The requested changes are too big and content was truncated. Show full diff
@@ -1,725 +1,736 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import warnings |
|
4 | 4 | import numpy |
|
5 | 5 | from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter |
|
6 | 6 | from matplotlib.patches import Circle |
|
7 | 7 | import cartopy.crs as ccrs |
|
8 | 8 | from cartopy.feature import ShapelyFeature |
|
9 | 9 | import cartopy.io.shapereader as shpreader |
|
10 | 10 | |
|
11 | 11 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
12 | 12 | from schainpy.model.graphics.jroplot_spectra import SpectraPlot, RTIPlot, CoherencePlot, SpectraCutPlot |
|
13 | 13 | from schainpy.utils import log |
|
14 | 14 | from schainpy.model.graphics.plotting_codes import cb_tables |
|
15 | 15 | |
|
16 | 16 | |
|
17 | 17 | EARTH_RADIUS = 6.3710e3 |
|
18 | 18 | |
|
19 | 19 | |
|
20 | 20 | def antenna_to_cartesian(ranges, azimuths, elevations): |
|
21 | 21 | """ |
|
22 | 22 | Return Cartesian coordinates from antenna coordinates. |
|
23 | 23 | |
|
24 | 24 | Parameters |
|
25 | 25 | ---------- |
|
26 | 26 | ranges : array |
|
27 | 27 | Distances to the center of the radar gates (bins) in kilometers. |
|
28 | 28 | azimuths : array |
|
29 | 29 | Azimuth angle of the radar in degrees. |
|
30 | 30 | elevations : array |
|
31 | 31 | Elevation angle of the radar in degrees. |
|
32 | 32 | |
|
33 | 33 | Returns |
|
34 | 34 | ------- |
|
35 | 35 | x, y, z : array |
|
36 | 36 | Cartesian coordinates in meters from the radar. |
|
37 | 37 | |
|
38 | 38 | Notes |
|
39 | 39 | ----- |
|
40 | 40 | The calculation for Cartesian coordinate is adapted from equations |
|
41 | 41 | 2.28(b) and 2.28(c) of Doviak and Zrnic [1]_ assuming a |
|
42 | 42 | standard atmosphere (4/3 Earth's radius model). |
|
43 | 43 | |
|
44 | 44 | .. math:: |
|
45 | 45 | |
|
46 | 46 | z = \\sqrt{r^2+R^2+2*r*R*sin(\\theta_e)} - R |
|
47 | 47 | |
|
48 | 48 | s = R * arcsin(\\frac{r*cos(\\theta_e)}{R+z}) |
|
49 | 49 | |
|
50 | 50 | x = s * sin(\\theta_a) |
|
51 | 51 | |
|
52 | 52 | y = s * cos(\\theta_a) |
|
53 | 53 | |
|
54 | 54 | Where r is the distance from the radar to the center of the gate, |
|
55 | 55 | :math:`\\theta_a` is the azimuth angle, :math:`\\theta_e` is the |
|
56 | 56 | elevation angle, s is the arc length, and R is the effective radius |
|
57 | 57 | of the earth, taken to be 4/3 the mean radius of earth (6371 km). |
|
58 | 58 | |
|
59 | 59 | References |
|
60 | 60 | ---------- |
|
61 | 61 | .. [1] Doviak and Zrnic, Doppler Radar and Weather Observations, Second |
|
62 | 62 | Edition, 1993, p. 21. |
|
63 | 63 | |
|
64 | 64 | """ |
|
65 | 65 | theta_e = numpy.deg2rad(elevations) # elevation angle in radians. |
|
66 | 66 | theta_a = numpy.deg2rad(azimuths) # azimuth angle in radians. |
|
67 | 67 | R = 6371.0 * 1000.0 * 4.0 / 3.0 # effective radius of earth in meters. |
|
68 | 68 | r = ranges * 1000.0 # distances to gates in meters. |
|
69 | 69 | |
|
70 | 70 | z = (r ** 2 + R ** 2 + 2.0 * r * R * numpy.sin(theta_e)) ** 0.5 - R |
|
71 | 71 | s = R * numpy.arcsin(r * numpy.cos(theta_e) / (R + z)) # arc length in m. |
|
72 | 72 | x = s * numpy.sin(theta_a) |
|
73 | 73 | y = s * numpy.cos(theta_a) |
|
74 | 74 | return x, y, z |
|
75 | 75 | |
|
76 | 76 | def cartesian_to_geographic_aeqd(x, y, lon_0, lat_0, R=EARTH_RADIUS): |
|
77 | 77 | """ |
|
78 | 78 | Azimuthal equidistant Cartesian to geographic coordinate transform. |
|
79 | 79 | |
|
80 | 80 | Transform a set of Cartesian/Cartographic coordinates (x, y) to |
|
81 | 81 | geographic coordinate system (lat, lon) using a azimuthal equidistant |
|
82 | 82 | map projection [1]_. |
|
83 | 83 | |
|
84 | 84 | .. math:: |
|
85 | 85 | |
|
86 | 86 | lat = \\arcsin(\\cos(c) * \\sin(lat_0) + |
|
87 | 87 | (y * \\sin(c) * \\cos(lat_0) / \\rho)) |
|
88 | 88 | |
|
89 | 89 | lon = lon_0 + \\arctan2( |
|
90 | 90 | x * \\sin(c), |
|
91 | 91 | \\rho * \\cos(lat_0) * \\cos(c) - y * \\sin(lat_0) * \\sin(c)) |
|
92 | 92 | |
|
93 | 93 | \\rho = \\sqrt(x^2 + y^2) |
|
94 | 94 | |
|
95 | 95 | c = \\rho / R |
|
96 | 96 | |
|
97 | 97 | Where x, y are the Cartesian position from the center of projection; |
|
98 | 98 | lat, lon the corresponding latitude and longitude; lat_0, lon_0 are the |
|
99 | 99 | latitude and longitude of the center of the projection; R is the radius of |
|
100 | 100 | the earth (defaults to ~6371 km). lon is adjusted to be between -180 and |
|
101 | 101 | 180. |
|
102 | 102 | |
|
103 | 103 | Parameters |
|
104 | 104 | ---------- |
|
105 | 105 | x, y : array-like |
|
106 | 106 | Cartesian coordinates in the same units as R, typically meters. |
|
107 | 107 | lon_0, lat_0 : float |
|
108 | 108 | Longitude and latitude, in degrees, of the center of the projection. |
|
109 | 109 | R : float, optional |
|
110 | 110 | Earth radius in the same units as x and y. The default value is in |
|
111 | 111 | units of meters. |
|
112 | 112 | |
|
113 | 113 | Returns |
|
114 | 114 | ------- |
|
115 | 115 | lon, lat : array |
|
116 | 116 | Longitude and latitude of Cartesian coordinates in degrees. |
|
117 | 117 | |
|
118 | 118 | References |
|
119 | 119 | ---------- |
|
120 | 120 | .. [1] Snyder, J. P. Map Projections--A Working Manual. U. S. Geological |
|
121 | 121 | Survey Professional Paper 1395, 1987, pp. 191-202. |
|
122 | 122 | |
|
123 | 123 | """ |
|
124 | 124 | x = numpy.atleast_1d(numpy.asarray(x)) |
|
125 | 125 | y = numpy.atleast_1d(numpy.asarray(y)) |
|
126 | 126 | |
|
127 | 127 | lat_0_rad = numpy.deg2rad(lat_0) |
|
128 | 128 | lon_0_rad = numpy.deg2rad(lon_0) |
|
129 | 129 | |
|
130 | 130 | rho = numpy.sqrt(x*x + y*y) |
|
131 | 131 | c = rho / R |
|
132 | 132 | |
|
133 | 133 | with warnings.catch_warnings(): |
|
134 | 134 | # division by zero may occur here but is properly addressed below so |
|
135 | 135 | # the warnings can be ignored |
|
136 | 136 | warnings.simplefilter("ignore", RuntimeWarning) |
|
137 | 137 | lat_rad = numpy.arcsin(numpy.cos(c) * numpy.sin(lat_0_rad) + |
|
138 | 138 | y * numpy.sin(c) * numpy.cos(lat_0_rad) / rho) |
|
139 | 139 | lat_deg = numpy.rad2deg(lat_rad) |
|
140 | 140 | # fix cases where the distance from the center of the projection is zero |
|
141 | 141 | lat_deg[rho == 0] = lat_0 |
|
142 | 142 | |
|
143 | 143 | x1 = x * numpy.sin(c) |
|
144 | 144 | x2 = rho*numpy.cos(lat_0_rad)*numpy.cos(c) - y*numpy.sin(lat_0_rad)*numpy.sin(c) |
|
145 | 145 | lon_rad = lon_0_rad + numpy.arctan2(x1, x2) |
|
146 | 146 | lon_deg = numpy.rad2deg(lon_rad) |
|
147 | 147 | # Longitudes should be from -180 to 180 degrees |
|
148 | 148 | lon_deg[lon_deg > 180] -= 360. |
|
149 | 149 | lon_deg[lon_deg < -180] += 360. |
|
150 | 150 | |
|
151 | 151 | return lon_deg, lat_deg |
|
152 | 152 | |
|
153 | 153 | def antenna_to_geographic(ranges, azimuths, elevations, site): |
|
154 | 154 | |
|
155 | 155 | x, y, z = antenna_to_cartesian(numpy.array(ranges), numpy.array(azimuths), numpy.array(elevations)) |
|
156 | 156 | lon, lat = cartesian_to_geographic_aeqd(x, y, site[0], site[1], R=6370997.) |
|
157 | 157 | |
|
158 | 158 | return lon, lat |
|
159 | 159 | |
|
160 | 160 | def ll2xy(lat1, lon1, lat2, lon2): |
|
161 | 161 | |
|
162 | 162 | p = 0.017453292519943295 |
|
163 | 163 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
164 | 164 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
165 | 165 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
166 | 166 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
167 | 167 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
168 | 168 | theta = -theta + numpy.pi/2 |
|
169 | 169 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
170 | 170 | |
|
171 | 171 | |
|
172 | 172 | def km2deg(km): |
|
173 | 173 | ''' |
|
174 | 174 | Convert distance in km to degrees |
|
175 | 175 | ''' |
|
176 | 176 | |
|
177 | 177 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
178 | 178 | |
|
179 | 179 | |
|
180 | 180 | |
|
181 | 181 | class SpectralMomentsPlot(SpectraPlot): |
|
182 | 182 | ''' |
|
183 | 183 | Plot for Spectral Moments |
|
184 | 184 | ''' |
|
185 | 185 | CODE = 'spc_moments' |
|
186 | 186 | # colormap = 'jet' |
|
187 | 187 | # plot_type = 'pcolor' |
|
188 | 188 | |
|
189 | 189 | class DobleGaussianPlot(SpectraPlot): |
|
190 | 190 | ''' |
|
191 | 191 | Plot for Double Gaussian Plot |
|
192 | 192 | ''' |
|
193 | 193 | CODE = 'gaussian_fit' |
|
194 | 194 | # colormap = 'jet' |
|
195 | 195 | # plot_type = 'pcolor' |
|
196 | 196 | |
|
197 | 197 | class DoubleGaussianSpectraCutPlot(SpectraCutPlot): |
|
198 | 198 | ''' |
|
199 | 199 | Plot SpectraCut with Double Gaussian Fit |
|
200 | 200 | ''' |
|
201 | 201 | CODE = 'cut_gaussian_fit' |
|
202 | 202 | |
|
203 | 203 | class SnrPlot(RTIPlot): |
|
204 | 204 | ''' |
|
205 | 205 | Plot for SNR Data |
|
206 | 206 | ''' |
|
207 | 207 | |
|
208 | 208 | CODE = 'snr' |
|
209 | 209 | colormap = 'jet' |
|
210 | 210 | |
|
211 | 211 | def update(self, dataOut): |
|
212 | 212 | |
|
213 | 213 | data = { |
|
214 | 214 | 'snr': 10*numpy.log10(dataOut.data_snr) |
|
215 | 215 | } |
|
216 | 216 | |
|
217 | 217 | return data, {} |
|
218 | 218 | |
|
219 | 219 | class DopplerPlot(RTIPlot): |
|
220 | 220 | ''' |
|
221 | 221 | Plot for DOPPLER Data (1st moment) |
|
222 | 222 | ''' |
|
223 | 223 | |
|
224 | 224 | CODE = 'dop' |
|
225 | 225 | colormap = 'jet' |
|
226 | 226 | |
|
227 | 227 | def update(self, dataOut): |
|
228 | 228 | |
|
229 | 229 | data = { |
|
230 | 230 | 'dop': 10*numpy.log10(dataOut.data_dop) |
|
231 | 231 | } |
|
232 | 232 | |
|
233 | 233 | return data, {} |
|
234 | 234 | |
|
235 | 235 | class PowerPlot(RTIPlot): |
|
236 | 236 | ''' |
|
237 | 237 | Plot for Power Data (0 moment) |
|
238 | 238 | ''' |
|
239 | 239 | |
|
240 | 240 | CODE = 'pow' |
|
241 | 241 | colormap = 'jet' |
|
242 | 242 | |
|
243 | 243 | def update(self, dataOut): |
|
244 | 244 | data = { |
|
245 | 245 | 'pow': 10*numpy.log10(dataOut.data_pow/dataOut.normFactor) |
|
246 | 246 | } |
|
247 | 247 | return data, {} |
|
248 | 248 | |
|
249 | 249 | class SpectralWidthPlot(RTIPlot): |
|
250 | 250 | ''' |
|
251 | 251 | Plot for Spectral Width Data (2nd moment) |
|
252 | 252 | ''' |
|
253 | 253 | |
|
254 | 254 | CODE = 'width' |
|
255 | 255 | colormap = 'jet' |
|
256 | 256 | |
|
257 | 257 | def update(self, dataOut): |
|
258 | 258 | |
|
259 | 259 | data = { |
|
260 | 260 | 'width': dataOut.data_width |
|
261 | 261 | } |
|
262 | 262 | |
|
263 | 263 | return data, {} |
|
264 | 264 | |
|
265 | 265 | class SkyMapPlot(Plot): |
|
266 | 266 | ''' |
|
267 | 267 | Plot for meteors detection data |
|
268 | 268 | ''' |
|
269 | 269 | |
|
270 | 270 | CODE = 'param' |
|
271 | 271 | |
|
272 | 272 | def setup(self): |
|
273 | 273 | |
|
274 | 274 | self.ncols = 1 |
|
275 | 275 | self.nrows = 1 |
|
276 | 276 | self.width = 7.2 |
|
277 | 277 | self.height = 7.2 |
|
278 | 278 | self.nplots = 1 |
|
279 | 279 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
280 | 280 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
281 | 281 | self.polar = True |
|
282 | 282 | self.ymin = -180 |
|
283 | 283 | self.ymax = 180 |
|
284 | 284 | self.colorbar = False |
|
285 | 285 | |
|
286 | 286 | def plot(self): |
|
287 | 287 | |
|
288 | 288 | arrayParameters = numpy.concatenate(self.data['param']) |
|
289 | 289 | error = arrayParameters[:, -1] |
|
290 | 290 | indValid = numpy.where(error == 0)[0] |
|
291 | 291 | finalMeteor = arrayParameters[indValid, :] |
|
292 | 292 | finalAzimuth = finalMeteor[:, 3] |
|
293 | 293 | finalZenith = finalMeteor[:, 4] |
|
294 | 294 | |
|
295 | 295 | x = finalAzimuth * numpy.pi / 180 |
|
296 | 296 | y = finalZenith |
|
297 | 297 | |
|
298 | 298 | ax = self.axes[0] |
|
299 | 299 | |
|
300 | 300 | if ax.firsttime: |
|
301 | 301 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
302 | 302 | else: |
|
303 | 303 | ax.plot.set_data(x, y) |
|
304 | 304 | |
|
305 | 305 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
306 | 306 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
307 | 307 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
308 | 308 | dt2, |
|
309 | 309 | len(x)) |
|
310 | 310 | self.titles[0] = title |
|
311 | 311 | |
|
312 | 312 | |
|
313 | 313 | class GenericRTIPlot(Plot): |
|
314 | 314 | ''' |
|
315 | 315 | Plot for data_xxxx object |
|
316 | 316 | ''' |
|
317 | 317 | |
|
318 | 318 | CODE = 'param' |
|
319 | 319 | colormap = 'viridis' |
|
320 | 320 | plot_type = 'pcolorbuffer' |
|
321 | 321 | |
|
322 | 322 | def setup(self): |
|
323 | 323 | self.xaxis = 'time' |
|
324 | 324 | self.ncols = 1 |
|
325 | 325 | self.nrows = self.data.shape('param')[0] |
|
326 | 326 | self.nplots = self.nrows |
|
327 | 327 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95, 'top': 0.95}) |
|
328 | 328 | |
|
329 | 329 | if not self.xlabel: |
|
330 | 330 | self.xlabel = 'Time' |
|
331 | 331 | |
|
332 | 332 | self.ylabel = 'Range [km]' |
|
333 | 333 | if not self.titles: |
|
334 | 334 | self.titles = ['Param {}'.format(x) for x in range(self.nrows)] |
|
335 | 335 | |
|
336 | 336 | def update(self, dataOut): |
|
337 | 337 | |
|
338 | 338 | data = { |
|
339 | 339 | 'param' : numpy.concatenate([getattr(dataOut, attr) for attr in self.attr_data], axis=0) |
|
340 | 340 | } |
|
341 | 341 | |
|
342 | 342 | meta = {} |
|
343 | 343 | |
|
344 | 344 | return data, meta |
|
345 | 345 | |
|
346 | 346 | def plot(self): |
|
347 | 347 | # self.data.normalize_heights() |
|
348 | 348 | self.x = self.data.times |
|
349 | 349 | self.y = self.data.yrange |
|
350 | 350 | self.z = self.data['param'] |
|
351 | 351 | self.z = 10*numpy.log10(self.z) |
|
352 | 352 | self.z = numpy.ma.masked_invalid(self.z) |
|
353 | 353 | |
|
354 | 354 | if self.decimation is None: |
|
355 | 355 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
356 | 356 | else: |
|
357 | 357 | x, y, z = self.fill_gaps(*self.decimate()) |
|
358 | 358 | |
|
359 | 359 | for n, ax in enumerate(self.axes): |
|
360 | 360 | |
|
361 | 361 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
362 | 362 | self.z[n]) |
|
363 | 363 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
364 | 364 | self.z[n]) |
|
365 | 365 | |
|
366 | 366 | if ax.firsttime: |
|
367 | 367 | if self.zlimits is not None: |
|
368 | 368 | self.zmin, self.zmax = self.zlimits[n] |
|
369 | 369 | |
|
370 | 370 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
371 | 371 | vmin=self.zmin, |
|
372 | 372 | vmax=self.zmax, |
|
373 | 373 | cmap=self.cmaps[n] |
|
374 | 374 | ) |
|
375 | 375 | else: |
|
376 | 376 | if self.zlimits is not None: |
|
377 | 377 | self.zmin, self.zmax = self.zlimits[n] |
|
378 | 378 | ax.collections.remove(ax.collections[0]) |
|
379 | 379 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
380 | 380 | vmin=self.zmin, |
|
381 | 381 | vmax=self.zmax, |
|
382 | 382 | cmap=self.cmaps[n] |
|
383 | 383 | ) |
|
384 | 384 | |
|
385 | 385 | |
|
386 | 386 | class PolarMapPlot(Plot): |
|
387 | 387 | ''' |
|
388 | 388 | Plot for weather radar |
|
389 | 389 | ''' |
|
390 | 390 | |
|
391 | 391 | CODE = 'param' |
|
392 | 392 | colormap = 'seismic' |
|
393 | 393 | |
|
394 | 394 | def setup(self): |
|
395 | 395 | self.ncols = 1 |
|
396 | 396 | self.nrows = 1 |
|
397 | 397 | self.width = 9 |
|
398 | 398 | self.height = 8 |
|
399 | 399 | self.mode = self.data.meta['mode'] |
|
400 | 400 | if self.channels is not None: |
|
401 | 401 | self.nplots = len(self.channels) |
|
402 | 402 | self.nrows = len(self.channels) |
|
403 | 403 | else: |
|
404 | 404 | self.nplots = self.data.shape(self.CODE)[0] |
|
405 | 405 | self.nrows = self.nplots |
|
406 | 406 | self.channels = list(range(self.nplots)) |
|
407 | 407 | if self.mode == 'E': |
|
408 | 408 | self.xlabel = 'Longitude' |
|
409 | 409 | self.ylabel = 'Latitude' |
|
410 | 410 | else: |
|
411 | 411 | self.xlabel = 'Range (km)' |
|
412 | 412 | self.ylabel = 'Height (km)' |
|
413 | 413 | self.bgcolor = 'white' |
|
414 | 414 | self.cb_labels = self.data.meta['units'] |
|
415 | 415 | self.lat = self.data.meta['latitude'] |
|
416 | 416 | self.lon = self.data.meta['longitude'] |
|
417 | 417 | self.xmin, self.xmax = float( |
|
418 | 418 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
419 | 419 | self.ymin, self.ymax = float( |
|
420 | 420 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
421 | 421 | # self.polar = True |
|
422 | 422 | |
|
423 | 423 | def plot(self): |
|
424 | 424 | |
|
425 | 425 | for n, ax in enumerate(self.axes): |
|
426 | 426 | data = self.data['param'][self.channels[n]] |
|
427 | 427 | |
|
428 | 428 | zeniths = numpy.linspace( |
|
429 | 429 | 0, self.data.meta['max_range'], data.shape[1]) |
|
430 | 430 | if self.mode == 'E': |
|
431 | 431 | azimuths = -numpy.radians(self.data.yrange)+numpy.pi/2 |
|
432 | 432 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
433 | 433 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
434 | 434 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
435 | 435 | x = km2deg(x) + self.lon |
|
436 | 436 | y = km2deg(y) + self.lat |
|
437 | 437 | else: |
|
438 | 438 | azimuths = numpy.radians(self.data.yrange) |
|
439 | 439 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
440 | 440 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
441 | 441 | self.y = zeniths |
|
442 | 442 | |
|
443 | 443 | if ax.firsttime: |
|
444 | 444 | if self.zlimits is not None: |
|
445 | 445 | self.zmin, self.zmax = self.zlimits[n] |
|
446 | 446 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
447 | 447 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
448 | 448 | vmin=self.zmin, |
|
449 | 449 | vmax=self.zmax, |
|
450 | 450 | cmap=self.cmaps[n]) |
|
451 | 451 | else: |
|
452 | 452 | if self.zlimits is not None: |
|
453 | 453 | self.zmin, self.zmax = self.zlimits[n] |
|
454 | 454 | ax.collections.remove(ax.collections[0]) |
|
455 | 455 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
456 | 456 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
457 | 457 | vmin=self.zmin, |
|
458 | 458 | vmax=self.zmax, |
|
459 | 459 | cmap=self.cmaps[n]) |
|
460 | 460 | |
|
461 | 461 | if self.mode == 'A': |
|
462 | 462 | continue |
|
463 | 463 | |
|
464 | 464 | # plot district names |
|
465 | 465 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
466 | 466 | for line in f: |
|
467 | 467 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
468 | 468 | lat = float(lat) |
|
469 | 469 | lon = float(lon) |
|
470 | 470 | # ax.plot(lon, lat, '.b', ms=2) |
|
471 | 471 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
472 | 472 | va='bottom', size='8', color='black') |
|
473 | 473 | |
|
474 | 474 | # plot limites |
|
475 | 475 | limites = [] |
|
476 | 476 | tmp = [] |
|
477 | 477 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
478 | 478 | if '#' in line: |
|
479 | 479 | if tmp: |
|
480 | 480 | limites.append(tmp) |
|
481 | 481 | tmp = [] |
|
482 | 482 | continue |
|
483 | 483 | values = line.strip().split(',') |
|
484 | 484 | tmp.append((float(values[0]), float(values[1]))) |
|
485 | 485 | for points in limites: |
|
486 | 486 | ax.add_patch( |
|
487 | 487 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
488 | 488 | |
|
489 | 489 | # plot Cuencas |
|
490 | 490 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
491 | 491 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
492 | 492 | values = [line.strip().split(',') for line in f] |
|
493 | 493 | points = [(float(s[0]), float(s[1])) for s in values] |
|
494 | 494 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
495 | 495 | |
|
496 | 496 | # plot grid |
|
497 | 497 | for r in (15, 30, 45, 60): |
|
498 | 498 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
499 | 499 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
500 | 500 | ax.text( |
|
501 | 501 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
502 | 502 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
503 | 503 | '{}km'.format(r), |
|
504 | 504 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
505 | 505 | |
|
506 | 506 | if self.mode == 'E': |
|
507 | 507 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
508 | 508 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
509 | 509 | else: |
|
510 | 510 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
511 | 511 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
512 | 512 | |
|
513 | 513 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
514 | 514 | self.titles = ['{} {}'.format( |
|
515 | 515 | self.data.parameters[x], title) for x in self.channels] |
|
516 | 516 | |
|
517 | 517 | class WeatherParamsPlot(Plot): |
|
518 | 518 | #CODE = 'RHI' |
|
519 | 519 | #plot_name = 'RHI' |
|
520 | 520 | plot_type = 'scattermap' |
|
521 | 521 | buffering = False |
|
522 | 522 | projection = ccrs.PlateCarree() |
|
523 | 523 | |
|
524 | 524 | def setup(self): |
|
525 | 525 | |
|
526 | 526 | self.ncols = 1 |
|
527 | 527 | self.nrows = 1 |
|
528 | 528 | self.nplots= 1 |
|
529 | 529 | self.ylabel= 'Height [km]' |
|
530 | 530 | self.xlabel= 'Distance from radar [km]' |
|
531 | ||
|
531 | ||
|
532 | 532 | if self.channels is not None: |
|
533 | 533 | self.nplots = len(self.channels) |
|
534 | 534 | self.ncols = len(self.channels) |
|
535 | 535 | else: |
|
536 | 536 | self.nplots = self.data.shape(self.CODE)[0] |
|
537 | 537 | self.ncols = self.nplots |
|
538 | 538 | self.channels = list(range(self.nplots)) |
|
539 | 539 | |
|
540 | 540 | self.colorbar=True |
|
541 | 541 | if len(self.channels)>1: |
|
542 | 542 | self.width = 12 |
|
543 | 543 | else: |
|
544 | 544 | self.width =8 |
|
545 | 545 | self.height =7 |
|
546 | 546 | self.ini =0 |
|
547 | 547 | self.len_azi =0 |
|
548 | 548 | self.buffer_ini = None |
|
549 | 549 | self.buffer_ele = None |
|
550 | 550 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.1}) |
|
551 | 551 | self.flag =0 |
|
552 | 552 | self.indicador= 0 |
|
553 | 553 | self.last_data_ele = None |
|
554 | 554 | self.val_mean = None |
|
555 | 555 | |
|
556 | 556 | def update(self, dataOut): |
|
557 | 557 | |
|
558 | 558 | vars = { |
|
559 | 559 | 'S' : 0, |
|
560 | 560 | 'V' : 1, |
|
561 | 561 | 'W' : 2, |
|
562 | 562 | 'SNR' : 3, |
|
563 | 563 | 'Z' : 4, |
|
564 | 564 | 'D' : 5, |
|
565 | 565 | 'P' : 6, |
|
566 | 566 | 'R' : 7, |
|
567 | 567 | } |
|
568 | 568 | |
|
569 | 569 | data = {} |
|
570 | 570 | meta = {} |
|
571 | 571 | |
|
572 | 572 | if hasattr(dataOut, 'nFFTPoints'): |
|
573 | 573 | factor = dataOut.normFactor |
|
574 | 574 | else: |
|
575 | 575 | factor = 1 |
|
576 | 576 | |
|
577 | 577 | if hasattr(dataOut, 'dparam'): |
|
578 | 578 | tmp = getattr(dataOut, 'data_param') |
|
579 | 579 | else: |
|
580 | ||
|
580 | #print("-------------------self.attr_data[0]",self.attr_data[0]) | |
|
581 | 581 | if 'S' in self.attr_data[0]: |
|
582 | tmp = 10*numpy.log10(10.0*getattr(dataOut, 'data_param')[:,0,:]/(factor)) | |
|
582 | if self.attr_data[0]=='S': | |
|
583 | tmp = 10*numpy.log10(10.0*getattr(dataOut, 'data_param')[:,0,:]/(factor)) | |
|
584 | if self.attr_data[0]=='SNR': | |
|
585 | tmp = 10*numpy.log10(getattr(dataOut, 'data_param')[:,3,:]) | |
|
583 | 586 | else: |
|
584 | 587 | tmp = getattr(dataOut, 'data_param')[:,vars[self.attr_data[0]],:] |
|
585 | 588 | |
|
586 | 589 | if self.mask: |
|
587 | 590 | mask = dataOut.data_param[:,3,:] < self.mask |
|
588 | 591 | tmp = numpy.ma.masked_array(tmp, mask=mask) |
|
589 | 592 | |
|
590 | 593 | r = dataOut.heightList |
|
591 | 594 | delta_height = r[1]-r[0] |
|
592 | 595 | valid = numpy.where(r>=0)[0] |
|
593 | 596 | data['r'] = numpy.arange(len(valid))*delta_height |
|
594 | 597 | |
|
595 | 598 | data['data'] = [0, 0] |
|
596 | 599 | |
|
597 | 600 | try: |
|
598 | 601 | data['data'][0] = tmp[0][:,valid] |
|
599 | 602 | data['data'][1] = tmp[1][:,valid] |
|
600 | 603 | except: |
|
601 | 604 | data['data'][0] = tmp[0][:,valid] |
|
602 | 605 | data['data'][1] = tmp[0][:,valid] |
|
603 | 606 | |
|
604 | 607 | if dataOut.mode_op == 'PPI': |
|
605 | 608 | self.CODE = 'PPI' |
|
606 | 609 | self.title = self.CODE |
|
607 | 610 | elif dataOut.mode_op == 'RHI': |
|
608 | 611 | self.CODE = 'RHI' |
|
609 | 612 | self.title = self.CODE |
|
610 | 613 | |
|
611 | 614 | data['azi'] = dataOut.data_azi |
|
612 | 615 | data['ele'] = dataOut.data_ele |
|
616 | ||
|
617 | if isinstance(dataOut.mode_op, bytes): | |
|
618 | try: | |
|
619 | dataOut.mode_op = dataOut.mode_op.decode() | |
|
620 | except: | |
|
621 | dataOut.mode_op = str(dataOut.mode_op, 'utf-8') | |
|
613 | 622 | data['mode_op'] = dataOut.mode_op |
|
614 | 623 | self.mode = dataOut.mode_op |
|
615 | 624 | |
|
616 | 625 | return data, meta |
|
617 | 626 | |
|
618 | 627 | def plot(self): |
|
619 | 628 | data = self.data[-1] |
|
620 | 629 | z = data['data'] |
|
621 | 630 | r = data['r'] |
|
622 | 631 | self.titles = [] |
|
623 | 632 | |
|
624 | 633 | self.ymax = self.ymax if self.ymax else numpy.nanmax(r) |
|
625 | 634 | self.ymin = self.ymin if self.ymin else numpy.nanmin(r) |
|
626 | 635 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
627 | 636 | self.zmin = self.zmin if self.zmin is not None else numpy.nanmin(z) |
|
628 | 637 | |
|
629 | 638 | if isinstance(data['mode_op'], bytes): |
|
630 | 639 | data['mode_op'] = data['mode_op'].decode() |
|
631 | 640 | |
|
632 | 641 | if data['mode_op'] == 'RHI': |
|
633 | 642 | r, theta = numpy.meshgrid(r, numpy.radians(data['ele'])) |
|
634 | 643 | len_aux = int(data['azi'].shape[0]/4) |
|
635 | 644 | mean = numpy.mean(data['azi'][len_aux:-len_aux]) |
|
636 | 645 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
637 |
elif data['mode_op'] == 'PPI': |
|
|
646 | elif data['mode_op'] == 'PPI': | |
|
638 | 647 | r, theta = numpy.meshgrid(r, -numpy.radians(data['azi'])+numpy.pi/2) |
|
639 | 648 | len_aux = int(data['ele'].shape[0]/4) |
|
640 | 649 | mean = numpy.mean(data['ele'][len_aux:-len_aux]) |
|
641 | 650 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(mean)), r*numpy.sin( |
|
642 | 651 | theta)*numpy.cos(numpy.radians(mean)) |
|
643 | 652 | x = km2deg(x) + -75.295893 |
|
644 | 653 | y = km2deg(y) + -12.040436 |
|
645 | 654 | |
|
646 | 655 | self.clear_figures() |
|
647 | 656 | |
|
648 | 657 | if data['mode_op'] == 'PPI': |
|
649 | 658 | axes = self.axes['PPI'] |
|
650 | 659 | else: |
|
651 | 660 | axes = self.axes['RHI'] |
|
652 | 661 | |
|
653 | 662 | if self.colormap in cb_tables: |
|
654 | 663 | norm = cb_tables[self.colormap]['norm'] |
|
655 | 664 | else: |
|
656 | 665 | norm = None |
|
657 | ||
|
666 | ||
|
658 | 667 | for i, ax in enumerate(axes): |
|
659 | 668 | if data['mode_op'] == 'PPI': |
|
660 | 669 | ax.set_extent([-75.745893, -74.845893, -12.490436, -11.590436]) |
|
661 | 670 | |
|
662 | 671 | if norm is None: |
|
663 | 672 | ax.plt = ax.pcolormesh(x, y, z[i], cmap=self.colormap, vmin=self.zmin, vmax=self.zmax) |
|
664 | 673 | else: |
|
665 | 674 | ax.plt = ax.pcolormesh(x, y, z[i], cmap=self.colormap, norm=norm) |
|
666 | 675 | |
|
667 | 676 | if data['mode_op'] == 'RHI': |
|
668 | 677 | len_aux = int(data['azi'].shape[0]/4) |
|
669 | 678 | mean = numpy.mean(data['azi'][len_aux:-len_aux]) |
|
670 | 679 | if len(self.channels) !=1: |
|
671 | 680 | self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in self.channels] |
|
672 | 681 | else: |
|
673 | 682 | self.titles = ['RHI {} at AZ: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])] |
|
674 | 683 | elif data['mode_op'] == 'PPI': |
|
675 | 684 | len_aux = int(data['ele'].shape[0]/4) |
|
676 | 685 | mean = numpy.mean(data['ele'][len_aux:-len_aux]) |
|
677 | 686 | if len(self.channels) !=1: |
|
678 | 687 | self.titles = ['PPI {} at EL: {} CH {}'.format(self.labels[x], str(round(mean,1)), x) for x in self.channels] |
|
679 | 688 | else: |
|
680 | 689 | self.titles = ['PPI {} at EL: {} CH {}'.format(self.labels[0], str(round(mean,1)), self.channels[0])] |
|
681 | 690 | self.mode_value = round(mean,1) |
|
682 | 691 | |
|
683 | 692 | if data['mode_op'] == 'PPI': |
|
684 | 693 | gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, |
|
685 | 694 | linewidth=1, color='gray', alpha=0.5, linestyle='--') |
|
686 | 695 | gl.xlabel_style = {'size': 8} |
|
687 | 696 | gl.ylabel_style = {'size': 8} |
|
688 | 697 | gl.xlabels_top = False |
|
689 | 698 | gl.ylabels_right = False |
|
699 | #self.shapes="/home/soporte/workspace/sirm/volumes/schain/shapes/" | |
|
700 | #print("self.shapes",self.shapes) | |
|
690 | 701 | shape_p = os.path.join(self.shapes,'PER_ADM2/PER_ADM2.shp') |
|
691 | 702 | shape_d = os.path.join(self.shapes,'PER_ADM1/PER_ADM1.shp') |
|
692 | 703 | capitales = os.path.join(self.shapes,'CAPITALES/cap_provincia.shp') |
|
693 | 704 | vias = os.path.join(self.shapes,'Carreteras/VIAS_NACIONAL_250000.shp') |
|
694 | 705 | reader_d = shpreader.BasicReader(shape_p, encoding='latin1') |
|
695 | 706 | reader_p = shpreader.BasicReader(shape_d, encoding='latin1') |
|
696 | 707 | reader_c = shpreader.BasicReader(capitales, encoding='latin1') |
|
697 | 708 | reader_v = shpreader.BasicReader(vias, encoding='latin1') |
|
698 |
caps = [x for x in reader_c.records() if x.attributes["Departa"] in ("JUNIN", "LIMA", "AYACUCHO", "HUANCAVELICA")] |
|
|
709 | caps = [x for x in reader_c.records() if x.attributes["Departa"] in ("JUNIN", "LIMA", "AYACUCHO", "HUANCAVELICA")] | |
|
699 | 710 | districts = [x for x in reader_d.records() if x.attributes["Name"] in ("JUNΓN", "CHANCHAMAYO", "CHUPACA", "CONCEPCIΓN", "HUANCAYO", "JAUJA", "SATIPO", "TARMA", "YAUYOS", "HUAROCHIRΓ", "CANTA", "HUANTA", "TAYACAJA")] |
|
700 | 711 | provs = [x for x in reader_p.records() if x.attributes["NAME"] in ("JunΓn", "Lima")] |
|
701 | 712 | vias = [x for x in reader_v.records() if x.attributes["DEP"] in ("JUNIN", "LIMA")] |
|
702 | 713 | |
|
703 | 714 | # Display limits and streets |
|
704 | 715 | shape_feature = ShapelyFeature([x.geometry for x in districts], ccrs.PlateCarree(), facecolor="none", edgecolor='grey', lw=0.5) |
|
705 | 716 | ax.add_feature(shape_feature) |
|
706 | 717 | shape_feature = ShapelyFeature([x.geometry for x in provs], ccrs.PlateCarree(), facecolor="none", edgecolor='white', lw=1) |
|
707 | 718 | ax.add_feature(shape_feature) |
|
708 | 719 | shape_feature = ShapelyFeature([x.geometry for x in vias], ccrs.PlateCarree(), facecolor="none", edgecolor='yellow', lw=1) |
|
709 | 720 | ax.add_feature(shape_feature) |
|
710 | 721 | |
|
711 | 722 | for cap in caps: |
|
712 | 723 | if cap.attributes['Nombre'] in ("LA OROYA", "CONCEPCIΓN", "HUANCAYO", "JAUJA", "CHUPACA", "YAUYOS", "HUANTA", "PAMPAS"): |
|
713 | 724 | ax.text(cap.attributes['X'], cap.attributes['Y'], cap.attributes['Nombre'].title(), size=7, color='white') |
|
714 | 725 | ax.text(-75.052003, -11.915552, 'Huaytapallana', size=7, color='cyan') |
|
715 | 726 | ax.plot(-75.052003, -11.915552, '*') |
|
716 | ||
|
727 | ||
|
717 | 728 | for R in (10, 20, 30 , 40, 50): |
|
718 | 729 | circle = Circle((-75.295893, -12.040436), km2deg(R), facecolor='none', |
|
719 | 730 | edgecolor='skyblue', linewidth=1, alpha=0.5) |
|
720 | 731 | ax.add_patch(circle) |
|
721 |
ax.text(km2deg(R)*numpy.cos(numpy.radians(45))-75.295893, |
|
|
722 |
km2deg(R)*numpy.sin(numpy.radians(45))-12.040436, |
|
|
732 | ax.text(km2deg(R)*numpy.cos(numpy.radians(45))-75.295893, | |
|
733 | km2deg(R)*numpy.sin(numpy.radians(45))-12.040436, | |
|
723 | 734 | '{}km'.format(R), color='skyblue', size=7) |
|
724 | 735 | elif data['mode_op'] == 'RHI': |
|
725 | 736 | ax.grid(color='grey', alpha=0.5, linestyle='--', linewidth=1) |
@@ -1,743 +1,743 | |||
|
1 | 1 | # Copyright (c) 2012-2021 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Classes to plot Spectra data |
|
6 | 6 | |
|
7 | 7 | """ |
|
8 | 8 | |
|
9 | 9 | import os |
|
10 | 10 | import numpy |
|
11 | 11 | |
|
12 | 12 | from schainpy.model.graphics.jroplot_base import Plot, plt, log |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | class SpectraPlot(Plot): |
|
16 | 16 | ''' |
|
17 | 17 | Plot for Spectra data |
|
18 | 18 | ''' |
|
19 | 19 | |
|
20 | 20 | CODE = 'spc' |
|
21 | 21 | colormap = 'jet' |
|
22 | 22 | plot_type = 'pcolor' |
|
23 | 23 | buffering = False |
|
24 | 24 | |
|
25 | 25 | def setup(self): |
|
26 | 26 | self.nplots = len(self.data.channels) |
|
27 | 27 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
28 | 28 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
29 | 29 | self.height = 2.6 * self.nrows |
|
30 | 30 | self.cb_label = 'dB' |
|
31 | 31 | if self.showprofile: |
|
32 | 32 | self.width = 4 * self.ncols |
|
33 | 33 | else: |
|
34 | 34 | self.width = 3.5 * self.ncols |
|
35 | 35 | self.plots_adjust.update({'wspace': 0.4, 'hspace':0.4, 'left': 0.1, 'right': 0.9, 'bottom': 0.08}) |
|
36 | 36 | self.ylabel = 'Range [km]' |
|
37 | 37 | |
|
38 | 38 | def update(self, dataOut): |
|
39 | 39 | |
|
40 | 40 | data = {} |
|
41 | 41 | meta = {} |
|
42 | 42 | spc = 10*numpy.log10(dataOut.data_spc/dataOut.normFactor) |
|
43 | 43 | data['spc'] = spc |
|
44 | 44 | data['rti'] = dataOut.getPower() |
|
45 | 45 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
46 |
meta['xrange'] = (dataOut.getFreqRange( |
|
|
46 | meta['xrange'] = (dataOut.getFreqRange(0)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(0)) | |
|
47 | 47 | |
|
48 | 48 | if self.CODE == 'spc_moments': |
|
49 | 49 | data['moments'] = dataOut.moments |
|
50 | 50 | # data['spc'] = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) |
|
51 | 51 | if self.CODE == 'gaussian_fit': |
|
52 | 52 | # data['moments'] = dataOut.moments |
|
53 | 53 | data['gaussfit'] = dataOut.DGauFitParams |
|
54 | 54 | # data['spc'] = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) |
|
55 | 55 | |
|
56 | 56 | return data, meta |
|
57 | 57 | |
|
58 | 58 | def plot(self): |
|
59 | 59 | if self.xaxis == "frequency": |
|
60 | 60 | x = self.data.xrange[0] |
|
61 | 61 | self.xlabel = "Frequency (kHz)" |
|
62 | 62 | elif self.xaxis == "time": |
|
63 | 63 | x = self.data.xrange[1] |
|
64 | 64 | self.xlabel = "Time (ms)" |
|
65 | 65 | else: |
|
66 | 66 | x = self.data.xrange[2] |
|
67 | 67 | self.xlabel = "Velocity (m/s)" |
|
68 | 68 | |
|
69 | 69 | if (self.CODE == 'spc_moments') | (self.CODE == 'gaussian_fit'): |
|
70 | 70 | x = self.data.xrange[2] |
|
71 | 71 | self.xlabel = "Velocity (m/s)" |
|
72 | 72 | |
|
73 | 73 | self.titles = [] |
|
74 | 74 | |
|
75 | 75 | y = self.data.yrange |
|
76 | 76 | self.y = y |
|
77 | 77 | |
|
78 | 78 | data = self.data[-1] |
|
79 | 79 | z = data['spc'] |
|
80 | 80 | |
|
81 | 81 | for n, ax in enumerate(self.axes): |
|
82 | 82 | noise = data['noise'][n] |
|
83 | 83 | if self.CODE == 'spc_moments': |
|
84 | 84 | mean = data['moments'][n, 1] |
|
85 | 85 | if self.CODE == 'gaussian_fit': |
|
86 | 86 | # mean = data['moments'][n, 1] |
|
87 | 87 | gau0 = data['gaussfit'][n][2,:,0] |
|
88 | 88 | gau1 = data['gaussfit'][n][2,:,1] |
|
89 | 89 | if ax.firsttime: |
|
90 | 90 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
91 | 91 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
92 | 92 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
93 | 93 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
94 | 94 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
95 | 95 | vmin=self.zmin, |
|
96 | 96 | vmax=self.zmax, |
|
97 | 97 | cmap=plt.get_cmap(self.colormap) |
|
98 | 98 | ) |
|
99 | 99 | |
|
100 | 100 | if self.showprofile: |
|
101 | 101 | ax.plt_profile = self.pf_axes[n].plot( |
|
102 | 102 | data['rti'][n], y)[0] |
|
103 | 103 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
104 | 104 | color="k", linestyle="dashed", lw=1)[0] |
|
105 | 105 | if self.CODE == 'spc_moments': |
|
106 | 106 | ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] |
|
107 | 107 | if self.CODE == 'gaussian_fit': |
|
108 | 108 | # ax.plt_mean = ax.plot(mean, y, color='k', lw=1)[0] |
|
109 | 109 | ax.plt_gau0 = ax.plot(gau0, y, color='r', lw=1)[0] |
|
110 | 110 | ax.plt_gau1 = ax.plot(gau1, y, color='y', lw=1)[0] |
|
111 | 111 | else: |
|
112 | 112 | ax.plt.set_array(z[n].T.ravel()) |
|
113 | 113 | if self.showprofile: |
|
114 | 114 | ax.plt_profile.set_data(data['rti'][n], y) |
|
115 | 115 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
116 | 116 | if self.CODE == 'spc_moments': |
|
117 | 117 | ax.plt_mean.set_data(mean, y) |
|
118 | 118 | if self.CODE == 'gaussian_fit': |
|
119 | 119 | # ax.plt_mean.set_data(mean, y) |
|
120 | 120 | ax.plt_gau0.set_data(gau0, y) |
|
121 | 121 | ax.plt_gau1.set_data(gau1, y) |
|
122 | 122 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
123 | 123 | |
|
124 | 124 | |
|
125 | 125 | class CrossSpectraPlot(Plot): |
|
126 | 126 | |
|
127 | 127 | CODE = 'cspc' |
|
128 | 128 | colormap = 'jet' |
|
129 | 129 | plot_type = 'pcolor' |
|
130 | 130 | zmin_coh = None |
|
131 | 131 | zmax_coh = None |
|
132 | 132 | zmin_phase = None |
|
133 | 133 | zmax_phase = None |
|
134 | 134 | |
|
135 | 135 | def setup(self): |
|
136 | 136 | |
|
137 | 137 | self.ncols = 4 |
|
138 | 138 | self.nplots = len(self.data.pairs) * 2 |
|
139 | 139 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
140 | 140 | self.width = 3.1 * self.ncols |
|
141 | 141 | self.height = 2.6 * self.nrows |
|
142 | 142 | self.ylabel = 'Range [km]' |
|
143 | 143 | self.showprofile = False |
|
144 | 144 | self.plots_adjust.update({'left': 0.08, 'right': 0.92, 'wspace': 0.5, 'hspace':0.4, 'top':0.95, 'bottom': 0.08}) |
|
145 | 145 | |
|
146 | 146 | def update(self, dataOut): |
|
147 | 147 | |
|
148 | 148 | data = {} |
|
149 | 149 | meta = {} |
|
150 | 150 | |
|
151 | 151 | spc = dataOut.data_spc |
|
152 | 152 | cspc = dataOut.data_cspc |
|
153 | 153 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
154 | 154 | meta['pairs'] = dataOut.pairsList |
|
155 | 155 | |
|
156 | 156 | tmp = [] |
|
157 | 157 | |
|
158 | 158 | for n, pair in enumerate(meta['pairs']): |
|
159 | 159 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
160 | 160 | coh = numpy.abs(out) |
|
161 | 161 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
162 | 162 | tmp.append(coh) |
|
163 | 163 | tmp.append(phase) |
|
164 | 164 | |
|
165 | 165 | data['cspc'] = numpy.array(tmp) |
|
166 | 166 | |
|
167 | 167 | return data, meta |
|
168 | 168 | |
|
169 | 169 | def plot(self): |
|
170 | 170 | |
|
171 | 171 | if self.xaxis == "frequency": |
|
172 | 172 | x = self.data.xrange[0] |
|
173 | 173 | self.xlabel = "Frequency (kHz)" |
|
174 | 174 | elif self.xaxis == "time": |
|
175 | 175 | x = self.data.xrange[1] |
|
176 | 176 | self.xlabel = "Time (ms)" |
|
177 | 177 | else: |
|
178 | 178 | x = self.data.xrange[2] |
|
179 | 179 | self.xlabel = "Velocity (m/s)" |
|
180 | 180 | |
|
181 | 181 | self.titles = [] |
|
182 | 182 | |
|
183 | 183 | y = self.data.yrange |
|
184 | 184 | self.y = y |
|
185 | 185 | |
|
186 | 186 | data = self.data[-1] |
|
187 | 187 | cspc = data['cspc'] |
|
188 | 188 | |
|
189 | 189 | for n in range(len(self.data.pairs)): |
|
190 | 190 | pair = self.data.pairs[n] |
|
191 | 191 | coh = cspc[n*2] |
|
192 | 192 | phase = cspc[n*2+1] |
|
193 | 193 | ax = self.axes[2 * n] |
|
194 | 194 | if ax.firsttime: |
|
195 | 195 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
196 | 196 | vmin=0, |
|
197 | 197 | vmax=1, |
|
198 | 198 | cmap=plt.get_cmap(self.colormap_coh) |
|
199 | 199 | ) |
|
200 | 200 | else: |
|
201 | 201 | ax.plt.set_array(coh.T.ravel()) |
|
202 | 202 | self.titles.append( |
|
203 | 203 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
204 | 204 | |
|
205 | 205 | ax = self.axes[2 * n + 1] |
|
206 | 206 | if ax.firsttime: |
|
207 | 207 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
208 | 208 | vmin=-180, |
|
209 | 209 | vmax=180, |
|
210 | 210 | cmap=plt.get_cmap(self.colormap_phase) |
|
211 | 211 | ) |
|
212 | 212 | else: |
|
213 | 213 | ax.plt.set_array(phase.T.ravel()) |
|
214 | 214 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
215 | 215 | |
|
216 | 216 | |
|
217 | 217 | class RTIPlot(Plot): |
|
218 | 218 | ''' |
|
219 | 219 | Plot for RTI data |
|
220 | 220 | ''' |
|
221 | 221 | |
|
222 | 222 | CODE = 'rti' |
|
223 | 223 | colormap = 'jet' |
|
224 | 224 | plot_type = 'pcolorbuffer' |
|
225 | 225 | |
|
226 | 226 | def setup(self): |
|
227 | 227 | self.xaxis = 'time' |
|
228 | 228 | self.ncols = 1 |
|
229 | 229 | self.nrows = len(self.data.channels) |
|
230 | 230 | self.nplots = len(self.data.channels) |
|
231 | 231 | self.ylabel = 'Range [km]' |
|
232 | 232 | self.xlabel = 'Time' |
|
233 | 233 | self.cb_label = 'dB' |
|
234 | 234 | self.plots_adjust.update({'hspace':0.8, 'left': 0.1, 'bottom': 0.08, 'right':0.95}) |
|
235 | 235 | self.titles = ['{} Channel {}'.format( |
|
236 | 236 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
237 | 237 | |
|
238 | 238 | def update(self, dataOut): |
|
239 | 239 | |
|
240 | 240 | data = {} |
|
241 | 241 | meta = {} |
|
242 | 242 | data['rti'] = dataOut.getPower() |
|
243 | 243 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
244 | 244 | |
|
245 | 245 | return data, meta |
|
246 | 246 | |
|
247 | 247 | def plot(self): |
|
248 | 248 | self.x = self.data.times |
|
249 | 249 | self.y = self.data.yrange |
|
250 | 250 | self.z = self.data[self.CODE] |
|
251 | 251 | self.z = numpy.ma.masked_invalid(self.z) |
|
252 | 252 | |
|
253 | 253 | if self.decimation is None: |
|
254 | 254 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
255 | 255 | else: |
|
256 | 256 | x, y, z = self.fill_gaps(*self.decimate()) |
|
257 | 257 | |
|
258 | 258 | for n, ax in enumerate(self.axes): |
|
259 | 259 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
260 | 260 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
261 | 261 | data = self.data[-1] |
|
262 | 262 | if ax.firsttime: |
|
263 | 263 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
264 | 264 | vmin=self.zmin, |
|
265 | 265 | vmax=self.zmax, |
|
266 | 266 | cmap=plt.get_cmap(self.colormap) |
|
267 | 267 | ) |
|
268 | 268 | if self.showprofile: |
|
269 | 269 | ax.plot_profile = self.pf_axes[n].plot( |
|
270 | 270 | data['rti'][n], self.y)[0] |
|
271 | 271 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(data['noise'][n], len(self.y)), self.y, |
|
272 | 272 | color="k", linestyle="dashed", lw=1)[0] |
|
273 | 273 | else: |
|
274 | 274 | ax.collections.remove(ax.collections[0]) |
|
275 | 275 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
276 | 276 | vmin=self.zmin, |
|
277 | 277 | vmax=self.zmax, |
|
278 | 278 | cmap=plt.get_cmap(self.colormap) |
|
279 | 279 | ) |
|
280 | 280 | if self.showprofile: |
|
281 | 281 | ax.plot_profile.set_data(data['rti'][n], self.y) |
|
282 | 282 | ax.plot_noise.set_data(numpy.repeat( |
|
283 | 283 | data['noise'][n], len(self.y)), self.y) |
|
284 | 284 | |
|
285 | 285 | |
|
286 | 286 | class CoherencePlot(RTIPlot): |
|
287 | 287 | ''' |
|
288 | 288 | Plot for Coherence data |
|
289 | 289 | ''' |
|
290 | 290 | |
|
291 | 291 | CODE = 'coh' |
|
292 | 292 | |
|
293 | 293 | def setup(self): |
|
294 | 294 | self.xaxis = 'time' |
|
295 | 295 | self.ncols = 1 |
|
296 | 296 | self.nrows = len(self.data.pairs) |
|
297 | 297 | self.nplots = len(self.data.pairs) |
|
298 | 298 | self.ylabel = 'Range [km]' |
|
299 | 299 | self.xlabel = 'Time' |
|
300 | 300 | self.plots_adjust.update({'hspace':0.6, 'left': 0.1, 'bottom': 0.1,'right':0.95}) |
|
301 | 301 | if self.CODE == 'coh': |
|
302 | 302 | self.cb_label = '' |
|
303 | 303 | self.titles = [ |
|
304 | 304 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
305 | 305 | else: |
|
306 | 306 | self.cb_label = 'Degrees' |
|
307 | 307 | self.titles = [ |
|
308 | 308 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
309 | 309 | |
|
310 | 310 | def update(self, dataOut): |
|
311 | 311 | |
|
312 | 312 | data = {} |
|
313 | 313 | meta = {} |
|
314 | 314 | data['coh'] = dataOut.getCoherence() |
|
315 | 315 | meta['pairs'] = dataOut.pairsList |
|
316 | 316 | |
|
317 | 317 | return data, meta |
|
318 | 318 | |
|
319 | 319 | class PhasePlot(CoherencePlot): |
|
320 | 320 | ''' |
|
321 | 321 | Plot for Phase map data |
|
322 | 322 | ''' |
|
323 | 323 | |
|
324 | 324 | CODE = 'phase' |
|
325 | 325 | colormap = 'seismic' |
|
326 | 326 | |
|
327 | 327 | def update(self, dataOut): |
|
328 | 328 | |
|
329 | 329 | data = {} |
|
330 | 330 | meta = {} |
|
331 | 331 | data['phase'] = dataOut.getCoherence(phase=True) |
|
332 | 332 | meta['pairs'] = dataOut.pairsList |
|
333 | 333 | |
|
334 | 334 | return data, meta |
|
335 | 335 | |
|
336 | 336 | class NoisePlot(Plot): |
|
337 | 337 | ''' |
|
338 | 338 | Plot for noise |
|
339 | 339 | ''' |
|
340 | 340 | |
|
341 | 341 | CODE = 'noise' |
|
342 | 342 | plot_type = 'scatterbuffer' |
|
343 | 343 | |
|
344 | 344 | def setup(self): |
|
345 | 345 | self.xaxis = 'time' |
|
346 | 346 | self.ncols = 1 |
|
347 | 347 | self.nrows = 1 |
|
348 | 348 | self.nplots = 1 |
|
349 | 349 | self.ylabel = 'Intensity [dB]' |
|
350 | 350 | self.xlabel = 'Time' |
|
351 | 351 | self.titles = ['Noise'] |
|
352 | 352 | self.colorbar = False |
|
353 | 353 | self.plots_adjust.update({'right': 0.85 }) |
|
354 | 354 | |
|
355 | 355 | def update(self, dataOut): |
|
356 | 356 | |
|
357 | 357 | data = {} |
|
358 | 358 | meta = {} |
|
359 | 359 | data['noise'] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor).reshape(dataOut.nChannels, 1) |
|
360 | 360 | meta['yrange'] = numpy.array([]) |
|
361 | 361 | |
|
362 | 362 | return data, meta |
|
363 | 363 | |
|
364 | 364 | def plot(self): |
|
365 | 365 | |
|
366 | 366 | x = self.data.times |
|
367 | 367 | xmin = self.data.min_time |
|
368 | 368 | xmax = xmin + self.xrange * 60 * 60 |
|
369 | 369 | Y = self.data['noise'] |
|
370 | 370 | |
|
371 | 371 | if self.axes[0].firsttime: |
|
372 | 372 | self.ymin = numpy.nanmin(Y) - 5 |
|
373 | 373 | self.ymax = numpy.nanmax(Y) + 5 |
|
374 | 374 | for ch in self.data.channels: |
|
375 | 375 | y = Y[ch] |
|
376 | 376 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
377 | 377 | plt.legend(bbox_to_anchor=(1.18, 1.0)) |
|
378 | 378 | else: |
|
379 | 379 | for ch in self.data.channels: |
|
380 | 380 | y = Y[ch] |
|
381 | 381 | self.axes[0].lines[ch].set_data(x, y) |
|
382 | 382 | |
|
383 | 383 | |
|
384 | 384 | class PowerProfilePlot(Plot): |
|
385 | 385 | |
|
386 | 386 | CODE = 'pow_profile' |
|
387 | 387 | plot_type = 'scatter' |
|
388 | 388 | |
|
389 | 389 | def setup(self): |
|
390 | 390 | |
|
391 | 391 | self.ncols = 1 |
|
392 | 392 | self.nrows = 1 |
|
393 | 393 | self.nplots = 1 |
|
394 | 394 | self.height = 4 |
|
395 | 395 | self.width = 3 |
|
396 | 396 | self.ylabel = 'Range [km]' |
|
397 | 397 | self.xlabel = 'Intensity [dB]' |
|
398 | 398 | self.titles = ['Power Profile'] |
|
399 | 399 | self.colorbar = False |
|
400 | 400 | |
|
401 | 401 | def update(self, dataOut): |
|
402 | 402 | |
|
403 | 403 | data = {} |
|
404 | 404 | meta = {} |
|
405 | 405 | data[self.CODE] = dataOut.getPower() |
|
406 | 406 | |
|
407 | 407 | return data, meta |
|
408 | 408 | |
|
409 | 409 | def plot(self): |
|
410 | 410 | |
|
411 | 411 | y = self.data.yrange |
|
412 | 412 | self.y = y |
|
413 | 413 | |
|
414 | 414 | x = self.data[-1][self.CODE] |
|
415 | 415 | |
|
416 | 416 | if self.xmin is None: self.xmin = numpy.nanmin(x)*0.9 |
|
417 | 417 | if self.xmax is None: self.xmax = numpy.nanmax(x)*1.1 |
|
418 | 418 | |
|
419 | 419 | if self.axes[0].firsttime: |
|
420 | 420 | for ch in self.data.channels: |
|
421 | 421 | self.axes[0].plot(x[ch], y, lw=1, label='Ch{}'.format(ch)) |
|
422 | 422 | plt.legend() |
|
423 | 423 | else: |
|
424 | 424 | for ch in self.data.channels: |
|
425 | 425 | self.axes[0].lines[ch].set_data(x[ch], y) |
|
426 | 426 | |
|
427 | 427 | |
|
428 | 428 | class SpectraCutPlot(Plot): |
|
429 | 429 | |
|
430 | 430 | CODE = 'spc_cut' |
|
431 | 431 | plot_type = 'scatter' |
|
432 | 432 | buffering = False |
|
433 | 433 | |
|
434 | 434 | def setup(self): |
|
435 | 435 | |
|
436 | 436 | self.nplots = len(self.data.channels) |
|
437 | 437 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
438 | 438 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
439 | 439 | self.width = 3.4 * self.ncols + 1.5 |
|
440 | 440 | self.height = 3 * self.nrows |
|
441 | 441 | self.ylabel = 'Power [dB]' |
|
442 | 442 | self.colorbar = False |
|
443 | 443 | self.plots_adjust.update({'left':0.1, 'hspace':0.3, 'right': 0.75, 'bottom':0.08}) |
|
444 | 444 | |
|
445 | 445 | def update(self, dataOut): |
|
446 | 446 | |
|
447 | 447 | data = {} |
|
448 | 448 | meta = {} |
|
449 | 449 | spc = 10*numpy.log10(dataOut.data_pre[0]/dataOut.normFactor) |
|
450 | 450 | data['spc'] = spc |
|
451 | 451 | meta['xrange'] = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
452 | 452 | if self.CODE == 'cut_gaussian_fit': |
|
453 | 453 | data['gauss_fit0'] = 10*numpy.log10(dataOut.GaussFit0/dataOut.normFactor) |
|
454 | 454 | data['gauss_fit1'] = 10*numpy.log10(dataOut.GaussFit1/dataOut.normFactor) |
|
455 | 455 | return data, meta |
|
456 | 456 | |
|
457 | 457 | def plot(self): |
|
458 | 458 | if self.xaxis == "frequency": |
|
459 | 459 | x = self.data.xrange[0][1:] |
|
460 | 460 | self.xlabel = "Frequency (kHz)" |
|
461 | 461 | elif self.xaxis == "time": |
|
462 | 462 | x = self.data.xrange[1] |
|
463 | 463 | self.xlabel = "Time (ms)" |
|
464 | 464 | else: |
|
465 | 465 | x = self.data.xrange[2][:-1] |
|
466 | 466 | self.xlabel = "Velocity (m/s)" |
|
467 | 467 | |
|
468 | 468 | if self.CODE == 'cut_gaussian_fit': |
|
469 | 469 | x = self.data.xrange[2][:-1] |
|
470 | 470 | self.xlabel = "Velocity (m/s)" |
|
471 | 471 | |
|
472 | 472 | self.titles = [] |
|
473 | 473 | |
|
474 | 474 | y = self.data.yrange |
|
475 | 475 | data = self.data[-1] |
|
476 | 476 | z = data['spc'] |
|
477 | 477 | |
|
478 | 478 | if self.height_index: |
|
479 | 479 | index = numpy.array(self.height_index) |
|
480 | 480 | else: |
|
481 | 481 | index = numpy.arange(0, len(y), int((len(y))/9)) |
|
482 | 482 | |
|
483 | 483 | for n, ax in enumerate(self.axes): |
|
484 | 484 | if self.CODE == 'cut_gaussian_fit': |
|
485 | 485 | gau0 = data['gauss_fit0'] |
|
486 | 486 | gau1 = data['gauss_fit1'] |
|
487 | 487 | if ax.firsttime: |
|
488 | 488 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
489 | 489 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
490 | 490 | self.ymin = self.ymin if self.ymin else numpy.nanmin(z) |
|
491 | 491 | self.ymax = self.ymax if self.ymax else numpy.nanmax(z) |
|
492 | 492 | ax.plt = ax.plot(x, z[n, :, index].T, lw=0.25) |
|
493 | 493 | if self.CODE == 'cut_gaussian_fit': |
|
494 | 494 | ax.plt_gau0 = ax.plot(x, gau0[n, :, index].T, lw=1, linestyle='-.') |
|
495 | 495 | for i, line in enumerate(ax.plt_gau0): |
|
496 | 496 | line.set_color(ax.plt[i].get_color()) |
|
497 | 497 | ax.plt_gau1 = ax.plot(x, gau1[n, :, index].T, lw=1, linestyle='--') |
|
498 | 498 | for i, line in enumerate(ax.plt_gau1): |
|
499 | 499 | line.set_color(ax.plt[i].get_color()) |
|
500 | 500 | labels = ['Range = {:2.1f}km'.format(y[i]) for i in index] |
|
501 | 501 | self.figures[0].legend(ax.plt, labels, loc='center right') |
|
502 | 502 | else: |
|
503 | 503 | for i, line in enumerate(ax.plt): |
|
504 | 504 | line.set_data(x, z[n, :, index[i]].T) |
|
505 | 505 | for i, line in enumerate(ax.plt_gau0): |
|
506 | 506 | line.set_data(x, gau0[n, :, index[i]].T) |
|
507 | 507 | line.set_color(ax.plt[i].get_color()) |
|
508 | 508 | for i, line in enumerate(ax.plt_gau1): |
|
509 | 509 | line.set_data(x, gau1[n, :, index[i]].T) |
|
510 | 510 | line.set_color(ax.plt[i].get_color()) |
|
511 | 511 | self.titles.append('CH {}'.format(n)) |
|
512 | 512 | |
|
513 | 513 | |
|
514 | 514 | class BeaconPhase(Plot): |
|
515 | 515 | |
|
516 | 516 | __isConfig = None |
|
517 | 517 | __nsubplots = None |
|
518 | 518 | |
|
519 | 519 | PREFIX = 'beacon_phase' |
|
520 | 520 | |
|
521 | 521 | def __init__(self): |
|
522 | 522 | Plot.__init__(self) |
|
523 | 523 | self.timerange = 24*60*60 |
|
524 | 524 | self.isConfig = False |
|
525 | 525 | self.__nsubplots = 1 |
|
526 | 526 | self.counter_imagwr = 0 |
|
527 | 527 | self.WIDTH = 800 |
|
528 | 528 | self.HEIGHT = 400 |
|
529 | 529 | self.WIDTHPROF = 120 |
|
530 | 530 | self.HEIGHTPROF = 0 |
|
531 | 531 | self.xdata = None |
|
532 | 532 | self.ydata = None |
|
533 | 533 | |
|
534 | 534 | self.PLOT_CODE = BEACON_CODE |
|
535 | 535 | |
|
536 | 536 | self.FTP_WEI = None |
|
537 | 537 | self.EXP_CODE = None |
|
538 | 538 | self.SUB_EXP_CODE = None |
|
539 | 539 | self.PLOT_POS = None |
|
540 | 540 | |
|
541 | 541 | self.filename_phase = None |
|
542 | 542 | |
|
543 | 543 | self.figfile = None |
|
544 | 544 | |
|
545 | 545 | self.xmin = None |
|
546 | 546 | self.xmax = None |
|
547 | 547 | |
|
548 | 548 | def getSubplots(self): |
|
549 | 549 | |
|
550 | 550 | ncol = 1 |
|
551 | 551 | nrow = 1 |
|
552 | 552 | |
|
553 | 553 | return nrow, ncol |
|
554 | 554 | |
|
555 | 555 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
556 | 556 | |
|
557 | 557 | self.__showprofile = showprofile |
|
558 | 558 | self.nplots = nplots |
|
559 | 559 | |
|
560 | 560 | ncolspan = 7 |
|
561 | 561 | colspan = 6 |
|
562 | 562 | self.__nsubplots = 2 |
|
563 | 563 | |
|
564 | 564 | self.createFigure(id = id, |
|
565 | 565 | wintitle = wintitle, |
|
566 | 566 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
567 | 567 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
568 | 568 | show=show) |
|
569 | 569 | |
|
570 | 570 | nrow, ncol = self.getSubplots() |
|
571 | 571 | |
|
572 | 572 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
573 | 573 | |
|
574 | 574 | def save_phase(self, filename_phase): |
|
575 | 575 | f = open(filename_phase,'w+') |
|
576 | 576 | f.write('\n\n') |
|
577 | 577 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
578 | 578 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
579 | 579 | f.close() |
|
580 | 580 | |
|
581 | 581 | def save_data(self, filename_phase, data, data_datetime): |
|
582 | 582 | f=open(filename_phase,'a') |
|
583 | 583 | timetuple_data = data_datetime.timetuple() |
|
584 | 584 | day = str(timetuple_data.tm_mday) |
|
585 | 585 | month = str(timetuple_data.tm_mon) |
|
586 | 586 | year = str(timetuple_data.tm_year) |
|
587 | 587 | hour = str(timetuple_data.tm_hour) |
|
588 | 588 | minute = str(timetuple_data.tm_min) |
|
589 | 589 | second = str(timetuple_data.tm_sec) |
|
590 | 590 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
591 | 591 | f.close() |
|
592 | 592 | |
|
593 | 593 | def plot(self): |
|
594 | 594 | log.warning('TODO: Not yet implemented...') |
|
595 | 595 | |
|
596 | 596 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
597 | 597 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
598 | 598 | timerange=None, |
|
599 | 599 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
600 | 600 | server=None, folder=None, username=None, password=None, |
|
601 | 601 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
602 | 602 | |
|
603 | 603 | if dataOut.flagNoData: |
|
604 | 604 | return dataOut |
|
605 | 605 | |
|
606 | 606 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
607 | 607 | return |
|
608 | 608 | |
|
609 | 609 | if pairsList == None: |
|
610 | 610 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
611 | 611 | else: |
|
612 | 612 | pairsIndexList = [] |
|
613 | 613 | for pair in pairsList: |
|
614 | 614 | if pair not in dataOut.pairsList: |
|
615 | 615 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
616 | 616 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
617 | 617 | |
|
618 | 618 | if pairsIndexList == []: |
|
619 | 619 | return |
|
620 | 620 | |
|
621 | 621 | # if len(pairsIndexList) > 4: |
|
622 | 622 | # pairsIndexList = pairsIndexList[0:4] |
|
623 | 623 | |
|
624 | 624 | hmin_index = None |
|
625 | 625 | hmax_index = None |
|
626 | 626 | |
|
627 | 627 | if hmin != None and hmax != None: |
|
628 | 628 | indexes = numpy.arange(dataOut.nHeights) |
|
629 | 629 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
630 | 630 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
631 | 631 | |
|
632 | 632 | if hmin_list.any(): |
|
633 | 633 | hmin_index = hmin_list[0] |
|
634 | 634 | |
|
635 | 635 | if hmax_list.any(): |
|
636 | 636 | hmax_index = hmax_list[-1]+1 |
|
637 | 637 | |
|
638 | 638 | x = dataOut.getTimeRange() |
|
639 | 639 | |
|
640 | 640 | thisDatetime = dataOut.datatime |
|
641 | 641 | |
|
642 | 642 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
643 | 643 | xlabel = "Local Time" |
|
644 | 644 | ylabel = "Phase (degrees)" |
|
645 | 645 | |
|
646 | 646 | update_figfile = False |
|
647 | 647 | |
|
648 | 648 | nplots = len(pairsIndexList) |
|
649 | 649 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
650 | 650 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
651 | 651 | for i in range(nplots): |
|
652 | 652 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
653 | 653 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
654 | 654 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
655 | 655 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
656 | 656 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
657 | 657 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
658 | 658 | |
|
659 | 659 | if dataOut.beacon_heiIndexList: |
|
660 | 660 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
661 | 661 | else: |
|
662 | 662 | phase_beacon[i] = numpy.average(phase) |
|
663 | 663 | |
|
664 | 664 | if not self.isConfig: |
|
665 | 665 | |
|
666 | 666 | nplots = len(pairsIndexList) |
|
667 | 667 | |
|
668 | 668 | self.setup(id=id, |
|
669 | 669 | nplots=nplots, |
|
670 | 670 | wintitle=wintitle, |
|
671 | 671 | showprofile=showprofile, |
|
672 | 672 | show=show) |
|
673 | 673 | |
|
674 | 674 | if timerange != None: |
|
675 | 675 | self.timerange = timerange |
|
676 | 676 | |
|
677 | 677 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
678 | 678 | |
|
679 | 679 | if ymin == None: ymin = 0 |
|
680 | 680 | if ymax == None: ymax = 360 |
|
681 | 681 | |
|
682 | 682 | self.FTP_WEI = ftp_wei |
|
683 | 683 | self.EXP_CODE = exp_code |
|
684 | 684 | self.SUB_EXP_CODE = sub_exp_code |
|
685 | 685 | self.PLOT_POS = plot_pos |
|
686 | 686 | |
|
687 | 687 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
688 | 688 | self.isConfig = True |
|
689 | 689 | self.figfile = figfile |
|
690 | 690 | self.xdata = numpy.array([]) |
|
691 | 691 | self.ydata = numpy.array([]) |
|
692 | 692 | |
|
693 | 693 | update_figfile = True |
|
694 | 694 | |
|
695 | 695 | #open file beacon phase |
|
696 | 696 | path = '%s%03d' %(self.PREFIX, self.id) |
|
697 | 697 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
698 | 698 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
699 | 699 | #self.save_phase(self.filename_phase) |
|
700 | 700 | |
|
701 | 701 | |
|
702 | 702 | #store data beacon phase |
|
703 | 703 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
704 | 704 | |
|
705 | 705 | self.setWinTitle(title) |
|
706 | 706 | |
|
707 | 707 | |
|
708 | 708 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
709 | 709 | |
|
710 | 710 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
711 | 711 | |
|
712 | 712 | axes = self.axesList[0] |
|
713 | 713 | |
|
714 | 714 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
715 | 715 | |
|
716 | 716 | if len(self.ydata)==0: |
|
717 | 717 | self.ydata = phase_beacon.reshape(-1,1) |
|
718 | 718 | else: |
|
719 | 719 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
720 | 720 | |
|
721 | 721 | |
|
722 | 722 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
723 | 723 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
724 | 724 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
725 | 725 | XAxisAsTime=True, grid='both' |
|
726 | 726 | ) |
|
727 | 727 | |
|
728 | 728 | self.draw() |
|
729 | 729 | |
|
730 | 730 | if dataOut.ltctime >= self.xmax: |
|
731 | 731 | self.counter_imagwr = wr_period |
|
732 | 732 | self.isConfig = False |
|
733 | 733 | update_figfile = True |
|
734 | 734 | |
|
735 | 735 | self.save(figpath=figpath, |
|
736 | 736 | figfile=figfile, |
|
737 | 737 | save=save, |
|
738 | 738 | ftp=ftp, |
|
739 | 739 | wr_period=wr_period, |
|
740 | 740 | thisDatetime=thisDatetime, |
|
741 | 741 | update_figfile=update_figfile) |
|
742 | 742 | |
|
743 | 743 | return dataOut |
@@ -1,844 +1,863 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 3, 2014 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 |
|
5 | 5 | ''' |
|
6 | 6 | # SUBCHANNELS EN VEZ DE CHANNELS |
|
7 | 7 | # BENCHMARKS -> PROBLEMAS CON ARCHIVOS GRANDES -> INCONSTANTE EN EL TIEMPO |
|
8 | 8 | # ACTUALIZACION DE VERSION |
|
9 | 9 | # HEADERS |
|
10 | 10 | # MODULO DE ESCRITURA |
|
11 | 11 | # METADATA |
|
12 | 12 | |
|
13 | 13 | import os |
|
14 | 14 | import time |
|
15 | 15 | import datetime |
|
16 | 16 | import numpy |
|
17 | 17 | import timeit |
|
18 | 18 | from fractions import Fraction |
|
19 | 19 | from time import time |
|
20 | 20 | from time import sleep |
|
21 | 21 | |
|
22 | 22 | import schainpy.admin |
|
23 | 23 | from schainpy.model.data.jroheaderIO import RadarControllerHeader, SystemHeader |
|
24 | 24 | from schainpy.model.data.jrodata import Voltage |
|
25 | 25 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
26 | 26 | |
|
27 | 27 | import pickle |
|
28 | 28 | try: |
|
29 | os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE" | |
|
29 | 30 | import digital_rf |
|
30 | 31 | except: |
|
31 | 32 | pass |
|
32 | 33 | |
|
33 | 34 | |
|
34 | 35 | class DigitalRFReader(ProcessingUnit): |
|
35 | 36 | ''' |
|
36 | 37 | classdocs |
|
37 | 38 | ''' |
|
38 | 39 | |
|
39 | 40 | def __init__(self): |
|
40 | 41 | ''' |
|
41 | 42 | Constructor |
|
42 | 43 | ''' |
|
43 | 44 | |
|
44 | 45 | ProcessingUnit.__init__(self) |
|
45 | 46 | |
|
46 | 47 | self.dataOut = Voltage() |
|
47 | 48 | self.__printInfo = True |
|
48 | 49 | self.__flagDiscontinuousBlock = False |
|
49 | 50 | self.__bufferIndex = 9999999 |
|
50 | 51 | self.__codeType = 0 |
|
51 | 52 | self.__ippKm = None |
|
52 | 53 | self.__nCode = None |
|
53 | 54 | self.__nBaud = None |
|
54 | 55 | self.__code = None |
|
55 | 56 | self.dtype = None |
|
56 | 57 | self.oldAverage = None |
|
57 | 58 | self.path = None |
|
58 | 59 | |
|
59 | 60 | def close(self): |
|
60 | 61 | print('Average of writing to digital rf format is ', self.oldAverage * 1000) |
|
61 | 62 | return |
|
62 | 63 | |
|
63 | 64 | def __getCurrentSecond(self): |
|
64 | 65 | |
|
65 | 66 | return self.__thisUnixSample / self.__sample_rate |
|
66 | 67 | |
|
67 | 68 | thisSecond = property(__getCurrentSecond, "I'm the 'thisSecond' property.") |
|
68 | 69 | |
|
69 | 70 | def __setFileHeader(self): |
|
70 | 71 | ''' |
|
71 | 72 | In this method will be initialized every parameter of dataOut object (header, no data) |
|
72 | 73 | ''' |
|
73 | 74 | ippSeconds = 1.0 * self.__nSamples / self.__sample_rate |
|
74 | 75 | if not self.getByBlock: |
|
75 | 76 | nProfiles = 1.0 / ippSeconds # Number of profiles in one second |
|
76 | 77 | else: |
|
77 | 78 | nProfiles = self.nProfileBlocks # Number of profiles in one block |
|
78 | 79 | |
|
79 | 80 | try: |
|
80 | 81 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader( |
|
81 | 82 | self.__radarControllerHeader) |
|
82 | 83 | except: |
|
83 | 84 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader( |
|
84 | 85 | txA=0, |
|
85 | 86 | txB=0, |
|
86 | 87 | nWindows=1, |
|
87 | 88 | nHeights=self.__nSamples, |
|
88 | 89 | firstHeight=self.__firstHeigth, |
|
89 | 90 | deltaHeight=self.__deltaHeigth, |
|
90 | 91 | codeType=self.__codeType, |
|
91 | 92 | nCode=self.__nCode, nBaud=self.__nBaud, |
|
92 | 93 | code=self.__code) |
|
93 | 94 | |
|
94 | 95 | try: |
|
95 | 96 | self.dataOut.systemHeaderObj = SystemHeader(self.__systemHeader) |
|
96 | 97 | except: |
|
97 | 98 | self.dataOut.systemHeaderObj = SystemHeader(nSamples=self.__nSamples, |
|
98 | 99 | nProfiles=nProfiles, |
|
99 | 100 | nChannels=len( |
|
100 | 101 | self.__channelList), |
|
101 | 102 | adcResolution=14) |
|
102 | 103 | self.dataOut.type = "Voltage" |
|
103 | 104 | |
|
104 | 105 | self.dataOut.data = None |
|
105 | 106 | |
|
106 | 107 | self.dataOut.dtype = self.dtype |
|
107 | 108 | |
|
108 | 109 | # self.dataOut.nChannels = 0 |
|
109 | 110 | |
|
110 | 111 | # self.dataOut.nHeights = 0 |
|
111 | 112 | |
|
112 | 113 | self.dataOut.nProfiles = int(nProfiles) |
|
113 | 114 | |
|
114 | 115 | self.dataOut.heightList = self.__firstHeigth + \ |
|
115 | 116 | numpy.arange(self.__nSamples, dtype=numpy.float) * \ |
|
116 | 117 | self.__deltaHeigth |
|
117 | 118 | |
|
118 | 119 | #self.dataOut.channelList = list(range(self.__num_subchannels)) |
|
119 | 120 | self.dataOut.channelList = list(range(len(self.__channelList))) |
|
120 | 121 | if not self.getByBlock: |
|
121 | 122 | |
|
122 | 123 | self.dataOut.blocksize = self.dataOut.nChannels * self.dataOut.nHeights |
|
123 | 124 | else: |
|
124 | 125 | self.dataOut.blocksize = self.dataOut.nChannels * self.dataOut.nHeights*self.nProfileBlocks |
|
125 | 126 | |
|
126 | 127 | # self.dataOut.channelIndexList = None |
|
127 | 128 | |
|
128 | 129 | self.dataOut.flagNoData = True |
|
129 | 130 | if not self.getByBlock: |
|
130 | 131 | self.dataOut.flagDataAsBlock = False |
|
131 | 132 | else: |
|
132 | 133 | self.dataOut.flagDataAsBlock = True |
|
133 | 134 | # Set to TRUE if the data is discontinuous |
|
134 | 135 | self.dataOut.flagDiscontinuousBlock = False |
|
135 | 136 | |
|
136 | 137 | self.dataOut.utctime = None |
|
137 | 138 | |
|
138 | 139 | # timezone like jroheader, difference in minutes between UTC and localtime |
|
139 | 140 | self.dataOut.timeZone = self.__timezone / 60 |
|
140 | 141 | |
|
141 | 142 | self.dataOut.dstFlag = 0 |
|
142 | 143 | |
|
143 | 144 | self.dataOut.errorCount = 0 |
|
144 | 145 | |
|
145 | 146 | try: |
|
146 | 147 | self.dataOut.nCohInt = self.fixed_metadata_dict.get( |
|
147 | 148 | 'nCohInt', self.nCohInt) |
|
148 | 149 | |
|
149 | 150 | # asumo que la data esta decodificada |
|
150 | 151 | self.dataOut.flagDecodeData = self.fixed_metadata_dict.get( |
|
151 | 152 | 'flagDecodeData', self.flagDecodeData) |
|
152 | 153 | |
|
153 | 154 | # asumo que la data esta sin flip |
|
154 | 155 | self.dataOut.flagDeflipData = self.fixed_metadata_dict['flagDeflipData'] |
|
155 | 156 | |
|
156 | 157 | self.dataOut.flagShiftFFT = self.fixed_metadata_dict['flagShiftFFT'] |
|
157 | 158 | |
|
158 | 159 | self.dataOut.useLocalTime = self.fixed_metadata_dict['useLocalTime'] |
|
159 | 160 | except: |
|
160 | 161 | pass |
|
161 | 162 | |
|
162 | 163 | self.dataOut.ippSeconds = ippSeconds |
|
163 | 164 | |
|
164 | 165 | # Time interval between profiles |
|
165 | 166 | # self.dataOut.timeInterval = self.dataOut.ippSeconds * self.dataOut.nCohInt |
|
166 | 167 | |
|
167 | 168 | self.dataOut.frequency = self.__frequency |
|
168 | 169 | |
|
169 | 170 | self.dataOut.realtime = self.__online |
|
170 | 171 | |
|
171 | 172 | def findDatafiles(self, path, startDate=None, endDate=None): |
|
172 | 173 | |
|
173 | 174 | if not os.path.isdir(path): |
|
174 | 175 | return [] |
|
175 | 176 | |
|
176 | 177 | try: |
|
177 | 178 | digitalReadObj = digital_rf.DigitalRFReader( |
|
178 | 179 | path, load_all_metadata=True) |
|
179 | 180 | except: |
|
180 | 181 | digitalReadObj = digital_rf.DigitalRFReader(path) |
|
181 | 182 | |
|
182 | 183 | channelNameList = digitalReadObj.get_channels() |
|
183 | 184 | |
|
184 | 185 | if not channelNameList: |
|
185 | 186 | return [] |
|
186 | 187 | |
|
187 | 188 | metadata_dict = digitalReadObj.get_rf_file_metadata(channelNameList[0]) |
|
188 | 189 | |
|
189 | 190 | sample_rate = metadata_dict['sample_rate'][0] |
|
190 | 191 | |
|
191 | 192 | this_metadata_file = digitalReadObj.get_metadata(channelNameList[0]) |
|
192 | 193 | |
|
193 | 194 | try: |
|
194 | 195 | timezone = this_metadata_file['timezone'].value |
|
195 | 196 | except: |
|
196 | 197 | timezone = 0 |
|
197 | 198 | |
|
198 | 199 | startUTCSecond, endUTCSecond = digitalReadObj.get_bounds( |
|
199 | 200 | channelNameList[0]) / sample_rate - timezone |
|
200 | 201 | |
|
201 | 202 | startDatetime = datetime.datetime.utcfromtimestamp(startUTCSecond) |
|
202 | 203 | endDatatime = datetime.datetime.utcfromtimestamp(endUTCSecond) |
|
203 | 204 | |
|
204 | 205 | if not startDate: |
|
205 | 206 | startDate = startDatetime.date() |
|
206 | 207 | |
|
207 | 208 | if not endDate: |
|
208 | 209 | endDate = endDatatime.date() |
|
209 | 210 | |
|
210 | 211 | dateList = [] |
|
211 | 212 | |
|
212 | 213 | thisDatetime = startDatetime |
|
213 | 214 | |
|
214 | 215 | while(thisDatetime <= endDatatime): |
|
215 | 216 | |
|
216 | 217 | thisDate = thisDatetime.date() |
|
217 | 218 | |
|
218 | 219 | if thisDate < startDate: |
|
219 | 220 | continue |
|
220 | 221 | |
|
221 | 222 | if thisDate > endDate: |
|
222 | 223 | break |
|
223 | 224 | |
|
224 | 225 | dateList.append(thisDate) |
|
225 | 226 | thisDatetime += datetime.timedelta(1) |
|
226 | 227 | |
|
227 | 228 | return dateList |
|
228 | 229 | |
|
229 | 230 | def setup(self, path=None, |
|
230 | 231 | startDate=None, |
|
231 | 232 | endDate=None, |
|
232 | 233 | startTime=datetime.time(0, 0, 0), |
|
233 | 234 | endTime=datetime.time(23, 59, 59), |
|
234 | 235 | channelList=None, |
|
235 | 236 | nSamples=None, |
|
236 | 237 | online=False, |
|
237 | 238 | delay=60, |
|
238 | 239 | buffer_size=1024, |
|
239 | 240 | ippKm=None, |
|
240 | 241 | nCohInt=1, |
|
241 | 242 | nCode=1, |
|
242 | 243 | nBaud=1, |
|
243 | 244 | flagDecodeData=False, |
|
244 | 245 | code=numpy.ones((1, 1), dtype=numpy.int), |
|
245 | 246 | getByBlock=0, |
|
246 | 247 | nProfileBlocks=1, |
|
247 | 248 | **kwargs): |
|
248 | 249 | ''' |
|
249 | 250 | In this method we should set all initial parameters. |
|
250 | 251 | |
|
251 | 252 | Inputs: |
|
252 | 253 | path |
|
253 | 254 | startDate |
|
254 | 255 | endDate |
|
255 | 256 | startTime |
|
256 | 257 | endTime |
|
257 | 258 | set |
|
258 | 259 | expLabel |
|
259 | 260 | ext |
|
260 | 261 | online |
|
261 | 262 | delay |
|
262 | 263 | ''' |
|
263 | 264 | self.path = path |
|
264 | 265 | self.nCohInt = nCohInt |
|
265 | 266 | self.flagDecodeData = flagDecodeData |
|
266 | 267 | self.i = 0 |
|
267 | 268 | |
|
268 | 269 | self.getByBlock = getByBlock |
|
269 | 270 | self.nProfileBlocks = nProfileBlocks |
|
271 | if online: | |
|
272 | print('Waiting for RF data..') | |
|
273 | sleep(40) | |
|
274 | ||
|
270 | 275 | if not os.path.isdir(path): |
|
271 | 276 | raise ValueError("[Reading] Directory %s does not exist" % path) |
|
272 | 277 | |
|
278 | #print("path",path) | |
|
273 | 279 | try: |
|
274 | 280 | self.digitalReadObj = digital_rf.DigitalRFReader( |
|
275 | 281 | path, load_all_metadata=True) |
|
276 | 282 | except: |
|
277 | 283 | self.digitalReadObj = digital_rf.DigitalRFReader(path) |
|
278 | 284 | |
|
279 | 285 | channelNameList = self.digitalReadObj.get_channels() |
|
280 | 286 | |
|
281 | 287 | if not channelNameList: |
|
282 | 288 | raise ValueError("[Reading] Directory %s does not have any files" % path) |
|
283 | 289 | |
|
284 | 290 | if not channelList: |
|
285 | 291 | channelList = list(range(len(channelNameList))) |
|
286 | 292 | |
|
287 | 293 | ########## Reading metadata ###################### |
|
288 | 294 | |
|
289 | 295 | top_properties = self.digitalReadObj.get_properties( |
|
290 | 296 | channelNameList[channelList[0]]) |
|
291 | 297 | |
|
292 | 298 | self.__num_subchannels = top_properties['num_subchannels'] |
|
293 | 299 | self.__sample_rate = 1.0 * \ |
|
294 | 300 | top_properties['sample_rate_numerator'] / \ |
|
295 | 301 | top_properties['sample_rate_denominator'] |
|
296 | 302 | # self.__samples_per_file = top_properties['samples_per_file'][0] |
|
297 | 303 | self.__deltaHeigth = 1e6 * 0.15 / self.__sample_rate # why 0.15? |
|
298 | 304 | |
|
299 | 305 | this_metadata_file = self.digitalReadObj.get_digital_metadata( |
|
300 | 306 | channelNameList[channelList[0]]) |
|
301 | 307 | metadata_bounds = this_metadata_file.get_bounds() |
|
302 | 308 | self.fixed_metadata_dict = this_metadata_file.read( |
|
303 | 309 | metadata_bounds[0])[metadata_bounds[0]] # GET FIRST HEADER |
|
304 | 310 | |
|
305 | 311 | try: |
|
306 | 312 | self.__processingHeader = self.fixed_metadata_dict['processingHeader'] |
|
307 | 313 | self.__radarControllerHeader = self.fixed_metadata_dict['radarControllerHeader'] |
|
308 | 314 | self.__systemHeader = self.fixed_metadata_dict['systemHeader'] |
|
309 | 315 | self.dtype = pickle.loads(self.fixed_metadata_dict['dtype']) |
|
310 | 316 | except: |
|
311 | 317 | pass |
|
312 | 318 | |
|
313 | 319 | self.__frequency = None |
|
314 | 320 | |
|
315 | 321 | self.__frequency = self.fixed_metadata_dict.get('frequency', 1) |
|
316 | 322 | |
|
317 | 323 | self.__timezone = self.fixed_metadata_dict.get('timezone', 18000) |
|
318 | 324 | |
|
319 | 325 | try: |
|
320 | 326 | nSamples = self.fixed_metadata_dict['nSamples'] |
|
321 | 327 | except: |
|
322 | 328 | nSamples = None |
|
323 | 329 | |
|
324 | 330 | self.__firstHeigth = 0 |
|
325 | 331 | |
|
326 | 332 | try: |
|
327 | 333 | codeType = self.__radarControllerHeader['codeType'] |
|
328 | 334 | except: |
|
329 | 335 | codeType = 0 |
|
330 | 336 | |
|
331 | 337 | try: |
|
332 | 338 | if codeType: |
|
333 | 339 | nCode = self.__radarControllerHeader['nCode'] |
|
334 | 340 | nBaud = self.__radarControllerHeader['nBaud'] |
|
335 | 341 | code = self.__radarControllerHeader['code'] |
|
336 | 342 | except: |
|
337 | 343 | pass |
|
338 | 344 | |
|
339 | 345 | if not ippKm: |
|
340 | 346 | try: |
|
341 | 347 | # seconds to km |
|
342 | 348 | ippKm = self.__radarControllerHeader['ipp'] |
|
343 | 349 | except: |
|
344 | 350 | ippKm = None |
|
345 | 351 | #################################################### |
|
346 | 352 | self.__ippKm = ippKm |
|
347 | 353 | startUTCSecond = None |
|
348 | 354 | endUTCSecond = None |
|
349 | 355 | |
|
350 | 356 | if startDate: |
|
351 | 357 | startDatetime = datetime.datetime.combine(startDate, startTime) |
|
352 | 358 | startUTCSecond = ( |
|
353 | startDatetime - datetime.datetime(1970, 1, 1)).total_seconds() + self.__timezone | |
|
359 | startDatetime - datetime.datetime(1970, 1, 1)).total_seconds()# + self.__timezone | |
|
354 | 360 | |
|
355 | 361 | if endDate: |
|
356 | 362 | endDatetime = datetime.datetime.combine(endDate, endTime) |
|
357 | 363 | endUTCSecond = (endDatetime - datetime.datetime(1970, |
|
358 | 1, 1)).total_seconds() + self.__timezone | |
|
359 | ||
|
360 | ||
|
361 | #print(startUTCSecond,endUTCSecond) | |
|
362 | start_index, end_index = self.digitalReadObj.get_bounds( | |
|
363 | channelNameList[channelList[0]]) | |
|
364 | ||
|
365 | #print("*****",start_index,end_index) | |
|
364 | 1, 1)).total_seconds()# + self.__timezone | |
|
365 | start_index, end_index = self.digitalReadObj.get_bounds(channelNameList[channelList[0]]) | |
|
366 | if start_index==None or end_index==None: | |
|
367 | print("Check error No data, start_index: ",start_index,",end_index: ",end_index) | |
|
368 | #return 0 | |
|
366 | 369 | if not startUTCSecond: |
|
367 | 370 | startUTCSecond = start_index / self.__sample_rate |
|
368 | ||
|
369 | 371 | if start_index > startUTCSecond * self.__sample_rate: |
|
370 | 372 | startUTCSecond = start_index / self.__sample_rate |
|
371 | 373 | |
|
372 | 374 | if not endUTCSecond: |
|
373 | 375 | endUTCSecond = end_index / self.__sample_rate |
|
376 | ||
|
374 | 377 | if end_index < endUTCSecond * self.__sample_rate: |
|
375 | 378 | endUTCSecond = end_index / self.__sample_rate #Check UTC and LT time |
|
379 | ||
|
376 | 380 | if not nSamples: |
|
377 | 381 | if not ippKm: |
|
378 | 382 | raise ValueError("[Reading] nSamples or ippKm should be defined") |
|
379 | 383 | nSamples = int(ippKm / (1e6 * 0.15 / self.__sample_rate)) |
|
380 | 384 | |
|
381 | 385 | channelBoundList = [] |
|
382 | 386 | channelNameListFiltered = [] |
|
383 | 387 | |
|
384 | 388 | for thisIndexChannel in channelList: |
|
385 | 389 | thisChannelName = channelNameList[thisIndexChannel] |
|
386 | 390 | start_index, end_index = self.digitalReadObj.get_bounds( |
|
387 | 391 | thisChannelName) |
|
388 | 392 | channelBoundList.append((start_index, end_index)) |
|
389 | 393 | channelNameListFiltered.append(thisChannelName) |
|
390 | 394 | |
|
391 | 395 | self.profileIndex = 0 |
|
392 | 396 | self.i = 0 |
|
393 | 397 | self.__delay = delay |
|
394 | 398 | |
|
395 | 399 | self.__codeType = codeType |
|
396 | 400 | self.__nCode = nCode |
|
397 | 401 | self.__nBaud = nBaud |
|
398 | 402 | self.__code = code |
|
399 | 403 | |
|
400 | 404 | self.__datapath = path |
|
401 | 405 | self.__online = online |
|
402 | 406 | self.__channelList = channelList |
|
403 | 407 | self.__channelNameList = channelNameListFiltered |
|
404 | 408 | self.__channelBoundList = channelBoundList |
|
405 | 409 | self.__nSamples = nSamples |
|
406 | 410 | if self.getByBlock: |
|
407 | 411 | nSamples = nSamples*nProfileBlocks |
|
408 | 412 | |
|
409 | 413 | |
|
410 | 414 | self.__samples_to_read = int(nSamples) # FIJO: AHORA 40 |
|
411 | 415 | self.__nChannels = len(self.__channelList) |
|
412 | 416 | #print("------------------------------------------") |
|
413 | 417 | #print("self.__samples_to_read",self.__samples_to_read) |
|
414 | 418 | #print("self.__nSamples",self.__nSamples) |
|
415 | 419 | # son iguales y el buffer_index da 0 |
|
416 | 420 | self.__startUTCSecond = startUTCSecond |
|
417 | 421 | self.__endUTCSecond = endUTCSecond |
|
418 | 422 | |
|
419 | 423 | self.__timeInterval = 1.0 * self.__samples_to_read / \ |
|
420 | 424 | self.__sample_rate # Time interval |
|
421 | 425 | |
|
422 | 426 | if online: |
|
423 | 427 | # self.__thisUnixSample = int(endUTCSecond*self.__sample_rate - 4*self.__samples_to_read) |
|
424 | 428 | startUTCSecond = numpy.floor(endUTCSecond) |
|
425 | 429 | |
|
426 | 430 | # por que en el otro metodo lo primero q se hace es sumar samplestoread |
|
427 | 431 | self.__thisUnixSample = int(startUTCSecond * self.__sample_rate) - self.__samples_to_read |
|
428 | 432 | |
|
429 | 433 | #self.__data_buffer = numpy.zeros( |
|
430 | 434 | # (self.__num_subchannels, self.__samples_to_read), dtype=numpy.complex) |
|
435 | print("samplestoread",self.__samples_to_read) | |
|
431 | 436 | self.__data_buffer = numpy.zeros((int(len(channelList)), self.__samples_to_read), dtype=numpy.complex) |
|
432 | 437 | |
|
433 | 438 | |
|
434 | 439 | self.__setFileHeader() |
|
435 | 440 | self.isConfig = True |
|
436 | 441 | |
|
437 | 442 | print("[Reading] Digital RF Data was found from %s to %s " % ( |
|
438 | 443 | datetime.datetime.utcfromtimestamp( |
|
439 | 444 | self.__startUTCSecond - self.__timezone), |
|
440 | 445 | datetime.datetime.utcfromtimestamp( |
|
441 | 446 | self.__endUTCSecond - self.__timezone) |
|
442 | 447 | )) |
|
443 | 448 | |
|
444 | 449 | print("[Reading] Starting process from %s to %s" % (datetime.datetime.utcfromtimestamp(startUTCSecond - self.__timezone), |
|
445 | datetime.datetime.utcfromtimestamp( | |
|
446 | endUTCSecond - self.__timezone) | |
|
447 | )) | |
|
450 | datetime.datetime.utcfromtimestamp(endUTCSecond - self.__timezone))) | |
|
448 | 451 | self.oldAverage = None |
|
449 | 452 | self.count = 0 |
|
450 | 453 | self.executionTime = 0 |
|
451 | 454 | |
|
452 | 455 | def __reload(self): |
|
453 | 456 | |
|
454 | 457 | # print "%s not in range [%s, %s]" %( |
|
455 | 458 | # datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), |
|
456 | 459 | # datetime.datetime.utcfromtimestamp(self.__startUTCSecond - self.__timezone), |
|
457 | 460 | # datetime.datetime.utcfromtimestamp(self.__endUTCSecond - self.__timezone) |
|
458 | 461 | # ) |
|
459 | 462 | print("[Reading] reloading metadata ...") |
|
460 | 463 | |
|
461 | 464 | try: |
|
462 | 465 | self.digitalReadObj.reload(complete_update=True) |
|
463 | 466 | except: |
|
464 | 467 | self.digitalReadObj = digital_rf.DigitalRFReader(self.path) |
|
465 | 468 | |
|
466 | 469 | start_index, end_index = self.digitalReadObj.get_bounds( |
|
467 | 470 | self.__channelNameList[self.__channelList[0]]) |
|
468 | 471 | |
|
469 | 472 | if start_index > self.__startUTCSecond * self.__sample_rate: |
|
470 | 473 | self.__startUTCSecond = 1.0 * start_index / self.__sample_rate |
|
471 | 474 | |
|
472 | 475 | if end_index > self.__endUTCSecond * self.__sample_rate: |
|
473 | 476 | self.__endUTCSecond = 1.0 * end_index / self.__sample_rate |
|
474 | 477 | print() |
|
475 | 478 | print("[Reading] New timerange found [%s, %s] " % ( |
|
476 | 479 | datetime.datetime.utcfromtimestamp( |
|
477 | 480 | self.__startUTCSecond - self.__timezone), |
|
478 | 481 | datetime.datetime.utcfromtimestamp( |
|
479 | 482 | self.__endUTCSecond - self.__timezone) |
|
480 | 483 | )) |
|
481 | 484 | |
|
482 | 485 | return True |
|
483 | 486 | |
|
484 | 487 | return False |
|
485 | 488 | |
|
486 | 489 | def timeit(self, toExecute): |
|
487 | 490 | t0 = time.time() |
|
488 | 491 | toExecute() |
|
489 | 492 | self.executionTime = time.time() - t0 |
|
490 | 493 | if self.oldAverage is None: |
|
491 | 494 | self.oldAverage = self.executionTime |
|
492 | 495 | self.oldAverage = (self.executionTime + self.count * |
|
493 | 496 | self.oldAverage) / (self.count + 1.0) |
|
494 | 497 | self.count = self.count + 1.0 |
|
495 | 498 | return |
|
496 | 499 | |
|
497 | 500 | def __readNextBlock(self, seconds=30, volt_scale=1/20000.0): |
|
498 | 501 | ''' |
|
499 | 502 | NOTA: APLICACION RADAR METEOROLOGICO |
|
500 | 503 | VALORES OBTENIDOS CON LA USRP, volt_scale = 1,conexion directa al Ch Rx. |
|
501 | 504 | |
|
502 | 505 | MAXIMO |
|
503 | 506 | 9886 -> 0.980 Voltiospp |
|
504 | 507 | 4939 -> 0.480 Voltiospp |
|
505 | 508 | 14825 -> 1.440 Voltiospp |
|
506 | 509 | 18129 -> 1.940 Voltiospp |
|
507 | 510 | Para llevar al valor correspondiente de Voltaje, debemos dividir por 20000 |
|
508 | 511 | y obtenemos la Amplitud correspondiente de entrada IQ. |
|
509 | 512 | volt_scale = (1/20000.0) |
|
510 | 513 | ''' |
|
511 | 514 | # Set the next data |
|
512 | 515 | self.__flagDiscontinuousBlock = False |
|
513 | 516 | self.__thisUnixSample += self.__samples_to_read |
|
514 | 517 | |
|
515 | 518 | if self.__thisUnixSample + 2 * self.__samples_to_read > self.__endUTCSecond * self.__sample_rate: |
|
516 | 519 | print ("[Reading] There are no more data into selected time-range") |
|
517 | 520 | if self.__online: |
|
518 | 521 | sleep(3) |
|
519 | 522 | self.__reload() |
|
520 | 523 | else: |
|
521 | 524 | return False |
|
522 | 525 | |
|
523 | 526 | if self.__thisUnixSample + 2 * self.__samples_to_read > self.__endUTCSecond * self.__sample_rate: |
|
524 | 527 | return False |
|
525 | 528 | self.__thisUnixSample -= self.__samples_to_read |
|
526 | 529 | |
|
527 | 530 | indexChannel = 0 |
|
528 | 531 | |
|
529 | 532 | dataOk = False |
|
530 | 533 | |
|
531 | 534 | for thisChannelName in self.__channelNameList: # TODO VARIOS CHANNELS? |
|
532 | 535 | for indexSubchannel in range(self.__num_subchannels): |
|
533 | 536 | try: |
|
534 | 537 | t0 = time() |
|
538 | #print("thisUNixSample",self.__thisUnixSample) | |
|
535 | 539 | result = self.digitalReadObj.read_vector_c81d(self.__thisUnixSample, |
|
536 | 540 | self.__samples_to_read, |
|
537 | 541 | thisChannelName, sub_channel=indexSubchannel) |
|
542 | #print("result--------------",result) | |
|
538 | 543 | self.executionTime = time() - t0 |
|
539 | 544 | if self.oldAverage is None: |
|
540 | 545 | self.oldAverage = self.executionTime |
|
541 | 546 | self.oldAverage = ( |
|
542 | 547 | self.executionTime + self.count * self.oldAverage) / (self.count + 1.0) |
|
543 | 548 | self.count = self.count + 1.0 |
|
544 | 549 | |
|
545 | 550 | except IOError as e: |
|
546 | 551 | # read next profile |
|
547 | 552 | self.__flagDiscontinuousBlock = True |
|
548 | 553 | print("[Reading] %s" % datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), e) |
|
549 |
b |
|
|
554 | bot = 0 | |
|
555 | while(self.__flagDiscontinuousBlock): | |
|
556 | bot +=1 | |
|
557 | self.__thisUnixSample += self.__sample_rate | |
|
558 | try: | |
|
559 | result = result = self.digitalReadObj.read_vector_c81d(self.__thisUnixSample,self.__samples_to_read,thisChannelName, sub_channel=indexSubchannel) | |
|
560 | self.__flagDiscontinuousBlock=False | |
|
561 | print("Searching.. NΒ°: ",bot,"Success",self.__thisUnixSample) | |
|
562 | except: | |
|
563 | print("Searching...NΒ°: ",bot,"Fail", self.__thisUnixSample) | |
|
564 | if self.__flagDiscontinuousBlock==True: | |
|
565 | break | |
|
566 | else: | |
|
567 | print("New data index found...",self.__thisUnixSample) | |
|
568 | #break | |
|
550 | 569 | |
|
551 | 570 | if result.shape[0] != self.__samples_to_read: |
|
552 | 571 | self.__flagDiscontinuousBlock = True |
|
553 | 572 | print("[Reading] %s: Too few samples were found, just %d/%d samples" % (datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), |
|
554 | 573 | result.shape[0], |
|
555 | 574 | self.__samples_to_read)) |
|
556 | 575 | break |
|
557 | 576 | |
|
558 | 577 | self.__data_buffer[indexChannel, :] = result * volt_scale |
|
559 | 578 | indexChannel+=1 |
|
560 | 579 | |
|
561 | 580 | dataOk = True |
|
562 | 581 | |
|
563 | 582 | self.__utctime = self.__thisUnixSample / self.__sample_rate |
|
564 | 583 | |
|
565 | 584 | if not dataOk: |
|
566 | 585 | return False |
|
567 | 586 | |
|
568 | 587 | print("[Reading] %s: %d samples <> %f sec" % (datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), |
|
569 | 588 | self.__samples_to_read, |
|
570 | 589 | self.__timeInterval)) |
|
571 | 590 | |
|
572 | 591 | self.__bufferIndex = 0 |
|
573 | 592 | |
|
574 | 593 | return True |
|
575 | 594 | |
|
576 | 595 | def __isBufferEmpty(self): |
|
577 | 596 | |
|
578 | 597 | return self.__bufferIndex > self.__samples_to_read - self.__nSamples # 40960 - 40 |
|
579 | 598 | |
|
580 | 599 | def getData(self, seconds=30, nTries=5): |
|
581 | 600 | ''' |
|
582 | 601 | This method gets the data from files and put the data into the dataOut object |
|
583 | 602 | |
|
584 | 603 | In addition, increase el the buffer counter in one. |
|
585 | 604 | |
|
586 | 605 | Return: |
|
587 | 606 | data : retorna un perfil de voltages (alturas * canales) copiados desde el |
|
588 | 607 | buffer. Si no hay mas archivos a leer retorna None. |
|
589 | 608 | |
|
590 | 609 | Affected: |
|
591 | 610 | self.dataOut |
|
592 | 611 | self.profileIndex |
|
593 | 612 | self.flagDiscontinuousBlock |
|
594 | 613 | self.flagIsNewBlock |
|
595 | 614 | ''' |
|
596 | 615 | #print("getdata") |
|
597 | 616 | err_counter = 0 |
|
598 | 617 | self.dataOut.flagNoData = True |
|
599 | 618 | |
|
600 | 619 | |
|
601 | 620 | if self.__isBufferEmpty(): |
|
602 | 621 | #print("hi") |
|
603 | 622 | self.__flagDiscontinuousBlock = False |
|
604 | 623 | |
|
605 | 624 | while True: |
|
606 | 625 | if self.__readNextBlock(): |
|
607 | 626 | break |
|
608 | 627 | if self.__thisUnixSample > self.__endUTCSecond * self.__sample_rate: |
|
609 | 628 | raise schainpy.admin.SchainError('Error') |
|
610 | 629 | return |
|
611 | 630 | |
|
612 | 631 | if self.__flagDiscontinuousBlock: |
|
613 | 632 | raise schainpy.admin.SchainError('discontinuous block found') |
|
614 | 633 | return |
|
615 | 634 | |
|
616 | 635 | if not self.__online: |
|
617 | 636 | raise schainpy.admin.SchainError('Online?') |
|
618 | 637 | return |
|
619 | 638 | |
|
620 | 639 | err_counter += 1 |
|
621 | 640 | if err_counter > nTries: |
|
622 | 641 | raise schainpy.admin.SchainError('Max retrys reach') |
|
623 | 642 | return |
|
624 | 643 | |
|
625 | 644 | print('[Reading] waiting %d seconds to read a new block' % seconds) |
|
626 | 645 | sleep(seconds) |
|
627 | 646 | |
|
628 | 647 | |
|
629 | 648 | if not self.getByBlock: |
|
630 | 649 | |
|
631 | 650 | #print("self.__bufferIndex",self.__bufferIndex)# este valor siempre es cero aparentemente |
|
632 | 651 | self.dataOut.data = self.__data_buffer[:, self.__bufferIndex:self.__bufferIndex + self.__nSamples] |
|
633 | 652 | self.dataOut.utctime = ( self.__thisUnixSample + self.__bufferIndex) / self.__sample_rate |
|
634 | 653 | self.dataOut.flagNoData = False |
|
635 | 654 | self.dataOut.flagDiscontinuousBlock = self.__flagDiscontinuousBlock |
|
636 | 655 | self.dataOut.profileIndex = self.profileIndex |
|
637 | 656 | |
|
638 | 657 | self.__bufferIndex += self.__nSamples |
|
639 | 658 | self.profileIndex += 1 |
|
640 | 659 | |
|
641 | 660 | if self.profileIndex == self.dataOut.nProfiles: |
|
642 | 661 | self.profileIndex = 0 |
|
643 | 662 | else: |
|
644 | 663 | # ojo debo anadir el readNextBLock y el __isBufferEmpty( |
|
645 | 664 | self.dataOut.flagNoData = False |
|
646 | 665 | buffer = self.__data_buffer[:,self.__bufferIndex:self.__bufferIndex + self.__samples_to_read] |
|
647 | 666 | buffer = buffer.reshape((self.__nChannels, self.nProfileBlocks, int(self.__samples_to_read/self.nProfileBlocks))) |
|
648 | 667 | self.dataOut.nProfileBlocks = self.nProfileBlocks |
|
649 | 668 | self.dataOut.data = buffer |
|
650 | 669 | self.dataOut.utctime = ( self.__thisUnixSample + self.__bufferIndex) / self.__sample_rate |
|
651 | 670 | self.profileIndex += self.__samples_to_read |
|
652 | 671 | self.__bufferIndex += self.__samples_to_read |
|
653 | 672 | self.dataOut.flagDiscontinuousBlock = self.__flagDiscontinuousBlock |
|
654 | 673 | return True |
|
655 | 674 | |
|
656 | 675 | |
|
657 | 676 | def printInfo(self): |
|
658 | 677 | ''' |
|
659 | 678 | ''' |
|
660 | 679 | if self.__printInfo == False: |
|
661 | 680 | return |
|
662 | 681 | |
|
663 | 682 | # self.systemHeaderObj.printInfo() |
|
664 | 683 | # self.radarControllerHeaderObj.printInfo() |
|
665 | 684 | |
|
666 | 685 | self.__printInfo = False |
|
667 | 686 | |
|
668 | 687 | def printNumberOfBlock(self): |
|
669 | 688 | ''' |
|
670 | 689 | ''' |
|
671 | 690 | return |
|
672 | 691 | # print self.profileIndex |
|
673 | 692 | |
|
674 | 693 | def run(self, **kwargs): |
|
675 | 694 | ''' |
|
676 | 695 | This method will be called many times so here you should put all your code |
|
677 | 696 | ''' |
|
678 | 697 | |
|
679 | 698 | if not self.isConfig: |
|
680 | 699 | self.setup(**kwargs) |
|
681 | 700 | |
|
682 | 701 | self.getData(seconds=self.__delay) |
|
683 | 702 | |
|
684 | 703 | return |
|
685 | 704 | |
|
686 | 705 | @MPDecorator |
|
687 | 706 | class DigitalRFWriter(Operation): |
|
688 | 707 | ''' |
|
689 | 708 | classdocs |
|
690 | 709 | ''' |
|
691 | 710 | |
|
692 | 711 | def __init__(self, **kwargs): |
|
693 | 712 | ''' |
|
694 | 713 | Constructor |
|
695 | 714 | ''' |
|
696 | 715 | Operation.__init__(self, **kwargs) |
|
697 | 716 | self.metadata_dict = {} |
|
698 | 717 | self.dataOut = None |
|
699 | 718 | self.dtype = None |
|
700 | 719 | self.oldAverage = 0 |
|
701 | 720 | |
|
702 | 721 | def setHeader(self): |
|
703 | 722 | |
|
704 | 723 | self.metadata_dict['frequency'] = self.dataOut.frequency |
|
705 | 724 | self.metadata_dict['timezone'] = self.dataOut.timeZone |
|
706 | 725 | self.metadata_dict['dtype'] = pickle.dumps(self.dataOut.dtype) |
|
707 | 726 | self.metadata_dict['nProfiles'] = self.dataOut.nProfiles |
|
708 | 727 | self.metadata_dict['heightList'] = self.dataOut.heightList |
|
709 | 728 | self.metadata_dict['channelList'] = self.dataOut.channelList |
|
710 | 729 | self.metadata_dict['flagDecodeData'] = self.dataOut.flagDecodeData |
|
711 | 730 | self.metadata_dict['flagDeflipData'] = self.dataOut.flagDeflipData |
|
712 | 731 | self.metadata_dict['flagShiftFFT'] = self.dataOut.flagShiftFFT |
|
713 | 732 | self.metadata_dict['useLocalTime'] = self.dataOut.useLocalTime |
|
714 | 733 | self.metadata_dict['nCohInt'] = self.dataOut.nCohInt |
|
715 | 734 | self.metadata_dict['type'] = self.dataOut.type |
|
716 | 735 | self.metadata_dict['flagDataAsBlock']= getattr( |
|
717 | 736 | self.dataOut, 'flagDataAsBlock', None) # chequear |
|
718 | 737 | |
|
719 | 738 | def setup(self, dataOut, path, frequency, fileCadence, dirCadence, metadataCadence, set=0, metadataFile='metadata', ext='.h5'): |
|
720 | 739 | ''' |
|
721 | 740 | In this method we should set all initial parameters. |
|
722 | 741 | Input: |
|
723 | 742 | dataOut: Input data will also be outputa data |
|
724 | 743 | ''' |
|
725 | 744 | self.setHeader() |
|
726 | 745 | self.__ippSeconds = dataOut.ippSeconds |
|
727 | 746 | self.__deltaH = dataOut.getDeltaH() |
|
728 | 747 | self.__sample_rate = 1e6 * 0.15 / self.__deltaH |
|
729 | 748 | self.__dtype = dataOut.dtype |
|
730 | 749 | if len(dataOut.dtype) == 2: |
|
731 | 750 | self.__dtype = dataOut.dtype[0] |
|
732 | 751 | self.__nSamples = dataOut.systemHeaderObj.nSamples |
|
733 | 752 | self.__nProfiles = dataOut.nProfiles |
|
734 | 753 | |
|
735 | 754 | if self.dataOut.type != 'Voltage': |
|
736 | 755 | raise 'Digital RF cannot be used with this data type' |
|
737 | 756 | self.arr_data = numpy.ones((1, dataOut.nFFTPoints * len( |
|
738 | 757 | self.dataOut.channelList)), dtype=[('r', self.__dtype), ('i', self.__dtype)]) |
|
739 | 758 | else: |
|
740 | 759 | self.arr_data = numpy.ones((self.__nSamples, len( |
|
741 | 760 | self.dataOut.channelList)), dtype=[('r', self.__dtype), ('i', self.__dtype)]) |
|
742 | 761 | |
|
743 | 762 | file_cadence_millisecs = 1000 |
|
744 | 763 | |
|
745 | 764 | sample_rate_fraction = Fraction(self.__sample_rate).limit_denominator() |
|
746 | 765 | sample_rate_numerator = int(sample_rate_fraction.numerator) |
|
747 | 766 | sample_rate_denominator = int(sample_rate_fraction.denominator) |
|
748 | 767 | start_global_index = dataOut.utctime * self.__sample_rate |
|
749 | 768 | |
|
750 | 769 | uuid = 'prueba' |
|
751 | 770 | compression_level = 0 |
|
752 | 771 | checksum = False |
|
753 | 772 | is_complex = True |
|
754 | 773 | num_subchannels = len(dataOut.channelList) |
|
755 | 774 | is_continuous = True |
|
756 | 775 | marching_periods = False |
|
757 | 776 | |
|
758 | 777 | self.digitalWriteObj = digital_rf.DigitalRFWriter(path, self.__dtype, dirCadence, |
|
759 | 778 | fileCadence, start_global_index, |
|
760 | 779 | sample_rate_numerator, sample_rate_denominator, uuid, compression_level, checksum, |
|
761 | 780 | is_complex, num_subchannels, is_continuous, marching_periods) |
|
762 | 781 | metadata_dir = os.path.join(path, 'metadata') |
|
763 | 782 | os.system('mkdir %s' % (metadata_dir)) |
|
764 | 783 | self.digitalMetadataWriteObj = digital_rf.DigitalMetadataWriter(metadata_dir, dirCadence, 1, # 236, file_cadence_millisecs / 1000 |
|
765 | 784 | sample_rate_numerator, sample_rate_denominator, |
|
766 | 785 | metadataFile) |
|
767 | 786 | self.isConfig = True |
|
768 | 787 | self.currentSample = 0 |
|
769 | 788 | self.oldAverage = 0 |
|
770 | 789 | self.count = 0 |
|
771 | 790 | return |
|
772 | 791 | |
|
773 | 792 | def writeMetadata(self): |
|
774 | 793 | start_idx = self.__sample_rate * self.dataOut.utctime |
|
775 | 794 | |
|
776 | 795 | self.metadata_dict['processingHeader'] = self.dataOut.processingHeaderObj.getAsDict( |
|
777 | 796 | ) |
|
778 | 797 | self.metadata_dict['radarControllerHeader'] = self.dataOut.radarControllerHeaderObj.getAsDict( |
|
779 | 798 | ) |
|
780 | 799 | self.metadata_dict['systemHeader'] = self.dataOut.systemHeaderObj.getAsDict( |
|
781 | 800 | ) |
|
782 | 801 | self.digitalMetadataWriteObj.write(start_idx, self.metadata_dict) |
|
783 | 802 | return |
|
784 | 803 | |
|
785 | 804 | def timeit(self, toExecute): |
|
786 | 805 | t0 = time() |
|
787 | 806 | toExecute() |
|
788 | 807 | self.executionTime = time() - t0 |
|
789 | 808 | if self.oldAverage is None: |
|
790 | 809 | self.oldAverage = self.executionTime |
|
791 | 810 | self.oldAverage = (self.executionTime + self.count * |
|
792 | 811 | self.oldAverage) / (self.count + 1.0) |
|
793 | 812 | self.count = self.count + 1.0 |
|
794 | 813 | return |
|
795 | 814 | |
|
796 | 815 | def writeData(self): |
|
797 | 816 | if self.dataOut.type != 'Voltage': |
|
798 | 817 | raise 'Digital RF cannot be used with this data type' |
|
799 | 818 | for channel in self.dataOut.channelList: |
|
800 | 819 | for i in range(self.dataOut.nFFTPoints): |
|
801 | 820 | self.arr_data[1][channel * self.dataOut.nFFTPoints + |
|
802 | 821 | i]['r'] = self.dataOut.data[channel][i].real |
|
803 | 822 | self.arr_data[1][channel * self.dataOut.nFFTPoints + |
|
804 | 823 | i]['i'] = self.dataOut.data[channel][i].imag |
|
805 | 824 | else: |
|
806 | 825 | for i in range(self.dataOut.systemHeaderObj.nSamples): |
|
807 | 826 | for channel in self.dataOut.channelList: |
|
808 | 827 | self.arr_data[i][channel]['r'] = self.dataOut.data[channel][i].real |
|
809 | 828 | self.arr_data[i][channel]['i'] = self.dataOut.data[channel][i].imag |
|
810 | 829 | |
|
811 | 830 | def f(): return self.digitalWriteObj.rf_write(self.arr_data) |
|
812 | 831 | self.timeit(f) |
|
813 | 832 | |
|
814 | 833 | return |
|
815 | 834 | |
|
816 | 835 | def run(self, dataOut, frequency=49.92e6, path=None, fileCadence=1000, dirCadence=36000, metadataCadence=1, **kwargs): |
|
817 | 836 | ''' |
|
818 | 837 | This method will be called many times so here you should put all your code |
|
819 | 838 | Inputs: |
|
820 | 839 | dataOut: object with the data |
|
821 | 840 | ''' |
|
822 | 841 | # print dataOut.__dict__ |
|
823 | 842 | self.dataOut = dataOut |
|
824 | 843 | if not self.isConfig: |
|
825 | 844 | self.setup(dataOut, path, frequency, fileCadence, |
|
826 | 845 | dirCadence, metadataCadence, **kwargs) |
|
827 | 846 | self.writeMetadata() |
|
828 | 847 | |
|
829 | 848 | self.writeData() |
|
830 | 849 | |
|
831 | 850 | ## self.currentSample += 1 |
|
832 | 851 | # if self.dataOut.flagDataAsBlock or self.currentSample == 1: |
|
833 | 852 | # self.writeMetadata() |
|
834 | 853 | ## if self.currentSample == self.__nProfiles: self.currentSample = 0 |
|
835 | 854 | |
|
836 | 855 | return dataOut# en la version 2.7 no aparece este return |
|
837 | 856 | |
|
838 | 857 | def close(self): |
|
839 | 858 | print('[Writing] - Closing files ') |
|
840 | 859 | print('Average of writing to digital rf format is ', self.oldAverage * 1000) |
|
841 | 860 | try: |
|
842 | 861 | self.digitalWriteObj.close() |
|
843 | 862 | except: |
|
844 | 863 | pass |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
@@ -1,375 +1,375 | |||
|
1 | 1 | # SOPHY PROC script |
|
2 | 2 | import os, sys, json, argparse |
|
3 | 3 | import datetime |
|
4 | 4 | import time |
|
5 | 5 | |
|
6 | 6 | PATH = '/DATA_RM/DATA' |
|
7 | 7 | PATH = '/media/jespinoza/Elements' |
|
8 | 8 | PATH = '/media/jespinoza/data/SOPHY' |
|
9 | 9 | PATH = '/home/soporte/Documents/EVENTO' |
|
10 | 10 | |
|
11 | 11 | PARAM = { |
|
12 | 12 | 'S': {'zmin': -45, 'zmax': -25, 'colormap': 'jet', 'label': 'Power', 'wrname': 'power','cb_label': 'dBm', 'ch':0}, |
|
13 | 13 | 'SNR': {'zmin': -40, 'zmax': -20, 'colormap': 'jet', 'label': 'SNR', 'wrname': 'snr','cb_label': 'dB', 'ch':0}, |
|
14 | 14 | 'V': {'zmin': -12, 'zmax': 12, 'colormap': 'sophy_v', 'label': 'Velocity', 'wrname': 'velocity', 'cb_label': 'm/s', 'ch':0}, |
|
15 | 15 | 'R': {'zmin': 0, 'zmax': 1, 'colormap': 'jet', 'label': 'RhoHV', 'wrname':'rhoHV', 'cb_label': '*', 'ch':0}, |
|
16 | 16 | 'P': {'zmin': -180,'zmax': 180,'colormap': 'RdBu_r', 'label': 'PhiDP', 'wrname':'phiDP' , 'cb_label': 'ΒΊ', 'ch':0}, |
|
17 | 17 | 'D': {'zmin': -30, 'zmax': 80, 'colormap': 'sophy_r','label': 'ZDR','wrname':'differential_reflectivity' , 'cb_label': 'dBz','ch':0}, |
|
18 | 18 | 'Z': {'zmin': -30, 'zmax': 80, 'colormap': 'sophy_r','label': 'Reflectivity ', 'wrname':'reflectivity', 'cb_label': 'dBz','ch':0}, |
|
19 | 19 | 'W': {'zmin': 0, 'zmax': 15, 'colormap': 'sophy_w','label': 'Spectral Width', 'wrname':'spectral_width', 'cb_label': 'm/s', 'ch':0} |
|
20 | 20 | } |
|
21 | 21 | |
|
22 | 22 | def max_index(r, sample_rate, ipp): |
|
23 | 23 | |
|
24 | 24 | return int(sample_rate*ipp*1e6 * r / 60) + int(sample_rate*ipp*1e6 * 1.2 / 60) |
|
25 | 25 | |
|
26 | 26 | def main(args): |
|
27 | 27 | |
|
28 | 28 | experiment = args.experiment |
|
29 | 29 | fp = open(os.path.join(PATH, experiment, 'experiment.conf')) |
|
30 | 30 | conf = json.loads(fp.read()) |
|
31 | 31 | |
|
32 | 32 | ipp_km = conf['usrp_tx']['ipp'] |
|
33 | 33 | ipp = ipp_km * 2 /300000 |
|
34 | 34 | sample_rate = conf['usrp_rx']['sample_rate'] |
|
35 | 35 | axis = ['0' if x=='elevation' else '1' for x in conf['pedestal']['axis']] # AZIMUTH 1 ELEVACION 0 |
|
36 | 36 | speed_axis = conf['pedestal']['speed'] |
|
37 | 37 | steps = conf['pedestal']['table'] |
|
38 | 38 | time_offset = args.time_offset |
|
39 | 39 | parameters = args.parameters |
|
40 | 40 | start_date = experiment.split('@')[1].split('T')[0].replace('-', '/') |
|
41 | 41 | end_date = start_date |
|
42 | 42 | if args.start_time: |
|
43 | 43 | start_time = args.start_time |
|
44 | 44 | else: |
|
45 | 45 | start_time = experiment.split('@')[1].split('T')[1].replace('-', ':') |
|
46 | 46 | end_time = '23:59:59' |
|
47 | 47 | N = int(1/(speed_axis[0]*ipp)) # 1 GRADO DE RESOLUCION |
|
48 | 48 | path = os.path.join(PATH, experiment, 'rawdata') |
|
49 | 49 | path_ped = os.path.join(PATH, experiment, 'position') |
|
50 | 50 | path_plots = os.path.join(PATH, experiment, 'plotsC0N'+str(args.range)) |
|
51 | 51 | path_save = os.path.join(PATH, experiment, 'paramC0N'+str(args.range)) |
|
52 | 52 | RMIX = 1.62 |
|
53 | 53 | H0 = -1.68 |
|
54 | 54 | MASK = 0.3 |
|
55 | 55 | |
|
56 | 56 | from schainpy.controller import Project |
|
57 | 57 | |
|
58 | 58 | project = Project() |
|
59 | 59 | project.setup(id='1', name='Sophy', description='sophy proc') |
|
60 | 60 | |
|
61 | 61 | reader = project.addReadUnit(datatype='DigitalRFReader', |
|
62 | 62 | path=path, |
|
63 | 63 | startDate=start_date, |
|
64 | 64 | endDate=end_date, |
|
65 | 65 | startTime=start_time, |
|
66 | 66 | endTime=end_time, |
|
67 | 67 | delay=30, |
|
68 | 68 | online=args.online, |
|
69 | 69 | walk=1, |
|
70 | 70 | ippKm = ipp_km, |
|
71 | 71 | getByBlock = 1, |
|
72 | 72 | nProfileBlocks = N, |
|
73 | 73 | ) |
|
74 | 74 | |
|
75 | 75 | if not conf['usrp_tx']['enable_2']: # One Pulse |
|
76 | 76 | voltage = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId()) |
|
77 | 77 | |
|
78 | 78 | if conf['usrp_tx']['code_type_1'] != 'None': |
|
79 | 79 | codes = [ c.strip() for c in conf['usrp_tx']['code_1'].split(',')] |
|
80 | 80 | code = [] |
|
81 | 81 | for c in codes: |
|
82 | 82 | code.append([int(x) for x in c]) |
|
83 | 83 | op = voltage.addOperation(name='Decoder', optype='other') |
|
84 | 84 | op.addParameter(name='code', value=code) |
|
85 | 85 | op.addParameter(name='nCode', value=len(code), format='int') |
|
86 | 86 | op.addParameter(name='nBaud', value=len(code[0]), format='int') |
|
87 | 87 | |
|
88 | 88 | op = voltage.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario |
|
89 | 89 | op.addParameter(name='n', value=len(code), format='int') |
|
90 | 90 | ncode = len(code) |
|
91 | 91 | else: |
|
92 | 92 | ncode = 1 |
|
93 | 93 | code = ['0'] |
|
94 | 94 | |
|
95 | 95 | op = voltage.addOperation(name='setH0') |
|
96 | 96 | op.addParameter(name='h0', value=H0) |
|
97 | 97 | |
|
98 | 98 | if args.range > 0: |
|
99 | 99 | op = voltage.addOperation(name='selectHeights') |
|
100 | 100 | op.addParameter(name='minIndex', value='0', format='int') |
|
101 | 101 | op.addParameter(name='maxIndex', value=max_index(args.range, sample_rate, ipp), format='int') |
|
102 | 102 | |
|
103 | 103 | op = voltage.addOperation(name='PulsePair_vRF', optype='other') |
|
104 | 104 | op.addParameter(name='n', value=int(N)/ncode, format='int') |
|
105 | 105 | #op.addParameter(name='removeDC', value=1, format='int') |
|
106 | 106 | |
|
107 | 107 | |
|
108 | 108 | proc = project.addProcUnit(datatype='ParametersProc', inputId=voltage.getId()) |
|
109 | 109 | |
|
110 | 110 | opObj10 = proc.addOperation(name="WeatherRadar") |
|
111 | 111 | opObj10.addParameter(name='tauW',value=(1e-6/sample_rate)*len(code[0])) |
|
112 | 112 | opObj10.addParameter(name='Pt',value=((1e-6/sample_rate)*len(code[0])/ipp)*200) |
|
113 | 113 | |
|
114 | 114 | op = proc.addOperation(name='PedestalInformation') |
|
115 | 115 | op.addParameter(name='path', value=path_ped, format='str') |
|
116 | 116 | op.addParameter(name='interval', value='0.04') |
|
117 | 117 | op.addParameter(name='time_offset', value=time_offset) |
|
118 | 118 | op.addParameter(name='mode', value='PPI') |
|
119 | 119 | |
|
120 | 120 | for param in parameters: |
|
121 | 121 | op = proc.addOperation(name='Block360') |
|
122 | 122 | op.addParameter(name='runNextOp', value=True) |
|
123 | 123 | |
|
124 | 124 | op= proc.addOperation(name='WeatherParamsPlot') |
|
125 | 125 | if args.save: op.addParameter(name='save', value=path_plots, format='str') |
|
126 | 126 | op.addParameter(name='save_period', value=-1) |
|
127 | 127 | op.addParameter(name='show', value=args.show) |
|
128 | 128 | op.addParameter(name='channels', value='1,') |
|
129 | 129 | op.addParameter(name='zmin', value=PARAM[param]['zmin']) |
|
130 | 130 | op.addParameter(name='zmax', value=PARAM[param]['zmax']) |
|
131 | 131 | op.addParameter(name='attr_data', value=param, format='str') |
|
132 | 132 | op.addParameter(name='labels', value=[PARAM[param]['label']]) |
|
133 | 133 | op.addParameter(name='save_code', value=param) |
|
134 | 134 | op.addParameter(name='cb_label', value=PARAM[param]['cb_label']) |
|
135 | 135 | op.addParameter(name='colormap', value=PARAM[param]['colormap']) |
|
136 | 136 | op.addParameter(name='bgcolor', value='black') |
|
137 | 137 | if MASK: op.addParameter(name='mask', value=MASK, format='float') |
|
138 | 138 | if args.server: |
|
139 | 139 | op.addParameter(name='server', value='0.0.0.0:4444') |
|
140 | 140 | op.addParameter(name='exp_code', value='400') |
|
141 | 141 | |
|
142 | 142 | desc = { |
|
143 | 143 | 'Data': { |
|
144 | 144 | param: PARAM[param]['wrname'], |
|
145 | 145 | 'utctime': 'time' |
|
146 | 146 | }, |
|
147 | 147 | 'Metadata': { |
|
148 | 148 | 'heightList': 'range', |
|
149 | 149 | 'data_azi': 'azimuth', |
|
150 | 150 | 'data_ele': 'elevation', |
|
151 | 151 | 'mode_op': 'scan_type', |
|
152 | 152 | 'h0': 'range_correction', |
|
153 | 153 | } |
|
154 | 154 | } |
|
155 | 155 | |
|
156 | 156 | if args.save: |
|
157 | 157 | opObj10 = proc.addOperation(name='HDFWriter') |
|
158 | 158 | writer.addParameter(name='path', value=path_save, format='str') |
|
159 | 159 | writer.addParameter(name='Reset', value=True) |
|
160 | 160 | writer.addParameter(name='setType', value='weather') |
|
161 | 161 | writer.addParameter(name='description', value=json.dumps(desc)) |
|
162 | 162 | writer.addParameter(name='blocksPerFile', value='1',format='int') |
|
163 | 163 | writer.addParameter(name='metadataList', value='heightList,data_azi,data_ele,mode_op,latitude,longitude,altitude,heading,radar_name,institution,contact,h0,range_unit') |
|
164 | 164 | writer.addParameter(name='dataList', value='{},utctime'.format(param)) |
|
165 | 165 | writer.addParameter(name='mask', value=MASK, format='float') |
|
166 | 166 | # meta |
|
167 | 167 | writer.addParameter(name='latitude', value='-12.040436') |
|
168 | 168 | writer.addParameter(name='longitude', value='-75.295893') |
|
169 | 169 | writer.addParameter(name='altitude', value='3379.2147') |
|
170 | 170 | writer.addParameter(name='heading', value='0') |
|
171 | 171 | writer.addParameter(name='radar_name', value='SOPHy') |
|
172 | 172 | writer.addParameter(name='institution', value='IGP') |
|
173 | 173 | writer.addParameter(name='contact', value='dscipion@igp.gob.pe') |
|
174 | 174 | writer.addParameter(name='created_by', value='Signal Chain (https://pypi.org/project/schainpy/)') |
|
175 | 175 | writer.addParameter(name='range_unit', value='km') |
|
176 | 176 | |
|
177 | 177 | else: #Two pulses |
|
178 | 178 | |
|
179 | 179 | voltage1 = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId()) |
|
180 | 180 | |
|
181 | 181 | op = voltage1.addOperation(name='ProfileSelector') |
|
182 | 182 | op.addParameter(name='profileRangeList', value='0,{}'.format(conf['usrp_tx']['repetitions_1']-1)) |
|
183 | 183 | |
|
184 | 184 | if conf['usrp_tx']['code_type_1'] != 'None': |
|
185 | 185 | codes = [ c.strip() for c in conf['usrp_tx']['code_1'].split(',')] |
|
186 | 186 | code = [] |
|
187 | 187 | for c in codes: |
|
188 | 188 | code.append([int(x) for x in c]) |
|
189 | 189 | op = voltage1.addOperation(name='Decoder', optype='other') |
|
190 | 190 | op.addParameter(name='code', value=code) |
|
191 | 191 | op.addParameter(name='nCode', value=len(code), format='int') |
|
192 | 192 | op.addParameter(name='nBaud', value=len(code[0]), format='int') |
|
193 | 193 | else: |
|
194 | 194 | code = ['0'] |
|
195 | 195 | |
|
196 | 196 | op = voltage1.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario |
|
197 | 197 | op.addParameter(name='n', value=2, format='int') |
|
198 | 198 | |
|
199 | 199 | if args.range > 0: |
|
200 | 200 | op = voltage1.addOperation(name='selectHeights') |
|
201 | 201 | op.addParameter(name='minIndex', value='0', format='int') |
|
202 | 202 | op.addParameter(name='maxIndex', value=max_index(RMIX, sample_rate, ipp), format='int') |
|
203 | 203 | |
|
204 | 204 | op = voltage1.addOperation(name='setH0') |
|
205 | 205 | op.addParameter(name='h0', value=H0, format='float') |
|
206 | 206 | |
|
207 | 207 | op = voltage1.addOperation(name='PulsePair_vRF', optype='other') |
|
208 | 208 | op.addParameter(name='n', value=int(conf['usrp_tx']['repetitions_1'])/2, format='int') |
|
209 | 209 | #op.addParameter(name='removeDC', value=1, format='int') |
|
210 | 210 | |
|
211 | 211 | |
|
212 | 212 | proc1 = project.addProcUnit(datatype='ParametersProc', inputId=voltage1.getId()) |
|
213 | 213 | proc1.addParameter(name='runNextUnit', value=True) |
|
214 | 214 | |
|
215 | 215 | opObj10 = proc1.addOperation(name="WeatherRadar") |
|
216 | 216 | opObj10.addParameter(name='tauW',value=(1e-6/sample_rate)*len(code[0])) |
|
217 |
opObj10.addParameter(name='Pt',value= |
|
|
217 | opObj10.addParameter(name='Pt',value=200) | |
|
218 | 218 | |
|
219 | 219 | op = proc1.addOperation(name='PedestalInformation') |
|
220 | 220 | op.addParameter(name='path', value=path_ped, format='str') |
|
221 | 221 | op.addParameter(name='interval', value='0.04') |
|
222 | 222 | op.addParameter(name='time_offset', value=time_offset) |
|
223 | 223 | op.addParameter(name='mode', value='PPI') |
|
224 | 224 | |
|
225 | 225 | op = proc1.addOperation(name='Block360') |
|
226 | 226 | op.addParameter(name='attr_data', value='data_param') |
|
227 | 227 | op.addParameter(name='runNextOp', value=True) |
|
228 | 228 | |
|
229 | 229 | |
|
230 | 230 | voltage2 = project.addProcUnit(datatype='VoltageProc', inputId=reader.getId()) |
|
231 | 231 | |
|
232 | 232 | op = voltage2.addOperation(name='ProfileSelector') |
|
233 | 233 | op.addParameter(name='profileRangeList', value='{},{}'.format(conf['usrp_tx']['repetitions_1'], conf['usrp_tx']['repetitions_1']+conf['usrp_tx']['repetitions_2']-1)) |
|
234 | 234 | |
|
235 | 235 | if conf['usrp_tx']['code_type_2']: |
|
236 | 236 | codes = [ c.strip() for c in conf['usrp_tx']['code_2'].split(',')] |
|
237 | 237 | code = [] |
|
238 | 238 | for c in codes: |
|
239 | 239 | code.append([int(x) for x in c]) |
|
240 | 240 | op = voltage2.addOperation(name='Decoder', optype='other') |
|
241 | 241 | op.addParameter(name='code', value=code) |
|
242 | 242 | op.addParameter(name='nCode', value=len(code), format='int') |
|
243 | 243 | op.addParameter(name='nBaud', value=len(code[0]), format='int') |
|
244 | 244 | |
|
245 | 245 | op = voltage2.addOperation(name='CohInt', optype='other') #Minimo integrar 2 perfiles por ser codigo complementario |
|
246 | 246 | op.addParameter(name='n', value=len(code), format='int') |
|
247 | 247 | ncode = len(code) |
|
248 | 248 | else: |
|
249 | 249 | ncode = 1 |
|
250 | 250 | |
|
251 | 251 | if args.range > 0: |
|
252 | 252 | op = voltage2.addOperation(name='selectHeights') |
|
253 | 253 | op.addParameter(name='minIndex', value=max_index(RMIX, sample_rate, ipp), format='int') |
|
254 | 254 | op.addParameter(name='maxIndex', value=max_index(args.range, sample_rate, ipp), format='int') |
|
255 | 255 | |
|
256 | 256 | op = voltage2.addOperation(name='setH0') |
|
257 | 257 | op.addParameter(name='h0', value=H0, format='float') |
|
258 | 258 | |
|
259 | 259 | op = voltage2.addOperation(name='PulsePair_vRF', optype='other') |
|
260 | 260 | op.addParameter(name='n', value=int(conf['usrp_tx']['repetitions_2'])/ncode, format='int') |
|
261 | 261 | #op.addParameter(name='removeDC', value=1, format='int') |
|
262 | 262 | |
|
263 | 263 | |
|
264 | 264 | proc2 = project.addProcUnit(datatype='ParametersProc', inputId=voltage2.getId()) |
|
265 | 265 | proc2.addParameter(name='runNextUnit', value=True) |
|
266 | 266 | |
|
267 | 267 | opObj10 = proc2.addOperation(name="WeatherRadar") |
|
268 | 268 | opObj10.addParameter(name='tauW',value=(1e-6/sample_rate)*len(code[0])) |
|
269 |
opObj10.addParameter(name='Pt',value= |
|
|
269 | opObj10.addParameter(name='Pt',value=200) | |
|
270 | 270 | |
|
271 | 271 | op = proc2.addOperation(name='PedestalInformation') |
|
272 | 272 | op.addParameter(name='path', value=path_ped, format='str') |
|
273 | 273 | op.addParameter(name='interval', value='0.04') |
|
274 | 274 | op.addParameter(name='time_offset', value=time_offset) |
|
275 | 275 | op.addParameter(name='mode', value='PPI') |
|
276 | 276 | |
|
277 | 277 | op = proc2.addOperation(name='Block360') |
|
278 | 278 | op.addParameter(name='attr_data', value='data_param') |
|
279 | 279 | op.addParameter(name='runNextOp', value=True) |
|
280 | 280 | |
|
281 | 281 | merge = project.addProcUnit(datatype='MergeProc', inputId=[proc1.getId(), proc2.getId()]) |
|
282 | 282 | merge.addParameter(name='attr_data', value='data_param') |
|
283 | 283 | merge.addParameter(name='mode', value='7') #RM |
|
284 | 284 | |
|
285 | 285 | |
|
286 | 286 | for param in parameters: |
|
287 | 287 | |
|
288 | 288 | if args.plot: |
|
289 | 289 | op= merge.addOperation(name='WeatherParamsPlot') |
|
290 | 290 | if args.save: |
|
291 | 291 | op.addParameter(name='save', value=path_plots, format='str') |
|
292 | 292 | op.addParameter(name='save_period', value=-1) |
|
293 | 293 | op.addParameter(name='show', value=args.show) |
|
294 | 294 | op.addParameter(name='channels', value='0,') |
|
295 | 295 | op.addParameter(name='zmin', value=PARAM[param]['zmin'], format='int') |
|
296 | 296 | op.addParameter(name='zmax', value=PARAM[param]['zmax'], format='int') |
|
297 | 297 | op.addParameter(name='attr_data', value=param, format='str') |
|
298 | 298 | op.addParameter(name='labels', value=[PARAM[param]['label']]) |
|
299 | 299 | op.addParameter(name='save_code', value=param) |
|
300 | 300 | op.addParameter(name='cb_label', value=PARAM[param]['cb_label']) |
|
301 | 301 | op.addParameter(name='colormap', value=PARAM[param]['colormap']) |
|
302 | 302 | op.addParameter(name='bgcolor', value='black') |
|
303 | 303 | if MASK: op.addParameter(name='mask', value=MASK, format='float') |
|
304 | 304 | if args.server: |
|
305 | 305 | op.addParameter(name='server', value='0.0.0.0:4444') |
|
306 | 306 | op.addParameter(name='exp_code', value='400') |
|
307 | 307 | |
|
308 | 308 | desc = { |
|
309 | 309 | 'Data': { |
|
310 | 310 | 'data_param': {PARAM[param]['wrname']: ['H', 'V']}, |
|
311 | 311 | 'utctime': 'time' |
|
312 | 312 | }, |
|
313 | 313 | 'Metadata': { |
|
314 | 314 | 'heightList': 'range', |
|
315 | 315 | 'data_azi': 'azimuth', |
|
316 | 316 | 'data_ele': 'elevation', |
|
317 | 317 | 'mode_op': 'scan_type', |
|
318 | 318 | 'h0': 'range_correction', |
|
319 | 319 | } |
|
320 | 320 | } |
|
321 | 321 | |
|
322 | 322 | if args.save: |
|
323 | 323 | writer = merge.addOperation(name='HDFWriter') |
|
324 | 324 | writer.addParameter(name='path', value=path_save, format='str') |
|
325 | 325 | writer.addParameter(name='Reset', value=True) |
|
326 | 326 | writer.addParameter(name='setType', value='weather') |
|
327 | 327 | writer.addParameter(name='description', value=json.dumps(desc)) |
|
328 | 328 | writer.addParameter(name='blocksPerFile', value='1',format='int') |
|
329 | 329 | writer.addParameter(name='metadataList', value='heightList,data_azi,data_ele,mode_op,latitude,longitude,altitude,heading,radar_name,institution,contact,h0,range_unit') |
|
330 | 330 | writer.addParameter(name='dataList', value='data_param,utctime') |
|
331 | 331 | writer.addParameter(name='weather_var', value=param) |
|
332 | 332 | writer.addParameter(name='mask', value=MASK, format='float') |
|
333 | 333 | # meta |
|
334 | 334 | writer.addParameter(name='latitude', value='-12.040436') |
|
335 | 335 | writer.addParameter(name='longitude', value='-75.295893') |
|
336 | 336 | writer.addParameter(name='altitude', value='3379.2147') |
|
337 | 337 | writer.addParameter(name='heading', value='0') |
|
338 | 338 | writer.addParameter(name='radar_name', value='SOPHy') |
|
339 | 339 | writer.addParameter(name='institution', value='IGP') |
|
340 | 340 | writer.addParameter(name='contact', value='dscipion@igp.gob.pe') |
|
341 | 341 | writer.addParameter(name='created_by', value='Signal Chain (https://pypi.org/project/schainpy/)') |
|
342 | 342 | writer.addParameter(name='range_unit', value='km') |
|
343 | 343 | |
|
344 | 344 | project.start() |
|
345 | 345 | |
|
346 | 346 | if __name__ == '__main__': |
|
347 | 347 | |
|
348 | 348 | parser = argparse.ArgumentParser(description='Script to process SOPHy data.') |
|
349 | 349 | parser.add_argument('experiment', |
|
350 | 350 | help='Experiment name') |
|
351 | 351 | parser.add_argument('--parameters', nargs='*', default=['S'], |
|
352 | 352 | help='Variables to process: P, Z, V') |
|
353 | 353 | parser.add_argument('--time_offset', default=0, |
|
354 | 354 | help='Fix time offset') |
|
355 | 355 | parser.add_argument('--range', default=0, type=float, |
|
356 | 356 | help='Max range to plot') |
|
357 | 357 | parser.add_argument('--save', action='store_true', |
|
358 | 358 | help='Create output files') |
|
359 | 359 | parser.add_argument('--plot', action='store_true', |
|
360 | 360 | help='Create plot files') |
|
361 | 361 | parser.add_argument('--show', action='store_true', |
|
362 | 362 | help='Show matplotlib plot.') |
|
363 | 363 | parser.add_argument('--online', action='store_true', |
|
364 | 364 | help='Set online mode.') |
|
365 | 365 | parser.add_argument('--server', action='store_true', |
|
366 | 366 | help='Send to realtime') |
|
367 | 367 | parser.add_argument('--start_time', default='', |
|
368 | 368 | help='Set start time.') |
|
369 | 369 | |
|
370 | 370 | |
|
371 | 371 | args = parser.parse_args() |
|
372 | 372 | |
|
373 | 373 | main(args) |
|
374 | 374 | |
|
375 | 375 | # python sophy_proc.py HYO_PM@2022-06-09T15-05-12 --parameters V --plot --save --show --range 36S |
General Comments 0
You need to be logged in to leave comments.
Login now