf[:,lag0,:]
1455 1455
1456 1456 for i in range(ccf_lag0.shape[0]):
1457 1457 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
1458 1458
1459 1459 #Obtencion de TauCross y TauAuto
1460 1460 tau_ccf = lagRange[ind_ccf]
1461 1461 tau_acf = lagRange[ind_acf]
1462 1462
1463 1463 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
1464 1464
1465 1465 tau_ccf[Nan1,Nan2] = numpy.nan
1466 1466 tau_acf[Nan1,Nan2] = numpy.nan
1467 1467 tau = numpy.vstack((tau_ccf,tau_acf))
1468 1468
1469 1469 return tau
1470 1470
1471 1471 def __calculateLag1Phase(self, data, lagTRange):
1472 1472 data1 = stats.nanmean(data, axis = 0)
1473 1473 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
1474 1474
1475 1475 phase = numpy.angle(data1[lag1,:])
1476 1476
1477 1477 return phase
1478 1478
1479 1479 class SpectralFitting(Operation):
1480 1480 '''
1481 1481 Function GetMoments()
1482 1482
1483 1483 Input:
1484 1484 Output:
1485 1485 Variables modified:
1486 1486 '''
1487 1487
1488 1488 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
1489 1489
1490 1490
1491 1491 if path != None:
1492 1492 sys.path.append(path)
1493 1493 self.dataOut.library = importlib.import_module(file)
1494 1494
1495 1495 #To be inserted as a parameter
1496 1496 groupArray = numpy.array(groupList)
1497 1497 # groupArray = numpy.array([[0,1],[2,3]])
1498 1498 self.dataOut.groupList = groupArray
1499 1499
1500 1500 nGroups = groupArray.shape[0]
1501 1501 nChannels = self.dataIn.nChannels
1502 1502 nHeights=self.dataIn.heightList.size
1503 1503
1504 1504 #Parameters Array
1505 1505 self.dataOut.data_param = None
1506 1506
1507 1507 #Set constants
1508 1508 constants = self.dataOut.library.setConstants(self.dataIn)
1509 1509 self.dataOut.constants = constants
1510 1510 M = self.dataIn.normFactor
1511 1511 N = self.dataIn.nFFTPoints
1512 1512 ippSeconds = self.dataIn.ippSeconds
1513 1513 K = self.dataIn.nIncohInt
1514 1514 pairsArray = numpy.array(self.dataIn.pairsList)
1515 1515
1516 1516 #List of possible combinations
1517 1517 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
1518 1518 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
1519 1519
1520 1520 if getSNR:
1521 1521 listChannels = groupArray.reshape((groupArray.size))
1522 1522 listChannels.sort()
1523 1523 noise = self.dataIn.getNoise()
1524 1524 self.dataOut.data_snr = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
1525 1525
1526 1526 for i in range(nGroups):
1527 1527 coord = groupArray[i,:]
1528 1528
1529 1529 #Input data array
1530 1530 data = self.dataIn.data_spc[coord,:,:]/(M*N)
1531 1531 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
1532 1532
1533 1533 #Cross Spectra data array for Covariance Matrixes
1534 1534 ind = 0
1535 1535 for pairs in listComb:
1536 1536 pairsSel = numpy.array([coord[x],coord[y]])
1537 1537 indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0])
1538 1538 ind += 1
1539 1539 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
1540 1540 dataCross = dataCross**2/K
1541 1541
1542 1542 for h in range(nHeights):
1543 1543
1544 1544 #Input
1545 1545 d = data[:,h]
1546 1546
1547 1547 #Covariance Matrix
1548 1548 D = numpy.diag(d**2/K)
1549 1549 ind = 0
1550 1550 for pairs in listComb:
1551 1551 #Coordinates in Covariance Matrix
1552 1552 x = pairs[0]
1553 1553 y = pairs[1]
1554 1554 #Channel Index
1555 1555 S12 = dataCross[ind,:,h]
1556 1556 D12 = numpy.diag(S12)
1557 1557 #Completing Covariance Matrix with Cross Spectras
1558 1558 D[x*N:(x+1)*N,y*N:(y+1)*N] = D12
1559 1559 D[y*N:(y+1)*N,x*N:(x+1)*N] = D12
1560 1560 ind += 1
1561 1561 Dinv=numpy.linalg.inv(D)
1562 1562 L=numpy.linalg.cholesky(Dinv)
1563 1563 LT=L.T
1564 1564
1565 1565 dp = numpy.dot(LT,d)
1566 1566
1567 1567 #Initial values
1568 1568 data_spc = self.dataIn.data_spc[coord,:,h]
1569 1569
1570 1570 if (h>0)and(error1[3]<5):
1571 1571 p0 = self.dataOut.data_param[i,:,h-1]
1572 1572 else:
1573 1573 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
1574 1574
1575 1575 try:
1576 1576 #Least Squares
1577 1577 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
1578 1578 # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants))
1579 1579 #Chi square error
1580 1580 error0 = numpy.sum(infodict['fvec']**2)/(2*N)
1581 1581 #Error with Jacobian
1582 1582 error1 = self.dataOut.library.errorFunction(minp,constants,LT)
1583 1583 except:
1584 1584 minp = p0*numpy.nan
1585 1585 error0 = numpy.nan
1586 1586 error1 = p0*numpy.nan
1587 1587
1588 1588 #Save
1589 1589 if self.dataOut.data_param is None:
1590 1590 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
1591 1591 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
1592 1592
1593 1593 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
1594 1594 self.dataOut.data_param[i,:,h] = minp
1595 1595 return
1596 1596
1597 1597 def __residFunction(self, p, dp, LT, constants):
1598 1598
1599 1599 fm = self.dataOut.library.modelFunction(p, constants)
1600 1600 fmp=numpy.dot(LT,fm)
1601 1601
1602 1602 return dp-fmp
1603 1603
1604 1604 def __getSNR(self, z, noise):
1605 1605
1606 1606 avg = numpy.average(z, axis=1)
1607 1607 SNR = (avg.T-noise)/noise
1608 1608 SNR = SNR.T
1609 1609 return SNR
1610 1610
1611 1611 def __chisq(p,chindex,hindex):
1612 1612 #similar to Resid but calculates CHI**2
1613 1613 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
1614 1614 dp=numpy.dot(LT,d)
1615 1615 fmp=numpy.dot(LT,fm)
1616 1616 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
1617 1617 return chisq
1618 1618
1619 1619 class WindProfiler(Operation):
1620 1620
1621 1621 __isConfig = False
1622 1622
1623 1623 __initime = None
1624 1624 __lastdatatime = None
1625 1625 __integrationtime = None
1626 1626
1627 1627 __buffer = None
1628 1628
1629 1629 __dataReady = False
1630 1630
1631 1631 __firstdata = None
1632 1632
1633 1633 n = None
1634 1634
1635 1635 def __init__(self):
1636 1636 Operation.__init__(self)
1637 1637
1638 1638 def __calculateCosDir(self, elev, azim):
1639 1639 zen = (90 - elev)*numpy.pi/180
1640 1640 azim = azim*numpy.pi/180
1641 1641 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
1642 1642 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
1643 1643
1644 1644 signX = numpy.sign(numpy.cos(azim))
1645 1645 signY = numpy.sign(numpy.sin(azim))
1646 1646
1647 1647 cosDirX = numpy.copysign(cosDirX, signX)
1648 1648 cosDirY = numpy.copysign(cosDirY, signY)
1649 1649 return cosDirX, cosDirY
1650 1650
1651 1651 def __calculateAngles(self, theta_x, theta_y, azimuth):
1652 1652
1653 1653 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
1654 1654 zenith_arr = numpy.arccos(dir_cosw)
1655 1655 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
1656 1656
1657 1657 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
1658 1658 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
1659 1659
1660 1660 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
1661 1661
1662 1662 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
1663 1663
1664 1664 #
1665 1665 if horOnly:
1666 1666 A = numpy.c_[dir_cosu,dir_cosv]
1667 1667 else:
1668 1668 A = numpy.c_[dir_cosu,dir_cosv,dir_cosw]
1669 1669 A = numpy.asmatrix(A)
1670 1670 A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose()
1671 1671
1672 1672 return A1
1673 1673
1674 1674 def __correctValues(self, heiRang, phi, velRadial, SNR):
1675 1675 listPhi = phi.tolist()
1676 1676 maxid = listPhi.index(max(listPhi))
1677 1677 minid = listPhi.index(min(listPhi))
1678 1678
1679 1679 rango = list(range(len(phi)))
1680 1680 # rango = numpy.delete(rango,maxid)
1681 1681
1682 1682 heiRang1 = heiRang*math.cos(phi[maxid])
1683 1683 heiRangAux = heiRang*math.cos(phi[minid])
1684 1684 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1685 1685 heiRang1 = numpy.delete(heiRang1,indOut)
1686 1686
1687 1687 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1688 1688 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1689 1689
1690 1690 for i in rango:
1691 1691 x = heiRang*math.cos(phi[i])
1692 1692 y1 = velRadial[i,:]
1693 1693 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1694 1694
1695 1695 x1 = heiRang1
1696 1696 y11 = f1(x1)
1697 1697
1698 1698 y2 = SNR[i,:]
1699 1699 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1700 1700 y21 = f2(x1)
1701 1701
1702 1702 velRadial1[i,:] = y11
1703 1703 SNR1[i,:] = y21
1704 1704
1705 1705 return heiRang1, velRadial1, SNR1
1706 1706
1707 1707 def __calculateVelUVW(self, A, velRadial):
1708 1708
1709 1709 #Operacion Matricial
1710 1710 # velUVW = numpy.zeros((velRadial.shape[1],3))
1711 1711 # for ind in range(velRadial.shape[1]):
1712 1712 # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind])
1713 1713 # velUVW = velUVW.transpose()
1714 1714 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
1715 1715 velUVW[:,:] = numpy.dot(A,velRadial)
1716 1716
1717 1717
1718 1718 return velUVW
1719 1719
1720 1720 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
1721 1721
1722 1722 def techniqueDBS(self, kwargs):
1723 1723 """
1724 1724 Function that implements Doppler Beam Swinging (DBS) technique.
1725 1725
1726 1726 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1727 1727 Direction correction (if necessary), Ranges and SNR
1728 1728
1729 1729 Output: Winds estimation (Zonal, Meridional and Vertical)
1730 1730
1731 1731 Parameters affected: Winds, height range, SNR
1732 1732 """
1733 1733 velRadial0 = kwargs['velRadial']
1734 1734 heiRang = kwargs['heightList']
1735 1735 SNR0 = kwargs['SNR']
1736 1736
1737 1737 if 'dirCosx' in kwargs and 'dirCosy' in kwargs:
1738 1738 theta_x = numpy.array(kwargs['dirCosx'])
1739 1739 theta_y = numpy.array(kwargs['dirCosy'])
1740 1740 else:
1741 1741 elev = numpy.array(kwargs['elevation'])
1742 1742 azim = numpy.array(kwargs['azimuth'])
1743 1743 theta_x, theta_y = self.__calculateCosDir(elev, azim)
1744 1744 azimuth = kwargs['correctAzimuth']
1745 1745 if 'horizontalOnly' in kwargs:
1746 1746 horizontalOnly = kwargs['horizontalOnly']
1747 1747 else: horizontalOnly = False
1748 1748 if 'correctFactor' in kwargs:
1749 1749 correctFactor = kwargs['correctFactor']
1750 1750 else: correctFactor = 1
1751 1751 if 'channelList' in kwargs:
1752 1752 channelList = kwargs['channelList']
1753 1753 if len(channelList) == 2:
1754 1754 horizontalOnly = True
1755 1755 arrayChannel = numpy.array(channelList)
1756 1756 param = param[arrayChannel,:,:]
1757 1757 theta_x = theta_x[arrayChannel]
1758 1758 theta_y = theta_y[arrayChannel]
1759 1759
1760 1760 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
1761 1761 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
1762 1762 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
1763 1763
1764 1764 #Calculo de Componentes de la velocidad con DBS
1765 1765 winds = self.__calculateVelUVW(A,velRadial1)
1766 1766
1767 1767 return winds, heiRang1, SNR1
1768 1768
1769 1769 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
1770 1770
1771 1771 nPairs = len(pairs_ccf)
1772 1772 posx = numpy.asarray(posx)
1773 1773 posy = numpy.asarray(posy)
1774 1774
1775 1775 #Rotacion Inversa para alinear con el azimuth
1776 1776 if azimuth!= None:
1777 1777 azimuth = azimuth*math.pi/180
1778 1778 posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth)
1779 1779 posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth)
1780 1780 else:
1781 1781 posx1 = posx
1782 1782 posy1 = posy
1783 1783
1784 1784 #Calculo de Distancias
1785 1785 distx = numpy.zeros(nPairs)
1786 1786 disty = numpy.zeros(nPairs)
1787 1787 dist = numpy.zeros(nPairs)
1788 1788 ang = numpy.zeros(nPairs)
1789 1789
1790 1790 for i in range(nPairs):
1791 1791 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
1792 1792 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
1793 1793 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
1794 1794 ang[i] = numpy.arctan2(disty[i],distx[i])
1795 1795
1796 1796 return distx, disty, dist, ang
1797 1797 #Calculo de Matrices
1798 1798 # nPairs = len(pairs)
1799 1799 # ang1 = numpy.zeros((nPairs, 2, 1))
1800 1800 # dist1 = numpy.zeros((nPairs, 2, 1))
1801 1801 #
1802 1802 # for j in range(nPairs):
1803 1803 # dist1[j,0,0] = dist[pairs[j][0]]
1804 1804 # dist1[j,1,0] = dist[pairs[j][1]]
1805 1805 # ang1[j,0,0] = ang[pairs[j][0]]
1806 1806 # ang1[j,1,0] = ang[pairs[j][1]]
1807 1807 #
1808 1808 # return distx,disty, dist1,ang1
1809 1809
1810 1810
1811 1811 def __calculateVelVer(self, phase, lagTRange, _lambda):
1812 1812
1813 1813 Ts = lagTRange[1] - lagTRange[0]
1814 1814 velW = -_lambda*phase/(4*math.pi*Ts)
1815 1815
1816 1816 return velW
1817 1817
1818 1818 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
1819 1819 nPairs = tau1.shape[0]
1820 1820 nHeights = tau1.shape[1]
1821 1821 vel = numpy.zeros((nPairs,3,nHeights))
1822 1822 dist1 = numpy.reshape(dist, (dist.size,1))
1823 1823
1824 1824 angCos = numpy.cos(ang)
1825 1825 angSin = numpy.sin(ang)
1826 1826
1827 1827 vel0 = dist1*tau1/(2*tau2**2)
1828 1828 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
1829 1829 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
1830 1830
1831 1831 ind = numpy.where(numpy.isinf(vel))
1832 1832 vel[ind] = numpy.nan
1833 1833
1834 1834 return vel
1835 1835
1836 1836 # def __getPairsAutoCorr(self, pairsList, nChannels):
1837 1837 #
1838 1838 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1839 1839 #
1840 1840 # for l in range(len(pairsList)):
1841 1841 # firstChannel = pairsList[l][0]
1842 1842 # secondChannel = pairsList[l][1]
1843 1843 #
1844 1844 # #Obteniendo pares de Autocorrelacion
1845 1845 # if firstChannel == secondChannel:
1846 1846 # pairsAutoCorr[firstChannel] = int(l)
1847 1847 #
1848 1848 # pairsAutoCorr = pairsAutoCorr.astype(int)
1849 1849 #
1850 1850 # pairsCrossCorr = range(len(pairsList))
1851 1851 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1852 1852 #
1853 1853 # return pairsAutoCorr, pairsCrossCorr
1854 1854
1855 1855 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
1856 1856 def techniqueSA(self, kwargs):
1857 1857
1858 1858 """
1859 1859 Function that implements Spaced Antenna (SA) technique.
1860 1860
1861 1861 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1862 1862 Direction correction (if necessary), Ranges and SNR
1863 1863
1864 1864 Output: Winds estimation (Zonal, Meridional and Vertical)
1865 1865
1866 1866 Parameters affected: Winds
1867 1867 """
1868 1868 position_x = kwargs['positionX']
1869 1869 position_y = kwargs['positionY']
1870 1870 azimuth = kwargs['azimuth']
1871 1871
1872 1872 if 'correctFactor' in kwargs:
1873 1873 correctFactor = kwargs['correctFactor']
1874 1874 else:
1875 1875 correctFactor = 1
1876 1876
1877 1877 groupList = kwargs['groupList']
1878 1878 pairs_ccf = groupList[1]
1879 1879 tau = kwargs['tau']
1880 1880 _lambda = kwargs['_lambda']
1881 1881
1882 1882 #Cross Correlation pairs obtained
1883 1883 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
1884 1884 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
1885 1885 # pairsSelArray = numpy.array(pairsSelected)
1886 1886 # pairs = []
1887 1887 #
1888 1888 # #Wind estimation pairs obtained
1889 1889 # for i in range(pairsSelArray.shape[0]/2):
1890 1890 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
1891 1891 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
1892 1892 # pairs.append((ind1,ind2))
1893 1893
1894 1894 indtau = tau.shape[0]/2
1895 1895 tau1 = tau[:indtau,:]
1896 1896 tau2 = tau[indtau:-1,:]
1897 1897 # tau1 = tau1[pairs,:]
1898 1898 # tau2 = tau2[pairs,:]
1899 1899 phase1 = tau[-1,:]
1900 1900
1901 1901 #---------------------------------------------------------------------
1902 1902 #Metodo Directo
1903 1903 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
1904 1904 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
1905 1905 winds = stats.nanmean(winds, axis=0)
1906 1906 #---------------------------------------------------------------------
1907 1907 #Metodo General
1908 1908 # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth)
1909 1909 # #Calculo Coeficientes de Funcion de Correlacion
1910 1910 # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n)
1911 1911 # #Calculo de Velocidades
1912 1912 # winds = self.calculateVelUV(F,G,A,B,H)
1913 1913
1914 1914 #---------------------------------------------------------------------
1915 1915 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
1916 1916 winds = correctFactor*winds
1917 1917 return winds
1918 1918
1919 1919 def __checkTime(self, currentTime, paramInterval, outputInterval):
1920 1920
1921 1921 dataTime = currentTime + paramInterval
1922 1922 deltaTime = dataTime - self.__initime
1923 1923
1924 1924 if deltaTime >= outputInterval or deltaTime < 0:
1925 1925 self.__dataReady = True
1926 1926 return
1927 1927
1928 1928 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
1929 1929 '''
1930 1930 Function that implements winds estimation technique with detected meteors.
1931 1931
1932 1932 Input: Detected meteors, Minimum meteor quantity to wind estimation
1933 1933
1934 1934 Output: Winds estimation (Zonal and Meridional)
1935 1935
1936 1936 Parameters affected: Winds
1937 1937 '''
1938 1938 #Settings
1939 1939 nInt = (heightMax - heightMin)/2
1940 1940 nInt = int(nInt)
1941 1941 winds = numpy.zeros((2,nInt))*numpy.nan
1942 1942
1943 1943 #Filter errors
1944 1944 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
1945 1945 finalMeteor = arrayMeteor[error,:]
1946 1946
1947 1947 #Meteor Histogram
1948 1948 finalHeights = finalMeteor[:,2]
1949 1949 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
1950 1950 nMeteorsPerI = hist[0]
1951 1951 heightPerI = hist[1]
1952 1952
1953 1953 #Sort of meteors
1954 1954 indSort = finalHeights.argsort()
1955 1955 finalMeteor2 = finalMeteor[indSort,:]
1956 1956
1957 1957 # Calculating winds
1958 1958 ind1 = 0
1959 1959 ind2 = 0
1960 1960
1961 1961 for i in range(nInt):
1962 1962 nMet = nMeteorsPerI[i]
1963 1963 ind1 = ind2
1964 1964 ind2 = ind1 + nMet
1965 1965
1966 1966 meteorAux = finalMeteor2[ind1:ind2,:]
1967 1967
1968 1968 if meteorAux.shape[0] >= meteorThresh:
1969 1969 vel = meteorAux[:, 6]
1970 1970 zen = meteorAux[:, 4]*numpy.pi/180
1971 1971 azim = meteorAux[:, 3]*numpy.pi/180
1972 1972
1973 1973 n = numpy.cos(zen)
1974 1974 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
1975 1975 # l = m*numpy.tan(azim)
1976 1976 l = numpy.sin(zen)*numpy.sin(azim)
1977 1977 m = numpy.sin(zen)*numpy.cos(azim)
1978 1978
1979 1979 A = numpy.vstack((l, m)).transpose()
1980 1980 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
1981 1981 windsAux = numpy.dot(A1, vel)
1982 1982
1983 1983 winds[0,i] = windsAux[0]
1984 1984 winds[1,i] = windsAux[1]
1985 1985
1986 1986 return winds, heightPerI[:-1]
1987 1987
1988 1988 def techniqueNSM_SA(self, **kwargs):
1989 1989 metArray = kwargs['metArray']
1990 1990 heightList = kwargs['heightList']
1991 1991 timeList = kwargs['timeList']
1992 1992
1993 1993 rx_location = kwargs['rx_location']
1994 1994 groupList = kwargs['groupList']
1995 1995 azimuth = kwargs['azimuth']
1996 1996 dfactor = kwargs['dfactor']
1997 1997 k = kwargs['k']
1998 1998
1999 1999 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
2000 2000 d = dist*dfactor
2001 2001 #Phase calculation
2002 2002 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
2003 2003
2004 2004 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
2005 2005
2006 2006 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2007 2007 azimuth1 = azimuth1*numpy.pi/180
2008 2008
2009 2009 for i in range(heightList.size):
2010 2010 h = heightList[i]
2011 2011 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
2012 2012 metHeight = metArray1[indH,:]
2013 2013 if metHeight.shape[0] >= 2:
2014 2014 velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities
2015 2015 iazim = metHeight[:,1].astype(int)
2016 2016 azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths
2017 2017 A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux)))
2018 2018 A = numpy.asmatrix(A)
2019 2019 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
2020 2020 velHor = numpy.dot(A1,velAux)
2021 2021
2022 2022 velEst[i,:] = numpy.squeeze(velHor)
2023 2023 return velEst
2024 2024
2025 2025 def __getPhaseSlope(self, metArray, heightList, timeList):
2026 2026 meteorList = []
2027 2027 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
2028 2028 #Putting back together the meteor matrix
2029 2029 utctime = metArray[:,0]
2030 2030 uniqueTime = numpy.unique(utctime)
2031 2031
2032 2032 phaseDerThresh = 0.5
2033 2033 ippSeconds = timeList[1] - timeList[0]
2034 2034 sec = numpy.where(timeList>1)[0][0]
2035 2035 nPairs = metArray.shape[1] - 6
2036 2036 nHeights = len(heightList)
2037 2037
2038 2038 for t in uniqueTime:
2039 2039 metArray1 = metArray[utctime==t,:]
2040 2040 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
2041 2041 tmet = metArray1[:,1].astype(int)
2042 2042 hmet = metArray1[:,2].astype(int)
2043 2043
2044 2044 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
2045 2045 metPhase[:,:] = numpy.nan
2046 2046 metPhase[:,hmet,tmet] = metArray1[:,6:].T
2047 2047
2048 2048 #Delete short trails
2049 2049 metBool = ~numpy.isnan(metPhase[0,:,:])
2050 2050 heightVect = numpy.sum(metBool, axis = 1)
2051 2051 metBool[heightVect<sec,:] = False
2052 2052 metPhase[:,heightVect<sec,:] = numpy.nan
2053 2053
2054 2054 #Derivative
2055 2055 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
2056 2056 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
2057 2057 metPhase[phDerAux] = numpy.nan
2058 2058
2059 2059 #--------------------------METEOR DETECTION -----------------------------------------
2060 2060 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
2061 2061
2062 2062 for p in numpy.arange(nPairs):
2063 2063 phase = metPhase[p,:,:]
2064 2064 phDer = metDer[p,:,:]
2065 2065
2066 2066 for h in indMet:
2067 2067 height = heightList[h]
2068 2068 phase1 = phase[h,:] #82
2069 2069 phDer1 = phDer[h,:]
2070 2070
2071 2071 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
2072 2072
2073 2073 indValid = numpy.where(~numpy.isnan(phase1))[0]
2074 2074 initMet = indValid[0]
2075 2075 endMet = 0
2076 2076
2077 2077 for i in range(len(indValid)-1):
2078 2078
2079 2079 #Time difference
2080 2080 inow = indValid[i]
2081 2081 inext = indValid[i+1]
2082 2082 idiff = inext - inow
2083 2083 #Phase difference
2084 2084 phDiff = numpy.abs(phase1[inext] - phase1[inow])
2085 2085
2086 2086 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
2087 2087 sizeTrail = inow - initMet + 1
2088 2088 if sizeTrail>3*sec: #Too short meteors
2089 2089 x = numpy.arange(initMet,inow+1)*ippSeconds
2090 2090 y = phase1[initMet:inow+1]
2091 2091 ynnan = ~numpy.isnan(y)
2092 2092 x = x[ynnan]
2093 2093 y = y[ynnan]
2094 2094 slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
2095 2095 ylin = x*slope + intercept
2096 2096 rsq = r_value**2
2097 2097 if rsq > 0.5:
2098 2098 vel = slope#*height*1000/(k*d)
2099 2099 estAux = numpy.array([utctime,p,height, vel, rsq])
2100 2100 meteorList.append(estAux)
2101 2101 initMet = inext
2102 2102 metArray2 = numpy.array(meteorList)
2103 2103
2104 2104 return metArray2
2105 2105
2106 2106 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
2107 2107
2108 2108 azimuth1 = numpy.zeros(len(pairslist))
2109 2109 dist = numpy.zeros(len(pairslist))
2110 2110
2111 2111 for i in range(len(rx_location)):
2112 2112 ch0 = pairslist[i][0]
2113 2113 ch1 = pairslist[i][1]
2114 2114
2115 2115 diffX = rx_location[ch0][0] - rx_location[ch1][0]
2116 2116 diffY = rx_location[ch0][1] - rx_location[ch1][1]
2117 2117 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
2118 2118 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
2119 2119
2120 2120 azimuth1 -= azimuth0
2121 2121 return azimuth1, dist
2122 2122
2123 2123 def techniqueNSM_DBS(self, **kwargs):
2124 2124 metArray = kwargs['metArray']
2125 2125 heightList = kwargs['heightList']
2126 2126 timeList = kwargs['timeList']
2127 2127 azimuth = kwargs['azimuth']
2128 2128 theta_x = numpy.array(kwargs['theta_x'])
2129 2129 theta_y = numpy.array(kwargs['theta_y'])
2130 2130
2131 2131 utctime = metArray[:,0]
2132 2132 cmet = metArray[:,1].astype(int)
2133 2133 hmet = metArray[:,3].astype(int)
2134 2134 SNRmet = metArray[:,4]
2135 2135 vmet = metArray[:,5]
2136 2136 spcmet = metArray[:,6]
2137 2137
2138 2138 nChan = numpy.max(cmet) + 1
2139 2139 nHeights = len(heightList)
2140 2140
2141 2141 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
2142 2142 hmet = heightList[hmet]
2143 2143 h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights
2144 2144
2145 2145 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2146 2146
2147 2147 for i in range(nHeights - 1):
2148 2148 hmin = heightList[i]
2149 2149 hmax = heightList[i + 1]
2150 2150
2151 2151 thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10)
2152 2152 indthisH = numpy.where(thisH)
2153 2153
2154 2154 if numpy.size(indthisH) > 3:
2155 2155
2156 2156 vel_aux = vmet[thisH]
2157 2157 chan_aux = cmet[thisH]
2158 2158 cosu_aux = dir_cosu[chan_aux]
2159 2159 cosv_aux = dir_cosv[chan_aux]
2160 2160 cosw_aux = dir_cosw[chan_aux]
2161 2161
2162 2162 nch = numpy.size(numpy.unique(chan_aux))
2163 2163 if nch > 1:
2164 2164 A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True)
2165 2165 velEst[i,:] = numpy.dot(A,vel_aux)
2166 2166
2167 2167 return velEst
2168 2168
2169 2169 def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs):
2170 2170
2171 2171 param = dataOut.data_param
2172 2172 if dataOut.abscissaList != None:
2173 2173 absc = dataOut.abscissaList[:-1]
2174 2174 # noise = dataOut.noise
2175 2175 heightList = dataOut.heightList
2176 2176 SNR = dataOut.data_snr
2177 2177
2178 2178 if technique == 'DBS':
2179 2179
2180 2180 kwargs['velRadial'] = param[:,1,:] #Radial velocity
2181 2181 kwargs['heightList'] = heightList
2182 2182 kwargs['SNR'] = SNR
2183 2183
2184 2184 dataOut.data_output, dataOut.heightList, dataOut.data_snr = self.techniqueDBS(kwargs) #DBS Function
2185 2185 dataOut.utctimeInit = dataOut.utctime
2186 2186 dataOut.outputInterval = dataOut.paramInterval
2187 2187
2188 2188 elif technique == 'SA':
2189 2189
2190 2190 #Parameters
2191 2191 # position_x = kwargs['positionX']
2192 2192 # position_y = kwargs['positionY']
2193 2193 # azimuth = kwargs['azimuth']
2194 2194 #
2195 2195 # if kwargs.has_key('crosspairsList'):
2196 2196 # pairs = kwargs['crosspairsList']
2197 2197 # else:
2198 2198 # pairs = None
2199 2199 #
2200 2200 # if kwargs.has_key('correctFactor'):
2201 2201 # correctFactor = kwargs['correctFactor']
2202 2202 # else:
2203 2203 # correctFactor = 1
2204 2204
2205 2205 # tau = dataOut.data_param
2206 2206 # _lambda = dataOut.C/dataOut.frequency
2207 2207 # pairsList = dataOut.groupList
2208 2208 # nChannels = dataOut.nChannels
2209 2209
2210 2210 kwargs['groupList'] = dataOut.groupList
2211 2211 kwargs['tau'] = dataOut.data_param
2212 2212 kwargs['_lambda'] = dataOut.C/dataOut.frequency
2213 2213 # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor)
2214 2214 dataOut.data_output = self.techniqueSA(kwargs)
2215 2215 dataOut.utctimeInit = dataOut.utctime
2216 2216 dataOut.outputInterval = dataOut.timeInterval
2217 2217
2218 2218 elif technique == 'Meteors':
2219 2219 dataOut.flagNoData = True
2220 2220 self.__dataReady = False
2221 2221
2222 2222 if 'nHours' in kwargs:
2223 2223 nHours = kwargs['nHours']
2224 2224 else:
2225 2225 nHours = 1
2226 2226
2227 2227 if 'meteorsPerBin' in kwargs:
2228 2228 meteorThresh = kwargs['meteorsPerBin']
2229 2229 else:
2230 2230 meteorThresh = 6
2231 2231
2232 2232 if 'hmin' in kwargs:
2233 2233 hmin = kwargs['hmin']
2234 2234 else: hmin = 70
2235 2235 if 'hmax' in kwargs:
2236 2236 hmax = kwargs['hmax']
2237 2237 else: hmax = 110
2238 2238
2239 2239 dataOut.outputInterval = nHours*3600
2240 2240
2241 2241 if self.__isConfig == False:
2242 2242 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2243 2243 #Get Initial LTC time
2244 2244 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2245 2245 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2246 2246
2247 2247 self.__isConfig = True
2248 2248
2249 2249 if self.__buffer is None:
2250 2250 self.__buffer = dataOut.data_param
2251 2251 self.__firstdata = copy.copy(dataOut)
2252 2252
2253 2253 else:
2254 2254 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2255 2255
2256 2256 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2257 2257
2258 2258 if self.__dataReady:
2259 2259 dataOut.utctimeInit = self.__initime
2260 2260
2261 2261 self.__initime += dataOut.outputInterval #to erase time offset
2262 2262
2263 2263 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
2264 2264 dataOut.flagNoData = False
2265 2265 self.__buffer = None
2266 2266
2267 2267 elif technique == 'Meteors1':
2268 2268 dataOut.flagNoData = True
2269 2269 self.__dataReady = False
2270 2270
2271 2271 if 'nMins' in kwargs:
2272 2272 nMins = kwargs['nMins']
2273 2273 else: nMins = 20
2274 2274 if 'rx_location' in kwargs:
2275 2275 rx_location = kwargs['rx_location']
2276 2276 else: rx_location = [(0,1),(1,1),(1,0)]
2277 2277 if 'azimuth' in kwargs:
2278 2278 azimuth = kwargs['azimuth']
2279 2279 else: azimuth = 51.06
2280 2280 if 'dfactor' in kwargs:
2281 2281 dfactor = kwargs['dfactor']
2282 2282 if 'mode' in kwargs:
2283 2283 mode = kwargs['mode']
2284 2284 if 'theta_x' in kwargs:
2285 2285 theta_x = kwargs['theta_x']
2286 2286 if 'theta_y' in kwargs:
2287 2287 theta_y = kwargs['theta_y']
2288 2288 else: mode = 'SA'
2289 2289
2290 2290 #Borrar luego esto
2291 2291 if dataOut.groupList is None:
2292 2292 dataOut.groupList = [(0,1),(0,2),(1,2)]
2293 2293 groupList = dataOut.groupList
2294 2294 C = 3e8
2295 2295 freq = 50e6
2296 2296 lamb = C/freq
2297 2297 k = 2*numpy.pi/lamb
2298 2298
2299 2299 timeList = dataOut.abscissaList
2300 2300 heightList = dataOut.heightList
2301 2301
2302 2302 if self.__isConfig == False:
2303 2303 dataOut.outputInterval = nMins*60
2304 2304 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2305 2305 #Get Initial LTC time
2306 2306 initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2307 2307 minuteAux = initime.minute
2308 2308 minuteNew = int(numpy.floor(minuteAux/nMins)*nMins)
2309 2309 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2310 2310
2311 2311 self.__isConfig = True
2312 2312
2313 2313 if self.__buffer is None:
2314 2314 self.__buffer = dataOut.data_param
2315 2315 self.__firstdata = copy.copy(dataOut)
2316 2316
2317 2317 else:
2318 2318 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2319 2319
2320 2320 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2321 2321
2322 2322 if self.__dataReady:
2323 2323 dataOut.utctimeInit = self.__initime
2324 2324 self.__initime += dataOut.outputInterval #to erase time offset
2325 2325
2326 2326 metArray = self.__buffer
2327 2327 if mode == 'SA':
2328 2328 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
2329 2329 elif mode == 'DBS':
2330 2330 dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y)
2331 2331 dataOut.data_output = dataOut.data_output.T
2332 2332 dataOut.flagNoData = False
2333 2333 self.__buffer = None
2334 2334
2335 2335 return
2336 2336
2337 2337 class EWDriftsEstimation(Operation):
2338 2338
2339 2339 def __init__(self):
2340 2340 Operation.__init__(self)
2341 2341
2342 2342 def __correctValues(self, heiRang, phi, velRadial, SNR):
2343 2343 listPhi = phi.tolist()
2344 2344 maxid = listPhi.index(max(listPhi))
2345 2345 minid = listPhi.index(min(listPhi))
2346 2346
2347 2347 rango = list(range(len(phi)))
2348 2348 # rango = numpy.delete(rango,maxid)
2349 2349
2350 2350 heiRang1 = heiRang*math.cos(phi[maxid])
2351 2351 heiRangAux = heiRang*math.cos(phi[minid])
2352 2352 indOut = (heiRang1 < heiRangAux[0]).nonzero()
2353 2353 heiRang1 = numpy.delete(heiRang1,indOut)
2354 2354
2355 2355 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
2356 2356 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
2357 2357
2358 2358 for i in rango:
2359 2359 x = heiRang*math.cos(phi[i])
2360 2360 y1 = velRadial[i,:]
2361 2361 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
2362 2362
2363 2363 x1 = heiRang1
2364 2364 y11 = f1(x1)
2365 2365
2366 2366 y2 = SNR[i,:]
2367 2367 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
2368 2368 y21 = f2(x1)
2369 2369
2370 2370 velRadial1[i,:] = y11
2371 2371 SNR1[i,:] = y21
2372 2372
2373 2373 return heiRang1, velRadial1, SNR1
2374 2374
2375 2375 def run(self, dataOut, zenith, zenithCorrection):
2376 2376 heiRang = dataOut.heightList
2377 2377 velRadial = dataOut.data_param[:,3,:]
2378 2378 SNR = dataOut.data_snr
2379 2379
2380 2380 zenith = numpy.array(zenith)
2381 2381 zenith -= zenithCorrection
2382 2382 zenith *= numpy.pi/180
2383 2383
2384 2384 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
2385 2385
2386 2386 alp = zenith[0]
2387 2387 bet = zenith[1]
2388 2388
2389 2389 w_w = velRadial1[0,:]
2390 2390 w_e = velRadial1[1,:]
2391 2391
2392 2392 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
2393 2393 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
2394 2394
2395 2395 winds = numpy.vstack((u,w))
2396 2396
2397 2397 dataOut.heightList = heiRang1
2398 2398 dataOut.data_output = winds
2399 2399 dataOut.data_snr = SNR1
2400 2400
2401 2401 dataOut.utctimeInit = dataOut.utctime
2402 2402 dataOut.outputInterval = dataOut.timeInterval
2403 2403 return
2404 2404
2405 2405 #--------------- Non Specular Meteor ----------------
2406 2406
2407 2407 class NonSpecularMeteorDetection(Operation):
2408 2408
2409 2409 def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
2410 2410 data_acf = dataOut.data_pre[0]
2411 2411 data_ccf = dataOut.data_pre[1]
2412 2412 pairsList = dataOut.groupList[1]
2413 2413
2414 2414 lamb = dataOut.C/dataOut.frequency
2415 2415 tSamp = dataOut.ippSeconds*dataOut.nCohInt
2416 2416 paramInterval = dataOut.paramInterval
2417 2417
2418 2418 nChannels = data_acf.shape[0]
2419 2419 nLags = data_acf.shape[1]
2420 2420 nProfiles = data_acf.shape[2]
2421 2421 nHeights = dataOut.nHeights
2422 2422 nCohInt = dataOut.nCohInt
2423 2423 sec = numpy.round(nProfiles/dataOut.paramInterval)
2424 2424 heightList = dataOut.heightList
2425 2425 ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg
2426 2426 utctime = dataOut.utctime
2427 2427
2428 2428 dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
2429 2429
2430 2430 #------------------------ SNR --------------------------------------
2431 2431 power = data_acf[:,0,:,:].real
2432 2432 noise = numpy.zeros(nChannels)
2433 2433 SNR = numpy.zeros(power.shape)
2434 2434 for i in range(nChannels):
2435 2435 noise[i] = hildebrand_sekhon(power[i,:], nCohInt)
2436 2436 SNR[i] = (power[i]-noise[i])/noise[i]
2437 2437 SNRm = numpy.nanmean(SNR, axis = 0)
2438 2438 SNRdB = 10*numpy.log10(SNR)
2439 2439
2440 2440 if mode == 'SA':
2441 2441 dataOut.groupList = dataOut.groupList[1]
2442 2442 nPairs = data_ccf.shape[0]
2443 2443 #---------------------- Coherence and Phase --------------------------
2444 2444 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
2445 2445 # phase1 = numpy.copy(phase)
2446 2446 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
2447 2447
2448 2448 for p in range(nPairs):
2449 2449 ch0 = pairsList[p][0]
2450 2450 ch1 = pairsList[p][1]
2451 2451 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
2452 2452 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
2453 2453 # phase1[p,:,:] = numpy.angle(ccf) #median filter
2454 2454 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
2455 2455 # coh1[p,:,:] = numpy.abs(ccf) #median filter
2456 2456 coh = numpy.nanmax(coh1, axis = 0)
2457 2457 # struc = numpy.ones((5,1))
2458 2458 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
2459 2459 #---------------------- Radial Velocity ----------------------------
2460 2460 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
2461 2461 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
2462 2462
2463 2463 if allData:
2464 2464 boolMetFin = ~numpy.isnan(SNRm)
2465 2465 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2466 2466 else:
2467 2467 #------------------------ Meteor mask ---------------------------------
2468 2468 # #SNR mask
2469 2469 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
2470 2470 #
2471 2471 # #Erase small objects
2472 2472 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
2473 2473 #
2474 2474 # auxEEJ = numpy.sum(boolMet1,axis=0)
2475 2475 # indOver = auxEEJ>nProfiles*0.8 #Use this later
2476 2476 # indEEJ = numpy.where(indOver)[0]
2477 2477 # indNEEJ = numpy.where(~indOver)[0]
2478 2478 #
2479 2479 # boolMetFin = boolMet1
2480 2480 #
2481 2481 # if indEEJ.size > 0:
2482 2482 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
2483 2483 #
2484 2484 # boolMet2 = coh > cohThresh
2485 2485 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
2486 2486 #
2487 2487 # #Final Meteor mask
2488 2488 # boolMetFin = boolMet1|boolMet2
2489 2489
2490 2490 #Coherence mask
2491 2491 boolMet1 = coh > 0.75
2492 2492 struc = numpy.ones((30,1))
2493 2493 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
2494 2494
2495 2495 #Derivative mask
2496 2496 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2497 2497 boolMet2 = derPhase < 0.2
2498 2498 # boolMet2 = ndimage.morphology.binary_opening(boolMet2)
2499 2499 # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1)))
2500 2500 boolMet2 = ndimage.median_filter(boolMet2,size=5)
2501 2501 boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool)))
2502 2502 # #Final mask
2503 2503 # boolMetFin = boolMet2
2504 2504 boolMetFin = boolMet1&boolMet2
2505 2505 # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin)
2506 2506 #Creating data_param
2507 2507 coordMet = numpy.where(boolMetFin)
2508 2508
2509 2509 tmet = coordMet[0]
2510 2510 hmet = coordMet[1]
2511 2511
2512 2512 data_param = numpy.zeros((tmet.size, 6 + nPairs))
2513 2513 data_param[:,0] = utctime
2514 2514 data_param[:,1] = tmet
2515 2515 data_param[:,2] = hmet
2516 2516 data_param[:,3] = SNRm[tmet,hmet]
2517 2517 data_param[:,4] = velRad[tmet,hmet]
2518 2518 data_param[:,5] = coh[tmet,hmet]
2519 2519 data_param[:,6:] = phase[:,tmet,hmet].T
2520 2520
2521 2521 elif mode == 'DBS':
2522 2522 dataOut.groupList = numpy.arange(nChannels)
2523 2523
2524 2524 #Radial Velocities
2525 2525 phase = numpy.angle(data_acf[:,1,:,:])
2526 2526 # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
2527 2527 velRad = phase*lamb/(4*numpy.pi*tSamp)
2528 2528
2529 2529 #Spectral width
2530 2530 # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
2531 2531 # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
2532 2532 acf1 = data_acf[:,1,:,:]
2533 2533 acf2 = data_acf[:,2,:,:]
2534 2534
2535 2535 spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
2536 2536 # velRad = ndimage.median_filter(velRad, size = (1,5,1))
2537 2537 if allData:
2538 2538 boolMetFin = ~numpy.isnan(SNRdB)
2539 2539 else:
2540 2540 #SNR
2541 2541 boolMet1 = (SNRdB>SNRthresh) #SNR mask
2542 2542 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
2543 2543
2544 2544 #Radial velocity
2545 2545 boolMet2 = numpy.abs(velRad) < 20
2546 2546 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
2547 2547
2548 2548 #Spectral Width
2549 2549 boolMet3 = spcWidth < 30
2550 2550 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
2551 2551 # boolMetFin = self.__erase_small(boolMet1, 10,5)
2552 2552 boolMetFin = boolMet1&boolMet2&boolMet3
2553 2553
2554 2554 #Creating data_param
2555 2555 coordMet = numpy.where(boolMetFin)
2556 2556
2557 2557 cmet = coordMet[0]
2558 2558 tmet = coordMet[1]
2559 2559 hmet = coordMet[2]
2560 2560
2561 2561 data_param = numpy.zeros((tmet.size, 7))
2562 2562 data_param[:,0] = utctime
2563 2563 data_param[:,1] = cmet
2564 2564 data_param[:,2] = tmet
2565 2565 data_param[:,3] = hmet
2566 2566 data_param[:,4] = SNR[cmet,tmet,hmet].T
2567 2567 data_param[:,5] = velRad[cmet,tmet,hmet].T
2568 2568 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
2569 2569
2570 2570 # self.dataOut.data_param = data_int
2571 2571 if len(data_param) == 0:
2572 2572 dataOut.flagNoData = True
2573 2573 else:
2574 2574 dataOut.data_param = data_param
2575 2575
2576 2576 def __erase_small(self, binArray, threshX, threshY):
2577 2577 labarray, numfeat = ndimage.measurements.label(binArray)
2578 2578 binArray1 = numpy.copy(binArray)
2579 2579
2580 2580 for i in range(1,numfeat + 1):
2581 2581 auxBin = (labarray==i)
2582 2582 auxSize = auxBin.sum()
2583 2583
2584 2584 x,y = numpy.where(auxBin)
2585 2585 widthX = x.max() - x.min()
2586 2586 widthY = y.max() - y.min()
2587 2587
2588 2588 #width X: 3 seg -> 12.5*3
2589 2589 #width Y:
2590 2590
2591 2591 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
2592 2592 binArray1[auxBin] = False
2593 2593
2594 2594 return binArray1
2595 2595
2596 2596 #--------------- Specular Meteor ----------------
2597 2597
2598 2598 class SMDetection(Operation):
2599 2599 '''
2600 2600 Function DetectMeteors()
2601 2601 Project developed with paper:
2602 2602 HOLDSWORTH ET AL. 2004
2603 2603
2604 2604 Input:
2605 2605 self.dataOut.data_pre
2606 2606
2607 2607 centerReceiverIndex: From the channels, which is the center receiver
2608 2608
2609 2609 hei_ref: Height reference for the Beacon signal extraction
2610 2610 tauindex:
2611 2611 predefinedPhaseShifts: Predefined phase offset for the voltge signals
2612 2612
2613 2613 cohDetection: Whether to user Coherent detection or not
2614 2614 cohDet_timeStep: Coherent Detection calculation time step
2615 2615 cohDet_thresh: Coherent Detection phase threshold to correct phases
2616 2616
2617 2617 noise_timeStep: Noise calculation time step
2618 2618 noise_multiple: Noise multiple to define signal threshold
2619 2619
2620 2620 multDet_timeLimit: Multiple Detection Removal time limit in seconds
2621 2621 multDet_rangeLimit: Multiple Detection Removal range limit in km
2622 2622
2623 2623 phaseThresh: Maximum phase difference between receiver to be consider a meteor
2624 2624 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
2625 2625
2626 2626 hmin: Minimum Height of the meteor to use it in the further wind estimations
2627 2627 hmax: Maximum Height of the meteor to use it in the further wind estimations
2628 2628 azimuth: Azimuth angle correction
2629 2629
2630 2630 Affected:
2631 2631 self.dataOut.data_param
2632 2632
2633 2633 Rejection Criteria (Errors):
2634 2634 0: No error; analysis OK
2635 2635 1: SNR < SNR threshold
2636 2636 2: angle of arrival (AOA) ambiguously determined
2637 2637 3: AOA estimate not feasible
2638 2638 4: Large difference in AOAs obtained from different antenna baselines
2639 2639 5: echo at start or end of time series
2640 2640 6: echo less than 5 examples long; too short for analysis
2641 2641 7: echo rise exceeds 0.3s
2642 2642 8: echo decay time less than twice rise time
2643 2643 9: large power level before echo
2644 2644 10: large power level after echo
2645 2645 11: poor fit to amplitude for estimation of decay time
2646 2646 12: poor fit to CCF phase variation for estimation of radial drift velocity
2647 2647 13: height unresolvable echo: not valid height within 70 to 110 km
2648 2648 14: height ambiguous echo: more then one possible height within 70 to 110 km
2649 2649 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
2650 2650 16: oscilatory echo, indicating event most likely not an underdense echo
2651 2651
2652 2652 17: phase difference in meteor Reestimation
2653 2653
2654 2654 Data Storage:
2655 2655 Meteors for Wind Estimation (8):
2656 2656 Utc Time | Range Height
2657 2657 Azimuth Zenith errorCosDir
2658 2658 VelRad errorVelRad
2659 2659 Phase0 Phase1 Phase2 Phase3
2660 2660 TypeError
2661 2661
2662 2662 '''
2663 2663
2664 2664 def run(self, dataOut, hei_ref = None, tauindex = 0,
2665 2665 phaseOffsets = None,
2666 2666 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
2667 2667 noise_timeStep = 4, noise_multiple = 4,
2668 2668 multDet_timeLimit = 1, multDet_rangeLimit = 3,
2669 2669 phaseThresh = 20, SNRThresh = 5,
2670 2670 hmin = 50, hmax=150, azimuth = 0,
2671 2671 channelPositions = None) :
2672 2672
2673 2673
2674 2674 #Getting Pairslist
2675 2675 if channelPositions is None:
2676 2676 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2677 2677 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2678 2678 meteorOps = SMOperations()
2679 2679 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2680 2680 heiRang = dataOut.heightList
2681 2681 #Get Beacon signal - No Beacon signal anymore
2682 2682 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
2683 2683 #
2684 2684 # if hei_ref != None:
2685 2685 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
2686 2686 #
2687 2687
2688 2688
2689 2689 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
2690 2690 # see if the user put in pre defined phase shifts
2691 2691 voltsPShift = dataOut.data_pre.copy()
2692 2692
2693 2693 # if predefinedPhaseShifts != None:
2694 2694 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
2695 2695 #
2696 2696 # # elif beaconPhaseShifts:
2697 2697 # # #get hardware phase shifts using beacon signal
2698 2698 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
2699 2699 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
2700 2700 #
2701 2701 # else:
2702 2702 # hardwarePhaseShifts = numpy.zeros(5)
2703 2703 #
2704 2704 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
2705 2705 # for i in range(self.dataOut.data_pre.shape[0]):
2706 2706 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
2707 2707
2708 2708 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
2709 2709
2710 2710 #Remove DC
2711 2711 voltsDC = numpy.mean(voltsPShift,1)
2712 2712 voltsDC = numpy.mean(voltsDC,1)
2713 2713 for i in range(voltsDC.shape[0]):
2714 2714 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
2715 2715
2716 2716 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
2717 2717 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
2718 2718
2719 2719 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
2720 2720 #Coherent Detection
2721 2721 if cohDetection:
2722 2722 #use coherent detection to get the net power
2723 2723 cohDet_thresh = cohDet_thresh*numpy.pi/180
2724 2724 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
2725 2725
2726 2726 #Non-coherent detection!
2727 2727 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
2728 2728 #********** END OF COH/NON-COH POWER CALCULATION**********************
2729 2729
2730 2730 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
2731 2731 #Get noise
2732 2732 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
2733 2733 # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval)
2734 2734 #Get signal threshold
2735 2735 signalThresh = noise_multiple*noise
2736 2736 #Meteor echoes detection
2737 2737 listMeteors = self.__findMeteors(powerNet, signalThresh)
2738 2738 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
2739 2739
2740 2740 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
2741 2741 #Parameters
2742 2742 heiRange = dataOut.heightList
2743 2743 rangeInterval = heiRange[1] - heiRange[0]
2744 2744 rangeLimit = multDet_rangeLimit/rangeInterval
2745 2745 timeLimit = multDet_timeLimit/dataOut.timeInterval
2746 2746 #Multiple detection removals
2747 2747 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
2748 2748 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
2749 2749
2750 2750 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
2751 2751 #Parameters
2752 2752 phaseThresh = phaseThresh*numpy.pi/180
2753 2753 thresh = [phaseThresh, noise_multiple, SNRThresh]
2754 2754 #Meteor reestimation (Errors N 1, 6, 12, 17)
2755 2755 listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency)
2756 2756 # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise)
2757 2757 #Estimation of decay times (Errors N 7, 8, 11)
2758 2758 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
2759 2759 #******************* END OF METEOR REESTIMATION *******************
2760 2760
2761 2761 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
2762 2762 #Calculating Radial Velocity (Error N 15)
2763 2763 radialStdThresh = 10
2764 2764 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
2765 2765
2766 2766 if len(listMeteors4) > 0:
2767 2767 #Setting New Array
2768 2768 date = dataOut.utctime
2769 2769 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
2770 2770
2771 2771 #Correcting phase offset
2772 2772 if phaseOffsets != None:
2773 2773 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2774 2774 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2775 2775
2776 2776 #Second Pairslist
2777 2777 pairsList = []
2778 2778 pairx = (0,1)
2779 2779 pairy = (2,3)
2780 2780 pairsList.append(pairx)
2781 2781 pairsList.append(pairy)
2782 2782
2783 2783 jph = numpy.array([0,0,0,0])
2784 2784 h = (hmin,hmax)
2785 2785 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2786 2786
2787 2787 # #Calculate AOA (Error N 3, 4)
2788 2788 # #JONES ET AL. 1998
2789 2789 # error = arrayParameters[:,-1]
2790 2790 # AOAthresh = numpy.pi/8
2791 2791 # phases = -arrayParameters[:,9:13]
2792 2792 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
2793 2793 #
2794 2794 # #Calculate Heights (Error N 13 and 14)
2795 2795 # error = arrayParameters[:,-1]
2796 2796 # Ranges = arrayParameters[:,2]
2797 2797 # zenith = arrayParameters[:,5]
2798 2798 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
2799 2799 # error = arrayParameters[:,-1]
2800 2800 #********************* END OF PARAMETERS CALCULATION **************************
2801 2801
2802 2802 #***************************+ PASS DATA TO NEXT STEP **********************
2803 2803 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
2804 2804 dataOut.data_param = arrayParameters
2805 2805
2806 2806 if arrayParameters is None:
2807 2807 dataOut.flagNoData = True
2808 2808 else:
2809 2809 dataOut.flagNoData = True
2810 2810
2811 2811 return
2812 2812
2813 2813 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
2814 2814
2815 2815 minIndex = min(newheis[0])
2816 2816 maxIndex = max(newheis[0])
2817 2817
2818 2818 voltage = voltage0[:,:,minIndex:maxIndex+1]
2819 2819 nLength = voltage.shape[1]/n
2820 2820 nMin = 0
2821 2821 nMax = 0
2822 2822 phaseOffset = numpy.zeros((len(pairslist),n))
2823 2823
2824 2824 for i in range(n):
2825 2825 nMax += nLength
2826 2826 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
2827 2827 phaseCCF = numpy.mean(phaseCCF, axis = 2)
2828 2828 phaseOffset[:,i] = phaseCCF.transpose()
2829 2829 nMin = nMax
2830 2830 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
2831 2831
2832 2832 #Remove Outliers
2833 2833 factor = 2
2834 2834 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
2835 2835 dw = numpy.std(wt,axis = 1)
2836 2836 dw = dw.reshape((dw.size,1))
2837 2837 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
2838 2838 phaseOffset[ind] = numpy.nan
2839 2839 phaseOffset = stats.nanmean(phaseOffset, axis=1)
2840 2840
2841 2841 return phaseOffset
2842 2842
2843 2843 def __shiftPhase(self, data, phaseShift):
2844 2844 #this will shift the phase of a complex number
2845 2845 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
2846 2846 return dataShifted
2847 2847
2848 2848 def __estimatePhaseDifference(self, array, pairslist):
2849 2849 nChannel = array.shape[0]
2850 2850 nHeights = array.shape[2]
2851 2851 numPairs = len(pairslist)
2852 2852 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
2853 2853 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
2854 2854
2855 2855 #Correct phases
2856 2856 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
2857 2857 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2858 2858
2859 2859 if indDer[0].shape[0] > 0:
2860 2860 for i in range(indDer[0].shape[0]):
2861 2861 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
2862 2862 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
2863 2863
2864 2864 # for j in range(numSides):
2865 2865 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
2866 2866 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
2867 2867 #
2868 2868 #Linear
2869 2869 phaseInt = numpy.zeros((numPairs,1))
2870 2870 angAllCCF = phaseCCF[:,[0,1,3,4],0]
2871 2871 for j in range(numPairs):
2872 2872 fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:])
2873 2873 phaseInt[j] = fit[1]
2874 2874 #Phase Differences
2875 2875 phaseDiff = phaseInt - phaseCCF[:,2,:]
2876 2876 phaseArrival = phaseInt.reshape(phaseInt.size)
2877 2877
2878 2878 #Dealias
2879 2879 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
2880 2880 # indAlias = numpy.where(phaseArrival > numpy.pi)
2881 2881 # phaseArrival[indAlias] -= 2*numpy.pi
2882 2882 # indAlias = numpy.where(phaseArrival < -numpy.pi)
2883 2883 # phaseArrival[indAlias] += 2*numpy.pi
2884 2884
2885 2885 return phaseDiff, phaseArrival
2886 2886
2887 2887 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
2888 2888 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
2889 2889 #find the phase shifts of each channel over 1 second intervals
2890 2890 #only look at ranges below the beacon signal
2891 2891 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2892 2892 numBlocks = int(volts.shape[1]/numProfPerBlock)
2893 2893 numHeights = volts.shape[2]
2894 2894 nChannel = volts.shape[0]
2895 2895 voltsCohDet = volts.copy()
2896 2896
2897 2897 pairsarray = numpy.array(pairslist)
2898 2898 indSides = pairsarray[:,1]
2899 2899 # indSides = numpy.array(range(nChannel))
2900 2900 # indSides = numpy.delete(indSides, indCenter)
2901 2901 #
2902 2902 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
2903 2903 listBlocks = numpy.array_split(volts, numBlocks, 1)
2904 2904
2905 2905 startInd = 0
2906 2906 endInd = 0
2907 2907
2908 2908 for i in range(numBlocks):
2909 2909 startInd = endInd
2910 2910 endInd = endInd + listBlocks[i].shape[1]
2911 2911
2912 2912 arrayBlock = listBlocks[i]
2913 2913 # arrayBlockCenter = listCenter[i]
2914 2914
2915 2915 #Estimate the Phase Difference
2916 2916 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
2917 2917 #Phase Difference RMS
2918 2918 arrayPhaseRMS = numpy.abs(phaseDiff)
2919 2919 phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0)
2920 2920 indPhase = numpy.where(phaseRMSaux==4)
2921 2921 #Shifting
2922 2922 if indPhase[0].shape[0] > 0:
2923 2923 for j in range(indSides.size):
2924 2924 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
2925 2925 voltsCohDet[:,startInd:endInd,:] = arrayBlock
2926 2926
2927 2927 return voltsCohDet
2928 2928
2929 2929 def __calculateCCF(self, volts, pairslist ,laglist):
2930 2930
2931 2931 nHeights = volts.shape[2]
2932 2932 nPoints = volts.shape[1]
2933 2933 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
2934 2934
2935 2935 for i in range(len(pairslist)):
2936 2936 volts1 = volts[pairslist[i][0]]
2937 2937 volts2 = volts[pairslist[i][1]]
2938 2938
2939 2939 for t in range(len(laglist)):
2940 2940 idxT = laglist[t]
2941 2941 if idxT >= 0:
2942 2942 vStacked = numpy.vstack((volts2[idxT:,:],
2943 2943 numpy.zeros((idxT, nHeights),dtype='complex')))
2944 2944 else:
2945 2945 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
2946 2946 volts2[:(nPoints + idxT),:]))
2947 2947 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
2948 2948
2949 2949 vStacked = None
2950 2950 return voltsCCF
2951 2951
2952 2952 def __getNoise(self, power, timeSegment, timeInterval):
2953 2953 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2954 2954 numBlocks = int(power.shape[0]/numProfPerBlock)
2955 2955 numHeights = power.shape[1]
2956 2956
2957 2957 listPower = numpy.array_split(power, numBlocks, 0)
2958 2958 noise = numpy.zeros((power.shape[0], power.shape[1]))
2959 2959 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
2960 2960
2961 2961 startInd = 0
2962 2962 endInd = 0
2963 2963
2964 2964 for i in range(numBlocks): #split por canal
2965 2965 startInd = endInd
2966 2966 endInd = endInd + listPower[i].shape[0]
2967 2967
2968 2968 arrayBlock = listPower[i]
2969 2969 noiseAux = numpy.mean(arrayBlock, 0)
2970 2970 # noiseAux = numpy.median(noiseAux)
2971 2971 # noiseAux = numpy.mean(arrayBlock)
2972 2972 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
2973 2973
2974 2974 noiseAux1 = numpy.mean(arrayBlock)
2975 2975 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
2976 2976
2977 2977 return noise, noise1
2978 2978
2979 2979 def __findMeteors(self, power, thresh):
2980 2980 nProf = power.shape[0]
2981 2981 nHeights = power.shape[1]
2982 2982 listMeteors = []
2983 2983
2984 2984 for i in range(nHeights):
2985 2985 powerAux = power[:,i]
2986 2986 threshAux = thresh[:,i]
2987 2987
2988 2988 indUPthresh = numpy.where(powerAux > threshAux)[0]
2989 2989 indDNthresh = numpy.where(powerAux <= threshAux)[0]
2990 2990
2991 2991 j = 0
2992 2992
2993 2993 while (j < indUPthresh.size - 2):
2994 2994 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
2995 2995 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
2996 2996 indDNthresh = indDNthresh[indDNAux]
2997 2997
2998 2998 if (indDNthresh.size > 0):
2999 2999 indEnd = indDNthresh[0] - 1
3000 3000 indInit = indUPthresh[j]
3001 3001
3002 3002 meteor = powerAux[indInit:indEnd + 1]
3003 3003 indPeak = meteor.argmax() + indInit
3004 3004 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
3005 3005
3006 3006 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
3007 3007 j = numpy.where(indUPthresh == indEnd)[0] + 1
3008 3008 else: j+=1
3009 3009 else: j+=1
3010 3010
3011 3011 return listMeteors
3012 3012
3013 3013 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
3014 3014
3015 3015 arrayMeteors = numpy.asarray(listMeteors)
3016 3016 listMeteors1 = []
3017 3017
3018 3018 while arrayMeteors.shape[0] > 0:
3019 3019 FLAs = arrayMeteors[:,4]
3020 3020 maxFLA = FLAs.argmax()
3021 3021 listMeteors1.append(arrayMeteors[maxFLA,:])
3022 3022
3023 3023 MeteorInitTime = arrayMeteors[maxFLA,1]
3024 3024 MeteorEndTime = arrayMeteors[maxFLA,3]
3025 3025 MeteorHeight = arrayMeteors[maxFLA,0]
3026 3026
3027 3027 #Check neighborhood
3028 3028 maxHeightIndex = MeteorHeight + rangeLimit
3029 3029 minHeightIndex = MeteorHeight - rangeLimit
3030 3030 minTimeIndex = MeteorInitTime - timeLimit
3031 3031 maxTimeIndex = MeteorEndTime + timeLimit
3032 3032
3033 3033 #Check Heights
3034 3034 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
3035 3035 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
3036 3036 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
3037 3037
3038 3038 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
3039 3039
3040 3040 return listMeteors1
3041 3041
3042 3042 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
3043 3043 numHeights = volts.shape[2]
3044 3044 nChannel = volts.shape[0]
3045 3045
3046 3046 thresholdPhase = thresh[0]
3047 3047 thresholdNoise = thresh[1]
3048 3048 thresholdDB = float(thresh[2])
3049 3049
3050 3050 thresholdDB1 = 10**(thresholdDB/10)
3051 3051 pairsarray = numpy.array(pairslist)
3052 3052 indSides = pairsarray[:,1]
3053 3053
3054 3054 pairslist1 = list(pairslist)
3055 3055 pairslist1.append((0,1))
3056 3056 pairslist1.append((3,4))
3057 3057
3058 3058 listMeteors1 = []
3059 3059 listPowerSeries = []
3060 3060 listVoltageSeries = []
3061 3061 #volts has the war data
3062 3062
3063 3063 if frequency == 30e6:
3064 3064 timeLag = 45*10**-3
3065 3065 else:
3066 3066 timeLag = 15*10**-3
3067 3067 lag = numpy.ceil(timeLag/timeInterval)
3068 3068
3069 3069 for i in range(len(listMeteors)):
3070 3070
3071 3071 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
3072 3072 meteorAux = numpy.zeros(16)
3073 3073
3074 3074 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
3075 3075 mHeight = listMeteors[i][0]
3076 3076 mStart = listMeteors[i][1]
3077 3077 mPeak = listMeteors[i][2]
3078 3078 mEnd = listMeteors[i][3]
3079 3079
3080 3080 #get the volt data between the start and end times of the meteor
3081 3081 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
3082 3082 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3083 3083
3084 3084 #3.6. Phase Difference estimation
3085 3085 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
3086 3086
3087 3087 #3.7. Phase difference removal & meteor start, peak and end times reestimated
3088 3088 #meteorVolts0.- all Channels, all Profiles
3089 3089 meteorVolts0 = volts[:,:,mHeight]
3090 3090 meteorThresh = noise[:,mHeight]*thresholdNoise
3091 3091 meteorNoise = noise[:,mHeight]
3092 3092 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
3093 3093 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
3094 3094
3095 3095 #Times reestimation
3096 3096 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
3097 3097 if mStart1.size > 0:
3098 3098 mStart1 = mStart1[-1] + 1
3099 3099
3100 3100 else:
3101 3101 mStart1 = mPeak
3102 3102
3103 3103 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
3104 3104 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
3105 3105 if mEndDecayTime1.size == 0:
3106 3106 mEndDecayTime1 = powerNet0.size
3107 3107 else:
3108 3108 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
3109 3109 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
3110 3110
3111 3111 #meteorVolts1.- all Channels, from start to end
3112 3112 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
3113 3113 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
3114 3114 if meteorVolts2.shape[1] == 0:
3115 3115 meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1]
3116 3116 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
3117 3117 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
3118 3118 ##################### END PARAMETERS REESTIMATION #########################
3119 3119
3120 3120 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
3121 3121 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
3122 3122 if meteorVolts2.shape[1] > 0:
3123 3123 #Phase Difference re-estimation
3124 3124 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
3125 3125 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
3126 3126 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
3127 3127 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
3128 3128 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
3129 3129
3130 3130 #Phase Difference RMS
3131 3131 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
3132 3132 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
3133 3133 #Data from Meteor
3134 3134 mPeak1 = powerNet1.argmax() + mStart1
3135 3135 mPeakPower1 = powerNet1.max()
3136 3136 noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight])
3137 3137 mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux
3138 3138 Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1])
3139 3139 Meteor1 = numpy.hstack((Meteor1,phaseDiffint))
3140 3140 PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1]
3141 3141 #Vectorize
3142 3142 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
3143 3143 meteorAux[7:11] = phaseDiffint[0:4]
3144 3144
3145 3145 #Rejection Criterions
3146 3146 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
3147 3147 meteorAux[-1] = 17
3148 3148 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
3149 3149 meteorAux[-1] = 1
3150 3150
3151 3151
3152 3152 else:
3153 3153 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
3154 3154 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
3155 3155 PowerSeries = 0
3156 3156
3157 3157 listMeteors1.append(meteorAux)
3158 3158 listPowerSeries.append(PowerSeries)
3159 3159 listVoltageSeries.append(meteorVolts1)
3160 3160
3161 3161 return listMeteors1, listPowerSeries, listVoltageSeries
3162 3162
3163 3163 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
3164 3164
3165 3165 threshError = 10
3166 3166 #Depending if it is 30 or 50 MHz
3167 3167 if frequency == 30e6:
3168 3168 timeLag = 45*10**-3
3169 3169 else:
3170 3170 timeLag = 15*10**-3
3171 3171 lag = numpy.ceil(timeLag/timeInterval)
3172 3172
3173 3173 listMeteors1 = []
3174 3174
3175 3175 for i in range(len(listMeteors)):
3176 3176 meteorPower = listPower[i]
3177 3177 meteorAux = listMeteors[i]
3178 3178
3179 3179 if meteorAux[-1] == 0:
3180 3180
3181 3181 try:
3182 3182 indmax = meteorPower.argmax()
3183 3183 indlag = indmax + lag
3184 3184
3185 3185 y = meteorPower[indlag:]
3186 3186 x = numpy.arange(0, y.size)*timeLag
3187 3187
3188 3188 #first guess
3189 3189 a = y[0]
3190 3190 tau = timeLag
3191 3191 #exponential fit
3192 3192 popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau])
3193 3193 y1 = self.__exponential_function(x, *popt)
3194 3194 #error estimation
3195 3195 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
3196 3196
3197 3197 decayTime = popt[1]
3198 3198 riseTime = indmax*timeInterval
3199 3199 meteorAux[11:13] = [decayTime, error]
3200 3200
3201 3201 #Table items 7, 8 and 11
3202 3202 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
3203 3203 meteorAux[-1] = 7
3204 3204 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
3205 3205 meteorAux[-1] = 8
3206 3206 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
3207 3207 meteorAux[-1] = 11
3208 3208
3209 3209
3210 3210 except:
3211 3211 meteorAux[-1] = 11
3212 3212
3213 3213
3214 3214 listMeteors1.append(meteorAux)
3215 3215
3216 3216 return listMeteors1
3217 3217
3218 3218 #Exponential Function
3219 3219
3220 3220 def __exponential_function(self, x, a, tau):
3221 3221 y = a*numpy.exp(-x/tau)
3222 3222 return y
3223 3223
3224 3224 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
3225 3225
3226 3226 pairslist1 = list(pairslist)
3227 3227 pairslist1.append((0,1))
3228 3228 pairslist1.append((3,4))
3229 3229 numPairs = len(pairslist1)
3230 3230 #Time Lag
3231 3231 timeLag = 45*10**-3
3232 3232 c = 3e8
3233 3233 lag = numpy.ceil(timeLag/timeInterval)
3234 3234 freq = 30e6
3235 3235
3236 3236 listMeteors1 = []
3237 3237
3238 3238 for i in range(len(listMeteors)):
3239 3239 meteorAux = listMeteors[i]
3240 3240 if meteorAux[-1] == 0:
3241 3241 mStart = listMeteors[i][1]
3242 3242 mPeak = listMeteors[i][2]
3243 3243 mLag = mPeak - mStart + lag
3244 3244
3245 3245 #get the volt data between the start and end times of the meteor
3246 3246 meteorVolts = listVolts[i]
3247 3247 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3248 3248
3249 3249 #Get CCF
3250 3250 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
3251 3251
3252 3252 #Method 2
3253 3253 slopes = numpy.zeros(numPairs)
3254 3254 time = numpy.array([-2,-1,1,2])*timeInterval
3255 3255 angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
3256 3256
3257 3257 #Correct phases
3258 3258 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
3259 3259 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
3260 3260
3261 3261 if indDer[0].shape[0] > 0:
3262 3262 for i in range(indDer[0].shape[0]):
3263 3263 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
3264 3264 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
3265 3265
3266 3266 # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]]))
3267 3267 for j in range(numPairs):
3268 3268 fit = stats.linregress(time, angAllCCF[j,:])
3269 3269 slopes[j] = fit[0]
3270 3270
3271 3271 #Remove Outlier
3272 3272 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3273 3273 # slopes = numpy.delete(slopes,indOut)
3274 3274 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3275 3275 # slopes = numpy.delete(slopes,indOut)
3276 3276
3277 3277 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
3278 3278 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
3279 3279 meteorAux[-2] = radialError
3280 3280 meteorAux[-3] = radialVelocity
3281 3281
3282 3282 #Setting Error
3283 3283 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
3284 3284 if numpy.abs(radialVelocity) > 200:
3285 3285 meteorAux[-1] = 15
3286 3286 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
3287 3287 elif radialError > radialStdThresh:
3288 3288 meteorAux[-1] = 12
3289 3289
3290 3290 listMeteors1.append(meteorAux)
3291 3291 return listMeteors1
3292 3292
3293 3293 def __setNewArrays(self, listMeteors, date, heiRang):
3294 3294
3295 3295 #New arrays
3296 3296 arrayMeteors = numpy.array(listMeteors)
3297 3297 arrayParameters = numpy.zeros((len(listMeteors), 13))
3298 3298
3299 3299 #Date inclusion
3300 3300 # date = re.findall(r'\((.*?)\)', date)
3301 3301 # date = date[0].split(',')
3302 3302 # date = map(int, date)
3303 3303 #
3304 3304 # if len(date)<6:
3305 3305 # date.append(0)
3306 3306 #
3307 3307 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
3308 3308 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
3309 3309 arrayDate = numpy.tile(date, (len(listMeteors)))
3310 3310
3311 3311 #Meteor array
3312 3312 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
3313 3313 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
3314 3314
3315 3315 #Parameters Array
3316 3316 arrayParameters[:,0] = arrayDate #Date
3317 3317 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
3318 3318 arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error
3319 3319 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
3320 3320 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
3321 3321
3322 3322
3323 3323 return arrayParameters
3324 3324
3325 3325 class CorrectSMPhases(Operation):
3326 3326
3327 3327 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
3328 3328
3329 3329 arrayParameters = dataOut.data_param
3330 3330 pairsList = []
3331 3331 pairx = (0,1)
3332 3332 pairy = (2,3)
3333 3333 pairsList.append(pairx)
3334 3334 pairsList.append(pairy)
3335 3335 jph = numpy.zeros(4)
3336 3336
3337 3337 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
3338 3338 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
3339 3339 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
3340 3340
3341 3341 meteorOps = SMOperations()
3342 3342 if channelPositions is None:
3343 3343 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3344 3344 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3345 3345
3346 3346 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3347 3347 h = (hmin,hmax)
3348 3348
3349 3349 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
3350 3350
3351 3351 dataOut.data_param = arrayParameters
3352 3352 return
3353 3353
3354 3354 class SMPhaseCalibration(Operation):
3355 3355
3356 3356 __buffer = None
3357 3357
3358 3358 __initime = None
3359 3359
3360 3360 __dataReady = False
3361 3361
3362 3362 __isConfig = False
3363 3363
3364 3364 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
3365 3365
3366 3366 dataTime = currentTime + paramInterval
3367 3367 deltaTime = dataTime - initTime
3368 3368
3369 3369 if deltaTime >= outputInterval or deltaTime < 0:
3370 3370 return True
3371 3371
3372 3372 return False
3373 3373
3374 3374 def __getGammas(self, pairs, d, phases):
3375 3375 gammas = numpy.zeros(2)
3376 3376
3377 3377 for i in range(len(pairs)):
3378 3378
3379 3379 pairi = pairs[i]
3380 3380
3381 3381 phip3 = phases[:,pairi[0]]
3382 3382 d3 = d[pairi[0]]
3383 3383 phip2 = phases[:,pairi[1]]
3384 3384 d2 = d[pairi[1]]
3385 3385 #Calculating gamma
3386 3386 # jdcos = alp1/(k*d1)
3387 3387 # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0)))
3388 3388 jgamma = -phip2*d3/d2 - phip3
3389 3389 jgamma = numpy.angle(numpy.exp(1j*jgamma))
3390 3390 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
3391 3391 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
3392 3392
3393 3393 #Revised distribution
3394 3394 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
3395 3395
3396 3396 #Histogram
3397 3397 nBins = 64
3398 3398 rmin = -0.5*numpy.pi
3399 3399 rmax = 0.5*numpy.pi
3400 3400 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
3401 3401
3402 3402 meteorsY = phaseHisto[0]
3403 3403 phasesX = phaseHisto[1][:-1]
3404 3404 width = phasesX[1] - phasesX[0]
3405 3405 phasesX += width/2
3406 3406
3407 3407 #Gaussian aproximation
3408 3408 bpeak = meteorsY.argmax()
3409 3409 peak = meteorsY.max()
3410 3410 jmin = bpeak - 5
3411 3411 jmax = bpeak + 5 + 1
3412 3412
3413 3413 if jmin<0:
3414 3414 jmin = 0
3415 3415 jmax = 6
3416 3416 elif jmax > meteorsY.size:
3417 3417 jmin = meteorsY.size - 6
3418 3418 jmax = meteorsY.size
3419 3419
3420 3420 x0 = numpy.array([peak,bpeak,50])
3421 3421 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
3422 3422
3423 3423 #Gammas
3424 3424 gammas[i] = coeff[0][1]
3425 3425
3426 3426 return gammas
3427 3427
3428 3428 def __residualFunction(self, coeffs, y, t):
3429 3429
3430 3430 return y - self.__gauss_function(t, coeffs)
3431 3431
3432 3432 def __gauss_function(self, t, coeffs):
3433 3433
3434 3434 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
3435 3435
3436 3436 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
3437 3437 meteorOps = SMOperations()
3438 3438 nchan = 4
3439 3439 pairx = pairsList[0] #x es 0
3440 3440 pairy = pairsList[1] #y es 1
3441 3441 center_xangle = 0
3442 3442 center_yangle = 0
3443 3443 range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
3444 3444 ntimes = len(range_angle)
3445 3445
3446 3446 nstepsx = 20
3447 3447 nstepsy = 20
3448 3448
3449 3449 for iz in range(ntimes):
3450 3450 min_xangle = -range_angle[iz]/2 + center_xangle
3451 3451 max_xangle = range_angle[iz]/2 + center_xangle
3452 3452 min_yangle = -range_angle[iz]/2 + center_yangle
3453 3453 max_yangle = range_angle[iz]/2 + center_yangle
3454 3454
3455 3455 inc_x = (max_xangle-min_xangle)/nstepsx
3456 3456 inc_y = (max_yangle-min_yangle)/nstepsy
3457 3457
3458 3458 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
3459 3459 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
3460 3460 penalty = numpy.zeros((nstepsx,nstepsy))
3461 3461 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
3462 3462 jph = numpy.zeros(nchan)
3463 3463
3464 3464 # Iterations looking for the offset
3465 3465 for iy in range(int(nstepsy)):
3466 3466 for ix in range(int(nstepsx)):
3467 3467 d3 = d[pairsList[1][0]]
3468 3468 d2 = d[pairsList[1][1]]
3469 3469 d5 = d[pairsList[0][0]]
3470 3470 d4 = d[pairsList[0][1]]
3471 3471
3472 3472 alp2 = alpha_y[iy] #gamma 1
3473 3473 alp4 = alpha_x[ix] #gamma 0
3474 3474
3475 3475 alp3 = -alp2*d3/d2 - gammas[1]
3476 3476 alp5 = -alp4*d5/d4 - gammas[0]
3477 3477 # jph[pairy[1]] = alpha_y[iy]
3478 3478 # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
3479 3479
3480 3480 # jph[pairx[1]] = alpha_x[ix]
3481 3481 # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
3482 3482 jph[pairsList[0][1]] = alp4
3483 3483 jph[pairsList[0][0]] = alp5
3484 3484 jph[pairsList[1][0]] = alp3
3485 3485 jph[pairsList[1][1]] = alp2
3486 3486 jph_array[:,ix,iy] = jph
3487 3487 # d = [2.0,2.5,2.5,2.0]
3488 3488 #falta chequear si va a leer bien los meteoros
3489 3489 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
3490 3490 error = meteorsArray1[:,-1]
3491 3491 ind1 = numpy.where(error==0)[0]
3492 3492 penalty[ix,iy] = ind1.size
3493 3493
3494 3494 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
3495 3495 phOffset = jph_array[:,i,j]
3496 3496
3497 3497 center_xangle = phOffset[pairx[1]]
3498 3498 center_yangle = phOffset[pairy[1]]
3499 3499
3500 3500 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
3501 3501 phOffset = phOffset*180/numpy.pi
3502 3502 return phOffset
3503 3503
3504 3504
3505 3505 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
3506 3506
3507 3507 dataOut.flagNoData = True
3508 3508 self.__dataReady = False
3509 3509 dataOut.outputInterval = nHours*3600
3510 3510
3511 3511 if self.__isConfig == False:
3512 3512 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
3513 3513 #Get Initial LTC time
3514 3514 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
3515 3515 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
3516 3516
3517 3517 self.__isConfig = True
3518 3518
3519 3519 if self.__buffer is None:
3520 3520 self.__buffer = dataOut.data_param.copy()
3521 3521
3522 3522 else:
3523 3523 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
3524 3524
3525 3525 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
3526 3526
3527 3527 if self.__dataReady:
3528 3528 dataOut.utctimeInit = self.__initime
3529 3529 self.__initime += dataOut.outputInterval #to erase time offset
3530 3530
3531 3531 freq = dataOut.frequency
3532 3532 c = dataOut.C #m/s
3533 3533 lamb = c/freq
3534 3534 k = 2*numpy.pi/lamb
3535 3535 azimuth = 0
3536 3536 h = (hmin, hmax)
3537 3537 # pairs = ((0,1),(2,3)) #Estrella
3538 3538 # pairs = ((1,0),(2,3)) #T
3539 3539
3540 3540 if channelPositions is None:
3541 3541 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3542 3542 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3543 3543 meteorOps = SMOperations()
3544 3544 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3545 3545
3546 3546 #Checking correct order of pairs
3547 3547 pairs = []
3548 3548 if distances[1] > distances[0]:
3549 3549 pairs.append((1,0))
3550 3550 else:
3551 3551 pairs.append((0,1))
3552 3552
3553 3553 if distances[3] > distances[2]:
3554 3554 pairs.append((3,2))
3555 3555 else:
3556 3556 pairs.append((2,3))
3557 3557 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
3558 3558
3559 3559 meteorsArray = self.__buffer
3560 3560 error = meteorsArray[:,-1]
3561 3561 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
3562 3562 ind1 = numpy.where(boolError)[0]
3563 3563 meteorsArray = meteorsArray[ind1,:]
3564 3564 meteorsArray[:,-1] = 0
3565 3565 phases = meteorsArray[:,8:12]
3566 3566
3567 3567 #Calculate Gammas
3568 3568 gammas = self.__getGammas(pairs, distances, phases)
3569 3569 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
3570 3570 #Calculate Phases
3571 3571 phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray)
3572 3572 phasesOff = phasesOff.reshape((1,phasesOff.size))
3573 3573 dataOut.data_output = -phasesOff
3574 3574 dataOut.flagNoData = False
3575 3575 self.__buffer = None
3576 3576
3577 3577
3578 3578 return
3579 3579
3580 3580 class SMOperations():
3581 3581
3582 3582 def __init__(self):
3583 3583
3584 3584 return
3585 3585
3586 3586 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
3587 3587
3588 3588 arrayParameters = arrayParameters0.copy()
3589 3589 hmin = h[0]
3590 3590 hmax = h[1]
3591 3591
3592 3592 #Calculate AOA (Error N 3, 4)
3593 3593 #JONES ET AL. 1998
3594 3594 AOAthresh = numpy.pi/8
3595 3595 error = arrayParameters[:,-1]
3596 3596 phases = -arrayParameters[:,8:12] + jph
3597 3597 # phases = numpy.unwrap(phases)
3598 3598 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
3599 3599
3600 3600 #Calculate Heights (Error N 13 and 14)
3601 3601 error = arrayParameters[:,-1]
3602 3602 Ranges = arrayParameters[:,1]
3603 3603 zenith = arrayParameters[:,4]
3604 3604 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
3605 3605
3606 3606 #----------------------- Get Final data ------------------------------------
3607 3607 # error = arrayParameters[:,-1]
3608 3608 # ind1 = numpy.where(error==0)[0]
3609 3609 # arrayParameters = arrayParameters[ind1,:]
3610 3610
3611 3611 return arrayParameters
3612 3612
3613 3613 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
3614 3614
3615 3615 arrayAOA = numpy.zeros((phases.shape[0],3))
3616 3616 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
3617 3617
3618 3618 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3619 3619 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3620 3620 arrayAOA[:,2] = cosDirError
3621 3621
3622 3622 azimuthAngle = arrayAOA[:,0]
3623 3623 zenithAngle = arrayAOA[:,1]
3624 3624
3625 3625 #Setting Error
3626 3626 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
3627 3627 error[indError] = 0
3628 3628 #Number 3: AOA not fesible
3629 3629 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3630 3630 error[indInvalid] = 3
3631 3631 #Number 4: Large difference in AOAs obtained from different antenna baselines
3632 3632 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3633 3633 error[indInvalid] = 4
3634 3634 return arrayAOA, error
3635 3635
3636 3636 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
3637 3637
3638 3638 #Initializing some variables
3639 3639 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3640 3640 ang_aux = ang_aux.reshape(1,ang_aux.size)
3641 3641
3642 3642 cosdir = numpy.zeros((arrayPhase.shape[0],2))
3643 3643 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3644 3644
3645 3645
3646 3646 for i in range(2):
3647 3647 ph0 = arrayPhase[:,pairsList[i][0]]
3648 3648 ph1 = arrayPhase[:,pairsList[i][1]]
3649 3649 d0 = distances[pairsList[i][0]]
3650 3650 d1 = distances[pairsList[i][1]]
3651 3651
3652 3652 ph0_aux = ph0 + ph1
3653 3653 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
3654 3654 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
3655 3655 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
3656 3656 #First Estimation
3657 3657 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
3658 3658
3659 3659 #Most-Accurate Second Estimation
3660 3660 phi1_aux = ph0 - ph1
3661 3661 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3662 3662 #Direction Cosine 1
3663 3663 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
3664 3664
3665 3665 #Searching the correct Direction Cosine
3666 3666 cosdir0_aux = cosdir0[:,i]
3667 3667 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3668 3668 #Minimum Distance
3669 3669 cosDiff = (cosdir1 - cosdir0_aux)**2
3670 3670 indcos = cosDiff.argmin(axis = 1)
3671 3671 #Saving Value obtained
3672 3672 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3673 3673
3674 3674 return cosdir0, cosdir
3675 3675
3676 3676 def __calculateAOA(self, cosdir, azimuth):
3677 3677 cosdirX = cosdir[:,0]
3678 3678 cosdirY = cosdir[:,1]
3679 3679
3680 3680 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3681 3681 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
3682 3682 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3683 3683
3684 3684 return angles
3685 3685
3686 3686 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3687 3687
3688 3688 Ramb = 375 #Ramb = c/(2*PRF)
3689 3689 Re = 6371 #Earth Radius
3690 3690 heights = numpy.zeros(Ranges.shape)
3691 3691
3692 3692 R_aux = numpy.array([0,1,2])*Ramb
3693 3693 R_aux = R_aux.reshape(1,R_aux.size)
3694 3694
3695 3695 Ranges = Ranges.reshape(Ranges.size,1)
3696 3696
3697 3697 Ri = Ranges + R_aux
3698 3698 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3699 3699
3700 3700 #Check if there is a height between 70 and 110 km
3701 3701 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3702 3702 ind_h = numpy.where(h_bool == 1)[0]
3703 3703
3704 3704 hCorr = hi[ind_h, :]
3705 3705 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3706 3706
3707 3707 hCorr = hi[ind_hCorr][:len(ind_h)]
3708 3708 heights[ind_h] = hCorr
3709 3709
3710 3710 #Setting Error
3711 3711 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3712 3712 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3713 3713 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
3714 3714 error[indError] = 0
3715 3715 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3716 3716 error[indInvalid2] = 14
3717 3717 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3718 3718 error[indInvalid1] = 13
3719 3719
3720 3720 return heights, error
3721 3721
3722 3722 def getPhasePairs(self, channelPositions):
3723 3723 chanPos = numpy.array(channelPositions)
3724 3724 listOper = list(itertools.combinations(list(range(5)),2))
3725 3725
3726 3726 distances = numpy.zeros(4)
3727 3727 axisX = []
3728 3728 axisY = []
3729 3729 distX = numpy.zeros(3)
3730 3730 distY = numpy.zeros(3)
3731 3731 ix = 0
3732 3732 iy = 0
3733 3733
3734 3734 pairX = numpy.zeros((2,2))
3735 3735 pairY = numpy.zeros((2,2))
3736 3736
3737 3737 for i in range(len(listOper)):
3738 3738 pairi = listOper[i]
3739 3739
3740 3740 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
3741 3741
3742 3742 if posDif[0] == 0:
3743 3743 axisY.append(pairi)
3744 3744 distY[iy] = posDif[1]
3745 3745 iy += 1
3746 3746 elif posDif[1] == 0:
3747 3747 axisX.append(pairi)
3748 3748 distX[ix] = posDif[0]
3749 3749 ix += 1
3750 3750
3751 3751 for i in range(2):
3752 3752 if i==0:
3753 3753 dist0 = distX
3754 3754 axis0 = axisX
3755 3755 else:
3756 3756 dist0 = distY
3757 3757 axis0 = axisY
3758 3758
3759 3759 side = numpy.argsort(dist0)[:-1]
3760 3760 axis0 = numpy.array(axis0)[side,:]
3761 3761 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
3762 3762 axis1 = numpy.unique(numpy.reshape(axis0,4))
3763 3763 side = axis1[axis1 != chanC]
3764 3764 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
3765 3765 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
3766 3766 if diff1<0:
3767 3767 chan2 = side[0]
3768 3768 d2 = numpy.abs(diff1)
3769 3769 chan1 = side[1]
3770 3770 d1 = numpy.abs(diff2)
3771 3771 else:
3772 3772 chan2 = side[1]
3773 3773 d2 = numpy.abs(diff2)
3774 3774 chan1 = side[0]
3775 3775 d1 = numpy.abs(diff1)
3776 3776
3777 3777 if i==0:
3778 3778 chanCX = chanC
3779 3779 chan1X = chan1
3780 3780 chan2X = chan2
3781 3781 distances[0:2] = numpy.array([d1,d2])
3782 3782 else:
3783 3783 chanCY = chanC
3784 3784 chan1Y = chan1
3785 3785 chan2Y = chan2
3786 3786 distances[2:4] = numpy.array([d1,d2])
3787 3787 # axisXsides = numpy.reshape(axisX[ix,:],4)
3788 3788 #
3789 3789 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
3790 3790 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
3791 3791 #
3792 3792 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
3793 3793 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
3794 3794 # channel25X = int(pairX[0,ind25X])
3795 3795 # channel20X = int(pairX[1,ind20X])
3796 3796 # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0]
3797 3797 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
3798 3798 # channel25Y = int(pairY[0,ind25Y])
3799 3799 # channel20Y = int(pairY[1,ind20Y])
3800 3800
3801 3801 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
3802 3802 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
3803 3803
3804 3804 return pairslist, distances
3805 3805 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
3806 3806 #
3807 3807 # arrayAOA = numpy.zeros((phases.shape[0],3))
3808 3808 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
3809 3809 #
3810 3810 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3811 3811 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3812 3812 # arrayAOA[:,2] = cosDirError
3813 3813 #
3814 3814 # azimuthAngle = arrayAOA[:,0]
3815 3815 # zenithAngle = arrayAOA[:,1]
3816 3816 #
3817 3817 # #Setting Error
3818 3818 # #Number 3: AOA not fesible
3819 3819 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3820 3820 # error[indInvalid] = 3
3821 3821 # #Number 4: Large difference in AOAs obtained from different antenna baselines
3822 3822 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3823 3823 # error[indInvalid] = 4
3824 3824 # return arrayAOA, error
3825 3825 #
3826 3826 # def __getDirectionCosines(self, arrayPhase, pairsList):
3827 3827 #
3828 3828 # #Initializing some variables
3829 3829 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3830 3830 # ang_aux = ang_aux.reshape(1,ang_aux.size)
3831 3831 #
3832 3832 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
3833 3833 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3834 3834 #
3835 3835 #
3836 3836 # for i in range(2):
3837 3837 # #First Estimation
3838 3838 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
3839 3839 # #Dealias
3840 3840 # indcsi = numpy.where(phi0_aux > numpy.pi)
3841 3841 # phi0_aux[indcsi] -= 2*numpy.pi
3842 3842 # indcsi = numpy.where(phi0_aux < -numpy.pi)
3843 3843 # phi0_aux[indcsi] += 2*numpy.pi
3844 3844 # #Direction Cosine 0
3845 3845 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
3846 3846 #
3847 3847 # #Most-Accurate Second Estimation
3848 3848 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
3849 3849 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3850 3850 # #Direction Cosine 1
3851 3851 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
3852 3852 #
3853 3853 # #Searching the correct Direction Cosine
3854 3854 # cosdir0_aux = cosdir0[:,i]
3855 3855 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3856 3856 # #Minimum Distance
3857 3857 # cosDiff = (cosdir1 - cosdir0_aux)**2
3858 3858 # indcos = cosDiff.argmin(axis = 1)
3859 3859 # #Saving Value obtained
3860 3860 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3861 3861 #
3862 3862 # return cosdir0, cosdir
3863 3863 #
3864 3864 # def __calculateAOA(self, cosdir, azimuth):
3865 3865 # cosdirX = cosdir[:,0]
3866 3866 # cosdirY = cosdir[:,1]
3867 3867 #
3868 3868 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3869 3869 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
3870 3870 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3871 3871 #
3872 3872 # return angles
3873 3873 #
3874 3874 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3875 3875 #
3876 3876 # Ramb = 375 #Ramb = c/(2*PRF)
3877 3877 # Re = 6371 #Earth Radius
3878 3878 # heights = numpy.zeros(Ranges.shape)
3879 3879 #
3880 3880 # R_aux = numpy.array([0,1,2])*Ramb
3881 3881 # R_aux = R_aux.reshape(1,R_aux.size)
3882 3882 #
3883 3883 # Ranges = Ranges.reshape(Ranges.size,1)
3884 3884 #
3885 3885 # Ri = Ranges + R_aux
3886 3886 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3887 3887 #
3888 3888 # #Check if there is a height between 70 and 110 km
3889 3889 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3890 3890 # ind_h = numpy.where(h_bool == 1)[0]
3891 3891 #
3892 3892 # hCorr = hi[ind_h, :]
3893 3893 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3894 3894 #
3895 3895 # hCorr = hi[ind_hCorr]
3896 3896 # heights[ind_h] = hCorr
3897 3897 #
3898 3898 # #Setting Error
3899 3899 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3900 3900 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3901 3901 #
3902 3902 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3903 3903 # error[indInvalid2] = 14
3904 3904 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3905 3905 # error[indInvalid1] = 13
3906 3906 #
3907 3907 # return heights, error
3908 3908
3909 3909
3910 3910 class WeatherRadar(Operation):
3911 3911 '''
3912 3912 Function tat implements Weather Radar operations-
3913 3913 Input:
3914 3914 Output:
3915 3915 Parameters affected:
3916 3916 '''
3917 3917 isConfig = False
3918 3918 variableList = None
3919 3919
3920 3920 def __init__(self):
3921 3921 Operation.__init__(self)
3922 3922
3923 3923 def setup(self,dataOut,variableList= None,Pt=0,Gt=0,Gr=0,lambda_=0, aL=0,
3924 3924 tauW= 0,thetaT=0,thetaR=0,Km =0):
3925 3925 self.nCh = dataOut.nChannels
3926 3926 self.nHeis = dataOut.nHeights
3927 3927 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
3928 3928 self.Range = numpy.arange(dataOut.nHeights)*deltaHeight + dataOut.heightList[0]
3929 3929 self.Range = self.Range.reshape(1,self.nHeis)
3930 3930 self.Range = numpy.tile(self.Range,[self.nCh,1])
3931 3931 '''-----------1 Constante del Radar----------'''
3932 3932 self.Pt = Pt
3933 3933 self.Gt = Gt
3934 3934 self.Gr = Gr
3935 3935 self.lambda_ = lambda_
3936 3936 self.aL = aL
3937 3937 self.tauW = tauW
3938 3938 self.thetaT = thetaT
3939 3939 self.thetaR = thetaR
3940 3940 self.Km = Km
3941 3941 Numerator = ((4*numpy.pi)**3 * aL**2 * 16 *numpy.log(2))
3942 3942 Denominator = (Pt * Gt * Gr * lambda_**2 * SPEED_OF_LIGHT * tauW * numpy.pi*thetaT*thetaR)
3943 3943 self.RadarConstant = Numerator/Denominator
3944 3944 self.variableList= variableList
3945 3945
3946 3946 def setMoments(self,dataOut,i):
3947 3947
3948 3948 type = dataOut.inputUnit
3949 3949 nCh = dataOut.nChannels
3950 3950 nHeis = dataOut.nHeights
3951 3951 data_param = numpy.zeros((nCh,4,nHeis))
3952 3952 if type == "Voltage":
3953 3953 factor = dataOut.normFactor
3954 3954 data_param[:,0,:] = dataOut.dataPP_POW/(factor)
3955 3955 data_param[:,1,:] = dataOut.dataPP_DOP
3956 3956 data_param[:,2,:] = dataOut.dataPP_WIDTH
3957 3957 data_param[:,3,:] = dataOut.dataPP_SNR
3958 3958 if type == "Spectra":
3959 3959 data_param[:,0,:] = dataOut.data_POW
3960 3960 data_param[:,1,:] = dataOut.data_DOP
3961 3961 data_param[:,2,:] = dataOut.data_WIDTH
3962 3962 data_param[:,3,:] = dataOut.data_SNR
3963 3963
3964 3964 return data_param[:,i,:]
3965 3965
3966 3966 def getCoeficienteCorrelacionROhv_R(self,dataOut):
3967 3967 type = dataOut.inputUnit
3968 3968 nHeis = dataOut.nHeights
3969 3969 data_RhoHV_R = numpy.zeros((nHeis))
3970 3970 if type == "Voltage":
3971 3971 powa = dataOut.dataPP_POWER[0]
3972 3972 powb = dataOut.dataPP_POWER[1]
3973 3973 ccf = dataOut.dataPP_CCF
3974 3974 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3975 3975 data_RhoHV_R = numpy.abs(avgcoherenceComplex)
3976 3976 if type == "Spectra":
3977 3977 data_RhoHV_R = dataOut.getCoherence()
3978 3978
3979 3979 return data_RhoHV_R
3980 3980
3981 3981 def getFasediferencialPhiD_P(self,dataOut,phase= True):
3982 3982 type = dataOut.inputUnit
3983 3983 nHeis = dataOut.nHeights
3984 3984 data_PhiD_P = numpy.zeros((nHeis))
3985 3985 if type == "Voltage":
3986 3986 powa = dataOut.dataPP_POWER[0]
3987 3987 powb = dataOut.dataPP_POWER[1]
3988 3988 ccf = dataOut.dataPP_CCF
3989 3989 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
3990 3990 if phase:
3991 3991 data_PhiD_P = numpy.arctan2(avgcoherenceComplex.imag,
3992 3992 avgcoherenceComplex.real) * 180 / numpy.pi
3993 3993 if type == "Spectra":
3994 3994 data_PhiD_P = dataOut.getCoherence(phase = phase)
3995 3995
3996 3996 return data_PhiD_P
3997 3997
3998 3998 def getReflectividad_D(self,dataOut):
3999 3999 '''-----------------------------Potencia de Radar -Signal S-----------------------------'''
4000 4000
4001 4001 Pr = self.setMoments(dataOut,0)
4002 4002
4003 4003 '''-----------2 Reflectividad del Radar y Factor de Reflectividad------'''
4004 4004 self.n_radar = numpy.zeros((self.nCh,self.nHeis))
4005 4005 self.Z_radar = numpy.zeros((self.nCh,self.nHeis))
4006 4006 for R in range(self.nHeis):
4007 4007 self.n_radar[:,R] = self.RadarConstant*Pr[:,R]* (self.Range[:,R])**2
4008 4008
4009 4009 self.Z_radar[:,R] = self.n_radar[:,R]* self.lambda_**4/( numpy.pi**5 * self.Km**2)
4010 4010
4011 4011 '''----------- Factor de Reflectividad Equivalente lamda_ < 10 cm , lamda_= 3.2cm-------'''
4012 4012 Zeh = self.Z_radar
4013 4013 dBZeh = 10*numpy.log10(Zeh)
4014 4014 Zdb_D = dBZeh[0] - dBZeh[1]
4015 4015 return Zdb_D
4016 4016
4017 4017 def getRadialVelocity_V(self,dataOut):
4018 4018 velRadial_V = self.setMoments(dataOut,1)
4019 4019 return velRadial_V
4020 4020
4021 4021 def getAnchoEspectral_W(self,dataOut):
4022 4022 Sigmav_W = self.setMoments(dataOut,2)
4023 4023 return Sigmav_W
4024 4024
4025 4025
4026 4026 def run(self,dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4027 4027 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93):
4028 4028
4029 4029 if not self.isConfig:
4030 4030 self.setup(dataOut= dataOut,variableList=None,Pt=25,Gt=200.0,Gr=50.0,lambda_=0.32, aL=2.5118,
4031 4031 tauW= 4.0e-6,thetaT=0.165,thetaR=0.367,Km =0.93)
4032 4032 self.isConfig = True
4033 4033
4034 4034 for i in range(len(self.variableList)):
4035 4035 if self.variableList[i]=='ReflectividadDiferencial':
4036 4036 dataOut.Zdb_D =self.getReflectividad_D(dataOut=dataOut)
4037 4037 if self.variableList[i]=='FaseDiferencial':
4038 4038 dataOut.PhiD_P =self.getFasediferencialPhiD_P(dataOut=dataOut, phase=True)
4039 4039 if self.variableList[i] == "CoeficienteCorrelacion":
4040 4040 dataOut.RhoHV_R = self.getCoeficienteCorrelacionROhv_R(dataOut)
4041 4041 if self.variableList[i] =="VelocidadRadial":
4042 4042 dataOut.velRadial_V = self.getRadialVelocity_V(dataOut)
4043 4043 if self.variableList[i] =="AnchoEspectral":
4044 4044 dataOut.Sigmav_W = self.getAnchoEspectral_W(dataOut)
4045 4045 return dataOut
4046 4046
4047 4047 class PedestalInformation(Operation):
4048 4048
4049 4049 def __init__(self):
4050 4050 Operation.__init__(self)
4051 4051 self.filename = False
4052 4052
4053 4053 def find_file(self, timestamp):
4054 4054
4055 4055 dt = datetime.datetime.utcfromtimestamp(timestamp)
4056 4056 path = os.path.join(self.path, dt.strftime('%Y-%m-%dT%H-00-00'))
4057
4057
4058 4058 if not os.path.exists(path):
4059 4059 return False, False
4060 4060 fileList = glob.glob(os.path.join(path, '*.h5'))
4061 4061 fileList.sort()
4062 4062 for fullname in fileList:
4063 4063 filename = fullname.split('/')[-1]
4064 4064 number = int(filename[4:14])
4065 4065 if number <= timestamp:
4066 4066 return number, fullname
4067 4067 return False, False
4068 4068
4069 4069 def find_next_file(self):
4070 4070
4071 4071 while True:
4072 file_size = len(self.fp['Data']['utc'])
4072 file_size = len(self.fp['Data']['utc'])
4073 4073 if self.utctime < self.utcfile+file_size*self.interval:
4074 4074 break
4075 4075 self.utcfile += file_size*self.interval
4076 4076 dt = datetime.datetime.utcfromtimestamp(self.utctime)
4077 4077 path = os.path.join(self.path, dt.strftime('%Y-%m-%dT%H-00-00'))
4078 4078 self.filename = os.path.join(path, 'pos@{}.000.h5'.format(int(self.utcfile)))
4079 4079 if not os.path.exists(self.filename):
4080 4080 log.warning('Waiting for position files...', self.name)
4081
4081
4082 4082 if not os.path.exists(self.filename):
4083
4083
4084 4084 raise IOError('No new position files found in {}'.format(path))
4085 4085 self.fp.close()
4086 4086 self.fp = h5py.File(self.filename, 'r')
4087 4087 log.log('Opening file: {}'.format(self.filename), self.name)
4088
4088
4089 4089 def get_values(self):
4090 4090
4091 4091 index = int((self.utctime-self.utcfile)/self.interval)
4092 4092 return self.fp['Data']['azi_pos'][index], self.fp['Data']['ele_pos'][index]
4093 4093
4094 4094 def setup(self, dataOut, path, conf, samples, interval, wr_exp):
4095 4095
4096 4096 self.path = path
4097 4097 self.conf = conf
4098 4098 self.samples = samples
4099 4099 self.interval = interval
4100 4100 self.utcfile, self.filename = self.find_file(dataOut.utctime)
4101
4101
4102 4102 if not self.filename:
4103 4103 log.error('No position files found in {}'.format(path), self.name)
4104 4104 raise IOError('No position files found in {}'.format(path))
4105 4105 else:
4106 4106 log.log('Opening file: {}'.format(self.filename), self.name)
4107 4107 self.fp = h5py.File(self.filename, 'r')
4108 4108
4109 4109 def run(self, dataOut, path, conf=None, samples=1500, interval=0.04, wr_exp=None):
4110
4110
4111 4111 if not self.isConfig:
4112 4112 self.setup(dataOut, path, conf, samples, interval, wr_exp)
4113 4113 self.isConfig = True
4114
4114
4115 4115 self.utctime = dataOut.utctime
4116
4116
4117 4117 self.find_next_file()
4118
4118
4119 4119 az, el = self.get_values()
4120 4120 dataOut.flagNoData = False
4121 4121
4122 4122 if numpy.isnan(az) or numpy.isnan(el) :
4123 4123 dataOut.flagNoData = True
4124 4124 return dataOut
4125 4125
4126 4126 dataOut.azimuth = az
4127 4127 dataOut.elevation = el
4128 4128 # print('AZ: ', az, ' EL: ', el)
4129 4129 return dataOut
4130 4130
4131 4131 class Block360(Operation):
4132 4132 '''
4133 4133 '''
4134 4134 isConfig = False
4135 4135 __profIndex = 0
4136 4136 __initime = None
4137 4137 __lastdatatime = None
4138 4138 __buffer = None
4139 4139 __dataReady = False
4140 4140 n = None
4141 4141 __nch = 0
4142 4142 __nHeis = 0
4143 4143 index = 0
4144 4144 mode = 0
4145 4145
4146 4146 def __init__(self,**kwargs):
4147 4147 Operation.__init__(self,**kwargs)
4148 4148
4149 4149 def setup(self, dataOut, n = None, mode = None):
4150 4150 '''
4151 4151 n= Numero de PRF's de entrada
4152 4152 '''
4153 4153 self.__initime = None
4154 4154 self.__lastdatatime = 0
4155 4155 self.__dataReady = False
4156 4156 self.__buffer = 0
4157 4157 self.__buffer_1D = 0
4158 4158 self.__profIndex = 0
4159 4159 self.index = 0
4160 4160 self.__nch = dataOut.nChannels
4161 4161 self.__nHeis = dataOut.nHeights
4162 4162 ##print("ELVALOR DE n es:", n)
4163 4163 if n == None:
4164 4164 raise ValueError("n should be specified.")
4165 4165
4166 4166 if mode == None:
4167 4167 raise ValueError("mode should be specified.")
4168 4168
4169 4169 if n != None:
4170 4170 if n<1:
4171 4171 print("n should be greater than 2")
4172 4172 raise ValueError("n should be greater than 2")
4173 4173
4174 4174 self.n = n
4175 4175 self.mode = mode
4176 4176 #print("self.mode",self.mode)
4177 4177 #print("nHeights")
4178 4178 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4179 4179 self.__buffer2 = numpy.zeros(n)
4180 4180 self.__buffer3 = numpy.zeros(n)
4181 4181
4182 4182
4183 4183
4184 4184
4185 4185 def putData(self,data,mode):
4186 4186 '''
4187 4187 Add a profile to he __buffer and increase in one the __profiel Index
4188 4188 '''
4189 4189 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4190 4190 #print("line 4049",data.azimuth.shape,data.azimuth)
4191 4191 if self.mode==0:
4192 4192 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4193 4193 if self.mode==1:
4194 4194 self.__buffer[:,self.__profIndex,:]= data.data_pow
4195 4195 #print("me casi",self.index,data.azimuth[self.index])
4196 4196 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4197 4197 #print("magic",data.profileIndex)
4198 4198 #print(data.azimuth[self.index])
4199 4199 #print("index",self.index)
4200 4200
4201 4201 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4202 4202 self.__buffer2[self.__profIndex] = data.azimuth
4203 4203 self.__buffer3[self.__profIndex] = data.elevation
4204 4204 #print("q pasa")
4205 4205 #####self.index+=1
4206 4206 #print("index",self.index,data.azimuth[:10])
4207 4207 self.__profIndex += 1
4208 4208 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4209 4209
4210 4210 def pushData(self,data):
4211 4211 '''
4212 4212 Return the PULSEPAIR and the profiles used in the operation
4213 4213 Affected : self.__profileIndex
4214 4214 '''
4215 4215 #print("pushData")
4216 4216
4217 4217 data_360 = self.__buffer
4218 4218 data_p = self.__buffer2
4219 4219 data_e = self.__buffer3
4220 4220 n = self.__profIndex
4221 4221
4222 4222 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4223 4223 self.__buffer2 = numpy.zeros(self.n)
4224 4224 self.__buffer3 = numpy.zeros(self.n)
4225 4225 self.__profIndex = 0
4226 4226 #print("pushData")
4227 4227 return data_360,n,data_p,data_e
4228 4228
4229 4229
4230 4230 def byProfiles(self,dataOut):
4231 4231
4232 4232 self.__dataReady = False
4233 4233 data_360 = None
4234 4234 data_p = None
4235 4235 data_e = None
4236 4236 #print("dataOu",dataOut.dataPP_POW)
4237 4237 self.putData(data=dataOut,mode = self.mode)
4238 4238 ##### print("profIndex",self.__profIndex)
4239 4239 if self.__profIndex == self.n:
4240 4240 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4241 4241 self.__dataReady = True
4242 4242
4243 4243 return data_360,data_p,data_e
4244 4244
4245 4245
4246 4246 def blockOp(self, dataOut, datatime= None):
4247 4247 if self.__initime == None:
4248 4248 self.__initime = datatime
4249 4249 data_360,data_p,data_e = self.byProfiles(dataOut)
4250 4250 self.__lastdatatime = datatime
4251 4251
4252 4252 if data_360 is None:
4253 4253 return None, None,None,None
4254 4254
4255 4255
4256 4256 avgdatatime = self.__initime
4257 4257 if self.n==1:
4258 4258 avgdatatime = datatime
4259 4259 deltatime = datatime - self.__lastdatatime
4260 4260 self.__initime = datatime
4261 4261 #print(data_360.shape,avgdatatime,data_p.shape)
4262 4262 return data_360,avgdatatime,data_p,data_e
4263 4263
4264 4264 def run(self, dataOut,n = None,mode=None,**kwargs):
4265 4265 #print("BLOCK 360 HERE WE GO MOMENTOS")
4266 4266 print("Block 360")
4267 4267 #exit(1)
4268 4268 if not self.isConfig:
4269 4269 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4270 4270 ####self.index = 0
4271 4271 #print("comova",self.isConfig)
4272 4272 self.isConfig = True
4273 4273 ####if self.index==dataOut.azimuth.shape[0]:
4274 4274 #### self.index=0
4275 4275 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4276 4276 dataOut.flagNoData = True
4277 4277
4278 4278 if self.__dataReady:
4279 4279 dataOut.data_360 = data_360 # S
4280 4280 #print("DATA 360")
4281 4281 #print(dataOut.data_360)
4282 4282 #print("---------------------------------------------------------------------------------")
4283 4283 print("---------------------------DATAREADY---------------------------------------------")
4284 4284 #print("---------------------------------------------------------------------------------")
4285 4285 #print("data_360",dataOut.data_360.shape)
4286 4286 dataOut.data_azi = data_p
4287 4287 dataOut.data_ele = data_e
4288 4288 ###print("azi: ",dataOut.data_azi)
4289 4289 #print("ele: ",dataOut.data_ele)
4290 4290 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4291 4291 dataOut.utctime = avgdatatime
4292 4292 dataOut.flagNoData = False
4293 4293 return dataOut
4294 4294
4295 4295 class Block360_vRF(Operation):
4296 4296 '''
4297 4297 '''
4298 4298 isConfig = False
4299 4299 __profIndex = 0
4300 4300 __initime = None
4301 4301 __lastdatatime = None
4302 4302 __buffer = None
4303 4303 __dataReady = False
4304 4304 n = None
4305 4305 __nch = 0
4306 4306 __nHeis = 0
4307 4307 index = 0
4308 4308 mode = 0
4309 4309
4310 4310 def __init__(self,**kwargs):
4311 4311 Operation.__init__(self,**kwargs)
4312 4312
4313 4313 def setup(self, dataOut, n = None, mode = None):
4314 4314 '''
4315 4315 n= Numero de PRF's de entrada
4316 4316 '''
4317 4317 self.__initime = None
4318 4318 self.__lastdatatime = 0
4319 4319 self.__dataReady = False
4320 4320 self.__buffer = 0
4321 4321 self.__buffer_1D = 0
4322 4322 self.__profIndex = 0
4323 4323 self.index = 0
4324 4324 self.__nch = dataOut.nChannels
4325 4325 self.__nHeis = dataOut.nHeights
4326 4326 ##print("ELVALOR DE n es:", n)
4327 4327 if n == None:
4328 4328 raise ValueError("n should be specified.")
4329 4329
4330 4330 if mode == None:
4331 4331 raise ValueError("mode should be specified.")
4332 4332
4333 4333 if n != None:
4334 4334 if n<1:
4335 4335 print("n should be greater than 2")
4336 4336 raise ValueError("n should be greater than 2")
4337 4337
4338 4338 self.n = n
4339 4339 self.mode = mode
4340 4340 #print("self.mode",self.mode)
4341 4341 #print("nHeights")
4342 4342 self.__buffer = numpy.zeros(( dataOut.nChannels,n, dataOut.nHeights))
4343 4343 self.__buffer2 = numpy.zeros(n)
4344 4344 self.__buffer3 = numpy.zeros(n)
4345 4345
4346 4346
4347 4347
4348 4348
4349 4349 def putData(self,data,mode):
4350 4350 '''
4351 4351 Add a profile to he __buffer and increase in one the __profiel Index
4352 4352 '''
4353 4353 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4354 4354 #print("line 4049",data.azimuth.shape,data.azimuth)
4355 4355 if self.mode==0:
4356 4356 self.__buffer[:,self.__profIndex,:]= data.dataPP_POWER# PRIMER MOMENTO
4357 4357 if self.mode==1:
4358 4358 self.__buffer[:,self.__profIndex,:]= data.data_pow
4359 4359 #print("me casi",self.index,data.azimuth[self.index])
4360 4360 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4361 4361 #print("magic",data.profileIndex)
4362 4362 #print(data.azimuth[self.index])
4363 4363 #print("index",self.index)
4364 4364
4365 4365 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4366 4366 self.__buffer2[self.__profIndex] = data.azimuth
4367 4367 self.__buffer3[self.__profIndex] = data.elevation
4368 4368 #print("q pasa")
4369 4369 #####self.index+=1
4370 4370 #print("index",self.index,data.azimuth[:10])
4371 4371 self.__profIndex += 1
4372 4372 return #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4373 4373
4374 4374 def pushData(self,data):
4375 4375 '''
4376 4376 Return the PULSEPAIR and the profiles used in the operation
4377 4377 Affected : self.__profileIndex
4378 4378 '''
4379 4379 #print("pushData")
4380 4380
4381 4381 data_360 = self.__buffer
4382 4382 data_p = self.__buffer2
4383 4383 data_e = self.__buffer3
4384 4384 n = self.__profIndex
4385 4385
4386 4386 self.__buffer = numpy.zeros((self.__nch, self.n,self.__nHeis))
4387 4387 self.__buffer2 = numpy.zeros(self.n)
4388 4388 self.__buffer3 = numpy.zeros(self.n)
4389 4389 self.__profIndex = 0
4390 4390 #print("pushData")
4391 4391 return data_360,n,data_p,data_e
4392 4392
4393 4393
4394 4394 def byProfiles(self,dataOut):
4395 4395
4396 4396 self.__dataReady = False
4397 4397 data_360 = None
4398 4398 data_p = None
4399 4399 data_e = None
4400 4400 #print("dataOu",dataOut.dataPP_POW)
4401 4401 self.putData(data=dataOut,mode = self.mode)
4402 4402 ##### print("profIndex",self.__profIndex)
4403 4403 if self.__profIndex == self.n:
4404 4404 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4405 4405 self.__dataReady = True
4406 4406
4407 4407 return data_360,data_p,data_e
4408 4408
4409 4409
4410 4410 def blockOp(self, dataOut, datatime= None):
4411 4411 if self.__initime == None:
4412 4412 self.__initime = datatime
4413 4413 data_360,data_p,data_e = self.byProfiles(dataOut)
4414 4414 self.__lastdatatime = datatime
4415 4415
4416 4416 if data_360 is None:
4417 4417 return None, None,None,None
4418 4418
4419 4419
4420 4420 avgdatatime = self.__initime
4421 4421 if self.n==1:
4422 4422 avgdatatime = datatime
4423 4423 deltatime = datatime - self.__lastdatatime
4424 4424 self.__initime = datatime
4425 4425 #print(data_360.shape,avgdatatime,data_p.shape)
4426 4426 return data_360,avgdatatime,data_p,data_e
4427 4427
4428 4428 def checkcase(self,data_ele):
4429 4429 start = data_ele[0]
4430 4430 end = data_ele[-1]
4431 4431 diff_angle = (end-start)
4432 4432 len_ang=len(data_ele)
4433 4433 print("start",start)
4434 4434 print("end",end)
4435 4435 print("number",diff_angle)
4436 4436
4437 4437 print("len_ang",len_ang)
4438 4438
4439 4439 aux = (data_ele<0).any(axis=0)
4440 4440
4441 4441 #exit(1)
4442 4442 if diff_angle<0 and aux!=1: #Bajada
4443 4443 return 1
4444 4444 elif diff_angle<0 and aux==1: #Bajada con angulos negativos
4445 4445 return 0
4446 4446 elif diff_angle == 0: # This case happens when the angle reaches the max_angle if n = 2
4447 4447 self.flagEraseFirstData = 1
4448 4448 print("ToDO this case")
4449 4449 exit(1)
4450 4450 elif diff_angle>0: #Subida
4451 4451 return 0
4452 4452
4453 4453 def run(self, dataOut,n = None,mode=None,**kwargs):
4454 4454 #print("BLOCK 360 HERE WE GO MOMENTOS")
4455 4455 print("Block 360")
4456 4456
4457 4457 #exit(1)
4458 4458 if not self.isConfig:
4459 4459 if n == 1:
4460 4460 print("*******************Min Value is 2. Setting n = 2*******************")
4461 4461 n = 2
4462 4462 #exit(1)
4463 4463 print(n)
4464 4464 self.setup(dataOut = dataOut, n = n ,mode= mode ,**kwargs)
4465 4465 ####self.index = 0
4466 4466 #print("comova",self.isConfig)
4467 4467 self.isConfig = True
4468 4468 ####if self.index==dataOut.azimuth.shape[0]:
4469 4469 #### self.index=0
4470 4470 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4471 4471 dataOut.flagNoData = True
4472 4472
4473 4473 if self.__dataReady:
4474 4474 dataOut.data_360 = data_360 # S
4475 4475 #print("DATA 360")
4476 4476 #print(dataOut.data_360)
4477 4477 #print("---------------------------------------------------------------------------------")
4478 4478 print("---------------------------DATAREADY---------------------------------------------")
4479 4479 #print("---------------------------------------------------------------------------------")
4480 4480 #print("data_360",dataOut.data_360.shape)
4481 4481 dataOut.data_azi = data_p
4482 4482 dataOut.data_ele = data_e
4483 4483 ###print("azi: ",dataOut.data_azi)
4484 4484 #print("ele: ",dataOut.data_ele)
4485 4485 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4486 4486 dataOut.utctime = avgdatatime
4487 4487
4488 4488 dataOut.case_flag = self.checkcase(dataOut.data_ele)
4489 4489 if dataOut.case_flag: #Si estΓ‘ de bajada empieza a plotear
4490 4490 print("INSIDE CASE FLAG BAJADA")
4491 4491 dataOut.flagNoData = False
4492 4492 else:
4493 4493 print("CASE SUBIDA")
4494 4494 dataOut.flagNoData = True
4495 4495
4496 4496 #dataOut.flagNoData = False
4497 4497 return dataOut
4498 4498
4499 4499 class Block360_vRF2(Operation):
4500 4500 '''
4501 4501 '''
4502 4502 isConfig = False
4503 4503 __profIndex = 0
4504 4504 __initime = None
4505 4505 __lastdatatime = None
4506 4506 __buffer = None
4507 4507 __dataReady = False
4508 4508 n = None
4509 4509 __nch = 0
4510 4510 __nHeis = 0
4511 4511 index = 0
4512 mode = 0
4512 mode = None
4513 4513
4514 4514 def __init__(self,**kwargs):
4515 4515 Operation.__init__(self,**kwargs)
4516 4516
4517 4517 def setup(self, dataOut, n = None, mode = None):
4518 4518 '''
4519 4519 n= Numero de PRF's de entrada
4520 4520 '''
4521 4521 self.__initime = None
4522 4522 self.__lastdatatime = 0
4523 4523 self.__dataReady = False
4524 4524 self.__buffer = 0
4525 4525 self.__buffer_1D = 0
4526 4526 #self.__profIndex = 0
4527 4527 self.index = 0
4528 4528 self.__nch = dataOut.nChannels
4529 4529 self.__nHeis = dataOut.nHeights
4530 4530
4531 4531 self.mode = mode
4532 4532 #print("self.mode",self.mode)
4533 4533 #print("nHeights")
4534 4534 self.__buffer = []
4535 4535 self.__buffer2 = []
4536 4536 self.__buffer3 = []
4537 self.__buffer4 = []
4537 4538
4538 4539 def putData(self,data,mode):
4539 4540 '''
4540 4541 Add a profile to he __buffer and increase in one the __profiel Index
4541 4542 '''
4542 #print("line 4049",data.dataPP_POW.shape,data.dataPP_POW[:10])
4543 #print("line 4049",data.azimuth.shape,data.azimuth)
4543
4544 4544 if self.mode==0:
4545 4545 self.__buffer.append(data.dataPP_POWER)# PRIMER MOMENTO
4546 4546 if self.mode==1:
4547 4547 self.__buffer.append(data.data_pow)
4548 #print("me casi",self.index,data.azimuth[self.index])
4549 #print(self.__profIndex, self.index , data.azimuth[self.index] )
4550 #print("magic",data.profileIndex)
4551 #print(data.azimuth[self.index])
4552 #print("index",self.index)
4553 4548
4554 #####self.__buffer2[self.__profIndex] = data.azimuth[self.index]
4549 self.__buffer4.append(data.dataPP_DOP)
4550
4555 4551 self.__buffer2.append(data.azimuth)
4556 4552 self.__buffer3.append(data.elevation)
4557 4553 self.__profIndex += 1
4558 #print("q pasa")
4554
4559 4555 return numpy.array(self.__buffer3) #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4560 4556
4561 4557 def pushData(self,data):
4562 4558 '''
4563 4559 Return the PULSEPAIR and the profiles used in the operation
4564 4560 Affected : self.__profileIndex
4565 4561 '''
4566 #print("pushData")
4567 4562
4568 data_360 = numpy.array(self.__buffer).transpose(1,0,2)
4563 data_360_Power = numpy.array(self.__buffer).transpose(1,0,2)
4564 data_360_Velocity = numpy.array(self.__buffer4).transpose(1,0,2)
4569 4565 data_p = numpy.array(self.__buffer2)
4570 4566 data_e = numpy.array(self.__buffer3)
4571 4567 n = self.__profIndex
4572 4568
4573 self.__buffer = []
4569 self.__buffer = []
4570 self.__buffer4 = []
4574 4571 self.__buffer2 = []
4575 4572 self.__buffer3 = []
4576 4573 self.__profIndex = 0
4577 #print("pushData")
4578 return data_360,n,data_p,data_e
4574 return data_360_Power,data_360_Velocity,n,data_p,data_e
4579 4575
4580 4576
4581 4577 def byProfiles(self,dataOut):
4582 4578
4583 4579 self.__dataReady = False
4584 data_360 = None
4580 data_360_Power = []
4581 data_360_Velocity = []
4585 4582 data_p = None
4586 4583 data_e = None
4587 #print("dataOu",dataOut.dataPP_POW)
4588 4584
4589 4585 elevations = self.putData(data=dataOut,mode = self.mode)
4590 ##### print("profIndex",self.__profIndex)
4591
4592 4586
4593 4587 if self.__profIndex > 1:
4594 4588 case_flag = self.checkcase(elevations)
4595 4589
4596 4590 if case_flag == 0: #Subida
4597 #Se borra el dato anterior para liberar buffer y comparar el dato actual con el siguiente
4591
4598 4592 if len(self.__buffer) == 2: #Cuando estΓ‘ de subida
4593 #Se borra el dato anterior para liberar buffer y comparar el dato actual con el siguiente
4599 4594 self.__buffer.pop(0) #Erase first data
4600 4595 self.__buffer2.pop(0)
4601 4596 self.__buffer3.pop(0)
4597 self.__buffer4.pop(0)
4602 4598 self.__profIndex -= 1
4603 4599 else: #Cuando ha estado de bajada y ha vuelto a subir
4604 #print("else",self.__buffer3)
4600 #Se borra el ΓΊltimo dato
4605 4601 self.__buffer.pop() #Erase last data
4606 4602 self.__buffer2.pop()
4607 4603 self.__buffer3.pop()
4608 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4609 #print(data_360.shape)
4610 #print(data_e.shape)
4611 #exit(1)
4604 self.__buffer4.pop()
4605 data_360_Power,data_360_Velocity,n,data_p,data_e = self.pushData(data=dataOut)
4606
4612 4607 self.__dataReady = True
4613 '''
4614 elif elevations[-1]<0.:
4615 if len(self.__buffer) == 2:
4608
4609 return data_360_Power,data_360_Velocity,data_p,data_e
4610
4611
4612 def blockOp(self, dataOut, datatime= None):
4613 if self.__initime == None:
4614 self.__initime = datatime
4615 data_360_Power,data_360_Velocity,data_p,data_e = self.byProfiles(dataOut)
4616 self.__lastdatatime = datatime
4617
4618 avgdatatime = self.__initime
4619 if self.n==1:
4620 avgdatatime = datatime
4621 deltatime = datatime - self.__lastdatatime
4622 self.__initime = datatime
4623 return data_360_Power,data_360_Velocity,avgdatatime,data_p,data_e
4624
4625 def checkcase(self,data_ele):
4626 #print(data_ele)
4627 start = data_ele[-2]
4628 end = data_ele[-1]
4629 diff_angle = (end-start)
4630 len_ang=len(data_ele)
4631
4632 if diff_angle > 0: #Subida
4633 return 0
4634
4635 def run(self, dataOut,mode='Power',**kwargs):
4636 #print("BLOCK 360 HERE WE GO MOMENTOS")
4637 #print("Block 360")
4638 dataOut.mode = mode
4639
4640 if not self.isConfig:
4641 self.setup(dataOut = dataOut ,mode= mode ,**kwargs)
4642 self.isConfig = True
4643
4644
4645 data_360_Power, data_360_Velocity, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4646
4647
4648 dataOut.flagNoData = True
4649
4650
4651 if self.__dataReady:
4652 dataOut.data_360_Power = data_360_Power # S
4653 dataOut.data_360_Velocity = data_360_Velocity
4654 dataOut.data_azi = data_p
4655 dataOut.data_ele = data_e
4656 dataOut.utctime = avgdatatime
4657 dataOut.flagNoData = False
4658
4659 return dataOut
4660
4661 class Block360_vRF3(Operation):
4662 '''
4663 '''
4664 isConfig = False
4665 __profIndex = 0
4666 __initime = None
4667 __lastdatatime = None
4668 __buffer = None
4669 __dataReady = False
4670 n = None
4671 __nch = 0
4672 __nHeis = 0
4673 index = 0
4674 mode = None
4675
4676 def __init__(self,**kwargs):
4677 Operation.__init__(self,**kwargs)
4678
4679 def setup(self, dataOut, n = None, mode = None):
4680 '''
4681 n= Numero de PRF's de entrada
4682 '''
4683 self.__initime = None
4684 self.__lastdatatime = 0
4685 self.__dataReady = False
4686 self.__buffer = 0
4687 self.__buffer_1D = 0
4688 #self.__profIndex = 0
4689 self.index = 0
4690 self.__nch = dataOut.nChannels
4691 self.__nHeis = dataOut.nHeights
4692
4693 self.mode = mode
4694 #print("self.mode",self.mode)
4695 #print("nHeights")
4696 self.__buffer = []
4697 self.__buffer2 = []
4698 self.__buffer3 = []
4699 self.__buffer4 = []
4700
4701 def putData(self,data,mode):
4702 '''
4703 Add a profile to he __buffer and increase in one the __profiel Index
4704 '''
4705
4706 if self.mode==0:
4707 self.__buffer.append(data.dataPP_POWER)# PRIMER MOMENTO
4708 if self.mode==1:
4709 self.__buffer.append(data.data_pow)
4710
4711 self.__buffer4.append(data.dataPP_DOP)
4712
4713 self.__buffer2.append(data.azimuth)
4714 self.__buffer3.append(data.elevation)
4715 self.__profIndex += 1
4716
4717 return numpy.array(self.__buffer3) #Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β· Remove DCΒ·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·Β·
4718
4719 def pushData(self,data):
4720 '''
4721 Return the PULSEPAIR and the profiles used in the operation
4722 Affected : self.__profileIndex
4723 '''
4724
4725 data_360_Power = numpy.array(self.__buffer).transpose(1,0,2)
4726 data_360_Velocity = numpy.array(self.__buffer4).transpose(1,0,2)
4727 data_p = numpy.array(self.__buffer2)
4728 data_e = numpy.array(self.__buffer3)
4729 n = self.__profIndex
4730
4731 self.__buffer = []
4732 self.__buffer4 = []
4733 self.__buffer2 = []
4734 self.__buffer3 = []
4735 self.__profIndex = 0
4736 return data_360_Power,data_360_Velocity,n,data_p,data_e
4737
4738
4739 def byProfiles(self,dataOut):
4740
4741 self.__dataReady = False
4742 data_360_Power = []
4743 data_360_Velocity = []
4744 data_p = None
4745 data_e = None
4746
4747 elevations = self.putData(data=dataOut,mode = self.mode)
4748
4749 if self.__profIndex > 1:
4750 case_flag = self.checkcase(elevations)
4751
4752 if case_flag == 0: #Subida
4753
4754 if len(self.__buffer) == 2: #Cuando estΓ‘ de subida
4755 #Se borra el dato anterior para liberar buffer y comparar el dato actual con el siguiente
4616 4756 self.__buffer.pop(0) #Erase first data
4617 4757 self.__buffer2.pop(0)
4618 4758 self.__buffer3.pop(0)
4759 self.__buffer4.pop(0)
4619 4760 self.__profIndex -= 1
4620 else:
4761 else: #Cuando ha estado de bajada y ha vuelto a subir
4762 #Se borra el ΓΊltimo dato
4621 4763 self.__buffer.pop() #Erase last data
4622 4764 self.__buffer2.pop()
4623 4765 self.__buffer3.pop()
4624 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4625 self.__dataReady = True
4626 '''
4627
4766 self.__buffer4.pop()
4767 data_360_Power,data_360_Velocity,n,data_p,data_e = self.pushData(data=dataOut)
4628 4768
4629 '''
4630 if self.__profIndex == self.n:
4631 data_360,n,data_p,data_e = self.pushData(data=dataOut)
4632 self.__dataReady = True
4633 '''
4769 self.__dataReady = True
4634 4770
4635 return data_360,data_p,data_e
4771 return data_360_Power,data_360_Velocity,data_p,data_e
4636 4772
4637 4773
4638 4774 def blockOp(self, dataOut, datatime= None):
4639 4775 if self.__initime == None:
4640 4776 self.__initime = datatime
4641 data_360,data_p,data_e = self.byProfiles(dataOut)
4777 data_360_Power,data_360_Velocity,data_p,data_e = self.byProfiles(dataOut)
4642 4778 self.__lastdatatime = datatime
4643 4779
4644 if data_360 is None:
4645 return None, None,None,None
4646
4647
4648 4780 avgdatatime = self.__initime
4649 4781 if self.n==1:
4650 4782 avgdatatime = datatime
4651 4783 deltatime = datatime - self.__lastdatatime
4652 4784 self.__initime = datatime
4653 #print(data_360.shape,avgdatatime,data_p.shape)
4654 return data_360,avgdatatime,data_p,data_e
4785 return data_360_Power,data_360_Velocity,avgdatatime,data_p,data_e
4655 4786
4656 4787 def checkcase(self,data_ele):
4657 print(data_ele)
4788 #print(data_ele)
4658 4789 start = data_ele[-2]
4659 4790 end = data_ele[-1]
4660 4791 diff_angle = (end-start)
4661 4792 len_ang=len(data_ele)
4662 4793
4663 4794 if diff_angle > 0: #Subida
4664 4795 return 0
4665 4796
4666 def run(self, dataOut,n = None,mode=None,**kwargs):
4797 def run(self, dataOut,mode='Power',**kwargs):
4667 4798 #print("BLOCK 360 HERE WE GO MOMENTOS")
4668 print("Block 360")
4799 #print("Block 360")
4800 dataOut.mode = mode
4669 4801
4670 #exit(1)
4671 4802 if not self.isConfig:
4672
4673 print(n)
4674 4803 self.setup(dataOut = dataOut ,mode= mode ,**kwargs)
4675 ####self.index = 0
4676 #print("comova",self.isConfig)
4677 4804 self.isConfig = True
4678 ####if self.index==dataOut.azimuth.shape[0]:
4679 #### self.index=0
4680
4681 data_360, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4682 4805
4683 4806
4807 data_360_Power, data_360_Velocity, avgdatatime,data_p,data_e = self.blockOp(dataOut, dataOut.utctime)
4684 4808
4685 4809
4686 4810 dataOut.flagNoData = True
4687 4811
4812
4688 4813 if self.__dataReady:
4689 dataOut.data_360 = data_360 # S
4690 #print("DATA 360")
4691 #print(dataOut.data_360)
4692 #print("---------------------------------------------------------------------------------")
4693 print("---------------------------DATAREADY---------------------------------------------")
4694 #print("---------------------------------------------------------------------------------")
4695 #print("data_360",dataOut.data_360.shape)
4696 print(data_e)
4697 #exit(1)
4814 dataOut.data_360_Power = data_360_Power # S
4815 dataOut.data_360_Velocity = data_360_Velocity
4698 4816 dataOut.data_azi = data_p
4699 4817 dataOut.data_ele = data_e
4700 ###print("azi: ",dataOut.data_azi)
4701 #print("ele: ",dataOut.data_ele)
4702 #print("jroproc_parameters",data_p[0],data_p[-1])#,data_360.shape,avgdatatime)
4703 4818 dataOut.utctime = avgdatatime
4704
4705
4706
4707 4819 dataOut.flagNoData = False
4820
4708 4821 return dataOut
General Comments 0
You need to be logged in to leave comments. Login now