The requested changes are too big and content was truncated. Show full diff
@@ -1,725 +1,736 | |||||
1 | import os |
|
1 | import os | |
2 | import datetime |
|
2 | import datetime | |
3 | import warnings |
|
3 | import warnings | |
4 | import numpy |
|
4 | import numpy | |
5 | from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter |
|
5 | from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter | |
6 | from matplotlib.patches import Circle |
|
6 | from matplotlib.patches import Circle | |
7 | import cartopy.crs as ccrs |
|
7 | import cartopy.crs as ccrs | |
8 | from cartopy.feature import ShapelyFeature |
|
8 | from cartopy.feature import ShapelyFeature | |
9 | import cartopy.io.shapereader as shpreader |
|
9 | import cartopy.io.shapereader as shpreader | |
10 |
|
10 | |||
11 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
11 | from schainpy.model.graphics.jroplot_base import Plot, plt | |
12 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
12 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot | |
13 | from schainpy.utils import log |
|
13 | from schainpy.utils import log | |
14 | from schainpy.model.graphics.plotting_codes import cb_tables |
|
14 | from schainpy.model.graphics.plotting_codes import cb_tables | |
15 |
|
15 | |||
16 |
|
16 | |||
17 | EARTH_RADIUS = 6.3710e3 |
|
17 | EARTH_RADIUS = 6.3710e3 | |
18 |
|
18 | |||
19 |
|
19 | |||
20 | def antenna_to_cartesian(ranges, azimuths, elevations): |
|
20 | def antenna_to_cartesian(ranges, azimuths, elevations): | |
21 | """ |
|
21 | """ | |
22 | Return Cartesian coordinates from antenna coordinates. |
|
22 | Return Cartesian coordinates from antenna coordinates. | |
23 |
|
23 | |||
24 | Parameters |
|
24 | Parameters | |
25 | ---------- |
|
25 | ---------- | |
26 | ranges : array |
|
26 | ranges : array | |
27 | Distances to the center of the radar gates (bins) in kilometers. |
|
27 | Distances to the center of the radar gates (bins) in kilometers. | |
28 | azimuths : array |
|
28 | azimuths : array | |
29 | Azimuth angle of the radar in degrees. |
|
29 | Azimuth angle of the radar in degrees. | |
30 | elevations : array |
|
30 | elevations : array | |
31 | Elevation angle of the radar in degrees. |
|
31 | Elevation angle of the radar in degrees. | |
32 |
|
32 | |||
33 | Returns |
|
33 | Returns | |
34 | ------- |
|
34 | ------- | |
35 | x, y, z : array |
|
35 | x, y, z : array | |
36 | Cartesian coordinates in meters from the radar. |
|
36 | Cartesian coordinates in meters from the radar. | |
37 |
|
37 | |||
38 | Notes |
|
38 | Notes | |
39 | ----- |
|
39 | ----- | |
40 | The calculation for Cartesian coordinate is adapted from equations |
|
40 | The calculation for Cartesian coordinate is adapted from equations | |
41 | 2.28(b) and 2.28(c) of Doviak and Zrnic [1]_ assuming a |
|
41 | 2.28(b) and 2.28(c) of Doviak and Zrnic [1]_ assuming a | |
42 | standard atmosphere (4/3 Earth's radius model). |
|
42 | standard atmosphere (4/3 Earth's radius model). | |
43 |
|
43 | |||
44 | .. math:: |
|
44 | .. math:: | |
45 |
|
45 | |||
46 | z = \\sqrt{r^2+R^2+2*r*R*sin(\\theta_e)} - R |
|
46 | z = \\sqrt{r^2+R^2+2*r*R*sin(\\theta_e)} - R | |
47 |
|
47 | |||
48 | s = R * arcsin(\\frac{r*cos(\\theta_e)}{R+z}) |
|
48 | s = R * arcsin(\\frac{r*cos(\\theta_e)}{R+z}) | |
49 |
|
49 | |||
50 | x = s * sin(\\theta_a) |
|
50 | x = s * sin(\\theta_a) | |
51 |
|
51 | |||
52 | y = s * cos(\\theta_a) |
|
52 | y = s * cos(\\theta_a) | |
53 |
|
53 | |||
54 | Where r is the distance from the radar to the center of the gate, |
|
54 | Where r is the distance from the radar to the center of the gate, | |
55 | :math:`\\theta_a` is the azimuth angle, :math:`\\theta_e` is the |
|
55 | :math:`\\theta_a` is the azimuth angle, :math:`\\theta_e` is the | |
56 | elevation angle, s is the arc length, and R is the effective radius |
|
56 | elevation angle, s is the arc length, and R is the effective radius | |
57 | of the earth, taken to be 4/3 the mean radius of earth (6371 km). |
|
57 | of the earth, taken to be 4/3 the mean radius of earth (6371 km). | |
58 |
|
58 | |||
59 | References |
|
59 | References | |
60 | ---------- |
|
60 | ---------- | |
61 | .. [1] Doviak and Zrnic, Doppler Radar and Weather Observations, Second |
|
61 | .. [1] Doviak and Zrnic, Doppler Radar and Weather Observations, Second | |
62 | Edition, 1993, p. 21. |
|
62 | Edition, 1993, p. 21. | |
63 |
|
63 | |||
64 | """ |
|
64 | """ | |
65 | theta_e = numpy.deg2rad(elevations) # elevation angle in radians. |
|
65 | theta_e = numpy.deg2rad(elevations) # elevation angle in radians. | |
66 | theta_a = numpy.deg2rad(azimuths) # azimuth angle in radians. |
|
66 | theta_a = numpy.deg2rad(azimuths) # azimuth angle in radians. | |
67 | R = 6371.0 * 1000.0 * 4.0 / 3.0 # effective radius of earth in meters. |
|
67 | R = 6371.0 * 1000.0 * 4.0 / 3.0 # effective radius of earth in meters. | |
68 | r = ranges * 1000.0 # distances to gates in meters. |
|
68 | r = ranges * 1000.0 # distances to gates in meters. | |
69 |
|
69 | |||
70 | z = (r ** 2 + R ** 2 + 2.0 * r * R * numpy.sin(theta_e)) ** 0.5 - R |
|
70 | z = (r ** 2 + R ** 2 + 2.0 * r * R * numpy.sin(theta_e)) ** 0.5 - R | |
71 | s = R * numpy.arcsin(r * numpy.cos(theta_e) / (R + z)) # arc length in m. |
|
71 | s = R * numpy.arcsin(r * numpy.cos(theta_e) / (R + z)) # arc length in m. | |
72 | x = s * numpy.sin(theta_a) |
|
72 | x = s * numpy.sin(theta_a) | |
73 | y = s * numpy.cos(theta_a) |
|
73 | y = s * numpy.cos(theta_a) | |
74 | return x, y, z |
|
74 | return x, y, z | |
75 |
|
75 | |||
76 | def cartesian_to_geographic_aeqd(x, y, lon_0, lat_0, R=EARTH_RADIUS): |
|
76 | def cartesian_to_geographic_aeqd(x, y, lon_0, lat_0, R=EARTH_RADIUS): | |
77 | """ |
|
77 | """ | |
78 | Azimuthal equidistant Cartesian to geographic coordinate transform. |
|
78 | Azimuthal equidistant Cartesian to geographic coordinate transform. | |
79 |
|
79 | |||
80 | Transform a set of Cartesian/Cartographic coordinates (x, y) to |
|
80 | Transform a set of Cartesian/Cartographic coordinates (x, y) to | |
81 | geographic coordinate system (lat, lon) using a azimuthal equidistant |
|
81 | geographic coordinate system (lat, lon) using a azimuthal equidistant | |
82 | map projection [1]_. |
|
82 | map projection [1]_. | |
83 |
|
83 | |||
84 | .. math:: |
|
84 | .. math:: | |
85 |
|
85 | |||
86 | lat = \\arcsin(\\cos(c) * \\sin(lat_0) + |
|
86 | lat = \\arcsin(\\cos(c) * \\sin(lat_0) + | |
87 | (y * \\sin(c) * \\cos(lat_0) / \\rho)) |
|
87 | (y * \\sin(c) * \\cos(lat_0) / \\rho)) | |
88 |
|
88 | |||
89 | lon = lon_0 + \\arctan2( |
|
89 | lon = lon_0 + \\arctan2( | |
90 | x * \\sin(c), |
|
90 | x * \\sin(c), | |
91 | \\rho * \\cos(lat_0) * \\cos(c) - y * \\sin(lat_0) * \\sin(c)) |
|
91 | \\rho * \\cos(lat_0) * \\cos(c) - y * \\sin(lat_0) * \\sin(c)) | |
92 |
|
92 | |||
93 | \\rho = \\sqrt(x^2 + y^2) |
|
93 | \\rho = \\sqrt(x^2 + y^2) | |
94 |
|
94 | |||
95 | c = \\rho / R |
|
95 | c = \\rho / R | |
96 |
|
96 | |||
97 | Where x, y are the Cartesian position from the center of projection; |
|
97 | Where x, y are the Cartesian position from the center of projection; | |
98 | lat, lon the corresponding latitude and longitude; lat_0, lon_0 are the |
|
98 | lat, lon the corresponding latitude and longitude; lat_0, lon_0 are the | |
99 | latitude and longitude of the center of the projection; R is the radius of |
|
99 | latitude and longitude of the center of the projection; R is the radius of | |
100 | the earth (defaults to ~6371 km). lon is adjusted to be between -180 and |
|
100 | the earth (defaults to ~6371 km). lon is adjusted to be between -180 and | |
101 | 180. |
|
101 | 180. | |
102 |
|
102 | |||
103 | Parameters |
|
103 | Parameters | |
104 | ---------- |
|
104 | ---------- | |
105 | x, y : array-like |
|
105 | x, y : array-like | |
106 | Cartesian coordinates in the same units as R, typically meters. |
|
106 | Cartesian coordinates in the same units as R, typically meters. | |
107 | lon_0, lat_0 : float |
|
107 | lon_0, lat_0 : float | |
108 | Longitude and latitude, in degrees, of the center of the projection. |
|
108 | Longitude and latitude, in degrees, of the center of the projection. | |
109 | R : float, optional |
|
109 | R : float, optional | |
110 | Earth radius in the same units as x and y. The default value is in |
|
110 | Earth radius in the same units as x and y. The default value is in | |
111 | units of meters. |
|
111 | units of meters. | |
112 |
|
112 | |||
113 | Returns |
|
113 | Returns | |
114 | ------- |
|
114 | ------- | |
115 | lon, lat : array |
|
115 | lon, lat : array | |
116 | Longitude and latitude of Cartesian coordinates in degrees. |
|
116 | Longitude and latitude of Cartesian coordinates in degrees. | |
117 |
|
117 | |||
118 | References |
|
118 | References | |
119 | ---------- |
|
119 | ---------- | |
120 | .. [1] Snyder, J. P. Map Projections--A Working Manual. U. S. Geological |
|
120 | .. [1] Snyder, J. P. Map Projections--A Working Manual. U. S. Geological | |
121 | Survey Professional Paper 1395, 1987, pp. 191-202. |
|
121 | Survey Professional Paper 1395, 1987, pp. 191-202. | |
122 |
|
122 | |||
123 | """ |
|
123 | """ | |
124 | x = numpy.atleast_1d(numpy.asarray(x)) |
|
124 | x = numpy.atleast_1d(numpy.asarray(x)) | |
125 | y = numpy.atleast_1d(numpy.asarray(y)) |
|
125 | y = numpy.atleast_1d(numpy.asarray(y)) | |
126 |
|
126 | |||
127 | lat_0_rad = numpy.deg2rad(lat_0) |
|
127 | lat_0_rad = numpy.deg2rad(lat_0) | |
128 | lon_0_rad = numpy.deg2rad(lon_0) |
|
128 | lon_0_rad = numpy.deg2rad(lon_0) | |
129 |
|
129 | |||
130 | rho = numpy.sqrt(x*x + y*y) |
|
130 | rho = numpy.sqrt(x*x + y*y) | |
131 | c = rho / R |
|
131 | c = rho / R | |
132 |
|
132 | |||
133 | with warnings.catch_warnings(): |
|
133 | with warnings.catch_warnings(): | |
134 | # division by zero may occur here but is properly addressed below so |
|
134 | # division by zero may occur here but is properly addressed below so | |
135 | # the warnings can be ignored |
|
135 | # the warnings can be ignored | |
136 | warnings.simplefilter("ignore", RuntimeWarning) |
|
136 | warnings.simplefilter("ignore", RuntimeWarning) | |
137 | lat_rad = numpy.arcsin(numpy.cos(c) * numpy.sin(lat_0_rad) + |
|
137 | lat_rad = numpy.arcsin(numpy.cos(c) * numpy.sin(lat_0_rad) + | |
138 | y * numpy.sin(c) * numpy.cos(lat_0_rad) / rho) |
|
138 | y * numpy.sin(c) * numpy.cos(lat_0_rad) / rho) | |
139 | lat_deg = numpy.rad2deg(lat_rad) |
|
139 | lat_deg = numpy.rad2deg(lat_rad) | |
140 | # fix cases where the distance from the center of the projection is zero |
|
140 | # fix cases where the distance from the center of the projection is zero | |
141 | lat_deg[rho == 0] = lat_0 |
|
141 | lat_deg[rho == 0] = lat_0 | |
142 |
|
142 | |||
143 | x1 = x * numpy.sin(c) |
|
143 | x1 = x * numpy.sin(c) | |
144 | x2 = rho*numpy.cos(lat_0_rad)*numpy.cos(c) - y*numpy.sin(lat_0_rad)*numpy.sin(c) |
|
144 | x2 = rho*numpy.cos(lat_0_rad)*numpy.cos(c) - y*numpy.sin(lat_0_rad)*numpy.sin(c) | |
145 | lon_rad = lon_0_rad + numpy.arctan2(x1, x2) |
|
145 | lon_rad = lon_0_rad + numpy.arctan2(x1, x2) | |
146 | lon_deg = numpy.rad2deg(lon_rad) |
|
146 | lon_deg = numpy.rad2deg(lon_rad) | |
147 | # Longitudes should be from -180 to 180 degrees |
|
147 | # Longitudes should be from -180 to 180 degrees | |
148 | lon_deg[lon_deg > 180] -= 360. |
|
148 | lon_deg[lon_deg > 180] -= 360. | |
149 | lon_deg[lon_deg < -180] += 360. |
|
149 | lon_deg[lon_deg < -180] += 360. | |
150 |
|
150 | |||
151 | return lon_deg, lat_deg |
|
151 | return lon_deg, lat_deg | |
152 |
|
152 | |||
153 | def antenna_to_geographic(ranges, azimuths, elevations, site): |
|
153 | def antenna_to_geographic(ranges, azimuths, elevations, site): | |
154 |
|
154 | |||
155 | x, y, z = antenna_to_cartesian(numpy.array(ranges), numpy.array(azimuths), numpy.array(elevations)) |
|
155 | x, y, z = antenna_to_cartesian(numpy.array(ranges), numpy.array(azimuths), numpy.array(elevations)) | |
156 | lon, lat = cartesian_to_geographic_aeqd(x, y, site[0], site[1], R=6370997.) |
|
156 | lon, lat = cartesian_to_geographic_aeqd(x, y, site[0], site[1], R=6370997.) | |
157 |
|
157 | |||
158 | return lon, lat |
|
158 | return lon, lat | |
159 |
|
159 | |||
160 | def ll2xy(lat1, lon1, lat2, lon2): |
|
160 | def ll2xy(lat1, lon1, lat2, lon2): | |
161 |
|
161 | |||
162 | p = 0.017453292519943295 |
|
162 | p = 0.017453292519943295 | |
163 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
163 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |
164 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
164 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |
165 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
165 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
166 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
166 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |
167 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
167 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |
168 | theta = -theta + numpy.pi/2 |
|
168 | theta = -theta + numpy.pi/2 | |
169 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
169 | return r*numpy.cos(theta), r*numpy.sin(theta) | |
170 |
|
170 | |||
171 |
|
171 | |||
172 | def km2deg(km): |
|
172 | def km2deg(km): | |
173 | ''' |
|
173 | ''' | |
174 | Convert distance in km to degrees |
|
174 | Convert distance in km to degrees | |
175 | ''' |
|
175 | ''' | |
176 |
|
176 | |||
177 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
177 | return numpy.rad2deg(km/EARTH_RADIUS) | |
178 |
|
178 | |||
179 |
|
179 | |||
180 |
|
180 | |||
181 | class SpectralMomentsPlot(SpectraPlot): |
|
181 | class SpectralMomentsPlot(SpectraPlot): | |
182 | ''' |
|
182 | ''' | |
183 | Plot for Spectral Moments |
|
183 | Plot for Spectral Moments | |
184 | ''' |
|
184 | ''' | |
185 | CODE = 'spc_moments' |
|
185 | CODE = 'spc_moments' | |
186 | # colormap = 'jet' |
|
186 | # colormap = 'jet' | |
187 | # plot_type = 'pcolor' |
|
187 | # plot_type = 'pcolor' | |
188 |
|
188 | |||
189 | class DobleGaussianPlot(SpectraPlot): |
|
189 | class DobleGaussianPlot(SpectraPlot): | |
190 | ''' |
|
190 | ''' | |
191 | Plot for Double Gaussian Plot |
|
191 | Plot for Double Gaussian Plot | |
192 | ''' |
|
192 | ''' | |
193 | CODE = 'gaussian_fit' |
|
193 | CODE = 'gaussian_fit' | |
194 | # colormap = 'jet' |
|
194 | # colormap = 'jet' | |
195 | # plot_type = 'pcolor' |
|
195 | # plot_type = 'pcolor' | |
196 |
|
196 | |||
197 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
197 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): | |
198 | ''' |
|
198 | ''' | |
199 | Plot SpectraCut with Double Gaussian Fit |
|
199 | Plot SpectraCut with Double Gaussian Fit | |
200 | ''' |
|
200 | ''' | |
201 | CODE = 'cut_gaussian_fit' |
|
201 | CODE = 'cut_gaussian_fit' | |
202 |
|
202 | |||
203 | class SnrPlot(RTIPlot): |
|
203 | class SnrPlot(RTIPlot): | |
204 | ''' |
|
204 | ''' | |
205 | Plot for SNR Data |
|
205 | Plot for SNR Data | |
206 | ''' |
|
206 | ''' | |
207 |
|
207 | |||
208 | CODE = 'snr' |
|
208 | CODE = 'snr' | |
209 | colormap = 'jet' |
|
209 | colormap = 'jet' | |
210 |
|
210 | |||
211 | def update(self, dataOut): |
|
211 | def update(self, dataOut): | |
212 |
|
212 | |||
213 | data = { |
|
213 | data = { | |
214 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
214 | 'snr': 10*numpy.log10(dataOut.data_snr) | |
215 | } |
|
215 | } | |
216 |
|
216 | |||
217 | return data, {} |
|
217 | return data, {} | |
218 |
|
218 | |||
219 | class DopplerPlot(RTIPlot): |
|
219 | class DopplerPlot(RTIPlot): | |
220 | ''' |
|
220 | ''' | |
221 | Plot for DOPPLER Data (1st moment) |
|
221 | Plot for DOPPLER Data (1st moment) | |
222 | ''' |
|
222 | ''' | |
223 |
|
223 | |||
224 | CODE = 'dop' |
|
224 | CODE = 'dop' | |
225 | colormap = 'jet' |
|
225 | colormap = 'jet' | |
226 |
|
226 | |||
227 | def update(self, dataOut): |
|
227 | def update(self, dataOut): | |
228 |
|
228 | |||
229 | data = { |
|
229 | data = { | |
230 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
230 | 'dop': 10*numpy.log10(dataOut.data_dop) | |
231 | } |
|
231 | } | |
232 |
|
232 | |||
233 | return data, {} |
|
233 | return data, {} | |
234 |
|
234 | |||
235 | class PowerPlot(RTIPlot): |
|
235 | class PowerPlot(RTIPlot): | |
236 | ''' |
|
236 | ''' | |
237 | Plot for Power Data (0 moment) |
|
237 | Plot for Power Data (0 moment) | |
238 | ''' |
|
238 | ''' | |
239 |
|
239 | |||
240 | CODE = 'pow' |
|
240 | CODE = 'pow' | |
241 | colormap = 'jet' |
|
241 | colormap = 'jet' | |
242 |
|
242 | |||
243 | def update(self, dataOut): |
|
243 | def update(self, dataOut): | |
244 | data = { |
|
244 | data = { | |
245 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) |
|
245 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) | |
246 | } |
|
246 | } | |
247 | return data, {} |
|
247 | return data, {} | |
248 |
|
248 | |||
249 | class SpectralWidthPlot(RTIPlot): |
|
249 | class SpectralWidthPlot(RTIPlot): | |
250 | ''' |
|
250 | ''' | |
251 | Plot for Spectral Width Data (2nd moment) |
|
251 | Plot for Spectral Width Data (2nd moment) | |
252 | ''' |
|
252 | ''' | |
253 |
|
253 | |||
254 | CODE = 'width' |
|
254 | CODE = 'width' | |
255 | colormap = 'jet' |
|
255 | colormap = 'jet' | |
256 |
|
256 | |||
257 | def update(self, dataOut): |
|
257 | def update(self, dataOut): | |
258 |
|
258 | |||
259 | data = { |
|
259 | data = { | |
260 | 'width': dataOut.data_width |
|
260 | 'width': dataOut.data_width | |
261 | } |
|
261 | } | |
262 |
|
262 | |||
263 | return data, {} |
|
263 | return data, {} | |
264 |
|
264 | |||
265 | class SkyMapPlot(Plot): |
|
265 | class SkyMapPlot(Plot): | |
266 | ''' |
|
266 | ''' | |
267 | Plot for meteors detection data |
|
267 | Plot for meteors detection data | |
268 | ''' |
|
268 | ''' | |
269 |
|
269 | |||
270 | CODE = 'param' |
|
270 | CODE = 'param' | |
271 |
|
271 | |||
272 | def setup(self): |
|
272 | def setup(self): | |
273 |
|
273 | |||
274 | self.ncols = 1 |
|
274 | self.ncols = 1 | |
275 | self.nrows = 1 |
|
275 | self.nrows = 1 | |
276 | self.width = 7.2 |
|
276 | self.width = 7.2 | |
277 | self.height = 7.2 |
|
277 | self.height = 7.2 | |
278 | self.nplots = 1 |
|
278 | self.nplots = 1 | |
279 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
279 | self.xlabel = 'Zonal Zenith Angle (deg)' | |
280 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
280 | self.ylabel = 'Meridional Zenith Angle (deg)' | |
281 | self.polar = True |
|
281 | self.polar = True | |
282 | self.ymin = -180 |
|
282 | self.ymin = -180 | |
283 | self.ymax = 180 |
|
283 | self.ymax = 180 | |
284 | self.colorbar = False |
|
284 | self.colorbar = False | |
285 |
|
285 | |||
286 | def plot(self): |
|
286 | def plot(self): | |
287 |
|
287 | |||
288 | arrayParameters = numpy.concatenate(self.data['param']) |
|
288 | arrayParameters = numpy.concatenate(self.data['param']) | |
289 | error = arrayParameters[:, -1] |
|
289 | error = arrayParameters[:, -1] | |
290 | indValid = numpy.where(error == 0)[0] |
|
290 | indValid = numpy.where(error == 0)[0] | |
291 | finalMeteor = arrayParameters[indValid, :] |
|
291 | finalMeteor = arrayParameters[indValid, :] | |
292 | finalAzimuth = finalMeteor[:, 3] |
|
292 | finalAzimuth = finalMeteor[:, 3] | |
293 | finalZenith = finalMeteor[:, 4] |
|
293 | finalZenith = finalMeteor[:, 4] | |
294 |
|
294 | |||
295 | x = finalAzimuth * numpy.pi / 180 |
|
295 | x = finalAzimuth * numpy.pi / 180 | |
296 | y = finalZenith |
|
296 | y = finalZenith | |
297 |
|
297 | |||
298 | ax = self.axes[0] |
|
298 | ax = self.axes[0] | |
299 |
|
299 | |||
300 | if ax.firsttime: |
|
300 | if ax.firsttime: | |
301 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
301 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] | |
302 | else: |
|
302 | else: | |
303 | ax.plot.set_data(x, y) |
|
303 | ax.plot.set_data(x, y) | |
304 |
|
304 | |||
305 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
305 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') | |
306 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
306 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') | |
307 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
307 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | |
308 | dt2, |
|
308 | dt2, | |
309 | len(x)) |
|
309 | len(x)) | |
310 | self.titles[0] = title |
|
310 | self.titles[0] = title | |
311 |
|
311 | |||
312 |
|
312 | |||
313 | class GenericRTIPlot(Plot): |
|
313 | class GenericRTIPlot(Plot): | |
314 | ''' |
|
314 | ''' | |
315 | Plot for data_xxxx object |
|
315 | Plot for data_xxxx object | |
316 | ''' |
|
316 | ''' | |
317 |
|
317 | |||
318 | CODE = 'param' |
|
318 | CODE = 'param' | |
319 | colormap = 'viridis' |
|
319 | colormap = 'viridis' | |
320 | plot_type = 'pcolorbuffer' |
|
320 | plot_type = 'pcolorbuffer' | |
321 |
|
321 | |||
322 | def setup(self): |
|
322 | def setup(self): | |
323 | self.xaxis = 'time' |
|
323 | self.xaxis = 'time' | |
324 | self.ncols = 1 |
|
324 | self.ncols = 1 | |
325 | self.nrows = self.data.shape('param')[0] |
|
325 | self.nrows = self.data.shape('param')[0] | |
326 | self.nplots = self.nrows |
|
326 | self.nplots = self.nrows | |
327 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
327 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) | |
328 |
|
328 | |||
329 | if not self.xlabel: |
|
329 | if not self.xlabel: | |
330 | self.xlabel = 'Time' |
|
330 | self.xlabel = 'Time' | |
331 |
|
331 | |||
332 | self.ylabel = 'Range [km]' |
|
332 | self.ylabel = 'Range [km]' | |
333 | if not self.titles: |
|
333 | if not self.titles: | |
334 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
334 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] | |
335 |
|
335 | |||
336 | def update(self, dataOut): |
|
336 | def update(self, dataOut): | |
337 |
|
337 | |||
338 | data = { |
|
338 | data = { | |
339 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
339 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) | |
340 | } |
|
340 | } | |
341 |
|
341 | |||
342 | meta = {} |
|
342 | meta = {} | |
343 |
|
343 | |||
344 | return data, meta |
|
344 | return data, meta | |
345 |
|
345 | |||
346 | def plot(self): |
|
346 | def plot(self): | |
347 | # self.data.normalize_heights() |
|
347 | # self.data.normalize_heights() | |
348 | self.x = self.data.times |
|
348 | self.x = self.data.times | |
349 | self.y = self.data.yrange |
|
349 | self.y = self.data.yrange | |
350 | self.z = self.data['param'] |
|
350 | self.z = self.data['param'] | |
351 | self.z = 10*numpy.log10(self.z) |
|
351 | self.z = 10*numpy.log10(self.z) | |
352 | self.z = numpy.ma.masked_invalid(self.z) |
|
352 | self.z = numpy.ma.masked_invalid(self.z) | |
353 |
|
353 | |||
354 | if self.decimation is None: |
|
354 | if self.decimation is None: | |
355 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
355 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
356 | else: |
|
356 | else: | |
357 | x, y, z = self.fill_gaps(*self.decimate()) |
|
357 | x, y, z = self.fill_gaps(*self.decimate()) | |
358 |
|
358 | |||
359 | for n, ax in enumerate(self.axes): |
|
359 | for n, ax in enumerate(self.axes): | |
360 |
|
360 | |||
361 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
361 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
362 | self.z[n]) |
|
362 | self.z[n]) | |
363 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
363 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
364 | self.z[n]) |
|
364 | self.z[n]) | |
365 |
|
365 | |||
366 | if ax.firsttime: |
|
366 | if ax.firsttime: | |
367 | if self.zlimits is not None: |
|
367 | if self.zlimits is not None: | |
368 | self.zmin, self.zmax = self.zlimits[n] |
|
368 | self.zmin, self.zmax = self.zlimits[n] | |
369 |
|
369 | |||
370 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
370 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
371 | vmin=self.zmin, |
|
371 | vmin=self.zmin, | |
372 | vmax=self.zmax, |
|
372 | vmax=self.zmax, | |
373 | cmap=self.cmaps[n] |
|
373 | cmap=self.cmaps[n] | |
374 | ) |
|
374 | ) | |
375 | else: |
|
375 | else: | |
376 | if self.zlimits is not None: |
|
376 | if self.zlimits is not None: | |
377 | self.zmin, self.zmax = self.zlimits[n] |
|
377 | self.zmin, self.zmax = self.zlimits[n] | |
378 | ax.collections.remove(ax.collections[0]) |
|
378 | ax.collections.remove(ax.collections[0]) | |
379 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
379 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
380 | vmin=self.zmin, |
|
380 | vmin=self.zmin, | |
381 | vmax=self.zmax, |
|
381 | vmax=self.zmax, | |
382 | cmap=self.cmaps[n] |
|
382 | cmap=self.cmaps[n] | |
383 | ) |
|
383 | ) | |
384 |
|
384 | |||
385 |
|
385 | |||
386 | class PolarMapPlot(Plot): |
|
386 | class PolarMapPlot(Plot): | |
387 | ''' |
|
387 | ''' | |
388 | Plot for weather radar |
|
388 | Plot for weather radar | |
389 | ''' |
|
389 | ''' | |
390 |
|
390 | |||
391 | CODE = 'param' |
|
391 | CODE = 'param' | |
392 | colormap = 'seismic' |
|
392 | colormap = 'seismic' | |
393 |
|
393 | |||
394 | def setup(self): |
|
394 | def setup(self): | |
395 | self.ncols = 1 |
|
395 | self.ncols = 1 | |
396 | self.nrows = 1 |
|
396 | self.nrows = 1 | |
397 | self.width = 9 |
|
397 | self.width = 9 | |
398 | self.height = 8 |
|
398 | self.height = 8 | |
399 | self.mode = self.data.meta['mode'] |
|
399 | self.mode = self.data.meta['mode'] | |
400 | if self.channels is not None: |
|
400 | if self.channels is not None: | |
401 | self.nplots = len(self.channels) |
|
401 | self.nplots = len(self.channels) | |
402 | self.nrows = len(self.channels) |
|
402 | self.nrows = len(self.channels) | |
403 | else: |
|
403 | else: | |
404 | self.nplots = self.data.shape(self.CODE)[0] |
|
404 | self.nplots = self.data.shape(self.CODE)[0] | |
405 | self.nrows = self.nplots |
|
405 | self.nrows = self.nplots | |
406 | self.channels = list(range(self.nplots)) |
|
406 | self.channels = list(range(self.nplots)) | |
407 | if self.mode == 'E': |
|
407 | if self.mode == 'E': | |
408 | self.xlabel = 'Longitude' |
|
408 | self.xlabel = 'Longitude' | |
409 | self.ylabel = 'Latitude' |
|
409 | self.ylabel = 'Latitude' | |
410 | else: |
|
410 | else: | |
411 | self.xlabel = 'Range (km)' |
|
411 | self.xlabel = 'Range (km)' | |
412 | self.ylabel = 'Height (km)' |
|
412 | self.ylabel = 'Height (km)' | |
413 | self.bgcolor = 'white' |
|
413 | self.bgcolor = 'white' | |
414 | self.cb_labels = self.data.meta['units'] |
|
414 | self.cb_labels = self.data.meta['units'] | |
415 | self.lat = self.data.meta['latitude'] |
|
415 | self.lat = self.data.meta['latitude'] | |
416 | self.lon = self.data.meta['longitude'] |
|
416 | self.lon = self.data.meta['longitude'] | |
417 | self.xmin, self.xmax = float( |
|
417 | self.xmin, self.xmax = float( | |
418 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
418 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) | |
419 | self.ymin, self.ymax = float( |
|
419 | self.ymin, self.ymax = float( | |
420 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
420 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) | |
421 | # self.polar = True |
|
421 | # self.polar = True | |
422 |
|
422 | |||
423 | def plot(self): |
|
423 | def plot(self): | |
424 |
|
424 | |||
425 | for n, ax in enumerate(self.axes): |
|
425 | for n, ax in enumerate(self.axes): | |
426 | data = self.data['param'][self.channels[n]] |
|
426 | data = self.data['param'][self.channels[n]] | |
427 |
|
427 | |||
428 | zeniths = numpy.linspace( |
|
428 | zeniths = numpy.linspace( | |
429 | 0, self.data.meta['max_range'], data.shape[1]) |
|
429 | 0, self.data.meta['max_range'], data.shape[1]) | |
430 | if self.mode == 'E': |
|
430 | if self.mode == 'E': | |
431 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
431 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 | |
432 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
432 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
433 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
433 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( | |
434 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
434 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) | |
435 | x = km2deg(x) + self.lon |
|
435 | x = km2deg(x) + self.lon | |
436 | y = km2deg(y) + self.lat |
|
436 | y = km2deg(y) + self.lat | |
437 | else: |
|
437 | else: | |
438 | azimuths = numpy.radians(self.data.yrange) |
|
438 | azimuths = numpy.radians(self.data.yrange) | |
439 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
439 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
440 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
440 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) | |
441 | self.y = zeniths |
|
441 | self.y = zeniths | |
442 |
|
442 | |||
443 | if ax.firsttime: |
|
443 | if ax.firsttime: | |
444 | if self.zlimits is not None: |
|
444 | if self.zlimits is not None: | |
445 | self.zmin, self.zmax = self.zlimits[n] |
|
445 | self.zmin, self.zmax = self.zlimits[n] | |
446 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
446 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
447 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
447 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
448 | vmin=self.zmin, |
|
448 | vmin=self.zmin, | |
449 | vmax=self.zmax, |
|
449 | vmax=self.zmax, | |
450 | cmap=self.cmaps[n]) |
|
450 | cmap=self.cmaps[n]) | |
451 | else: |
|
451 | else: | |
452 | if self.zlimits is not None: |
|
452 | if self.zlimits is not None: | |
453 | self.zmin, self.zmax = self.zlimits[n] |
|
453 | self.zmin, self.zmax = self.zlimits[n] | |
454 | ax.collections.remove(ax.collections[0]) |
|
454 | ax.collections.remove(ax.collections[0]) | |
455 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
455 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
456 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
456 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
457 | vmin=self.zmin, |
|
457 | vmin=self.zmin, | |
458 | vmax=self.zmax, |
|
458 | vmax=self.zmax, | |
459 | cmap=self.cmaps[n]) |
|
459 | cmap=self.cmaps[n]) | |
460 |
|
460 | |||
461 | if self.mode == 'A': |
|
461 | if self.mode == 'A': | |
462 | continue |
|
462 | continue | |
463 |
|
463 | |||
464 | # plot district names |
|
464 | # plot district names | |
465 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
465 | f = open('/data/workspace/schain_scripts/distrito.csv') | |
466 | for line in f: |
|
466 | for line in f: | |
467 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
467 | label, lon, lat = [s.strip() for s in line.split(',') if s] | |
468 | lat = float(lat) |
|
468 | lat = float(lat) | |
469 | lon = float(lon) |
|
469 | lon = float(lon) | |
470 | # ax.plot(lon, lat, '.b', ms=2) |
|
470 | # ax.plot(lon, lat, '.b', ms=2) | |
471 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
471 | ax.text(lon, lat, label.decode('utf8'), ha='center', | |
472 | va='bottom', size='8', color='black') |
|
472 | va='bottom', size='8', color='black') | |
473 |
|
473 | |||
474 | # plot limites |
|
474 | # plot limites | |
475 | limites = [] |
|
475 | limites = [] | |
476 | tmp = [] |
|
476 | tmp = [] | |
477 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
477 | for line in open('/data/workspace/schain_scripts/lima.csv'): | |
478 | if '#' in line: |
|
478 | if '#' in line: | |
479 | if tmp: |
|
479 | if tmp: | |
480 | limites.append(tmp) |
|
480 | limites.append(tmp) | |
481 | tmp = [] |
|
481 | tmp = [] | |
482 | continue |
|
482 | continue | |
483 | values = line.strip().split(',') |
|
483 | values = line.strip().split(',') | |
484 | tmp.append((float(values[0]), float(values[1]))) |
|
484 | tmp.append((float(values[0]), float(values[1]))) | |
485 | for points in limites: |
|
485 | for points in limites: | |
486 | ax.add_patch( |
|
486 | ax.add_patch( | |
487 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
487 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) | |
488 |
|
488 | |||
489 | # plot Cuencas |
|
489 | # plot Cuencas | |
490 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
490 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): | |
491 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
491 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) | |
492 | values = [line.strip().split(',') for line in f] |
|
492 | values = [line.strip().split(',') for line in f] | |
493 | points = [(float(s[0]), float(s[1])) for s in values] |
|
493 | points = [(float(s[0]), float(s[1])) for s in values] | |
494 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
494 | ax.add_patch(Polygon(points, ec='b', fc='none')) | |
495 |
|
495 | |||
496 | # plot grid |
|
496 | # plot grid | |
497 | for r in (15, 30, 45, 60): |
|
497 | for r in (15, 30, 45, 60): | |
498 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
498 | ax.add_artist(plt.Circle((self.lon, self.lat), | |
499 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
499 | km2deg(r), color='0.6', fill=False, lw=0.2)) | |
500 | ax.text( |
|
500 | ax.text( | |
501 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
501 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), | |
502 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
502 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), | |
503 | '{}km'.format(r), |
|
503 | '{}km'.format(r), | |
504 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
504 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') | |
505 |
|
505 | |||
506 | if self.mode == 'E': |
|
506 | if self.mode == 'E': | |
507 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
507 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) | |
508 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
508 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) | |
509 | else: |
|
509 | else: | |
510 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
510 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) | |
511 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
511 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) | |
512 |
|
512 | |||
513 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
513 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] | |
514 | self.titles = ['{} {}'.format( |
|
514 | self.titles = ['{} {}'.format( | |
515 | self.data.parameters[x], title) for x in self.channels] |
|
515 | self.data.parameters[x], title) for x in self.channels] | |
516 |
|
516 | |||
517 | class WeatherParamsPlot(Plot): |
|
517 | class WeatherParamsPlot(Plot): | |
518 | #CODE = 'RHI' |
|
518 | #CODE = 'RHI' | |
519 | #plot_name = 'RHI' |
|
519 | #plot_name = 'RHI' | |
520 | plot_type = 'scattermap' |
|
520 | plot_type = 'scattermap' | |
521 | buffering = False |
|
521 | buffering = False | |
522 | projection = ccrs.PlateCarree() |
|
522 | projection = ccrs.PlateCarree() | |
523 |
|
523 | |||
524 | def setup(self): |
|
524 | def setup(self): | |
525 |
|
525 | |||
526 | self.ncols = 1 |
|
526 | self.ncols = 1 | |
527 | self.nrows = 1 |
|
527 | self.nrows = 1 | |
528 | self.nplots= 1 |
|
528 | self.nplots= 1 | |
529 | self.ylabel= 'Height [km]' |
|
529 | self.ylabel= 'Height [km]' | |
530 | self.xlabel= 'Distance from radar [km]' |
|
530 | self.xlabel= 'Distance from radar [km]' | |
531 |
|
531 | |||
532 | if self.channels is not None: |
|
532 | if self.channels is not None: | |
533 | self.nplots = len(self.channels) |
|
533 | self.nplots = len(self.channels) | |
534 | self.ncols = len(self.channels) |
|
534 | self.ncols = len(self.channels) | |
535 | else: |
|
535 | else: | |
536 | self.nplots = self.data.shape(self.CODE)[0] |
|
536 | self.nplots = self.data.shape(self.CODE)[0] | |
537 | self.ncols = self.nplots |
|
537 | self.ncols = self.nplots | |
538 | self.channels = list(range(self.nplots)) |
|
538 | self.channels = list(range(self.nplots)) | |
539 |
|
539 | |||
540 | self.colorbar=True |
|
540 | self.colorbar=True | |
541 | if len(self.channels)>1: |
|
541 | if len(self.channels)>1: | |
542 | self.width = 12 |
|
542 | self.width = 12 | |
543 | else: |
|
543 | else: | |
544 | self.width =8 |
|
544 | self.width =8 | |
545 | self.height =7 |
|
545 | self.height =7 | |
546 | self.ini =0 |
|
546 | self.ini =0 | |
547 | self.len_azi =0 |
|
547 | self.len_azi =0 | |
548 | self.buffer_ini = None |
|
548 | self.buffer_ini = None | |
549 | self.buffer_ele = None |
|
549 | self.buffer_ele = None | |
550 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.1}) |
|
550 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.1}) | |
551 | self.flag =0 |
|
551 | self.flag =0 | |
552 | self.indicador= 0 |
|
552 | self.indicador= 0 | |
553 | self.last_data_ele = None |
|
553 | self.last_data_ele = None | |
554 | self.val_mean = None |
|
554 | self.val_mean = None | |
555 |
|
555 | |||
556 | def update(self, dataOut): |
|
556 | def update(self, dataOut): | |
557 |
|
557 | |||
558 | vars = { |
|
558 | vars = { | |
559 | 'S' : 0, |
|
559 | 'S' : 0, | |
560 | 'V' : 1, |
|
560 | 'V' : 1, | |
561 | 'W' : 2, |
|
561 | 'W' : 2, | |
562 | 'SNR' : 3, |
|
562 | 'SNR' : 3, | |
563 | 'Z' : 4, |
|
563 | 'Z' : 4, | |
564 | 'D' : 5, |
|
564 | 'D' : 5, | |
565 | 'P' : 6, |
|
565 | 'P' : 6, | |
566 | 'R' : 7, |
|
566 | 'R' : 7, | |
567 | } |
|
567 | } | |
568 |
|
568 | |||
569 | data = {} |
|
569 | data = {} | |
570 | meta = {} |
|
570 | meta = {} | |
571 |
|
571 | |||
572 | if hasattr(dataOut, 'nFFTPoints'): |
|
572 | if hasattr(dataOut, 'nFFTPoints'): | |
573 | factor = dataOut.normFactor |
|
573 | factor = dataOut.normFactor | |
574 | else: |
|
574 | else: | |
575 | factor = 1 |
|
575 | factor = 1 | |
576 |
|
576 | |||
577 | if hasattr(dataOut, 'dparam'): |
|
577 | if hasattr(dataOut, 'dparam'): | |
578 | tmp = getattr(dataOut, 'data_param') |
|
578 | tmp = getattr(dataOut, 'data_param') | |
579 | else: |
|
579 | else: | |
580 |
|
580 | #print("-------------------self.attr_data[0]",self.attr_data[0]) | ||
581 | if 'S' in self.attr_data[0]: |
|
581 | if 'S' in self.attr_data[0]: | |
|
582 | if self.attr_data[0]=='S': | |||
582 | tmp = 10*numpy.log10(10.0*getattr(dataOut, 'data_param')[:,0,:]/(factor)) |
|
583 | tmp = 10*numpy.log10(10.0*getattr(dataOut, 'data_param')[:,0,:]/(factor)) | |
|
584 | if self.attr_data[0]=='SNR': | |||
|
585 | tmp = 10*numpy.log10(getattr(dataOut, 'data_param')[:,3,:]) | |||
583 | else: |
|
586 | else: | |
584 | tmp = getattr(dataOut, 'data_param')[:,vars[self.attr_data[0]],:] |
|
587 | tmp = getattr(dataOut, 'data_param')[:,vars[self.attr_data[0]],:] | |
585 |
|
588 | |||
586 | if self.mask: |
|
589 | if self.mask: | |
587 | mask = dataOut.data_param[:,3,:] < self.mask |
|
590 | mask = dataOut.data_param[:,3,:] < self.mask | |
588 | tmp = numpy.ma.masked_array(tmp, mask=mask) |
|
591 | tmp = numpy.ma.masked_array(tmp, mask=mask) | |
589 |
|
592 | |||
590 | r = dataOut.heightList |
|
593 | r = dataOut.heightList | |
591 | delta_height = r[1]-r[0] |
|
594 | delta_height = r[1]-r[0] | |
592 | valid = numpy.where(r>=0)[0] |
|
595 | valid = numpy.where(r>=0)[0] | |
593 | data['r'] = numpy.arange(len(valid))*delta_height |
|
596 | data['r'] = numpy.arange(len(valid))*delta_height | |
594 |
|
597 | |||
595 | data['data'] = [0, 0] |
|
598 | data['data'] = [0, 0] | |
596 |
|
599 | |||
597 | try: |
|
600 | try: | |
598 | data['data'][0] = tmp[0][:,valid] |
|
601 | data['data'][0] = tmp[0][:,valid] | |
599 | data['data'][1] = tmp[1][:,valid] |
|
602 | data['data'][1] = tmp[1][:,valid] | |
600 | except: |
|
603 | except: | |
601 | data['data'][0] = tmp[0][:,valid] |
|
604 | data['data'][0] = tmp[0][:,valid] | |
602 | data['data'][1] = tmp[0][:,valid] |
|
605 | data['data'][1] = tmp[0][:,valid] | |
603 |
|
606 | |||
604 | if dataOut.mode_op == 'PPI': |
|
607 | if dataOut.mode_op == 'PPI': | |
605 | self.CODE = 'PPI' |
|
608 | self.CODE = 'PPI' | |
606 | self.title = self.CODE |
|
609 | self.title = self.CODE | |
607 | elif dataOut.mode_op == 'RHI': |
|
610 | elif dataOut.mode_op == 'RHI': | |
608 | self.CODE = 'RHI' |
|
611 | self.CODE = 'RHI' | |
609 | self.title = self.CODE |
|
612 | self.title = self.CODE | |
610 |
|
613 | |||
611 | data['azi'] = dataOut.data_azi |
|
614 | data['azi'] = dataOut.data_azi | |
612 | data['ele'] = dataOut.data_ele |
|
615 | data['ele'] = dataOut.data_ele | |
|
616 | ||||
|
617 | if isinstance(dataOut.mode_op, bytes): | |||
|
618 | try: | |||
|
619 | dataOut.mode_op = dataOut.mode_op.decode() | |||
|
620 | except: | |||
|
621 | dataOut.mode_op = str(dataOut.mode_op, 'utf-8') | |||
613 | data['mode_op'] = dataOut.mode_op |
|
622 | data['mode_op'] = dataOut.mode_op | |
614 | self.mode = dataOut.mode_op |
|
623 | self.mode = dataOut.mode_op | |
615 |
|
624 | |||
616 | return data, meta |
|
625 | return data, meta | |
617 |
|
626 | |||
618 | def plot(self): |
|
627 | def plot(self): | |
619 | data = self.data[-1] |
|
628 | data = self.data[-1] | |
620 | z = data['data'] |
|
629 | z = data['data'] | |
621 | r = data['r'] |
|
630 | r = data['r'] | |
622 | self.titles = [] |
|
631 | self.titles = [] | |
623 |
|
632 | |||
624 | self.ymax = self.ymax if self.ymax else numpy.nanmax(r) |
|
633 | self.ymax = self.ymax if self.ymax else numpy.nanmax(r) | |
625 | self.ymin = self.ymin if self.ymin else numpy.nanmin(r) |
|
634 | self.ymin = self.ymin if self.ymin else numpy.nanmin(r) | |
626 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
635 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
627 | self.zmin = self.zmin if self.zmin is not None else numpy.nanmin(z) |
|
636 | self.zmin = self.zmin if self.zmin is not None else numpy.nanmin(z) | |
628 |
|
637 | |||
629 | if isinstance(data['mode_op'], bytes): |
|
638 | if isinstance(data['mode_op'], bytes): | |
630 | data['mode_op'] = data['mode_op'].decode() |
|
639 | data['mode_op'] = data['mode_op'].decode() | |
631 |
|
640 | |||
632 | if data['mode_op'] == 'RHI': |
|
641 | if data['mode_op'] == 'RHI': | |
633 | r, theta = numpy.meshgrid(r, numpy.radians(data['ele'])) |
|
642 | r, theta = numpy.meshgrid(r, numpy.radians(data['ele'])) | |
634 | len_aux = int(data['azi'].shape[0]/4) |
|
643 | len_aux = int(data['azi'].shape[0]/4) | |
635 | mean = numpy.mean(data['azi'][len_aux:-len_aux]) |
|
644 | mean = numpy.mean(data['azi'][len_aux:-len_aux]) | |
636 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
645 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) | |
637 |
elif data['mode_op'] == 'PPI': |
|
646 | elif data['mode_op'] == 'PPI': | |
638 | r, theta = numpy.meshgrid(r, -numpy.radians(data['azi'])+numpy.pi/2) |
|
647 | r, theta = numpy.meshgrid(r, -numpy.radians(data['azi'])+numpy.pi/2) | |
639 | len_aux = int(data['ele'].shape[0]/4) |
|
648 | len_aux = int(data['ele'].shape[0]/4) | |
640 | mean = numpy.mean(data['ele'][len_aux:-len_aux]) |
|
649 | mean = numpy.mean(data['ele'][len_aux:-len_aux]) | |
641 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(mean)), r*numpy.sin( |
|
650 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(mean)), r*numpy.sin( | |
642 | theta)*numpy.cos(numpy.radians(mean)) |
|
651 | theta)*numpy.cos(numpy.radians(mean)) | |
643 | x = km2deg(x) + -75.295893 |
|
652 | x = km2deg(x) + -75.295893 | |
644 | y = km2deg(y) + -12.040436 |
|
653 | y = km2deg(y) + -12.040436 | |
645 |
|
654 | |||
646 | self.clear_figures() |
|
655 | self.clear_figures() | |
647 |
|
656 | |||
648 | if data['mode_op'] == 'PPI': |
|
657 | if data['mode_op'] == 'PPI': | |
649 | axes = self.axes['PPI'] |
|
658 | axes = self.axes['PPI'] | |
650 | else: |
|
659 | else: | |
651 | axes = self.axes['RHI'] |
|
660 | axes = self.axes['RHI'] | |
652 |
|
661 | |||
653 | if self.colormap in cb_tables: |
|
662 | if self.colormap in cb_tables: | |
654 | norm = cb_tables[self.colormap]['norm'] |
|
663 | norm = cb_tables[self.colormap]['norm'] | |
655 | else: |
|
664 | else: | |
656 | norm = None |
|
665 | norm = None | |
657 |
|
666 | |||
658 | for i, ax in enumerate(axes): |
|
667 | for i, ax in enumerate(axes): | |
659 | if data['mode_op'] == 'PPI': |
|
668 | if data['mode_op'] == 'PPI': | |
660 | ax.set_extent([-75.745893, -74.845893, -12.490436, -11.590436]) |
|
669 | ax.set_extent([-75.745893, -74.845893, -12.490436, -11.590436]) | |
661 |
|
670 | |||
662 | if norm is None: |
|
671 | if norm is None: | |
663 | ax.plt = ax.pcolormesh(x, y, z[i], cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) |
|
672 | ax.plt = ax.pcolormesh(x, y, z[i], cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) | |
664 | else: |
|
673 | else: | |
665 | ax.plt = ax.pcolormesh(x, y, z[i], cmap=self.colormap, norm=norm) |
|
674 | ax.plt = ax.pcolormesh(x, y, z[i], cmap=self.colormap, norm=norm) | |
666 |
|
675 | |||
667 | if data['mode_op'] == 'RHI': |
|
676 | if data['mode_op'] == 'RHI': | |
668 | len_aux = int(data['azi'].shape[0]/4) |
|
677 | len_aux = int(data['azi'].shape[0]/4) | |
669 | mean = numpy.mean(data['azi'][len_aux:-len_aux]) |
|
678 | mean = numpy.mean(data['azi'][len_aux:-len_aux]) | |
670 | if len(self.channels) !=1: |
|
679 | if len(self.channels) !=1: | |
671 | self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in self.channels] |
|
680 | self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in self.channels] | |
672 | else: |
|
681 | else: | |
673 | self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])] |
|
682 | self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])] | |
674 | elif data['mode_op'] == 'PPI': |
|
683 | elif data['mode_op'] == 'PPI': | |
675 | len_aux = int(data['ele'].shape[0]/4) |
|
684 | len_aux = int(data['ele'].shape[0]/4) | |
676 | mean = numpy.mean(data['ele'][len_aux:-len_aux]) |
|
685 | mean = numpy.mean(data['ele'][len_aux:-len_aux]) | |
677 | if len(self.channels) !=1: |
|
686 | if len(self.channels) !=1: | |
678 | self.titles = ['PPI {} at EL: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in self.channels] |
|
687 | self.titles = ['PPI {} at EL: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in self.channels] | |
679 | else: |
|
688 | else: | |
680 | self.titles = ['PPI {} at EL: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])] |
|
689 | self.titles = ['PPI {} at EL: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])] | |
681 | self.mode_value = round(mean,1) |
|
690 | self.mode_value = round(mean,1) | |
682 |
|
691 | |||
683 | if data['mode_op'] == 'PPI': |
|
692 | if data['mode_op'] == 'PPI': | |
684 | gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, |
|
693 | gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, | |
685 | linewidth=1, color='gray', alpha=0.5, linestyle='--') |
|
694 | linewidth=1, color='gray', alpha=0.5, linestyle='--') | |
686 | gl.xlabel_style = {'size': 8} |
|
695 | gl.xlabel_style = {'size': 8} | |
687 | gl.ylabel_style = {'size': 8} |
|
696 | gl.ylabel_style = {'size': 8} | |
688 | gl.xlabels_top = False |
|
697 | gl.xlabels_top = False | |
689 | gl.ylabels_right = False |
|
698 | gl.ylabels_right = False | |
|
699 | #self.shapes="/home/soporte/workspace/sirm/volumes/schain/shapes/" | |||
|
700 | #print("self.shapes",self.shapes) | |||
690 | shape_p = os.path.join(self.shapes,'PER_ADM2/PER_ADM2.shp') |
|
701 | shape_p = os.path.join(self.shapes,'PER_ADM2/PER_ADM2.shp') | |
691 | shape_d = os.path.join(self.shapes,'PER_ADM1/PER_ADM1.shp') |
|
702 | shape_d = os.path.join(self.shapes,'PER_ADM1/PER_ADM1.shp') | |
692 | capitales = os.path.join(self.shapes,'CAPITALES/cap_provincia.shp') |
|
703 | capitales = os.path.join(self.shapes,'CAPITALES/cap_provincia.shp') | |
693 | vias = os.path.join(self.shapes,'Carreteras/VIAS_NACIONAL_250000.shp') |
|
704 | vias = os.path.join(self.shapes,'Carreteras/VIAS_NACIONAL_250000.shp') | |
694 | reader_d = shpreader.BasicReader(shape_p, encoding='latin1') |
|
705 | reader_d = shpreader.BasicReader(shape_p, encoding='latin1') | |
695 | reader_p = shpreader.BasicReader(shape_d, encoding='latin1') |
|
706 | reader_p = shpreader.BasicReader(shape_d, encoding='latin1') | |
696 | reader_c = shpreader.BasicReader(capitales, encoding='latin1') |
|
707 | reader_c = shpreader.BasicReader(capitales, encoding='latin1') | |
697 | reader_v = shpreader.BasicReader(vias, encoding='latin1') |
|
708 | reader_v = shpreader.BasicReader(vias, encoding='latin1') | |
698 |
caps = [x for x in reader_c.records() if x.attributes["Departa"] in ("JUNIN", "LIMA", "AYACUCHO", "HUANCAVELICA")] |
|
709 | caps = [x for x in reader_c.records() if x.attributes["Departa"] in ("JUNIN", "LIMA", "AYACUCHO", "HUANCAVELICA")] | |
699 | districts = [x for x in reader_d.records() if x.attributes["Name"] in ("JUNΓN", "CHANCHAMAYO", "CHUPACA", "CONCEPCIΓN", "HUANCAYO", "JAUJA", "SATIPO", "TARMA", "YAUYOS", "HUAROCHIRΓ", "CANTA", "HUANTA", "TAYACAJA")] |
|
710 | districts = [x for x in reader_d.records() if x.attributes["Name"] in ("JUNΓN", "CHANCHAMAYO", "CHUPACA", "CONCEPCIΓN", "HUANCAYO", "JAUJA", "SATIPO", "TARMA", "YAUYOS", "HUAROCHIRΓ", "CANTA", "HUANTA", "TAYACAJA")] | |
700 | provs = [x for x in reader_p.records() if x.attributes["NAME"] in ("JunΓn", "Lima")] |
|
711 | provs = [x for x in reader_p.records() if x.attributes["NAME"] in ("JunΓn", "Lima")] | |
701 | vias = [x for x in reader_v.records() if x.attributes["DEP"] in ("JUNIN", "LIMA")] |
|
712 | vias = [x for x in reader_v.records() if x.attributes["DEP"] in ("JUNIN", "LIMA")] | |
702 |
|
713 | |||
703 | # Display limits and streets |
|
714 | # Display limits and streets | |
704 | shape_feature = ShapelyFeature([x.geometry for x in districts], ccrs.PlateCarree(), facecolor="none", edgecolor='grey', lw=0.5) |
|
715 | shape_feature = ShapelyFeature([x.geometry for x in districts], ccrs.PlateCarree(), facecolor="none", edgecolor='grey', lw=0.5) | |
705 | ax.add_feature(shape_feature) |
|
716 | ax.add_feature(shape_feature) | |
706 | shape_feature = ShapelyFeature([x.geometry for x in provs], ccrs.PlateCarree(), facecolor="none", edgecolor='white', lw=1) |
|
717 | shape_feature = ShapelyFeature([x.geometry for x in provs], ccrs.PlateCarree(), facecolor="none", edgecolor='white', lw=1) | |
707 | ax.add_feature(shape_feature) |
|
718 | ax.add_feature(shape_feature) | |
708 | shape_feature = ShapelyFeature([x.geometry for x in vias], ccrs.PlateCarree(), facecolor="none", edgecolor='yellow', lw=1) |
|
719 | shape_feature = ShapelyFeature([x.geometry for x in vias], ccrs.PlateCarree(), facecolor="none", edgecolor='yellow', lw=1) | |
709 | ax.add_feature(shape_feature) |
|
720 | ax.add_feature(shape_feature) | |
710 |
|
721 | |||
711 | for cap in caps: |
|
722 | for cap in caps: | |
712 | if cap.attributes['Nombre'] in ("LA OROYA", "CONCEPCIΓN", "HUANCAYO", "JAUJA", "CHUPACA", "YAUYOS", "HUANTA", "PAMPAS"): |
|
723 | if cap.attributes['Nombre'] in ("LA OROYA", "CONCEPCIΓN", "HUANCAYO", "JAUJA", "CHUPACA", "YAUYOS", "HUANTA", "PAMPAS"): | |
713 | ax.text(cap.attributes['X'], cap.attributes['Y'], cap.attributes['Nombre'].title(), size=7, color='white') |
|
724 | ax.text(cap.attributes['X'], cap.attributes['Y'], cap.attributes['Nombre'].title(), size=7, color='white') | |
714 | ax.text(-75.052003, -11.915552, 'Huaytapallana', size=7, color='cyan') |
|
725 | ax.text(-75.052003, -11.915552, 'Huaytapallana', size=7, color='cyan') | |
715 | ax.plot(-75.052003, -11.915552, '*') |
|
726 | ax.plot(-75.052003, -11.915552, '*') | |
716 |
|
727 | |||
717 | for R in (10, 20, 30 , 40, 50): |
|
728 | for R in (10, 20, 30 , 40, 50): | |
718 | circle = Circle((-75.295893, -12.040436), km2deg(R), facecolor='none', |
|
729 | circle = Circle((-75.295893, -12.040436), km2deg(R), facecolor='none', | |
719 | edgecolor='skyblue', linewidth=1, alpha=0.5) |
|
730 | edgecolor='skyblue', linewidth=1, alpha=0.5) | |
720 | ax.add_patch(circle) |
|
731 | ax.add_patch(circle) | |
721 |
ax.text(km2deg(R)*numpy.cos(numpy.radians(45))-75.295893, |
|
732 | ax.text(km2deg(R)*numpy.cos(numpy.radians(45))-75.295893, | |
722 |
km2deg(R)*numpy.sin(numpy.radians(45))-12.040436, |
|
733 | km2deg(R)*numpy.sin(numpy.radians(45))-12.040436, | |
723 | '{}km'.format(R), color='skyblue', size=7) |
|
734 | '{}km'.format(R), color='skyblue', size=7) | |
724 | elif data['mode_op'] == 'RHI': |
|
735 | elif data['mode_op'] == 'RHI': | |
725 | ax.grid(color='grey', alpha=0.5, linestyle='--', linewidth=1) |
|
736 | ax.grid(color='grey', alpha=0.5, linestyle='--', linewidth=1) |
@@ -1,743 +1,743 | |||||
1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Classes to plot Spectra data |
|
5 | """Classes to plot Spectra data | |
6 |
|
6 | |||
7 | """ |
|
7 | """ | |
8 |
|
8 | |||
9 | import os |
|
9 | import os | |
10 | import numpy |
|
10 | import numpy | |
11 |
|
11 | |||
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log | |
13 |
|
13 | |||
14 |
|
14 | |||
15 | class SpectraPlot(Plot): |
|
15 | class SpectraPlot(Plot): | |
16 | ''' |
|
16 | ''' | |
17 | Plot for Spectra data |
|
17 | Plot for Spectra data | |
18 | ''' |
|
18 | ''' | |
19 |
|
19 | |||
20 | CODE = 'spc' |
|
20 | CODE = 'spc' | |
21 | colormap = 'jet' |
|
21 | colormap = 'jet' | |
22 | plot_type = 'pcolor' |
|
22 | plot_type = 'pcolor' | |
23 | buffering = False |
|
23 | buffering = False | |
24 |
|
24 | |||
25 | def setup(self): |
|
25 | def setup(self): | |
26 | self.nplots = len(self.data.channels) |
|
26 | self.nplots = len(self.data.channels) | |
27 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
27 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
28 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
28 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
29 | self.height = 2.6 * self.nrows |
|
29 | self.height = 2.6 * self.nrows | |
30 | self.cb_label = 'dB' |
|
30 | self.cb_label = 'dB' | |
31 | if self.showprofile: |
|
31 | if self.showprofile: | |
32 | self.width = 4 * self.ncols |
|
32 | self.width = 4 * self.ncols | |
33 | else: |
|
33 | else: | |
34 | self.width = 3.5 * self.ncols |
|
34 | self.width = 3.5 * self.ncols | |
35 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
35 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) | |
36 | self.ylabel = 'Range [km]' |
|
36 | self.ylabel = 'Range [km]' | |
37 |
|
37 | |||
38 | def update(self, dataOut): |
|
38 | def update(self, dataOut): | |
39 |
|
39 | |||
40 | data = {} |
|
40 | data = {} | |
41 | meta = {} |
|
41 | meta = {} | |
42 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
42 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) | |
43 | data['spc'] = spc |
|
43 | data['spc'] = spc | |
44 | data['rti'] = dataOut.getPower() |
|
44 | data['rti'] = dataOut.getPower() | |
45 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
45 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
46 |
meta['xrange'] = (dataOut.getFreqRange( |
|
46 | meta['xrange'] = (dataOut.getFreqRange(0)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(0)) | |
47 |
|
47 | |||
48 | if self.CODE == 'spc_moments': |
|
48 | if self.CODE == 'spc_moments': | |
49 | data['moments'] = dataOut.moments |
|
49 | data['moments'] = dataOut.moments | |
50 | # data['spc'] = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) |
|
50 | # data['spc'] = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) | |
51 | if self.CODE == 'gaussian_fit': |
|
51 | if self.CODE == 'gaussian_fit': | |
52 | # data['moments'] = dataOut.moments |
|
52 | # data['moments'] = dataOut.moments | |
53 | data['gaussfit'] = dataOut.DGauFitParams |
|
53 | data['gaussfit'] = dataOut.DGauFitParams | |
54 | # data['spc'] = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) |
|
54 | # data['spc'] = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) | |
55 |
|
55 | |||
56 | return data, meta |
|
56 | return data, meta | |
57 |
|
57 | |||
58 | def plot(self): |
|
58 | def plot(self): | |
59 | if self.xaxis == "frequency": |
|
59 | if self.xaxis == "frequency": | |
60 | x = self.data.xrange[0] |
|
60 | x = self.data.xrange[0] | |
61 | self.xlabel = "Frequency (kHz)" |
|
61 | self.xlabel = "Frequency (kHz)" | |
62 | elif self.xaxis == "time": |
|
62 | elif self.xaxis == "time": | |
63 | x = self.data.xrange[1] |
|
63 | x = self.data.xrange[1] | |
64 | self.xlabel = "Time (ms)" |
|
64 | self.xlabel = "Time (ms)" | |
65 | else: |
|
65 | else: | |
66 | x = self.data.xrange[2] |
|
66 | x = self.data.xrange[2] | |
67 | self.xlabel = "Velocity (m/s)" |
|
67 | self.xlabel = "Velocity (m/s)" | |
68 |
|
68 | |||
69 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): |
|
69 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): | |
70 | x = self.data.xrange[2] |
|
70 | x = self.data.xrange[2] | |
71 | self.xlabel = "Velocity (m/s)" |
|
71 | self.xlabel = "Velocity (m/s)" | |
72 |
|
72 | |||
73 | self.titles = [] |
|
73 | self.titles = [] | |
74 |
|
74 | |||
75 | y = self.data.yrange |
|
75 | y = self.data.yrange | |
76 | self.y = y |
|
76 | self.y = y | |
77 |
|
77 | |||
78 | data = self.data[-1] |
|
78 | data = self.data[-1] | |
79 | z = data['spc'] |
|
79 | z = data['spc'] | |
80 |
|
80 | |||
81 | for n, ax in enumerate(self.axes): |
|
81 | for n, ax in enumerate(self.axes): | |
82 | noise = data['noise'][n] |
|
82 | noise = data['noise'][n] | |
83 | if self.CODE == 'spc_moments': |
|
83 | if self.CODE == 'spc_moments': | |
84 | mean = data['moments'][n, 1] |
|
84 | mean = data['moments'][n, 1] | |
85 | if self.CODE == 'gaussian_fit': |
|
85 | if self.CODE == 'gaussian_fit': | |
86 | # mean = data['moments'][n, 1] |
|
86 | # mean = data['moments'][n, 1] | |
87 | gau0 = data['gaussfit'][n][2,:,0] |
|
87 | gau0 = data['gaussfit'][n][2,:,0] | |
88 | gau1 = data['gaussfit'][n][2,:,1] |
|
88 | gau1 = data['gaussfit'][n][2,:,1] | |
89 | if ax.firsttime: |
|
89 | if ax.firsttime: | |
90 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
90 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
91 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
91 | self.xmin = self.xmin if self.xmin else -self.xmax | |
92 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
92 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
93 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
93 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
94 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
94 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
95 | vmin=self.zmin, |
|
95 | vmin=self.zmin, | |
96 | vmax=self.zmax, |
|
96 | vmax=self.zmax, | |
97 | cmap=plt.get_cmap(self.colormap) |
|
97 | cmap=plt.get_cmap(self.colormap) | |
98 | ) |
|
98 | ) | |
99 |
|
99 | |||
100 | if self.showprofile: |
|
100 | if self.showprofile: | |
101 | ax.plt_profile = self.pf_axes[n].plot( |
|
101 | ax.plt_profile = self.pf_axes[n].plot( | |
102 | data['rti'][n], y)[0] |
|
102 | data['rti'][n], y)[0] | |
103 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
103 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
104 | color="k", linestyle="dashed", lw=1)[0] |
|
104 | color="k", linestyle="dashed", lw=1)[0] | |
105 | if self.CODE == 'spc_moments': |
|
105 | if self.CODE == 'spc_moments': | |
106 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] |
|
106 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] | |
107 | if self.CODE == 'gaussian_fit': |
|
107 | if self.CODE == 'gaussian_fit': | |
108 | # ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] |
|
108 | # ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] | |
109 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] |
|
109 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] | |
110 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] |
|
110 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] | |
111 | else: |
|
111 | else: | |
112 | ax.plt.set_array(z[n].T.ravel()) |
|
112 | ax.plt.set_array(z[n].T.ravel()) | |
113 | if self.showprofile: |
|
113 | if self.showprofile: | |
114 | ax.plt_profile.set_data(data['rti'][n], y) |
|
114 | ax.plt_profile.set_data(data['rti'][n], y) | |
115 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
115 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
116 | if self.CODE == 'spc_moments': |
|
116 | if self.CODE == 'spc_moments': | |
117 | ax.plt_mean.set_data(mean, y) |
|
117 | ax.plt_mean.set_data(mean, y) | |
118 | if self.CODE == 'gaussian_fit': |
|
118 | if self.CODE == 'gaussian_fit': | |
119 | # ax.plt_mean.set_data(mean, y) |
|
119 | # ax.plt_mean.set_data(mean, y) | |
120 | ax.plt_gau0.set_data(gau0, y) |
|
120 | ax.plt_gau0.set_data(gau0, y) | |
121 | ax.plt_gau1.set_data(gau1, y) |
|
121 | ax.plt_gau1.set_data(gau1, y) | |
122 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
122 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
123 |
|
123 | |||
124 |
|
124 | |||
125 | class CrossSpectraPlot(Plot): |
|
125 | class CrossSpectraPlot(Plot): | |
126 |
|
126 | |||
127 | CODE = 'cspc' |
|
127 | CODE = 'cspc' | |
128 | colormap = 'jet' |
|
128 | colormap = 'jet' | |
129 | plot_type = 'pcolor' |
|
129 | plot_type = 'pcolor' | |
130 | zmin_coh = None |
|
130 | zmin_coh = None | |
131 | zmax_coh = None |
|
131 | zmax_coh = None | |
132 | zmin_phase = None |
|
132 | zmin_phase = None | |
133 | zmax_phase = None |
|
133 | zmax_phase = None | |
134 |
|
134 | |||
135 | def setup(self): |
|
135 | def setup(self): | |
136 |
|
136 | |||
137 | self.ncols = 4 |
|
137 | self.ncols = 4 | |
138 | self.nplots = len(self.data.pairs) * 2 |
|
138 | self.nplots = len(self.data.pairs) * 2 | |
139 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
139 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
140 | self.width = 3.1 * self.ncols |
|
140 | self.width = 3.1 * self.ncols | |
141 | self.height = 2.6 * self.nrows |
|
141 | self.height = 2.6 * self.nrows | |
142 | self.ylabel = 'Range [km]' |
|
142 | self.ylabel = 'Range [km]' | |
143 | self.showprofile = False |
|
143 | self.showprofile = False | |
144 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
144 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) | |
145 |
|
145 | |||
146 | def update(self, dataOut): |
|
146 | def update(self, dataOut): | |
147 |
|
147 | |||
148 | data = {} |
|
148 | data = {} | |
149 | meta = {} |
|
149 | meta = {} | |
150 |
|
150 | |||
151 | spc = dataOut.data_spc |
|
151 | spc = dataOut.data_spc | |
152 | cspc = dataOut.data_cspc |
|
152 | cspc = dataOut.data_cspc | |
153 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
153 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
154 | meta['pairs'] = dataOut.pairsList |
|
154 | meta['pairs'] = dataOut.pairsList | |
155 |
|
155 | |||
156 | tmp = [] |
|
156 | tmp = [] | |
157 |
|
157 | |||
158 | for n, pair in enumerate(meta['pairs']): |
|
158 | for n, pair in enumerate(meta['pairs']): | |
159 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
159 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
160 | coh = numpy.abs(out) |
|
160 | coh = numpy.abs(out) | |
161 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
161 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
162 | tmp.append(coh) |
|
162 | tmp.append(coh) | |
163 | tmp.append(phase) |
|
163 | tmp.append(phase) | |
164 |
|
164 | |||
165 | data['cspc'] = numpy.array(tmp) |
|
165 | data['cspc'] = numpy.array(tmp) | |
166 |
|
166 | |||
167 | return data, meta |
|
167 | return data, meta | |
168 |
|
168 | |||
169 | def plot(self): |
|
169 | def plot(self): | |
170 |
|
170 | |||
171 | if self.xaxis == "frequency": |
|
171 | if self.xaxis == "frequency": | |
172 | x = self.data.xrange[0] |
|
172 | x = self.data.xrange[0] | |
173 | self.xlabel = "Frequency (kHz)" |
|
173 | self.xlabel = "Frequency (kHz)" | |
174 | elif self.xaxis == "time": |
|
174 | elif self.xaxis == "time": | |
175 | x = self.data.xrange[1] |
|
175 | x = self.data.xrange[1] | |
176 | self.xlabel = "Time (ms)" |
|
176 | self.xlabel = "Time (ms)" | |
177 | else: |
|
177 | else: | |
178 | x = self.data.xrange[2] |
|
178 | x = self.data.xrange[2] | |
179 | self.xlabel = "Velocity (m/s)" |
|
179 | self.xlabel = "Velocity (m/s)" | |
180 |
|
180 | |||
181 | self.titles = [] |
|
181 | self.titles = [] | |
182 |
|
182 | |||
183 | y = self.data.yrange |
|
183 | y = self.data.yrange | |
184 | self.y = y |
|
184 | self.y = y | |
185 |
|
185 | |||
186 | data = self.data[-1] |
|
186 | data = self.data[-1] | |
187 | cspc = data['cspc'] |
|
187 | cspc = data['cspc'] | |
188 |
|
188 | |||
189 | for n in range(len(self.data.pairs)): |
|
189 | for n in range(len(self.data.pairs)): | |
190 | pair = self.data.pairs[n] |
|
190 | pair = self.data.pairs[n] | |
191 | coh = cspc[n*2] |
|
191 | coh = cspc[n*2] | |
192 | phase = cspc[n*2+1] |
|
192 | phase = cspc[n*2+1] | |
193 | ax = self.axes[2 * n] |
|
193 | ax = self.axes[2 * n] | |
194 | if ax.firsttime: |
|
194 | if ax.firsttime: | |
195 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
195 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
196 | vmin=0, |
|
196 | vmin=0, | |
197 | vmax=1, |
|
197 | vmax=1, | |
198 | cmap=plt.get_cmap(self.colormap_coh) |
|
198 | cmap=plt.get_cmap(self.colormap_coh) | |
199 | ) |
|
199 | ) | |
200 | else: |
|
200 | else: | |
201 | ax.plt.set_array(coh.T.ravel()) |
|
201 | ax.plt.set_array(coh.T.ravel()) | |
202 | self.titles.append( |
|
202 | self.titles.append( | |
203 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
203 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
204 |
|
204 | |||
205 | ax = self.axes[2 * n + 1] |
|
205 | ax = self.axes[2 * n + 1] | |
206 | if ax.firsttime: |
|
206 | if ax.firsttime: | |
207 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
207 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
208 | vmin=-180, |
|
208 | vmin=-180, | |
209 | vmax=180, |
|
209 | vmax=180, | |
210 | cmap=plt.get_cmap(self.colormap_phase) |
|
210 | cmap=plt.get_cmap(self.colormap_phase) | |
211 | ) |
|
211 | ) | |
212 | else: |
|
212 | else: | |
213 | ax.plt.set_array(phase.T.ravel()) |
|
213 | ax.plt.set_array(phase.T.ravel()) | |
214 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
214 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
215 |
|
215 | |||
216 |
|
216 | |||
217 | class RTIPlot(Plot): |
|
217 | class RTIPlot(Plot): | |
218 | ''' |
|
218 | ''' | |
219 | Plot for RTI data |
|
219 | Plot for RTI data | |
220 | ''' |
|
220 | ''' | |
221 |
|
221 | |||
222 | CODE = 'rti' |
|
222 | CODE = 'rti' | |
223 | colormap = 'jet' |
|
223 | colormap = 'jet' | |
224 | plot_type = 'pcolorbuffer' |
|
224 | plot_type = 'pcolorbuffer' | |
225 |
|
225 | |||
226 | def setup(self): |
|
226 | def setup(self): | |
227 | self.xaxis = 'time' |
|
227 | self.xaxis = 'time' | |
228 | self.ncols = 1 |
|
228 | self.ncols = 1 | |
229 | self.nrows = len(self.data.channels) |
|
229 | self.nrows = len(self.data.channels) | |
230 | self.nplots = len(self.data.channels) |
|
230 | self.nplots = len(self.data.channels) | |
231 | self.ylabel = 'Range [km]' |
|
231 | self.ylabel = 'Range [km]' | |
232 | self.xlabel = 'Time' |
|
232 | self.xlabel = 'Time' | |
233 | self.cb_label = 'dB' |
|
233 | self.cb_label = 'dB' | |
234 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) |
|
234 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) | |
235 | self.titles = ['{} Channel {}'.format( |
|
235 | self.titles = ['{} Channel {}'.format( | |
236 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
236 | self.CODE.upper(), x) for x in range(self.nrows)] | |
237 |
|
237 | |||
238 | def update(self, dataOut): |
|
238 | def update(self, dataOut): | |
239 |
|
239 | |||
240 | data = {} |
|
240 | data = {} | |
241 | meta = {} |
|
241 | meta = {} | |
242 | data['rti'] = dataOut.getPower() |
|
242 | data['rti'] = dataOut.getPower() | |
243 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
243 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
244 |
|
244 | |||
245 | return data, meta |
|
245 | return data, meta | |
246 |
|
246 | |||
247 | def plot(self): |
|
247 | def plot(self): | |
248 | self.x = self.data.times |
|
248 | self.x = self.data.times | |
249 | self.y = self.data.yrange |
|
249 | self.y = self.data.yrange | |
250 | self.z = self.data[self.CODE] |
|
250 | self.z = self.data[self.CODE] | |
251 | self.z = numpy.ma.masked_invalid(self.z) |
|
251 | self.z = numpy.ma.masked_invalid(self.z) | |
252 |
|
252 | |||
253 | if self.decimation is None: |
|
253 | if self.decimation is None: | |
254 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
254 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
255 | else: |
|
255 | else: | |
256 | x, y, z = self.fill_gaps(*self.decimate()) |
|
256 | x, y, z = self.fill_gaps(*self.decimate()) | |
257 |
|
257 | |||
258 | for n, ax in enumerate(self.axes): |
|
258 | for n, ax in enumerate(self.axes): | |
259 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
259 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
260 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
260 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
261 | data = self.data[-1] |
|
261 | data = self.data[-1] | |
262 | if ax.firsttime: |
|
262 | if ax.firsttime: | |
263 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
263 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
264 | vmin=self.zmin, |
|
264 | vmin=self.zmin, | |
265 | vmax=self.zmax, |
|
265 | vmax=self.zmax, | |
266 | cmap=plt.get_cmap(self.colormap) |
|
266 | cmap=plt.get_cmap(self.colormap) | |
267 | ) |
|
267 | ) | |
268 | if self.showprofile: |
|
268 | if self.showprofile: | |
269 | ax.plot_profile = self.pf_axes[n].plot( |
|
269 | ax.plot_profile = self.pf_axes[n].plot( | |
270 | data['rti'][n], self.y)[0] |
|
270 | data['rti'][n], self.y)[0] | |
271 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
271 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, | |
272 | color="k", linestyle="dashed", lw=1)[0] |
|
272 | color="k", linestyle="dashed", lw=1)[0] | |
273 | else: |
|
273 | else: | |
274 | ax.collections.remove(ax.collections[0]) |
|
274 | ax.collections.remove(ax.collections[0]) | |
275 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
275 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
276 | vmin=self.zmin, |
|
276 | vmin=self.zmin, | |
277 | vmax=self.zmax, |
|
277 | vmax=self.zmax, | |
278 | cmap=plt.get_cmap(self.colormap) |
|
278 | cmap=plt.get_cmap(self.colormap) | |
279 | ) |
|
279 | ) | |
280 | if self.showprofile: |
|
280 | if self.showprofile: | |
281 | ax.plot_profile.set_data(data['rti'][n], self.y) |
|
281 | ax.plot_profile.set_data(data['rti'][n], self.y) | |
282 | ax.plot_noise.set_data(numpy.repeat( |
|
282 | ax.plot_noise.set_data(numpy.repeat( | |
283 | data['noise'][n], len(self.y)), self.y) |
|
283 | data['noise'][n], len(self.y)), self.y) | |
284 |
|
284 | |||
285 |
|
285 | |||
286 | class CoherencePlot(RTIPlot): |
|
286 | class CoherencePlot(RTIPlot): | |
287 | ''' |
|
287 | ''' | |
288 | Plot for Coherence data |
|
288 | Plot for Coherence data | |
289 | ''' |
|
289 | ''' | |
290 |
|
290 | |||
291 | CODE = 'coh' |
|
291 | CODE = 'coh' | |
292 |
|
292 | |||
293 | def setup(self): |
|
293 | def setup(self): | |
294 | self.xaxis = 'time' |
|
294 | self.xaxis = 'time' | |
295 | self.ncols = 1 |
|
295 | self.ncols = 1 | |
296 | self.nrows = len(self.data.pairs) |
|
296 | self.nrows = len(self.data.pairs) | |
297 | self.nplots = len(self.data.pairs) |
|
297 | self.nplots = len(self.data.pairs) | |
298 | self.ylabel = 'Range [km]' |
|
298 | self.ylabel = 'Range [km]' | |
299 | self.xlabel = 'Time' |
|
299 | self.xlabel = 'Time' | |
300 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
300 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) | |
301 | if self.CODE == 'coh': |
|
301 | if self.CODE == 'coh': | |
302 | self.cb_label = '' |
|
302 | self.cb_label = '' | |
303 | self.titles = [ |
|
303 | self.titles = [ | |
304 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
304 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
305 | else: |
|
305 | else: | |
306 | self.cb_label = 'Degrees' |
|
306 | self.cb_label = 'Degrees' | |
307 | self.titles = [ |
|
307 | self.titles = [ | |
308 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
308 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
309 |
|
309 | |||
310 | def update(self, dataOut): |
|
310 | def update(self, dataOut): | |
311 |
|
311 | |||
312 | data = {} |
|
312 | data = {} | |
313 | meta = {} |
|
313 | meta = {} | |
314 | data['coh'] = dataOut.getCoherence() |
|
314 | data['coh'] = dataOut.getCoherence() | |
315 | meta['pairs'] = dataOut.pairsList |
|
315 | meta['pairs'] = dataOut.pairsList | |
316 |
|
316 | |||
317 | return data, meta |
|
317 | return data, meta | |
318 |
|
318 | |||
319 | class PhasePlot(CoherencePlot): |
|
319 | class PhasePlot(CoherencePlot): | |
320 | ''' |
|
320 | ''' | |
321 | Plot for Phase map data |
|
321 | Plot for Phase map data | |
322 | ''' |
|
322 | ''' | |
323 |
|
323 | |||
324 | CODE = 'phase' |
|
324 | CODE = 'phase' | |
325 | colormap = 'seismic' |
|
325 | colormap = 'seismic' | |
326 |
|
326 | |||
327 | def update(self, dataOut): |
|
327 | def update(self, dataOut): | |
328 |
|
328 | |||
329 | data = {} |
|
329 | data = {} | |
330 | meta = {} |
|
330 | meta = {} | |
331 | data['phase'] = dataOut.getCoherence(phase=True) |
|
331 | data['phase'] = dataOut.getCoherence(phase=True) | |
332 | meta['pairs'] = dataOut.pairsList |
|
332 | meta['pairs'] = dataOut.pairsList | |
333 |
|
333 | |||
334 | return data, meta |
|
334 | return data, meta | |
335 |
|
335 | |||
336 | class NoisePlot(Plot): |
|
336 | class NoisePlot(Plot): | |
337 | ''' |
|
337 | ''' | |
338 | Plot for noise |
|
338 | Plot for noise | |
339 | ''' |
|
339 | ''' | |
340 |
|
340 | |||
341 | CODE = 'noise' |
|
341 | CODE = 'noise' | |
342 | plot_type = 'scatterbuffer' |
|
342 | plot_type = 'scatterbuffer' | |
343 |
|
343 | |||
344 | def setup(self): |
|
344 | def setup(self): | |
345 | self.xaxis = 'time' |
|
345 | self.xaxis = 'time' | |
346 | self.ncols = 1 |
|
346 | self.ncols = 1 | |
347 | self.nrows = 1 |
|
347 | self.nrows = 1 | |
348 | self.nplots = 1 |
|
348 | self.nplots = 1 | |
349 | self.ylabel = 'Intensity [dB]' |
|
349 | self.ylabel = 'Intensity [dB]' | |
350 | self.xlabel = 'Time' |
|
350 | self.xlabel = 'Time' | |
351 | self.titles = ['Noise'] |
|
351 | self.titles = ['Noise'] | |
352 | self.colorbar = False |
|
352 | self.colorbar = False | |
353 | self.plots_adjust.update({'right': 0.85 }) |
|
353 | self.plots_adjust.update({'right': 0.85 }) | |
354 |
|
354 | |||
355 | def update(self, dataOut): |
|
355 | def update(self, dataOut): | |
356 |
|
356 | |||
357 | data = {} |
|
357 | data = {} | |
358 | meta = {} |
|
358 | meta = {} | |
359 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
359 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) | |
360 | meta['yrange'] = numpy.array([]) |
|
360 | meta['yrange'] = numpy.array([]) | |
361 |
|
361 | |||
362 | return data, meta |
|
362 | return data, meta | |
363 |
|
363 | |||
364 | def plot(self): |
|
364 | def plot(self): | |
365 |
|
365 | |||
366 | x = self.data.times |
|
366 | x = self.data.times | |
367 | xmin = self.data.min_time |
|
367 | xmin = self.data.min_time | |
368 | xmax = xmin + self.xrange * 60 * 60 |
|
368 | xmax = xmin + self.xrange * 60 * 60 | |
369 | Y = self.data['noise'] |
|
369 | Y = self.data['noise'] | |
370 |
|
370 | |||
371 | if self.axes[0].firsttime: |
|
371 | if self.axes[0].firsttime: | |
372 | self.ymin = numpy.nanmin(Y) - 5 |
|
372 | self.ymin = numpy.nanmin(Y) - 5 | |
373 | self.ymax = numpy.nanmax(Y) + 5 |
|
373 | self.ymax = numpy.nanmax(Y) + 5 | |
374 | for ch in self.data.channels: |
|
374 | for ch in self.data.channels: | |
375 | y = Y[ch] |
|
375 | y = Y[ch] | |
376 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
376 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
377 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
377 | plt.legend(bbox_to_anchor=(1.18, 1.0)) | |
378 | else: |
|
378 | else: | |
379 | for ch in self.data.channels: |
|
379 | for ch in self.data.channels: | |
380 | y = Y[ch] |
|
380 | y = Y[ch] | |
381 | self.axes[0].lines[ch].set_data(x, y) |
|
381 | self.axes[0].lines[ch].set_data(x, y) | |
382 |
|
382 | |||
383 |
|
383 | |||
384 | class PowerProfilePlot(Plot): |
|
384 | class PowerProfilePlot(Plot): | |
385 |
|
385 | |||
386 | CODE = 'pow_profile' |
|
386 | CODE = 'pow_profile' | |
387 | plot_type = 'scatter' |
|
387 | plot_type = 'scatter' | |
388 |
|
388 | |||
389 | def setup(self): |
|
389 | def setup(self): | |
390 |
|
390 | |||
391 | self.ncols = 1 |
|
391 | self.ncols = 1 | |
392 | self.nrows = 1 |
|
392 | self.nrows = 1 | |
393 | self.nplots = 1 |
|
393 | self.nplots = 1 | |
394 | self.height = 4 |
|
394 | self.height = 4 | |
395 | self.width = 3 |
|
395 | self.width = 3 | |
396 | self.ylabel = 'Range [km]' |
|
396 | self.ylabel = 'Range [km]' | |
397 | self.xlabel = 'Intensity [dB]' |
|
397 | self.xlabel = 'Intensity [dB]' | |
398 | self.titles = ['Power Profile'] |
|
398 | self.titles = ['Power Profile'] | |
399 | self.colorbar = False |
|
399 | self.colorbar = False | |
400 |
|
400 | |||
401 | def update(self, dataOut): |
|
401 | def update(self, dataOut): | |
402 |
|
402 | |||
403 | data = {} |
|
403 | data = {} | |
404 | meta = {} |
|
404 | meta = {} | |
405 | data[self.CODE] = dataOut.getPower() |
|
405 | data[self.CODE] = dataOut.getPower() | |
406 |
|
406 | |||
407 | return data, meta |
|
407 | return data, meta | |
408 |
|
408 | |||
409 | def plot(self): |
|
409 | def plot(self): | |
410 |
|
410 | |||
411 | y = self.data.yrange |
|
411 | y = self.data.yrange | |
412 | self.y = y |
|
412 | self.y = y | |
413 |
|
413 | |||
414 | x = self.data[-1][self.CODE] |
|
414 | x = self.data[-1][self.CODE] | |
415 |
|
415 | |||
416 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
416 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 | |
417 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
417 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 | |
418 |
|
418 | |||
419 | if self.axes[0].firsttime: |
|
419 | if self.axes[0].firsttime: | |
420 | for ch in self.data.channels: |
|
420 | for ch in self.data.channels: | |
421 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
421 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) | |
422 | plt.legend() |
|
422 | plt.legend() | |
423 | else: |
|
423 | else: | |
424 | for ch in self.data.channels: |
|
424 | for ch in self.data.channels: | |
425 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
425 | self.axes[0].lines[ch].set_data(x[ch], y) | |
426 |
|
426 | |||
427 |
|
427 | |||
428 | class SpectraCutPlot(Plot): |
|
428 | class SpectraCutPlot(Plot): | |
429 |
|
429 | |||
430 | CODE = 'spc_cut' |
|
430 | CODE = 'spc_cut' | |
431 | plot_type = 'scatter' |
|
431 | plot_type = 'scatter' | |
432 | buffering = False |
|
432 | buffering = False | |
433 |
|
433 | |||
434 | def setup(self): |
|
434 | def setup(self): | |
435 |
|
435 | |||
436 | self.nplots = len(self.data.channels) |
|
436 | self.nplots = len(self.data.channels) | |
437 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
437 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
438 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
438 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
439 | self.width = 3.4 * self.ncols + 1.5 |
|
439 | self.width = 3.4 * self.ncols + 1.5 | |
440 | self.height = 3 * self.nrows |
|
440 | self.height = 3 * self.nrows | |
441 | self.ylabel = 'Power [dB]' |
|
441 | self.ylabel = 'Power [dB]' | |
442 | self.colorbar = False |
|
442 | self.colorbar = False | |
443 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
443 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) | |
444 |
|
444 | |||
445 | def update(self, dataOut): |
|
445 | def update(self, dataOut): | |
446 |
|
446 | |||
447 | data = {} |
|
447 | data = {} | |
448 | meta = {} |
|
448 | meta = {} | |
449 | spc = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) |
|
449 | spc = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) | |
450 | data['spc'] = spc |
|
450 | data['spc'] = spc | |
451 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
451 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
452 | if self.CODE == 'cut_gaussian_fit': |
|
452 | if self.CODE == 'cut_gaussian_fit': | |
453 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) |
|
453 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) | |
454 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) |
|
454 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) | |
455 | return data, meta |
|
455 | return data, meta | |
456 |
|
456 | |||
457 | def plot(self): |
|
457 | def plot(self): | |
458 | if self.xaxis == "frequency": |
|
458 | if self.xaxis == "frequency": | |
459 | x = self.data.xrange[0][1:] |
|
459 | x = self.data.xrange[0][1:] | |
460 | self.xlabel = "Frequency (kHz)" |
|
460 | self.xlabel = "Frequency (kHz)" | |
461 | elif self.xaxis == "time": |
|
461 | elif self.xaxis == "time": | |
462 | x = self.data.xrange[1] |
|
462 | x = self.data.xrange[1] | |
463 | self.xlabel = "Time (ms)" |
|
463 | self.xlabel = "Time (ms)" | |
464 | else: |
|
464 | else: | |
465 | x = self.data.xrange[2][:-1] |
|
465 | x = self.data.xrange[2][:-1] | |
466 | self.xlabel = "Velocity (m/s)" |
|
466 | self.xlabel = "Velocity (m/s)" | |
467 |
|
467 | |||
468 | if self.CODE == 'cut_gaussian_fit': |
|
468 | if self.CODE == 'cut_gaussian_fit': | |
469 | x = self.data.xrange[2][:-1] |
|
469 | x = self.data.xrange[2][:-1] | |
470 | self.xlabel = "Velocity (m/s)" |
|
470 | self.xlabel = "Velocity (m/s)" | |
471 |
|
471 | |||
472 | self.titles = [] |
|
472 | self.titles = [] | |
473 |
|
473 | |||
474 | y = self.data.yrange |
|
474 | y = self.data.yrange | |
475 | data = self.data[-1] |
|
475 | data = self.data[-1] | |
476 | z = data['spc'] |
|
476 | z = data['spc'] | |
477 |
|
477 | |||
478 | if self.height_index: |
|
478 | if self.height_index: | |
479 | index = numpy.array(self.height_index) |
|
479 | index = numpy.array(self.height_index) | |
480 | else: |
|
480 | else: | |
481 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
481 | index = numpy.arange(0, len(y), int((len(y))/9)) | |
482 |
|
482 | |||
483 | for n, ax in enumerate(self.axes): |
|
483 | for n, ax in enumerate(self.axes): | |
484 | if self.CODE == 'cut_gaussian_fit': |
|
484 | if self.CODE == 'cut_gaussian_fit': | |
485 | gau0 = data['gauss_fit0'] |
|
485 | gau0 = data['gauss_fit0'] | |
486 | gau1 = data['gauss_fit1'] |
|
486 | gau1 = data['gauss_fit1'] | |
487 | if ax.firsttime: |
|
487 | if ax.firsttime: | |
488 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
488 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
489 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
489 | self.xmin = self.xmin if self.xmin else -self.xmax | |
490 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
490 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) | |
491 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
491 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) | |
492 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) |
|
492 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) | |
493 | if self.CODE == 'cut_gaussian_fit': |
|
493 | if self.CODE == 'cut_gaussian_fit': | |
494 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') |
|
494 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') | |
495 | for i, line in enumerate(ax.plt_gau0): |
|
495 | for i, line in enumerate(ax.plt_gau0): | |
496 | line.set_color(ax.plt[i].get_color()) |
|
496 | line.set_color(ax.plt[i].get_color()) | |
497 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') |
|
497 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') | |
498 | for i, line in enumerate(ax.plt_gau1): |
|
498 | for i, line in enumerate(ax.plt_gau1): | |
499 | line.set_color(ax.plt[i].get_color()) |
|
499 | line.set_color(ax.plt[i].get_color()) | |
500 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
500 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] | |
501 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
501 | self.figures[0].legend(ax.plt, labels, loc='center right') | |
502 | else: |
|
502 | else: | |
503 | for i, line in enumerate(ax.plt): |
|
503 | for i, line in enumerate(ax.plt): | |
504 | line.set_data(x, z[n, :, index[i]].T) |
|
504 | line.set_data(x, z[n, :, index[i]].T) | |
505 | for i, line in enumerate(ax.plt_gau0): |
|
505 | for i, line in enumerate(ax.plt_gau0): | |
506 | line.set_data(x, gau0[n, :, index[i]].T) |
|
506 | line.set_data(x, gau0[n, :, index[i]].T) | |
507 | line.set_color(ax.plt[i].get_color()) |
|
507 | line.set_color(ax.plt[i].get_color()) | |
508 | for i, line in enumerate(ax.plt_gau1): |
|
508 | for i, line in enumerate(ax.plt_gau1): | |
509 | line.set_data(x, gau1[n, :, index[i]].T) |
|
509 | line.set_data(x, gau1[n, :, index[i]].T) | |
510 | line.set_color(ax.plt[i].get_color()) |
|
510 | line.set_color(ax.plt[i].get_color()) | |
511 | self.titles.append('CH {}'.format(n)) |
|
511 | self.titles.append('CH {}'.format(n)) | |
512 |
|
512 | |||
513 |
|
513 | |||
514 | class BeaconPhase(Plot): |
|
514 | class BeaconPhase(Plot): | |
515 |
|
515 | |||
516 | __isConfig = None |
|
516 | __isConfig = None | |
517 | __nsubplots = None |
|
517 | __nsubplots = None | |
518 |
|
518 | |||
519 | PREFIX = 'beacon_phase' |
|
519 | PREFIX = 'beacon_phase' | |
520 |
|
520 | |||
521 | def __init__(self): |
|
521 | def __init__(self): | |
522 | Plot.__init__(self) |
|
522 | Plot.__init__(self) | |
523 | self.timerange = 24*60*60 |
|
523 | self.timerange = 24*60*60 | |
524 | self.isConfig = False |
|
524 | self.isConfig = False | |
525 | self.__nsubplots = 1 |
|
525 | self.__nsubplots = 1 | |
526 | self.counter_imagwr = 0 |
|
526 | self.counter_imagwr = 0 | |
527 | self.WIDTH = 800 |
|
527 | self.WIDTH = 800 | |
528 | self.HEIGHT = 400 |
|
528 | self.HEIGHT = 400 | |
529 | self.WIDTHPROF = 120 |
|
529 | self.WIDTHPROF = 120 | |
530 | self.HEIGHTPROF = 0 |
|
530 | self.HEIGHTPROF = 0 | |
531 | self.xdata = None |
|
531 | self.xdata = None | |
532 | self.ydata = None |
|
532 | self.ydata = None | |
533 |
|
533 | |||
534 | self.PLOT_CODE = BEACON_CODE |
|
534 | self.PLOT_CODE = BEACON_CODE | |
535 |
|
535 | |||
536 | self.FTP_WEI = None |
|
536 | self.FTP_WEI = None | |
537 | self.EXP_CODE = None |
|
537 | self.EXP_CODE = None | |
538 | self.SUB_EXP_CODE = None |
|
538 | self.SUB_EXP_CODE = None | |
539 | self.PLOT_POS = None |
|
539 | self.PLOT_POS = None | |
540 |
|
540 | |||
541 | self.filename_phase = None |
|
541 | self.filename_phase = None | |
542 |
|
542 | |||
543 | self.figfile = None |
|
543 | self.figfile = None | |
544 |
|
544 | |||
545 | self.xmin = None |
|
545 | self.xmin = None | |
546 | self.xmax = None |
|
546 | self.xmax = None | |
547 |
|
547 | |||
548 | def getSubplots(self): |
|
548 | def getSubplots(self): | |
549 |
|
549 | |||
550 | ncol = 1 |
|
550 | ncol = 1 | |
551 | nrow = 1 |
|
551 | nrow = 1 | |
552 |
|
552 | |||
553 | return nrow, ncol |
|
553 | return nrow, ncol | |
554 |
|
554 | |||
555 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
555 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
556 |
|
556 | |||
557 | self.__showprofile = showprofile |
|
557 | self.__showprofile = showprofile | |
558 | self.nplots = nplots |
|
558 | self.nplots = nplots | |
559 |
|
559 | |||
560 | ncolspan = 7 |
|
560 | ncolspan = 7 | |
561 | colspan = 6 |
|
561 | colspan = 6 | |
562 | self.__nsubplots = 2 |
|
562 | self.__nsubplots = 2 | |
563 |
|
563 | |||
564 | self.createFigure(id = id, |
|
564 | self.createFigure(id = id, | |
565 | wintitle = wintitle, |
|
565 | wintitle = wintitle, | |
566 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
566 | widthplot = self.WIDTH+self.WIDTHPROF, | |
567 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
567 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
568 | show=show) |
|
568 | show=show) | |
569 |
|
569 | |||
570 | nrow, ncol = self.getSubplots() |
|
570 | nrow, ncol = self.getSubplots() | |
571 |
|
571 | |||
572 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
572 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
573 |
|
573 | |||
574 | def save_phase(self, filename_phase): |
|
574 | def save_phase(self, filename_phase): | |
575 | f = open(filename_phase,'w+') |
|
575 | f = open(filename_phase,'w+') | |
576 | f.write('\n\n') |
|
576 | f.write('\n\n') | |
577 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
577 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') | |
578 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
578 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) | |
579 | f.close() |
|
579 | f.close() | |
580 |
|
580 | |||
581 | def save_data(self, filename_phase, data, data_datetime): |
|
581 | def save_data(self, filename_phase, data, data_datetime): | |
582 | f=open(filename_phase,'a') |
|
582 | f=open(filename_phase,'a') | |
583 | timetuple_data = data_datetime.timetuple() |
|
583 | timetuple_data = data_datetime.timetuple() | |
584 | day = str(timetuple_data.tm_mday) |
|
584 | day = str(timetuple_data.tm_mday) | |
585 | month = str(timetuple_data.tm_mon) |
|
585 | month = str(timetuple_data.tm_mon) | |
586 | year = str(timetuple_data.tm_year) |
|
586 | year = str(timetuple_data.tm_year) | |
587 | hour = str(timetuple_data.tm_hour) |
|
587 | hour = str(timetuple_data.tm_hour) | |
588 | minute = str(timetuple_data.tm_min) |
|
588 | minute = str(timetuple_data.tm_min) | |
589 | second = str(timetuple_data.tm_sec) |
|
589 | second = str(timetuple_data.tm_sec) | |
590 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
590 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') | |
591 | f.close() |
|
591 | f.close() | |
592 |
|
592 | |||
593 | def plot(self): |
|
593 | def plot(self): | |
594 | log.warning('TODO: Not yet implemented...') |
|
594 | log.warning('TODO: Not yet implemented...') | |
595 |
|
595 | |||
596 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
596 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
597 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
597 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, | |
598 | timerange=None, |
|
598 | timerange=None, | |
599 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
599 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
600 | server=None, folder=None, username=None, password=None, |
|
600 | server=None, folder=None, username=None, password=None, | |
601 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
601 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
602 |
|
602 | |||
603 | if dataOut.flagNoData: |
|
603 | if dataOut.flagNoData: | |
604 | return dataOut |
|
604 | return dataOut | |
605 |
|
605 | |||
606 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
606 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
607 | return |
|
607 | return | |
608 |
|
608 | |||
609 | if pairsList == None: |
|
609 | if pairsList == None: | |
610 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
610 | pairsIndexList = dataOut.pairsIndexList[:10] | |
611 | else: |
|
611 | else: | |
612 | pairsIndexList = [] |
|
612 | pairsIndexList = [] | |
613 | for pair in pairsList: |
|
613 | for pair in pairsList: | |
614 | if pair not in dataOut.pairsList: |
|
614 | if pair not in dataOut.pairsList: | |
615 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
615 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) | |
616 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
616 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
617 |
|
617 | |||
618 | if pairsIndexList == []: |
|
618 | if pairsIndexList == []: | |
619 | return |
|
619 | return | |
620 |
|
620 | |||
621 | # if len(pairsIndexList) > 4: |
|
621 | # if len(pairsIndexList) > 4: | |
622 | # pairsIndexList = pairsIndexList[0:4] |
|
622 | # pairsIndexList = pairsIndexList[0:4] | |
623 |
|
623 | |||
624 | hmin_index = None |
|
624 | hmin_index = None | |
625 | hmax_index = None |
|
625 | hmax_index = None | |
626 |
|
626 | |||
627 | if hmin != None and hmax != None: |
|
627 | if hmin != None and hmax != None: | |
628 | indexes = numpy.arange(dataOut.nHeights) |
|
628 | indexes = numpy.arange(dataOut.nHeights) | |
629 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
629 | hmin_list = indexes[dataOut.heightList >= hmin] | |
630 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
630 | hmax_list = indexes[dataOut.heightList <= hmax] | |
631 |
|
631 | |||
632 | if hmin_list.any(): |
|
632 | if hmin_list.any(): | |
633 | hmin_index = hmin_list[0] |
|
633 | hmin_index = hmin_list[0] | |
634 |
|
634 | |||
635 | if hmax_list.any(): |
|
635 | if hmax_list.any(): | |
636 | hmax_index = hmax_list[-1]+1 |
|
636 | hmax_index = hmax_list[-1]+1 | |
637 |
|
637 | |||
638 | x = dataOut.getTimeRange() |
|
638 | x = dataOut.getTimeRange() | |
639 |
|
639 | |||
640 | thisDatetime = dataOut.datatime |
|
640 | thisDatetime = dataOut.datatime | |
641 |
|
641 | |||
642 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
642 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
643 | xlabel = "Local Time" |
|
643 | xlabel = "Local Time" | |
644 | ylabel = "Phase (degrees)" |
|
644 | ylabel = "Phase (degrees)" | |
645 |
|
645 | |||
646 | update_figfile = False |
|
646 | update_figfile = False | |
647 |
|
647 | |||
648 | nplots = len(pairsIndexList) |
|
648 | nplots = len(pairsIndexList) | |
649 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
649 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |
650 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
650 | phase_beacon = numpy.zeros(len(pairsIndexList)) | |
651 | for i in range(nplots): |
|
651 | for i in range(nplots): | |
652 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
652 | pair = dataOut.pairsList[pairsIndexList[i]] | |
653 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
653 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) | |
654 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
654 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) | |
655 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
655 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) | |
656 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
656 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
657 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
657 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
658 |
|
658 | |||
659 | if dataOut.beacon_heiIndexList: |
|
659 | if dataOut.beacon_heiIndexList: | |
660 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
660 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
661 | else: |
|
661 | else: | |
662 | phase_beacon[i] = numpy.average(phase) |
|
662 | phase_beacon[i] = numpy.average(phase) | |
663 |
|
663 | |||
664 | if not self.isConfig: |
|
664 | if not self.isConfig: | |
665 |
|
665 | |||
666 | nplots = len(pairsIndexList) |
|
666 | nplots = len(pairsIndexList) | |
667 |
|
667 | |||
668 | self.setup(id=id, |
|
668 | self.setup(id=id, | |
669 | nplots=nplots, |
|
669 | nplots=nplots, | |
670 | wintitle=wintitle, |
|
670 | wintitle=wintitle, | |
671 | showprofile=showprofile, |
|
671 | showprofile=showprofile, | |
672 | show=show) |
|
672 | show=show) | |
673 |
|
673 | |||
674 | if timerange != None: |
|
674 | if timerange != None: | |
675 | self.timerange = timerange |
|
675 | self.timerange = timerange | |
676 |
|
676 | |||
677 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
677 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
678 |
|
678 | |||
679 | if ymin == None: ymin = 0 |
|
679 | if ymin == None: ymin = 0 | |
680 | if ymax == None: ymax = 360 |
|
680 | if ymax == None: ymax = 360 | |
681 |
|
681 | |||
682 | self.FTP_WEI = ftp_wei |
|
682 | self.FTP_WEI = ftp_wei | |
683 | self.EXP_CODE = exp_code |
|
683 | self.EXP_CODE = exp_code | |
684 | self.SUB_EXP_CODE = sub_exp_code |
|
684 | self.SUB_EXP_CODE = sub_exp_code | |
685 | self.PLOT_POS = plot_pos |
|
685 | self.PLOT_POS = plot_pos | |
686 |
|
686 | |||
687 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
687 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
688 | self.isConfig = True |
|
688 | self.isConfig = True | |
689 | self.figfile = figfile |
|
689 | self.figfile = figfile | |
690 | self.xdata = numpy.array([]) |
|
690 | self.xdata = numpy.array([]) | |
691 | self.ydata = numpy.array([]) |
|
691 | self.ydata = numpy.array([]) | |
692 |
|
692 | |||
693 | update_figfile = True |
|
693 | update_figfile = True | |
694 |
|
694 | |||
695 | #open file beacon phase |
|
695 | #open file beacon phase | |
696 | path = '%s%03d' %(self.PREFIX, self.id) |
|
696 | path = '%s%03d' %(self.PREFIX, self.id) | |
697 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
697 | beacon_file = os.path.join(path,'%s.txt'%self.name) | |
698 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
698 | self.filename_phase = os.path.join(figpath,beacon_file) | |
699 | #self.save_phase(self.filename_phase) |
|
699 | #self.save_phase(self.filename_phase) | |
700 |
|
700 | |||
701 |
|
701 | |||
702 | #store data beacon phase |
|
702 | #store data beacon phase | |
703 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
703 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |
704 |
|
704 | |||
705 | self.setWinTitle(title) |
|
705 | self.setWinTitle(title) | |
706 |
|
706 | |||
707 |
|
707 | |||
708 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
708 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
709 |
|
709 | |||
710 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
710 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] | |
711 |
|
711 | |||
712 | axes = self.axesList[0] |
|
712 | axes = self.axesList[0] | |
713 |
|
713 | |||
714 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
714 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
715 |
|
715 | |||
716 | if len(self.ydata)==0: |
|
716 | if len(self.ydata)==0: | |
717 | self.ydata = phase_beacon.reshape(-1,1) |
|
717 | self.ydata = phase_beacon.reshape(-1,1) | |
718 | else: |
|
718 | else: | |
719 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
719 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) | |
720 |
|
720 | |||
721 |
|
721 | |||
722 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
722 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
723 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
723 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
724 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
724 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
725 | XAxisAsTime=True, grid='both' |
|
725 | XAxisAsTime=True, grid='both' | |
726 | ) |
|
726 | ) | |
727 |
|
727 | |||
728 | self.draw() |
|
728 | self.draw() | |
729 |
|
729 | |||
730 | if dataOut.ltctime >= self.xmax: |
|
730 | if dataOut.ltctime >= self.xmax: | |
731 | self.counter_imagwr = wr_period |
|
731 | self.counter_imagwr = wr_period | |
732 | self.isConfig = False |
|
732 | self.isConfig = False | |
733 | update_figfile = True |
|
733 | update_figfile = True | |
734 |
|
734 | |||
735 | self.save(figpath=figpath, |
|
735 | self.save(figpath=figpath, | |
736 | figfile=figfile, |
|
736 | figfile=figfile, | |
737 | save=save, |
|
737 | save=save, | |
738 | ftp=ftp, |
|
738 | ftp=ftp, | |
739 | wr_period=wr_period, |
|
739 | wr_period=wr_period, | |
740 | thisDatetime=thisDatetime, |
|
740 | thisDatetime=thisDatetime, | |
741 | update_figfile=update_figfile) |
|
741 | update_figfile=update_figfile) | |
742 |
|
742 | |||
743 | return dataOut |
|
743 | return dataOut |
@@ -1,844 +1,863 | |||||
1 | ''' |
|
1 | ''' | |
2 | Created on Jul 3, 2014 |
|
2 | Created on Jul 3, 2014 | |
3 |
|
3 | |||
4 | @author: roj-idl71 |
|
4 | @author: roj-idl71 | |
5 | ''' |
|
5 | ''' | |
6 | # SUBCHANNELS EN VEZ DE CHANNELS |
|
6 | # SUBCHANNELS EN VEZ DE CHANNELS | |
7 | # BENCHMARKS -> PROBLEMAS CON ARCHIVOS GRANDES -> INCONSTANTE EN EL TIEMPO |
|
7 | # BENCHMARKS -> PROBLEMAS CON ARCHIVOS GRANDES -> INCONSTANTE EN EL TIEMPO | |
8 | # ACTUALIZACION DE VERSION |
|
8 | # ACTUALIZACION DE VERSION | |
9 | # HEADERS |
|
9 | # HEADERS | |
10 | # MODULO DE ESCRITURA |
|
10 | # MODULO DE ESCRITURA | |
11 | # METADATA |
|
11 | # METADATA | |
12 |
|
12 | |||
13 | import os |
|
13 | import os | |
14 | import time |
|
14 | import time | |
15 | import datetime |
|
15 | import datetime | |
16 | import numpy |
|
16 | import numpy | |
17 | import timeit |
|
17 | import timeit | |
18 | from fractions import Fraction |
|
18 | from fractions import Fraction | |
19 | from time import time |
|
19 | from time import time | |
20 | from time import sleep |
|
20 | from time import sleep | |
21 |
|
21 | |||
22 | import schainpy.admin |
|
22 | import schainpy.admin | |
23 | from schainpy.model.data.jroheaderIO import RadarControllerHeader, SystemHeader |
|
23 | from schainpy.model.data.jroheaderIO import RadarControllerHeader, SystemHeader | |
24 | from schainpy.model.data.jrodata import Voltage |
|
24 | from schainpy.model.data.jrodata import Voltage | |
25 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
25 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
26 |
|
26 | |||
27 | import pickle |
|
27 | import pickle | |
28 | try: |
|
28 | try: | |
|
29 | os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE" | |||
29 | import digital_rf |
|
30 | import digital_rf | |
30 | except: |
|
31 | except: | |
31 | pass |
|
32 | pass | |
32 |
|
33 | |||
33 |
|
34 | |||
34 | class DigitalRFReader(ProcessingUnit): |
|
35 | class DigitalRFReader(ProcessingUnit): | |
35 | ''' |
|
36 | ''' | |
36 | classdocs |
|
37 | classdocs | |
37 | ''' |
|
38 | ''' | |
38 |
|
39 | |||
39 | def __init__(self): |
|
40 | def __init__(self): | |
40 | ''' |
|
41 | ''' | |
41 | Constructor |
|
42 | Constructor | |
42 | ''' |
|
43 | ''' | |
43 |
|
44 | |||
44 | ProcessingUnit.__init__(self) |
|
45 | ProcessingUnit.__init__(self) | |
45 |
|
46 | |||
46 | self.dataOut = Voltage() |
|
47 | self.dataOut = Voltage() | |
47 | self.__printInfo = True |
|
48 | self.__printInfo = True | |
48 | self.__flagDiscontinuousBlock = False |
|
49 | self.__flagDiscontinuousBlock = False | |
49 | self.__bufferIndex = 9999999 |
|
50 | self.__bufferIndex = 9999999 | |
50 | self.__codeType = 0 |
|
51 | self.__codeType = 0 | |
51 | self.__ippKm = None |
|
52 | self.__ippKm = None | |
52 | self.__nCode = None |
|
53 | self.__nCode = None | |
53 | self.__nBaud = None |
|
54 | self.__nBaud = None | |
54 | self.__code = None |
|
55 | self.__code = None | |
55 | self.dtype = None |
|
56 | self.dtype = None | |
56 | self.oldAverage = None |
|
57 | self.oldAverage = None | |
57 | self.path = None |
|
58 | self.path = None | |
58 |
|
59 | |||
59 | def close(self): |
|
60 | def close(self): | |
60 | print('Average of writing to digital rf format is ', self.oldAverage * 1000) |
|
61 | print('Average of writing to digital rf format is ', self.oldAverage * 1000) | |
61 | return |
|
62 | return | |
62 |
|
63 | |||
63 | def __getCurrentSecond(self): |
|
64 | def __getCurrentSecond(self): | |
64 |
|
65 | |||
65 | return self.__thisUnixSample / self.__sample_rate |
|
66 | return self.__thisUnixSample / self.__sample_rate | |
66 |
|
67 | |||
67 | thisSecond = property(__getCurrentSecond, "I'm the 'thisSecond' property.") |
|
68 | thisSecond = property(__getCurrentSecond, "I'm the 'thisSecond' property.") | |
68 |
|
69 | |||
69 | def __setFileHeader(self): |
|
70 | def __setFileHeader(self): | |
70 | ''' |
|
71 | ''' | |
71 | In this method will be initialized every parameter of dataOut object (header, no data) |
|
72 | In this method will be initialized every parameter of dataOut object (header, no data) | |
72 | ''' |
|
73 | ''' | |
73 | ippSeconds = 1.0 * self.__nSamples / self.__sample_rate |
|
74 | ippSeconds = 1.0 * self.__nSamples / self.__sample_rate | |
74 | if not self.getByBlock: |
|
75 | if not self.getByBlock: | |
75 | nProfiles = 1.0 / ippSeconds # Number of profiles in one second |
|
76 | nProfiles = 1.0 / ippSeconds # Number of profiles in one second | |
76 | else: |
|
77 | else: | |
77 | nProfiles = self.nProfileBlocks # Number of profiles in one block |
|
78 | nProfiles = self.nProfileBlocks # Number of profiles in one block | |
78 |
|
79 | |||
79 | try: |
|
80 | try: | |
80 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader( |
|
81 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader( | |
81 | self.__radarControllerHeader) |
|
82 | self.__radarControllerHeader) | |
82 | except: |
|
83 | except: | |
83 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader( |
|
84 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader( | |
84 | txA=0, |
|
85 | txA=0, | |
85 | txB=0, |
|
86 | txB=0, | |
86 | nWindows=1, |
|
87 | nWindows=1, | |
87 | nHeights=self.__nSamples, |
|
88 | nHeights=self.__nSamples, | |
88 | firstHeight=self.__firstHeigth, |
|
89 | firstHeight=self.__firstHeigth, | |
89 | deltaHeight=self.__deltaHeigth, |
|
90 | deltaHeight=self.__deltaHeigth, | |
90 | codeType=self.__codeType, |
|
91 | codeType=self.__codeType, | |
91 | nCode=self.__nCode, nBaud=self.__nBaud, |
|
92 | nCode=self.__nCode, nBaud=self.__nBaud, | |
92 | code=self.__code) |
|
93 | code=self.__code) | |
93 |
|
94 | |||
94 | try: |
|
95 | try: | |
95 | self.dataOut.systemHeaderObj = SystemHeader(self.__systemHeader) |
|
96 | self.dataOut.systemHeaderObj = SystemHeader(self.__systemHeader) | |
96 | except: |
|
97 | except: | |
97 | self.dataOut.systemHeaderObj = SystemHeader(nSamples=self.__nSamples, |
|
98 | self.dataOut.systemHeaderObj = SystemHeader(nSamples=self.__nSamples, | |
98 | nProfiles=nProfiles, |
|
99 | nProfiles=nProfiles, | |
99 | nChannels=len( |
|
100 | nChannels=len( | |
100 | self.__channelList), |
|
101 | self.__channelList), | |
101 | adcResolution=14) |
|
102 | adcResolution=14) | |
102 | self.dataOut.type = "Voltage" |
|
103 | self.dataOut.type = "Voltage" | |
103 |
|
104 | |||
104 | self.dataOut.data = None |
|
105 | self.dataOut.data = None | |
105 |
|
106 | |||
106 | self.dataOut.dtype = self.dtype |
|
107 | self.dataOut.dtype = self.dtype | |
107 |
|
108 | |||
108 | # self.dataOut.nChannels = 0 |
|
109 | # self.dataOut.nChannels = 0 | |
109 |
|
110 | |||
110 | # self.dataOut.nHeights = 0 |
|
111 | # self.dataOut.nHeights = 0 | |
111 |
|
112 | |||
112 | self.dataOut.nProfiles = int(nProfiles) |
|
113 | self.dataOut.nProfiles = int(nProfiles) | |
113 |
|
114 | |||
114 | self.dataOut.heightList = self.__firstHeigth + \ |
|
115 | self.dataOut.heightList = self.__firstHeigth + \ | |
115 | numpy.arange(self.__nSamples, dtype=numpy.float) * \ |
|
116 | numpy.arange(self.__nSamples, dtype=numpy.float) * \ | |
116 | self.__deltaHeigth |
|
117 | self.__deltaHeigth | |
117 |
|
118 | |||
118 | #self.dataOut.channelList = list(range(self.__num_subchannels)) |
|
119 | #self.dataOut.channelList = list(range(self.__num_subchannels)) | |
119 | self.dataOut.channelList = list(range(len(self.__channelList))) |
|
120 | self.dataOut.channelList = list(range(len(self.__channelList))) | |
120 | if not self.getByBlock: |
|
121 | if not self.getByBlock: | |
121 |
|
122 | |||
122 | self.dataOut.blocksize = self.dataOut.nChannels * self.dataOut.nHeights |
|
123 | self.dataOut.blocksize = self.dataOut.nChannels * self.dataOut.nHeights | |
123 | else: |
|
124 | else: | |
124 | self.dataOut.blocksize = self.dataOut.nChannels * self.dataOut.nHeights*self.nProfileBlocks |
|
125 | self.dataOut.blocksize = self.dataOut.nChannels * self.dataOut.nHeights*self.nProfileBlocks | |
125 |
|
126 | |||
126 | # self.dataOut.channelIndexList = None |
|
127 | # self.dataOut.channelIndexList = None | |
127 |
|
128 | |||
128 | self.dataOut.flagNoData = True |
|
129 | self.dataOut.flagNoData = True | |
129 | if not self.getByBlock: |
|
130 | if not self.getByBlock: | |
130 | self.dataOut.flagDataAsBlock = False |
|
131 | self.dataOut.flagDataAsBlock = False | |
131 | else: |
|
132 | else: | |
132 | self.dataOut.flagDataAsBlock = True |
|
133 | self.dataOut.flagDataAsBlock = True | |
133 | # Set to TRUE if the data is discontinuous |
|
134 | # Set to TRUE if the data is discontinuous | |
134 | self.dataOut.flagDiscontinuousBlock = False |
|
135 | self.dataOut.flagDiscontinuousBlock = False | |
135 |
|
136 | |||
136 | self.dataOut.utctime = None |
|
137 | self.dataOut.utctime = None | |
137 |
|
138 | |||
138 | # timezone like jroheader, difference in minutes between UTC and localtime |
|
139 | # timezone like jroheader, difference in minutes between UTC and localtime | |
139 | self.dataOut.timeZone = self.__timezone / 60 |
|
140 | self.dataOut.timeZone = self.__timezone / 60 | |
140 |
|
141 | |||
141 | self.dataOut.dstFlag = 0 |
|
142 | self.dataOut.dstFlag = 0 | |
142 |
|
143 | |||
143 | self.dataOut.errorCount = 0 |
|
144 | self.dataOut.errorCount = 0 | |
144 |
|
145 | |||
145 | try: |
|
146 | try: | |
146 | self.dataOut.nCohInt = self.fixed_metadata_dict.get( |
|
147 | self.dataOut.nCohInt = self.fixed_metadata_dict.get( | |
147 | 'nCohInt', self.nCohInt) |
|
148 | 'nCohInt', self.nCohInt) | |
148 |
|
149 | |||
149 | # asumo que la data esta decodificada |
|
150 | # asumo que la data esta decodificada | |
150 | self.dataOut.flagDecodeData = self.fixed_metadata_dict.get( |
|
151 | self.dataOut.flagDecodeData = self.fixed_metadata_dict.get( | |
151 | 'flagDecodeData', self.flagDecodeData) |
|
152 | 'flagDecodeData', self.flagDecodeData) | |
152 |
|
153 | |||
153 | # asumo que la data esta sin flip |
|
154 | # asumo que la data esta sin flip | |
154 | self.dataOut.flagDeflipData = self.fixed_metadata_dict['flagDeflipData'] |
|
155 | self.dataOut.flagDeflipData = self.fixed_metadata_dict['flagDeflipData'] | |
155 |
|
156 | |||
156 | self.dataOut.flagShiftFFT = self.fixed_metadata_dict['flagShiftFFT'] |
|
157 | self.dataOut.flagShiftFFT = self.fixed_metadata_dict['flagShiftFFT'] | |
157 |
|
158 | |||
158 | self.dataOut.useLocalTime = self.fixed_metadata_dict['useLocalTime'] |
|
159 | self.dataOut.useLocalTime = self.fixed_metadata_dict['useLocalTime'] | |
159 | except: |
|
160 | except: | |
160 | pass |
|
161 | pass | |
161 |
|
162 | |||
162 | self.dataOut.ippSeconds = ippSeconds |
|
163 | self.dataOut.ippSeconds = ippSeconds | |
163 |
|
164 | |||
164 | # Time interval between profiles |
|
165 | # Time interval between profiles | |
165 | # self.dataOut.timeInterval = self.dataOut.ippSeconds * self.dataOut.nCohInt |
|
166 | # self.dataOut.timeInterval = self.dataOut.ippSeconds * self.dataOut.nCohInt | |
166 |
|
167 | |||
167 | self.dataOut.frequency = self.__frequency |
|
168 | self.dataOut.frequency = self.__frequency | |
168 |
|
169 | |||
169 | self.dataOut.realtime = self.__online |
|
170 | self.dataOut.realtime = self.__online | |
170 |
|
171 | |||
171 | def findDatafiles(self, path, startDate=None, endDate=None): |
|
172 | def findDatafiles(self, path, startDate=None, endDate=None): | |
172 |
|
173 | |||
173 | if not os.path.isdir(path): |
|
174 | if not os.path.isdir(path): | |
174 | return [] |
|
175 | return [] | |
175 |
|
176 | |||
176 | try: |
|
177 | try: | |
177 | digitalReadObj = digital_rf.DigitalRFReader( |
|
178 | digitalReadObj = digital_rf.DigitalRFReader( | |
178 | path, load_all_metadata=True) |
|
179 | path, load_all_metadata=True) | |
179 | except: |
|
180 | except: | |
180 | digitalReadObj = digital_rf.DigitalRFReader(path) |
|
181 | digitalReadObj = digital_rf.DigitalRFReader(path) | |
181 |
|
182 | |||
182 | channelNameList = digitalReadObj.get_channels() |
|
183 | channelNameList = digitalReadObj.get_channels() | |
183 |
|
184 | |||
184 | if not channelNameList: |
|
185 | if not channelNameList: | |
185 | return [] |
|
186 | return [] | |
186 |
|
187 | |||
187 | metadata_dict = digitalReadObj.get_rf_file_metadata(channelNameList[0]) |
|
188 | metadata_dict = digitalReadObj.get_rf_file_metadata(channelNameList[0]) | |
188 |
|
189 | |||
189 | sample_rate = metadata_dict['sample_rate'][0] |
|
190 | sample_rate = metadata_dict['sample_rate'][0] | |
190 |
|
191 | |||
191 | this_metadata_file = digitalReadObj.get_metadata(channelNameList[0]) |
|
192 | this_metadata_file = digitalReadObj.get_metadata(channelNameList[0]) | |
192 |
|
193 | |||
193 | try: |
|
194 | try: | |
194 | timezone = this_metadata_file['timezone'].value |
|
195 | timezone = this_metadata_file['timezone'].value | |
195 | except: |
|
196 | except: | |
196 | timezone = 0 |
|
197 | timezone = 0 | |
197 |
|
198 | |||
198 | startUTCSecond, endUTCSecond = digitalReadObj.get_bounds( |
|
199 | startUTCSecond, endUTCSecond = digitalReadObj.get_bounds( | |
199 | channelNameList[0]) / sample_rate - timezone |
|
200 | channelNameList[0]) / sample_rate - timezone | |
200 |
|
201 | |||
201 | startDatetime = datetime.datetime.utcfromtimestamp(startUTCSecond) |
|
202 | startDatetime = datetime.datetime.utcfromtimestamp(startUTCSecond) | |
202 | endDatatime = datetime.datetime.utcfromtimestamp(endUTCSecond) |
|
203 | endDatatime = datetime.datetime.utcfromtimestamp(endUTCSecond) | |
203 |
|
204 | |||
204 | if not startDate: |
|
205 | if not startDate: | |
205 | startDate = startDatetime.date() |
|
206 | startDate = startDatetime.date() | |
206 |
|
207 | |||
207 | if not endDate: |
|
208 | if not endDate: | |
208 | endDate = endDatatime.date() |
|
209 | endDate = endDatatime.date() | |
209 |
|
210 | |||
210 | dateList = [] |
|
211 | dateList = [] | |
211 |
|
212 | |||
212 | thisDatetime = startDatetime |
|
213 | thisDatetime = startDatetime | |
213 |
|
214 | |||
214 | while(thisDatetime <= endDatatime): |
|
215 | while(thisDatetime <= endDatatime): | |
215 |
|
216 | |||
216 | thisDate = thisDatetime.date() |
|
217 | thisDate = thisDatetime.date() | |
217 |
|
218 | |||
218 | if thisDate < startDate: |
|
219 | if thisDate < startDate: | |
219 | continue |
|
220 | continue | |
220 |
|
221 | |||
221 | if thisDate > endDate: |
|
222 | if thisDate > endDate: | |
222 | break |
|
223 | break | |
223 |
|
224 | |||
224 | dateList.append(thisDate) |
|
225 | dateList.append(thisDate) | |
225 | thisDatetime += datetime.timedelta(1) |
|
226 | thisDatetime += datetime.timedelta(1) | |
226 |
|
227 | |||
227 | return dateList |
|
228 | return dateList | |
228 |
|
229 | |||
229 | def setup(self, path=None, |
|
230 | def setup(self, path=None, | |
230 | startDate=None, |
|
231 | startDate=None, | |
231 | endDate=None, |
|
232 | endDate=None, | |
232 | startTime=datetime.time(0, 0, 0), |
|
233 | startTime=datetime.time(0, 0, 0), | |
233 | endTime=datetime.time(23, 59, 59), |
|
234 | endTime=datetime.time(23, 59, 59), | |
234 | channelList=None, |
|
235 | channelList=None, | |
235 | nSamples=None, |
|
236 | nSamples=None, | |
236 | online=False, |
|
237 | online=False, | |
237 | delay=60, |
|
238 | delay=60, | |
238 | buffer_size=1024, |
|
239 | buffer_size=1024, | |
239 | ippKm=None, |
|
240 | ippKm=None, | |
240 | nCohInt=1, |
|
241 | nCohInt=1, | |
241 | nCode=1, |
|
242 | nCode=1, | |
242 | nBaud=1, |
|
243 | nBaud=1, | |
243 | flagDecodeData=False, |
|
244 | flagDecodeData=False, | |
244 | code=numpy.ones((1, 1), dtype=numpy.int), |
|
245 | code=numpy.ones((1, 1), dtype=numpy.int), | |
245 | getByBlock=0, |
|
246 | getByBlock=0, | |
246 | nProfileBlocks=1, |
|
247 | nProfileBlocks=1, | |
247 | **kwargs): |
|
248 | **kwargs): | |
248 | ''' |
|
249 | ''' | |
249 | In this method we should set all initial parameters. |
|
250 | In this method we should set all initial parameters. | |
250 |
|
251 | |||
251 | Inputs: |
|
252 | Inputs: | |
252 | path |
|
253 | path | |
253 | startDate |
|
254 | startDate | |
254 | endDate |
|
255 | endDate | |
255 | startTime |
|
256 | startTime | |
256 | endTime |
|
257 | endTime | |
257 | set |
|
258 | set | |
258 | expLabel |
|
259 | expLabel | |
259 | ext |
|
260 | ext | |
260 | online |
|
261 | online | |
261 | delay |
|
262 | delay | |
262 | ''' |
|
263 | ''' | |
263 | self.path = path |
|
264 | self.path = path | |
264 | self.nCohInt = nCohInt |
|
265 | self.nCohInt = nCohInt | |
265 | self.flagDecodeData = flagDecodeData |
|
266 | self.flagDecodeData = flagDecodeData | |
266 | self.i = 0 |
|
267 | self.i = 0 | |
267 |
|
268 | |||
268 | self.getByBlock = getByBlock |
|
269 | self.getByBlock = getByBlock | |
269 | self.nProfileBlocks = nProfileBlocks |
|
270 | self.nProfileBlocks = nProfileBlocks | |
|
271 | if online: | |||
|
272 | print('Waiting for RF data..') | |||
|
273 | sleep(40) | |||
|
274 | ||||
270 | if not os.path.isdir(path): |
|
275 | if not os.path.isdir(path): | |
271 | raise ValueError("[Reading] Directory %s does not exist" % path) |
|
276 | raise ValueError("[Reading] Directory %s does not exist" % path) | |
272 |
|
277 | |||
|
278 | #print("path",path) | |||
273 | try: |
|
279 | try: | |
274 | self.digitalReadObj = digital_rf.DigitalRFReader( |
|
280 | self.digitalReadObj = digital_rf.DigitalRFReader( | |
275 | path, load_all_metadata=True) |
|
281 | path, load_all_metadata=True) | |
276 | except: |
|
282 | except: | |
277 | self.digitalReadObj = digital_rf.DigitalRFReader(path) |
|
283 | self.digitalReadObj = digital_rf.DigitalRFReader(path) | |
278 |
|
284 | |||
279 | channelNameList = self.digitalReadObj.get_channels() |
|
285 | channelNameList = self.digitalReadObj.get_channels() | |
280 |
|
286 | |||
281 | if not channelNameList: |
|
287 | if not channelNameList: | |
282 | raise ValueError("[Reading] Directory %s does not have any files" % path) |
|
288 | raise ValueError("[Reading] Directory %s does not have any files" % path) | |
283 |
|
289 | |||
284 | if not channelList: |
|
290 | if not channelList: | |
285 | channelList = list(range(len(channelNameList))) |
|
291 | channelList = list(range(len(channelNameList))) | |
286 |
|
292 | |||
287 | ########## Reading metadata ###################### |
|
293 | ########## Reading metadata ###################### | |
288 |
|
294 | |||
289 | top_properties = self.digitalReadObj.get_properties( |
|
295 | top_properties = self.digitalReadObj.get_properties( | |
290 | channelNameList[channelList[0]]) |
|
296 | channelNameList[channelList[0]]) | |
291 |
|
297 | |||
292 | self.__num_subchannels = top_properties['num_subchannels'] |
|
298 | self.__num_subchannels = top_properties['num_subchannels'] | |
293 | self.__sample_rate = 1.0 * \ |
|
299 | self.__sample_rate = 1.0 * \ | |
294 | top_properties['sample_rate_numerator'] / \ |
|
300 | top_properties['sample_rate_numerator'] / \ | |
295 | top_properties['sample_rate_denominator'] |
|
301 | top_properties['sample_rate_denominator'] | |
296 | # self.__samples_per_file = top_properties['samples_per_file'][0] |
|
302 | # self.__samples_per_file = top_properties['samples_per_file'][0] | |
297 | self.__deltaHeigth = 1e6 * 0.15 / self.__sample_rate # why 0.15? |
|
303 | self.__deltaHeigth = 1e6 * 0.15 / self.__sample_rate # why 0.15? | |
298 |
|
304 | |||
299 | this_metadata_file = self.digitalReadObj.get_digital_metadata( |
|
305 | this_metadata_file = self.digitalReadObj.get_digital_metadata( | |
300 | channelNameList[channelList[0]]) |
|
306 | channelNameList[channelList[0]]) | |
301 | metadata_bounds = this_metadata_file.get_bounds() |
|
307 | metadata_bounds = this_metadata_file.get_bounds() | |
302 | self.fixed_metadata_dict = this_metadata_file.read( |
|
308 | self.fixed_metadata_dict = this_metadata_file.read( | |
303 | metadata_bounds[0])[metadata_bounds[0]] # GET FIRST HEADER |
|
309 | metadata_bounds[0])[metadata_bounds[0]] # GET FIRST HEADER | |
304 |
|
310 | |||
305 | try: |
|
311 | try: | |
306 | self.__processingHeader = self.fixed_metadata_dict['processingHeader'] |
|
312 | self.__processingHeader = self.fixed_metadata_dict['processingHeader'] | |
307 | self.__radarControllerHeader = self.fixed_metadata_dict['radarControllerHeader'] |
|
313 | self.__radarControllerHeader = self.fixed_metadata_dict['radarControllerHeader'] | |
308 | self.__systemHeader = self.fixed_metadata_dict['systemHeader'] |
|
314 | self.__systemHeader = self.fixed_metadata_dict['systemHeader'] | |
309 | self.dtype = pickle.loads(self.fixed_metadata_dict['dtype']) |
|
315 | self.dtype = pickle.loads(self.fixed_metadata_dict['dtype']) | |
310 | except: |
|
316 | except: | |
311 | pass |
|
317 | pass | |
312 |
|
318 | |||
313 | self.__frequency = None |
|
319 | self.__frequency = None | |
314 |
|
320 | |||
315 | self.__frequency = self.fixed_metadata_dict.get('frequency', 1) |
|
321 | self.__frequency = self.fixed_metadata_dict.get('frequency', 1) | |
316 |
|
322 | |||
317 | self.__timezone = self.fixed_metadata_dict.get('timezone', 18000) |
|
323 | self.__timezone = self.fixed_metadata_dict.get('timezone', 18000) | |
318 |
|
324 | |||
319 | try: |
|
325 | try: | |
320 | nSamples = self.fixed_metadata_dict['nSamples'] |
|
326 | nSamples = self.fixed_metadata_dict['nSamples'] | |
321 | except: |
|
327 | except: | |
322 | nSamples = None |
|
328 | nSamples = None | |
323 |
|
329 | |||
324 | self.__firstHeigth = 0 |
|
330 | self.__firstHeigth = 0 | |
325 |
|
331 | |||
326 | try: |
|
332 | try: | |
327 | codeType = self.__radarControllerHeader['codeType'] |
|
333 | codeType = self.__radarControllerHeader['codeType'] | |
328 | except: |
|
334 | except: | |
329 | codeType = 0 |
|
335 | codeType = 0 | |
330 |
|
336 | |||
331 | try: |
|
337 | try: | |
332 | if codeType: |
|
338 | if codeType: | |
333 | nCode = self.__radarControllerHeader['nCode'] |
|
339 | nCode = self.__radarControllerHeader['nCode'] | |
334 | nBaud = self.__radarControllerHeader['nBaud'] |
|
340 | nBaud = self.__radarControllerHeader['nBaud'] | |
335 | code = self.__radarControllerHeader['code'] |
|
341 | code = self.__radarControllerHeader['code'] | |
336 | except: |
|
342 | except: | |
337 | pass |
|
343 | pass | |
338 |
|
344 | |||
339 | if not ippKm: |
|
345 | if not ippKm: | |
340 | try: |
|
346 | try: | |
341 | # seconds to km |
|
347 | # seconds to km | |
342 | ippKm = self.__radarControllerHeader['ipp'] |
|
348 | ippKm = self.__radarControllerHeader['ipp'] | |
343 | except: |
|
349 | except: | |
344 | ippKm = None |
|
350 | ippKm = None | |
345 | #################################################### |
|
351 | #################################################### | |
346 | self.__ippKm = ippKm |
|
352 | self.__ippKm = ippKm | |
347 | startUTCSecond = None |
|
353 | startUTCSecond = None | |
348 | endUTCSecond = None |
|
354 | endUTCSecond = None | |
349 |
|
355 | |||
350 | if startDate: |
|
356 | if startDate: | |
351 | startDatetime = datetime.datetime.combine(startDate, startTime) |
|
357 | startDatetime = datetime.datetime.combine(startDate, startTime) | |
352 | startUTCSecond = ( |
|
358 | startUTCSecond = ( | |
353 | startDatetime - datetime.datetime(1970, 1, 1)).total_seconds() + self.__timezone |
|
359 | startDatetime - datetime.datetime(1970, 1, 1)).total_seconds()# + self.__timezone | |
354 |
|
360 | |||
355 | if endDate: |
|
361 | if endDate: | |
356 | endDatetime = datetime.datetime.combine(endDate, endTime) |
|
362 | endDatetime = datetime.datetime.combine(endDate, endTime) | |
357 | endUTCSecond = (endDatetime - datetime.datetime(1970, |
|
363 | endUTCSecond = (endDatetime - datetime.datetime(1970, | |
358 | 1, 1)).total_seconds() + self.__timezone |
|
364 | 1, 1)).total_seconds()# + self.__timezone | |
359 |
|
365 | start_index, end_index = self.digitalReadObj.get_bounds(channelNameList[channelList[0]]) | ||
360 |
|
366 | if start_index==None or end_index==None: | ||
361 | #print(startUTCSecond,endUTCSecond) |
|
367 | print("Check error No data, start_index: ",start_index,",end_index: ",end_index) | |
362 | start_index, end_index = self.digitalReadObj.get_bounds( |
|
368 | #return 0 | |
363 | channelNameList[channelList[0]]) |
|
|||
364 |
|
||||
365 | #print("*****",start_index,end_index) |
|
|||
366 | if not startUTCSecond: |
|
369 | if not startUTCSecond: | |
367 | startUTCSecond = start_index / self.__sample_rate |
|
370 | startUTCSecond = start_index / self.__sample_rate | |
368 |
|
||||
369 | if start_index > startUTCSecond * self.__sample_rate: |
|
371 | if start_index > startUTCSecond * self.__sample_rate: | |
370 | startUTCSecond = start_index / self.__sample_rate |
|
372 | startUTCSecond = start_index / self.__sample_rate | |
371 |
|
373 | |||
372 | if not endUTCSecond: |
|
374 | if not endUTCSecond: | |
373 | endUTCSecond = end_index / self.__sample_rate |
|
375 | endUTCSecond = end_index / self.__sample_rate | |
|
376 | ||||
374 | if end_index < endUTCSecond * self.__sample_rate: |
|
377 | if end_index < endUTCSecond * self.__sample_rate: | |
375 | endUTCSecond = end_index / self.__sample_rate #Check UTC and LT time |
|
378 | endUTCSecond = end_index / self.__sample_rate #Check UTC and LT time | |
|
379 | ||||
376 | if not nSamples: |
|
380 | if not nSamples: | |
377 | if not ippKm: |
|
381 | if not ippKm: | |
378 | raise ValueError("[Reading] nSamples or ippKm should be defined") |
|
382 | raise ValueError("[Reading] nSamples or ippKm should be defined") | |
379 | nSamples = int(ippKm / (1e6 * 0.15 / self.__sample_rate)) |
|
383 | nSamples = int(ippKm / (1e6 * 0.15 / self.__sample_rate)) | |
380 |
|
384 | |||
381 | channelBoundList = [] |
|
385 | channelBoundList = [] | |
382 | channelNameListFiltered = [] |
|
386 | channelNameListFiltered = [] | |
383 |
|
387 | |||
384 | for thisIndexChannel in channelList: |
|
388 | for thisIndexChannel in channelList: | |
385 | thisChannelName = channelNameList[thisIndexChannel] |
|
389 | thisChannelName = channelNameList[thisIndexChannel] | |
386 | start_index, end_index = self.digitalReadObj.get_bounds( |
|
390 | start_index, end_index = self.digitalReadObj.get_bounds( | |
387 | thisChannelName) |
|
391 | thisChannelName) | |
388 | channelBoundList.append((start_index, end_index)) |
|
392 | channelBoundList.append((start_index, end_index)) | |
389 | channelNameListFiltered.append(thisChannelName) |
|
393 | channelNameListFiltered.append(thisChannelName) | |
390 |
|
394 | |||
391 | self.profileIndex = 0 |
|
395 | self.profileIndex = 0 | |
392 | self.i = 0 |
|
396 | self.i = 0 | |
393 | self.__delay = delay |
|
397 | self.__delay = delay | |
394 |
|
398 | |||
395 | self.__codeType = codeType |
|
399 | self.__codeType = codeType | |
396 | self.__nCode = nCode |
|
400 | self.__nCode = nCode | |
397 | self.__nBaud = nBaud |
|
401 | self.__nBaud = nBaud | |
398 | self.__code = code |
|
402 | self.__code = code | |
399 |
|
403 | |||
400 | self.__datapath = path |
|
404 | self.__datapath = path | |
401 | self.__online = online |
|
405 | self.__online = online | |
402 | self.__channelList = channelList |
|
406 | self.__channelList = channelList | |
403 | self.__channelNameList = channelNameListFiltered |
|
407 | self.__channelNameList = channelNameListFiltered | |
404 | self.__channelBoundList = channelBoundList |
|
408 | self.__channelBoundList = channelBoundList | |
405 | self.__nSamples = nSamples |
|
409 | self.__nSamples = nSamples | |
406 | if self.getByBlock: |
|
410 | if self.getByBlock: | |
407 | nSamples = nSamples*nProfileBlocks |
|
411 | nSamples = nSamples*nProfileBlocks | |
408 |
|
412 | |||
409 |
|
413 | |||
410 | self.__samples_to_read = int(nSamples) # FIJO: AHORA 40 |
|
414 | self.__samples_to_read = int(nSamples) # FIJO: AHORA 40 | |
411 | self.__nChannels = len(self.__channelList) |
|
415 | self.__nChannels = len(self.__channelList) | |
412 | #print("------------------------------------------") |
|
416 | #print("------------------------------------------") | |
413 | #print("self.__samples_to_read",self.__samples_to_read) |
|
417 | #print("self.__samples_to_read",self.__samples_to_read) | |
414 | #print("self.__nSamples",self.__nSamples) |
|
418 | #print("self.__nSamples",self.__nSamples) | |
415 | # son iguales y el buffer_index da 0 |
|
419 | # son iguales y el buffer_index da 0 | |
416 | self.__startUTCSecond = startUTCSecond |
|
420 | self.__startUTCSecond = startUTCSecond | |
417 | self.__endUTCSecond = endUTCSecond |
|
421 | self.__endUTCSecond = endUTCSecond | |
418 |
|
422 | |||
419 | self.__timeInterval = 1.0 * self.__samples_to_read / \ |
|
423 | self.__timeInterval = 1.0 * self.__samples_to_read / \ | |
420 | self.__sample_rate # Time interval |
|
424 | self.__sample_rate # Time interval | |
421 |
|
425 | |||
422 | if online: |
|
426 | if online: | |
423 | # self.__thisUnixSample = int(endUTCSecond*self.__sample_rate - 4*self.__samples_to_read) |
|
427 | # self.__thisUnixSample = int(endUTCSecond*self.__sample_rate - 4*self.__samples_to_read) | |
424 | startUTCSecond = numpy.floor(endUTCSecond) |
|
428 | startUTCSecond = numpy.floor(endUTCSecond) | |
425 |
|
429 | |||
426 | # por que en el otro metodo lo primero q se hace es sumar samplestoread |
|
430 | # por que en el otro metodo lo primero q se hace es sumar samplestoread | |
427 | self.__thisUnixSample = int(startUTCSecond * self.__sample_rate) - self.__samples_to_read |
|
431 | self.__thisUnixSample = int(startUTCSecond * self.__sample_rate) - self.__samples_to_read | |
428 |
|
432 | |||
429 | #self.__data_buffer = numpy.zeros( |
|
433 | #self.__data_buffer = numpy.zeros( | |
430 | # (self.__num_subchannels, self.__samples_to_read), dtype=numpy.complex) |
|
434 | # (self.__num_subchannels, self.__samples_to_read), dtype=numpy.complex) | |
|
435 | print("samplestoread",self.__samples_to_read) | |||
431 | self.__data_buffer = numpy.zeros((int(len(channelList)), self.__samples_to_read), dtype=numpy.complex) |
|
436 | self.__data_buffer = numpy.zeros((int(len(channelList)), self.__samples_to_read), dtype=numpy.complex) | |
432 |
|
437 | |||
433 |
|
438 | |||
434 | self.__setFileHeader() |
|
439 | self.__setFileHeader() | |
435 | self.isConfig = True |
|
440 | self.isConfig = True | |
436 |
|
441 | |||
437 | print("[Reading] Digital RF Data was found from %s to %s " % ( |
|
442 | print("[Reading] Digital RF Data was found from %s to %s " % ( | |
438 | datetime.datetime.utcfromtimestamp( |
|
443 | datetime.datetime.utcfromtimestamp( | |
439 | self.__startUTCSecond - self.__timezone), |
|
444 | self.__startUTCSecond - self.__timezone), | |
440 | datetime.datetime.utcfromtimestamp( |
|
445 | datetime.datetime.utcfromtimestamp( | |
441 | self.__endUTCSecond - self.__timezone) |
|
446 | self.__endUTCSecond - self.__timezone) | |
442 | )) |
|
447 | )) | |
443 |
|
448 | |||
444 | print("[Reading] Starting process from %s to %s" % (datetime.datetime.utcfromtimestamp(startUTCSecond - self.__timezone), |
|
449 | print("[Reading] Starting process from %s to %s" % (datetime.datetime.utcfromtimestamp(startUTCSecond - self.__timezone), | |
445 | datetime.datetime.utcfromtimestamp( |
|
450 | datetime.datetime.utcfromtimestamp(endUTCSecond - self.__timezone))) | |
446 | endUTCSecond - self.__timezone) |
|
|||
447 | )) |
|
|||
448 | self.oldAverage = None |
|
451 | self.oldAverage = None | |
449 | self.count = 0 |
|
452 | self.count = 0 | |
450 | self.executionTime = 0 |
|
453 | self.executionTime = 0 | |
451 |
|
454 | |||
452 | def __reload(self): |
|
455 | def __reload(self): | |
453 |
|
456 | |||
454 | # print "%s not in range [%s, %s]" %( |
|
457 | # print "%s not in range [%s, %s]" %( | |
455 | # datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), |
|
458 | # datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), | |
456 | # datetime.datetime.utcfromtimestamp(self.__startUTCSecond - self.__timezone), |
|
459 | # datetime.datetime.utcfromtimestamp(self.__startUTCSecond - self.__timezone), | |
457 | # datetime.datetime.utcfromtimestamp(self.__endUTCSecond - self.__timezone) |
|
460 | # datetime.datetime.utcfromtimestamp(self.__endUTCSecond - self.__timezone) | |
458 | # ) |
|
461 | # ) | |
459 | print("[Reading] reloading metadata ...") |
|
462 | print("[Reading] reloading metadata ...") | |
460 |
|
463 | |||
461 | try: |
|
464 | try: | |
462 | self.digitalReadObj.reload(complete_update=True) |
|
465 | self.digitalReadObj.reload(complete_update=True) | |
463 | except: |
|
466 | except: | |
464 | self.digitalReadObj = digital_rf.DigitalRFReader(self.path) |
|
467 | self.digitalReadObj = digital_rf.DigitalRFReader(self.path) | |
465 |
|
468 | |||
466 | start_index, end_index = self.digitalReadObj.get_bounds( |
|
469 | start_index, end_index = self.digitalReadObj.get_bounds( | |
467 | self.__channelNameList[self.__channelList[0]]) |
|
470 | self.__channelNameList[self.__channelList[0]]) | |
468 |
|
471 | |||
469 | if start_index > self.__startUTCSecond * self.__sample_rate: |
|
472 | if start_index > self.__startUTCSecond * self.__sample_rate: | |
470 | self.__startUTCSecond = 1.0 * start_index / self.__sample_rate |
|
473 | self.__startUTCSecond = 1.0 * start_index / self.__sample_rate | |
471 |
|
474 | |||
472 | if end_index > self.__endUTCSecond * self.__sample_rate: |
|
475 | if end_index > self.__endUTCSecond * self.__sample_rate: | |
473 | self.__endUTCSecond = 1.0 * end_index / self.__sample_rate |
|
476 | self.__endUTCSecond = 1.0 * end_index / self.__sample_rate | |
474 | print() |
|
477 | print() | |
475 | print("[Reading] New timerange found [%s, %s] " % ( |
|
478 | print("[Reading] New timerange found [%s, %s] " % ( | |
476 | datetime.datetime.utcfromtimestamp( |
|
479 | datetime.datetime.utcfromtimestamp( | |
477 | self.__startUTCSecond - self.__timezone), |
|
480 | self.__startUTCSecond - self.__timezone), | |
478 | datetime.datetime.utcfromtimestamp( |
|
481 | datetime.datetime.utcfromtimestamp( | |
479 | self.__endUTCSecond - self.__timezone) |
|
482 | self.__endUTCSecond - self.__timezone) | |
480 | )) |
|
483 | )) | |
481 |
|
484 | |||
482 | return True |
|
485 | return True | |
483 |
|
486 | |||
484 | return False |
|
487 | return False | |
485 |
|
488 | |||
486 | def timeit(self, toExecute): |
|
489 | def timeit(self, toExecute): | |
487 | t0 = time.time() |
|
490 | t0 = time.time() | |
488 | toExecute() |
|
491 | toExecute() | |
489 | self.executionTime = time.time() - t0 |
|
492 | self.executionTime = time.time() - t0 | |
490 | if self.oldAverage is None: |
|
493 | if self.oldAverage is None: | |
491 | self.oldAverage = self.executionTime |
|
494 | self.oldAverage = self.executionTime | |
492 | self.oldAverage = (self.executionTime + self.count * |
|
495 | self.oldAverage = (self.executionTime + self.count * | |
493 | self.oldAverage) / (self.count + 1.0) |
|
496 | self.oldAverage) / (self.count + 1.0) | |
494 | self.count = self.count + 1.0 |
|
497 | self.count = self.count + 1.0 | |
495 | return |
|
498 | return | |
496 |
|
499 | |||
497 | def __readNextBlock(self, seconds=30, volt_scale=1/20000.0): |
|
500 | def __readNextBlock(self, seconds=30, volt_scale=1/20000.0): | |
498 | ''' |
|
501 | ''' | |
499 | NOTA: APLICACION RADAR METEOROLOGICO |
|
502 | NOTA: APLICACION RADAR METEOROLOGICO | |
500 | VALORES OBTENIDOS CON LA USRP, volt_scale = 1,conexion directa al Ch Rx. |
|
503 | VALORES OBTENIDOS CON LA USRP, volt_scale = 1,conexion directa al Ch Rx. | |
501 |
|
504 | |||
502 | MAXIMO |
|
505 | MAXIMO | |
503 | 9886 -> 0.980 Voltiospp |
|
506 | 9886 -> 0.980 Voltiospp | |
504 | 4939 -> 0.480 Voltiospp |
|
507 | 4939 -> 0.480 Voltiospp | |
505 | 14825 -> 1.440 Voltiospp |
|
508 | 14825 -> 1.440 Voltiospp | |
506 | 18129 -> 1.940 Voltiospp |
|
509 | 18129 -> 1.940 Voltiospp | |
507 | Para llevar al valor correspondiente de Voltaje, debemos dividir por 20000 |
|
510 | Para llevar al valor correspondiente de Voltaje, debemos dividir por 20000 | |
508 | y obtenemos la Amplitud correspondiente de entrada IQ. |
|
511 | y obtenemos la Amplitud correspondiente de entrada IQ. | |
509 | volt_scale = (1/20000.0) |
|
512 | volt_scale = (1/20000.0) | |
510 | ''' |
|
513 | ''' | |
511 | # Set the next data |
|
514 | # Set the next data | |
512 | self.__flagDiscontinuousBlock = False |
|
515 | self.__flagDiscontinuousBlock = False | |
513 | self.__thisUnixSample += self.__samples_to_read |
|
516 | self.__thisUnixSample += self.__samples_to_read | |
514 |
|
517 | |||
515 | if self.__thisUnixSample + 2 * self.__samples_to_read > self.__endUTCSecond * self.__sample_rate: |
|
518 | if self.__thisUnixSample + 2 * self.__samples_to_read > self.__endUTCSecond * self.__sample_rate: | |
516 | print ("[Reading] There are no more data into selected time-range") |
|
519 | print ("[Reading] There are no more data into selected time-range") | |
517 | if self.__online: |
|
520 | if self.__online: | |
518 | sleep(3) |
|
521 | sleep(3) | |
519 | self.__reload() |
|
522 | self.__reload() | |
520 | else: |
|
523 | else: | |
521 | return False |
|
524 | return False | |
522 |
|
525 | |||
523 | if self.__thisUnixSample + 2 * self.__samples_to_read > self.__endUTCSecond * self.__sample_rate: |
|
526 | if self.__thisUnixSample + 2 * self.__samples_to_read > self.__endUTCSecond * self.__sample_rate: | |
524 | return False |
|
527 | return False | |
525 | self.__thisUnixSample -= self.__samples_to_read |
|
528 | self.__thisUnixSample -= self.__samples_to_read | |
526 |
|
529 | |||
527 | indexChannel = 0 |
|
530 | indexChannel = 0 | |
528 |
|
531 | |||
529 | dataOk = False |
|
532 | dataOk = False | |
530 |
|
533 | |||
531 | for thisChannelName in self.__channelNameList: # TODO VARIOS CHANNELS? |
|
534 | for thisChannelName in self.__channelNameList: # TODO VARIOS CHANNELS? | |
532 | for indexSubchannel in range(self.__num_subchannels): |
|
535 | for indexSubchannel in range(self.__num_subchannels): | |
533 | try: |
|
536 | try: | |
534 | t0 = time() |
|
537 | t0 = time() | |
|
538 | #print("thisUNixSample",self.__thisUnixSample) | |||
535 | result = self.digitalReadObj.read_vector_c81d(self.__thisUnixSample, |
|
539 | result = self.digitalReadObj.read_vector_c81d(self.__thisUnixSample, | |
536 | self.__samples_to_read, |
|
540 | self.__samples_to_read, | |
537 | thisChannelName, sub_channel=indexSubchannel) |
|
541 | thisChannelName, sub_channel=indexSubchannel) | |
|
542 | #print("result--------------",result) | |||
538 | self.executionTime = time() - t0 |
|
543 | self.executionTime = time() - t0 | |
539 | if self.oldAverage is None: |
|
544 | if self.oldAverage is None: | |
540 | self.oldAverage = self.executionTime |
|
545 | self.oldAverage = self.executionTime | |
541 | self.oldAverage = ( |
|
546 | self.oldAverage = ( | |
542 | self.executionTime + self.count * self.oldAverage) / (self.count + 1.0) |
|
547 | self.executionTime + self.count * self.oldAverage) / (self.count + 1.0) | |
543 | self.count = self.count + 1.0 |
|
548 | self.count = self.count + 1.0 | |
544 |
|
549 | |||
545 | except IOError as e: |
|
550 | except IOError as e: | |
546 | # read next profile |
|
551 | # read next profile | |
547 | self.__flagDiscontinuousBlock = True |
|
552 | self.__flagDiscontinuousBlock = True | |
548 | print("[Reading] %s" % datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), e) |
|
553 | print("[Reading] %s" % datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), e) | |
|
554 | bot = 0 | |||
|
555 | while(self.__flagDiscontinuousBlock): | |||
|
556 | bot +=1 | |||
|
557 | self.__thisUnixSample += self.__sample_rate | |||
|
558 | try: | |||
|
559 | result = result = self.digitalReadObj.read_vector_c81d(self.__thisUnixSample,self.__samples_to_read,thisChannelName, sub_channel=indexSubchannel) | |||
|
560 | self.__flagDiscontinuousBlock=False | |||
|
561 | print("Searching.. NΒ°: ",bot,"Success",self.__thisUnixSample) | |||
|
562 | except: | |||
|
563 | print("Searching...NΒ°: ",bot,"Fail", self.__thisUnixSample) | |||
|
564 | if self.__flagDiscontinuousBlock==True: | |||
549 | break |
|
565 | break | |
|
566 | else: | |||
|
567 | print("New data index found...",self.__thisUnixSample) | |||
|
568 | #break | |||
550 |
|
569 | |||
551 | if result.shape[0] != self.__samples_to_read: |
|
570 | if result.shape[0] != self.__samples_to_read: | |
552 | self.__flagDiscontinuousBlock = True |
|
571 | self.__flagDiscontinuousBlock = True | |
553 | print("[Reading] %s: Too few samples were found, just %d/%d samples" % (datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), |
|
572 | print("[Reading] %s: Too few samples were found, just %d/%d samples" % (datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), | |
554 | result.shape[0], |
|
573 | result.shape[0], | |
555 | self.__samples_to_read)) |
|
574 | self.__samples_to_read)) | |
556 | break |
|
575 | break | |
557 |
|
576 | |||
558 | self.__data_buffer[indexChannel, :] = result * volt_scale |
|
577 | self.__data_buffer[indexChannel, :] = result * volt_scale | |
559 | indexChannel+=1 |
|
578 | indexChannel+=1 | |
560 |
|
579 | |||
561 | dataOk = True |
|
580 | dataOk = True | |
562 |
|
581 | |||
563 | self.__utctime = self.__thisUnixSample / self.__sample_rate |
|
582 | self.__utctime = self.__thisUnixSample / self.__sample_rate | |
564 |
|
583 | |||
565 | if not dataOk: |
|
584 | if not dataOk: | |
566 | return False |
|
585 | return False | |
567 |
|
586 | |||
568 | print("[Reading] %s: %d samples <> %f sec" % (datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), |
|
587 | print("[Reading] %s: %d samples <> %f sec" % (datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), | |
569 | self.__samples_to_read, |
|
588 | self.__samples_to_read, | |
570 | self.__timeInterval)) |
|
589 | self.__timeInterval)) | |
571 |
|
590 | |||
572 | self.__bufferIndex = 0 |
|
591 | self.__bufferIndex = 0 | |
573 |
|
592 | |||
574 | return True |
|
593 | return True | |
575 |
|
594 | |||
576 | def __isBufferEmpty(self): |
|
595 | def __isBufferEmpty(self): | |
577 |
|
596 | |||
578 | return self.__bufferIndex > self.__samples_to_read - self.__nSamples # 40960 - 40 |
|
597 | return self.__bufferIndex > self.__samples_to_read - self.__nSamples # 40960 - 40 | |
579 |
|
598 | |||
580 | def getData(self, seconds=30, nTries=5): |
|
599 | def getData(self, seconds=30, nTries=5): | |
581 | ''' |
|
600 | ''' | |
582 | This method gets the data from files and put the data into the dataOut object |
|
601 | This method gets the data from files and put the data into the dataOut object | |
583 |
|
602 | |||
584 | In addition, increase el the buffer counter in one. |
|
603 | In addition, increase el the buffer counter in one. | |
585 |
|
604 | |||
586 | Return: |
|
605 | Return: | |
587 | data : retorna un perfil de voltages (alturas * canales) copiados desde el |
|
606 | data : retorna un perfil de voltages (alturas * canales) copiados desde el | |
588 | buffer. Si no hay mas archivos a leer retorna None. |
|
607 | buffer. Si no hay mas archivos a leer retorna None. | |
589 |
|
608 | |||
590 | Affected: |
|
609 | Affected: | |
591 | self.dataOut |
|
610 | self.dataOut | |
592 | self.profileIndex |
|
611 | self.profileIndex | |
593 | self.flagDiscontinuousBlock |
|
612 | self.flagDiscontinuousBlock | |
594 | self.flagIsNewBlock |
|
613 | self.flagIsNewBlock | |
595 | ''' |
|
614 | ''' | |
596 | #print("getdata") |
|
615 | #print("getdata") | |
597 | err_counter = 0 |
|
616 | err_counter = 0 | |
598 | self.dataOut.flagNoData = True |
|
617 | self.dataOut.flagNoData = True | |
599 |
|
618 | |||
600 |
|
619 | |||
601 | if self.__isBufferEmpty(): |
|
620 | if self.__isBufferEmpty(): | |
602 | #print("hi") |
|
621 | #print("hi") | |
603 | self.__flagDiscontinuousBlock = False |
|
622 | self.__flagDiscontinuousBlock = False | |
604 |
|
623 | |||
605 | while True: |
|
624 | while True: | |
606 | if self.__readNextBlock(): |
|
625 | if self.__readNextBlock(): | |
607 | break |
|
626 | break | |
608 | if self.__thisUnixSample > self.__endUTCSecond * self.__sample_rate: |
|
627 | if self.__thisUnixSample > self.__endUTCSecond * self.__sample_rate: | |
609 | raise schainpy.admin.SchainError('Error') |
|
628 | raise schainpy.admin.SchainError('Error') | |
610 | return |
|
629 | return | |
611 |
|
630 | |||
612 | if self.__flagDiscontinuousBlock: |
|
631 | if self.__flagDiscontinuousBlock: | |
613 | raise schainpy.admin.SchainError('discontinuous block found') |
|
632 | raise schainpy.admin.SchainError('discontinuous block found') | |
614 | return |
|
633 | return | |
615 |
|
634 | |||
616 | if not self.__online: |
|
635 | if not self.__online: | |
617 | raise schainpy.admin.SchainError('Online?') |
|
636 | raise schainpy.admin.SchainError('Online?') | |
618 | return |
|
637 | return | |
619 |
|
638 | |||
620 | err_counter += 1 |
|
639 | err_counter += 1 | |
621 | if err_counter > nTries: |
|
640 | if err_counter > nTries: | |
622 | raise schainpy.admin.SchainError('Max retrys reach') |
|
641 | raise schainpy.admin.SchainError('Max retrys reach') | |
623 | return |
|
642 | return | |
624 |
|
643 | |||
625 | print('[Reading] waiting %d seconds to read a new block' % seconds) |
|
644 | print('[Reading] waiting %d seconds to read a new block' % seconds) | |
626 | sleep(seconds) |
|
645 | sleep(seconds) | |
627 |
|
646 | |||
628 |
|
647 | |||
629 | if not self.getByBlock: |
|
648 | if not self.getByBlock: | |
630 |
|
649 | |||
631 | #print("self.__bufferIndex",self.__bufferIndex)# este valor siempre es cero aparentemente |
|
650 | #print("self.__bufferIndex",self.__bufferIndex)# este valor siempre es cero aparentemente | |
632 | self.dataOut.data = self.__data_buffer[:, self.__bufferIndex:self.__bufferIndex + self.__nSamples] |
|
651 | self.dataOut.data = self.__data_buffer[:, self.__bufferIndex:self.__bufferIndex + self.__nSamples] | |
633 | self.dataOut.utctime = ( self.__thisUnixSample + self.__bufferIndex) / self.__sample_rate |
|
652 | self.dataOut.utctime = ( self.__thisUnixSample + self.__bufferIndex) / self.__sample_rate | |
634 | self.dataOut.flagNoData = False |
|
653 | self.dataOut.flagNoData = False | |
635 | self.dataOut.flagDiscontinuousBlock = self.__flagDiscontinuousBlock |
|
654 | self.dataOut.flagDiscontinuousBlock = self.__flagDiscontinuousBlock | |
636 | self.dataOut.profileIndex = self.profileIndex |
|
655 | self.dataOut.profileIndex = self.profileIndex | |
637 |
|
656 | |||
638 | self.__bufferIndex += self.__nSamples |
|
657 | self.__bufferIndex += self.__nSamples | |
639 | self.profileIndex += 1 |
|
658 | self.profileIndex += 1 | |
640 |
|
659 | |||
641 | if self.profileIndex == self.dataOut.nProfiles: |
|
660 | if self.profileIndex == self.dataOut.nProfiles: | |
642 | self.profileIndex = 0 |
|
661 | self.profileIndex = 0 | |
643 | else: |
|
662 | else: | |
644 | # ojo debo anadir el readNextBLock y el __isBufferEmpty( |
|
663 | # ojo debo anadir el readNextBLock y el __isBufferEmpty( | |
645 | self.dataOut.flagNoData = False |
|
664 | self.dataOut.flagNoData = False | |
646 | buffer = self.__data_buffer[:,self.__bufferIndex:self.__bufferIndex + self.__samples_to_read] |
|
665 | buffer = self.__data_buffer[:,self.__bufferIndex:self.__bufferIndex + self.__samples_to_read] | |
647 | buffer = buffer.reshape((self.__nChannels, self.nProfileBlocks, int(self.__samples_to_read/self.nProfileBlocks))) |
|
666 | buffer = buffer.reshape((self.__nChannels, self.nProfileBlocks, int(self.__samples_to_read/self.nProfileBlocks))) | |
648 | self.dataOut.nProfileBlocks = self.nProfileBlocks |
|
667 | self.dataOut.nProfileBlocks = self.nProfileBlocks | |
649 | self.dataOut.data = buffer |
|
668 | self.dataOut.data = buffer | |
650 | self.dataOut.utctime = ( self.__thisUnixSample + self.__bufferIndex) / self.__sample_rate |
|
669 | self.dataOut.utctime = ( self.__thisUnixSample + self.__bufferIndex) / self.__sample_rate | |
651 | self.profileIndex += self.__samples_to_read |
|
670 | self.profileIndex += self.__samples_to_read | |
652 | self.__bufferIndex += self.__samples_to_read |
|
671 | self.__bufferIndex += self.__samples_to_read | |
653 | self.dataOut.flagDiscontinuousBlock = self.__flagDiscontinuousBlock |
|
672 | self.dataOut.flagDiscontinuousBlock = self.__flagDiscontinuousBlock | |
654 | return True |
|
673 | return True | |
655 |
|
674 | |||
656 |
|
675 | |||
657 | def printInfo(self): |
|
676 | def printInfo(self): | |
658 | ''' |
|
677 | ''' | |
659 | ''' |
|
678 | ''' | |
660 | if self.__printInfo == False: |
|
679 | if self.__printInfo == False: | |
661 | return |
|
680 | return | |
662 |
|
681 | |||
663 | # self.systemHeaderObj.printInfo() |
|
682 | # self.systemHeaderObj.printInfo() | |
664 | # self.radarControllerHeaderObj.printInfo() |
|
683 | # self.radarControllerHeaderObj.printInfo() | |
665 |
|
684 | |||
666 | self.__printInfo = False |
|
685 | self.__printInfo = False | |
667 |
|
686 | |||
668 | def printNumberOfBlock(self): |
|
687 | def printNumberOfBlock(self): | |
669 | ''' |
|
688 | ''' | |
670 | ''' |
|
689 | ''' | |
671 | return |
|
690 | return | |
672 | # print self.profileIndex |
|
691 | # print self.profileIndex | |
673 |
|
692 | |||
674 | def run(self, **kwargs): |
|
693 | def run(self, **kwargs): | |
675 | ''' |
|
694 | ''' | |
676 | This method will be called many times so here you should put all your code |
|
695 | This method will be called many times so here you should put all your code | |
677 | ''' |
|
696 | ''' | |
678 |
|
697 | |||
679 | if not self.isConfig: |
|
698 | if not self.isConfig: | |
680 | self.setup(**kwargs) |
|
699 | self.setup(**kwargs) | |
681 |
|
700 | |||
682 | self.getData(seconds=self.__delay) |
|
701 | self.getData(seconds=self.__delay) | |
683 |
|
702 | |||
684 | return |
|
703 | return | |
685 |
|
704 | |||
686 | @MPDecorator |
|
705 | @MPDecorator | |
687 | class DigitalRFWriter(Operation): |
|
706 | class DigitalRFWriter(Operation): | |
688 | ''' |
|
707 | ''' | |
689 | classdocs |
|
708 | classdocs | |
690 | ''' |
|
709 | ''' | |
691 |
|
710 | |||
692 | def __init__(self, **kwargs): |
|
711 | def __init__(self, **kwargs): | |
693 | ''' |
|
712 | ''' | |
694 | Constructor |
|
713 | Constructor | |
695 | ''' |
|
714 | ''' | |
696 | Operation.__init__(self, **kwargs) |
|
715 | Operation.__init__(self, **kwargs) | |
697 | self.metadata_dict = {} |
|
716 | self.metadata_dict = {} | |
698 | self.dataOut = None |
|
717 | self.dataOut = None | |
699 | self.dtype = None |
|
718 | self.dtype = None | |
700 | self.oldAverage = 0 |
|
719 | self.oldAverage = 0 | |
701 |
|
720 | |||
702 | def setHeader(self): |
|
721 | def setHeader(self): | |
703 |
|
722 | |||
704 | self.metadata_dict['frequency'] = self.dataOut.frequency |
|
723 | self.metadata_dict['frequency'] = self.dataOut.frequency | |
705 | self.metadata_dict['timezone'] = self.dataOut.timeZone |
|
724 | self.metadata_dict['timezone'] = self.dataOut.timeZone | |
706 | self.metadata_dict['dtype'] = pickle.dumps(self.dataOut.dtype) |
|
725 | self.metadata_dict['dtype'] = pickle.dumps(self.dataOut.dtype) | |
707 | self.metadata_dict['nProfiles'] = self.dataOut.nProfiles |
|
726 | self.metadata_dict['nProfiles'] = self.dataOut.nProfiles | |
708 | self.metadata_dict['heightList'] = self.dataOut.heightList |
|
727 | self.metadata_dict['heightList'] = self.dataOut.heightList | |
709 | self.metadata_dict['channelList'] = self.dataOut.channelList |
|
728 | self.metadata_dict['channelList'] = self.dataOut.channelList | |
710 | self.metadata_dict['flagDecodeData'] = self.dataOut.flagDecodeData |
|
729 | self.metadata_dict['flagDecodeData'] = self.dataOut.flagDecodeData | |
711 | self.metadata_dict['flagDeflipData'] = self.dataOut.flagDeflipData |
|
730 | self.metadata_dict['flagDeflipData'] = self.dataOut.flagDeflipData | |
712 | self.metadata_dict['flagShiftFFT'] = self.dataOut.flagShiftFFT |
|
731 | self.metadata_dict['flagShiftFFT'] = self.dataOut.flagShiftFFT | |
713 | self.metadata_dict['useLocalTime'] = self.dataOut.useLocalTime |
|
732 | self.metadata_dict['useLocalTime'] = self.dataOut.useLocalTime | |
714 | self.metadata_dict['nCohInt'] = self.dataOut.nCohInt |
|
733 | self.metadata_dict['nCohInt'] = self.dataOut.nCohInt | |
715 | self.metadata_dict['type'] = self.dataOut.type |
|
734 | self.metadata_dict['type'] = self.dataOut.type | |
716 | self.metadata_dict['flagDataAsBlock']= getattr( |
|
735 | self.metadata_dict['flagDataAsBlock']= getattr( | |
717 | self.dataOut, 'flagDataAsBlock', None) # chequear |
|
736 | self.dataOut, 'flagDataAsBlock', None) # chequear | |
718 |
|
737 | |||
719 | def setup(self, dataOut, path, frequency, fileCadence, dirCadence, metadataCadence, set=0, metadataFile='metadata', ext='.h5'): |
|
738 | def setup(self, dataOut, path, frequency, fileCadence, dirCadence, metadataCadence, set=0, metadataFile='metadata', ext='.h5'): | |
720 | ''' |
|
739 | ''' | |
721 | In this method we should set all initial parameters. |
|
740 | In this method we should set all initial parameters. | |
722 | Input: |
|
741 | Input: | |
723 | dataOut: Input data will also be outputa data |
|
742 | dataOut: Input data will also be outputa data | |
724 | ''' |
|
743 | ''' | |
725 | self.setHeader() |
|
744 | self.setHeader() | |
726 | self.__ippSeconds = dataOut.ippSeconds |
|
745 | self.__ippSeconds = dataOut.ippSeconds | |
727 | self.__deltaH = dataOut.getDeltaH() |
|
746 | self.__deltaH = dataOut.getDeltaH() | |
728 | self.__sample_rate = 1e6 * 0.15 / self.__deltaH |
|
747 | self.__sample_rate = 1e6 * 0.15 / self.__deltaH | |
729 | self.__dtype = dataOut.dtype |
|
748 | self.__dtype = dataOut.dtype | |
730 | if len(dataOut.dtype) == 2: |
|
749 | if len(dataOut.dtype) == 2: | |
731 | self.__dtype = dataOut.dtype[0] |
|
750 | self.__dtype = dataOut.dtype[0] | |
732 | self.__nSamples = dataOut.systemHeaderObj.nSamples |
|
751 | self.__nSamples = dataOut.systemHeaderObj.nSamples | |
733 | self.__nProfiles = dataOut.nProfiles |
|
752 | self.__nProfiles = dataOut.nProfiles | |
734 |
|
753 | |||
735 | if self.dataOut.type != 'Voltage': |
|
754 | if self.dataOut.type != 'Voltage': | |
736 | raise 'Digital RF cannot be used with this data type' |
|
755 | raise 'Digital RF cannot be used with this data type' | |
737 | self.arr_data = numpy.ones((1, dataOut.nFFTPoints * len( |
|
756 | self.arr_data = numpy.ones((1, dataOut.nFFTPoints * len( | |
738 | self.dataOut.channelList)), dtype=[('r', self.__dtype), ('i', self.__dtype)]) |
|
757 | self.dataOut.channelList)), dtype=[('r', self.__dtype), ('i', self.__dtype)]) | |
739 | else: |
|
758 | else: | |
740 | self.arr_data = numpy.ones((self.__nSamples, len( |
|
759 | self.arr_data = numpy.ones((self.__nSamples, len( | |
741 | self.dataOut.channelList)), dtype=[('r', self.__dtype), ('i', self.__dtype)]) |
|
760 | self.dataOut.channelList)), dtype=[('r', self.__dtype), ('i', self.__dtype)]) | |
742 |
|
761 | |||
743 | file_cadence_millisecs = 1000 |
|
762 | file_cadence_millisecs = 1000 | |
744 |
|
763 | |||
745 | sample_rate_fraction = Fraction(self.__sample_rate).limit_denominator() |
|
764 | sample_rate_fraction = Fraction(self.__sample_rate).limit_denominator() | |
746 | sample_rate_numerator = int(sample_rate_fraction.numerator) |
|
765 | sample_rate_numerator = int(sample_rate_fraction.numerator) | |
747 | sample_rate_denominator = int(sample_rate_fraction.denominator) |
|
766 | sample_rate_denominator = int(sample_rate_fraction.denominator) | |
748 | start_global_index = dataOut.utctime * self.__sample_rate |
|
767 | start_global_index = dataOut.utctime * self.__sample_rate | |
749 |
|
768 | |||
750 | uuid = 'prueba' |
|
769 | uuid = 'prueba' | |
751 | compression_level = 0 |
|
770 | compression_level = 0 | |
752 | checksum = False |
|
771 | checksum = False | |
753 | is_complex = True |
|
772 | is_complex = True | |
754 | num_subchannels = len(dataOut.channelList) |
|
773 | num_subchannels = len(dataOut.channelList) | |
755 | is_continuous = True |
|
774 | is_continuous = True | |
756 | marching_periods = False |
|
775 | marching_periods = False | |
757 |
|
776 | |||
758 | self.digitalWriteObj = digital_rf.DigitalRFWriter(path, self.__dtype, dirCadence, |
|
777 | self.digitalWriteObj = digital_rf.DigitalRFWriter(path, self.__dtype, dirCadence, | |
759 | fileCadence, start_global_index, |
|
778 | fileCadence, start_global_index, | |
760 | sample_rate_numerator, sample_rate_denominator, uuid, compression_level, checksum, |
|
779 | sample_rate_numerator, sample_rate_denominator, uuid, compression_level, checksum, | |
761 | is_complex, num_subchannels, is_continuous, marching_periods) |
|
780 | is_complex, num_subchannels, is_continuous, marching_periods) | |
762 | metadata_dir = os.path.join(path, 'metadata') |
|
781 | metadata_dir = os.path.join(path, 'metadata') | |
763 | os.system('mkdir %s' % (metadata_dir)) |
|
782 | os.system('mkdir %s' % (metadata_dir)) | |
764 | self.digitalMetadataWriteObj = digital_rf.DigitalMetadataWriter(metadata_dir, dirCadence, 1, # 236, file_cadence_millisecs / 1000 |
|
783 | self.digitalMetadataWriteObj = digital_rf.DigitalMetadataWriter(metadata_dir, dirCadence, 1, # 236, file_cadence_millisecs / 1000 | |
765 | sample_rate_numerator, sample_rate_denominator, |
|
784 | sample_rate_numerator, sample_rate_denominator, | |
766 | metadataFile) |
|
785 | metadataFile) | |
767 | self.isConfig = True |
|
786 | self.isConfig = True | |
768 | self.currentSample = 0 |
|
787 | self.currentSample = 0 | |
769 | self.oldAverage = 0 |
|
788 | self.oldAverage = 0 | |
770 | self.count = 0 |
|
789 | self.count = 0 | |
771 | return |
|
790 | return | |
772 |
|
791 | |||
773 | def writeMetadata(self): |
|
792 | def writeMetadata(self): | |
774 | start_idx = self.__sample_rate * self.dataOut.utctime |
|
793 | start_idx = self.__sample_rate * self.dataOut.utctime | |
775 |
|
794 | |||
776 | self.metadata_dict['processingHeader'] = self.dataOut.processingHeaderObj.getAsDict( |
|
795 | self.metadata_dict['processingHeader'] = self.dataOut.processingHeaderObj.getAsDict( | |
777 | ) |
|
796 | ) | |
778 | self.metadata_dict['radarControllerHeader'] = self.dataOut.radarControllerHeaderObj.getAsDict( |
|
797 | self.metadata_dict['radarControllerHeader'] = self.dataOut.radarControllerHeaderObj.getAsDict( | |
779 | ) |
|
798 | ) | |
780 | self.metadata_dict['systemHeader'] = self.dataOut.systemHeaderObj.getAsDict( |
|
799 | self.metadata_dict['systemHeader'] = self.dataOut.systemHeaderObj.getAsDict( | |
781 | ) |
|
800 | ) | |
782 | self.digitalMetadataWriteObj.write(start_idx, self.metadata_dict) |
|
801 | self.digitalMetadataWriteObj.write(start_idx, self.metadata_dict) | |
783 | return |
|
802 | return | |
784 |
|
803 | |||
785 | def timeit(self, toExecute): |
|
804 | def timeit(self, toExecute): | |
786 | t0 = time() |
|
805 | t0 = time() | |
787 | toExecute() |
|
806 | toExecute() | |
788 | self.executionTime = time() - t0 |
|
807 | self.executionTime = time() - t0 | |
789 | if self.oldAverage is None: |
|
808 | if self.oldAverage is None: | |
790 | self.oldAverage = self.executionTime |
|
809 | self.oldAverage = self.executionTime | |
791 | self.oldAverage = (self.executionTime + self.count * |
|
810 | self.oldAverage = (self.executionTime + self.count * | |
792 | self.oldAverage) / (self.count + 1.0) |
|
811 | self.oldAverage) / (self.count + 1.0) | |
793 | self.count = self.count + 1.0 |
|
812 | self.count = self.count + 1.0 | |
794 | return |
|
813 | return | |
795 |
|
814 | |||
796 | def writeData(self): |
|
815 | def writeData(self): | |
797 | if self.dataOut.type != 'Voltage': |
|
816 | if self.dataOut.type != 'Voltage': | |
798 | raise 'Digital RF cannot be used with this data type' |
|
817 | raise 'Digital RF cannot be used with this data type' | |
799 | for channel in self.dataOut.channelList: |
|
818 | for channel in self.dataOut.channelList: | |
800 | for i in range(self.dataOut.nFFTPoints): |
|
819 | for i in range(self.dataOut.nFFTPoints): | |
801 | self.arr_data[1][channel * self.dataOut.nFFTPoints + |
|
820 | self.arr_data[1][channel * self.dataOut.nFFTPoints + | |
802 | i]['r'] = self.dataOut.data[channel][i].real |
|
821 | i]['r'] = self.dataOut.data[channel][i].real | |
803 | self.arr_data[1][channel * self.dataOut.nFFTPoints + |
|
822 | self.arr_data[1][channel * self.dataOut.nFFTPoints + | |
804 | i]['i'] = self.dataOut.data[channel][i].imag |
|
823 | i]['i'] = self.dataOut.data[channel][i].imag | |
805 | else: |
|
824 | else: | |
806 | for i in range(self.dataOut.systemHeaderObj.nSamples): |
|
825 | for i in range(self.dataOut.systemHeaderObj.nSamples): | |
807 | for channel in self.dataOut.channelList: |
|
826 | for channel in self.dataOut.channelList: | |
808 | self.arr_data[i][channel]['r'] = self.dataOut.data[channel][i].real |
|
827 | self.arr_data[i][channel]['r'] = self.dataOut.data[channel][i].real | |
809 | self.arr_data[i][channel]['i'] = self.dataOut.data[channel][i].imag |
|
828 | self.arr_data[i][channel]['i'] = self.dataOut.data[channel][i].imag | |
810 |
|
829 | |||
811 | def f(): return self.digitalWriteObj.rf_write(self.arr_data) |
|
830 | def f(): return self.digitalWriteObj.rf_write(self.arr_data) | |
812 | self.timeit(f) |
|
831 | self.timeit(f) | |
813 |
|
832 | |||
814 | return |
|
833 | return | |
815 |
|
834 | |||
816 | def run(self, dataOut, frequency=49.92e6, path=None, fileCadence=1000, dirCadence=36000, metadataCadence=1, **kwargs): |
|
835 | def run(self, dataOut, frequency=49.92e6, path=None, fileCadence=1000, dirCadence=36000, metadataCadence=1, **kwargs): | |
817 | ''' |
|
836 | ''' | |
818 | This method will be called many times so here you should put all your code |
|
837 | This method will be called many times so here you should put all your code | |
819 | Inputs: |
|
838 | Inputs: | |
820 | dataOut: object with the data |
|
839 | dataOut: object with the data | |
821 | ''' |
|
840 | ''' | |
822 | # print dataOut.__dict__ |
|
841 | # print dataOut.__dict__ | |
823 | self.dataOut = dataOut |
|
842 | self.dataOut = dataOut | |
824 | if not self.isConfig: |
|
843 | if not self.isConfig: | |
825 | self.setup(dataOut, path, frequency, fileCadence, |
|
844 | self.setup(dataOut, path, frequency, fileCadence, | |
826 | dirCadence, metadataCadence, **kwargs) |
|
845 | dirCadence, metadataCadence, **kwargs) | |
827 | self.writeMetadata() |
|
846 | self.writeMetadata() | |
828 |
|
847 | |||
829 | self.writeData() |
|
848 | self.writeData() | |
830 |
|
849 | |||
831 | ## self.currentSample += 1 |
|
850 | ## self.currentSample += 1 | |
832 | # if self.dataOut.flagDataAsBlock or self.currentSample == 1: |
|
851 | # if self.dataOut.flagDataAsBlock or self.currentSample == 1: | |
833 | # self.writeMetadata() |
|
852 | # self.writeMetadata() | |
834 | ## if self.currentSample == self.__nProfiles: self.currentSample = 0 |
|
853 | ## if self.currentSample == self.__nProfiles: self.currentSample = 0 | |
835 |
|
854 | |||
836 | return dataOut# en la version 2.7 no aparece este return |
|
855 | return dataOut# en la version 2.7 no aparece este return | |
837 |
|
856 | |||
838 | def close(self): |
|
857 | def close(self): | |
839 | print('[Writing] - Closing files ') |
|
858 | print('[Writing] - Closing files ') | |
840 | print('Average of writing to digital rf format is ', self.oldAverage * 1000) |
|
859 | print('Average of writing to digital rf format is ', self.oldAverage * 1000) | |
841 | try: |
|
860 | try: | |
842 | self.digitalWriteObj.close() |
|
861 | self.digitalWriteObj.close() | |
843 | except: |
|
862 | except: | |
844 | pass |
|
863 | pass |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file | ||
The requested commit or file is too big and content was truncated. Show full diff |
@@ -1,375 +1,375 | |||||
1 | # SOPHY PROC script |
|
1 | # SOPHY PROC script | |
2 | import os, sys, json, argparse |
|
2 | import os, sys, json, argparse | |
3 | import datetime |
|
3 | import datetime | |
4 | import time |
|
4 | import time | |
5 |
|
5 | |||
6 | PATH = '/DATA_RM/DATA' |
|
6 | PATH = '/DATA_RM/DATA' | |
7 | PATH = '/media/jespinoza/Elements' |
|
7 | PATH = '/media/jespinoza/Elements' | |
8 | PATH = '/media/jespinoza/data/SOPHY' |
|
8 | PATH = '/media/jespinoza/data/SOPHY' | |
9 | PATH = '/home/soporte/Documents/EVENTO' |
|
9 | PATH = '/home/soporte/Documents/EVENTO' | |
10 |
|
10 | |||
11 | PARAM = { |
|
11 | PARAM = { | |
12 | 'S': {'zmin': -45, 'zmax': -25, 'colormap': 'jet', 'label': 'Power', 'wrname': 'power','cb_label': 'dBm', 'ch':0}, |
|
12 | 'S': {'zmin': -45, 'zmax': -25, 'colormap': 'jet', 'label': 'Power', 'wrname': 'power','cb_label': 'dBm', 'ch':0}, | |
13 | 'SNR': {'zmin': -40, 'zmax': -20, 'colormap': 'jet', 'label': 'SNR', 'wrname': 'snr','cb_label': 'dB', 'ch':0}, |
|
13 | 'SNR': {'zmin': -40, 'zmax': -20, 'colormap': 'jet', 'label': 'SNR', 'wrname': 'snr','cb_label': 'dB', 'ch':0}, | |
14 | 'V': {'zmin': -12, 'zmax': 12, 'colormap': 'sophy_v', 'label': 'Velocity', 'wrname': 'velocity', 'cb_label': 'm/s', 'ch':0}, |
|
14 | 'V': {'zmin': -12, 'zmax': 12, 'colormap': 'sophy_v', 'label': 'Velocity', 'wrname': 'velocity', 'cb_label': 'm/s', 'ch':0}, | |
15 | 'R': {'zmin': 0, 'zmax': 1, 'colormap': 'jet', 'label': 'RhoHV', 'wrname':'rhoHV', 'cb_label': '*', 'ch':0}, |
|
15 | 'R': {'zmin': 0, 'zmax': 1, 'colormap': 'jet', 'label': 'RhoHV', 'wrname':'rhoHV', 'cb_label': '*', 'ch':0}, | |
16 | 'P': {'zmin': -180,'zmax': 180,'colormap': 'RdBu_r', 'label': 'PhiDP', 'wrname':'phiDP' , 'cb_label': 'ΒΊ', 'ch':0}, |
|
16 | 'P': {'zmin': -180,'zmax': 180,'colormap': 'RdBu_r', 'label': 'PhiDP', 'wrname':'phiDP' , 'cb_label': 'ΒΊ', 'ch':0}, | |
17 | 'D': {'zmin': -30, 'zmax': 80, 'colormap': 'sophy_r','label': 'ZDR','wrname':'differential_reflectivity' , 'cb_label': 'dBz','ch':0}, |
|
17 | 'D': {'zmin': -30, 'zmax': 80, 'colormap': 'sophy_r','label': 'ZDR','wrname':'differential_reflectivity' , 'cb_label': 'dBz','ch':0}, | |
18 | 'Z': {'zmin': -30, 'zmax': 80, 'colormap': 'sophy_r','label': 'Reflectivity ', 'wrname':'reflectivity', 'cb_label': 'dBz','ch':0}, |
|
18 | 'Z': {'zmin': -30, 'zmax': 80, 'colormap': 'sophy_r','label': 'Reflectivity ', 'wrname':'reflectivity', 'cb_label': 'dBz','ch':0}, | |
19 | 'W': {'zmin': 0, 'zmax': 15, 'colormap': 'sophy_w','label': 'Spectral Width', 'wrname':'spectral_width', 'cb_label': 'm/s', 'ch':0} |
|
19 | 'W': {'zmin': 0, 'zmax': 15, 'colormap': 'sophy_w','label': 'Spectral Width', 'wrname':'spectral_width', 'cb_label': 'm/s', 'ch':0} | |
20 | } |
|
20 | } | |
21 |
|
21 | |||
22 | def max_index(r, sample_rate, ipp): |
|
22 | def max_index(r, sample_rate, ipp): | |
23 |
|
23 | |||
24 | return int(sample_rate*ipp*1e6 * r / 60) + int(sample_rate*ipp*1e6 * 1.2 / 60) |
|
24 | return int(sample_rate*ipp*1e6 * r / 60) + int(sample_rate*ipp*1e6 * 1.2 / 60) | |
25 |
|
25 | |||
26 | def main(args): |
|
26 | def main(args): | |
27 |
|
27 | |||
28 | experiment = args.experiment |
|
28 | experiment = args.experiment | |
29 | fp = open(os.path.join(PATH, experiment, 'experiment.conf')) |
|
29 | fp = open(os.path.join(PATH, experiment, 'experiment.conf')) | |
30 | conf = json.loads(fp.read()) |
|
30 | conf = json.loads(fp.read()) | |
31 |
|
31 | |||
32 | ipp_km = conf['usrp_tx']['ipp'] |
|
32 | ipp_km = conf['usrp_tx']['ipp'] | |
33 | ipp = ipp_km * 2 /300000 |
|
33 | ipp = ipp_km * 2 /300000 | |
34 | sample_rate = conf['usrp_rx']['sample_rate'] |
|
34 | sample_rate = conf['usrp_rx']['sample_rate'] | |
35 | axis = ['0' if x=='elevation' else '1' for x in conf['pedestal']['axis']] # AZIMUTH 1 ELEVACION 0 |
|
35 | axis = ['0' if x=='elevation' else '1' for x in conf['pedestal']['axis']] # AZIMUTH 1 ELEVACION 0 | |
36 | speed_axis = conf['pedestal']['speed'] |
|
36 | speed_axis = conf['pedestal']['speed'] | |
37 | steps = conf['pedestal']['table'] |
|
37 | steps = conf['pedestal']['table'] | |
38 | time_offset = args.time_offset |
|
38 | time_offset = args.time_offset | |
39 | parameters = args.parameters |
|
39 | parameters = args.parameters | |
40 | start_date = experiment.split('@')[1].split('T')[0].replace('-', '/') |
|
40 | start_date = experiment.split('@')[1].split('T')[0].replace('-', '/') | |
41 | end_date = start_date |
|
41 | end_date = start_date | |
42 | if args.start_time: |
|
42 | if args.start_time: | |
43 | start_time = args.start_time |
|
43 | start_time = args.start_time | |
44 | else: |
|
44 | else: | |
45 | start_time = experiment.split('@')[1].split('T')[1].replace('-', ':') |
|
45 | start_time = experiment.split('@')[1].split('T')[1].replace('-', ':') | |
46 | end_time = '23:59:59' |
|
46 | end_time = '23:59:59' | |
47 | N = int(1/(speed_axis[0]*ipp)) # 1 GRADO DE RESOLUCION |
|
47 | N = int(1/(speed_axis[0]*ipp)) # 1 GRADO DE RESOLUCION | |
48 | path = os.path.join(PATH, experiment, 'rawdata') |
|
48 | path = os.path.join(PATH, experiment, 'rawdata') | |
49 | path_ped = os.path.join(PATH, experiment, 'position') |
|
49 | path_ped = os.path.join(PATH, experiment, 'position') | |
50 | path_plots = os.path.join(PATH, experiment, 'plotsC0N'+str(args.range)) |
|
50 | path_plots = os.path.join(PATH, experiment, 'plotsC0N'+str(args.range)) | |
51 | path_save = os.path.join(PATH, experiment, 'paramC0N'+str(args.range)) |
|
51 | path_save = os.path.join(PATH, experiment, 'paramC0N'+str(args.range)) | |
52 | RMIX = 1.62 |
|
52 | RMIX = 1.62 | |
53 | H0 = -1.68 |
|
53 | H0 = -1.68 | |
54 | MASK = 0.3 |
|
54 | MASK = 0.3 | |
55 |
|
55 | |||
56 | from schainpy.controller import Project |
|
56 | from schainpy.controller import Project | |
57 |
|
57 | |||
58 | project = Project() |
|
58 | project = Project() | |
59 | project.setup(id='1', name='Sophy', description='sophy proc') |
|
59 | project.setup(id='1', name='Sophy', description='sophy proc') | |
60 |
|
60 | |||
61 | reader = project.addReadUnit(datatype='DigitalRFReader', |
|
61 | reader = project.addReadUnit(datatype='DigitalRFReader', | |
62 | path=path, |
|
62 | path=path, | |
63 | startDate=start_date, |
|
63 | startDate=start_date, | |
64 | endDate=end_date, |
|
64 | endDate=end_date, | |
65 | startTime=start_time, |
|
65 | startTime=start_time, | |
66 | endTime=end_time, |
|
66 | endTime=end_time, | |
67 | delay=30, |
|
67 | delay=30, | |
68 | online=args.online, |
|
68 | online=args.online, | |
69 | walk=1, |
|
69 | walk=1, | |
70 | ippKm = ipp_km, |
|
70 | ippKm = ipp_km, | |
71 | getByBlock = 1, |
|
71 | getByBlock = 1, | |
72 | nProfileBlocks = N, |
|
72 | nProfileBlocks = N, | |
73 | ) |
|
73 | ) | |
74 |
|
74 | |||
75 | if not conf['usrp_tx']['enable_2']: # One Pulse |
|
75 | if not conf['usrp_tx']['enable_2']: # One Pulse | |
76 | voltage = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId()) |
|
76 | voltage = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId()) | |
77 |
|
77 | |||
78 | if conf['usrp_tx']['code_type_1'] != 'None': |
|
78 | if conf['usrp_tx']['code_type_1'] != 'None': | |
79 | codes = [ c.strip() for c in conf['usrp_tx']['code_1'].split(',')] |
|
79 | codes = [ c.strip() for c in conf['usrp_tx']['code_1'].split(',')] | |
80 | code = [] |
|
80 | code = [] | |
81 | for c in codes: |
|
81 | for c in codes: | |
82 | code.append([int(x) for x in c]) |
|
82 | code.append([int(x) for x in c]) | |
83 | op = voltage.addOperation(name='Decoder', optype='other') |
|
83 | op = voltage.addOperation(name='Decoder', optype='other') | |
84 | op.addParameter(name='code', value=code) |
|
84 | op.addParameter(name='code', value=code) | |
85 | op.addParameter(name='nCode', value=len(code), format='int') |
|
85 | op.addParameter(name='nCode', value=len(code), format='int') | |
86 | op.addParameter(name='nBaud', value=len(code[0]), format='int') |
|
86 | op.addParameter(name='nBaud', value=len(code[0]), format='int') | |
87 |
|
87 | |||
88 | op = voltage.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario |
|
88 | op = voltage.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario | |
89 | op.addParameter(name='n', value=len(code), format='int') |
|
89 | op.addParameter(name='n', value=len(code), format='int') | |
90 | ncode = len(code) |
|
90 | ncode = len(code) | |
91 | else: |
|
91 | else: | |
92 | ncode = 1 |
|
92 | ncode = 1 | |
93 | code = ['0'] |
|
93 | code = ['0'] | |
94 |
|
94 | |||
95 | op = voltage.addOperation(name='setH0') |
|
95 | op = voltage.addOperation(name='setH0') | |
96 | op.addParameter(name='h0', value=H0) |
|
96 | op.addParameter(name='h0', value=H0) | |
97 |
|
97 | |||
98 | if args.range > 0: |
|
98 | if args.range > 0: | |
99 | op = voltage.addOperation(name='selectHeights') |
|
99 | op = voltage.addOperation(name='selectHeights') | |
100 | op.addParameter(name='minIndex', value='0', format='int') |
|
100 | op.addParameter(name='minIndex', value='0', format='int') | |
101 | op.addParameter(name='maxIndex', value=max_index(args.range, sample_rate, ipp), format='int') |
|
101 | op.addParameter(name='maxIndex', value=max_index(args.range, sample_rate, ipp), format='int') | |
102 |
|
102 | |||
103 | op = voltage.addOperation(name='PulsePair_vRF', optype='other') |
|
103 | op = voltage.addOperation(name='PulsePair_vRF', optype='other') | |
104 | op.addParameter(name='n', value=int(N)/ncode, format='int') |
|
104 | op.addParameter(name='n', value=int(N)/ncode, format='int') | |
105 | #op.addParameter(name='removeDC', value=1, format='int') |
|
105 | #op.addParameter(name='removeDC', value=1, format='int') | |
106 |
|
106 | |||
107 |
|
107 | |||
108 | proc = project.addProcUnit(datatype='ParametersProc', inputId=voltage.getId()) |
|
108 | proc = project.addProcUnit(datatype='ParametersProc', inputId=voltage.getId()) | |
109 |
|
109 | |||
110 | opObj10 = proc.addOperation(name="WeatherRadar") |
|
110 | opObj10 = proc.addOperation(name="WeatherRadar") | |
111 | opObj10.addParameter(name='tauW',value=(1e-6/sample_rate)*len(code[0])) |
|
111 | opObj10.addParameter(name='tauW',value=(1e-6/sample_rate)*len(code[0])) | |
112 | opObj10.addParameter(name='Pt',value=((1e-6/sample_rate)*len(code[0])/ipp)*200) |
|
112 | opObj10.addParameter(name='Pt',value=((1e-6/sample_rate)*len(code[0])/ipp)*200) | |
113 |
|
113 | |||
114 | op = proc.addOperation(name='PedestalInformation') |
|
114 | op = proc.addOperation(name='PedestalInformation') | |
115 | op.addParameter(name='path', value=path_ped, format='str') |
|
115 | op.addParameter(name='path', value=path_ped, format='str') | |
116 | op.addParameter(name='interval', value='0.04') |
|
116 | op.addParameter(name='interval', value='0.04') | |
117 | op.addParameter(name='time_offset', value=time_offset) |
|
117 | op.addParameter(name='time_offset', value=time_offset) | |
118 | op.addParameter(name='mode', value='PPI') |
|
118 | op.addParameter(name='mode', value='PPI') | |
119 |
|
119 | |||
120 | for param in parameters: |
|
120 | for param in parameters: | |
121 | op = proc.addOperation(name='Block360') |
|
121 | op = proc.addOperation(name='Block360') | |
122 | op.addParameter(name='runNextOp', value=True) |
|
122 | op.addParameter(name='runNextOp', value=True) | |
123 |
|
123 | |||
124 | op= proc.addOperation(name='WeatherParamsPlot') |
|
124 | op= proc.addOperation(name='WeatherParamsPlot') | |
125 | if args.save: op.addParameter(name='save', value=path_plots, format='str') |
|
125 | if args.save: op.addParameter(name='save', value=path_plots, format='str') | |
126 | op.addParameter(name='save_period', value=-1) |
|
126 | op.addParameter(name='save_period', value=-1) | |
127 | op.addParameter(name='show', value=args.show) |
|
127 | op.addParameter(name='show', value=args.show) | |
128 | op.addParameter(name='channels', value='1,') |
|
128 | op.addParameter(name='channels', value='1,') | |
129 | op.addParameter(name='zmin', value=PARAM[param]['zmin']) |
|
129 | op.addParameter(name='zmin', value=PARAM[param]['zmin']) | |
130 | op.addParameter(name='zmax', value=PARAM[param]['zmax']) |
|
130 | op.addParameter(name='zmax', value=PARAM[param]['zmax']) | |
131 | op.addParameter(name='attr_data', value=param, format='str') |
|
131 | op.addParameter(name='attr_data', value=param, format='str') | |
132 | op.addParameter(name='labels', value=[PARAM[param]['label']]) |
|
132 | op.addParameter(name='labels', value=[PARAM[param]['label']]) | |
133 | op.addParameter(name='save_code', value=param) |
|
133 | op.addParameter(name='save_code', value=param) | |
134 | op.addParameter(name='cb_label', value=PARAM[param]['cb_label']) |
|
134 | op.addParameter(name='cb_label', value=PARAM[param]['cb_label']) | |
135 | op.addParameter(name='colormap', value=PARAM[param]['colormap']) |
|
135 | op.addParameter(name='colormap', value=PARAM[param]['colormap']) | |
136 | op.addParameter(name='bgcolor', value='black') |
|
136 | op.addParameter(name='bgcolor', value='black') | |
137 | if MASK: op.addParameter(name='mask', value=MASK, format='float') |
|
137 | if MASK: op.addParameter(name='mask', value=MASK, format='float') | |
138 | if args.server: |
|
138 | if args.server: | |
139 | op.addParameter(name='server', value='0.0.0.0:4444') |
|
139 | op.addParameter(name='server', value='0.0.0.0:4444') | |
140 | op.addParameter(name='exp_code', value='400') |
|
140 | op.addParameter(name='exp_code', value='400') | |
141 |
|
141 | |||
142 | desc = { |
|
142 | desc = { | |
143 | 'Data': { |
|
143 | 'Data': { | |
144 | param: PARAM[param]['wrname'], |
|
144 | param: PARAM[param]['wrname'], | |
145 | 'utctime': 'time' |
|
145 | 'utctime': 'time' | |
146 | }, |
|
146 | }, | |
147 | 'Metadata': { |
|
147 | 'Metadata': { | |
148 | 'heightList': 'range', |
|
148 | 'heightList': 'range', | |
149 | 'data_azi': 'azimuth', |
|
149 | 'data_azi': 'azimuth', | |
150 | 'data_ele': 'elevation', |
|
150 | 'data_ele': 'elevation', | |
151 | 'mode_op': 'scan_type', |
|
151 | 'mode_op': 'scan_type', | |
152 | 'h0': 'range_correction', |
|
152 | 'h0': 'range_correction', | |
153 | } |
|
153 | } | |
154 | } |
|
154 | } | |
155 |
|
155 | |||
156 | if args.save: |
|
156 | if args.save: | |
157 | opObj10 = proc.addOperation(name='HDFWriter') |
|
157 | opObj10 = proc.addOperation(name='HDFWriter') | |
158 | writer.addParameter(name='path', value=path_save, format='str') |
|
158 | writer.addParameter(name='path', value=path_save, format='str') | |
159 | writer.addParameter(name='Reset', value=True) |
|
159 | writer.addParameter(name='Reset', value=True) | |
160 | writer.addParameter(name='setType', value='weather') |
|
160 | writer.addParameter(name='setType', value='weather') | |
161 | writer.addParameter(name='description', value=json.dumps(desc)) |
|
161 | writer.addParameter(name='description', value=json.dumps(desc)) | |
162 | writer.addParameter(name='blocksPerFile', value='1',format='int') |
|
162 | writer.addParameter(name='blocksPerFile', value='1',format='int') | |
163 | writer.addParameter(name='metadataList', value='heightList,data_azi,data_ele,mode_op,latitude,longitude,altitude,heading,radar_name,institution,contact,h0,range_unit') |
|
163 | writer.addParameter(name='metadataList', value='heightList,data_azi,data_ele,mode_op,latitude,longitude,altitude,heading,radar_name,institution,contact,h0,range_unit') | |
164 | writer.addParameter(name='dataList', value='{},utctime'.format(param)) |
|
164 | writer.addParameter(name='dataList', value='{},utctime'.format(param)) | |
165 | writer.addParameter(name='mask', value=MASK, format='float') |
|
165 | writer.addParameter(name='mask', value=MASK, format='float') | |
166 | # meta |
|
166 | # meta | |
167 | writer.addParameter(name='latitude', value='-12.040436') |
|
167 | writer.addParameter(name='latitude', value='-12.040436') | |
168 | writer.addParameter(name='longitude', value='-75.295893') |
|
168 | writer.addParameter(name='longitude', value='-75.295893') | |
169 | writer.addParameter(name='altitude', value='3379.2147') |
|
169 | writer.addParameter(name='altitude', value='3379.2147') | |
170 | writer.addParameter(name='heading', value='0') |
|
170 | writer.addParameter(name='heading', value='0') | |
171 | writer.addParameter(name='radar_name', value='SOPHy') |
|
171 | writer.addParameter(name='radar_name', value='SOPHy') | |
172 | writer.addParameter(name='institution', value='IGP') |
|
172 | writer.addParameter(name='institution', value='IGP') | |
173 | writer.addParameter(name='contact', value='dscipion@igp.gob.pe') |
|
173 | writer.addParameter(name='contact', value='dscipion@igp.gob.pe') | |
174 | writer.addParameter(name='created_by', value='Signal Chain (https://pypi.org/project/schainpy/)') |
|
174 | writer.addParameter(name='created_by', value='Signal Chain (https://pypi.org/project/schainpy/)') | |
175 | writer.addParameter(name='range_unit', value='km') |
|
175 | writer.addParameter(name='range_unit', value='km') | |
176 |
|
176 | |||
177 | else: #Two pulses |
|
177 | else: #Two pulses | |
178 |
|
178 | |||
179 | voltage1 = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId()) |
|
179 | voltage1 = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId()) | |
180 |
|
180 | |||
181 | op = voltage1.addOperation(name='ProfileSelector') |
|
181 | op = voltage1.addOperation(name='ProfileSelector') | |
182 | op.addParameter(name='profileRangeList', value='0,{}'.format(conf['usrp_tx']['repetitions_1']-1)) |
|
182 | op.addParameter(name='profileRangeList', value='0,{}'.format(conf['usrp_tx']['repetitions_1']-1)) | |
183 |
|
183 | |||
184 | if conf['usrp_tx']['code_type_1'] != 'None': |
|
184 | if conf['usrp_tx']['code_type_1'] != 'None': | |
185 | codes = [ c.strip() for c in conf['usrp_tx']['code_1'].split(',')] |
|
185 | codes = [ c.strip() for c in conf['usrp_tx']['code_1'].split(',')] | |
186 | code = [] |
|
186 | code = [] | |
187 | for c in codes: |
|
187 | for c in codes: | |
188 | code.append([int(x) for x in c]) |
|
188 | code.append([int(x) for x in c]) | |
189 | op = voltage1.addOperation(name='Decoder', optype='other') |
|
189 | op = voltage1.addOperation(name='Decoder', optype='other') | |
190 | op.addParameter(name='code', value=code) |
|
190 | op.addParameter(name='code', value=code) | |
191 | op.addParameter(name='nCode', value=len(code), format='int') |
|
191 | op.addParameter(name='nCode', value=len(code), format='int') | |
192 | op.addParameter(name='nBaud', value=len(code[0]), format='int') |
|
192 | op.addParameter(name='nBaud', value=len(code[0]), format='int') | |
193 | else: |
|
193 | else: | |
194 | code = ['0'] |
|
194 | code = ['0'] | |
195 |
|
195 | |||
196 | op = voltage1.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario |
|
196 | op = voltage1.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario | |
197 | op.addParameter(name='n', value=2, format='int') |
|
197 | op.addParameter(name='n', value=2, format='int') | |
198 |
|
198 | |||
199 | if args.range > 0: |
|
199 | if args.range > 0: | |
200 | op = voltage1.addOperation(name='selectHeights') |
|
200 | op = voltage1.addOperation(name='selectHeights') | |
201 | op.addParameter(name='minIndex', value='0', format='int') |
|
201 | op.addParameter(name='minIndex', value='0', format='int') | |
202 | op.addParameter(name='maxIndex', value=max_index(RMIX, sample_rate, ipp), format='int') |
|
202 | op.addParameter(name='maxIndex', value=max_index(RMIX, sample_rate, ipp), format='int') | |
203 |
|
203 | |||
204 | op = voltage1.addOperation(name='setH0') |
|
204 | op = voltage1.addOperation(name='setH0') | |
205 | op.addParameter(name='h0', value=H0, format='float') |
|
205 | op.addParameter(name='h0', value=H0, format='float') | |
206 |
|
206 | |||
207 | op = voltage1.addOperation(name='PulsePair_vRF', optype='other') |
|
207 | op = voltage1.addOperation(name='PulsePair_vRF', optype='other') | |
208 | op.addParameter(name='n', value=int(conf['usrp_tx']['repetitions_1'])/2, format='int') |
|
208 | op.addParameter(name='n', value=int(conf['usrp_tx']['repetitions_1'])/2, format='int') | |
209 | #op.addParameter(name='removeDC', value=1, format='int') |
|
209 | #op.addParameter(name='removeDC', value=1, format='int') | |
210 |
|
210 | |||
211 |
|
211 | |||
212 | proc1 = project.addProcUnit(datatype='ParametersProc', inputId=voltage1.getId()) |
|
212 | proc1 = project.addProcUnit(datatype='ParametersProc', inputId=voltage1.getId()) | |
213 | proc1.addParameter(name='runNextUnit', value=True) |
|
213 | proc1.addParameter(name='runNextUnit', value=True) | |
214 |
|
214 | |||
215 | opObj10 = proc1.addOperation(name="WeatherRadar") |
|
215 | opObj10 = proc1.addOperation(name="WeatherRadar") | |
216 | opObj10.addParameter(name='tauW',value=(1e-6/sample_rate)*len(code[0])) |
|
216 | opObj10.addParameter(name='tauW',value=(1e-6/sample_rate)*len(code[0])) | |
217 |
opObj10.addParameter(name='Pt',value= |
|
217 | opObj10.addParameter(name='Pt',value=200) | |
218 |
|
218 | |||
219 | op = proc1.addOperation(name='PedestalInformation') |
|
219 | op = proc1.addOperation(name='PedestalInformation') | |
220 | op.addParameter(name='path', value=path_ped, format='str') |
|
220 | op.addParameter(name='path', value=path_ped, format='str') | |
221 | op.addParameter(name='interval', value='0.04') |
|
221 | op.addParameter(name='interval', value='0.04') | |
222 | op.addParameter(name='time_offset', value=time_offset) |
|
222 | op.addParameter(name='time_offset', value=time_offset) | |
223 | op.addParameter(name='mode', value='PPI') |
|
223 | op.addParameter(name='mode', value='PPI') | |
224 |
|
224 | |||
225 | op = proc1.addOperation(name='Block360') |
|
225 | op = proc1.addOperation(name='Block360') | |
226 | op.addParameter(name='attr_data', value='data_param') |
|
226 | op.addParameter(name='attr_data', value='data_param') | |
227 | op.addParameter(name='runNextOp', value=True) |
|
227 | op.addParameter(name='runNextOp', value=True) | |
228 |
|
228 | |||
229 |
|
229 | |||
230 | voltage2 = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId()) |
|
230 | voltage2 = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId()) | |
231 |
|
231 | |||
232 | op = voltage2.addOperation(name='ProfileSelector') |
|
232 | op = voltage2.addOperation(name='ProfileSelector') | |
233 | op.addParameter(name='profileRangeList', value='{},{}'.format(conf['usrp_tx']['repetitions_1'], conf['usrp_tx']['repetitions_1']+conf['usrp_tx']['repetitions_2']-1)) |
|
233 | op.addParameter(name='profileRangeList', value='{},{}'.format(conf['usrp_tx']['repetitions_1'], conf['usrp_tx']['repetitions_1']+conf['usrp_tx']['repetitions_2']-1)) | |
234 |
|
234 | |||
235 | if conf['usrp_tx']['code_type_2']: |
|
235 | if conf['usrp_tx']['code_type_2']: | |
236 | codes = [ c.strip() for c in conf['usrp_tx']['code_2'].split(',')] |
|
236 | codes = [ c.strip() for c in conf['usrp_tx']['code_2'].split(',')] | |
237 | code = [] |
|
237 | code = [] | |
238 | for c in codes: |
|
238 | for c in codes: | |
239 | code.append([int(x) for x in c]) |
|
239 | code.append([int(x) for x in c]) | |
240 | op = voltage2.addOperation(name='Decoder', optype='other') |
|
240 | op = voltage2.addOperation(name='Decoder', optype='other') | |
241 | op.addParameter(name='code', value=code) |
|
241 | op.addParameter(name='code', value=code) | |
242 | op.addParameter(name='nCode', value=len(code), format='int') |
|
242 | op.addParameter(name='nCode', value=len(code), format='int') | |
243 | op.addParameter(name='nBaud', value=len(code[0]), format='int') |
|
243 | op.addParameter(name='nBaud', value=len(code[0]), format='int') | |
244 |
|
244 | |||
245 | op = voltage2.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario |
|
245 | op = voltage2.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario | |
246 | op.addParameter(name='n', value=len(code), format='int') |
|
246 | op.addParameter(name='n', value=len(code), format='int') | |
247 | ncode = len(code) |
|
247 | ncode = len(code) | |
248 | else: |
|
248 | else: | |
249 | ncode = 1 |
|
249 | ncode = 1 | |
250 |
|
250 | |||
251 | if args.range > 0: |
|
251 | if args.range > 0: | |
252 | op = voltage2.addOperation(name='selectHeights') |
|
252 | op = voltage2.addOperation(name='selectHeights') | |
253 | op.addParameter(name='minIndex', value=max_index(RMIX, sample_rate, ipp), format='int') |
|
253 | op.addParameter(name='minIndex', value=max_index(RMIX, sample_rate, ipp), format='int') | |
254 | op.addParameter(name='maxIndex', value=max_index(args.range, sample_rate, ipp), format='int') |
|
254 | op.addParameter(name='maxIndex', value=max_index(args.range, sample_rate, ipp), format='int') | |
255 |
|
255 | |||
256 | op = voltage2.addOperation(name='setH0') |
|
256 | op = voltage2.addOperation(name='setH0') | |
257 | op.addParameter(name='h0', value=H0, format='float') |
|
257 | op.addParameter(name='h0', value=H0, format='float') | |
258 |
|
258 | |||
259 | op = voltage2.addOperation(name='PulsePair_vRF', optype='other') |
|
259 | op = voltage2.addOperation(name='PulsePair_vRF', optype='other') | |
260 | op.addParameter(name='n', value=int(conf['usrp_tx']['repetitions_2'])/ncode, format='int') |
|
260 | op.addParameter(name='n', value=int(conf['usrp_tx']['repetitions_2'])/ncode, format='int') | |
261 | #op.addParameter(name='removeDC', value=1, format='int') |
|
261 | #op.addParameter(name='removeDC', value=1, format='int') | |
262 |
|
262 | |||
263 |
|
263 | |||
264 | proc2 = project.addProcUnit(datatype='ParametersProc', inputId=voltage2.getId()) |
|
264 | proc2 = project.addProcUnit(datatype='ParametersProc', inputId=voltage2.getId()) | |
265 | proc2.addParameter(name='runNextUnit', value=True) |
|
265 | proc2.addParameter(name='runNextUnit', value=True) | |
266 |
|
266 | |||
267 | opObj10 = proc2.addOperation(name="WeatherRadar") |
|
267 | opObj10 = proc2.addOperation(name="WeatherRadar") | |
268 | opObj10.addParameter(name='tauW',value=(1e-6/sample_rate)*len(code[0])) |
|
268 | opObj10.addParameter(name='tauW',value=(1e-6/sample_rate)*len(code[0])) | |
269 |
opObj10.addParameter(name='Pt',value= |
|
269 | opObj10.addParameter(name='Pt',value=200) | |
270 |
|
270 | |||
271 | op = proc2.addOperation(name='PedestalInformation') |
|
271 | op = proc2.addOperation(name='PedestalInformation') | |
272 | op.addParameter(name='path', value=path_ped, format='str') |
|
272 | op.addParameter(name='path', value=path_ped, format='str') | |
273 | op.addParameter(name='interval', value='0.04') |
|
273 | op.addParameter(name='interval', value='0.04') | |
274 | op.addParameter(name='time_offset', value=time_offset) |
|
274 | op.addParameter(name='time_offset', value=time_offset) | |
275 | op.addParameter(name='mode', value='PPI') |
|
275 | op.addParameter(name='mode', value='PPI') | |
276 |
|
276 | |||
277 | op = proc2.addOperation(name='Block360') |
|
277 | op = proc2.addOperation(name='Block360') | |
278 | op.addParameter(name='attr_data', value='data_param') |
|
278 | op.addParameter(name='attr_data', value='data_param') | |
279 | op.addParameter(name='runNextOp', value=True) |
|
279 | op.addParameter(name='runNextOp', value=True) | |
280 |
|
280 | |||
281 | merge = project.addProcUnit(datatype='MergeProc', inputId=[proc1.getId(), proc2.getId()]) |
|
281 | merge = project.addProcUnit(datatype='MergeProc', inputId=[proc1.getId(), proc2.getId()]) | |
282 | merge.addParameter(name='attr_data', value='data_param') |
|
282 | merge.addParameter(name='attr_data', value='data_param') | |
283 | merge.addParameter(name='mode', value='7') #RM |
|
283 | merge.addParameter(name='mode', value='7') #RM | |
284 |
|
284 | |||
285 |
|
285 | |||
286 | for param in parameters: |
|
286 | for param in parameters: | |
287 |
|
287 | |||
288 | if args.plot: |
|
288 | if args.plot: | |
289 | op= merge.addOperation(name='WeatherParamsPlot') |
|
289 | op= merge.addOperation(name='WeatherParamsPlot') | |
290 | if args.save: |
|
290 | if args.save: | |
291 | op.addParameter(name='save', value=path_plots, format='str') |
|
291 | op.addParameter(name='save', value=path_plots, format='str') | |
292 | op.addParameter(name='save_period', value=-1) |
|
292 | op.addParameter(name='save_period', value=-1) | |
293 | op.addParameter(name='show', value=args.show) |
|
293 | op.addParameter(name='show', value=args.show) | |
294 | op.addParameter(name='channels', value='0,') |
|
294 | op.addParameter(name='channels', value='0,') | |
295 | op.addParameter(name='zmin', value=PARAM[param]['zmin'], format='int') |
|
295 | op.addParameter(name='zmin', value=PARAM[param]['zmin'], format='int') | |
296 | op.addParameter(name='zmax', value=PARAM[param]['zmax'], format='int') |
|
296 | op.addParameter(name='zmax', value=PARAM[param]['zmax'], format='int') | |
297 | op.addParameter(name='attr_data', value=param, format='str') |
|
297 | op.addParameter(name='attr_data', value=param, format='str') | |
298 | op.addParameter(name='labels', value=[PARAM[param]['label']]) |
|
298 | op.addParameter(name='labels', value=[PARAM[param]['label']]) | |
299 | op.addParameter(name='save_code', value=param) |
|
299 | op.addParameter(name='save_code', value=param) | |
300 | op.addParameter(name='cb_label', value=PARAM[param]['cb_label']) |
|
300 | op.addParameter(name='cb_label', value=PARAM[param]['cb_label']) | |
301 | op.addParameter(name='colormap', value=PARAM[param]['colormap']) |
|
301 | op.addParameter(name='colormap', value=PARAM[param]['colormap']) | |
302 | op.addParameter(name='bgcolor', value='black') |
|
302 | op.addParameter(name='bgcolor', value='black') | |
303 | if MASK: op.addParameter(name='mask', value=MASK, format='float') |
|
303 | if MASK: op.addParameter(name='mask', value=MASK, format='float') | |
304 | if args.server: |
|
304 | if args.server: | |
305 | op.addParameter(name='server', value='0.0.0.0:4444') |
|
305 | op.addParameter(name='server', value='0.0.0.0:4444') | |
306 | op.addParameter(name='exp_code', value='400') |
|
306 | op.addParameter(name='exp_code', value='400') | |
307 |
|
307 | |||
308 | desc = { |
|
308 | desc = { | |
309 | 'Data': { |
|
309 | 'Data': { | |
310 | 'data_param': {PARAM[param]['wrname']: ['H', 'V']}, |
|
310 | 'data_param': {PARAM[param]['wrname']: ['H', 'V']}, | |
311 | 'utctime': 'time' |
|
311 | 'utctime': 'time' | |
312 | }, |
|
312 | }, | |
313 | 'Metadata': { |
|
313 | 'Metadata': { | |
314 | 'heightList': 'range', |
|
314 | 'heightList': 'range', | |
315 | 'data_azi': 'azimuth', |
|
315 | 'data_azi': 'azimuth', | |
316 | 'data_ele': 'elevation', |
|
316 | 'data_ele': 'elevation', | |
317 | 'mode_op': 'scan_type', |
|
317 | 'mode_op': 'scan_type', | |
318 | 'h0': 'range_correction', |
|
318 | 'h0': 'range_correction', | |
319 | } |
|
319 | } | |
320 | } |
|
320 | } | |
321 |
|
321 | |||
322 | if args.save: |
|
322 | if args.save: | |
323 | writer = merge.addOperation(name='HDFWriter') |
|
323 | writer = merge.addOperation(name='HDFWriter') | |
324 | writer.addParameter(name='path', value=path_save, format='str') |
|
324 | writer.addParameter(name='path', value=path_save, format='str') | |
325 | writer.addParameter(name='Reset', value=True) |
|
325 | writer.addParameter(name='Reset', value=True) | |
326 | writer.addParameter(name='setType', value='weather') |
|
326 | writer.addParameter(name='setType', value='weather') | |
327 | writer.addParameter(name='description', value=json.dumps(desc)) |
|
327 | writer.addParameter(name='description', value=json.dumps(desc)) | |
328 | writer.addParameter(name='blocksPerFile', value='1',format='int') |
|
328 | writer.addParameter(name='blocksPerFile', value='1',format='int') | |
329 | writer.addParameter(name='metadataList', value='heightList,data_azi,data_ele,mode_op,latitude,longitude,altitude,heading,radar_name,institution,contact,h0,range_unit') |
|
329 | writer.addParameter(name='metadataList', value='heightList,data_azi,data_ele,mode_op,latitude,longitude,altitude,heading,radar_name,institution,contact,h0,range_unit') | |
330 | writer.addParameter(name='dataList', value='data_param,utctime') |
|
330 | writer.addParameter(name='dataList', value='data_param,utctime') | |
331 | writer.addParameter(name='weather_var', value=param) |
|
331 | writer.addParameter(name='weather_var', value=param) | |
332 | writer.addParameter(name='mask', value=MASK, format='float') |
|
332 | writer.addParameter(name='mask', value=MASK, format='float') | |
333 | # meta |
|
333 | # meta | |
334 | writer.addParameter(name='latitude', value='-12.040436') |
|
334 | writer.addParameter(name='latitude', value='-12.040436') | |
335 | writer.addParameter(name='longitude', value='-75.295893') |
|
335 | writer.addParameter(name='longitude', value='-75.295893') | |
336 | writer.addParameter(name='altitude', value='3379.2147') |
|
336 | writer.addParameter(name='altitude', value='3379.2147') | |
337 | writer.addParameter(name='heading', value='0') |
|
337 | writer.addParameter(name='heading', value='0') | |
338 | writer.addParameter(name='radar_name', value='SOPHy') |
|
338 | writer.addParameter(name='radar_name', value='SOPHy') | |
339 | writer.addParameter(name='institution', value='IGP') |
|
339 | writer.addParameter(name='institution', value='IGP') | |
340 | writer.addParameter(name='contact', value='dscipion@igp.gob.pe') |
|
340 | writer.addParameter(name='contact', value='dscipion@igp.gob.pe') | |
341 | writer.addParameter(name='created_by', value='Signal Chain (https://pypi.org/project/schainpy/)') |
|
341 | writer.addParameter(name='created_by', value='Signal Chain (https://pypi.org/project/schainpy/)') | |
342 | writer.addParameter(name='range_unit', value='km') |
|
342 | writer.addParameter(name='range_unit', value='km') | |
343 |
|
343 | |||
344 | project.start() |
|
344 | project.start() | |
345 |
|
345 | |||
346 | if __name__ == '__main__': |
|
346 | if __name__ == '__main__': | |
347 |
|
347 | |||
348 | parser = argparse.ArgumentParser(description='Script to process SOPHy data.') |
|
348 | parser = argparse.ArgumentParser(description='Script to process SOPHy data.') | |
349 | parser.add_argument('experiment', |
|
349 | parser.add_argument('experiment', | |
350 | help='Experiment name') |
|
350 | help='Experiment name') | |
351 | parser.add_argument('--parameters', nargs='*', default=['S'], |
|
351 | parser.add_argument('--parameters', nargs='*', default=['S'], | |
352 | help='Variables to process: P, Z, V') |
|
352 | help='Variables to process: P, Z, V') | |
353 | parser.add_argument('--time_offset', default=0, |
|
353 | parser.add_argument('--time_offset', default=0, | |
354 | help='Fix time offset') |
|
354 | help='Fix time offset') | |
355 | parser.add_argument('--range', default=0, type=float, |
|
355 | parser.add_argument('--range', default=0, type=float, | |
356 | help='Max range to plot') |
|
356 | help='Max range to plot') | |
357 | parser.add_argument('--save', action='store_true', |
|
357 | parser.add_argument('--save', action='store_true', | |
358 | help='Create output files') |
|
358 | help='Create output files') | |
359 | parser.add_argument('--plot', action='store_true', |
|
359 | parser.add_argument('--plot', action='store_true', | |
360 | help='Create plot files') |
|
360 | help='Create plot files') | |
361 | parser.add_argument('--show', action='store_true', |
|
361 | parser.add_argument('--show', action='store_true', | |
362 | help='Show matplotlib plot.') |
|
362 | help='Show matplotlib plot.') | |
363 | parser.add_argument('--online', action='store_true', |
|
363 | parser.add_argument('--online', action='store_true', | |
364 | help='Set online mode.') |
|
364 | help='Set online mode.') | |
365 | parser.add_argument('--server', action='store_true', |
|
365 | parser.add_argument('--server', action='store_true', | |
366 | help='Send to realtime') |
|
366 | help='Send to realtime') | |
367 | parser.add_argument('--start_time', default='', |
|
367 | parser.add_argument('--start_time', default='', | |
368 | help='Set start time.') |
|
368 | help='Set start time.') | |
369 |
|
369 | |||
370 |
|
370 | |||
371 | args = parser.parse_args() |
|
371 | args = parser.parse_args() | |
372 |
|
372 | |||
373 | main(args) |
|
373 | main(args) | |
374 |
|
374 | |||
375 | # python sophy_proc.py HYO_PM@2022-06-09T15-05-12 --parameters V --plot --save --show --range 36S |
|
375 | # python sophy_proc.py HYO_PM@2022-06-09T15-05-12 --parameters V --plot --save --show --range 36S |
General Comments 0
You need to be logged in to leave comments.
Login now