@@ -4,7 +4,7 import numpy | |||
|
4 | 4 | |
|
5 | 5 | from figure import Figure, isRealtime, isTimeInHourRange |
|
6 | 6 | from plotting_codes import * |
|
7 | from numpy import NaN | |
|
7 | ||
|
8 | 8 | |
|
9 | 9 | class MomentsPlot(Figure): |
|
10 | 10 | |
@@ -447,13 +447,9 class WindProfilerPlot(Figure): | |||
|
447 | 447 | # tmax = None |
|
448 | 448 | |
|
449 | 449 | |
|
450 | x = dataOut.getTimeRange() | |
|
451 |
y = dataOut. |
|
|
452 | #x = dataOut.getTimeRange1(dataOut.outputInterval) | |
|
453 | #y = dataOut.heightList | |
|
454 | ||
|
450 | x = dataOut.getTimeRange1(dataOut.outputInterval) | |
|
451 | y = dataOut.heightList | |
|
455 | 452 | z = dataOut.data_output.copy() |
|
456 | #print 'dataOut_JI',z | |
|
457 | 453 | nplots = z.shape[0] #Number of wind dimensions estimated |
|
458 | 454 | nplotsw = nplots |
|
459 | 455 | |
@@ -473,10 +469,8 class WindProfilerPlot(Figure): | |||
|
473 | 469 | for i in range(nplotsw): |
|
474 | 470 | z[i,ind] = numpy.nan |
|
475 | 471 | |
|
476 | ||
|
477 | # showprofile = False | |
|
478 | # thisDatetime = dataOut.datatime | |
|
479 | 472 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) |
|
473 | #thisDatetime = datetime.datetime.now() | |
|
480 | 474 | title = wintitle + "Wind" |
|
481 | 475 | xlabel = "" |
|
482 | 476 | ylabel = "Height (km)" |
@@ -549,9 +543,7 class WindProfilerPlot(Figure): | |||
|
549 | 543 | i += 1 |
|
550 | 544 | title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
551 | 545 | axes = self.axesList[i*self.__nsubplots] |
|
552 | ||
|
553 | 546 |
SNRavgdB = SNRavgdB.reshape((1,-1)) |
|
554 | ||
|
555 | 547 | axes.pcolorbuffer(x, y, SNRavgdB, |
|
556 | 548 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
557 | 549 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
General Comments 0
You need to be logged in to leave comments.
Login now