The requested changes are too big and content was truncated. Show full diff
@@ -1,1372 +1,1372 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import copy |
|
8 | 8 | import numpy |
|
9 | 9 | import datetime |
|
10 | 10 | import json |
|
11 | 11 | |
|
12 | 12 | from schainpy.utils import log |
|
13 | 13 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
14 | 14 | |
|
15 | 15 | |
|
16 | 16 | def getNumpyDtype(dataTypeCode): |
|
17 | 17 | |
|
18 | 18 | if dataTypeCode == 0: |
|
19 | 19 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
20 | 20 | elif dataTypeCode == 1: |
|
21 | 21 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
22 | 22 | elif dataTypeCode == 2: |
|
23 | 23 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
24 | 24 | elif dataTypeCode == 3: |
|
25 | 25 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
26 | 26 | elif dataTypeCode == 4: |
|
27 | 27 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
28 | 28 | elif dataTypeCode == 5: |
|
29 | 29 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
30 | 30 | else: |
|
31 | 31 | raise ValueError('dataTypeCode was not defined') |
|
32 | 32 | |
|
33 | 33 | return numpyDtype |
|
34 | 34 | |
|
35 | 35 | |
|
36 | 36 | def getDataTypeCode(numpyDtype): |
|
37 | 37 | |
|
38 | 38 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
39 | 39 | datatype = 0 |
|
40 | 40 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
41 | 41 | datatype = 1 |
|
42 | 42 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
43 | 43 | datatype = 2 |
|
44 | 44 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
45 | 45 | datatype = 3 |
|
46 | 46 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
47 | 47 | datatype = 4 |
|
48 | 48 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
49 | 49 | datatype = 5 |
|
50 | 50 | else: |
|
51 | 51 | datatype = None |
|
52 | 52 | |
|
53 | 53 | return datatype |
|
54 | 54 | |
|
55 | 55 | |
|
56 | 56 | def hildebrand_sekhon(data, navg): |
|
57 | 57 | """ |
|
58 | 58 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
59 | 59 | implementation technique is based on the fact that the standard deviation of the spectral |
|
60 | 60 | densities is equal to the mean spectral density for white Gaussian noise |
|
61 | 61 | |
|
62 | 62 | Inputs: |
|
63 | 63 | Data : heights |
|
64 | 64 | navg : numbers of averages |
|
65 | 65 | |
|
66 | 66 | Return: |
|
67 | 67 | mean : noise's level |
|
68 | 68 | """ |
|
69 | 69 | |
|
70 | 70 | sortdata = numpy.sort(data, axis=None) |
|
71 | 71 | lenOfData = len(sortdata) |
|
72 | 72 | nums_min = lenOfData*0.2 |
|
73 | 73 | |
|
74 | 74 | if nums_min <= 5: |
|
75 | 75 | |
|
76 | 76 | nums_min = 5 |
|
77 | 77 | |
|
78 | 78 | sump = 0. |
|
79 | 79 | sumq = 0. |
|
80 | 80 | |
|
81 | 81 | j = 0 |
|
82 | 82 | cont = 1 |
|
83 | 83 | |
|
84 | 84 | while((cont == 1)and(j < lenOfData)): |
|
85 | 85 | |
|
86 | 86 | sump += sortdata[j] |
|
87 | 87 | sumq += sortdata[j]**2 |
|
88 | 88 | |
|
89 | 89 | if j > nums_min: |
|
90 | 90 | rtest = float(j)/(j-1) + 1.0/navg |
|
91 | 91 | if ((sumq*j) > (rtest*sump**2)): |
|
92 | 92 | j = j - 1 |
|
93 | 93 | sump = sump - sortdata[j] |
|
94 | 94 | sumq = sumq - sortdata[j]**2 |
|
95 | 95 | cont = 0 |
|
96 | 96 | |
|
97 | 97 | j += 1 |
|
98 | 98 | |
|
99 | 99 | lnoise = sump / j |
|
100 | 100 | |
|
101 | 101 | return lnoise |
|
102 | 102 | |
|
103 | 103 | |
|
104 | 104 | class Beam: |
|
105 | 105 | |
|
106 | 106 | def __init__(self): |
|
107 | 107 | self.codeList = [] |
|
108 | 108 | self.azimuthList = [] |
|
109 | 109 | self.zenithList = [] |
|
110 | 110 | |
|
111 | 111 | |
|
112 | 112 | class GenericData(object): |
|
113 | 113 | |
|
114 | 114 | flagNoData = True |
|
115 | 115 | |
|
116 | 116 | def copy(self, inputObj=None): |
|
117 | 117 | |
|
118 | 118 | if inputObj == None: |
|
119 | 119 | return copy.deepcopy(self) |
|
120 | 120 | |
|
121 | 121 | for key in list(inputObj.__dict__.keys()): |
|
122 | 122 | |
|
123 | 123 | attribute = inputObj.__dict__[key] |
|
124 | 124 | |
|
125 | 125 | # If this attribute is a tuple or list |
|
126 | 126 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
127 | 127 | self.__dict__[key] = attribute[:] |
|
128 | 128 | continue |
|
129 | 129 | |
|
130 | 130 | # If this attribute is another object or instance |
|
131 | 131 | if hasattr(attribute, '__dict__'): |
|
132 | 132 | self.__dict__[key] = attribute.copy() |
|
133 | 133 | continue |
|
134 | 134 | |
|
135 | 135 | self.__dict__[key] = inputObj.__dict__[key] |
|
136 | 136 | |
|
137 | 137 | def deepcopy(self): |
|
138 | 138 | |
|
139 | 139 | return copy.deepcopy(self) |
|
140 | 140 | |
|
141 | 141 | def isEmpty(self): |
|
142 | 142 | |
|
143 | 143 | return self.flagNoData |
|
144 | 144 | |
|
145 | 145 | |
|
146 | 146 | class JROData(GenericData): |
|
147 | 147 | |
|
148 | 148 | # m_BasicHeader = BasicHeader() |
|
149 | 149 | # m_ProcessingHeader = ProcessingHeader() |
|
150 | 150 | |
|
151 | 151 | systemHeaderObj = SystemHeader() |
|
152 | 152 | radarControllerHeaderObj = RadarControllerHeader() |
|
153 | 153 | # data = None |
|
154 | 154 | type = None |
|
155 | 155 | datatype = None # dtype but in string |
|
156 | 156 | # dtype = None |
|
157 | 157 | # nChannels = None |
|
158 | 158 | # nHeights = None |
|
159 | 159 | nProfiles = None |
|
160 | 160 | heightList = None |
|
161 | 161 | channelList = None |
|
162 | 162 | flagDiscontinuousBlock = False |
|
163 | 163 | useLocalTime = False |
|
164 | 164 | utctime = None |
|
165 | 165 | timeZone = None |
|
166 | 166 | dstFlag = None |
|
167 | 167 | errorCount = None |
|
168 | 168 | blocksize = None |
|
169 | 169 | # nCode = None |
|
170 | 170 | # nBaud = None |
|
171 | 171 | # code = None |
|
172 | 172 | flagDecodeData = False # asumo q la data no esta decodificada |
|
173 | 173 | flagDeflipData = False # asumo q la data no esta sin flip |
|
174 | 174 | flagShiftFFT = False |
|
175 | 175 | # ippSeconds = None |
|
176 | 176 | # timeInterval = None |
|
177 | 177 | nCohInt = None |
|
178 | 178 | # noise = None |
|
179 | 179 | windowOfFilter = 1 |
|
180 | 180 | # Speed of ligth |
|
181 | 181 | C = 3e8 |
|
182 | 182 | frequency = 49.92e6 |
|
183 | 183 | realtime = False |
|
184 | 184 | beacon_heiIndexList = None |
|
185 | 185 | last_block = None |
|
186 | 186 | blocknow = None |
|
187 | 187 | azimuth = None |
|
188 | 188 | zenith = None |
|
189 | 189 | beam = Beam() |
|
190 | 190 | profileIndex = None |
|
191 | 191 | error = None |
|
192 | 192 | data = None |
|
193 | 193 | nmodes = None |
|
194 | 194 | |
|
195 | 195 | def __str__(self): |
|
196 | 196 | |
|
197 | 197 | return '{} - {}'.format(self.type, self.getDatatime()) |
|
198 | 198 | |
|
199 | 199 | def getNoise(self): |
|
200 | 200 | |
|
201 | 201 | raise NotImplementedError |
|
202 | 202 | |
|
203 | 203 | def getNChannels(self): |
|
204 | 204 | |
|
205 | 205 | return len(self.channelList) |
|
206 | 206 | |
|
207 | 207 | def getChannelIndexList(self): |
|
208 | 208 | |
|
209 | 209 | return list(range(self.nChannels)) |
|
210 | 210 | |
|
211 | 211 | def getNHeights(self): |
|
212 | 212 | |
|
213 | 213 | return len(self.heightList) |
|
214 | 214 | |
|
215 | 215 | def getHeiRange(self, extrapoints=0): |
|
216 | 216 | |
|
217 | 217 | heis = self.heightList |
|
218 | 218 | # deltah = self.heightList[1] - self.heightList[0] |
|
219 | 219 | # |
|
220 | 220 | # heis.append(self.heightList[-1]) |
|
221 | 221 | |
|
222 | 222 | return heis |
|
223 | 223 | |
|
224 | 224 | def getDeltaH(self): |
|
225 | 225 | |
|
226 | 226 | delta = self.heightList[1] - self.heightList[0] |
|
227 | 227 | |
|
228 | 228 | return delta |
|
229 | 229 | |
|
230 | 230 | def getltctime(self): |
|
231 | 231 | |
|
232 | 232 | if self.useLocalTime: |
|
233 | 233 | return self.utctime - self.timeZone * 60 |
|
234 | 234 | |
|
235 | 235 | return self.utctime |
|
236 | 236 | |
|
237 | 237 | def getDatatime(self): |
|
238 | 238 | |
|
239 | 239 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
240 | 240 | return datatimeValue |
|
241 | 241 | |
|
242 | 242 | def getTimeRange(self): |
|
243 | 243 | |
|
244 | 244 | datatime = [] |
|
245 | 245 | |
|
246 | 246 | datatime.append(self.ltctime) |
|
247 | 247 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
248 | 248 | |
|
249 | 249 | datatime = numpy.array(datatime) |
|
250 | 250 | |
|
251 | 251 | return datatime |
|
252 | 252 | |
|
253 | 253 | def getFmaxTimeResponse(self): |
|
254 | 254 | |
|
255 | 255 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
256 | 256 | |
|
257 | 257 | PRF = 1. / (period * self.nCohInt) |
|
258 | 258 | |
|
259 | 259 | fmax = PRF |
|
260 | 260 | |
|
261 | 261 | return fmax |
|
262 | 262 | |
|
263 | 263 | def getFmax(self): |
|
264 | 264 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
265 | 265 | |
|
266 | 266 | fmax = PRF |
|
267 | 267 | return fmax |
|
268 | 268 | |
|
269 | 269 | def getVmax(self): |
|
270 | 270 | |
|
271 | 271 | _lambda = self.C / self.frequency |
|
272 | 272 | |
|
273 | 273 | vmax = self.getFmax() * _lambda / 2 |
|
274 | 274 | |
|
275 | 275 | return vmax |
|
276 | 276 | |
|
277 | 277 | def get_ippSeconds(self): |
|
278 | 278 | ''' |
|
279 | 279 | ''' |
|
280 | 280 | return self.radarControllerHeaderObj.ippSeconds |
|
281 | 281 | |
|
282 | 282 | def set_ippSeconds(self, ippSeconds): |
|
283 | 283 | ''' |
|
284 | 284 | ''' |
|
285 | 285 | |
|
286 | 286 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
287 | 287 | |
|
288 | 288 | return |
|
289 | 289 | |
|
290 | 290 | def get_dtype(self): |
|
291 | 291 | ''' |
|
292 | 292 | ''' |
|
293 | 293 | return getNumpyDtype(self.datatype) |
|
294 | 294 | |
|
295 | 295 | def set_dtype(self, numpyDtype): |
|
296 | 296 | ''' |
|
297 | 297 | ''' |
|
298 | 298 | |
|
299 | 299 | self.datatype = getDataTypeCode(numpyDtype) |
|
300 | 300 | |
|
301 | 301 | def get_code(self): |
|
302 | 302 | ''' |
|
303 | 303 | ''' |
|
304 | 304 | return self.radarControllerHeaderObj.code |
|
305 | 305 | |
|
306 | 306 | def set_code(self, code): |
|
307 | 307 | ''' |
|
308 | 308 | ''' |
|
309 | 309 | self.radarControllerHeaderObj.code = code |
|
310 | 310 | |
|
311 | 311 | return |
|
312 | 312 | |
|
313 | 313 | def get_ncode(self): |
|
314 | 314 | ''' |
|
315 | 315 | ''' |
|
316 | 316 | return self.radarControllerHeaderObj.nCode |
|
317 | 317 | |
|
318 | 318 | def set_ncode(self, nCode): |
|
319 | 319 | ''' |
|
320 | 320 | ''' |
|
321 | 321 | self.radarControllerHeaderObj.nCode = nCode |
|
322 | 322 | |
|
323 | 323 | return |
|
324 | 324 | |
|
325 | 325 | def get_nbaud(self): |
|
326 | 326 | ''' |
|
327 | 327 | ''' |
|
328 | 328 | return self.radarControllerHeaderObj.nBaud |
|
329 | 329 | |
|
330 | 330 | def set_nbaud(self, nBaud): |
|
331 | 331 | ''' |
|
332 | 332 | ''' |
|
333 | 333 | self.radarControllerHeaderObj.nBaud = nBaud |
|
334 | 334 | |
|
335 | 335 | return |
|
336 | 336 | |
|
337 | 337 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
338 | 338 | channelIndexList = property( |
|
339 | 339 | getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
340 | 340 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
341 | 341 | #noise = property(getNoise, "I'm the 'nHeights' property.") |
|
342 | 342 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
343 | 343 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
344 | 344 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
345 | 345 | dtype = property(get_dtype, set_dtype) |
|
346 | 346 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
347 | 347 | code = property(get_code, set_code) |
|
348 | 348 | nCode = property(get_ncode, set_ncode) |
|
349 | 349 | nBaud = property(get_nbaud, set_nbaud) |
|
350 | 350 | |
|
351 | 351 | |
|
352 | 352 | class Voltage(JROData): |
|
353 | 353 | |
|
354 | 354 | # data es un numpy array de 2 dmensiones (canales, alturas) |
|
355 | 355 | data = None |
|
356 | 356 | |
|
357 | 357 | def __init__(self): |
|
358 | 358 | ''' |
|
359 | 359 | Constructor |
|
360 | 360 | ''' |
|
361 | 361 | |
|
362 | 362 | self.useLocalTime = True |
|
363 | 363 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
364 | 364 | self.systemHeaderObj = SystemHeader() |
|
365 | 365 | self.type = "Voltage" |
|
366 | 366 | self.data = None |
|
367 | 367 | # self.dtype = None |
|
368 | 368 | # self.nChannels = 0 |
|
369 | 369 | # self.nHeights = 0 |
|
370 | 370 | self.nProfiles = None |
|
371 | 371 | self.heightList = None |
|
372 | 372 | self.channelList = None |
|
373 | 373 | # self.channelIndexList = None |
|
374 | 374 | self.flagNoData = True |
|
375 | 375 | self.flagDiscontinuousBlock = False |
|
376 | 376 | self.utctime = None |
|
377 | 377 | self.timeZone = None |
|
378 | 378 | self.dstFlag = None |
|
379 | 379 | self.errorCount = None |
|
380 | 380 | self.nCohInt = None |
|
381 | 381 | self.blocksize = None |
|
382 | 382 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
383 | 383 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
384 | 384 | self.flagShiftFFT = False |
|
385 | 385 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
386 | 386 | self.profileIndex = 0 |
|
387 | 387 | |
|
388 | 388 | def getNoisebyHildebrand(self, channel=None): |
|
389 | 389 | """ |
|
390 | 390 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
391 | 391 | |
|
392 | 392 | Return: |
|
393 | 393 | noiselevel |
|
394 | 394 | """ |
|
395 | 395 | |
|
396 | 396 | if channel != None: |
|
397 | 397 | data = self.data[channel] |
|
398 | 398 | nChannels = 1 |
|
399 | 399 | else: |
|
400 | 400 | data = self.data |
|
401 | 401 | nChannels = self.nChannels |
|
402 | 402 | |
|
403 | 403 | noise = numpy.zeros(nChannels) |
|
404 | 404 | power = data * numpy.conjugate(data) |
|
405 | 405 | |
|
406 | 406 | for thisChannel in range(nChannels): |
|
407 | 407 | if nChannels == 1: |
|
408 | 408 | daux = power[:].real |
|
409 | 409 | else: |
|
410 | 410 | daux = power[thisChannel, :].real |
|
411 | 411 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
412 | 412 | |
|
413 | 413 | return noise |
|
414 | 414 | |
|
415 | 415 | def getNoise(self, type=1, channel=None): |
|
416 | 416 | |
|
417 | 417 | if type == 1: |
|
418 | 418 | noise = self.getNoisebyHildebrand(channel) |
|
419 | 419 | |
|
420 | 420 | return noise |
|
421 | 421 | |
|
422 | 422 | def getPower(self, channel=None): |
|
423 | 423 | |
|
424 | 424 | if channel != None: |
|
425 | 425 | data = self.data[channel] |
|
426 | 426 | else: |
|
427 | 427 | data = self.data |
|
428 | 428 | |
|
429 | 429 | power = data * numpy.conjugate(data) |
|
430 | 430 | powerdB = 10 * numpy.log10(power.real) |
|
431 | 431 | powerdB = numpy.squeeze(powerdB) |
|
432 | 432 | |
|
433 | 433 | return powerdB |
|
434 | 434 | |
|
435 | 435 | def getTimeInterval(self): |
|
436 | 436 | |
|
437 | 437 | timeInterval = self.ippSeconds * self.nCohInt |
|
438 | 438 | |
|
439 | 439 | return timeInterval |
|
440 | 440 | |
|
441 | 441 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
442 | 442 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
443 | 443 | |
|
444 | 444 | |
|
445 | 445 | class Spectra(JROData): |
|
446 | 446 | |
|
447 | 447 | # data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
448 | 448 | data_spc = None |
|
449 | 449 | # data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
450 | 450 | data_cspc = None |
|
451 | 451 | # data dc es un numpy array de 2 dmensiones (canales, alturas) |
|
452 | 452 | data_dc = None |
|
453 | 453 | # data power |
|
454 | 454 | data_pwr = None |
|
455 | 455 | nFFTPoints = None |
|
456 | 456 | # nPairs = None |
|
457 | 457 | pairsList = None |
|
458 | 458 | nIncohInt = None |
|
459 | 459 | wavelength = None # Necesario para cacular el rango de velocidad desde la frecuencia |
|
460 | 460 | nCohInt = None # se requiere para determinar el valor de timeInterval |
|
461 | 461 | ippFactor = None |
|
462 | 462 | profileIndex = 0 |
|
463 | 463 | plotting = "spectra" |
|
464 | 464 | |
|
465 | 465 | def __init__(self): |
|
466 | 466 | ''' |
|
467 | 467 | Constructor |
|
468 | 468 | ''' |
|
469 | 469 | |
|
470 | 470 | self.useLocalTime = True |
|
471 | 471 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
472 | 472 | self.systemHeaderObj = SystemHeader() |
|
473 | 473 | self.type = "Spectra" |
|
474 | 474 | # self.data = None |
|
475 | 475 | # self.dtype = None |
|
476 | 476 | # self.nChannels = 0 |
|
477 | 477 | # self.nHeights = 0 |
|
478 | 478 | self.nProfiles = None |
|
479 | 479 | self.heightList = None |
|
480 | 480 | self.channelList = None |
|
481 | 481 | # self.channelIndexList = None |
|
482 | 482 | self.pairsList = None |
|
483 | 483 | self.flagNoData = True |
|
484 | 484 | self.flagDiscontinuousBlock = False |
|
485 | 485 | self.utctime = None |
|
486 | 486 | self.nCohInt = None |
|
487 | 487 | self.nIncohInt = None |
|
488 | 488 | self.blocksize = None |
|
489 | 489 | self.nFFTPoints = None |
|
490 | 490 | self.wavelength = None |
|
491 | 491 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
492 | 492 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
493 | 493 | self.flagShiftFFT = False |
|
494 | 494 | self.ippFactor = 1 |
|
495 | 495 | #self.noise = None |
|
496 | 496 | self.beacon_heiIndexList = [] |
|
497 | 497 | self.noise_estimation = None |
|
498 | 498 | |
|
499 | 499 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
500 | 500 | """ |
|
501 | 501 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
502 | 502 | |
|
503 | 503 | Return: |
|
504 | 504 | noiselevel |
|
505 | 505 | """ |
|
506 | 506 | |
|
507 | 507 | noise = numpy.zeros(self.nChannels) |
|
508 | 508 | |
|
509 | 509 | for channel in range(self.nChannels): |
|
510 | 510 | daux = self.data_spc[channel, |
|
511 | 511 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
512 | 512 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
513 | 513 | |
|
514 | 514 | return noise |
|
515 | 515 | |
|
516 | 516 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
517 | 517 | |
|
518 | 518 | if self.noise_estimation is not None: |
|
519 | 519 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
520 | 520 | return self.noise_estimation |
|
521 | 521 | else: |
|
522 | 522 | noise = self.getNoisebyHildebrand( |
|
523 | 523 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
524 | 524 | return noise |
|
525 | 525 | |
|
526 | 526 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
527 | 527 | |
|
528 | 528 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
529 | 529 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
530 | 530 | |
|
531 | 531 | return freqrange |
|
532 | 532 | |
|
533 | 533 | def getAcfRange(self, extrapoints=0): |
|
534 | 534 | |
|
535 | 535 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
536 | 536 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
537 | 537 | |
|
538 | 538 | return freqrange |
|
539 | 539 | |
|
540 | 540 | def getFreqRange(self, extrapoints=0): |
|
541 | 541 | |
|
542 | 542 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
543 | 543 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
544 | 544 | |
|
545 | 545 | return freqrange |
|
546 | 546 | |
|
547 | 547 | def getVelRange(self, extrapoints=0): |
|
548 | 548 | |
|
549 | 549 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
550 | 550 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
551 | ||
|
551 | ||
|
552 | 552 | if self.nmodes: |
|
553 | 553 | return velrange/self.nmodes |
|
554 | 554 | else: |
|
555 | 555 | return velrange |
|
556 | 556 | |
|
557 | 557 | def getNPairs(self): |
|
558 | 558 | |
|
559 | 559 | return len(self.pairsList) |
|
560 | 560 | |
|
561 | 561 | def getPairsIndexList(self): |
|
562 | 562 | |
|
563 | 563 | return list(range(self.nPairs)) |
|
564 | 564 | |
|
565 | 565 | def getNormFactor(self): |
|
566 | 566 | |
|
567 | 567 | pwcode = 1 |
|
568 | 568 | |
|
569 | 569 | if self.flagDecodeData: |
|
570 | 570 | pwcode = numpy.sum(self.code[0]**2) |
|
571 | 571 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
572 | 572 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
573 | 573 | |
|
574 | 574 | return normFactor |
|
575 | 575 | |
|
576 | 576 | def getFlagCspc(self): |
|
577 | 577 | |
|
578 | 578 | if self.data_cspc is None: |
|
579 | 579 | return True |
|
580 | 580 | |
|
581 | 581 | return False |
|
582 | 582 | |
|
583 | 583 | def getFlagDc(self): |
|
584 | 584 | |
|
585 | 585 | if self.data_dc is None: |
|
586 | 586 | return True |
|
587 | 587 | |
|
588 | 588 | return False |
|
589 | 589 | |
|
590 | 590 | def getTimeInterval(self): |
|
591 | 591 | |
|
592 | 592 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
593 | 593 | if self.nmodes: |
|
594 | 594 | return self.nmodes*timeInterval |
|
595 | 595 | else: |
|
596 | 596 | return timeInterval |
|
597 | 597 | |
|
598 | 598 | def getPower(self): |
|
599 | 599 | |
|
600 | 600 | factor = self.normFactor |
|
601 | 601 | z = self.data_spc / factor |
|
602 | 602 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
603 | 603 | avg = numpy.average(z, axis=1) |
|
604 | 604 | |
|
605 | 605 | return 10 * numpy.log10(avg) |
|
606 | 606 | |
|
607 | 607 | def getCoherence(self, pairsList=None, phase=False): |
|
608 | 608 | |
|
609 | 609 | z = [] |
|
610 | 610 | if pairsList is None: |
|
611 | 611 | pairsIndexList = self.pairsIndexList |
|
612 | 612 | else: |
|
613 | 613 | pairsIndexList = [] |
|
614 | 614 | for pair in pairsList: |
|
615 | 615 | if pair not in self.pairsList: |
|
616 | 616 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
617 | 617 | pair)) |
|
618 | 618 | pairsIndexList.append(self.pairsList.index(pair)) |
|
619 | 619 | for i in range(len(pairsIndexList)): |
|
620 | 620 | pair = self.pairsList[pairsIndexList[i]] |
|
621 | 621 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
622 | 622 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
623 | 623 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
624 | 624 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
625 | 625 | if phase: |
|
626 | 626 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
627 | 627 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
628 | 628 | else: |
|
629 | 629 | data = numpy.abs(avgcoherenceComplex) |
|
630 | 630 | |
|
631 | 631 | z.append(data) |
|
632 | 632 | |
|
633 | 633 | return numpy.array(z) |
|
634 | 634 | |
|
635 | 635 | def setValue(self, value): |
|
636 | 636 | |
|
637 | 637 | print("This property should not be initialized") |
|
638 | 638 | |
|
639 | 639 | return |
|
640 | 640 | |
|
641 | 641 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") |
|
642 | 642 | pairsIndexList = property( |
|
643 | 643 | getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") |
|
644 | 644 | normFactor = property(getNormFactor, setValue, |
|
645 | 645 | "I'm the 'getNormFactor' property.") |
|
646 | 646 | flag_cspc = property(getFlagCspc, setValue) |
|
647 | 647 | flag_dc = property(getFlagDc, setValue) |
|
648 | 648 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
649 | 649 | timeInterval = property(getTimeInterval, setValue, |
|
650 | 650 | "I'm the 'timeInterval' property") |
|
651 | 651 | |
|
652 | 652 | |
|
653 | 653 | class SpectraHeis(Spectra): |
|
654 | 654 | |
|
655 | 655 | data_spc = None |
|
656 | 656 | data_cspc = None |
|
657 | 657 | data_dc = None |
|
658 | 658 | nFFTPoints = None |
|
659 | 659 | # nPairs = None |
|
660 | 660 | pairsList = None |
|
661 | 661 | nCohInt = None |
|
662 | 662 | nIncohInt = None |
|
663 | 663 | |
|
664 | 664 | def __init__(self): |
|
665 | 665 | |
|
666 | 666 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
667 | 667 | |
|
668 | 668 | self.systemHeaderObj = SystemHeader() |
|
669 | 669 | |
|
670 | 670 | self.type = "SpectraHeis" |
|
671 | 671 | |
|
672 | 672 | # self.dtype = None |
|
673 | 673 | |
|
674 | 674 | # self.nChannels = 0 |
|
675 | 675 | |
|
676 | 676 | # self.nHeights = 0 |
|
677 | 677 | |
|
678 | 678 | self.nProfiles = None |
|
679 | 679 | |
|
680 | 680 | self.heightList = None |
|
681 | 681 | |
|
682 | 682 | self.channelList = None |
|
683 | 683 | |
|
684 | 684 | # self.channelIndexList = None |
|
685 | 685 | |
|
686 | 686 | self.flagNoData = True |
|
687 | 687 | |
|
688 | 688 | self.flagDiscontinuousBlock = False |
|
689 | 689 | |
|
690 | 690 | # self.nPairs = 0 |
|
691 | 691 | |
|
692 | 692 | self.utctime = None |
|
693 | 693 | |
|
694 | 694 | self.blocksize = None |
|
695 | 695 | |
|
696 | 696 | self.profileIndex = 0 |
|
697 | 697 | |
|
698 | 698 | self.nCohInt = 1 |
|
699 | 699 | |
|
700 | 700 | self.nIncohInt = 1 |
|
701 | 701 | |
|
702 | 702 | def getNormFactor(self): |
|
703 | 703 | pwcode = 1 |
|
704 | 704 | if self.flagDecodeData: |
|
705 | 705 | pwcode = numpy.sum(self.code[0]**2) |
|
706 | 706 | |
|
707 | 707 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
708 | 708 | |
|
709 | 709 | return normFactor |
|
710 | 710 | |
|
711 | 711 | def getTimeInterval(self): |
|
712 | 712 | |
|
713 | 713 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
714 | 714 | |
|
715 | 715 | return timeInterval |
|
716 | 716 | |
|
717 | 717 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
718 | 718 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
719 | 719 | |
|
720 | 720 | |
|
721 | 721 | class Fits(JROData): |
|
722 | 722 | |
|
723 | 723 | heightList = None |
|
724 | 724 | channelList = None |
|
725 | 725 | flagNoData = True |
|
726 | 726 | flagDiscontinuousBlock = False |
|
727 | 727 | useLocalTime = False |
|
728 | 728 | utctime = None |
|
729 | 729 | timeZone = None |
|
730 | 730 | # ippSeconds = None |
|
731 | 731 | # timeInterval = None |
|
732 | 732 | nCohInt = None |
|
733 | 733 | nIncohInt = None |
|
734 | 734 | noise = None |
|
735 | 735 | windowOfFilter = 1 |
|
736 | 736 | # Speed of ligth |
|
737 | 737 | C = 3e8 |
|
738 | 738 | frequency = 49.92e6 |
|
739 | 739 | realtime = False |
|
740 | 740 | |
|
741 | 741 | def __init__(self): |
|
742 | 742 | |
|
743 | 743 | self.type = "Fits" |
|
744 | 744 | |
|
745 | 745 | self.nProfiles = None |
|
746 | 746 | |
|
747 | 747 | self.heightList = None |
|
748 | 748 | |
|
749 | 749 | self.channelList = None |
|
750 | 750 | |
|
751 | 751 | # self.channelIndexList = None |
|
752 | 752 | |
|
753 | 753 | self.flagNoData = True |
|
754 | 754 | |
|
755 | 755 | self.utctime = None |
|
756 | 756 | |
|
757 | 757 | self.nCohInt = 1 |
|
758 | 758 | |
|
759 | 759 | self.nIncohInt = 1 |
|
760 | 760 | |
|
761 | 761 | self.useLocalTime = True |
|
762 | 762 | |
|
763 | 763 | self.profileIndex = 0 |
|
764 | 764 | |
|
765 | 765 | # self.utctime = None |
|
766 | 766 | # self.timeZone = None |
|
767 | 767 | # self.ltctime = None |
|
768 | 768 | # self.timeInterval = None |
|
769 | 769 | # self.header = None |
|
770 | 770 | # self.data_header = None |
|
771 | 771 | # self.data = None |
|
772 | 772 | # self.datatime = None |
|
773 | 773 | # self.flagNoData = False |
|
774 | 774 | # self.expName = '' |
|
775 | 775 | # self.nChannels = None |
|
776 | 776 | # self.nSamples = None |
|
777 | 777 | # self.dataBlocksPerFile = None |
|
778 | 778 | # self.comments = '' |
|
779 | 779 | # |
|
780 | 780 | |
|
781 | 781 | def getltctime(self): |
|
782 | 782 | |
|
783 | 783 | if self.useLocalTime: |
|
784 | 784 | return self.utctime - self.timeZone * 60 |
|
785 | 785 | |
|
786 | 786 | return self.utctime |
|
787 | 787 | |
|
788 | 788 | def getDatatime(self): |
|
789 | 789 | |
|
790 | 790 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
791 | 791 | return datatime |
|
792 | 792 | |
|
793 | 793 | def getTimeRange(self): |
|
794 | 794 | |
|
795 | 795 | datatime = [] |
|
796 | 796 | |
|
797 | 797 | datatime.append(self.ltctime) |
|
798 | 798 | datatime.append(self.ltctime + self.timeInterval) |
|
799 | 799 | |
|
800 | 800 | datatime = numpy.array(datatime) |
|
801 | 801 | |
|
802 | 802 | return datatime |
|
803 | 803 | |
|
804 | 804 | def getHeiRange(self): |
|
805 | 805 | |
|
806 | 806 | heis = self.heightList |
|
807 | 807 | |
|
808 | 808 | return heis |
|
809 | 809 | |
|
810 | 810 | def getNHeights(self): |
|
811 | 811 | |
|
812 | 812 | return len(self.heightList) |
|
813 | 813 | |
|
814 | 814 | def getNChannels(self): |
|
815 | 815 | |
|
816 | 816 | return len(self.channelList) |
|
817 | 817 | |
|
818 | 818 | def getChannelIndexList(self): |
|
819 | 819 | |
|
820 | 820 | return list(range(self.nChannels)) |
|
821 | 821 | |
|
822 | 822 | def getNoise(self, type=1): |
|
823 | 823 | |
|
824 | 824 | #noise = numpy.zeros(self.nChannels) |
|
825 | 825 | |
|
826 | 826 | if type == 1: |
|
827 | 827 | noise = self.getNoisebyHildebrand() |
|
828 | 828 | |
|
829 | 829 | if type == 2: |
|
830 | 830 | noise = self.getNoisebySort() |
|
831 | 831 | |
|
832 | 832 | if type == 3: |
|
833 | 833 | noise = self.getNoisebyWindow() |
|
834 | 834 | |
|
835 | 835 | return noise |
|
836 | 836 | |
|
837 | 837 | def getTimeInterval(self): |
|
838 | 838 | |
|
839 | 839 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
840 | 840 | |
|
841 | 841 | return timeInterval |
|
842 | 842 | |
|
843 | 843 | def get_ippSeconds(self): |
|
844 | 844 | ''' |
|
845 | 845 | ''' |
|
846 | 846 | return self.ipp_sec |
|
847 | 847 | |
|
848 | 848 | |
|
849 | 849 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
850 | 850 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
851 | 851 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
852 | 852 | channelIndexList = property( |
|
853 | 853 | getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
854 | 854 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
855 | 855 | |
|
856 | 856 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
857 | 857 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
858 | 858 | ippSeconds = property(get_ippSeconds, '') |
|
859 | 859 | |
|
860 | 860 | class Correlation(JROData): |
|
861 | 861 | |
|
862 | 862 | noise = None |
|
863 | 863 | SNR = None |
|
864 | 864 | #-------------------------------------------------- |
|
865 | 865 | mode = None |
|
866 | 866 | split = False |
|
867 | 867 | data_cf = None |
|
868 | 868 | lags = None |
|
869 | 869 | lagRange = None |
|
870 | 870 | pairsList = None |
|
871 | 871 | normFactor = None |
|
872 | 872 | #-------------------------------------------------- |
|
873 | 873 | # calculateVelocity = None |
|
874 | 874 | nLags = None |
|
875 | 875 | nPairs = None |
|
876 | 876 | nAvg = None |
|
877 | 877 | |
|
878 | 878 | def __init__(self): |
|
879 | 879 | ''' |
|
880 | 880 | Constructor |
|
881 | 881 | ''' |
|
882 | 882 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
883 | 883 | |
|
884 | 884 | self.systemHeaderObj = SystemHeader() |
|
885 | 885 | |
|
886 | 886 | self.type = "Correlation" |
|
887 | 887 | |
|
888 | 888 | self.data = None |
|
889 | 889 | |
|
890 | 890 | self.dtype = None |
|
891 | 891 | |
|
892 | 892 | self.nProfiles = None |
|
893 | 893 | |
|
894 | 894 | self.heightList = None |
|
895 | 895 | |
|
896 | 896 | self.channelList = None |
|
897 | 897 | |
|
898 | 898 | self.flagNoData = True |
|
899 | 899 | |
|
900 | 900 | self.flagDiscontinuousBlock = False |
|
901 | 901 | |
|
902 | 902 | self.utctime = None |
|
903 | 903 | |
|
904 | 904 | self.timeZone = None |
|
905 | 905 | |
|
906 | 906 | self.dstFlag = None |
|
907 | 907 | |
|
908 | 908 | self.errorCount = None |
|
909 | 909 | |
|
910 | 910 | self.blocksize = None |
|
911 | 911 | |
|
912 | 912 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
913 | 913 | |
|
914 | 914 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
915 | 915 | |
|
916 | 916 | self.pairsList = None |
|
917 | 917 | |
|
918 | 918 | self.nPoints = None |
|
919 | 919 | |
|
920 | 920 | def getPairsList(self): |
|
921 | 921 | |
|
922 | 922 | return self.pairsList |
|
923 | 923 | |
|
924 | 924 | def getNoise(self, mode=2): |
|
925 | 925 | |
|
926 | 926 | indR = numpy.where(self.lagR == 0)[0][0] |
|
927 | 927 | indT = numpy.where(self.lagT == 0)[0][0] |
|
928 | 928 | |
|
929 | 929 | jspectra0 = self.data_corr[:, :, indR, :] |
|
930 | 930 | jspectra = copy.copy(jspectra0) |
|
931 | 931 | |
|
932 | 932 | num_chan = jspectra.shape[0] |
|
933 | 933 | num_hei = jspectra.shape[2] |
|
934 | 934 | |
|
935 | 935 | freq_dc = jspectra.shape[1] / 2 |
|
936 | 936 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
937 | 937 | |
|
938 | 938 | if ind_vel[0] < 0: |
|
939 | 939 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
940 | 940 | range(0, 1))] + self.num_prof |
|
941 | 941 | |
|
942 | 942 | if mode == 1: |
|
943 | 943 | jspectra[:, freq_dc, :] = ( |
|
944 | 944 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
945 | 945 | |
|
946 | 946 | if mode == 2: |
|
947 | 947 | |
|
948 | 948 | vel = numpy.array([-2, -1, 1, 2]) |
|
949 | 949 | xx = numpy.zeros([4, 4]) |
|
950 | 950 | |
|
951 | 951 | for fil in range(4): |
|
952 | 952 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
953 | 953 | |
|
954 | 954 | xx_inv = numpy.linalg.inv(xx) |
|
955 | 955 | xx_aux = xx_inv[0, :] |
|
956 | 956 | |
|
957 | 957 | for ich in range(num_chan): |
|
958 | 958 | yy = jspectra[ich, ind_vel, :] |
|
959 | 959 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
960 | 960 | |
|
961 | 961 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
962 | 962 | cjunkid = sum(junkid) |
|
963 | 963 | |
|
964 | 964 | if cjunkid.any(): |
|
965 | 965 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
966 | 966 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
967 | 967 | |
|
968 | 968 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
969 | 969 | |
|
970 | 970 | return noise |
|
971 | 971 | |
|
972 | 972 | def getTimeInterval(self): |
|
973 | 973 | |
|
974 | 974 | timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles |
|
975 | 975 | |
|
976 | 976 | return timeInterval |
|
977 | 977 | |
|
978 | 978 | def splitFunctions(self): |
|
979 | 979 | |
|
980 | 980 | pairsList = self.pairsList |
|
981 | 981 | ccf_pairs = [] |
|
982 | 982 | acf_pairs = [] |
|
983 | 983 | ccf_ind = [] |
|
984 | 984 | acf_ind = [] |
|
985 | 985 | for l in range(len(pairsList)): |
|
986 | 986 | chan0 = pairsList[l][0] |
|
987 | 987 | chan1 = pairsList[l][1] |
|
988 | 988 | |
|
989 | 989 | # Obteniendo pares de Autocorrelacion |
|
990 | 990 | if chan0 == chan1: |
|
991 | 991 | acf_pairs.append(chan0) |
|
992 | 992 | acf_ind.append(l) |
|
993 | 993 | else: |
|
994 | 994 | ccf_pairs.append(pairsList[l]) |
|
995 | 995 | ccf_ind.append(l) |
|
996 | 996 | |
|
997 | 997 | data_acf = self.data_cf[acf_ind] |
|
998 | 998 | data_ccf = self.data_cf[ccf_ind] |
|
999 | 999 | |
|
1000 | 1000 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
1001 | 1001 | |
|
1002 | 1002 | def getNormFactor(self): |
|
1003 | 1003 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
1004 | 1004 | acf_pairs = numpy.array(acf_pairs) |
|
1005 | 1005 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
1006 | 1006 | |
|
1007 | 1007 | for p in range(self.nPairs): |
|
1008 | 1008 | pair = self.pairsList[p] |
|
1009 | 1009 | |
|
1010 | 1010 | ch0 = pair[0] |
|
1011 | 1011 | ch1 = pair[1] |
|
1012 | 1012 | |
|
1013 | 1013 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
1014 | 1014 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
1015 | 1015 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
1016 | 1016 | |
|
1017 | 1017 | return normFactor |
|
1018 | 1018 | |
|
1019 | 1019 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
1020 | 1020 | normFactor = property(getNormFactor, "I'm the 'normFactor property'") |
|
1021 | 1021 | |
|
1022 | 1022 | |
|
1023 | 1023 | class Parameters(Spectra): |
|
1024 | 1024 | |
|
1025 | 1025 | experimentInfo = None # Information about the experiment |
|
1026 | 1026 | # Information from previous data |
|
1027 | 1027 | inputUnit = None # Type of data to be processed |
|
1028 | 1028 | operation = None # Type of operation to parametrize |
|
1029 | 1029 | # normFactor = None #Normalization Factor |
|
1030 | 1030 | groupList = None # List of Pairs, Groups, etc |
|
1031 | 1031 | # Parameters |
|
1032 | 1032 | data_param = None # Parameters obtained |
|
1033 | 1033 | data_pre = None # Data Pre Parametrization |
|
1034 | 1034 | data_SNR = None # Signal to Noise Ratio |
|
1035 | 1035 | # heightRange = None #Heights |
|
1036 | 1036 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
1037 | 1037 | # noise = None #Noise Potency |
|
1038 | 1038 | utctimeInit = None # Initial UTC time |
|
1039 | 1039 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
1040 | 1040 | useLocalTime = True |
|
1041 | 1041 | # Fitting |
|
1042 | 1042 | data_error = None # Error of the estimation |
|
1043 | 1043 | constants = None |
|
1044 | 1044 | library = None |
|
1045 | 1045 | # Output signal |
|
1046 | 1046 | outputInterval = None # Time interval to calculate output signal in seconds |
|
1047 | 1047 | data_output = None # Out signal |
|
1048 | 1048 | nAvg = None |
|
1049 | 1049 | noise_estimation = None |
|
1050 | 1050 | GauSPC = None # Fit gaussian SPC |
|
1051 | 1051 | |
|
1052 | 1052 | def __init__(self): |
|
1053 | 1053 | ''' |
|
1054 | 1054 | Constructor |
|
1055 | 1055 | ''' |
|
1056 | 1056 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1057 | 1057 | |
|
1058 | 1058 | self.systemHeaderObj = SystemHeader() |
|
1059 | 1059 | |
|
1060 | 1060 | self.type = "Parameters" |
|
1061 | 1061 | |
|
1062 | 1062 | def getTimeRange1(self, interval): |
|
1063 | 1063 | |
|
1064 | 1064 | datatime = [] |
|
1065 | 1065 | |
|
1066 | 1066 | if self.useLocalTime: |
|
1067 | 1067 | time1 = self.utctimeInit - self.timeZone * 60 |
|
1068 | 1068 | else: |
|
1069 | 1069 | time1 = self.utctimeInit |
|
1070 | 1070 | |
|
1071 | 1071 | datatime.append(time1) |
|
1072 | 1072 | datatime.append(time1 + interval) |
|
1073 | 1073 | datatime = numpy.array(datatime) |
|
1074 | 1074 | |
|
1075 | 1075 | return datatime |
|
1076 | 1076 | |
|
1077 | 1077 | def getTimeInterval(self): |
|
1078 | 1078 | |
|
1079 | 1079 | if hasattr(self, 'timeInterval1'): |
|
1080 | 1080 | return self.timeInterval1 |
|
1081 | 1081 | else: |
|
1082 | 1082 | return self.paramInterval |
|
1083 | 1083 | |
|
1084 | 1084 | def setValue(self, value): |
|
1085 | 1085 | |
|
1086 | 1086 | print("This property should not be initialized") |
|
1087 | 1087 | |
|
1088 | 1088 | return |
|
1089 | 1089 | |
|
1090 | 1090 | def getNoise(self): |
|
1091 | 1091 | |
|
1092 | 1092 | return self.spc_noise |
|
1093 | 1093 | |
|
1094 | 1094 | timeInterval = property(getTimeInterval) |
|
1095 | 1095 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
1096 | 1096 | |
|
1097 | 1097 | |
|
1098 | 1098 | class PlotterData(object): |
|
1099 | 1099 | ''' |
|
1100 | 1100 | Object to hold data to be plotted |
|
1101 | 1101 | ''' |
|
1102 | 1102 | |
|
1103 | 1103 | MAXNUMX = 100 |
|
1104 | 1104 | MAXNUMY = 100 |
|
1105 | 1105 | |
|
1106 | 1106 | def __init__(self, code, throttle_value, exp_code, buffering=True, snr=False): |
|
1107 | ||
|
1107 | ||
|
1108 | 1108 | self.key = code |
|
1109 | 1109 | self.throttle = throttle_value |
|
1110 | 1110 | self.exp_code = exp_code |
|
1111 | 1111 | self.buffering = buffering |
|
1112 | 1112 | self.ready = False |
|
1113 | 1113 | self.localtime = False |
|
1114 | 1114 | self.data = {} |
|
1115 | 1115 | self.meta = {} |
|
1116 | 1116 | self.__times = [] |
|
1117 | 1117 | self.__heights = [] |
|
1118 | 1118 | |
|
1119 | 1119 | if 'snr' in code: |
|
1120 | 1120 | self.plottypes = ['snr'] |
|
1121 | 1121 | elif code == 'spc': |
|
1122 | 1122 | self.plottypes = ['spc', 'noise', 'rti'] |
|
1123 | 1123 | elif code == 'rti': |
|
1124 | 1124 | self.plottypes = ['noise', 'rti'] |
|
1125 | 1125 | else: |
|
1126 | 1126 | self.plottypes = [code] |
|
1127 | 1127 | |
|
1128 | 1128 | if 'snr' not in self.plottypes and snr: |
|
1129 | 1129 | self.plottypes.append('snr') |
|
1130 | 1130 | |
|
1131 | 1131 | for plot in self.plottypes: |
|
1132 | 1132 | self.data[plot] = {} |
|
1133 | 1133 | |
|
1134 | 1134 | def __str__(self): |
|
1135 | 1135 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
1136 | 1136 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.__times)) |
|
1137 | 1137 | |
|
1138 | 1138 | def __len__(self): |
|
1139 | 1139 | return len(self.__times) |
|
1140 | 1140 | |
|
1141 | 1141 | def __getitem__(self, key): |
|
1142 | ||
|
1142 | ||
|
1143 | 1143 | if key not in self.data: |
|
1144 | 1144 | raise KeyError(log.error('Missing key: {}'.format(key))) |
|
1145 | 1145 | if 'spc' in key or not self.buffering: |
|
1146 | 1146 | ret = self.data[key] |
|
1147 | 1147 | elif 'scope' in key: |
|
1148 | 1148 | ret = numpy.array(self.data[key][float(self.tm)]) |
|
1149 | 1149 | else: |
|
1150 | 1150 | ret = numpy.array([self.data[key][x] for x in self.times]) |
|
1151 | 1151 | if ret.ndim > 1: |
|
1152 | 1152 | ret = numpy.swapaxes(ret, 0, 1) |
|
1153 | 1153 | return ret |
|
1154 | 1154 | |
|
1155 | 1155 | def __contains__(self, key): |
|
1156 | 1156 | return key in self.data |
|
1157 | 1157 | |
|
1158 | 1158 | def setup(self): |
|
1159 | 1159 | ''' |
|
1160 | 1160 | Configure object |
|
1161 | 1161 | ''' |
|
1162 | 1162 | |
|
1163 | 1163 | self.type = '' |
|
1164 | 1164 | self.ready = False |
|
1165 | 1165 | self.data = {} |
|
1166 | 1166 | self.__times = [] |
|
1167 | 1167 | self.__heights = [] |
|
1168 | 1168 | self.__all_heights = set() |
|
1169 | 1169 | for plot in self.plottypes: |
|
1170 | 1170 | if 'snr' in plot: |
|
1171 | 1171 | plot = 'snr' |
|
1172 | 1172 | elif 'spc_moments' == plot: |
|
1173 | 1173 | plot = 'moments' |
|
1174 | 1174 | self.data[plot] = {} |
|
1175 | ||
|
1175 | ||
|
1176 | 1176 | if 'spc' in self.data or 'rti' in self.data or 'cspc' in self.data or 'moments' in self.data: |
|
1177 | 1177 | self.data['noise'] = {} |
|
1178 | 1178 | self.data['rti'] = {} |
|
1179 | 1179 | if 'noise' not in self.plottypes: |
|
1180 | 1180 | self.plottypes.append('noise') |
|
1181 | 1181 | if 'rti' not in self.plottypes: |
|
1182 | 1182 | self.plottypes.append('rti') |
|
1183 | ||
|
1183 | ||
|
1184 | 1184 | def shape(self, key): |
|
1185 | 1185 | ''' |
|
1186 | 1186 | Get the shape of the one-element data for the given key |
|
1187 | 1187 | ''' |
|
1188 | 1188 | |
|
1189 | 1189 | if len(self.data[key]): |
|
1190 | 1190 | if 'spc' in key or not self.buffering: |
|
1191 | 1191 | return self.data[key].shape |
|
1192 | 1192 | return self.data[key][self.__times[0]].shape |
|
1193 | 1193 | return (0,) |
|
1194 | 1194 | |
|
1195 | 1195 | def update(self, dataOut, tm): |
|
1196 | 1196 | ''' |
|
1197 | 1197 | Update data object with new dataOut |
|
1198 | 1198 | ''' |
|
1199 | ||
|
1199 | ||
|
1200 | 1200 | if tm in self.__times: |
|
1201 | 1201 | return |
|
1202 | 1202 | self.profileIndex = dataOut.profileIndex |
|
1203 | 1203 | self.tm = tm |
|
1204 | 1204 | self.type = dataOut.type |
|
1205 | 1205 | self.parameters = getattr(dataOut, 'parameters', []) |
|
1206 | ||
|
1206 | ||
|
1207 | 1207 | if hasattr(dataOut, 'meta'): |
|
1208 | 1208 | self.meta.update(dataOut.meta) |
|
1209 | ||
|
1209 | ||
|
1210 | 1210 | self.pairs = dataOut.pairsList |
|
1211 | 1211 | self.interval = dataOut.getTimeInterval() |
|
1212 | 1212 | self.localtime = dataOut.useLocalTime |
|
1213 | 1213 | if 'spc' in self.plottypes or 'cspc' in self.plottypes or 'spc_moments' in self.plottypes: |
|
1214 | 1214 | self.xrange = (dataOut.getFreqRange(1)/1000., |
|
1215 | 1215 | dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
1216 | 1216 | self.factor = dataOut.normFactor |
|
1217 | 1217 | self.__heights.append(dataOut.heightList) |
|
1218 | 1218 | self.__all_heights.update(dataOut.heightList) |
|
1219 | 1219 | self.__times.append(tm) |
|
1220 | ||
|
1220 | ||
|
1221 | 1221 | for plot in self.plottypes: |
|
1222 | 1222 | if plot in ('spc', 'spc_moments'): |
|
1223 | 1223 | z = dataOut.data_spc/dataOut.normFactor |
|
1224 | 1224 | buffer = 10*numpy.log10(z) |
|
1225 | 1225 | if plot == 'cspc': |
|
1226 | 1226 | z = dataOut.data_spc/dataOut.normFactor |
|
1227 | 1227 | buffer = (dataOut.data_spc, dataOut.data_cspc) |
|
1228 | 1228 | if plot == 'noise': |
|
1229 | 1229 | buffer = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
1230 | 1230 | if plot == 'rti': |
|
1231 | 1231 | buffer = dataOut.getPower() |
|
1232 | 1232 | if plot == 'snr_db': |
|
1233 | 1233 | buffer = dataOut.data_SNR |
|
1234 | 1234 | if plot == 'snr': |
|
1235 | 1235 | buffer = 10*numpy.log10(dataOut.data_SNR) |
|
1236 | 1236 | if plot == 'dop': |
|
1237 | 1237 | buffer = dataOut.data_DOP |
|
1238 | 1238 | if plot == 'pow': |
|
1239 | 1239 | buffer = 10*numpy.log10(dataOut.data_POW) |
|
1240 | 1240 | if plot == 'width': |
|
1241 | 1241 | buffer = dataOut.data_WIDTH |
|
1242 | 1242 | if plot == 'coh': |
|
1243 | 1243 | buffer = dataOut.getCoherence() |
|
1244 | 1244 | if plot == 'phase': |
|
1245 | 1245 | buffer = dataOut.getCoherence(phase=True) |
|
1246 | 1246 | if plot == 'output': |
|
1247 | 1247 | buffer = dataOut.data_output |
|
1248 | 1248 | if plot == 'param': |
|
1249 | 1249 | buffer = dataOut.data_param |
|
1250 | 1250 | if plot == 'scope': |
|
1251 | 1251 | buffer = dataOut.data |
|
1252 | 1252 | self.flagDataAsBlock = dataOut.flagDataAsBlock |
|
1253 |
self.nProfiles = dataOut.nProfiles |
|
|
1254 | ||
|
1253 | self.nProfiles = dataOut.nProfiles | |
|
1254 | ||
|
1255 | 1255 | if plot == 'spc': |
|
1256 | 1256 | self.data['spc'] = buffer |
|
1257 | 1257 | elif plot == 'cspc': |
|
1258 | 1258 | self.data['spc'] = buffer[0] |
|
1259 | 1259 | self.data['cspc'] = buffer[1] |
|
1260 | 1260 | elif plot == 'spc_moments': |
|
1261 | 1261 | self.data['spc'] = buffer |
|
1262 | 1262 | self.data['moments'][tm] = dataOut.moments |
|
1263 | 1263 | else: |
|
1264 | 1264 | if self.buffering: |
|
1265 | 1265 | self.data[plot][tm] = buffer |
|
1266 | 1266 | else: |
|
1267 | 1267 | self.data[plot] = buffer |
|
1268 | 1268 | |
|
1269 | 1269 | if dataOut.channelList is None: |
|
1270 | 1270 | self.channels = range(buffer.shape[0]) |
|
1271 | 1271 | else: |
|
1272 | 1272 | self.channels = dataOut.channelList |
|
1273 | 1273 | |
|
1274 | 1274 | def normalize_heights(self): |
|
1275 | 1275 | ''' |
|
1276 | 1276 | Ensure same-dimension of the data for different heighList |
|
1277 | 1277 | ''' |
|
1278 | 1278 | |
|
1279 | 1279 | H = numpy.array(list(self.__all_heights)) |
|
1280 | 1280 | H.sort() |
|
1281 | 1281 | for key in self.data: |
|
1282 | 1282 | shape = self.shape(key)[:-1] + H.shape |
|
1283 | 1283 | for tm, obj in list(self.data[key].items()): |
|
1284 | 1284 | h = self.__heights[self.__times.index(tm)] |
|
1285 | 1285 | if H.size == h.size: |
|
1286 | 1286 | continue |
|
1287 | 1287 | index = numpy.where(numpy.in1d(H, h))[0] |
|
1288 | 1288 | dummy = numpy.zeros(shape) + numpy.nan |
|
1289 | 1289 | if len(shape) == 2: |
|
1290 | 1290 | dummy[:, index] = obj |
|
1291 | 1291 | else: |
|
1292 | 1292 | dummy[index] = obj |
|
1293 | 1293 | self.data[key][tm] = dummy |
|
1294 | 1294 | |
|
1295 | 1295 | self.__heights = [H for tm in self.__times] |
|
1296 | 1296 | |
|
1297 | 1297 | def jsonify(self, plot_name, plot_type, decimate=False): |
|
1298 | 1298 | ''' |
|
1299 | 1299 | Convert data to json |
|
1300 | 1300 | ''' |
|
1301 | 1301 | |
|
1302 | 1302 | tm = self.times[-1] |
|
1303 | 1303 | dy = int(self.heights.size/self.MAXNUMY) + 1 |
|
1304 | 1304 | if self.key in ('spc', 'cspc') or not self.buffering: |
|
1305 | 1305 | dx = int(self.data[self.key].shape[1]/self.MAXNUMX) + 1 |
|
1306 | 1306 | data = self.roundFloats( |
|
1307 | 1307 | self.data[self.key][::, ::dx, ::dy].tolist()) |
|
1308 | 1308 | else: |
|
1309 | 1309 | data = self.roundFloats(self.data[self.key][tm].tolist()) |
|
1310 | 1310 | if self.key is 'noise': |
|
1311 | 1311 | data = [[x] for x in data] |
|
1312 | 1312 | |
|
1313 | 1313 | meta = {} |
|
1314 | 1314 | ret = { |
|
1315 | 1315 | 'plot': plot_name, |
|
1316 | 1316 | 'code': self.exp_code, |
|
1317 | 1317 | 'time': float(tm), |
|
1318 | 1318 | 'data': data, |
|
1319 | 1319 | } |
|
1320 | 1320 | meta['type'] = plot_type |
|
1321 | 1321 | meta['interval'] = float(self.interval) |
|
1322 | 1322 | meta['localtime'] = self.localtime |
|
1323 | 1323 | meta['yrange'] = self.roundFloats(self.heights[::dy].tolist()) |
|
1324 | 1324 | if 'spc' in self.data or 'cspc' in self.data: |
|
1325 | 1325 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1326 | 1326 | else: |
|
1327 | 1327 | meta['xrange'] = [] |
|
1328 | 1328 | |
|
1329 |
meta.update(self.meta) |
|
|
1329 | meta.update(self.meta) | |
|
1330 | 1330 | ret['metadata'] = meta |
|
1331 | 1331 | return json.dumps(ret) |
|
1332 | 1332 | |
|
1333 | 1333 | @property |
|
1334 | 1334 | def times(self): |
|
1335 | 1335 | ''' |
|
1336 | 1336 | Return the list of times of the current data |
|
1337 | 1337 | ''' |
|
1338 | 1338 | |
|
1339 | 1339 | ret = numpy.array(self.__times) |
|
1340 | 1340 | ret.sort() |
|
1341 | 1341 | return ret |
|
1342 | 1342 | |
|
1343 | 1343 | @property |
|
1344 | 1344 | def min_time(self): |
|
1345 | 1345 | ''' |
|
1346 | 1346 | Return the minimun time value |
|
1347 | 1347 | ''' |
|
1348 | 1348 | |
|
1349 | 1349 | return self.times[0] |
|
1350 | 1350 | |
|
1351 | 1351 | @property |
|
1352 | 1352 | def max_time(self): |
|
1353 | 1353 | ''' |
|
1354 | 1354 | Return the maximun time value |
|
1355 | 1355 | ''' |
|
1356 | 1356 | |
|
1357 | 1357 | return self.times[-1] |
|
1358 | 1358 | |
|
1359 | 1359 | @property |
|
1360 | 1360 | def heights(self): |
|
1361 | 1361 | ''' |
|
1362 | 1362 | Return the list of heights of the current data |
|
1363 | 1363 | ''' |
|
1364 | 1364 | |
|
1365 | 1365 | return numpy.array(self.__heights[-1]) |
|
1366 | 1366 | |
|
1367 | 1367 | @staticmethod |
|
1368 | 1368 | def roundFloats(obj): |
|
1369 | 1369 | if isinstance(obj, list): |
|
1370 | 1370 | return list(map(PlotterData.roundFloats, obj)) |
|
1371 | 1371 | elif isinstance(obj, float): |
|
1372 | 1372 | return round(obj, 2) |
@@ -1,1589 +1,1809 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 9, 2014 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 |
|
5 | 5 | ''' |
|
6 | 6 | import os |
|
7 | 7 | import datetime |
|
8 | 8 | import numpy |
|
9 | 9 | |
|
10 | 10 | from .figure import Figure, isRealtime, isTimeInHourRange |
|
11 | 11 | from .plotting_codes import * |
|
12 | 12 | from schainpy.model.proc.jroproc_base import MPDecorator |
|
13 | 13 | |
|
14 | 14 | from schainpy.utils import log |
|
15 | 15 | |
|
16 | 16 | @MPDecorator |
|
17 | 17 | class SpectraPlot_(Figure): |
|
18 | 18 | |
|
19 | 19 | isConfig = None |
|
20 | 20 | __nsubplots = None |
|
21 | 21 | |
|
22 | 22 | WIDTHPROF = None |
|
23 | 23 | HEIGHTPROF = None |
|
24 | 24 | PREFIX = 'spc' |
|
25 | 25 | |
|
26 | 26 | def __init__(self): |
|
27 | 27 | Figure.__init__(self) |
|
28 | 28 | self.isConfig = False |
|
29 | 29 | self.__nsubplots = 1 |
|
30 | 30 | self.WIDTH = 250 |
|
31 | 31 | self.HEIGHT = 250 |
|
32 | 32 | self.WIDTHPROF = 120 |
|
33 | 33 | self.HEIGHTPROF = 0 |
|
34 | 34 | self.counter_imagwr = 0 |
|
35 | 35 | |
|
36 | 36 | self.PLOT_CODE = SPEC_CODE |
|
37 | 37 | |
|
38 | 38 | self.FTP_WEI = None |
|
39 | 39 | self.EXP_CODE = None |
|
40 | 40 | self.SUB_EXP_CODE = None |
|
41 | 41 | self.PLOT_POS = None |
|
42 | 42 | |
|
43 | 43 | self.__xfilter_ena = False |
|
44 | 44 | self.__yfilter_ena = False |
|
45 | ||
|
45 | ||
|
46 | 46 | self.indice=1 |
|
47 | 47 | |
|
48 | 48 | def getSubplots(self): |
|
49 | 49 | |
|
50 | 50 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
51 | 51 | nrow = int(self.nplots*1./ncol + 0.9) |
|
52 | 52 | |
|
53 | 53 | return nrow, ncol |
|
54 | 54 | |
|
55 | 55 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
56 | 56 | |
|
57 | 57 | self.__showprofile = showprofile |
|
58 | 58 | self.nplots = nplots |
|
59 | 59 | |
|
60 | 60 | ncolspan = 1 |
|
61 | 61 | colspan = 1 |
|
62 | 62 | if showprofile: |
|
63 | 63 | ncolspan = 3 |
|
64 | 64 | colspan = 2 |
|
65 | 65 | self.__nsubplots = 2 |
|
66 | 66 | |
|
67 | 67 | self.createFigure(id = id, |
|
68 | 68 | wintitle = wintitle, |
|
69 | 69 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
70 | 70 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
71 | 71 | show=show) |
|
72 | 72 | |
|
73 | 73 | nrow, ncol = self.getSubplots() |
|
74 | 74 | |
|
75 | 75 | counter = 0 |
|
76 | 76 | for y in range(nrow): |
|
77 | 77 | for x in range(ncol): |
|
78 | 78 | |
|
79 | 79 | if counter >= self.nplots: |
|
80 | 80 | break |
|
81 | 81 | |
|
82 | 82 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
83 | 83 | |
|
84 | 84 | if showprofile: |
|
85 | 85 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
86 | 86 | |
|
87 | 87 | counter += 1 |
|
88 | 88 | |
|
89 | 89 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
90 | 90 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
91 | 91 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
92 | 92 | server=None, folder=None, username=None, password=None, |
|
93 | 93 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
94 | 94 | xaxis="frequency", colormap='jet', normFactor=None): |
|
95 | 95 | |
|
96 | 96 | """ |
|
97 | 97 | |
|
98 | 98 | Input: |
|
99 | 99 | dataOut : |
|
100 | 100 | id : |
|
101 | 101 | wintitle : |
|
102 | 102 | channelList : |
|
103 | 103 | showProfile : |
|
104 | 104 | xmin : None, |
|
105 | 105 | xmax : None, |
|
106 | 106 | ymin : None, |
|
107 | 107 | ymax : None, |
|
108 | 108 | zmin : None, |
|
109 | 109 | zmax : None |
|
110 | 110 | """ |
|
111 | 111 | if dataOut.flagNoData: |
|
112 | 112 | return dataOut |
|
113 | 113 | |
|
114 | 114 | if realtime: |
|
115 | 115 | if not(isRealtime(utcdatatime = dataOut.utctime)): |
|
116 | 116 | print('Skipping this plot function') |
|
117 | 117 | return |
|
118 | 118 | |
|
119 | 119 | if channelList == None: |
|
120 | 120 | channelIndexList = dataOut.channelIndexList |
|
121 | 121 | else: |
|
122 | 122 | channelIndexList = [] |
|
123 | 123 | for channel in channelList: |
|
124 | 124 | if channel not in dataOut.channelList: |
|
125 | 125 | raise ValueError("Channel %d is not in dataOut.channelList" %channel) |
|
126 | 126 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
127 | 127 | |
|
128 | 128 | if normFactor is None: |
|
129 | 129 | factor = dataOut.normFactor |
|
130 | 130 | else: |
|
131 | 131 | factor = normFactor |
|
132 | 132 | if xaxis == "frequency": |
|
133 | 133 | x = dataOut.getFreqRange(1)/1000. |
|
134 | 134 | xlabel = "Frequency (kHz)" |
|
135 | 135 | |
|
136 | 136 | elif xaxis == "time": |
|
137 | 137 | x = dataOut.getAcfRange(1) |
|
138 | 138 | xlabel = "Time (ms)" |
|
139 | 139 | |
|
140 | 140 | else: |
|
141 | 141 | x = dataOut.getVelRange(1) |
|
142 | 142 | xlabel = "Velocity (m/s)" |
|
143 | 143 | |
|
144 | 144 | ylabel = "Range (km)" |
|
145 | 145 | |
|
146 | 146 | y = dataOut.getHeiRange() |
|
147 | 147 | z = dataOut.data_spc/factor |
|
148 | 148 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
149 | 149 | zdB = 10*numpy.log10(z) |
|
150 | 150 | |
|
151 | 151 | avg = numpy.average(z, axis=1) |
|
152 | 152 | avgdB = 10*numpy.log10(avg) |
|
153 | 153 | |
|
154 | 154 | noise = dataOut.getNoise()/factor |
|
155 | 155 | noisedB = 10*numpy.log10(noise) |
|
156 | 156 | |
|
157 | 157 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
158 | 158 | title = wintitle + " Spectra" |
|
159 | 159 | |
|
160 | 160 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
161 | 161 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
162 | 162 | |
|
163 | 163 | if not self.isConfig: |
|
164 | 164 | |
|
165 | 165 | nplots = len(channelIndexList) |
|
166 | 166 | |
|
167 | 167 | self.setup(id=id, |
|
168 | 168 | nplots=nplots, |
|
169 | 169 | wintitle=wintitle, |
|
170 | 170 | showprofile=showprofile, |
|
171 | 171 | show=show) |
|
172 | 172 | |
|
173 | 173 | if xmin == None: xmin = numpy.nanmin(x) |
|
174 | 174 | if xmax == None: xmax = numpy.nanmax(x) |
|
175 | 175 | if ymin == None: ymin = numpy.nanmin(y) |
|
176 | 176 | if ymax == None: ymax = numpy.nanmax(y) |
|
177 | 177 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
178 | 178 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
179 | 179 | |
|
180 | 180 | self.FTP_WEI = ftp_wei |
|
181 | 181 | self.EXP_CODE = exp_code |
|
182 | 182 | self.SUB_EXP_CODE = sub_exp_code |
|
183 | 183 | self.PLOT_POS = plot_pos |
|
184 | 184 | |
|
185 | 185 | self.isConfig = True |
|
186 | 186 | |
|
187 | 187 | self.setWinTitle(title) |
|
188 | 188 | |
|
189 | 189 | for i in range(self.nplots): |
|
190 | 190 | index = channelIndexList[i] |
|
191 | 191 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
192 | 192 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) |
|
193 | 193 | if len(dataOut.beam.codeList) != 0: |
|
194 | 194 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) |
|
195 | 195 | |
|
196 | 196 | axes = self.axesList[i*self.__nsubplots] |
|
197 | 197 | axes.pcolor(x, y, zdB[index,:,:], |
|
198 | 198 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
199 | 199 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap, |
|
200 | 200 | ticksize=9, cblabel='') |
|
201 | 201 | |
|
202 | 202 | if self.__showprofile: |
|
203 | 203 | axes = self.axesList[i*self.__nsubplots +1] |
|
204 | 204 | axes.pline(avgdB[index,:], y, |
|
205 | 205 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
206 | 206 | xlabel='dB', ylabel='', title='', |
|
207 | 207 | ytick_visible=False, |
|
208 | 208 | grid='x') |
|
209 | 209 | |
|
210 | 210 | noiseline = numpy.repeat(noisedB[index], len(y)) |
|
211 | 211 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
212 | 212 | |
|
213 | 213 | self.draw() |
|
214 | 214 | |
|
215 | 215 | if figfile == None: |
|
216 | 216 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
217 | 217 | name = str_datetime |
|
218 | 218 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
219 | 219 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) |
|
220 | 220 | figfile = self.getFilename(name) |
|
221 | 221 | |
|
222 | 222 | self.save(figpath=figpath, |
|
223 | 223 | figfile=figfile, |
|
224 | 224 | save=save, |
|
225 | 225 | ftp=ftp, |
|
226 | 226 | wr_period=wr_period, |
|
227 | 227 | thisDatetime=thisDatetime) |
|
228 | ||
|
228 | ||
|
229 | 229 | |
|
230 | 230 | return dataOut |
|
231 | 231 | |
|
232 | 232 | @MPDecorator |
|
233 | class WpowerPlot_(Figure): | |
|
234 | ||
|
235 | isConfig = None | |
|
236 | __nsubplots = None | |
|
237 | ||
|
238 | WIDTHPROF = None | |
|
239 | HEIGHTPROF = None | |
|
240 | PREFIX = 'wpo' | |
|
241 | ||
|
242 | def __init__(self): | |
|
243 | Figure.__init__(self) | |
|
244 | self.isConfig = False | |
|
245 | self.__nsubplots = 1 | |
|
246 | self.WIDTH = 250 | |
|
247 | self.HEIGHT = 250 | |
|
248 | self.WIDTHPROF = 120 | |
|
249 | self.HEIGHTPROF = 0 | |
|
250 | self.counter_imagwr = 0 | |
|
251 | ||
|
252 | self.PLOT_CODE = WPO_CODE | |
|
253 | ||
|
254 | self.FTP_WEI = None | |
|
255 | self.EXP_CODE = None | |
|
256 | self.SUB_EXP_CODE = None | |
|
257 | self.PLOT_POS = None | |
|
258 | ||
|
259 | self.__xfilter_ena = False | |
|
260 | self.__yfilter_ena = False | |
|
261 | ||
|
262 | self.indice=1 | |
|
263 | ||
|
264 | def getSubplots(self): | |
|
265 | ||
|
266 | ncol = int(numpy.sqrt(self.nplots)+0.9) | |
|
267 | nrow = int(self.nplots*1./ncol + 0.9) | |
|
268 | ||
|
269 | return nrow, ncol | |
|
270 | ||
|
271 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
|
272 | ||
|
273 | self.__showprofile = showprofile | |
|
274 | self.nplots = nplots | |
|
275 | ||
|
276 | ncolspan = 1 | |
|
277 | colspan = 1 | |
|
278 | if showprofile: | |
|
279 | ncolspan = 3 | |
|
280 | colspan = 2 | |
|
281 | self.__nsubplots = 2 | |
|
282 | ||
|
283 | self.createFigure(id = id, | |
|
284 | wintitle = wintitle, | |
|
285 | widthplot = self.WIDTH + self.WIDTHPROF, | |
|
286 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
|
287 | show=show) | |
|
288 | ||
|
289 | nrow, ncol = self.getSubplots() | |
|
290 | ||
|
291 | counter = 0 | |
|
292 | for y in range(nrow): | |
|
293 | for x in range(ncol): | |
|
294 | ||
|
295 | if counter >= self.nplots: | |
|
296 | break | |
|
297 | ||
|
298 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
|
299 | ||
|
300 | if showprofile: | |
|
301 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
|
302 | ||
|
303 | counter += 1 | |
|
304 | ||
|
305 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, | |
|
306 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
|
307 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
|
308 | server=None, folder=None, username=None, password=None, | |
|
309 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, | |
|
310 | xaxis="frequency", colormap='jet', normFactor=None): | |
|
311 | ||
|
312 | """ | |
|
313 | ||
|
314 | Input: | |
|
315 | dataOut : | |
|
316 | id : | |
|
317 | wintitle : | |
|
318 | channelList : | |
|
319 | showProfile : | |
|
320 | xmin : None, | |
|
321 | xmax : None, | |
|
322 | ymin : None, | |
|
323 | ymax : None, | |
|
324 | zmin : None, | |
|
325 | zmax : None | |
|
326 | """ | |
|
327 | print("***************PLOTEO******************") | |
|
328 | print("DATAOUT SHAPE : ",dataOut.data.shape) | |
|
329 | if dataOut.flagNoData: | |
|
330 | return dataOut | |
|
331 | ||
|
332 | if realtime: | |
|
333 | if not(isRealtime(utcdatatime = dataOut.utctime)): | |
|
334 | print('Skipping this plot function') | |
|
335 | return | |
|
336 | ||
|
337 | if channelList == None: | |
|
338 | channelIndexList = dataOut.channelIndexList | |
|
339 | else: | |
|
340 | channelIndexList = [] | |
|
341 | for channel in channelList: | |
|
342 | if channel not in dataOut.channelList: | |
|
343 | raise ValueError("Channel %d is not in dataOut.channelList" %channel) | |
|
344 | channelIndexList.append(dataOut.channelList.index(channel)) | |
|
345 | ||
|
346 | ||
|
347 | print("channelIndexList",channelIndexList) | |
|
348 | if normFactor is None: | |
|
349 | factor = dataOut.normFactor | |
|
350 | else: | |
|
351 | factor = normFactor | |
|
352 | if xaxis == "frequency": | |
|
353 | x = dataOut.getFreqRange(1)/1000. | |
|
354 | xlabel = "Frequency (kHz)" | |
|
355 | ||
|
356 | elif xaxis == "time": | |
|
357 | x = dataOut.getAcfRange(1) | |
|
358 | xlabel = "Time (ms)" | |
|
359 | ||
|
360 | else: | |
|
361 | x = dataOut.getVelRange(1) | |
|
362 | xlabel = "Velocity (m/s)" | |
|
363 | ||
|
364 | ylabel = "Range (km)" | |
|
365 | ||
|
366 | y = dataOut.getHeiRange() | |
|
367 | print("factor",factor) | |
|
368 | ||
|
369 | z = dataOut.data/factor # dividido /factor | |
|
370 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
|
371 | zdB = 10*numpy.log10(z) | |
|
372 | ||
|
373 | avg = numpy.average(z, axis=1) | |
|
374 | avgdB = 10*numpy.log10(avg) | |
|
375 | ||
|
376 | noise = dataOut.getNoise()/factor | |
|
377 | noisedB = 10*numpy.log10(noise) | |
|
378 | ||
|
379 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
|
380 | title = wintitle + "Weather Power" | |
|
381 | ||
|
382 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
|
383 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) | |
|
384 | ||
|
385 | if not self.isConfig: | |
|
386 | ||
|
387 | nplots = len(channelIndexList) | |
|
388 | ||
|
389 | self.setup(id=id, | |
|
390 | nplots=nplots, | |
|
391 | wintitle=wintitle, | |
|
392 | showprofile=showprofile, | |
|
393 | show=show) | |
|
394 | ||
|
395 | if xmin == None: xmin = numpy.nanmin(x) | |
|
396 | if xmax == None: xmax = numpy.nanmax(x) | |
|
397 | if ymin == None: ymin = numpy.nanmin(y) | |
|
398 | if ymax == None: ymax = numpy.nanmax(y) | |
|
399 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 | |
|
400 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 | |
|
401 | ||
|
402 | self.FTP_WEI = ftp_wei | |
|
403 | self.EXP_CODE = exp_code | |
|
404 | self.SUB_EXP_CODE = sub_exp_code | |
|
405 | self.PLOT_POS = plot_pos | |
|
406 | ||
|
407 | self.isConfig = True | |
|
408 | ||
|
409 | self.setWinTitle(title) | |
|
410 | ||
|
411 | for i in range(self.nplots): | |
|
412 | index = channelIndexList[i] | |
|
413 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) | |
|
414 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) | |
|
415 | if len(dataOut.beam.codeList) != 0: | |
|
416 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) | |
|
417 | ||
|
418 | axes = self.axesList[i*self.__nsubplots] | |
|
419 | axes.pcolor(x, y, zdB[index,:,:], | |
|
420 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
|
421 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap, | |
|
422 | ticksize=9, cblabel='') | |
|
423 | ||
|
424 | if self.__showprofile: | |
|
425 | axes = self.axesList[i*self.__nsubplots +1] | |
|
426 | axes.pline(avgdB[index,:], y, | |
|
427 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, | |
|
428 | xlabel='dB', ylabel='', title='', | |
|
429 | ytick_visible=False, | |
|
430 | grid='x') | |
|
431 | ||
|
432 | noiseline = numpy.repeat(noisedB[index], len(y)) | |
|
433 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) | |
|
434 | ||
|
435 | self.draw() | |
|
436 | ||
|
437 | if figfile == None: | |
|
438 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
|
439 | name = str_datetime | |
|
440 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
|
441 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) | |
|
442 | figfile = self.getFilename(name) | |
|
443 | ||
|
444 | self.save(figpath=figpath, | |
|
445 | figfile=figfile, | |
|
446 | save=save, | |
|
447 | ftp=ftp, | |
|
448 | wr_period=wr_period, | |
|
449 | thisDatetime=thisDatetime) | |
|
450 | return dataOut | |
|
451 | ||
|
452 | @MPDecorator | |
|
233 | 453 | class CrossSpectraPlot_(Figure): |
|
234 | 454 | |
|
235 | 455 | isConfig = None |
|
236 | 456 | __nsubplots = None |
|
237 | 457 | |
|
238 | 458 | WIDTH = None |
|
239 | 459 | HEIGHT = None |
|
240 | 460 | WIDTHPROF = None |
|
241 | 461 | HEIGHTPROF = None |
|
242 | 462 | PREFIX = 'cspc' |
|
243 | 463 | |
|
244 | 464 | def __init__(self): |
|
245 | 465 | Figure.__init__(self) |
|
246 | 466 | self.isConfig = False |
|
247 | 467 | self.__nsubplots = 4 |
|
248 | 468 | self.counter_imagwr = 0 |
|
249 | 469 | self.WIDTH = 250 |
|
250 | 470 | self.HEIGHT = 250 |
|
251 | 471 | self.WIDTHPROF = 0 |
|
252 | 472 | self.HEIGHTPROF = 0 |
|
253 | 473 | |
|
254 | 474 | self.PLOT_CODE = CROSS_CODE |
|
255 | 475 | self.FTP_WEI = None |
|
256 | 476 | self.EXP_CODE = None |
|
257 | 477 | self.SUB_EXP_CODE = None |
|
258 | 478 | self.PLOT_POS = None |
|
259 | ||
|
479 | ||
|
260 | 480 | self.indice=0 |
|
261 | 481 | |
|
262 | 482 | def getSubplots(self): |
|
263 | 483 | |
|
264 | 484 | ncol = 4 |
|
265 | 485 | nrow = self.nplots |
|
266 | 486 | |
|
267 | 487 | return nrow, ncol |
|
268 | 488 | |
|
269 | 489 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
270 | 490 | |
|
271 | 491 | self.__showprofile = showprofile |
|
272 | 492 | self.nplots = nplots |
|
273 | 493 | |
|
274 | 494 | ncolspan = 1 |
|
275 | 495 | colspan = 1 |
|
276 | 496 | |
|
277 | 497 | self.createFigure(id = id, |
|
278 | 498 | wintitle = wintitle, |
|
279 | 499 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
280 | 500 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
281 | 501 | show=True) |
|
282 | 502 | |
|
283 | 503 | nrow, ncol = self.getSubplots() |
|
284 | 504 | |
|
285 | 505 | counter = 0 |
|
286 | 506 | for y in range(nrow): |
|
287 | 507 | for x in range(ncol): |
|
288 | 508 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
289 | 509 | |
|
290 | 510 | counter += 1 |
|
291 | 511 | |
|
292 | 512 | def run(self, dataOut, id, wintitle="", pairsList=None, |
|
293 | 513 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
294 | 514 | coh_min=None, coh_max=None, phase_min=None, phase_max=None, |
|
295 | 515 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
296 | 516 | power_cmap='jet', coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
297 | 517 | server=None, folder=None, username=None, password=None, |
|
298 | 518 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, |
|
299 | 519 | xaxis='frequency'): |
|
300 | 520 | |
|
301 | 521 | """ |
|
302 | 522 | |
|
303 | 523 | Input: |
|
304 | 524 | dataOut : |
|
305 | 525 | id : |
|
306 | 526 | wintitle : |
|
307 | 527 | channelList : |
|
308 | 528 | showProfile : |
|
309 | 529 | xmin : None, |
|
310 | 530 | xmax : None, |
|
311 | 531 | ymin : None, |
|
312 | 532 | ymax : None, |
|
313 | 533 | zmin : None, |
|
314 | 534 | zmax : None |
|
315 | 535 | """ |
|
316 | 536 | |
|
317 |
if dataOut.flagNoData: |
|
|
537 | if dataOut.flagNoData: | |
|
318 | 538 | return dataOut |
|
319 | 539 | |
|
320 | 540 | if pairsList == None: |
|
321 | 541 | pairsIndexList = dataOut.pairsIndexList |
|
322 | 542 | else: |
|
323 | 543 | pairsIndexList = [] |
|
324 | 544 | for pair in pairsList: |
|
325 | 545 | if pair not in dataOut.pairsList: |
|
326 | 546 | raise ValueError("Pair %s is not in dataOut.pairsList" %str(pair)) |
|
327 | 547 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
328 | 548 | |
|
329 | 549 | if not pairsIndexList: |
|
330 | 550 | return |
|
331 | 551 | |
|
332 | 552 | if len(pairsIndexList) > 4: |
|
333 | 553 | pairsIndexList = pairsIndexList[0:4] |
|
334 | ||
|
554 | ||
|
335 | 555 | if normFactor is None: |
|
336 | 556 | factor = dataOut.normFactor |
|
337 | 557 | else: |
|
338 | 558 | factor = normFactor |
|
339 | 559 | x = dataOut.getVelRange(1) |
|
340 | 560 | y = dataOut.getHeiRange() |
|
341 | 561 | z = dataOut.data_spc[:,:,:]/factor |
|
342 | 562 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
343 | 563 | |
|
344 | 564 | noise = dataOut.noise/factor |
|
345 | 565 | |
|
346 | 566 | zdB = 10*numpy.log10(z) |
|
347 | 567 | noisedB = 10*numpy.log10(noise) |
|
348 | 568 | |
|
349 | 569 | if coh_min == None: |
|
350 | 570 | coh_min = 0.0 |
|
351 | 571 | if coh_max == None: |
|
352 | 572 | coh_max = 1.0 |
|
353 | 573 | |
|
354 | 574 | if phase_min == None: |
|
355 | 575 | phase_min = -180 |
|
356 | 576 | if phase_max == None: |
|
357 | 577 | phase_max = 180 |
|
358 | 578 | |
|
359 | 579 | #thisDatetime = dataOut.datatime |
|
360 | 580 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
361 | 581 | title = wintitle + " Cross-Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
362 | 582 | # xlabel = "Velocity (m/s)" |
|
363 | 583 | ylabel = "Range (Km)" |
|
364 | 584 | |
|
365 | 585 | if xaxis == "frequency": |
|
366 | 586 | x = dataOut.getFreqRange(1)/1000. |
|
367 | 587 | xlabel = "Frequency (kHz)" |
|
368 | 588 | |
|
369 | 589 | elif xaxis == "time": |
|
370 | 590 | x = dataOut.getAcfRange(1) |
|
371 | 591 | xlabel = "Time (ms)" |
|
372 | 592 | |
|
373 | 593 | else: |
|
374 | 594 | x = dataOut.getVelRange(1) |
|
375 | 595 | xlabel = "Velocity (m/s)" |
|
376 | 596 | |
|
377 | 597 | if not self.isConfig: |
|
378 | 598 | |
|
379 | 599 | nplots = len(pairsIndexList) |
|
380 | 600 | |
|
381 | 601 | self.setup(id=id, |
|
382 | 602 | nplots=nplots, |
|
383 | 603 | wintitle=wintitle, |
|
384 | 604 | showprofile=False, |
|
385 | 605 | show=show) |
|
386 | 606 | |
|
387 | 607 | avg = numpy.abs(numpy.average(z, axis=1)) |
|
388 | 608 | avgdB = 10*numpy.log10(avg) |
|
389 | 609 | |
|
390 | 610 | if xmin == None: xmin = numpy.nanmin(x) |
|
391 | 611 | if xmax == None: xmax = numpy.nanmax(x) |
|
392 | 612 | if ymin == None: ymin = numpy.nanmin(y) |
|
393 | 613 | if ymax == None: ymax = numpy.nanmax(y) |
|
394 | 614 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
395 | 615 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
396 | 616 | |
|
397 | 617 | self.FTP_WEI = ftp_wei |
|
398 | 618 | self.EXP_CODE = exp_code |
|
399 | 619 | self.SUB_EXP_CODE = sub_exp_code |
|
400 | 620 | self.PLOT_POS = plot_pos |
|
401 | 621 | |
|
402 | 622 | self.isConfig = True |
|
403 | 623 | |
|
404 | 624 | self.setWinTitle(title) |
|
405 | ||
|
625 | ||
|
406 | 626 | |
|
407 | 627 | for i in range(self.nplots): |
|
408 | 628 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
409 | 629 | |
|
410 | 630 | chan_index0 = dataOut.channelList.index(pair[0]) |
|
411 | 631 | chan_index1 = dataOut.channelList.index(pair[1]) |
|
412 | 632 | |
|
413 | 633 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
414 | 634 | title = "Ch%d: %4.2fdB: %s" %(pair[0], noisedB[chan_index0], str_datetime) |
|
415 | 635 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index0,:,:]/factor) |
|
416 | 636 | axes0 = self.axesList[i*self.__nsubplots] |
|
417 | 637 | axes0.pcolor(x, y, zdB, |
|
418 | 638 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
419 | 639 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
420 | 640 | ticksize=9, colormap=power_cmap, cblabel='') |
|
421 | 641 | |
|
422 | 642 | title = "Ch%d: %4.2fdB: %s" %(pair[1], noisedB[chan_index1], str_datetime) |
|
423 | 643 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index1,:,:]/factor) |
|
424 | 644 | axes0 = self.axesList[i*self.__nsubplots+1] |
|
425 | 645 | axes0.pcolor(x, y, zdB, |
|
426 | 646 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
427 | 647 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
428 | 648 | ticksize=9, colormap=power_cmap, cblabel='') |
|
429 | 649 | |
|
430 | 650 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:] / numpy.sqrt( dataOut.data_spc[chan_index0,:,:]*dataOut.data_spc[chan_index1,:,:] ) |
|
431 | 651 | coherence = numpy.abs(coherenceComplex) |
|
432 | 652 | # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi |
|
433 | 653 | phase = numpy.arctan2(coherenceComplex.imag, coherenceComplex.real)*180/numpy.pi |
|
434 | 654 | |
|
435 | 655 | title = "Coherence Ch%d * Ch%d" %(pair[0], pair[1]) |
|
436 | 656 | axes0 = self.axesList[i*self.__nsubplots+2] |
|
437 | 657 | axes0.pcolor(x, y, coherence, |
|
438 | 658 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=coh_min, zmax=coh_max, |
|
439 | 659 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
440 | 660 | ticksize=9, colormap=coherence_cmap, cblabel='') |
|
441 | 661 | |
|
442 | 662 | title = "Phase Ch%d * Ch%d" %(pair[0], pair[1]) |
|
443 | 663 | axes0 = self.axesList[i*self.__nsubplots+3] |
|
444 | 664 | axes0.pcolor(x, y, phase, |
|
445 | 665 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
446 | 666 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
447 | 667 | ticksize=9, colormap=phase_cmap, cblabel='') |
|
448 | 668 | |
|
449 | 669 | self.draw() |
|
450 | 670 | |
|
451 | 671 | self.save(figpath=figpath, |
|
452 | 672 | figfile=figfile, |
|
453 | 673 | save=save, |
|
454 | 674 | ftp=ftp, |
|
455 | 675 | wr_period=wr_period, |
|
456 | 676 | thisDatetime=thisDatetime) |
|
457 | 677 | |
|
458 | 678 | return dataOut |
|
459 | 679 | |
|
460 | 680 | @MPDecorator |
|
461 | 681 | class RTIPlot_(Figure): |
|
462 | 682 | |
|
463 | 683 | __isConfig = None |
|
464 | 684 | __nsubplots = None |
|
465 | 685 | |
|
466 | 686 | WIDTHPROF = None |
|
467 | 687 | HEIGHTPROF = None |
|
468 | 688 | PREFIX = 'rti' |
|
469 | 689 | |
|
470 | 690 | def __init__(self): |
|
471 | 691 | |
|
472 | 692 | Figure.__init__(self) |
|
473 | 693 | self.timerange = None |
|
474 | 694 | self.isConfig = False |
|
475 | 695 | self.__nsubplots = 1 |
|
476 | 696 | |
|
477 | 697 | self.WIDTH = 800 |
|
478 | 698 | self.HEIGHT = 250 |
|
479 | 699 | self.WIDTHPROF = 120 |
|
480 | 700 | self.HEIGHTPROF = 0 |
|
481 | 701 | self.counter_imagwr = 0 |
|
482 | 702 | |
|
483 | 703 | self.PLOT_CODE = RTI_CODE |
|
484 | 704 | |
|
485 | 705 | self.FTP_WEI = None |
|
486 | 706 | self.EXP_CODE = None |
|
487 | 707 | self.SUB_EXP_CODE = None |
|
488 | 708 | self.PLOT_POS = None |
|
489 | 709 | self.tmin = None |
|
490 | 710 | self.tmax = None |
|
491 | 711 | |
|
492 | 712 | self.xmin = None |
|
493 | 713 | self.xmax = None |
|
494 | 714 | |
|
495 | 715 | self.figfile = None |
|
496 | 716 | |
|
497 | 717 | def getSubplots(self): |
|
498 | 718 | |
|
499 | 719 | ncol = 1 |
|
500 | 720 | nrow = self.nplots |
|
501 | 721 | |
|
502 | 722 | return nrow, ncol |
|
503 | 723 | |
|
504 | 724 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
505 | 725 | |
|
506 | 726 | self.__showprofile = showprofile |
|
507 | 727 | self.nplots = nplots |
|
508 | 728 | |
|
509 | 729 | ncolspan = 1 |
|
510 | 730 | colspan = 1 |
|
511 | 731 | if showprofile: |
|
512 | 732 | ncolspan = 7 |
|
513 | 733 | colspan = 6 |
|
514 | 734 | self.__nsubplots = 2 |
|
515 | 735 | |
|
516 | 736 | self.createFigure(id = id, |
|
517 | 737 | wintitle = wintitle, |
|
518 | 738 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
519 | 739 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
520 | 740 | show=show) |
|
521 | 741 | |
|
522 | 742 | nrow, ncol = self.getSubplots() |
|
523 | 743 | |
|
524 | 744 | counter = 0 |
|
525 | 745 | for y in range(nrow): |
|
526 | 746 | for x in range(ncol): |
|
527 | 747 | |
|
528 | 748 | if counter >= self.nplots: |
|
529 | 749 | break |
|
530 | 750 | |
|
531 | 751 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
532 | 752 | |
|
533 | 753 | if showprofile: |
|
534 | 754 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
535 | 755 | |
|
536 | 756 | counter += 1 |
|
537 | 757 | |
|
538 | 758 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
539 | 759 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
540 | 760 | timerange=None, colormap='jet', |
|
541 | 761 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
542 | 762 | server=None, folder=None, username=None, password=None, |
|
543 | 763 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, HEIGHT=None): |
|
544 | 764 | |
|
545 | 765 | """ |
|
546 | 766 | |
|
547 | 767 | Input: |
|
548 | 768 | dataOut : |
|
549 | 769 | id : |
|
550 | 770 | wintitle : |
|
551 | 771 | channelList : |
|
552 | 772 | showProfile : |
|
553 | 773 | xmin : None, |
|
554 | 774 | xmax : None, |
|
555 | 775 | ymin : None, |
|
556 | 776 | ymax : None, |
|
557 | 777 | zmin : None, |
|
558 | 778 | zmax : None |
|
559 | 779 | """ |
|
560 | 780 | if dataOut.flagNoData: |
|
561 | 781 | return dataOut |
|
562 | 782 | |
|
563 | 783 | #colormap = kwargs.get('colormap', 'jet') |
|
564 | 784 | if HEIGHT is not None: |
|
565 | 785 | self.HEIGHT = HEIGHT |
|
566 | ||
|
786 | ||
|
567 | 787 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
568 | 788 | return |
|
569 | 789 | |
|
570 | 790 | if channelList == None: |
|
571 | 791 | channelIndexList = dataOut.channelIndexList |
|
572 | 792 | else: |
|
573 | 793 | channelIndexList = [] |
|
574 | 794 | for channel in channelList: |
|
575 | 795 | if channel not in dataOut.channelList: |
|
576 | 796 | raise ValueError("Channel %d is not in dataOut.channelList") |
|
577 | 797 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
578 | 798 | |
|
579 | 799 | if normFactor is None: |
|
580 | 800 | factor = dataOut.normFactor |
|
581 | 801 | else: |
|
582 | 802 | factor = normFactor |
|
583 | 803 | |
|
584 | 804 | #factor = dataOut.normFactor |
|
585 | 805 | x = dataOut.getTimeRange() |
|
586 | 806 | y = dataOut.getHeiRange() |
|
587 | 807 | |
|
588 | 808 | z = dataOut.data_spc/factor |
|
589 | 809 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
590 | 810 | avg = numpy.average(z, axis=1) |
|
591 | 811 | avgdB = 10.*numpy.log10(avg) |
|
592 | 812 | # avgdB = dataOut.getPower() |
|
593 | 813 | |
|
594 | 814 | |
|
595 | 815 | thisDatetime = dataOut.datatime |
|
596 | 816 | #thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
597 | 817 | title = wintitle + " RTI" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
598 | 818 | xlabel = "" |
|
599 | 819 | ylabel = "Range (Km)" |
|
600 | 820 | |
|
601 | 821 | update_figfile = False |
|
602 | 822 | |
|
603 | 823 | if self.xmax is not None and dataOut.ltctime >= self.xmax: #yong |
|
604 | 824 | self.counter_imagwr = wr_period |
|
605 | 825 | self.isConfig = False |
|
606 | 826 | update_figfile = True |
|
607 | 827 | |
|
608 | 828 | if not self.isConfig: |
|
609 | 829 | |
|
610 | 830 | nplots = len(channelIndexList) |
|
611 | 831 | |
|
612 | 832 | self.setup(id=id, |
|
613 | 833 | nplots=nplots, |
|
614 | 834 | wintitle=wintitle, |
|
615 | 835 | showprofile=showprofile, |
|
616 | 836 | show=show) |
|
617 | 837 | |
|
618 | 838 | if timerange != None: |
|
619 | 839 | self.timerange = timerange |
|
620 | 840 | |
|
621 | 841 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
622 | 842 | |
|
623 | 843 | noise = dataOut.noise/factor |
|
624 | 844 | noisedB = 10*numpy.log10(noise) |
|
625 | 845 | |
|
626 | 846 | if ymin == None: ymin = numpy.nanmin(y) |
|
627 | 847 | if ymax == None: ymax = numpy.nanmax(y) |
|
628 | 848 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
629 | 849 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
630 | 850 | |
|
631 | 851 | self.FTP_WEI = ftp_wei |
|
632 | 852 | self.EXP_CODE = exp_code |
|
633 | 853 | self.SUB_EXP_CODE = sub_exp_code |
|
634 | 854 | self.PLOT_POS = plot_pos |
|
635 | 855 | |
|
636 | 856 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
637 | 857 | self.isConfig = True |
|
638 | 858 | self.figfile = figfile |
|
639 | 859 | update_figfile = True |
|
640 | 860 | |
|
641 | 861 | self.setWinTitle(title) |
|
642 | 862 | |
|
643 | 863 | for i in range(self.nplots): |
|
644 | 864 | index = channelIndexList[i] |
|
645 | 865 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
646 | 866 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
647 | 867 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
648 | 868 | axes = self.axesList[i*self.__nsubplots] |
|
649 | 869 | zdB = avgdB[index].reshape((1,-1)) |
|
650 | 870 | axes.pcolorbuffer(x, y, zdB, |
|
651 | 871 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
652 | 872 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
653 | 873 | ticksize=9, cblabel='', cbsize="1%", colormap=colormap) |
|
654 | 874 | |
|
655 | 875 | if self.__showprofile: |
|
656 | 876 | axes = self.axesList[i*self.__nsubplots +1] |
|
657 | 877 | axes.pline(avgdB[index], y, |
|
658 | 878 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
659 | 879 | xlabel='dB', ylabel='', title='', |
|
660 | 880 | ytick_visible=False, |
|
661 | 881 | grid='x') |
|
662 | 882 | |
|
663 | 883 | self.draw() |
|
664 | 884 | |
|
665 | 885 | self.save(figpath=figpath, |
|
666 | 886 | figfile=figfile, |
|
667 | 887 | save=save, |
|
668 | 888 | ftp=ftp, |
|
669 | 889 | wr_period=wr_period, |
|
670 | 890 | thisDatetime=thisDatetime, |
|
671 | 891 | update_figfile=update_figfile) |
|
672 | 892 | return dataOut |
|
673 | 893 | |
|
674 | 894 | @MPDecorator |
|
675 | 895 | class CoherenceMap_(Figure): |
|
676 | 896 | isConfig = None |
|
677 | 897 | __nsubplots = None |
|
678 | 898 | |
|
679 | 899 | WIDTHPROF = None |
|
680 | 900 | HEIGHTPROF = None |
|
681 | 901 | PREFIX = 'cmap' |
|
682 | 902 | |
|
683 | 903 | def __init__(self): |
|
684 | 904 | Figure.__init__(self) |
|
685 | 905 | self.timerange = 2*60*60 |
|
686 | 906 | self.isConfig = False |
|
687 | 907 | self.__nsubplots = 1 |
|
688 | 908 | |
|
689 | 909 | self.WIDTH = 800 |
|
690 | 910 | self.HEIGHT = 180 |
|
691 | 911 | self.WIDTHPROF = 120 |
|
692 | 912 | self.HEIGHTPROF = 0 |
|
693 | 913 | self.counter_imagwr = 0 |
|
694 | 914 | |
|
695 | 915 | self.PLOT_CODE = COH_CODE |
|
696 | 916 | |
|
697 | 917 | self.FTP_WEI = None |
|
698 | 918 | self.EXP_CODE = None |
|
699 | 919 | self.SUB_EXP_CODE = None |
|
700 | 920 | self.PLOT_POS = None |
|
701 | 921 | self.counter_imagwr = 0 |
|
702 | 922 | |
|
703 | 923 | self.xmin = None |
|
704 | 924 | self.xmax = None |
|
705 | 925 | |
|
706 | 926 | def getSubplots(self): |
|
707 | 927 | ncol = 1 |
|
708 | 928 | nrow = self.nplots*2 |
|
709 | 929 | |
|
710 | 930 | return nrow, ncol |
|
711 | 931 | |
|
712 | 932 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
713 | 933 | self.__showprofile = showprofile |
|
714 | 934 | self.nplots = nplots |
|
715 | 935 | |
|
716 | 936 | ncolspan = 1 |
|
717 | 937 | colspan = 1 |
|
718 | 938 | if showprofile: |
|
719 | 939 | ncolspan = 7 |
|
720 | 940 | colspan = 6 |
|
721 | 941 | self.__nsubplots = 2 |
|
722 | 942 | |
|
723 | 943 | self.createFigure(id = id, |
|
724 | 944 | wintitle = wintitle, |
|
725 | 945 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
726 | 946 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
727 | 947 | show=True) |
|
728 | 948 | |
|
729 | 949 | nrow, ncol = self.getSubplots() |
|
730 | 950 | |
|
731 | 951 | for y in range(nrow): |
|
732 | 952 | for x in range(ncol): |
|
733 | 953 | |
|
734 | 954 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
735 | 955 | |
|
736 | 956 | if showprofile: |
|
737 | 957 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
738 | 958 | |
|
739 | 959 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
740 | 960 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
741 | 961 | timerange=None, phase_min=None, phase_max=None, |
|
742 | 962 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
743 | 963 | coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
744 | 964 | server=None, folder=None, username=None, password=None, |
|
745 | 965 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
746 | 966 | |
|
747 | 967 | |
|
748 |
if dataOut.flagNoData: |
|
|
968 | if dataOut.flagNoData: | |
|
749 | 969 | return dataOut |
|
750 | 970 | |
|
751 | 971 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
752 | 972 | return |
|
753 | 973 | |
|
754 | 974 | if pairsList == None: |
|
755 | 975 | pairsIndexList = dataOut.pairsIndexList |
|
756 | 976 | else: |
|
757 | 977 | pairsIndexList = [] |
|
758 | 978 | for pair in pairsList: |
|
759 | 979 | if pair not in dataOut.pairsList: |
|
760 | 980 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
761 | 981 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
762 | 982 | |
|
763 | 983 | if pairsIndexList == []: |
|
764 | 984 | return |
|
765 | 985 | |
|
766 | 986 | if len(pairsIndexList) > 4: |
|
767 | 987 | pairsIndexList = pairsIndexList[0:4] |
|
768 | 988 | |
|
769 | 989 | if phase_min == None: |
|
770 | 990 | phase_min = -180 |
|
771 | 991 | if phase_max == None: |
|
772 | 992 | phase_max = 180 |
|
773 | 993 | |
|
774 | 994 | x = dataOut.getTimeRange() |
|
775 | 995 | y = dataOut.getHeiRange() |
|
776 | 996 | |
|
777 | 997 | thisDatetime = dataOut.datatime |
|
778 | 998 | |
|
779 | 999 | title = wintitle + " CoherenceMap" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
780 | 1000 | xlabel = "" |
|
781 | 1001 | ylabel = "Range (Km)" |
|
782 | 1002 | update_figfile = False |
|
783 | 1003 | |
|
784 | 1004 | if not self.isConfig: |
|
785 | 1005 | nplots = len(pairsIndexList) |
|
786 | 1006 | self.setup(id=id, |
|
787 | 1007 | nplots=nplots, |
|
788 | 1008 | wintitle=wintitle, |
|
789 | 1009 | showprofile=showprofile, |
|
790 | 1010 | show=show) |
|
791 | 1011 | |
|
792 | 1012 | if timerange != None: |
|
793 | 1013 | self.timerange = timerange |
|
794 | 1014 | |
|
795 | 1015 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
796 | 1016 | |
|
797 | 1017 | if ymin == None: ymin = numpy.nanmin(y) |
|
798 | 1018 | if ymax == None: ymax = numpy.nanmax(y) |
|
799 | 1019 | if zmin == None: zmin = 0. |
|
800 | 1020 | if zmax == None: zmax = 1. |
|
801 | 1021 | |
|
802 | 1022 | self.FTP_WEI = ftp_wei |
|
803 | 1023 | self.EXP_CODE = exp_code |
|
804 | 1024 | self.SUB_EXP_CODE = sub_exp_code |
|
805 | 1025 | self.PLOT_POS = plot_pos |
|
806 | 1026 | |
|
807 | 1027 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
808 | 1028 | |
|
809 | 1029 | self.isConfig = True |
|
810 | 1030 | update_figfile = True |
|
811 | 1031 | |
|
812 | 1032 | self.setWinTitle(title) |
|
813 | 1033 | |
|
814 | 1034 | for i in range(self.nplots): |
|
815 | 1035 | |
|
816 | 1036 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
817 | 1037 | |
|
818 | 1038 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i],:,:],axis=0) |
|
819 | 1039 | powa = numpy.average(dataOut.data_spc[pair[0],:,:],axis=0) |
|
820 | 1040 | powb = numpy.average(dataOut.data_spc[pair[1],:,:],axis=0) |
|
821 | 1041 | |
|
822 | 1042 | |
|
823 | 1043 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
824 | 1044 | coherence = numpy.abs(avgcoherenceComplex) |
|
825 | 1045 | |
|
826 | 1046 | z = coherence.reshape((1,-1)) |
|
827 | 1047 | |
|
828 | 1048 | counter = 0 |
|
829 | 1049 | |
|
830 | 1050 | title = "Coherence Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
831 | 1051 | axes = self.axesList[i*self.__nsubplots*2] |
|
832 | 1052 | axes.pcolorbuffer(x, y, z, |
|
833 | 1053 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
834 | 1054 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
835 | 1055 | ticksize=9, cblabel='', colormap=coherence_cmap, cbsize="1%") |
|
836 | 1056 | |
|
837 | 1057 | if self.__showprofile: |
|
838 | 1058 | counter += 1 |
|
839 | 1059 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
840 | 1060 | axes.pline(coherence, y, |
|
841 | 1061 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
842 | 1062 | xlabel='', ylabel='', title='', ticksize=7, |
|
843 | 1063 | ytick_visible=False, nxticks=5, |
|
844 | 1064 | grid='x') |
|
845 | 1065 | |
|
846 | 1066 | counter += 1 |
|
847 | 1067 | |
|
848 | 1068 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
849 | 1069 | |
|
850 | 1070 | z = phase.reshape((1,-1)) |
|
851 | 1071 | |
|
852 | 1072 | title = "Phase Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
853 | 1073 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
854 | 1074 | axes.pcolorbuffer(x, y, z, |
|
855 | 1075 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
856 | 1076 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
857 | 1077 | ticksize=9, cblabel='', colormap=phase_cmap, cbsize="1%") |
|
858 | 1078 | |
|
859 | 1079 | if self.__showprofile: |
|
860 | 1080 | counter += 1 |
|
861 | 1081 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
862 | 1082 | axes.pline(phase, y, |
|
863 | 1083 | xmin=phase_min, xmax=phase_max, ymin=ymin, ymax=ymax, |
|
864 | 1084 | xlabel='', ylabel='', title='', ticksize=7, |
|
865 | 1085 | ytick_visible=False, nxticks=4, |
|
866 | 1086 | grid='x') |
|
867 | 1087 | |
|
868 | 1088 | self.draw() |
|
869 | 1089 | |
|
870 | 1090 | if dataOut.ltctime >= self.xmax: |
|
871 | 1091 | self.counter_imagwr = wr_period |
|
872 | 1092 | self.isConfig = False |
|
873 | 1093 | update_figfile = True |
|
874 | 1094 | |
|
875 | 1095 | self.save(figpath=figpath, |
|
876 | 1096 | figfile=figfile, |
|
877 | 1097 | save=save, |
|
878 | 1098 | ftp=ftp, |
|
879 | 1099 | wr_period=wr_period, |
|
880 | 1100 | thisDatetime=thisDatetime, |
|
881 | 1101 | update_figfile=update_figfile) |
|
882 | 1102 | |
|
883 | 1103 | return dataOut |
|
884 | 1104 | |
|
885 | 1105 | @MPDecorator |
|
886 | 1106 | class PowerProfilePlot_(Figure): |
|
887 | 1107 | |
|
888 | 1108 | isConfig = None |
|
889 | 1109 | __nsubplots = None |
|
890 | 1110 | |
|
891 | 1111 | WIDTHPROF = None |
|
892 | 1112 | HEIGHTPROF = None |
|
893 | 1113 | PREFIX = 'spcprofile' |
|
894 | 1114 | |
|
895 | 1115 | def __init__(self): |
|
896 | 1116 | Figure.__init__(self) |
|
897 | 1117 | self.isConfig = False |
|
898 | 1118 | self.__nsubplots = 1 |
|
899 | 1119 | |
|
900 | 1120 | self.PLOT_CODE = POWER_CODE |
|
901 | 1121 | |
|
902 | 1122 | self.WIDTH = 300 |
|
903 | 1123 | self.HEIGHT = 500 |
|
904 | 1124 | self.counter_imagwr = 0 |
|
905 | 1125 | |
|
906 | 1126 | def getSubplots(self): |
|
907 | 1127 | ncol = 1 |
|
908 | 1128 | nrow = 1 |
|
909 | 1129 | |
|
910 | 1130 | return nrow, ncol |
|
911 | 1131 | |
|
912 | 1132 | def setup(self, id, nplots, wintitle, show): |
|
913 | 1133 | |
|
914 | 1134 | self.nplots = nplots |
|
915 | 1135 | |
|
916 | 1136 | ncolspan = 1 |
|
917 | 1137 | colspan = 1 |
|
918 | 1138 | |
|
919 | 1139 | self.createFigure(id = id, |
|
920 | 1140 | wintitle = wintitle, |
|
921 | 1141 | widthplot = self.WIDTH, |
|
922 | 1142 | heightplot = self.HEIGHT, |
|
923 | 1143 | show=show) |
|
924 | 1144 | |
|
925 | 1145 | nrow, ncol = self.getSubplots() |
|
926 | 1146 | |
|
927 | 1147 | counter = 0 |
|
928 | 1148 | for y in range(nrow): |
|
929 | 1149 | for x in range(ncol): |
|
930 | 1150 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
931 | 1151 | |
|
932 | 1152 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
933 | 1153 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
934 | 1154 | save=False, figpath='./', figfile=None, show=True, |
|
935 | 1155 | ftp=False, wr_period=1, server=None, |
|
936 | 1156 | folder=None, username=None, password=None): |
|
937 | 1157 | |
|
938 |
if dataOut.flagNoData: |
|
|
1158 | if dataOut.flagNoData: | |
|
939 | 1159 | return dataOut |
|
940 | 1160 | |
|
941 | 1161 | |
|
942 | 1162 | if channelList == None: |
|
943 | 1163 | channelIndexList = dataOut.channelIndexList |
|
944 | 1164 | channelList = dataOut.channelList |
|
945 | 1165 | else: |
|
946 | 1166 | channelIndexList = [] |
|
947 | 1167 | for channel in channelList: |
|
948 | 1168 | if channel not in dataOut.channelList: |
|
949 | 1169 | raise ValueError("Channel %d is not in dataOut.channelList") |
|
950 | 1170 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
951 | 1171 | |
|
952 | 1172 | factor = dataOut.normFactor |
|
953 | 1173 | |
|
954 | 1174 | y = dataOut.getHeiRange() |
|
955 | 1175 | |
|
956 | 1176 | #for voltage |
|
957 | 1177 | if dataOut.type == 'Voltage': |
|
958 | 1178 | x = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:]) |
|
959 | 1179 | x = x.real |
|
960 | 1180 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
961 | 1181 | |
|
962 | 1182 | #for spectra |
|
963 | 1183 | if dataOut.type == 'Spectra': |
|
964 | 1184 | x = dataOut.data_spc[channelIndexList,:,:]/factor |
|
965 | 1185 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
966 | 1186 | x = numpy.average(x, axis=1) |
|
967 | 1187 | |
|
968 | 1188 | |
|
969 | 1189 | xdB = 10*numpy.log10(x) |
|
970 | 1190 | |
|
971 | 1191 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
972 | 1192 | title = wintitle + " Power Profile %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
973 | 1193 | xlabel = "dB" |
|
974 | 1194 | ylabel = "Range (Km)" |
|
975 | 1195 | |
|
976 | 1196 | if not self.isConfig: |
|
977 | 1197 | |
|
978 | 1198 | nplots = 1 |
|
979 | 1199 | |
|
980 | 1200 | self.setup(id=id, |
|
981 | 1201 | nplots=nplots, |
|
982 | 1202 | wintitle=wintitle, |
|
983 | 1203 | show=show) |
|
984 | 1204 | |
|
985 | 1205 | if ymin == None: ymin = numpy.nanmin(y) |
|
986 | 1206 | if ymax == None: ymax = numpy.nanmax(y) |
|
987 | 1207 | if xmin == None: xmin = numpy.nanmin(xdB)*0.9 |
|
988 | 1208 | if xmax == None: xmax = numpy.nanmax(xdB)*1.1 |
|
989 | 1209 | |
|
990 | 1210 | self.isConfig = True |
|
991 | 1211 | |
|
992 | 1212 | self.setWinTitle(title) |
|
993 | 1213 | |
|
994 | 1214 | title = "Power Profile: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
995 | 1215 | axes = self.axesList[0] |
|
996 | 1216 | |
|
997 | 1217 | legendlabels = ["channel %d"%x for x in channelList] |
|
998 | 1218 | axes.pmultiline(xdB, y, |
|
999 | 1219 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1000 | 1220 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
1001 | 1221 | ytick_visible=True, nxticks=5, |
|
1002 | 1222 | grid='x') |
|
1003 | 1223 | |
|
1004 | 1224 | self.draw() |
|
1005 | 1225 | |
|
1006 | 1226 | self.save(figpath=figpath, |
|
1007 | 1227 | figfile=figfile, |
|
1008 | 1228 | save=save, |
|
1009 | 1229 | ftp=ftp, |
|
1010 | 1230 | wr_period=wr_period, |
|
1011 | 1231 | thisDatetime=thisDatetime) |
|
1012 | ||
|
1232 | ||
|
1013 | 1233 | return dataOut |
|
1014 | 1234 | |
|
1015 | 1235 | @MPDecorator |
|
1016 | 1236 | class SpectraCutPlot_(Figure): |
|
1017 | 1237 | |
|
1018 | 1238 | isConfig = None |
|
1019 | 1239 | __nsubplots = None |
|
1020 | 1240 | |
|
1021 | 1241 | WIDTHPROF = None |
|
1022 | 1242 | HEIGHTPROF = None |
|
1023 | 1243 | PREFIX = 'spc_cut' |
|
1024 | 1244 | |
|
1025 | 1245 | def __init__(self): |
|
1026 | 1246 | Figure.__init__(self) |
|
1027 | 1247 | self.isConfig = False |
|
1028 | 1248 | self.__nsubplots = 1 |
|
1029 | 1249 | |
|
1030 | 1250 | self.PLOT_CODE = POWER_CODE |
|
1031 | 1251 | |
|
1032 | 1252 | self.WIDTH = 700 |
|
1033 | 1253 | self.HEIGHT = 500 |
|
1034 | 1254 | self.counter_imagwr = 0 |
|
1035 | 1255 | |
|
1036 | 1256 | def getSubplots(self): |
|
1037 | 1257 | ncol = 1 |
|
1038 | 1258 | nrow = 1 |
|
1039 | 1259 | |
|
1040 | 1260 | return nrow, ncol |
|
1041 | 1261 | |
|
1042 | 1262 | def setup(self, id, nplots, wintitle, show): |
|
1043 | 1263 | |
|
1044 | 1264 | self.nplots = nplots |
|
1045 | 1265 | |
|
1046 | 1266 | ncolspan = 1 |
|
1047 | 1267 | colspan = 1 |
|
1048 | 1268 | |
|
1049 | 1269 | self.createFigure(id = id, |
|
1050 | 1270 | wintitle = wintitle, |
|
1051 | 1271 | widthplot = self.WIDTH, |
|
1052 | 1272 | heightplot = self.HEIGHT, |
|
1053 | 1273 | show=show) |
|
1054 | 1274 | |
|
1055 | 1275 | nrow, ncol = self.getSubplots() |
|
1056 | 1276 | |
|
1057 | 1277 | counter = 0 |
|
1058 | 1278 | for y in range(nrow): |
|
1059 | 1279 | for x in range(ncol): |
|
1060 | 1280 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1061 | 1281 | |
|
1062 | 1282 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
1063 | 1283 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1064 | 1284 | save=False, figpath='./', figfile=None, show=True, |
|
1065 | 1285 | ftp=False, wr_period=1, server=None, |
|
1066 | 1286 | folder=None, username=None, password=None, |
|
1067 | 1287 | xaxis="frequency"): |
|
1068 | 1288 | |
|
1069 |
if dataOut.flagNoData: |
|
|
1289 | if dataOut.flagNoData: | |
|
1070 | 1290 | return dataOut |
|
1071 | 1291 | |
|
1072 | 1292 | if channelList == None: |
|
1073 | 1293 | channelIndexList = dataOut.channelIndexList |
|
1074 | 1294 | channelList = dataOut.channelList |
|
1075 | 1295 | else: |
|
1076 | 1296 | channelIndexList = [] |
|
1077 | 1297 | for channel in channelList: |
|
1078 | 1298 | if channel not in dataOut.channelList: |
|
1079 | 1299 | raise ValueError("Channel %d is not in dataOut.channelList") |
|
1080 | 1300 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1081 | 1301 | |
|
1082 | 1302 | factor = dataOut.normFactor |
|
1083 | 1303 | |
|
1084 | 1304 | y = dataOut.getHeiRange() |
|
1085 | 1305 | |
|
1086 | 1306 | z = dataOut.data_spc/factor |
|
1087 | 1307 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1088 | 1308 | |
|
1089 | 1309 | hei_index = numpy.arange(25)*3 + 20 |
|
1090 | 1310 | |
|
1091 | 1311 | if xaxis == "frequency": |
|
1092 | 1312 | x = dataOut.getFreqRange()/1000. |
|
1093 | 1313 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1094 | 1314 | xlabel = "Frequency (kHz)" |
|
1095 | 1315 | ylabel = "Power (dB)" |
|
1096 | 1316 | |
|
1097 | 1317 | elif xaxis == "time": |
|
1098 | 1318 | x = dataOut.getAcfRange() |
|
1099 | 1319 | zdB = z[0,:,hei_index] |
|
1100 | 1320 | xlabel = "Time (ms)" |
|
1101 | 1321 | ylabel = "ACF" |
|
1102 | 1322 | |
|
1103 | 1323 | else: |
|
1104 | 1324 | x = dataOut.getVelRange() |
|
1105 | 1325 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1106 | 1326 | xlabel = "Velocity (m/s)" |
|
1107 | 1327 | ylabel = "Power (dB)" |
|
1108 | 1328 | |
|
1109 | 1329 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1110 | 1330 | title = wintitle + " Range Cuts %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1111 | 1331 | |
|
1112 | 1332 | if not self.isConfig: |
|
1113 | 1333 | |
|
1114 | 1334 | nplots = 1 |
|
1115 | 1335 | |
|
1116 | 1336 | self.setup(id=id, |
|
1117 | 1337 | nplots=nplots, |
|
1118 | 1338 | wintitle=wintitle, |
|
1119 | 1339 | show=show) |
|
1120 | 1340 | |
|
1121 | 1341 | if xmin == None: xmin = numpy.nanmin(x)*0.9 |
|
1122 | 1342 | if xmax == None: xmax = numpy.nanmax(x)*1.1 |
|
1123 | 1343 | if ymin == None: ymin = numpy.nanmin(zdB) |
|
1124 | 1344 | if ymax == None: ymax = numpy.nanmax(zdB) |
|
1125 | 1345 | |
|
1126 | 1346 | self.isConfig = True |
|
1127 | 1347 | |
|
1128 | 1348 | self.setWinTitle(title) |
|
1129 | 1349 | |
|
1130 | 1350 | title = "Spectra Cuts: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1131 | 1351 | axes = self.axesList[0] |
|
1132 | 1352 | |
|
1133 | 1353 | legendlabels = ["Range = %dKm" %y[i] for i in hei_index] |
|
1134 | 1354 | |
|
1135 | 1355 | axes.pmultilineyaxis( x, zdB, |
|
1136 | 1356 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1137 | 1357 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
1138 | 1358 | ytick_visible=True, nxticks=5, |
|
1139 | 1359 | grid='x') |
|
1140 | 1360 | |
|
1141 | 1361 | self.draw() |
|
1142 | 1362 | |
|
1143 | 1363 | self.save(figpath=figpath, |
|
1144 | 1364 | figfile=figfile, |
|
1145 | 1365 | save=save, |
|
1146 | 1366 | ftp=ftp, |
|
1147 | 1367 | wr_period=wr_period, |
|
1148 | 1368 | thisDatetime=thisDatetime) |
|
1149 | 1369 | |
|
1150 | 1370 | return dataOut |
|
1151 | 1371 | |
|
1152 | 1372 | @MPDecorator |
|
1153 | 1373 | class Noise_(Figure): |
|
1154 | 1374 | |
|
1155 | 1375 | isConfig = None |
|
1156 | 1376 | __nsubplots = None |
|
1157 | 1377 | |
|
1158 | 1378 | PREFIX = 'noise' |
|
1159 | 1379 | |
|
1160 | 1380 | |
|
1161 | 1381 | def __init__(self): |
|
1162 | 1382 | Figure.__init__(self) |
|
1163 | 1383 | self.timerange = 24*60*60 |
|
1164 | 1384 | self.isConfig = False |
|
1165 | 1385 | self.__nsubplots = 1 |
|
1166 | 1386 | self.counter_imagwr = 0 |
|
1167 | 1387 | self.WIDTH = 800 |
|
1168 | 1388 | self.HEIGHT = 400 |
|
1169 | 1389 | self.WIDTHPROF = 120 |
|
1170 | 1390 | self.HEIGHTPROF = 0 |
|
1171 | 1391 | self.xdata = None |
|
1172 | 1392 | self.ydata = None |
|
1173 | 1393 | |
|
1174 | 1394 | self.PLOT_CODE = NOISE_CODE |
|
1175 | 1395 | |
|
1176 | 1396 | self.FTP_WEI = None |
|
1177 | 1397 | self.EXP_CODE = None |
|
1178 | 1398 | self.SUB_EXP_CODE = None |
|
1179 | 1399 | self.PLOT_POS = None |
|
1180 | 1400 | self.figfile = None |
|
1181 | 1401 | |
|
1182 | 1402 | self.xmin = None |
|
1183 | 1403 | self.xmax = None |
|
1184 | 1404 | |
|
1185 | 1405 | def getSubplots(self): |
|
1186 | 1406 | |
|
1187 | 1407 | ncol = 1 |
|
1188 | 1408 | nrow = 1 |
|
1189 | 1409 | |
|
1190 | 1410 | return nrow, ncol |
|
1191 | 1411 | |
|
1192 | 1412 | def openfile(self, filename): |
|
1193 | 1413 | dirname = os.path.dirname(filename) |
|
1194 | 1414 | |
|
1195 | 1415 | if not os.path.exists(dirname): |
|
1196 | 1416 | os.mkdir(dirname) |
|
1197 | 1417 | |
|
1198 | 1418 | f = open(filename,'w+') |
|
1199 | 1419 | f.write('\n\n') |
|
1200 | 1420 | f.write('JICAMARCA RADIO OBSERVATORY - Noise \n') |
|
1201 | 1421 | f.write('DD MM YYYY HH MM SS Channel0 Channel1 Channel2 Channel3\n\n' ) |
|
1202 | 1422 | f.close() |
|
1203 | 1423 | |
|
1204 | 1424 | def save_data(self, filename_phase, data, data_datetime): |
|
1205 | 1425 | |
|
1206 | 1426 | f=open(filename_phase,'a') |
|
1207 | 1427 | |
|
1208 | 1428 | timetuple_data = data_datetime.timetuple() |
|
1209 | 1429 | day = str(timetuple_data.tm_mday) |
|
1210 | 1430 | month = str(timetuple_data.tm_mon) |
|
1211 | 1431 | year = str(timetuple_data.tm_year) |
|
1212 | 1432 | hour = str(timetuple_data.tm_hour) |
|
1213 | 1433 | minute = str(timetuple_data.tm_min) |
|
1214 | 1434 | second = str(timetuple_data.tm_sec) |
|
1215 | 1435 | |
|
1216 | 1436 | data_msg = '' |
|
1217 | 1437 | for i in range(len(data)): |
|
1218 | 1438 | data_msg += str(data[i]) + ' ' |
|
1219 | 1439 | |
|
1220 | 1440 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' ' + data_msg + '\n') |
|
1221 | 1441 | f.close() |
|
1222 | 1442 | |
|
1223 | 1443 | |
|
1224 | 1444 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1225 | 1445 | |
|
1226 | 1446 | self.__showprofile = showprofile |
|
1227 | 1447 | self.nplots = nplots |
|
1228 | 1448 | |
|
1229 | 1449 | ncolspan = 7 |
|
1230 | 1450 | colspan = 6 |
|
1231 | 1451 | self.__nsubplots = 2 |
|
1232 | 1452 | |
|
1233 | 1453 | self.createFigure(id = id, |
|
1234 | 1454 | wintitle = wintitle, |
|
1235 | 1455 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1236 | 1456 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1237 | 1457 | show=show) |
|
1238 | 1458 | |
|
1239 | 1459 | nrow, ncol = self.getSubplots() |
|
1240 | 1460 | |
|
1241 | 1461 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1242 | 1462 | |
|
1243 | 1463 | |
|
1244 | 1464 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
1245 | 1465 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1246 | 1466 | timerange=None, |
|
1247 | 1467 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1248 | 1468 | server=None, folder=None, username=None, password=None, |
|
1249 | 1469 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1250 | 1470 | |
|
1251 |
if dataOut.flagNoData: |
|
|
1471 | if dataOut.flagNoData: | |
|
1252 | 1472 | return dataOut |
|
1253 | 1473 | |
|
1254 | 1474 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1255 | 1475 | return |
|
1256 | 1476 | |
|
1257 | 1477 | if channelList == None: |
|
1258 | 1478 | channelIndexList = dataOut.channelIndexList |
|
1259 | 1479 | channelList = dataOut.channelList |
|
1260 | 1480 | else: |
|
1261 | 1481 | channelIndexList = [] |
|
1262 | 1482 | for channel in channelList: |
|
1263 | 1483 | if channel not in dataOut.channelList: |
|
1264 | 1484 | raise ValueError("Channel %d is not in dataOut.channelList") |
|
1265 | 1485 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1266 | 1486 | |
|
1267 | 1487 | x = dataOut.getTimeRange() |
|
1268 | 1488 | #y = dataOut.getHeiRange() |
|
1269 | 1489 | factor = dataOut.normFactor |
|
1270 | 1490 | noise = dataOut.noise[channelIndexList]/factor |
|
1271 | 1491 | noisedB = 10*numpy.log10(noise) |
|
1272 | 1492 | |
|
1273 | 1493 | thisDatetime = dataOut.datatime |
|
1274 | 1494 | |
|
1275 | 1495 | title = wintitle + " Noise" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1276 | 1496 | xlabel = "" |
|
1277 | 1497 | ylabel = "Intensity (dB)" |
|
1278 | 1498 | update_figfile = False |
|
1279 | 1499 | |
|
1280 | 1500 | if not self.isConfig: |
|
1281 | 1501 | |
|
1282 | 1502 | nplots = 1 |
|
1283 | 1503 | |
|
1284 | 1504 | self.setup(id=id, |
|
1285 | 1505 | nplots=nplots, |
|
1286 | 1506 | wintitle=wintitle, |
|
1287 | 1507 | showprofile=showprofile, |
|
1288 | 1508 | show=show) |
|
1289 | 1509 | |
|
1290 | 1510 | if timerange != None: |
|
1291 | 1511 | self.timerange = timerange |
|
1292 | 1512 | |
|
1293 | 1513 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1294 | 1514 | |
|
1295 | 1515 | if ymin == None: ymin = numpy.floor(numpy.nanmin(noisedB)) - 10.0 |
|
1296 | 1516 | if ymax == None: ymax = numpy.nanmax(noisedB) + 10.0 |
|
1297 | 1517 | |
|
1298 | 1518 | self.FTP_WEI = ftp_wei |
|
1299 | 1519 | self.EXP_CODE = exp_code |
|
1300 | 1520 | self.SUB_EXP_CODE = sub_exp_code |
|
1301 | 1521 | self.PLOT_POS = plot_pos |
|
1302 | 1522 | |
|
1303 | 1523 | |
|
1304 | 1524 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1305 | 1525 | self.isConfig = True |
|
1306 | 1526 | self.figfile = figfile |
|
1307 | 1527 | self.xdata = numpy.array([]) |
|
1308 | 1528 | self.ydata = numpy.array([]) |
|
1309 | 1529 | |
|
1310 | 1530 | update_figfile = True |
|
1311 | 1531 | |
|
1312 | 1532 | #open file beacon phase |
|
1313 | 1533 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1314 | 1534 | noise_file = os.path.join(path,'%s.txt'%self.name) |
|
1315 | 1535 | self.filename_noise = os.path.join(figpath,noise_file) |
|
1316 | 1536 | |
|
1317 | 1537 | self.setWinTitle(title) |
|
1318 | 1538 | |
|
1319 | 1539 | title = "Noise %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1320 | 1540 | |
|
1321 | 1541 | legendlabels = ["channel %d"%(idchannel) for idchannel in channelList] |
|
1322 | 1542 | axes = self.axesList[0] |
|
1323 | 1543 | |
|
1324 | 1544 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1325 | 1545 | |
|
1326 | 1546 | if len(self.ydata)==0: |
|
1327 | 1547 | self.ydata = noisedB.reshape(-1,1) |
|
1328 | 1548 | else: |
|
1329 | 1549 | self.ydata = numpy.hstack((self.ydata, noisedB.reshape(-1,1))) |
|
1330 | 1550 | |
|
1331 | 1551 | |
|
1332 | 1552 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1333 | 1553 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1334 | 1554 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1335 | 1555 | XAxisAsTime=True, grid='both' |
|
1336 | 1556 | ) |
|
1337 | 1557 | |
|
1338 | 1558 | self.draw() |
|
1339 | 1559 | |
|
1340 | 1560 | if dataOut.ltctime >= self.xmax: |
|
1341 | 1561 | self.counter_imagwr = wr_period |
|
1342 | 1562 | self.isConfig = False |
|
1343 | 1563 | update_figfile = True |
|
1344 | 1564 | |
|
1345 | 1565 | self.save(figpath=figpath, |
|
1346 | 1566 | figfile=figfile, |
|
1347 | 1567 | save=save, |
|
1348 | 1568 | ftp=ftp, |
|
1349 | 1569 | wr_period=wr_period, |
|
1350 | 1570 | thisDatetime=thisDatetime, |
|
1351 | 1571 | update_figfile=update_figfile) |
|
1352 | 1572 | |
|
1353 | 1573 | #store data beacon phase |
|
1354 | 1574 | if save: |
|
1355 | 1575 | self.save_data(self.filename_noise, noisedB, thisDatetime) |
|
1356 | 1576 | |
|
1357 | 1577 | return dataOut |
|
1358 | 1578 | |
|
1359 | 1579 | @MPDecorator |
|
1360 | 1580 | class BeaconPhase_(Figure): |
|
1361 | 1581 | |
|
1362 | 1582 | __isConfig = None |
|
1363 | 1583 | __nsubplots = None |
|
1364 | 1584 | |
|
1365 | 1585 | PREFIX = 'beacon_phase' |
|
1366 | 1586 | |
|
1367 | 1587 | def __init__(self): |
|
1368 | 1588 | Figure.__init__(self) |
|
1369 | 1589 | self.timerange = 24*60*60 |
|
1370 | 1590 | self.isConfig = False |
|
1371 | 1591 | self.__nsubplots = 1 |
|
1372 | 1592 | self.counter_imagwr = 0 |
|
1373 | 1593 | self.WIDTH = 800 |
|
1374 | 1594 | self.HEIGHT = 400 |
|
1375 | 1595 | self.WIDTHPROF = 120 |
|
1376 | 1596 | self.HEIGHTPROF = 0 |
|
1377 | 1597 | self.xdata = None |
|
1378 | 1598 | self.ydata = None |
|
1379 | 1599 | |
|
1380 | 1600 | self.PLOT_CODE = BEACON_CODE |
|
1381 | 1601 | |
|
1382 | 1602 | self.FTP_WEI = None |
|
1383 | 1603 | self.EXP_CODE = None |
|
1384 | 1604 | self.SUB_EXP_CODE = None |
|
1385 | 1605 | self.PLOT_POS = None |
|
1386 | 1606 | |
|
1387 | 1607 | self.filename_phase = None |
|
1388 | 1608 | |
|
1389 | 1609 | self.figfile = None |
|
1390 | 1610 | |
|
1391 | 1611 | self.xmin = None |
|
1392 | 1612 | self.xmax = None |
|
1393 | 1613 | |
|
1394 | 1614 | def getSubplots(self): |
|
1395 | 1615 | |
|
1396 | 1616 | ncol = 1 |
|
1397 | 1617 | nrow = 1 |
|
1398 | 1618 | |
|
1399 | 1619 | return nrow, ncol |
|
1400 | 1620 | |
|
1401 | 1621 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1402 | 1622 | |
|
1403 | 1623 | self.__showprofile = showprofile |
|
1404 | 1624 | self.nplots = nplots |
|
1405 | 1625 | |
|
1406 | 1626 | ncolspan = 7 |
|
1407 | 1627 | colspan = 6 |
|
1408 | 1628 | self.__nsubplots = 2 |
|
1409 | 1629 | |
|
1410 | 1630 | self.createFigure(id = id, |
|
1411 | 1631 | wintitle = wintitle, |
|
1412 | 1632 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1413 | 1633 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1414 | 1634 | show=show) |
|
1415 | 1635 | |
|
1416 | 1636 | nrow, ncol = self.getSubplots() |
|
1417 | 1637 | |
|
1418 | 1638 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1419 | 1639 | |
|
1420 | 1640 | def save_phase(self, filename_phase): |
|
1421 | 1641 | f = open(filename_phase,'w+') |
|
1422 | 1642 | f.write('\n\n') |
|
1423 | 1643 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1424 | 1644 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1425 | 1645 | f.close() |
|
1426 | 1646 | |
|
1427 | 1647 | def save_data(self, filename_phase, data, data_datetime): |
|
1428 | 1648 | f=open(filename_phase,'a') |
|
1429 | 1649 | timetuple_data = data_datetime.timetuple() |
|
1430 | 1650 | day = str(timetuple_data.tm_mday) |
|
1431 | 1651 | month = str(timetuple_data.tm_mon) |
|
1432 | 1652 | year = str(timetuple_data.tm_year) |
|
1433 | 1653 | hour = str(timetuple_data.tm_hour) |
|
1434 | 1654 | minute = str(timetuple_data.tm_min) |
|
1435 | 1655 | second = str(timetuple_data.tm_sec) |
|
1436 | 1656 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1437 | 1657 | f.close() |
|
1438 | 1658 | |
|
1439 | 1659 | |
|
1440 | 1660 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1441 | 1661 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1442 | 1662 | timerange=None, |
|
1443 | 1663 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1444 | 1664 | server=None, folder=None, username=None, password=None, |
|
1445 | 1665 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1446 | 1666 | |
|
1447 |
if dataOut.flagNoData: |
|
|
1667 | if dataOut.flagNoData: | |
|
1448 | 1668 | return dataOut |
|
1449 | 1669 | |
|
1450 | 1670 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1451 | 1671 | return |
|
1452 | 1672 | |
|
1453 | 1673 | if pairsList == None: |
|
1454 | 1674 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1455 | 1675 | else: |
|
1456 | 1676 | pairsIndexList = [] |
|
1457 | 1677 | for pair in pairsList: |
|
1458 | 1678 | if pair not in dataOut.pairsList: |
|
1459 | 1679 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
1460 | 1680 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1461 | 1681 | |
|
1462 | 1682 | if pairsIndexList == []: |
|
1463 | 1683 | return |
|
1464 | 1684 | |
|
1465 | 1685 | # if len(pairsIndexList) > 4: |
|
1466 | 1686 | # pairsIndexList = pairsIndexList[0:4] |
|
1467 | 1687 | |
|
1468 | 1688 | hmin_index = None |
|
1469 | 1689 | hmax_index = None |
|
1470 | 1690 | |
|
1471 | 1691 | if hmin != None and hmax != None: |
|
1472 | 1692 | indexes = numpy.arange(dataOut.nHeights) |
|
1473 | 1693 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1474 | 1694 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1475 | 1695 | |
|
1476 | 1696 | if hmin_list.any(): |
|
1477 | 1697 | hmin_index = hmin_list[0] |
|
1478 | 1698 | |
|
1479 | 1699 | if hmax_list.any(): |
|
1480 | 1700 | hmax_index = hmax_list[-1]+1 |
|
1481 | 1701 | |
|
1482 | 1702 | x = dataOut.getTimeRange() |
|
1483 | 1703 | #y = dataOut.getHeiRange() |
|
1484 | 1704 | |
|
1485 | 1705 | |
|
1486 | 1706 | thisDatetime = dataOut.datatime |
|
1487 | 1707 | |
|
1488 | 1708 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1489 | 1709 | xlabel = "Local Time" |
|
1490 | 1710 | ylabel = "Phase (degrees)" |
|
1491 | 1711 | |
|
1492 | 1712 | update_figfile = False |
|
1493 | 1713 | |
|
1494 | 1714 | nplots = len(pairsIndexList) |
|
1495 | 1715 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1496 | 1716 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1497 | 1717 | for i in range(nplots): |
|
1498 | 1718 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1499 | 1719 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1500 | 1720 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1501 | 1721 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1502 | 1722 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1503 | 1723 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1504 | 1724 | |
|
1505 | 1725 | if dataOut.beacon_heiIndexList: |
|
1506 | 1726 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1507 | 1727 | else: |
|
1508 | 1728 | phase_beacon[i] = numpy.average(phase) |
|
1509 | 1729 | |
|
1510 | 1730 | if not self.isConfig: |
|
1511 | 1731 | |
|
1512 | 1732 | nplots = len(pairsIndexList) |
|
1513 | 1733 | |
|
1514 | 1734 | self.setup(id=id, |
|
1515 | 1735 | nplots=nplots, |
|
1516 | 1736 | wintitle=wintitle, |
|
1517 | 1737 | showprofile=showprofile, |
|
1518 | 1738 | show=show) |
|
1519 | 1739 | |
|
1520 | 1740 | if timerange != None: |
|
1521 | 1741 | self.timerange = timerange |
|
1522 | 1742 | |
|
1523 | 1743 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1524 | 1744 | |
|
1525 | 1745 | if ymin == None: ymin = 0 |
|
1526 | 1746 | if ymax == None: ymax = 360 |
|
1527 | 1747 | |
|
1528 | 1748 | self.FTP_WEI = ftp_wei |
|
1529 | 1749 | self.EXP_CODE = exp_code |
|
1530 | 1750 | self.SUB_EXP_CODE = sub_exp_code |
|
1531 | 1751 | self.PLOT_POS = plot_pos |
|
1532 | 1752 | |
|
1533 | 1753 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1534 | 1754 | self.isConfig = True |
|
1535 | 1755 | self.figfile = figfile |
|
1536 | 1756 | self.xdata = numpy.array([]) |
|
1537 | 1757 | self.ydata = numpy.array([]) |
|
1538 | 1758 | |
|
1539 | 1759 | update_figfile = True |
|
1540 | 1760 | |
|
1541 | 1761 | #open file beacon phase |
|
1542 | 1762 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1543 | 1763 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1544 | 1764 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1545 | 1765 | #self.save_phase(self.filename_phase) |
|
1546 | 1766 | |
|
1547 | 1767 | |
|
1548 | 1768 | #store data beacon phase |
|
1549 | 1769 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1550 | 1770 | |
|
1551 | 1771 | self.setWinTitle(title) |
|
1552 | 1772 | |
|
1553 | 1773 | |
|
1554 | 1774 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1555 | 1775 | |
|
1556 | 1776 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1557 | 1777 | |
|
1558 | 1778 | axes = self.axesList[0] |
|
1559 | 1779 | |
|
1560 | 1780 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1561 | 1781 | |
|
1562 | 1782 | if len(self.ydata)==0: |
|
1563 | 1783 | self.ydata = phase_beacon.reshape(-1,1) |
|
1564 | 1784 | else: |
|
1565 | 1785 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1566 | 1786 | |
|
1567 | 1787 | |
|
1568 | 1788 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1569 | 1789 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1570 | 1790 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1571 | 1791 | XAxisAsTime=True, grid='both' |
|
1572 | 1792 | ) |
|
1573 | 1793 | |
|
1574 | 1794 | self.draw() |
|
1575 | 1795 | |
|
1576 | 1796 | if dataOut.ltctime >= self.xmax: |
|
1577 | 1797 | self.counter_imagwr = wr_period |
|
1578 | 1798 | self.isConfig = False |
|
1579 | 1799 | update_figfile = True |
|
1580 | 1800 | |
|
1581 | 1801 | self.save(figpath=figpath, |
|
1582 | 1802 | figfile=figfile, |
|
1583 | 1803 | save=save, |
|
1584 | 1804 | ftp=ftp, |
|
1585 | 1805 | wr_period=wr_period, |
|
1586 | 1806 | thisDatetime=thisDatetime, |
|
1587 | 1807 | update_figfile=update_figfile) |
|
1588 | 1808 | |
|
1589 | return dataOut No newline at end of file | |
|
1809 | return dataOut |
@@ -1,232 +1,294 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 9, 2014 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 |
|
5 | 5 | ''' |
|
6 | 6 | import os |
|
7 | 7 | import datetime |
|
8 | 8 | import numpy |
|
9 | 9 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator #YONG |
|
10 | 10 | from schainpy.utils import log |
|
11 | 11 | from .figure import Figure |
|
12 | 12 | |
|
13 | 13 | |
|
14 | 14 | @MPDecorator |
|
15 | 15 | class Scope_(Figure): |
|
16 | ||
|
16 | ||
|
17 | 17 | isConfig = None |
|
18 | ||
|
18 | ||
|
19 | 19 | def __init__(self):#, **kwargs): #YONG |
|
20 | 20 | Figure.__init__(self)#, **kwargs) |
|
21 | 21 | self.isConfig = False |
|
22 | 22 | self.WIDTH = 300 |
|
23 | 23 | self.HEIGHT = 200 |
|
24 | 24 | self.counter_imagwr = 0 |
|
25 | ||
|
25 | ||
|
26 | 26 | def getSubplots(self): |
|
27 | ||
|
27 | ||
|
28 | 28 | nrow = self.nplots |
|
29 | 29 | ncol = 3 |
|
30 | 30 | return nrow, ncol |
|
31 | ||
|
31 | ||
|
32 | 32 | def setup(self, id, nplots, wintitle, show): |
|
33 | ||
|
33 | ||
|
34 | 34 | self.nplots = nplots |
|
35 | ||
|
36 |
self.createFigure(id=id, |
|
|
37 |
wintitle=wintitle, |
|
|
35 | ||
|
36 | self.createFigure(id=id, | |
|
37 | wintitle=wintitle, | |
|
38 | 38 | show=show) |
|
39 | ||
|
39 | ||
|
40 | 40 | nrow,ncol = self.getSubplots() |
|
41 | 41 | colspan = 3 |
|
42 | 42 | rowspan = 1 |
|
43 | ||
|
43 | ||
|
44 | 44 | for i in range(nplots): |
|
45 | 45 | self.addAxes(nrow, ncol, i, 0, colspan, rowspan) |
|
46 | ||
|
46 | ||
|
47 | 47 | def plot_iq(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax): |
|
48 | 48 | yreal = y[channelIndexList,:].real |
|
49 | 49 | yimag = y[channelIndexList,:].imag |
|
50 | ||
|
50 | ||
|
51 | 51 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
52 | 52 | xlabel = "Range (Km)" |
|
53 | 53 | ylabel = "Intensity - IQ" |
|
54 | ||
|
54 | ||
|
55 | 55 | if not self.isConfig: |
|
56 | 56 | nplots = len(channelIndexList) |
|
57 | ||
|
57 | ||
|
58 | 58 | self.setup(id=id, |
|
59 | 59 | nplots=nplots, |
|
60 | 60 | wintitle='', |
|
61 | 61 | show=show) |
|
62 | ||
|
62 | ||
|
63 | 63 | if xmin == None: xmin = numpy.nanmin(x) |
|
64 | 64 | if xmax == None: xmax = numpy.nanmax(x) |
|
65 | 65 | if ymin == None: ymin = min(numpy.nanmin(yreal),numpy.nanmin(yimag)) |
|
66 | 66 | if ymax == None: ymax = max(numpy.nanmax(yreal),numpy.nanmax(yimag)) |
|
67 | ||
|
67 | ||
|
68 | 68 | self.isConfig = True |
|
69 | ||
|
69 | ||
|
70 | 70 | self.setWinTitle(title) |
|
71 | ||
|
71 | ||
|
72 | 72 | for i in range(len(self.axesList)): |
|
73 | 73 | title = "Channel %d" %(i) |
|
74 | 74 | axes = self.axesList[i] |
|
75 | 75 | |
|
76 | 76 | axes.pline(x, yreal[i,:], |
|
77 | 77 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
78 | 78 | xlabel=xlabel, ylabel=ylabel, title=title) |
|
79 | 79 | |
|
80 | 80 | axes.addpline(x, yimag[i,:], idline=1, color="red", linestyle="solid", lw=2) |
|
81 | ||
|
81 | ||
|
82 | 82 | def plot_power(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax): |
|
83 | 83 | y = y[channelIndexList,:] * numpy.conjugate(y[channelIndexList,:]) |
|
84 | 84 | yreal = y.real |
|
85 | ||
|
85 | ||
|
86 | 86 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
87 | 87 | xlabel = "Range (Km)" |
|
88 | 88 | ylabel = "Intensity" |
|
89 | ||
|
89 | ||
|
90 | 90 | if not self.isConfig: |
|
91 | 91 | nplots = len(channelIndexList) |
|
92 | ||
|
92 | ||
|
93 | 93 | self.setup(id=id, |
|
94 | 94 | nplots=nplots, |
|
95 | 95 | wintitle='', |
|
96 | 96 | show=show) |
|
97 | ||
|
97 | ||
|
98 | 98 | if xmin == None: xmin = numpy.nanmin(x) |
|
99 | 99 | if xmax == None: xmax = numpy.nanmax(x) |
|
100 | 100 | if ymin == None: ymin = numpy.nanmin(yreal) |
|
101 | 101 | if ymax == None: ymax = numpy.nanmax(yreal) |
|
102 | ||
|
102 | ||
|
103 | 103 | self.isConfig = True |
|
104 | ||
|
104 | ||
|
105 | 105 | self.setWinTitle(title) |
|
106 | ||
|
106 | ||
|
107 | 107 | for i in range(len(self.axesList)): |
|
108 | 108 | title = "Channel %d" %(i) |
|
109 | 109 | axes = self.axesList[i] |
|
110 | 110 | ychannel = yreal[i,:] |
|
111 | 111 | axes.pline(x, ychannel, |
|
112 | 112 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
113 | 113 | xlabel=xlabel, ylabel=ylabel, title=title) |
|
114 | 114 | |
|
115 | ||
|
115 | def plot_weatherpower(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax): | |
|
116 | y = y[channelIndexList,:] | |
|
117 | yreal = y | |
|
118 | ||
|
119 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
|
120 | xlabel = "Range (Km)" | |
|
121 | ylabel = "Intensity" | |
|
122 | ||
|
123 | if not self.isConfig: | |
|
124 | nplots = len(channelIndexList) | |
|
125 | ||
|
126 | self.setup(id=id, | |
|
127 | nplots=nplots, | |
|
128 | wintitle='', | |
|
129 | show=show) | |
|
130 | ||
|
131 | if xmin == None: xmin = numpy.nanmin(x) | |
|
132 | if xmax == None: xmax = numpy.nanmax(x) | |
|
133 | if ymin == None: ymin = numpy.nanmin(yreal) | |
|
134 | if ymax == None: ymax = numpy.nanmax(yreal) | |
|
135 | ||
|
136 | self.isConfig = True | |
|
137 | ||
|
138 | self.setWinTitle(title) | |
|
139 | ||
|
140 | for i in range(len(self.axesList)): | |
|
141 | title = "Channel %d" %(i) | |
|
142 | axes = self.axesList[i] | |
|
143 | ychannel = yreal[i,:] | |
|
144 | axes.pline(x, ychannel, | |
|
145 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |
|
146 | xlabel=xlabel, ylabel=ylabel, title=title) | |
|
147 | ||
|
148 | ||
|
149 | ||
|
116 | 150 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
117 | 151 | xmin=None, xmax=None, ymin=None, ymax=None, save=False, |
|
118 | 152 | figpath='./', figfile=None, show=True, wr_period=1, |
|
119 | 153 | ftp=False, server=None, folder=None, username=None, password=None, type='power', **kwargs): |
|
120 | ||
|
154 | ||
|
121 | 155 | """ |
|
122 | ||
|
156 | ||
|
123 | 157 | Input: |
|
124 | 158 | dataOut : |
|
125 | 159 | id : |
|
126 | 160 | wintitle : |
|
127 | 161 | channelList : |
|
128 | 162 | xmin : None, |
|
129 | 163 | xmax : None, |
|
130 | 164 | ymin : None, |
|
131 | 165 | ymax : None, |
|
132 | 166 | """ |
|
133 |
if dataOut.flagNoData: |
|
|
167 | if dataOut.flagNoData: | |
|
134 | 168 | return dataOut |
|
135 | ||
|
169 | ||
|
136 | 170 | if channelList == None: |
|
137 | 171 | channelIndexList = dataOut.channelIndexList |
|
138 | 172 | else: |
|
139 | 173 | channelIndexList = [] |
|
140 | 174 | for channel in channelList: |
|
141 | 175 | if channel not in dataOut.channelList: |
|
142 | 176 | raise ValueError("Channel %d is not in dataOut.channelList") |
|
143 | 177 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
144 | ||
|
178 | ||
|
145 | 179 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
146 | ||
|
180 | ### print("***************** PLOTEO **************************") | |
|
181 | ### print(dataOut.nProfiles) | |
|
182 | ### print(dataOut.heightList.shape) | |
|
147 | 183 | if dataOut.flagDataAsBlock: |
|
148 | ||
|
184 | ||
|
149 | 185 | for i in range(dataOut.nProfiles): |
|
150 | ||
|
186 | ||
|
151 | 187 | wintitle1 = wintitle + " [Profile = %d] " %i |
|
152 | ||
|
188 | ||
|
153 | 189 | if type == "power": |
|
154 |
self.plot_power(dataOut.heightList, |
|
|
190 | self.plot_power(dataOut.heightList, | |
|
155 | 191 | dataOut.data[:,i,:], |
|
156 |
id, |
|
|
157 |
channelIndexList, |
|
|
192 | id, | |
|
193 | channelIndexList, | |
|
158 | 194 | thisDatetime, |
|
159 | 195 | wintitle1, |
|
160 | 196 | show, |
|
161 | 197 | xmin, |
|
162 | 198 | xmax, |
|
163 | 199 | ymin, |
|
164 | 200 | ymax) |
|
165 | ||
|
201 | ||
|
202 | if type == "weatherpower": | |
|
203 | self.plot_weatherpower(dataOut.heightList, | |
|
204 | dataOut.data[:,i,:], | |
|
205 | id, | |
|
206 | channelIndexList, | |
|
207 | thisDatetime, | |
|
208 | wintitle1, | |
|
209 | show, | |
|
210 | xmin, | |
|
211 | xmax, | |
|
212 | ymin, | |
|
213 | ymax) | |
|
214 | ||
|
215 | if type == "weathervelocity": | |
|
216 | self.plot_weatherpower(dataOut.heightList, | |
|
217 | dataOut.data_velocity[:,i,:], | |
|
218 | id, | |
|
219 | channelIndexList, | |
|
220 | thisDatetime, | |
|
221 | wintitle1, | |
|
222 | show, | |
|
223 | xmin, | |
|
224 | xmax, | |
|
225 | ymin, | |
|
226 | ymax) | |
|
227 | ||
|
166 | 228 | if type == "iq": |
|
167 |
self.plot_iq(dataOut.heightList, |
|
|
229 | self.plot_iq(dataOut.heightList, | |
|
168 | 230 | dataOut.data[:,i,:], |
|
169 |
id, |
|
|
170 |
channelIndexList, |
|
|
231 | id, | |
|
232 | channelIndexList, | |
|
171 | 233 | thisDatetime, |
|
172 | 234 | wintitle1, |
|
173 | 235 | show, |
|
174 | 236 | xmin, |
|
175 | 237 | xmax, |
|
176 | 238 | ymin, |
|
177 | 239 | ymax) |
|
178 | ||
|
240 | ||
|
179 | 241 | self.draw() |
|
180 | ||
|
242 | ||
|
181 | 243 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
182 | 244 | figfile = self.getFilename(name = str_datetime) + "_" + str(i) |
|
183 | ||
|
245 | ||
|
184 | 246 | self.save(figpath=figpath, |
|
185 | 247 | figfile=figfile, |
|
186 | 248 | save=save, |
|
187 | 249 | ftp=ftp, |
|
188 | 250 | wr_period=wr_period, |
|
189 | 251 | thisDatetime=thisDatetime) |
|
190 | ||
|
252 | ||
|
191 | 253 | else: |
|
192 | 254 | wintitle += " [Profile = %d] " %dataOut.profileIndex |
|
193 | ||
|
255 | ||
|
194 | 256 | if type == "power": |
|
195 |
self.plot_power(dataOut.heightList, |
|
|
257 | self.plot_power(dataOut.heightList, | |
|
196 | 258 | dataOut.data, |
|
197 |
id, |
|
|
198 |
channelIndexList, |
|
|
259 | id, | |
|
260 | channelIndexList, | |
|
199 | 261 | thisDatetime, |
|
200 | 262 | wintitle, |
|
201 | 263 | show, |
|
202 | 264 | xmin, |
|
203 | 265 | xmax, |
|
204 | 266 | ymin, |
|
205 | 267 | ymax) |
|
206 | ||
|
268 | ||
|
207 | 269 | if type == "iq": |
|
208 |
self.plot_iq(dataOut.heightList, |
|
|
270 | self.plot_iq(dataOut.heightList, | |
|
209 | 271 | dataOut.data, |
|
210 |
id, |
|
|
211 |
channelIndexList, |
|
|
272 | id, | |
|
273 | channelIndexList, | |
|
212 | 274 | thisDatetime, |
|
213 | 275 | wintitle, |
|
214 | 276 | show, |
|
215 | 277 | xmin, |
|
216 | 278 | xmax, |
|
217 | 279 | ymin, |
|
218 | 280 | ymax) |
|
219 | ||
|
281 | ||
|
220 | 282 | self.draw() |
|
221 | ||
|
283 | ||
|
222 | 284 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") + "_" + str(dataOut.profileIndex) |
|
223 |
figfile = self.getFilename(name = str_datetime) |
|
|
224 | ||
|
285 | figfile = self.getFilename(name = str_datetime) | |
|
286 | ||
|
225 | 287 | self.save(figpath=figpath, |
|
226 | 288 | figfile=figfile, |
|
227 | 289 | save=save, |
|
228 | 290 | ftp=ftp, |
|
229 | 291 | wr_period=wr_period, |
|
230 | 292 | thisDatetime=thisDatetime) |
|
231 | 293 | |
|
232 |
return dataOut |
|
|
294 | return dataOut |
@@ -1,28 +1,30 | |||
|
1 | 1 | ''' |
|
2 | 2 | @author: roj-idl71 |
|
3 | 3 | ''' |
|
4 | 4 | #USED IN jroplot_spectra.py |
|
5 | 5 | RTI_CODE = 0 #Range time intensity (RTI). |
|
6 | 6 | SPEC_CODE = 1 #Spectra (and Cross-spectra) information. |
|
7 | 7 | CROSS_CODE = 2 #Cross-Correlation information. |
|
8 | 8 | COH_CODE = 3 #Coherence map. |
|
9 | 9 | BASE_CODE = 4 #Base lines graphic. |
|
10 | 10 | ROW_CODE = 5 #Row Spectra. |
|
11 | 11 | TOTAL_CODE = 6 #Total Power. |
|
12 | 12 | DRIFT_CODE = 7 #Drifts graphics. |
|
13 | 13 | HEIGHT_CODE = 8 #Height profile. |
|
14 | 14 | PHASE_CODE = 9 #Signal Phase. |
|
15 | 15 | |
|
16 | 16 | POWER_CODE = 16 |
|
17 | 17 | NOISE_CODE = 17 |
|
18 | 18 | BEACON_CODE = 18 |
|
19 | 19 | |
|
20 | 20 | #USED IN jroplot_parameters.py |
|
21 | 21 | WIND_CODE = 22 |
|
22 | 22 | MSKYMAP_CODE = 23 |
|
23 | 23 | MPHASE_CODE = 24 |
|
24 | 24 | |
|
25 | 25 | MOMENTS_CODE = 25 |
|
26 | PARMS_CODE = 26 | |
|
26 | PARMS_CODE = 26 | |
|
27 | 27 | SPECFIT_CODE = 27 |
|
28 | 28 | EWDRIFT_CODE = 28 |
|
29 | ||
|
30 | WPO_CODE = 29 #Weather Intensity - Power |
@@ -1,1435 +1,1458 | |||
|
1 | 1 | import numpy |
|
2 | 2 | import time |
|
3 | 3 | import os |
|
4 | 4 | import h5py |
|
5 | 5 | import re |
|
6 | 6 | import datetime |
|
7 | 7 | |
|
8 | 8 | import schainpy.admin |
|
9 | 9 | from schainpy.model.data.jrodata import * |
|
10 | 10 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
11 | 11 | from schainpy.model.io.jroIO_base import * |
|
12 | 12 | from schainpy.utils import log |
|
13 | 13 | |
|
14 | 14 | @MPDecorator |
|
15 | 15 | class ParamReader(JRODataReader,ProcessingUnit): |
|
16 | 16 | ''' |
|
17 | 17 | Reads HDF5 format files |
|
18 | 18 | path |
|
19 | 19 | startDate |
|
20 | 20 | endDate |
|
21 | 21 | startTime |
|
22 | 22 | endTime |
|
23 | 23 | ''' |
|
24 | 24 | |
|
25 | 25 | ext = ".hdf5" |
|
26 | 26 | optchar = "D" |
|
27 | 27 | timezone = None |
|
28 | 28 | startTime = None |
|
29 | 29 | endTime = None |
|
30 | 30 | fileIndex = None |
|
31 | 31 | utcList = None #To select data in the utctime list |
|
32 | 32 | blockList = None #List to blocks to be read from the file |
|
33 | 33 | blocksPerFile = None #Number of blocks to be read |
|
34 | 34 | blockIndex = None |
|
35 | 35 | path = None |
|
36 | 36 | #List of Files |
|
37 | 37 | filenameList = None |
|
38 | 38 | datetimeList = None |
|
39 | 39 | #Hdf5 File |
|
40 | 40 | listMetaname = None |
|
41 | 41 | listMeta = None |
|
42 | 42 | listDataname = None |
|
43 | 43 | listData = None |
|
44 | 44 | listShapes = None |
|
45 | 45 | fp = None |
|
46 | 46 | #dataOut reconstruction |
|
47 | 47 | dataOut = None |
|
48 | 48 | |
|
49 | 49 | def __init__(self):#, **kwargs): |
|
50 | 50 | ProcessingUnit.__init__(self) #, **kwargs) |
|
51 | 51 | self.dataOut = Parameters() |
|
52 | 52 | return |
|
53 | 53 | |
|
54 | 54 | def setup(self, **kwargs): |
|
55 | 55 | |
|
56 | 56 | path = kwargs['path'] |
|
57 | 57 | startDate = kwargs['startDate'] |
|
58 | 58 | endDate = kwargs['endDate'] |
|
59 | 59 | startTime = kwargs['startTime'] |
|
60 | 60 | endTime = kwargs['endTime'] |
|
61 | 61 | walk = kwargs['walk'] |
|
62 | 62 | if 'ext' in kwargs: |
|
63 | 63 | ext = kwargs['ext'] |
|
64 | 64 | else: |
|
65 | 65 | ext = '.hdf5' |
|
66 | 66 | if 'timezone' in kwargs: |
|
67 | 67 | self.timezone = kwargs['timezone'] |
|
68 | 68 | else: |
|
69 | 69 | self.timezone = 'lt' |
|
70 | 70 | |
|
71 | 71 | print("[Reading] Searching files in offline mode ...") |
|
72 | 72 | pathList, filenameList = self.searchFilesOffLine(path, startDate=startDate, endDate=endDate, |
|
73 | 73 | startTime=startTime, endTime=endTime, |
|
74 | 74 | ext=ext, walk=walk) |
|
75 | 75 | |
|
76 | 76 | if not(filenameList): |
|
77 | 77 | print("There is no files into the folder: %s"%(path)) |
|
78 | 78 | sys.exit(-1) |
|
79 | 79 | |
|
80 | 80 | self.fileIndex = -1 |
|
81 | 81 | self.startTime = startTime |
|
82 | 82 | self.endTime = endTime |
|
83 | 83 | |
|
84 | 84 | self.__readMetadata() |
|
85 | 85 | |
|
86 | 86 | self.__setNextFileOffline() |
|
87 | 87 | |
|
88 | 88 | return |
|
89 | 89 | |
|
90 | 90 | def searchFilesOffLine(self, |
|
91 | 91 | path, |
|
92 | 92 | startDate=None, |
|
93 | 93 | endDate=None, |
|
94 | 94 | startTime=datetime.time(0,0,0), |
|
95 | 95 | endTime=datetime.time(23,59,59), |
|
96 | 96 | ext='.hdf5', |
|
97 | 97 | walk=True): |
|
98 | 98 | |
|
99 | 99 | expLabel = '' |
|
100 | 100 | self.filenameList = [] |
|
101 | 101 | self.datetimeList = [] |
|
102 | 102 | |
|
103 | 103 | pathList = [] |
|
104 | 104 | |
|
105 | 105 | JRODataObj = JRODataReader() |
|
106 | 106 | dateList, pathList = JRODataObj.findDatafiles(path, startDate, endDate, expLabel, ext, walk, include_path=True) |
|
107 | 107 | |
|
108 | 108 | if dateList == []: |
|
109 | 109 | print("[Reading] No *%s files in %s from %s to %s)"%(ext, path, |
|
110 | 110 | datetime.datetime.combine(startDate,startTime).ctime(), |
|
111 | 111 | datetime.datetime.combine(endDate,endTime).ctime())) |
|
112 | 112 | |
|
113 | 113 | return None, None |
|
114 | 114 | |
|
115 | 115 | if len(dateList) > 1: |
|
116 | 116 | print("[Reading] %d days were found in date range: %s - %s" %(len(dateList), startDate, endDate)) |
|
117 | 117 | else: |
|
118 | 118 | print("[Reading] data was found for the date %s" %(dateList[0])) |
|
119 | 119 | |
|
120 | 120 | filenameList = [] |
|
121 | 121 | datetimeList = [] |
|
122 | 122 | |
|
123 | 123 | #---------------------------------------------------------------------------------- |
|
124 | 124 | |
|
125 | 125 | for thisPath in pathList: |
|
126 | 126 | |
|
127 | 127 | fileList = glob.glob1(thisPath, "*%s" %ext) |
|
128 | 128 | fileList.sort() |
|
129 | 129 | |
|
130 | 130 | for file in fileList: |
|
131 | 131 | |
|
132 | 132 | filename = os.path.join(thisPath,file) |
|
133 | 133 | |
|
134 | 134 | if not isFileInDateRange(filename, startDate, endDate): |
|
135 | 135 | continue |
|
136 | 136 | |
|
137 | 137 | thisDatetime = self.__isFileInTimeRange(filename, startDate, endDate, startTime, endTime) |
|
138 | 138 | |
|
139 | 139 | if not(thisDatetime): |
|
140 | 140 | continue |
|
141 | 141 | |
|
142 | 142 | filenameList.append(filename) |
|
143 | 143 | datetimeList.append(thisDatetime) |
|
144 | 144 | |
|
145 | 145 | if not(filenameList): |
|
146 | 146 | print("[Reading] Any file was found int time range %s - %s" %(datetime.datetime.combine(startDate,startTime).ctime(), datetime.datetime.combine(endDate,endTime).ctime())) |
|
147 | 147 | return None, None |
|
148 | 148 | |
|
149 | 149 | print("[Reading] %d file(s) was(were) found in time range: %s - %s" %(len(filenameList), startTime, endTime)) |
|
150 | 150 | print() |
|
151 | 151 | |
|
152 | 152 | self.filenameList = filenameList |
|
153 | 153 | self.datetimeList = datetimeList |
|
154 | 154 | |
|
155 | 155 | return pathList, filenameList |
|
156 | 156 | |
|
157 | 157 | def __isFileInTimeRange(self,filename, startDate, endDate, startTime, endTime): |
|
158 | 158 | |
|
159 | 159 | """ |
|
160 | 160 | Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado. |
|
161 | 161 | |
|
162 | 162 | Inputs: |
|
163 | 163 | filename : nombre completo del archivo de datos en formato Jicamarca (.r) |
|
164 | 164 | startDate : fecha inicial del rango seleccionado en formato datetime.date |
|
165 | 165 | endDate : fecha final del rango seleccionado en formato datetime.date |
|
166 | 166 | startTime : tiempo inicial del rango seleccionado en formato datetime.time |
|
167 | 167 | endTime : tiempo final del rango seleccionado en formato datetime.time |
|
168 | 168 | |
|
169 | 169 | Return: |
|
170 | 170 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de |
|
171 | 171 | fecha especificado, de lo contrario retorna False. |
|
172 | 172 | |
|
173 | 173 | Excepciones: |
|
174 | 174 | Si el archivo no existe o no puede ser abierto |
|
175 | 175 | Si la cabecera no puede ser leida. |
|
176 | 176 | |
|
177 | 177 | """ |
|
178 | 178 | |
|
179 | 179 | try: |
|
180 | 180 | fp = h5py.File(filename,'r') |
|
181 | 181 | grp1 = fp['Data'] |
|
182 | 182 | |
|
183 | 183 | except IOError: |
|
184 | 184 | traceback.print_exc() |
|
185 | 185 | raise IOError("The file %s can't be opened" %(filename)) |
|
186 | ||
|
186 | ||
|
187 | 187 | #In case has utctime attribute |
|
188 | 188 | grp2 = grp1['utctime'] |
|
189 | 189 | # thisUtcTime = grp2.value[0] - 5*3600 #To convert to local time |
|
190 | 190 | thisUtcTime = grp2.value[0] |
|
191 | 191 | |
|
192 | 192 | fp.close() |
|
193 | 193 | |
|
194 | 194 | if self.timezone == 'lt': |
|
195 | 195 | thisUtcTime -= 5*3600 |
|
196 | 196 | |
|
197 | 197 | thisDatetime = datetime.datetime.fromtimestamp(thisUtcTime[0] + 5*3600) |
|
198 | 198 | thisDate = thisDatetime.date() |
|
199 | 199 | thisTime = thisDatetime.time() |
|
200 | 200 | |
|
201 | 201 | startUtcTime = (datetime.datetime.combine(thisDate,startTime)- datetime.datetime(1970, 1, 1)).total_seconds() |
|
202 | 202 | endUtcTime = (datetime.datetime.combine(thisDate,endTime)- datetime.datetime(1970, 1, 1)).total_seconds() |
|
203 | 203 | |
|
204 | 204 | #General case |
|
205 | 205 | # o>>>>>>>>>>>>>><<<<<<<<<<<<<<o |
|
206 | 206 | #-----------o----------------------------o----------- |
|
207 | 207 | # startTime endTime |
|
208 | 208 | |
|
209 | 209 | if endTime >= startTime: |
|
210 | 210 | thisUtcLog = numpy.logical_and(thisUtcTime > startUtcTime, thisUtcTime < endUtcTime) |
|
211 | 211 | if numpy.any(thisUtcLog): #If there is one block between the hours mentioned |
|
212 | 212 | return thisDatetime |
|
213 | 213 | return None |
|
214 | 214 | |
|
215 | 215 | #If endTime < startTime then endTime belongs to the next day |
|
216 | 216 | #<<<<<<<<<<<o o>>>>>>>>>>> |
|
217 | 217 | #-----------o----------------------------o----------- |
|
218 | 218 | # endTime startTime |
|
219 | 219 | |
|
220 | 220 | if (thisDate == startDate) and numpy.all(thisUtcTime < startUtcTime): |
|
221 | 221 | return None |
|
222 | 222 | |
|
223 | 223 | if (thisDate == endDate) and numpy.all(thisUtcTime > endUtcTime): |
|
224 | 224 | return None |
|
225 | 225 | |
|
226 | 226 | if numpy.all(thisUtcTime < startUtcTime) and numpy.all(thisUtcTime > endUtcTime): |
|
227 | 227 | return None |
|
228 | 228 | |
|
229 | 229 | return thisDatetime |
|
230 | 230 | |
|
231 | 231 | def __setNextFileOffline(self): |
|
232 | 232 | |
|
233 | 233 | self.fileIndex += 1 |
|
234 | 234 | idFile = self.fileIndex |
|
235 | 235 | |
|
236 | 236 | if not(idFile < len(self.filenameList)): |
|
237 | 237 | raise schainpy.admin.SchainError("No more Files") |
|
238 | 238 | return 0 |
|
239 | 239 | |
|
240 | 240 | filename = self.filenameList[idFile] |
|
241 | 241 | filePointer = h5py.File(filename,'r') |
|
242 | 242 | self.filename = filename |
|
243 | 243 | self.fp = filePointer |
|
244 | 244 | |
|
245 | 245 | print("Setting the file: %s"%self.filename) |
|
246 | 246 | |
|
247 | 247 | self.__setBlockList() |
|
248 | 248 | self.__readData() |
|
249 | 249 | self.blockIndex = 0 |
|
250 | 250 | return 1 |
|
251 | 251 | |
|
252 | 252 | def __setBlockList(self): |
|
253 | 253 | ''' |
|
254 | 254 | Selects the data within the times defined |
|
255 | 255 | |
|
256 | 256 | self.fp |
|
257 | 257 | self.startTime |
|
258 | 258 | self.endTime |
|
259 | 259 | |
|
260 | 260 | self.blockList |
|
261 | 261 | self.blocksPerFile |
|
262 | 262 | |
|
263 | 263 | ''' |
|
264 | 264 | fp = self.fp |
|
265 | 265 | startTime = self.startTime |
|
266 | 266 | endTime = self.endTime |
|
267 | 267 | |
|
268 | 268 | grp = fp['Data'] |
|
269 | 269 | thisUtcTime = grp['utctime'].value.astype(numpy.float)[0] |
|
270 | 270 | |
|
271 | 271 | #ERROOOOR |
|
272 | 272 | if self.timezone == 'lt': |
|
273 | 273 | thisUtcTime -= 5*3600 |
|
274 | 274 | |
|
275 | 275 | thisDatetime = datetime.datetime.fromtimestamp(thisUtcTime[0] + 5*3600) |
|
276 | 276 | |
|
277 | 277 | thisDate = thisDatetime.date() |
|
278 | 278 | thisTime = thisDatetime.time() |
|
279 | 279 | |
|
280 | 280 | startUtcTime = (datetime.datetime.combine(thisDate,startTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
281 | 281 | endUtcTime = (datetime.datetime.combine(thisDate,endTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
282 | 282 | |
|
283 | 283 | ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0] |
|
284 | 284 | |
|
285 | 285 | self.blockList = ind |
|
286 | 286 | self.blocksPerFile = len(ind) |
|
287 | 287 | |
|
288 | 288 | return |
|
289 | 289 | |
|
290 | 290 | def __readMetadata(self): |
|
291 | 291 | ''' |
|
292 | 292 | Reads Metadata |
|
293 | 293 | |
|
294 | 294 | self.pathMeta |
|
295 | 295 | self.listShapes |
|
296 | 296 | self.listMetaname |
|
297 | 297 | self.listMeta |
|
298 | 298 | |
|
299 | 299 | ''' |
|
300 | 300 | |
|
301 | 301 | filename = self.filenameList[0] |
|
302 | 302 | fp = h5py.File(filename,'r') |
|
303 | 303 | gp = fp['Metadata'] |
|
304 | 304 | |
|
305 | 305 | listMetaname = [] |
|
306 | 306 | listMetadata = [] |
|
307 | 307 | for item in list(gp.items()): |
|
308 | 308 | name = item[0] |
|
309 | 309 | |
|
310 | 310 | if name=='array dimensions': |
|
311 | 311 | table = gp[name][:] |
|
312 | 312 | listShapes = {} |
|
313 | 313 | for shapes in table: |
|
314 | 314 | listShapes[shapes[0]] = numpy.array([shapes[1],shapes[2],shapes[3],shapes[4],shapes[5]]) |
|
315 | 315 | else: |
|
316 | 316 | data = gp[name].value |
|
317 | 317 | listMetaname.append(name) |
|
318 | 318 | listMetadata.append(data) |
|
319 | 319 | |
|
320 | 320 | self.listShapes = listShapes |
|
321 | 321 | self.listMetaname = listMetaname |
|
322 | 322 | self.listMeta = listMetadata |
|
323 | 323 | |
|
324 | 324 | fp.close() |
|
325 | 325 | return |
|
326 | 326 | |
|
327 | 327 | def __readData(self): |
|
328 | 328 | grp = self.fp['Data'] |
|
329 | 329 | listdataname = [] |
|
330 | 330 | listdata = [] |
|
331 | 331 | |
|
332 | 332 | for item in list(grp.items()): |
|
333 | 333 | name = item[0] |
|
334 | 334 | listdataname.append(name) |
|
335 | 335 | |
|
336 | 336 | array = self.__setDataArray(grp[name],self.listShapes[name]) |
|
337 | 337 | listdata.append(array) |
|
338 | 338 | |
|
339 | 339 | self.listDataname = listdataname |
|
340 | 340 | self.listData = listdata |
|
341 | 341 | return |
|
342 | 342 | |
|
343 | 343 | def __setDataArray(self, dataset, shapes): |
|
344 | 344 | |
|
345 | 345 | nDims = shapes[0] |
|
346 | 346 | nDim2 = shapes[1] #Dimension 0 |
|
347 | 347 | nDim1 = shapes[2] #Dimension 1, number of Points or Parameters |
|
348 | 348 | nDim0 = shapes[3] #Dimension 2, number of samples or ranges |
|
349 | 349 | mode = shapes[4] #Mode of storing |
|
350 | 350 | blockList = self.blockList |
|
351 | 351 | blocksPerFile = self.blocksPerFile |
|
352 | 352 | |
|
353 | 353 | #Depending on what mode the data was stored |
|
354 | 354 | if mode == 0: #Divided in channels |
|
355 | 355 | arrayData = dataset.value.astype(numpy.float)[0][blockList] |
|
356 | 356 | if mode == 1: #Divided in parameter |
|
357 | 357 | strds = 'table' |
|
358 | 358 | nDatas = nDim1 |
|
359 | 359 | newShapes = (blocksPerFile,nDim2,nDim0) |
|
360 | 360 | elif mode==2: #Concatenated in a table |
|
361 | 361 | strds = 'table0' |
|
362 | 362 | arrayData = dataset[strds].value |
|
363 | 363 | #Selecting part of the dataset |
|
364 | 364 | utctime = arrayData[:,0] |
|
365 | 365 | u, indices = numpy.unique(utctime, return_index=True) |
|
366 | 366 | |
|
367 | 367 | if blockList.size != indices.size: |
|
368 | 368 | indMin = indices[blockList[0]] |
|
369 | 369 | if blockList[1] + 1 >= indices.size: |
|
370 | 370 | arrayData = arrayData[indMin:,:] |
|
371 | 371 | else: |
|
372 | 372 | indMax = indices[blockList[1] + 1] |
|
373 | 373 | arrayData = arrayData[indMin:indMax,:] |
|
374 | 374 | return arrayData |
|
375 | 375 | |
|
376 | 376 | # One dimension |
|
377 | 377 | if nDims == 0: |
|
378 | 378 | arrayData = dataset.value.astype(numpy.float)[0][blockList] |
|
379 | 379 | |
|
380 | 380 | # Two dimensions |
|
381 | 381 | elif nDims == 2: |
|
382 | 382 | arrayData = numpy.zeros((blocksPerFile,nDim1,nDim0)) |
|
383 | 383 | newShapes = (blocksPerFile,nDim0) |
|
384 | 384 | nDatas = nDim1 |
|
385 | 385 | |
|
386 | 386 | for i in range(nDatas): |
|
387 | 387 | data = dataset[strds + str(i)].value |
|
388 | 388 | arrayData[:,i,:] = data[blockList,:] |
|
389 | 389 | |
|
390 | 390 | # Three dimensions |
|
391 | 391 | else: |
|
392 | 392 | arrayData = numpy.zeros((blocksPerFile,nDim2,nDim1,nDim0)) |
|
393 | 393 | for i in range(nDatas): |
|
394 | 394 | |
|
395 | 395 | data = dataset[strds + str(i)].value |
|
396 | 396 | |
|
397 | 397 | for b in range(blockList.size): |
|
398 | 398 | arrayData[b,:,i,:] = data[:,:,blockList[b]] |
|
399 | 399 | |
|
400 | 400 | return arrayData |
|
401 | 401 | |
|
402 | 402 | def __setDataOut(self): |
|
403 | 403 | listMeta = self.listMeta |
|
404 | 404 | listMetaname = self.listMetaname |
|
405 | 405 | listDataname = self.listDataname |
|
406 | 406 | listData = self.listData |
|
407 | 407 | listShapes = self.listShapes |
|
408 | 408 | |
|
409 | 409 | blockIndex = self.blockIndex |
|
410 | 410 | # blockList = self.blockList |
|
411 | 411 | |
|
412 | 412 | for i in range(len(listMeta)): |
|
413 | 413 | setattr(self.dataOut,listMetaname[i],listMeta[i]) |
|
414 | 414 | |
|
415 | 415 | for j in range(len(listData)): |
|
416 | 416 | nShapes = listShapes[listDataname[j]][0] |
|
417 | 417 | mode = listShapes[listDataname[j]][4] |
|
418 | 418 | if nShapes == 1: |
|
419 | 419 | setattr(self.dataOut,listDataname[j],listData[j][blockIndex]) |
|
420 | 420 | elif nShapes > 1: |
|
421 | 421 | setattr(self.dataOut,listDataname[j],listData[j][blockIndex,:]) |
|
422 | 422 | elif mode==0: |
|
423 | 423 | setattr(self.dataOut,listDataname[j],listData[j][blockIndex]) |
|
424 | 424 | #Mode Meteors |
|
425 | 425 | elif mode ==2: |
|
426 | 426 | selectedData = self.__selectDataMode2(listData[j], blockIndex) |
|
427 | 427 | setattr(self.dataOut, listDataname[j], selectedData) |
|
428 | 428 | return |
|
429 | 429 | |
|
430 | 430 | def __selectDataMode2(self, data, blockIndex): |
|
431 | 431 | utctime = data[:,0] |
|
432 | 432 | aux, indices = numpy.unique(utctime, return_inverse=True) |
|
433 | 433 | selInd = numpy.where(indices == blockIndex)[0] |
|
434 | 434 | selData = data[selInd,:] |
|
435 | 435 | |
|
436 | 436 | return selData |
|
437 | 437 | |
|
438 | 438 | def getData(self): |
|
439 | 439 | |
|
440 | 440 | if self.blockIndex==self.blocksPerFile: |
|
441 | 441 | if not( self.__setNextFileOffline() ): |
|
442 | 442 | self.dataOut.flagNoData = True |
|
443 | 443 | return 0 |
|
444 | 444 | |
|
445 | 445 | self.__setDataOut() |
|
446 | 446 | self.dataOut.flagNoData = False |
|
447 | 447 | |
|
448 | 448 | self.blockIndex += 1 |
|
449 | 449 | |
|
450 | 450 | return |
|
451 | 451 | |
|
452 | 452 | def run(self, **kwargs): |
|
453 | 453 | |
|
454 | 454 | if not(self.isConfig): |
|
455 | 455 | self.setup(**kwargs) |
|
456 | 456 | self.isConfig = True |
|
457 | 457 | |
|
458 | 458 | self.getData() |
|
459 | 459 | |
|
460 | 460 | return |
|
461 | 461 | |
|
462 | 462 | @MPDecorator |
|
463 | 463 | class ParamWriter(Operation): |
|
464 | 464 | ''' |
|
465 | 465 | HDF5 Writer, stores parameters data in HDF5 format files |
|
466 | 466 | |
|
467 | 467 | path: path where the files will be stored |
|
468 | 468 | blocksPerFile: number of blocks that will be saved in per HDF5 format file |
|
469 | 469 | mode: selects the data stacking mode: '0' channels, '1' parameters, '3' table (for meteors) |
|
470 | 470 | metadataList: list of attributes that will be stored as metadata |
|
471 | 471 | dataList: list of attributes that will be stores as data |
|
472 | 472 | ''' |
|
473 | 473 | |
|
474 | 474 | ext = ".hdf5" |
|
475 | 475 | optchar = "D" |
|
476 | 476 | metaoptchar = "M" |
|
477 | 477 | metaFile = None |
|
478 | 478 | filename = None |
|
479 | 479 | path = None |
|
480 | 480 | setFile = None |
|
481 | 481 | fp = None |
|
482 | 482 | grp = None |
|
483 | 483 | ds = None |
|
484 | 484 | firsttime = True |
|
485 | 485 | #Configurations |
|
486 | 486 | blocksPerFile = None |
|
487 | 487 | blockIndex = None |
|
488 | 488 | dataOut = None |
|
489 | 489 | #Data Arrays |
|
490 | 490 | dataList = None |
|
491 | 491 | metadataList = None |
|
492 | 492 | dsList = None #List of dictionaries with dataset properties |
|
493 | 493 | tableDim = None |
|
494 | 494 | dtype = [('arrayName', 'S20'),('nDimensions', 'i'), ('dim2', 'i'), ('dim1', 'i'),('dim0', 'i'),('mode', 'b')] |
|
495 | 495 | currentDay = None |
|
496 | 496 | lastTime = None |
|
497 | 497 | setType = None |
|
498 | 498 | |
|
499 | 499 | def __init__(self): |
|
500 | ||
|
500 | ||
|
501 | 501 | Operation.__init__(self) |
|
502 | 502 | return |
|
503 | 503 | |
|
504 | 504 | def setup(self, dataOut, path=None, blocksPerFile=10, metadataList=None, dataList=None, mode=None, setType=None): |
|
505 | 505 | self.path = path |
|
506 | 506 | self.blocksPerFile = blocksPerFile |
|
507 | 507 | self.metadataList = metadataList |
|
508 | 508 | self.dataList = dataList |
|
509 | 509 | self.dataOut = dataOut |
|
510 | 510 | self.mode = mode |
|
511 | 511 | if self.mode is not None: |
|
512 | 512 | self.mode = numpy.zeros(len(self.dataList)) + mode |
|
513 | 513 | else: |
|
514 | 514 | self.mode = numpy.ones(len(self.dataList)) |
|
515 | 515 | |
|
516 | 516 | self.setType = setType |
|
517 | 517 | |
|
518 | 518 | arrayDim = numpy.zeros((len(self.dataList),5)) |
|
519 | 519 | |
|
520 | 520 | #Table dimensions |
|
521 | 521 | dtype0 = self.dtype |
|
522 | 522 | tableList = [] |
|
523 | 523 | |
|
524 | 524 | #Dictionary and list of tables |
|
525 | 525 | dsList = [] |
|
526 | 526 | |
|
527 | 527 | for i in range(len(self.dataList)): |
|
528 | 528 | dsDict = {} |
|
529 | 529 | dataAux = getattr(self.dataOut, self.dataList[i]) |
|
530 | 530 | dsDict['variable'] = self.dataList[i] |
|
531 | 531 | #--------------------- Conditionals ------------------------ |
|
532 | 532 | #There is no data |
|
533 | ||
|
533 | ||
|
534 | 534 | if dataAux is None: |
|
535 | ||
|
535 | ||
|
536 | 536 | return 0 |
|
537 | 537 | |
|
538 | 538 | if isinstance(dataAux, (int, float, numpy.integer, numpy.float)): |
|
539 | 539 | dsDict['mode'] = 0 |
|
540 | 540 | dsDict['nDim'] = 0 |
|
541 | 541 | arrayDim[i,0] = 0 |
|
542 | 542 | dsList.append(dsDict) |
|
543 | 543 | |
|
544 | 544 | #Mode 2: meteors |
|
545 | 545 | elif self.mode[i] == 2: |
|
546 | 546 | dsDict['dsName'] = 'table0' |
|
547 | 547 | dsDict['mode'] = 2 # Mode meteors |
|
548 | 548 | dsDict['shape'] = dataAux.shape[-1] |
|
549 | 549 | dsDict['nDim'] = 0 |
|
550 | 550 | dsDict['dsNumber'] = 1 |
|
551 | 551 | arrayDim[i,3] = dataAux.shape[-1] |
|
552 | 552 | arrayDim[i,4] = self.mode[i] #Mode the data was stored |
|
553 | 553 | dsList.append(dsDict) |
|
554 | 554 | |
|
555 | 555 | #Mode 1 |
|
556 | 556 | else: |
|
557 | 557 | arrayDim0 = dataAux.shape #Data dimensions |
|
558 | 558 | arrayDim[i,0] = len(arrayDim0) #Number of array dimensions |
|
559 | 559 | arrayDim[i,4] = self.mode[i] #Mode the data was stored |
|
560 | 560 | strtable = 'table' |
|
561 | 561 | dsDict['mode'] = 1 # Mode parameters |
|
562 | 562 | |
|
563 | 563 | # Three-dimension arrays |
|
564 | 564 | if len(arrayDim0) == 3: |
|
565 | 565 | arrayDim[i,1:-1] = numpy.array(arrayDim0) |
|
566 | 566 | nTables = int(arrayDim[i,2]) |
|
567 | 567 | dsDict['dsNumber'] = nTables |
|
568 | 568 | dsDict['shape'] = arrayDim[i,2:4] |
|
569 | 569 | dsDict['nDim'] = 3 |
|
570 | 570 | |
|
571 | 571 | for j in range(nTables): |
|
572 | 572 | dsDict = dsDict.copy() |
|
573 | 573 | dsDict['dsName'] = strtable + str(j) |
|
574 | 574 | dsList.append(dsDict) |
|
575 | 575 | |
|
576 | 576 | # Two-dimension arrays |
|
577 | 577 | elif len(arrayDim0) == 2: |
|
578 | 578 | arrayDim[i,2:-1] = numpy.array(arrayDim0) |
|
579 | 579 | nTables = int(arrayDim[i,2]) |
|
580 | 580 | dsDict['dsNumber'] = nTables |
|
581 | 581 | dsDict['shape'] = arrayDim[i,3] |
|
582 | 582 | dsDict['nDim'] = 2 |
|
583 | 583 | |
|
584 | 584 | for j in range(nTables): |
|
585 | 585 | dsDict = dsDict.copy() |
|
586 | 586 | dsDict['dsName'] = strtable + str(j) |
|
587 | 587 | dsList.append(dsDict) |
|
588 | 588 | |
|
589 | 589 | # One-dimension arrays |
|
590 | 590 | elif len(arrayDim0) == 1: |
|
591 | 591 | arrayDim[i,3] = arrayDim0[0] |
|
592 | 592 | dsDict['shape'] = arrayDim0[0] |
|
593 | 593 | dsDict['dsNumber'] = 1 |
|
594 | 594 | dsDict['dsName'] = strtable + str(0) |
|
595 | 595 | dsDict['nDim'] = 1 |
|
596 | 596 | dsList.append(dsDict) |
|
597 | 597 | |
|
598 | 598 | table = numpy.array((self.dataList[i],) + tuple(arrayDim[i,:]),dtype = dtype0) |
|
599 | 599 | tableList.append(table) |
|
600 | 600 | |
|
601 | 601 | self.dsList = dsList |
|
602 | 602 | self.tableDim = numpy.array(tableList, dtype = dtype0) |
|
603 | 603 | self.blockIndex = 0 |
|
604 | 604 | timeTuple = time.localtime(dataOut.utctime) |
|
605 | 605 | self.currentDay = timeTuple.tm_yday |
|
606 | 606 | |
|
607 | 607 | def putMetadata(self): |
|
608 | 608 | |
|
609 | 609 | fp = self.createMetadataFile() |
|
610 | 610 | self.writeMetadata(fp) |
|
611 | 611 | fp.close() |
|
612 | 612 | return |
|
613 | 613 | |
|
614 | 614 | def createMetadataFile(self): |
|
615 | 615 | ext = self.ext |
|
616 | 616 | path = self.path |
|
617 | 617 | setFile = self.setFile |
|
618 | 618 | |
|
619 | 619 | timeTuple = time.localtime(self.dataOut.utctime) |
|
620 | 620 | |
|
621 | 621 | subfolder = '' |
|
622 | 622 | fullpath = os.path.join( path, subfolder ) |
|
623 | 623 | |
|
624 | 624 | if not( os.path.exists(fullpath) ): |
|
625 | 625 | os.mkdir(fullpath) |
|
626 | 626 | setFile = -1 #inicializo mi contador de seteo |
|
627 | 627 | |
|
628 | 628 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) |
|
629 | 629 | fullpath = os.path.join( path, subfolder ) |
|
630 | 630 | |
|
631 | 631 | if not( os.path.exists(fullpath) ): |
|
632 | 632 | os.mkdir(fullpath) |
|
633 | 633 | setFile = -1 #inicializo mi contador de seteo |
|
634 | 634 | |
|
635 | 635 | else: |
|
636 | 636 | filesList = os.listdir( fullpath ) |
|
637 | 637 | filesList = sorted( filesList, key=str.lower ) |
|
638 | 638 | if len( filesList ) > 0: |
|
639 | 639 | filesList = [k for k in filesList if k.startswith(self.metaoptchar)] |
|
640 | 640 | filen = filesList[-1] |
|
641 | 641 | # el filename debera tener el siguiente formato |
|
642 | 642 | # 0 1234 567 89A BCDE (hex) |
|
643 | 643 | # x YYYY DDD SSS .ext |
|
644 | 644 | if isNumber( filen[8:11] ): |
|
645 | 645 | setFile = int( filen[8:11] ) #inicializo mi contador de seteo al seteo del ultimo file |
|
646 | 646 | else: |
|
647 | 647 | setFile = -1 |
|
648 | 648 | else: |
|
649 | 649 | setFile = -1 #inicializo mi contador de seteo |
|
650 | 650 | |
|
651 | 651 | if self.setType is None: |
|
652 | 652 | setFile += 1 |
|
653 | 653 | file = '%s%4.4d%3.3d%03d%s' % (self.metaoptchar, |
|
654 | 654 | timeTuple.tm_year, |
|
655 | 655 | timeTuple.tm_yday, |
|
656 | 656 | setFile, |
|
657 | 657 | ext ) |
|
658 | 658 | else: |
|
659 | 659 | setFile = timeTuple.tm_hour*60+timeTuple.tm_min |
|
660 | 660 | file = '%s%4.4d%3.3d%04d%s' % (self.metaoptchar, |
|
661 | 661 | timeTuple.tm_year, |
|
662 | 662 | timeTuple.tm_yday, |
|
663 | 663 | setFile, |
|
664 | 664 | ext ) |
|
665 | 665 | |
|
666 | 666 | filename = os.path.join( path, subfolder, file ) |
|
667 | 667 | self.metaFile = file |
|
668 | 668 | #Setting HDF5 File |
|
669 | 669 | fp = h5py.File(filename,'w') |
|
670 | 670 | |
|
671 | 671 | return fp |
|
672 | 672 | |
|
673 | 673 | def writeMetadata(self, fp): |
|
674 | 674 | |
|
675 | 675 | grp = fp.create_group("Metadata") |
|
676 | 676 | grp.create_dataset('array dimensions', data = self.tableDim, dtype = self.dtype) |
|
677 | 677 | |
|
678 | 678 | for i in range(len(self.metadataList)): |
|
679 | 679 | grp.create_dataset(self.metadataList[i], data=getattr(self.dataOut, self.metadataList[i])) |
|
680 | 680 | return |
|
681 | 681 | |
|
682 | 682 | def timeFlag(self): |
|
683 | 683 | currentTime = self.dataOut.utctime |
|
684 | 684 | |
|
685 | 685 | if self.lastTime is None: |
|
686 | 686 | self.lastTime = currentTime |
|
687 | 687 | |
|
688 | 688 | #Day |
|
689 | 689 | timeTuple = time.localtime(currentTime) |
|
690 | 690 | dataDay = timeTuple.tm_yday |
|
691 | 691 | |
|
692 | 692 | #Time |
|
693 | 693 | timeDiff = currentTime - self.lastTime |
|
694 | 694 | |
|
695 | 695 | #Si el dia es diferente o si la diferencia entre un dato y otro supera la hora |
|
696 | 696 | if dataDay != self.currentDay: |
|
697 | 697 | self.currentDay = dataDay |
|
698 | 698 | return True |
|
699 | 699 | elif timeDiff > 3*60*60: |
|
700 | 700 | self.lastTime = currentTime |
|
701 | 701 | return True |
|
702 | 702 | else: |
|
703 | 703 | self.lastTime = currentTime |
|
704 | 704 | return False |
|
705 | 705 | |
|
706 | 706 | def setNextFile(self): |
|
707 | ||
|
707 | ||
|
708 | 708 | ext = self.ext |
|
709 | 709 | path = self.path |
|
710 | 710 | setFile = self.setFile |
|
711 | 711 | mode = self.mode |
|
712 | 712 | |
|
713 | 713 | timeTuple = time.localtime(self.dataOut.utctime) |
|
714 | 714 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) |
|
715 | 715 | |
|
716 | 716 | fullpath = os.path.join( path, subfolder ) |
|
717 | 717 | |
|
718 | 718 | if os.path.exists(fullpath): |
|
719 | 719 | filesList = os.listdir( fullpath ) |
|
720 | 720 | filesList = [k for k in filesList if 'M' in k] |
|
721 | 721 | if len( filesList ) > 0: |
|
722 | 722 | filesList = sorted( filesList, key=str.lower ) |
|
723 | 723 | filen = filesList[-1] |
|
724 | 724 | # el filename debera tener el siguiente formato |
|
725 | 725 | # 0 1234 567 89A BCDE (hex) |
|
726 | 726 | # x YYYY DDD SSS .ext |
|
727 | 727 | if isNumber( filen[8:11] ): |
|
728 | 728 | setFile = int( filen[8:11] ) #inicializo mi contador de seteo al seteo del ultimo file |
|
729 | 729 | else: |
|
730 | 730 | setFile = -1 |
|
731 | 731 | else: |
|
732 | 732 | setFile = -1 #inicializo mi contador de seteo |
|
733 | 733 | else: |
|
734 | 734 | os.makedirs(fullpath) |
|
735 | 735 | setFile = -1 #inicializo mi contador de seteo |
|
736 | 736 | |
|
737 | 737 | if self.setType is None: |
|
738 | 738 | setFile += 1 |
|
739 | 739 | file = '%s%4.4d%3.3d%03d%s' % (self.optchar, |
|
740 | 740 | timeTuple.tm_year, |
|
741 | 741 | timeTuple.tm_yday, |
|
742 | 742 | setFile, |
|
743 | 743 | ext ) |
|
744 | 744 | else: |
|
745 | 745 | setFile = timeTuple.tm_hour*60+timeTuple.tm_min |
|
746 | 746 | file = '%s%4.4d%3.3d%04d%s' % (self.optchar, |
|
747 | 747 | timeTuple.tm_year, |
|
748 | 748 | timeTuple.tm_yday, |
|
749 | 749 | setFile, |
|
750 | 750 | ext ) |
|
751 | 751 | |
|
752 | 752 | filename = os.path.join( path, subfolder, file ) |
|
753 | 753 | |
|
754 | 754 | #Setting HDF5 File |
|
755 | 755 | fp = h5py.File(filename,'w') |
|
756 | 756 | #write metadata |
|
757 | 757 | self.writeMetadata(fp) |
|
758 | 758 | #Write data |
|
759 | 759 | grp = fp.create_group("Data") |
|
760 | 760 | ds = [] |
|
761 | 761 | data = [] |
|
762 | 762 | dsList = self.dsList |
|
763 | 763 | i = 0 |
|
764 | 764 | while i < len(dsList): |
|
765 | 765 | dsInfo = dsList[i] |
|
766 | 766 | #One-dimension data |
|
767 | 767 | if dsInfo['mode'] == 0: |
|
768 | 768 | ds0 = grp.create_dataset(dsInfo['variable'], (1,1), maxshape=(1,self.blocksPerFile) , chunks = True, dtype=numpy.float64) |
|
769 | 769 | ds.append(ds0) |
|
770 | 770 | data.append([]) |
|
771 | 771 | i += 1 |
|
772 | 772 | continue |
|
773 | 773 | |
|
774 | 774 | elif dsInfo['mode'] == 2: |
|
775 | 775 | grp0 = grp.create_group(dsInfo['variable']) |
|
776 | 776 | ds0 = grp0.create_dataset(dsInfo['dsName'], (1,dsInfo['shape']), data = numpy.zeros((1,dsInfo['shape'])) , maxshape=(None,dsInfo['shape']), chunks=True) |
|
777 | 777 | ds.append(ds0) |
|
778 | 778 | data.append([]) |
|
779 | 779 | i += 1 |
|
780 | 780 | continue |
|
781 | 781 | |
|
782 | 782 | elif dsInfo['mode'] == 1: |
|
783 | 783 | grp0 = grp.create_group(dsInfo['variable']) |
|
784 | 784 | |
|
785 | 785 | for j in range(dsInfo['dsNumber']): |
|
786 | 786 | dsInfo = dsList[i] |
|
787 | 787 | tableName = dsInfo['dsName'] |
|
788 | ||
|
788 | ||
|
789 | 789 | |
|
790 | 790 | if dsInfo['nDim'] == 3: |
|
791 | 791 | shape = dsInfo['shape'].astype(int) |
|
792 | 792 | ds0 = grp0.create_dataset(tableName, (shape[0],shape[1],1) , data = numpy.zeros((shape[0],shape[1],1)), maxshape = (None,shape[1],None), chunks=True) |
|
793 | 793 | else: |
|
794 | 794 | shape = int(dsInfo['shape']) |
|
795 | 795 | ds0 = grp0.create_dataset(tableName, (1,shape), data = numpy.zeros((1,shape)) , maxshape=(None,shape), chunks=True) |
|
796 | 796 | |
|
797 | 797 | ds.append(ds0) |
|
798 | 798 | data.append([]) |
|
799 | 799 | i += 1 |
|
800 | 800 | |
|
801 | 801 | fp.flush() |
|
802 | 802 | fp.close() |
|
803 | 803 | |
|
804 | 804 | log.log('creating file: {}'.format(filename), 'Writing') |
|
805 | 805 | self.filename = filename |
|
806 | 806 | self.ds = ds |
|
807 | 807 | self.data = data |
|
808 | 808 | self.firsttime = True |
|
809 | 809 | self.blockIndex = 0 |
|
810 | 810 | return |
|
811 | 811 | |
|
812 | 812 | def putData(self): |
|
813 | 813 | |
|
814 | 814 | if self.blockIndex == self.blocksPerFile or self.timeFlag(): |
|
815 | 815 | self.setNextFile() |
|
816 | 816 | |
|
817 | 817 | self.readBlock() |
|
818 | 818 | self.setBlock() #Prepare data to be written |
|
819 | 819 | self.writeBlock() #Write data |
|
820 | 820 | |
|
821 | 821 | return |
|
822 | 822 | |
|
823 | 823 | def readBlock(self): |
|
824 | 824 | |
|
825 | 825 | ''' |
|
826 | 826 | data Array configured |
|
827 | 827 | |
|
828 | 828 | |
|
829 | 829 | self.data |
|
830 | 830 | ''' |
|
831 | 831 | dsList = self.dsList |
|
832 | 832 | ds = self.ds |
|
833 | 833 | #Setting HDF5 File |
|
834 | 834 | fp = h5py.File(self.filename,'r+') |
|
835 | 835 | grp = fp["Data"] |
|
836 | 836 | ind = 0 |
|
837 | 837 | |
|
838 | 838 | while ind < len(dsList): |
|
839 | 839 | dsInfo = dsList[ind] |
|
840 | 840 | |
|
841 | 841 | if dsInfo['mode'] == 0: |
|
842 | 842 | ds0 = grp[dsInfo['variable']] |
|
843 | 843 | ds[ind] = ds0 |
|
844 | 844 | ind += 1 |
|
845 | 845 | else: |
|
846 | 846 | |
|
847 | 847 | grp0 = grp[dsInfo['variable']] |
|
848 | 848 | |
|
849 | 849 | for j in range(dsInfo['dsNumber']): |
|
850 | 850 | dsInfo = dsList[ind] |
|
851 | 851 | ds0 = grp0[dsInfo['dsName']] |
|
852 | 852 | ds[ind] = ds0 |
|
853 | 853 | ind += 1 |
|
854 | 854 | |
|
855 | 855 | self.fp = fp |
|
856 | 856 | self.grp = grp |
|
857 | 857 | self.ds = ds |
|
858 | 858 | |
|
859 | 859 | return |
|
860 | 860 | |
|
861 | 861 | def setBlock(self): |
|
862 | 862 | ''' |
|
863 | 863 | data Array configured |
|
864 | 864 | |
|
865 | 865 | |
|
866 | 866 | self.data |
|
867 | 867 | ''' |
|
868 | 868 | #Creating Arrays |
|
869 | 869 | dsList = self.dsList |
|
870 | 870 | data = self.data |
|
871 | 871 | ind = 0 |
|
872 | ||
|
872 | #print("dsList ",dsList) | |
|
873 | #print("len ",len(dsList)) | |
|
873 | 874 | while ind < len(dsList): |
|
874 | 875 | dsInfo = dsList[ind] |
|
875 | 876 | dataAux = getattr(self.dataOut, dsInfo['variable']) |
|
876 | 877 | |
|
877 | 878 | mode = dsInfo['mode'] |
|
878 | 879 | nDim = dsInfo['nDim'] |
|
879 | 880 | |
|
880 | 881 | if mode == 0 or mode == 2 or nDim == 1: |
|
881 | 882 | data[ind] = dataAux |
|
882 | 883 | ind += 1 |
|
883 | 884 | # elif nDim == 1: |
|
884 | 885 | # data[ind] = numpy.reshape(dataAux,(numpy.size(dataAux),1)) |
|
885 | 886 | # ind += 1 |
|
886 | 887 | elif nDim == 2: |
|
887 | 888 | for j in range(dsInfo['dsNumber']): |
|
888 | 889 | data[ind] = dataAux[j,:] |
|
889 | 890 | ind += 1 |
|
890 | 891 | elif nDim == 3: |
|
891 | 892 | for j in range(dsInfo['dsNumber']): |
|
892 | 893 | data[ind] = dataAux[:,j,:] |
|
893 | 894 | ind += 1 |
|
894 | 895 | |
|
895 | 896 | self.data = data |
|
896 | 897 | return |
|
897 | 898 | |
|
898 | 899 | def writeBlock(self): |
|
899 | 900 | ''' |
|
900 | 901 | Saves the block in the HDF5 file |
|
901 | 902 | ''' |
|
902 | 903 | dsList = self.dsList |
|
903 | 904 | |
|
904 | 905 | for i in range(len(self.ds)): |
|
906 | print("#############", i , "#######################") | |
|
905 | 907 | dsInfo = dsList[i] |
|
906 | 908 | nDim = dsInfo['nDim'] |
|
907 | 909 | mode = dsInfo['mode'] |
|
908 | ||
|
910 | print("dsInfo",dsInfo) | |
|
911 | print("nDim",nDim) | |
|
912 | print("mode",mode) | |
|
909 | 913 | # First time |
|
910 | 914 | if self.firsttime: |
|
915 | print("ENTRE FIRSTIME") | |
|
911 | 916 | if type(self.data[i]) == numpy.ndarray: |
|
912 | 917 | |
|
913 | 918 | if nDim == 3: |
|
919 | print("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx") | |
|
920 | print("ndim","dentro del primer if 3") | |
|
914 | 921 | self.data[i] = self.data[i].reshape((self.data[i].shape[0],self.data[i].shape[1],1)) |
|
922 | print(self.data[i].shape) | |
|
923 | print(type(self.data[i])) | |
|
915 | 924 | self.ds[i].resize(self.data[i].shape) |
|
925 | print(self.ds[i].shape) | |
|
926 | print(type(self.ds[i])) | |
|
916 | 927 | if mode == 2: |
|
917 | 928 | self.ds[i].resize(self.data[i].shape) |
|
918 | self.ds[i][:] = self.data[i] | |
|
919 | else: | |
|
929 | try: | |
|
930 | print("PTM ODIO ESTO") | |
|
931 | print(self.ds[i][:].shape) | |
|
932 | self.ds[i][:] = self.data[i] | |
|
933 | print("*****___________********______******") | |
|
920 | 934 | |
|
935 | except: | |
|
936 | print("q habra pasaado") | |
|
937 | return | |
|
938 | print("LLEGUE Y CUMPLI EL IF") | |
|
939 | else: | |
|
940 | print("ELSE -----------------------") | |
|
921 | 941 | # From second time |
|
922 | 942 | # Meteors! |
|
923 | 943 | if mode == 2: |
|
924 | 944 | dataShape = self.data[i].shape |
|
925 | 945 | dsShape = self.ds[i].shape |
|
926 | 946 | self.ds[i].resize((self.ds[i].shape[0] + dataShape[0],self.ds[i].shape[1])) |
|
927 | 947 | self.ds[i][dsShape[0]:,:] = self.data[i] |
|
928 | 948 | # No dimension |
|
929 | 949 | elif mode == 0: |
|
930 | 950 | self.ds[i].resize((self.ds[i].shape[0], self.ds[i].shape[1] + 1)) |
|
931 | 951 | self.ds[i][0,-1] = self.data[i] |
|
932 | 952 | # One dimension |
|
933 | 953 | elif nDim == 1: |
|
934 | 954 | self.ds[i].resize((self.ds[i].shape[0] + 1, self.ds[i].shape[1])) |
|
935 | 955 | self.ds[i][-1,:] = self.data[i] |
|
936 | 956 | # Two dimension |
|
937 | 957 | elif nDim == 2: |
|
938 | 958 | self.ds[i].resize((self.ds[i].shape[0] + 1,self.ds[i].shape[1])) |
|
939 | 959 | self.ds[i][self.blockIndex,:] = self.data[i] |
|
940 | 960 | # Three dimensions |
|
941 | 961 | elif nDim == 3: |
|
942 | 962 | self.ds[i].resize((self.ds[i].shape[0],self.ds[i].shape[1],self.ds[i].shape[2]+1)) |
|
943 | 963 | self.ds[i][:,:,-1] = self.data[i] |
|
944 | 964 | |
|
945 | 965 | self.firsttime = False |
|
946 | 966 | self.blockIndex += 1 |
|
947 | ||
|
967 | print("HOLA AMIGOS COMO ESTAN LLEGUE") | |
|
968 | print("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx") | |
|
948 | 969 | #Close to save changes |
|
949 | 970 | self.fp.flush() |
|
950 | 971 | self.fp.close() |
|
951 | 972 | return |
|
952 | 973 | |
|
953 | 974 | def run(self, dataOut, path, blocksPerFile=10, metadataList=None, dataList=None, mode=None, setType=None): |
|
954 | 975 | |
|
955 | 976 | self.dataOut = dataOut |
|
956 | 977 | if not(self.isConfig): |
|
957 |
self.setup(dataOut, path=path, blocksPerFile=blocksPerFile, |
|
|
978 | self.setup(dataOut, path=path, blocksPerFile=blocksPerFile, | |
|
958 | 979 | metadataList=metadataList, dataList=dataList, mode=mode, |
|
959 | 980 | setType=setType) |
|
960 | 981 | |
|
961 | 982 | self.isConfig = True |
|
962 | 983 | self.setNextFile() |
|
963 | 984 | |
|
964 | 985 | self.putData() |
|
965 | 986 | return |
|
966 | ||
|
987 | ||
|
967 | 988 | |
|
968 | 989 | @MPDecorator |
|
969 | 990 | class ParameterReader(Reader, ProcessingUnit): |
|
970 | 991 | ''' |
|
971 | 992 | Reads HDF5 format files |
|
972 | 993 | ''' |
|
973 | 994 | |
|
974 | 995 | def __init__(self): |
|
975 | 996 | ProcessingUnit.__init__(self) |
|
976 | 997 | self.dataOut = Parameters() |
|
977 | 998 | self.ext = ".hdf5" |
|
978 | 999 | self.optchar = "D" |
|
979 | 1000 | self.timezone = "lt" |
|
980 | 1001 | self.listMetaname = [] |
|
981 | 1002 | self.listMeta = [] |
|
982 | 1003 | self.listDataname = [] |
|
983 | 1004 | self.listData = [] |
|
984 | 1005 | self.listShapes = [] |
|
985 | 1006 | self.open_file = h5py.File |
|
986 | 1007 | self.open_mode = 'r' |
|
987 | 1008 | self.metadata = False |
|
988 | 1009 | self.filefmt = "*%Y%j***" |
|
989 | 1010 | self.folderfmt = "*%Y%j" |
|
990 | 1011 | |
|
991 | 1012 | def setup(self, **kwargs): |
|
992 | 1013 | |
|
993 | 1014 | self.set_kwargs(**kwargs) |
|
994 | 1015 | if not self.ext.startswith('.'): |
|
995 |
self.ext = '.{}'.format(self.ext) |
|
|
1016 | self.ext = '.{}'.format(self.ext) | |
|
996 | 1017 | |
|
997 | 1018 | if self.online: |
|
998 | 1019 | log.log("Searching files in online mode...", self.name) |
|
999 | 1020 | |
|
1000 | 1021 | for nTries in range(self.nTries): |
|
1001 | 1022 | fullpath = self.searchFilesOnLine(self.path, self.startDate, |
|
1002 |
self.endDate, self.expLabel, self.ext, self.walk, |
|
|
1023 | self.endDate, self.expLabel, self.ext, self.walk, | |
|
1003 | 1024 | self.filefmt, self.folderfmt) |
|
1004 | 1025 | |
|
1005 | 1026 | try: |
|
1006 | 1027 | fullpath = next(fullpath) |
|
1007 | 1028 | except: |
|
1008 | 1029 | fullpath = None |
|
1009 | ||
|
1030 | ||
|
1010 | 1031 | if fullpath: |
|
1011 | 1032 | break |
|
1012 | 1033 | |
|
1013 | 1034 | log.warning( |
|
1014 | 1035 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( |
|
1015 |
self.delay, self.path, nTries + 1), |
|
|
1036 | self.delay, self.path, nTries + 1), | |
|
1016 | 1037 | self.name) |
|
1017 | 1038 | time.sleep(self.delay) |
|
1018 | 1039 | |
|
1019 | 1040 | if not(fullpath): |
|
1020 | 1041 | raise schainpy.admin.SchainError( |
|
1021 |
'There isn\'t any valid file in {}'.format(self.path)) |
|
|
1042 | 'There isn\'t any valid file in {}'.format(self.path)) | |
|
1022 | 1043 | |
|
1023 | 1044 | pathname, filename = os.path.split(fullpath) |
|
1024 | 1045 | self.year = int(filename[1:5]) |
|
1025 | 1046 | self.doy = int(filename[5:8]) |
|
1026 |
self.set = int(filename[8:11]) - 1 |
|
|
1047 | self.set = int(filename[8:11]) - 1 | |
|
1027 | 1048 | else: |
|
1028 | 1049 | log.log("Searching files in {}".format(self.path), self.name) |
|
1029 |
self.filenameList = self.searchFilesOffLine(self.path, self.startDate, |
|
|
1050 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, | |
|
1030 | 1051 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) |
|
1031 | ||
|
1052 | ||
|
1032 | 1053 | self.setNextFile() |
|
1033 | 1054 | |
|
1034 | 1055 | return |
|
1035 | 1056 | |
|
1036 | 1057 | def readFirstHeader(self): |
|
1037 | 1058 | '''Read metadata and data''' |
|
1038 | 1059 | |
|
1039 |
self.__readMetadata() |
|
|
1060 | self.__readMetadata() | |
|
1040 | 1061 | self.__readData() |
|
1041 | 1062 | self.__setBlockList() |
|
1042 | 1063 | self.blockIndex = 0 |
|
1043 | ||
|
1064 | ||
|
1044 | 1065 | return |
|
1045 | 1066 | |
|
1046 | 1067 | def __setBlockList(self): |
|
1047 | 1068 | ''' |
|
1048 | 1069 | Selects the data within the times defined |
|
1049 | 1070 | |
|
1050 | 1071 | self.fp |
|
1051 | 1072 | self.startTime |
|
1052 | 1073 | self.endTime |
|
1053 | 1074 | self.blockList |
|
1054 | 1075 | self.blocksPerFile |
|
1055 | 1076 | |
|
1056 | 1077 | ''' |
|
1057 | 1078 | |
|
1058 | 1079 | startTime = self.startTime |
|
1059 | 1080 | endTime = self.endTime |
|
1060 | 1081 | |
|
1061 | 1082 | index = self.listDataname.index('utctime') |
|
1062 | 1083 | thisUtcTime = self.listData[index] |
|
1063 | 1084 | self.interval = numpy.min(thisUtcTime[1:] - thisUtcTime[:-1]) |
|
1064 | 1085 | |
|
1065 | 1086 | if self.timezone == 'lt': |
|
1066 | 1087 | thisUtcTime -= 5*3600 |
|
1067 | 1088 | |
|
1068 | 1089 | thisDatetime = datetime.datetime.fromtimestamp(thisUtcTime[0] + 5*3600) |
|
1069 | 1090 | |
|
1070 | 1091 | thisDate = thisDatetime.date() |
|
1071 | 1092 | thisTime = thisDatetime.time() |
|
1072 | 1093 | |
|
1073 | 1094 | startUtcTime = (datetime.datetime.combine(thisDate,startTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
1074 | 1095 | endUtcTime = (datetime.datetime.combine(thisDate,endTime) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
1075 | 1096 | |
|
1076 | 1097 | ind = numpy.where(numpy.logical_and(thisUtcTime >= startUtcTime, thisUtcTime < endUtcTime))[0] |
|
1077 | 1098 | |
|
1078 | 1099 | self.blockList = ind |
|
1079 | 1100 | self.blocksPerFile = len(ind) |
|
1080 | 1101 | return |
|
1081 | 1102 | |
|
1082 | 1103 | def __readMetadata(self): |
|
1083 | 1104 | ''' |
|
1084 | 1105 | Reads Metadata |
|
1085 | 1106 | ''' |
|
1086 | 1107 | |
|
1087 | 1108 | listMetaname = [] |
|
1088 | 1109 | listMetadata = [] |
|
1089 | 1110 | if 'Metadata' in self.fp: |
|
1090 | 1111 | gp = self.fp['Metadata'] |
|
1091 | 1112 | for item in list(gp.items()): |
|
1092 | 1113 | name = item[0] |
|
1093 | 1114 | |
|
1094 | 1115 | if name=='variables': |
|
1095 | 1116 | table = gp[name][:] |
|
1096 | 1117 | listShapes = {} |
|
1097 | 1118 | for shapes in table: |
|
1098 | 1119 | listShapes[shapes[0].decode()] = numpy.array([shapes[1]]) |
|
1099 | 1120 | else: |
|
1100 | 1121 | data = gp[name].value |
|
1101 | 1122 | listMetaname.append(name) |
|
1102 |
listMetadata.append(data) |
|
|
1123 | listMetadata.append(data) | |
|
1103 | 1124 | elif self.metadata: |
|
1104 | 1125 | metadata = json.loads(self.metadata) |
|
1105 | 1126 | listShapes = {} |
|
1106 | 1127 | for tup in metadata: |
|
1107 | 1128 | name, values, dim = tup |
|
1108 | 1129 | if dim == -1: |
|
1109 | 1130 | listMetaname.append(name) |
|
1110 | 1131 | listMetadata.append(self.fp[values].value) |
|
1111 | 1132 | else: |
|
1112 | 1133 | listShapes[name] = numpy.array([dim]) |
|
1113 | 1134 | else: |
|
1114 | 1135 | raise IOError('Missing Metadata group in file or metadata info') |
|
1115 | 1136 | |
|
1116 | 1137 | self.listShapes = listShapes |
|
1117 | 1138 | self.listMetaname = listMetaname |
|
1118 |
self.listMeta = listMetadata |
|
|
1139 | self.listMeta = listMetadata | |
|
1119 | 1140 | |
|
1120 | 1141 | return |
|
1121 | 1142 | |
|
1122 | 1143 | def __readData(self): |
|
1123 | 1144 | |
|
1124 | 1145 | listdataname = [] |
|
1125 | 1146 | listdata = [] |
|
1126 | ||
|
1147 | ||
|
1127 | 1148 | if 'Data' in self.fp: |
|
1128 | 1149 | grp = self.fp['Data'] |
|
1129 | 1150 | for item in list(grp.items()): |
|
1130 | 1151 | name = item[0] |
|
1131 | 1152 | listdataname.append(name) |
|
1132 | 1153 | dim = self.listShapes[name][0] |
|
1133 | 1154 | if dim == 0: |
|
1134 | 1155 | array = grp[name].value |
|
1135 | 1156 | else: |
|
1136 | 1157 | array = [] |
|
1137 | 1158 | for i in range(dim): |
|
1138 | 1159 | array.append(grp[name]['table{:02d}'.format(i)].value) |
|
1139 | 1160 | array = numpy.array(array) |
|
1140 | ||
|
1161 | ||
|
1141 | 1162 | listdata.append(array) |
|
1142 | 1163 | elif self.metadata: |
|
1143 | 1164 | metadata = json.loads(self.metadata) |
|
1144 | 1165 | for tup in metadata: |
|
1145 | 1166 | name, values, dim = tup |
|
1146 | 1167 | listdataname.append(name) |
|
1147 | 1168 | if dim == -1: |
|
1148 | 1169 | continue |
|
1149 | 1170 | elif dim == 0: |
|
1150 | 1171 | array = self.fp[values].value |
|
1151 | 1172 | else: |
|
1152 | 1173 | array = [] |
|
1153 | 1174 | for var in values: |
|
1154 | 1175 | array.append(self.fp[var].value) |
|
1155 | 1176 | array = numpy.array(array) |
|
1156 | 1177 | listdata.append(array) |
|
1157 | 1178 | else: |
|
1158 | 1179 | raise IOError('Missing Data group in file or metadata info') |
|
1159 | 1180 | |
|
1160 | 1181 | self.listDataname = listdataname |
|
1161 | 1182 | self.listData = listdata |
|
1162 | 1183 | return |
|
1163 | ||
|
1184 | ||
|
1164 | 1185 | def getData(self): |
|
1165 | 1186 | |
|
1166 | 1187 | for i in range(len(self.listMeta)): |
|
1167 | 1188 | setattr(self.dataOut, self.listMetaname[i], self.listMeta[i]) |
|
1168 | 1189 | |
|
1169 | 1190 | for j in range(len(self.listData)): |
|
1170 | 1191 | dim = self.listShapes[self.listDataname[j]][0] |
|
1171 | 1192 | if dim == 0: |
|
1172 | 1193 | setattr(self.dataOut, self.listDataname[j], self.listData[j][self.blockIndex]) |
|
1173 | 1194 | else: |
|
1174 | 1195 | setattr(self.dataOut, self.listDataname[j], self.listData[j][:,self.blockIndex]) |
|
1175 | 1196 | |
|
1176 | 1197 | self.dataOut.paramInterval = self.interval |
|
1177 | 1198 | self.dataOut.flagNoData = False |
|
1178 | 1199 | self.blockIndex += 1 |
|
1179 | 1200 | |
|
1180 | 1201 | return |
|
1181 | 1202 | |
|
1182 | 1203 | def run(self, **kwargs): |
|
1183 | 1204 | |
|
1184 | 1205 | if not(self.isConfig): |
|
1185 | 1206 | self.setup(**kwargs) |
|
1186 | 1207 | self.isConfig = True |
|
1187 | 1208 | |
|
1188 | 1209 | if self.blockIndex == self.blocksPerFile: |
|
1189 | 1210 | self.setNextFile() |
|
1190 | 1211 | |
|
1191 | 1212 | self.getData() |
|
1192 | 1213 | |
|
1193 | 1214 | return |
|
1194 | 1215 | |
|
1195 | 1216 | @MPDecorator |
|
1196 | 1217 | class ParameterWriter(Operation): |
|
1197 | 1218 | ''' |
|
1198 | 1219 | HDF5 Writer, stores parameters data in HDF5 format files |
|
1199 | 1220 | |
|
1200 | 1221 | path: path where the files will be stored |
|
1201 | 1222 | blocksPerFile: number of blocks that will be saved in per HDF5 format file |
|
1202 | 1223 | mode: selects the data stacking mode: '0' channels, '1' parameters, '3' table (for meteors) |
|
1203 | 1224 | metadataList: list of attributes that will be stored as metadata |
|
1204 | 1225 | dataList: list of attributes that will be stores as data |
|
1205 | 1226 | ''' |
|
1206 | 1227 | |
|
1207 | 1228 | |
|
1208 | 1229 | ext = ".hdf5" |
|
1209 | 1230 | optchar = "D" |
|
1210 | 1231 | metaoptchar = "M" |
|
1211 | 1232 | metaFile = None |
|
1212 | 1233 | filename = None |
|
1213 | 1234 | path = None |
|
1214 | 1235 | setFile = None |
|
1215 | 1236 | fp = None |
|
1216 | 1237 | grp = None |
|
1217 | 1238 | ds = None |
|
1218 | 1239 | firsttime = True |
|
1219 | 1240 | #Configurations |
|
1220 | 1241 | blocksPerFile = None |
|
1221 | 1242 | blockIndex = None |
|
1222 | 1243 | dataOut = None |
|
1223 | 1244 | #Data Arrays |
|
1224 | 1245 | dataList = None |
|
1225 | 1246 | metadataList = None |
|
1226 | 1247 | dsList = None #List of dictionaries with dataset properties |
|
1227 | 1248 | tableDim = None |
|
1228 | 1249 | dtype = [('name', 'S20'),('nDim', 'i')] |
|
1229 | 1250 | currentDay = None |
|
1230 | 1251 | lastTime = None |
|
1231 | 1252 | |
|
1232 | 1253 | def __init__(self): |
|
1233 | ||
|
1254 | ||
|
1234 | 1255 | Operation.__init__(self) |
|
1235 | 1256 | return |
|
1236 | 1257 | |
|
1237 | 1258 | def setup(self, path=None, blocksPerFile=10, metadataList=None, dataList=None, setType=None): |
|
1238 | 1259 | self.path = path |
|
1239 | 1260 | self.blocksPerFile = blocksPerFile |
|
1240 | 1261 | self.metadataList = metadataList |
|
1241 | 1262 | self.dataList = dataList |
|
1242 | 1263 | self.setType = setType |
|
1243 | 1264 | |
|
1244 | 1265 | tableList = [] |
|
1245 | 1266 | dsList = [] |
|
1246 | 1267 | |
|
1247 | 1268 | for i in range(len(self.dataList)): |
|
1248 | 1269 | dsDict = {} |
|
1249 | 1270 | dataAux = getattr(self.dataOut, self.dataList[i]) |
|
1250 | 1271 | dsDict['variable'] = self.dataList[i] |
|
1251 | 1272 | |
|
1252 | 1273 | if dataAux is None: |
|
1253 | 1274 | continue |
|
1254 | 1275 | elif isinstance(dataAux, (int, float, numpy.integer, numpy.float)): |
|
1255 | 1276 | dsDict['nDim'] = 0 |
|
1256 | 1277 | else: |
|
1257 | 1278 | dsDict['nDim'] = len(dataAux.shape) |
|
1258 | 1279 | dsDict['shape'] = dataAux.shape |
|
1259 | 1280 | dsDict['dsNumber'] = dataAux.shape[0] |
|
1260 | ||
|
1281 | ||
|
1261 | 1282 | dsList.append(dsDict) |
|
1262 | 1283 | tableList.append((self.dataList[i], dsDict['nDim'])) |
|
1263 | 1284 | |
|
1264 | 1285 | self.dsList = dsList |
|
1265 | 1286 | self.tableDim = numpy.array(tableList, dtype=self.dtype) |
|
1266 | 1287 | self.currentDay = self.dataOut.datatime.date() |
|
1267 | 1288 | |
|
1268 | 1289 | def timeFlag(self): |
|
1269 | 1290 | currentTime = self.dataOut.utctime |
|
1270 | 1291 | timeTuple = time.localtime(currentTime) |
|
1271 | 1292 | dataDay = timeTuple.tm_yday |
|
1272 | 1293 | |
|
1273 | 1294 | if self.lastTime is None: |
|
1274 | 1295 | self.lastTime = currentTime |
|
1275 | 1296 | self.currentDay = dataDay |
|
1276 | 1297 | return False |
|
1277 | ||
|
1298 | ||
|
1278 | 1299 | timeDiff = currentTime - self.lastTime |
|
1279 | 1300 | |
|
1280 | 1301 | #Si el dia es diferente o si la diferencia entre un dato y otro supera la hora |
|
1281 | 1302 | if dataDay != self.currentDay: |
|
1282 | 1303 | self.currentDay = dataDay |
|
1283 | 1304 | return True |
|
1284 | 1305 | elif timeDiff > 3*60*60: |
|
1285 | 1306 | self.lastTime = currentTime |
|
1286 | 1307 | return True |
|
1287 | 1308 | else: |
|
1288 | 1309 | self.lastTime = currentTime |
|
1289 | 1310 | return False |
|
1290 | 1311 | |
|
1291 | 1312 | def run(self, dataOut, path, blocksPerFile=10, metadataList=None, dataList=None, setType=None): |
|
1292 | 1313 | |
|
1293 | 1314 | self.dataOut = dataOut |
|
1294 | 1315 | if not(self.isConfig): |
|
1295 |
self.setup(path=path, blocksPerFile=blocksPerFile, |
|
|
1316 | self.setup(path=path, blocksPerFile=blocksPerFile, | |
|
1296 | 1317 | metadataList=metadataList, dataList=dataList, |
|
1297 | 1318 | setType=setType) |
|
1298 | 1319 | |
|
1299 | 1320 | self.isConfig = True |
|
1300 | 1321 | self.setNextFile() |
|
1301 | 1322 | |
|
1302 | 1323 | self.putData() |
|
1303 | 1324 | return |
|
1304 | ||
|
1325 | ||
|
1305 | 1326 | def setNextFile(self): |
|
1306 | ||
|
1327 | ||
|
1307 | 1328 | ext = self.ext |
|
1308 | 1329 | path = self.path |
|
1309 | 1330 | setFile = self.setFile |
|
1310 | 1331 | |
|
1311 | 1332 | timeTuple = time.localtime(self.dataOut.utctime) |
|
1312 | 1333 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) |
|
1313 | 1334 | fullpath = os.path.join(path, subfolder) |
|
1314 | 1335 | |
|
1315 | 1336 | if os.path.exists(fullpath): |
|
1316 | 1337 | filesList = os.listdir(fullpath) |
|
1317 | 1338 | filesList = [k for k in filesList if k.startswith(self.optchar)] |
|
1318 | 1339 | if len( filesList ) > 0: |
|
1319 | 1340 | filesList = sorted(filesList, key=str.lower) |
|
1320 | 1341 | filen = filesList[-1] |
|
1321 | 1342 | # el filename debera tener el siguiente formato |
|
1322 | 1343 | # 0 1234 567 89A BCDE (hex) |
|
1323 | 1344 | # x YYYY DDD SSS .ext |
|
1324 | 1345 | if isNumber(filen[8:11]): |
|
1325 | 1346 | setFile = int(filen[8:11]) #inicializo mi contador de seteo al seteo del ultimo file |
|
1326 | 1347 | else: |
|
1327 | 1348 | setFile = -1 |
|
1328 | 1349 | else: |
|
1329 | 1350 | setFile = -1 #inicializo mi contador de seteo |
|
1330 | 1351 | else: |
|
1331 | 1352 | os.makedirs(fullpath) |
|
1332 | 1353 | setFile = -1 #inicializo mi contador de seteo |
|
1333 | 1354 | |
|
1334 | 1355 | if self.setType is None: |
|
1335 | 1356 | setFile += 1 |
|
1336 | 1357 | file = '%s%4.4d%3.3d%03d%s' % (self.optchar, |
|
1337 | 1358 | timeTuple.tm_year, |
|
1338 | 1359 | timeTuple.tm_yday, |
|
1339 | 1360 | setFile, |
|
1340 | 1361 | ext ) |
|
1341 | 1362 | else: |
|
1342 | 1363 | setFile = timeTuple.tm_hour*60+timeTuple.tm_min |
|
1343 | 1364 | file = '%s%4.4d%3.3d%04d%s' % (self.optchar, |
|
1344 | 1365 | timeTuple.tm_year, |
|
1345 | 1366 | timeTuple.tm_yday, |
|
1346 | 1367 | setFile, |
|
1347 | 1368 | ext ) |
|
1348 | 1369 | |
|
1349 | 1370 | self.filename = os.path.join( path, subfolder, file ) |
|
1350 | 1371 | |
|
1351 | 1372 | #Setting HDF5 File |
|
1352 | 1373 | self.fp = h5py.File(self.filename, 'w') |
|
1353 | 1374 | #write metadata |
|
1354 | 1375 | self.writeMetadata(self.fp) |
|
1355 | 1376 | #Write data |
|
1356 | 1377 | self.writeData(self.fp) |
|
1357 | 1378 | |
|
1358 | 1379 | def writeMetadata(self, fp): |
|
1359 | 1380 | |
|
1360 | 1381 | grp = fp.create_group("Metadata") |
|
1361 | 1382 | grp.create_dataset('variables', data=self.tableDim, dtype=self.dtype) |
|
1362 | 1383 | |
|
1363 | 1384 | for i in range(len(self.metadataList)): |
|
1364 | 1385 | if not hasattr(self.dataOut, self.metadataList[i]): |
|
1365 | 1386 | log.warning('Metadata: `{}` not found'.format(self.metadataList[i]), self.name) |
|
1366 | 1387 | continue |
|
1367 | 1388 | value = getattr(self.dataOut, self.metadataList[i]) |
|
1368 | 1389 | grp.create_dataset(self.metadataList[i], data=value) |
|
1369 | 1390 | return |
|
1370 | 1391 | |
|
1371 | 1392 | def writeData(self, fp): |
|
1372 | ||
|
1393 | ||
|
1373 | 1394 | grp = fp.create_group("Data") |
|
1374 | 1395 | dtsets = [] |
|
1375 | 1396 | data = [] |
|
1376 | ||
|
1397 | ||
|
1377 | 1398 | for dsInfo in self.dsList: |
|
1378 | 1399 | if dsInfo['nDim'] == 0: |
|
1379 | 1400 | ds = grp.create_dataset( |
|
1380 |
dsInfo['variable'], |
|
|
1401 | dsInfo['variable'], | |
|
1381 | 1402 | (self.blocksPerFile, ), |
|
1382 |
chunks=True, |
|
|
1403 | chunks=True, | |
|
1383 | 1404 | dtype=numpy.float64) |
|
1384 | 1405 | dtsets.append(ds) |
|
1385 | 1406 | data.append((dsInfo['variable'], -1)) |
|
1386 | 1407 | else: |
|
1387 | 1408 | sgrp = grp.create_group(dsInfo['variable']) |
|
1388 | 1409 | for i in range(dsInfo['dsNumber']): |
|
1389 | 1410 | ds = sgrp.create_dataset( |
|
1390 |
'table{:02d}'.format(i), |
|
|
1411 | 'table{:02d}'.format(i), | |
|
1391 | 1412 | (self.blocksPerFile, ) + dsInfo['shape'][1:], |
|
1392 | 1413 | chunks=True) |
|
1393 | 1414 | dtsets.append(ds) |
|
1394 | 1415 | data.append((dsInfo['variable'], i)) |
|
1395 | 1416 | fp.flush() |
|
1396 | 1417 | |
|
1397 | 1418 | log.log('Creating file: {}'.format(fp.filename), self.name) |
|
1398 | ||
|
1419 | ||
|
1399 | 1420 | self.ds = dtsets |
|
1400 | 1421 | self.data = data |
|
1401 | 1422 | self.firsttime = True |
|
1402 | 1423 | self.blockIndex = 0 |
|
1403 | 1424 | return |
|
1404 | 1425 | |
|
1405 | 1426 | def putData(self): |
|
1406 | 1427 | |
|
1407 | 1428 | if (self.blockIndex == self.blocksPerFile) or self.timeFlag(): |
|
1408 | 1429 | self.closeFile() |
|
1409 | 1430 | self.setNextFile() |
|
1410 | 1431 | |
|
1411 | 1432 | for i, ds in enumerate(self.ds): |
|
1433 | print(i,ds) | |
|
1412 | 1434 | attr, ch = self.data[i] |
|
1413 | 1435 | if ch == -1: |
|
1414 | 1436 | ds[self.blockIndex] = getattr(self.dataOut, attr) |
|
1415 | 1437 | else: |
|
1438 | print(ch, getattr(self.dataOut, attr).shape) | |
|
1416 | 1439 | ds[self.blockIndex] = getattr(self.dataOut, attr)[ch] |
|
1417 | 1440 | |
|
1418 | 1441 | self.fp.flush() |
|
1419 | 1442 | self.blockIndex += 1 |
|
1420 | 1443 | log.log('Block No. {}/{}'.format(self.blockIndex, self.blocksPerFile), self.name) |
|
1421 | 1444 | |
|
1422 | 1445 | return |
|
1423 | 1446 | |
|
1424 | 1447 | def closeFile(self): |
|
1425 | 1448 | |
|
1426 | 1449 | if self.blockIndex != self.blocksPerFile: |
|
1427 | 1450 | for ds in self.ds: |
|
1428 | 1451 | ds.resize(self.blockIndex, axis=0) |
|
1429 | 1452 | |
|
1430 | 1453 | self.fp.flush() |
|
1431 | 1454 | self.fp.close() |
|
1432 | 1455 | |
|
1433 | 1456 | def close(self): |
|
1434 | 1457 | |
|
1435 | 1458 | self.closeFile() |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
@@ -1,1056 +1,1260 | |||
|
1 | 1 | import itertools |
|
2 | 2 | |
|
3 | 3 | import numpy |
|
4 | 4 | |
|
5 | 5 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
6 | 6 | from schainpy.model.data.jrodata import Spectra |
|
7 | 7 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
8 | 8 | from schainpy.utils import log |
|
9 | 9 | |
|
10 | 10 | @MPDecorator |
|
11 | 11 | class SpectraProc(ProcessingUnit): |
|
12 | 12 | |
|
13 | 13 | |
|
14 | 14 | def __init__(self): |
|
15 | 15 | |
|
16 | 16 | ProcessingUnit.__init__(self) |
|
17 | 17 | |
|
18 | 18 | self.buffer = None |
|
19 | 19 | self.firstdatatime = None |
|
20 | 20 | self.profIndex = 0 |
|
21 | 21 | self.dataOut = Spectra() |
|
22 | 22 | self.id_min = None |
|
23 | 23 | self.id_max = None |
|
24 | 24 | self.setupReq = False #Agregar a todas las unidades de proc |
|
25 | 25 | |
|
26 | 26 | def __updateSpecFromVoltage(self): |
|
27 | 27 | |
|
28 | 28 | self.dataOut.timeZone = self.dataIn.timeZone |
|
29 | 29 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
30 | 30 | self.dataOut.errorCount = self.dataIn.errorCount |
|
31 | 31 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
32 | 32 | try: |
|
33 | 33 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
34 | 34 | except: |
|
35 | 35 | pass |
|
36 | 36 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
37 | 37 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
38 | 38 | self.dataOut.channelList = self.dataIn.channelList |
|
39 | 39 | self.dataOut.heightList = self.dataIn.heightList |
|
40 | 40 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
41 | 41 | |
|
42 | 42 | self.dataOut.nBaud = self.dataIn.nBaud |
|
43 | 43 | self.dataOut.nCode = self.dataIn.nCode |
|
44 | 44 | self.dataOut.code = self.dataIn.code |
|
45 | 45 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
46 | 46 | |
|
47 | 47 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
48 | 48 | self.dataOut.utctime = self.firstdatatime |
|
49 | 49 | # asumo q la data esta decodificada |
|
50 | 50 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
51 | 51 | # asumo q la data esta sin flip |
|
52 | 52 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
53 | 53 | self.dataOut.flagShiftFFT = False |
|
54 | 54 | |
|
55 | 55 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
56 | 56 | self.dataOut.nIncohInt = 1 |
|
57 | 57 | |
|
58 | 58 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
59 | 59 | |
|
60 | 60 | self.dataOut.frequency = self.dataIn.frequency |
|
61 | 61 | self.dataOut.realtime = self.dataIn.realtime |
|
62 | 62 | |
|
63 | 63 | self.dataOut.azimuth = self.dataIn.azimuth |
|
64 | 64 | self.dataOut.zenith = self.dataIn.zenith |
|
65 | 65 | |
|
66 | 66 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
67 | 67 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
68 | 68 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
69 | 69 | |
|
70 | 70 | def __getFft(self): |
|
71 | 71 | """ |
|
72 | 72 | Convierte valores de Voltaje a Spectra |
|
73 | 73 | |
|
74 | 74 | Affected: |
|
75 | 75 | self.dataOut.data_spc |
|
76 | 76 | self.dataOut.data_cspc |
|
77 | 77 | self.dataOut.data_dc |
|
78 | 78 | self.dataOut.heightList |
|
79 | 79 | self.profIndex |
|
80 | 80 | self.buffer |
|
81 | 81 | self.dataOut.flagNoData |
|
82 | 82 | """ |
|
83 | 83 | fft_volt = numpy.fft.fft( |
|
84 | 84 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
85 | 85 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
86 | 86 | dc = fft_volt[:, 0, :] |
|
87 | 87 | |
|
88 | 88 | # calculo de self-spectra |
|
89 | 89 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
90 | 90 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
91 | 91 | spc = spc.real |
|
92 | 92 | |
|
93 | 93 | blocksize = 0 |
|
94 | 94 | blocksize += dc.size |
|
95 | 95 | blocksize += spc.size |
|
96 | 96 | |
|
97 | #print("spc :",spc.shape) | |
|
98 | data_wr = None | |
|
99 | if self.dataOut.flagWR: | |
|
100 | data_wr = fft_volt | |
|
101 | blocksize = fft_volt.size | |
|
102 | ||
|
97 | 103 | cspc = None |
|
98 | 104 | pairIndex = 0 |
|
99 | 105 | if self.dataOut.pairsList != None: |
|
100 | 106 | # calculo de cross-spectra |
|
101 | 107 | cspc = numpy.zeros( |
|
102 | 108 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
103 | 109 | for pair in self.dataOut.pairsList: |
|
104 | 110 | if pair[0] not in self.dataOut.channelList: |
|
105 | 111 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
106 | 112 | str(pair), str(self.dataOut.channelList))) |
|
107 | 113 | if pair[1] not in self.dataOut.channelList: |
|
108 | 114 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
109 | 115 | str(pair), str(self.dataOut.channelList))) |
|
110 | 116 | |
|
111 | 117 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
112 | 118 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
113 | 119 | pairIndex += 1 |
|
114 | 120 | blocksize += cspc.size |
|
115 | 121 | |
|
116 | self.dataOut.data_spc = spc | |
|
117 | self.dataOut.data_cspc = cspc | |
|
118 |
self.dataOut.data_ |
|
|
119 |
self.dataOut. |
|
|
122 | self.dataOut.data_spc = spc | |
|
123 | self.dataOut.data_cspc = cspc | |
|
124 | self.dataOut.data_wr = data_wr | |
|
125 | self.dataOut.data_dc = dc | |
|
126 | self.dataOut.blockSize = blocksize | |
|
120 | 127 | self.dataOut.flagShiftFFT = False |
|
121 | 128 | |
|
122 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], ippFactor=None, shift_fft=False): | |
|
129 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], ippFactor=None, shift_fft=False,flagWR= 0): | |
|
130 | ||
|
131 | self.dataOut.flagWR = flagWR | |
|
123 | 132 | |
|
124 | 133 | if self.dataIn.type == "Spectra": |
|
125 | 134 | self.dataOut.copy(self.dataIn) |
|
135 | ||
|
126 | 136 | if shift_fft: |
|
127 | 137 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
128 | 138 | shift = int(self.dataOut.nFFTPoints/2) |
|
129 | 139 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
130 | 140 | |
|
131 | 141 | if self.dataOut.data_cspc is not None: |
|
132 | 142 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
133 | 143 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
134 | 144 | |
|
135 | 145 | return True |
|
136 | 146 | |
|
137 | 147 | if self.dataIn.type == "Voltage": |
|
138 | ||
|
148 | #print("VOLTAGE INPUT SPECTRA") | |
|
139 | 149 | self.dataOut.flagNoData = True |
|
140 | 150 | |
|
141 | 151 | if nFFTPoints == None: |
|
142 | 152 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
143 | 153 | |
|
144 | 154 | if nProfiles == None: |
|
145 | 155 | nProfiles = nFFTPoints |
|
146 | 156 | |
|
147 | 157 | if ippFactor == None: |
|
148 | 158 | ippFactor = 1 |
|
149 | 159 | |
|
150 | 160 | self.dataOut.ippFactor = ippFactor |
|
151 | 161 | |
|
152 | 162 | self.dataOut.nFFTPoints = nFFTPoints |
|
153 | 163 | self.dataOut.pairsList = pairsList |
|
154 | 164 | |
|
155 | 165 | if self.buffer is None: |
|
156 | 166 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
157 | 167 | nProfiles, |
|
158 | 168 | self.dataIn.nHeights), |
|
159 | 169 | dtype='complex') |
|
170 | #print("buffer :",self.buffer.shape) | |
|
160 | 171 | |
|
161 | 172 | if self.dataIn.flagDataAsBlock: |
|
162 | 173 | nVoltProfiles = self.dataIn.data.shape[1] |
|
163 | 174 | |
|
164 | 175 | if nVoltProfiles == nProfiles: |
|
165 | 176 | self.buffer = self.dataIn.data.copy() |
|
166 | 177 | self.profIndex = nVoltProfiles |
|
167 | 178 | |
|
168 | 179 | elif nVoltProfiles < nProfiles: |
|
169 | 180 | |
|
170 | 181 | if self.profIndex == 0: |
|
171 | 182 | self.id_min = 0 |
|
172 | 183 | self.id_max = nVoltProfiles |
|
173 | 184 | |
|
174 | 185 | self.buffer[:, self.id_min:self.id_max, |
|
175 | 186 | :] = self.dataIn.data |
|
176 | 187 | self.profIndex += nVoltProfiles |
|
177 | 188 | self.id_min += nVoltProfiles |
|
178 | 189 | self.id_max += nVoltProfiles |
|
179 | 190 | else: |
|
180 | 191 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
181 | 192 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
182 | 193 | self.dataOut.flagNoData = True |
|
183 | 194 | return 0 |
|
184 | 195 | else: |
|
196 | #print("Spectra ",self.profIndex) | |
|
185 | 197 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
186 | 198 | self.profIndex += 1 |
|
187 | 199 | |
|
188 | 200 | if self.firstdatatime == None: |
|
189 | 201 | self.firstdatatime = self.dataIn.utctime |
|
190 | 202 | |
|
191 | 203 | if self.profIndex == nProfiles: |
|
192 | 204 | self.__updateSpecFromVoltage() |
|
193 | 205 | self.__getFft() |
|
206 | #print(" DATAOUT SHAPE SPEC",self.dataOut.data_spc.shape) | |
|
194 | 207 | |
|
195 | 208 | self.dataOut.flagNoData = False |
|
196 | 209 | self.firstdatatime = None |
|
197 | 210 | self.profIndex = 0 |
|
198 | 211 | |
|
199 | 212 | return True |
|
200 | 213 | |
|
201 | 214 | raise ValueError("The type of input object '%s' is not valid" % ( |
|
202 | 215 | self.dataIn.type)) |
|
203 | 216 | |
|
204 | 217 | def __selectPairs(self, pairsList): |
|
205 | 218 | |
|
206 | 219 | if not pairsList: |
|
207 | 220 | return |
|
208 | 221 | |
|
209 | 222 | pairs = [] |
|
210 | 223 | pairsIndex = [] |
|
211 | 224 | |
|
212 | 225 | for pair in pairsList: |
|
213 | 226 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
214 | 227 | continue |
|
215 | 228 | pairs.append(pair) |
|
216 | 229 | pairsIndex.append(pairs.index(pair)) |
|
217 | 230 | |
|
218 | 231 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
219 | 232 | self.dataOut.pairsList = pairs |
|
220 | 233 | |
|
221 | 234 | return |
|
222 | 235 | |
|
223 | 236 | def __selectPairsByChannel(self, channelList=None): |
|
224 | 237 | |
|
225 | 238 | if channelList == None: |
|
226 | 239 | return |
|
227 | 240 | |
|
228 | 241 | pairsIndexListSelected = [] |
|
229 | 242 | for pairIndex in self.dataOut.pairsIndexList: |
|
230 | 243 | # First pair |
|
231 | 244 | if self.dataOut.pairsList[pairIndex][0] not in channelList: |
|
232 | 245 | continue |
|
233 | 246 | # Second pair |
|
234 | 247 | if self.dataOut.pairsList[pairIndex][1] not in channelList: |
|
235 | 248 | continue |
|
236 | 249 | |
|
237 | 250 | pairsIndexListSelected.append(pairIndex) |
|
238 | 251 | |
|
239 | 252 | if not pairsIndexListSelected: |
|
240 | 253 | self.dataOut.data_cspc = None |
|
241 | 254 | self.dataOut.pairsList = [] |
|
242 | 255 | return |
|
243 | 256 | |
|
244 | 257 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
245 | 258 | self.dataOut.pairsList = [self.dataOut.pairsList[i] |
|
246 | 259 | for i in pairsIndexListSelected] |
|
247 | 260 | |
|
248 | 261 | return |
|
249 | 262 | |
|
250 | 263 | def selectChannels(self, channelList): |
|
251 | 264 | |
|
252 | 265 | channelIndexList = [] |
|
253 | 266 | |
|
254 | 267 | for channel in channelList: |
|
255 | 268 | if channel not in self.dataOut.channelList: |
|
256 | 269 | raise ValueError("Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" % ( |
|
257 | 270 | channel, str(self.dataOut.channelList))) |
|
258 | 271 | |
|
259 | 272 | index = self.dataOut.channelList.index(channel) |
|
260 | 273 | channelIndexList.append(index) |
|
261 | 274 | |
|
262 | 275 | self.selectChannelsByIndex(channelIndexList) |
|
263 | 276 | |
|
264 | 277 | def selectChannelsByIndex(self, channelIndexList): |
|
265 | 278 | """ |
|
266 | 279 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
267 | 280 | |
|
268 | 281 | Input: |
|
269 | 282 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
270 | 283 | |
|
271 | 284 | Affected: |
|
272 | 285 | self.dataOut.data_spc |
|
273 | 286 | self.dataOut.channelIndexList |
|
274 | 287 | self.dataOut.nChannels |
|
275 | 288 | |
|
276 | 289 | Return: |
|
277 | 290 | None |
|
278 | 291 | """ |
|
279 | 292 | |
|
280 | 293 | for channelIndex in channelIndexList: |
|
281 | 294 | if channelIndex not in self.dataOut.channelIndexList: |
|
282 | 295 | raise ValueError("Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " % ( |
|
283 | 296 | channelIndex, self.dataOut.channelIndexList)) |
|
284 | 297 | |
|
285 | 298 | data_spc = self.dataOut.data_spc[channelIndexList, :] |
|
286 | 299 | data_dc = self.dataOut.data_dc[channelIndexList, :] |
|
287 | 300 | |
|
288 | 301 | self.dataOut.data_spc = data_spc |
|
289 | 302 | self.dataOut.data_dc = data_dc |
|
290 | 303 | |
|
291 | 304 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
292 | 305 | self.dataOut.channelList = range(len(channelIndexList)) |
|
293 | 306 | self.__selectPairsByChannel(channelIndexList) |
|
294 | ||
|
307 | ||
|
295 | 308 | return 1 |
|
296 | ||
|
297 | ||
|
309 | ||
|
310 | ||
|
298 | 311 | def selectFFTs(self, minFFT, maxFFT ): |
|
299 | 312 | """ |
|
300 |
Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
|
313 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango | |
|
301 | 314 | minFFT<= FFT <= maxFFT |
|
302 | 315 | """ |
|
303 | ||
|
316 | ||
|
304 | 317 | if (minFFT > maxFFT): |
|
305 | 318 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
306 | 319 | |
|
307 | 320 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
308 | 321 | minFFT = self.dataOut.getFreqRange()[0] |
|
309 | 322 | |
|
310 | 323 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
311 | 324 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
312 | 325 | |
|
313 | 326 | minIndex = 0 |
|
314 | 327 | maxIndex = 0 |
|
315 | 328 | FFTs = self.dataOut.getFreqRange() |
|
316 | 329 | |
|
317 | 330 | inda = numpy.where(FFTs >= minFFT) |
|
318 | 331 | indb = numpy.where(FFTs <= maxFFT) |
|
319 | 332 | |
|
320 | 333 | try: |
|
321 | 334 | minIndex = inda[0][0] |
|
322 | 335 | except: |
|
323 | 336 | minIndex = 0 |
|
324 | 337 | |
|
325 | 338 | try: |
|
326 | 339 | maxIndex = indb[0][-1] |
|
327 | 340 | except: |
|
328 | 341 | maxIndex = len(FFTs) |
|
329 | 342 | |
|
330 | 343 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
331 | 344 | |
|
332 | 345 | return 1 |
|
333 | ||
|
334 | ||
|
346 | ||
|
347 | ||
|
335 | 348 | def setH0(self, h0, deltaHeight = None): |
|
336 | ||
|
349 | ||
|
337 | 350 | if not deltaHeight: |
|
338 | 351 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
339 | ||
|
352 | ||
|
340 | 353 | nHeights = self.dataOut.nHeights |
|
341 | ||
|
354 | ||
|
342 | 355 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
343 | ||
|
356 | ||
|
344 | 357 | self.dataOut.heightList = newHeiRange |
|
345 | ||
|
346 | ||
|
358 | ||
|
359 | ||
|
347 | 360 | def selectHeights(self, minHei, maxHei): |
|
348 | 361 | """ |
|
349 | 362 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
350 | 363 | minHei <= height <= maxHei |
|
351 | 364 | |
|
352 | 365 | Input: |
|
353 | 366 | minHei : valor minimo de altura a considerar |
|
354 | 367 | maxHei : valor maximo de altura a considerar |
|
355 | 368 | |
|
356 | 369 | Affected: |
|
357 | 370 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
358 | 371 | |
|
359 | 372 | Return: |
|
360 | 373 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
361 | 374 | """ |
|
362 | 375 | |
|
363 | ||
|
376 | ||
|
364 | 377 | if (minHei > maxHei): |
|
365 | 378 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei)) |
|
366 | 379 | |
|
367 | 380 | if (minHei < self.dataOut.heightList[0]): |
|
368 | 381 | minHei = self.dataOut.heightList[0] |
|
369 | 382 | |
|
370 | 383 | if (maxHei > self.dataOut.heightList[-1]): |
|
371 | 384 | maxHei = self.dataOut.heightList[-1] |
|
372 | 385 | |
|
373 | 386 | minIndex = 0 |
|
374 | 387 | maxIndex = 0 |
|
375 | 388 | heights = self.dataOut.heightList |
|
376 | 389 | |
|
377 | 390 | inda = numpy.where(heights >= minHei) |
|
378 | 391 | indb = numpy.where(heights <= maxHei) |
|
379 | 392 | |
|
380 | 393 | try: |
|
381 | 394 | minIndex = inda[0][0] |
|
382 | 395 | except: |
|
383 | 396 | minIndex = 0 |
|
384 | 397 | |
|
385 | 398 | try: |
|
386 | 399 | maxIndex = indb[0][-1] |
|
387 | 400 | except: |
|
388 | 401 | maxIndex = len(heights) |
|
389 | 402 | |
|
390 | 403 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
391 | ||
|
404 | ||
|
392 | 405 | |
|
393 | 406 | return 1 |
|
394 | 407 | |
|
395 | 408 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
396 | 409 | newheis = numpy.where( |
|
397 | 410 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
398 | 411 | |
|
399 | 412 | if hei_ref != None: |
|
400 | 413 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
401 | 414 | |
|
402 | 415 | minIndex = min(newheis[0]) |
|
403 | 416 | maxIndex = max(newheis[0]) |
|
404 | 417 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
405 | 418 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
406 | 419 | |
|
407 | 420 | # determina indices |
|
408 | 421 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
409 | 422 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
410 | 423 | avg_dB = 10 * \ |
|
411 | 424 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
412 | 425 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
413 | 426 | beacon_heiIndexList = [] |
|
414 | 427 | for val in avg_dB.tolist(): |
|
415 | 428 | if val >= beacon_dB[0]: |
|
416 | 429 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
417 | 430 | |
|
418 | 431 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
419 | 432 | data_cspc = None |
|
420 | 433 | if self.dataOut.data_cspc is not None: |
|
421 | 434 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
422 | 435 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
423 | 436 | |
|
424 | 437 | data_dc = None |
|
425 | 438 | if self.dataOut.data_dc is not None: |
|
426 | 439 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
427 | 440 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
428 | 441 | |
|
429 | 442 | self.dataOut.data_spc = data_spc |
|
430 | 443 | self.dataOut.data_cspc = data_cspc |
|
431 | 444 | self.dataOut.data_dc = data_dc |
|
432 | 445 | self.dataOut.heightList = heightList |
|
433 | 446 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
434 | 447 | |
|
435 | 448 | return 1 |
|
436 | 449 | |
|
437 | 450 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
438 | 451 | """ |
|
439 | ||
|
452 | ||
|
440 | 453 | """ |
|
441 | 454 | |
|
442 | 455 | if (minIndex < 0) or (minIndex > maxIndex): |
|
443 | 456 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
444 | 457 | |
|
445 | 458 | if (maxIndex >= self.dataOut.nProfiles): |
|
446 | 459 | maxIndex = self.dataOut.nProfiles-1 |
|
447 | 460 | |
|
448 | 461 | #Spectra |
|
449 | 462 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
450 | 463 | |
|
451 | 464 | data_cspc = None |
|
452 | 465 | if self.dataOut.data_cspc is not None: |
|
453 | 466 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
454 | 467 | |
|
455 | 468 | data_dc = None |
|
456 | 469 | if self.dataOut.data_dc is not None: |
|
457 | 470 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
458 | 471 | |
|
459 | 472 | self.dataOut.data_spc = data_spc |
|
460 | 473 | self.dataOut.data_cspc = data_cspc |
|
461 | 474 | self.dataOut.data_dc = data_dc |
|
462 | ||
|
475 | ||
|
463 | 476 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
464 | 477 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
465 | 478 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
466 | 479 | |
|
467 | 480 | return 1 |
|
468 | 481 | |
|
469 | 482 | |
|
470 | 483 | |
|
471 | 484 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
472 | 485 | """ |
|
473 | 486 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
474 | 487 | minIndex <= index <= maxIndex |
|
475 | 488 | |
|
476 | 489 | Input: |
|
477 | 490 | minIndex : valor de indice minimo de altura a considerar |
|
478 | 491 | maxIndex : valor de indice maximo de altura a considerar |
|
479 | 492 | |
|
480 | 493 | Affected: |
|
481 | 494 | self.dataOut.data_spc |
|
482 | 495 | self.dataOut.data_cspc |
|
483 | 496 | self.dataOut.data_dc |
|
484 | 497 | self.dataOut.heightList |
|
485 | 498 | |
|
486 | 499 | Return: |
|
487 | 500 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
488 | 501 | """ |
|
489 | 502 | |
|
490 | 503 | if (minIndex < 0) or (minIndex > maxIndex): |
|
491 | 504 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( |
|
492 | 505 | minIndex, maxIndex)) |
|
493 | 506 | |
|
494 | 507 | if (maxIndex >= self.dataOut.nHeights): |
|
495 | 508 | maxIndex = self.dataOut.nHeights - 1 |
|
496 | 509 | |
|
497 | 510 | # Spectra |
|
498 | 511 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
499 | 512 | |
|
500 | 513 | data_cspc = None |
|
501 | 514 | if self.dataOut.data_cspc is not None: |
|
502 | 515 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
503 | 516 | |
|
504 | 517 | data_dc = None |
|
505 | 518 | if self.dataOut.data_dc is not None: |
|
506 | 519 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
507 | 520 | |
|
508 | 521 | self.dataOut.data_spc = data_spc |
|
509 | 522 | self.dataOut.data_cspc = data_cspc |
|
510 | 523 | self.dataOut.data_dc = data_dc |
|
511 | 524 | |
|
512 | 525 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
513 | 526 | |
|
514 | 527 | return 1 |
|
515 | 528 | |
|
516 | 529 | def removeDC(self, mode=2): |
|
517 | 530 | jspectra = self.dataOut.data_spc |
|
518 | 531 | jcspectra = self.dataOut.data_cspc |
|
519 | 532 | |
|
520 | 533 | num_chan = jspectra.shape[0] |
|
521 | 534 | num_hei = jspectra.shape[2] |
|
522 | 535 | |
|
523 | 536 | if jcspectra is not None: |
|
524 | 537 | jcspectraExist = True |
|
525 | 538 | num_pairs = jcspectra.shape[0] |
|
526 | 539 | else: |
|
527 | 540 | jcspectraExist = False |
|
528 | 541 | |
|
529 | 542 | freq_dc = int(jspectra.shape[1] / 2) |
|
530 | 543 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
531 | 544 | ind_vel = ind_vel.astype(int) |
|
532 | 545 | |
|
533 | 546 | if ind_vel[0] < 0: |
|
534 | 547 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
535 | 548 | |
|
536 | 549 | if mode == 1: |
|
537 | 550 | jspectra[:, freq_dc, :] = ( |
|
538 | 551 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
539 | 552 | |
|
540 | 553 | if jcspectraExist: |
|
541 | 554 | jcspectra[:, freq_dc, :] = ( |
|
542 | 555 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
543 | 556 | |
|
544 | 557 | if mode == 2: |
|
545 | 558 | |
|
546 | 559 | vel = numpy.array([-2, -1, 1, 2]) |
|
547 | 560 | xx = numpy.zeros([4, 4]) |
|
548 | 561 | |
|
549 | 562 | for fil in range(4): |
|
550 | 563 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
551 | 564 | |
|
552 | 565 | xx_inv = numpy.linalg.inv(xx) |
|
553 | 566 | xx_aux = xx_inv[0, :] |
|
554 | 567 | |
|
555 |
for ich in range(num_chan): |
|
|
568 | for ich in range(num_chan): | |
|
556 | 569 | yy = jspectra[ich, ind_vel, :] |
|
557 | 570 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
558 | 571 | |
|
559 | 572 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
560 | 573 | cjunkid = sum(junkid) |
|
561 | 574 | |
|
562 | 575 | if cjunkid.any(): |
|
563 | 576 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
564 | 577 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
565 | 578 | |
|
566 | 579 | if jcspectraExist: |
|
567 | 580 | for ip in range(num_pairs): |
|
568 | 581 | yy = jcspectra[ip, ind_vel, :] |
|
569 | 582 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
570 | 583 | |
|
571 | 584 | self.dataOut.data_spc = jspectra |
|
572 | 585 | self.dataOut.data_cspc = jcspectra |
|
573 | 586 | |
|
574 | 587 | return 1 |
|
575 | 588 | |
|
576 | 589 | def removeInterference2(self): |
|
577 | ||
|
590 | ||
|
578 | 591 | cspc = self.dataOut.data_cspc |
|
579 | 592 | spc = self.dataOut.data_spc |
|
580 |
Heights = numpy.arange(cspc.shape[2]) |
|
|
593 | Heights = numpy.arange(cspc.shape[2]) | |
|
581 | 594 | realCspc = numpy.abs(cspc) |
|
582 | ||
|
595 | ||
|
583 | 596 | for i in range(cspc.shape[0]): |
|
584 | 597 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
585 | 598 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
586 | 599 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
587 | 600 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
588 | 601 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
589 | 602 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
590 | ||
|
591 | ||
|
603 | ||
|
604 | ||
|
592 | 605 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
593 | 606 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
594 | 607 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
595 | 608 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
596 | ||
|
597 | ||
|
598 | ||
|
609 | ||
|
610 | ||
|
611 | ||
|
599 | 612 | self.dataOut.data_cspc = cspc |
|
600 | ||
|
613 | ||
|
601 | 614 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
602 | 615 | |
|
603 | 616 | jspectra = self.dataOut.data_spc |
|
604 | 617 | jcspectra = self.dataOut.data_cspc |
|
605 | 618 | jnoise = self.dataOut.getNoise() |
|
606 | 619 | num_incoh = self.dataOut.nIncohInt |
|
607 | 620 | |
|
608 | 621 | num_channel = jspectra.shape[0] |
|
609 | 622 | num_prof = jspectra.shape[1] |
|
610 | 623 | num_hei = jspectra.shape[2] |
|
611 | 624 | |
|
612 | 625 | # hei_interf |
|
613 | 626 | if hei_interf is None: |
|
614 | 627 | count_hei = int(num_hei / 2) |
|
615 | 628 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
616 | 629 | hei_interf = numpy.asarray(hei_interf)[0] |
|
617 | 630 | # nhei_interf |
|
618 | 631 | if (nhei_interf == None): |
|
619 | 632 | nhei_interf = 5 |
|
620 | 633 | if (nhei_interf < 1): |
|
621 | 634 | nhei_interf = 1 |
|
622 | 635 | if (nhei_interf > count_hei): |
|
623 | 636 | nhei_interf = count_hei |
|
624 | 637 | if (offhei_interf == None): |
|
625 | 638 | offhei_interf = 0 |
|
626 | 639 | |
|
627 | 640 | ind_hei = list(range(num_hei)) |
|
628 | 641 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
629 | 642 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
630 | 643 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
631 | 644 | num_mask_prof = mask_prof.size |
|
632 | 645 | comp_mask_prof = [0, num_prof / 2] |
|
633 | 646 | |
|
634 | 647 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
635 | 648 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
636 | 649 | jnoise = numpy.nan |
|
637 | 650 | noise_exist = jnoise[0] < numpy.Inf |
|
638 | 651 | |
|
639 | 652 | # Subrutina de Remocion de la Interferencia |
|
640 | 653 | for ich in range(num_channel): |
|
641 | 654 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
642 | 655 | power = jspectra[ich, mask_prof, :] |
|
643 | 656 | power = power[:, hei_interf] |
|
644 | 657 | power = power.sum(axis=0) |
|
645 | 658 | psort = power.ravel().argsort() |
|
646 | 659 | |
|
647 | 660 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
648 | 661 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
649 | 662 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
650 | 663 | |
|
651 | 664 | if noise_exist: |
|
652 | 665 | # tmp_noise = jnoise[ich] / num_prof |
|
653 | 666 | tmp_noise = jnoise[ich] |
|
654 | 667 | junkspc_interf = junkspc_interf - tmp_noise |
|
655 | 668 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
656 | 669 | |
|
657 | 670 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
658 | 671 | jspc_interf = jspc_interf.transpose() |
|
659 | 672 | # Calculando el espectro de interferencia promedio |
|
660 | 673 | noiseid = numpy.where( |
|
661 | 674 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
662 | 675 | noiseid = noiseid[0] |
|
663 | 676 | cnoiseid = noiseid.size |
|
664 | 677 | interfid = numpy.where( |
|
665 | 678 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
666 | 679 | interfid = interfid[0] |
|
667 | 680 | cinterfid = interfid.size |
|
668 | 681 | |
|
669 | 682 | if (cnoiseid > 0): |
|
670 | 683 | jspc_interf[noiseid] = 0 |
|
671 | 684 | |
|
672 | 685 | # Expandiendo los perfiles a limpiar |
|
673 | 686 | if (cinterfid > 0): |
|
674 | 687 | new_interfid = ( |
|
675 | 688 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
676 | 689 | new_interfid = numpy.asarray(new_interfid) |
|
677 | 690 | new_interfid = {x for x in new_interfid} |
|
678 | 691 | new_interfid = numpy.array(list(new_interfid)) |
|
679 | 692 | new_cinterfid = new_interfid.size |
|
680 | 693 | else: |
|
681 | 694 | new_cinterfid = 0 |
|
682 | 695 | |
|
683 | 696 | for ip in range(new_cinterfid): |
|
684 | 697 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
685 | 698 | jspc_interf[new_interfid[ip] |
|
686 | 699 | ] = junkspc_interf[ind[nhei_interf // 2], new_interfid[ip]] |
|
687 | 700 | |
|
688 | 701 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
689 | 702 | ind_hei] - jspc_interf # Corregir indices |
|
690 | 703 | |
|
691 | 704 | # Removiendo la interferencia del punto de mayor interferencia |
|
692 | 705 | ListAux = jspc_interf[mask_prof].tolist() |
|
693 | 706 | maxid = ListAux.index(max(ListAux)) |
|
694 | 707 | |
|
695 | 708 | if cinterfid > 0: |
|
696 | 709 | for ip in range(cinterfid * (interf == 2) - 1): |
|
697 | 710 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
698 | 711 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
699 | 712 | cind = len(ind) |
|
700 | 713 | |
|
701 | 714 | if (cind > 0): |
|
702 | 715 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
703 | 716 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
704 | 717 | numpy.sqrt(num_incoh)) |
|
705 | 718 | |
|
706 | 719 | ind = numpy.array([-2, -1, 1, 2]) |
|
707 | 720 | xx = numpy.zeros([4, 4]) |
|
708 | 721 | |
|
709 | 722 | for id1 in range(4): |
|
710 | 723 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
711 | 724 | |
|
712 | 725 | xx_inv = numpy.linalg.inv(xx) |
|
713 | 726 | xx = xx_inv[:, 0] |
|
714 | 727 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
715 | 728 | yy = jspectra[ich, mask_prof[ind], :] |
|
716 | 729 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
717 | 730 | yy.transpose(), xx) |
|
718 | 731 | |
|
719 | 732 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
720 | 733 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
721 | 734 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
722 | 735 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
723 | 736 | |
|
724 | 737 | # Remocion de Interferencia en el Cross Spectra |
|
725 | 738 | if jcspectra is None: |
|
726 | 739 | return jspectra, jcspectra |
|
727 | 740 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) |
|
728 | 741 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
729 | 742 | |
|
730 | 743 | for ip in range(num_pairs): |
|
731 | 744 | |
|
732 | 745 | #------------------------------------------- |
|
733 | 746 | |
|
734 | 747 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
735 | 748 | cspower = cspower[:, hei_interf] |
|
736 | 749 | cspower = cspower.sum(axis=0) |
|
737 | 750 | |
|
738 | 751 | cspsort = cspower.ravel().argsort() |
|
739 | 752 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
740 | 753 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
741 | 754 | junkcspc_interf = junkcspc_interf.transpose() |
|
742 | 755 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
743 | 756 | |
|
744 | 757 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
745 | 758 | |
|
746 | 759 | median_real = int(numpy.median(numpy.real( |
|
747 | 760 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
748 | 761 | median_imag = int(numpy.median(numpy.imag( |
|
749 | 762 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof // 4))]], :]))) |
|
750 | 763 | comp_mask_prof = [int(e) for e in comp_mask_prof] |
|
751 | 764 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
752 | 765 | median_real, median_imag) |
|
753 | 766 | |
|
754 | 767 | for iprof in range(num_prof): |
|
755 | 768 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
756 | 769 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf // 2]] |
|
757 | 770 | |
|
758 | 771 | # Removiendo la Interferencia |
|
759 | 772 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
760 | 773 | :, ind_hei] - jcspc_interf |
|
761 | 774 | |
|
762 | 775 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
763 | 776 | maxid = ListAux.index(max(ListAux)) |
|
764 | 777 | |
|
765 | 778 | ind = numpy.array([-2, -1, 1, 2]) |
|
766 | 779 | xx = numpy.zeros([4, 4]) |
|
767 | 780 | |
|
768 | 781 | for id1 in range(4): |
|
769 | 782 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
770 | 783 | |
|
771 | 784 | xx_inv = numpy.linalg.inv(xx) |
|
772 | 785 | xx = xx_inv[:, 0] |
|
773 | 786 | |
|
774 | 787 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
775 | 788 | yy = jcspectra[ip, mask_prof[ind], :] |
|
776 | 789 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
777 | 790 | |
|
778 | 791 | # Guardar Resultados |
|
779 | 792 | self.dataOut.data_spc = jspectra |
|
780 | 793 | self.dataOut.data_cspc = jcspectra |
|
781 | 794 | |
|
782 | 795 | return 1 |
|
783 | 796 | |
|
784 | 797 | def setRadarFrequency(self, frequency=None): |
|
785 | 798 | |
|
786 | 799 | if frequency != None: |
|
787 | 800 | self.dataOut.frequency = frequency |
|
788 | 801 | |
|
789 | 802 | return 1 |
|
790 | 803 | |
|
791 | 804 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
792 | 805 | # validacion de rango |
|
793 | 806 | if minHei == None: |
|
794 | 807 | minHei = self.dataOut.heightList[0] |
|
795 | 808 | |
|
796 | 809 | if maxHei == None: |
|
797 | 810 | maxHei = self.dataOut.heightList[-1] |
|
798 | 811 | |
|
799 | 812 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
800 | 813 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
801 | 814 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
802 | 815 | minHei = self.dataOut.heightList[0] |
|
803 | 816 | |
|
804 | 817 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
805 | 818 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
806 | 819 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
807 | 820 | maxHei = self.dataOut.heightList[-1] |
|
808 | 821 | |
|
809 | 822 | # validacion de velocidades |
|
810 | 823 | velrange = self.dataOut.getVelRange(1) |
|
811 | 824 | |
|
812 | 825 | if minVel == None: |
|
813 | 826 | minVel = velrange[0] |
|
814 | 827 | |
|
815 | 828 | if maxVel == None: |
|
816 | 829 | maxVel = velrange[-1] |
|
817 | 830 | |
|
818 | 831 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
819 | 832 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
820 | 833 | print('minVel is setting to %.2f' % (velrange[0])) |
|
821 | 834 | minVel = velrange[0] |
|
822 | 835 | |
|
823 | 836 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
824 | 837 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
825 | 838 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
826 | 839 | maxVel = velrange[-1] |
|
827 | 840 | |
|
828 | 841 | # seleccion de indices para rango |
|
829 | 842 | minIndex = 0 |
|
830 | 843 | maxIndex = 0 |
|
831 | 844 | heights = self.dataOut.heightList |
|
832 | 845 | |
|
833 | 846 | inda = numpy.where(heights >= minHei) |
|
834 | 847 | indb = numpy.where(heights <= maxHei) |
|
835 | 848 | |
|
836 | 849 | try: |
|
837 | 850 | minIndex = inda[0][0] |
|
838 | 851 | except: |
|
839 | 852 | minIndex = 0 |
|
840 | 853 | |
|
841 | 854 | try: |
|
842 | 855 | maxIndex = indb[0][-1] |
|
843 | 856 | except: |
|
844 | 857 | maxIndex = len(heights) |
|
845 | 858 | |
|
846 | 859 | if (minIndex < 0) or (minIndex > maxIndex): |
|
847 | 860 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
848 | 861 | minIndex, maxIndex)) |
|
849 | 862 | |
|
850 | 863 | if (maxIndex >= self.dataOut.nHeights): |
|
851 | 864 | maxIndex = self.dataOut.nHeights - 1 |
|
852 | 865 | |
|
853 | 866 | # seleccion de indices para velocidades |
|
854 | 867 | indminvel = numpy.where(velrange >= minVel) |
|
855 | 868 | indmaxvel = numpy.where(velrange <= maxVel) |
|
856 | 869 | try: |
|
857 | 870 | minIndexVel = indminvel[0][0] |
|
858 | 871 | except: |
|
859 | 872 | minIndexVel = 0 |
|
860 | 873 | |
|
861 | 874 | try: |
|
862 | 875 | maxIndexVel = indmaxvel[0][-1] |
|
863 | 876 | except: |
|
864 | 877 | maxIndexVel = len(velrange) |
|
865 | 878 | |
|
866 | 879 | # seleccion del espectro |
|
867 | 880 | data_spc = self.dataOut.data_spc[:, |
|
868 | 881 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
869 | 882 | # estimacion de ruido |
|
870 | 883 | noise = numpy.zeros(self.dataOut.nChannels) |
|
871 | 884 | |
|
872 | 885 | for channel in range(self.dataOut.nChannels): |
|
873 | 886 | daux = data_spc[channel, :, :] |
|
874 | 887 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) |
|
875 | 888 | |
|
876 | 889 | self.dataOut.noise_estimation = noise.copy() |
|
877 | 890 | |
|
878 | 891 | return 1 |
|
879 | 892 | |
|
880 | 893 | |
|
881 | 894 | class IncohInt(Operation): |
|
882 | 895 | |
|
883 | 896 | __profIndex = 0 |
|
884 | 897 | __withOverapping = False |
|
885 | 898 | |
|
886 | 899 | __byTime = False |
|
887 | 900 | __initime = None |
|
888 | 901 | __lastdatatime = None |
|
889 | 902 | __integrationtime = None |
|
890 | 903 | |
|
891 | 904 | __buffer_spc = None |
|
892 | 905 | __buffer_cspc = None |
|
893 | 906 | __buffer_dc = None |
|
894 | 907 | |
|
895 | 908 | __dataReady = False |
|
896 | 909 | |
|
897 | 910 | __timeInterval = None |
|
898 | 911 | |
|
899 | 912 | n = None |
|
900 | 913 | |
|
901 | 914 | def __init__(self): |
|
902 | 915 | |
|
903 | 916 | Operation.__init__(self) |
|
904 | 917 | |
|
905 | 918 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
906 | 919 | """ |
|
907 | 920 | Set the parameters of the integration class. |
|
908 | 921 | |
|
909 | 922 | Inputs: |
|
910 | 923 | |
|
911 | 924 | n : Number of coherent integrations |
|
912 | 925 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
913 | 926 | overlapping : |
|
914 | 927 | |
|
915 | 928 | """ |
|
916 | 929 | |
|
917 | 930 | self.__initime = None |
|
918 | 931 | self.__lastdatatime = 0 |
|
919 | 932 | |
|
920 | 933 | self.__buffer_spc = 0 |
|
921 | 934 | self.__buffer_cspc = 0 |
|
922 | 935 | self.__buffer_dc = 0 |
|
923 | 936 | |
|
924 | 937 | self.__profIndex = 0 |
|
925 | 938 | self.__dataReady = False |
|
926 | 939 | self.__byTime = False |
|
927 | 940 | |
|
928 | 941 | if n is None and timeInterval is None: |
|
929 | 942 | raise ValueError("n or timeInterval should be specified ...") |
|
930 | 943 | |
|
931 | 944 | if n is not None: |
|
932 | 945 | self.n = int(n) |
|
933 | 946 | else: |
|
934 | ||
|
947 | ||
|
935 | 948 | self.__integrationtime = int(timeInterval) |
|
936 | 949 | self.n = None |
|
937 | 950 | self.__byTime = True |
|
938 | 951 | |
|
939 | 952 | def putData(self, data_spc, data_cspc, data_dc): |
|
940 | 953 | """ |
|
941 | 954 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
942 | 955 | |
|
943 | 956 | """ |
|
957 | print("profIndex: ",self.__profIndex) | |
|
958 | print("data_spc.shape: ",data_spc.shape) | |
|
959 | print("data_spc.shape: ",data_spc[0,0,:]) | |
|
944 | 960 | |
|
945 | 961 | self.__buffer_spc += data_spc |
|
946 | 962 | |
|
947 | 963 | if data_cspc is None: |
|
948 | 964 | self.__buffer_cspc = None |
|
949 | 965 | else: |
|
950 | 966 | self.__buffer_cspc += data_cspc |
|
951 | 967 | |
|
952 | 968 | if data_dc is None: |
|
953 | 969 | self.__buffer_dc = None |
|
954 | 970 | else: |
|
955 | 971 | self.__buffer_dc += data_dc |
|
956 | 972 | |
|
957 | 973 | self.__profIndex += 1 |
|
958 | 974 | |
|
959 | 975 | return |
|
960 | 976 | |
|
961 | 977 | def pushData(self): |
|
962 | 978 | """ |
|
963 | 979 | Return the sum of the last profiles and the profiles used in the sum. |
|
964 | 980 | |
|
965 | 981 | Affected: |
|
966 | 982 | |
|
967 | 983 | self.__profileIndex |
|
968 | 984 | |
|
969 | 985 | """ |
|
970 | 986 | |
|
971 | 987 | data_spc = self.__buffer_spc |
|
972 | 988 | data_cspc = self.__buffer_cspc |
|
973 | 989 | data_dc = self.__buffer_dc |
|
974 | 990 | n = self.__profIndex |
|
975 | 991 | |
|
976 | 992 | self.__buffer_spc = 0 |
|
977 | 993 | self.__buffer_cspc = 0 |
|
978 | 994 | self.__buffer_dc = 0 |
|
979 | 995 | self.__profIndex = 0 |
|
980 | 996 | |
|
981 | 997 | return data_spc, data_cspc, data_dc, n |
|
982 | 998 | |
|
983 | 999 | def byProfiles(self, *args): |
|
984 | 1000 | |
|
985 | 1001 | self.__dataReady = False |
|
986 | 1002 | avgdata_spc = None |
|
987 | 1003 | avgdata_cspc = None |
|
988 | 1004 | avgdata_dc = None |
|
989 | 1005 | |
|
990 | 1006 | self.putData(*args) |
|
991 | 1007 | |
|
992 | 1008 | if self.__profIndex == self.n: |
|
993 | 1009 | |
|
994 | 1010 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
995 | 1011 | self.n = n |
|
996 | 1012 | self.__dataReady = True |
|
997 | 1013 | |
|
998 | 1014 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
999 | 1015 | |
|
1000 | 1016 | def byTime(self, datatime, *args): |
|
1001 | 1017 | |
|
1002 | 1018 | self.__dataReady = False |
|
1003 | 1019 | avgdata_spc = None |
|
1004 | 1020 | avgdata_cspc = None |
|
1005 | 1021 | avgdata_dc = None |
|
1006 | 1022 | |
|
1007 | 1023 | self.putData(*args) |
|
1008 | 1024 | |
|
1009 | 1025 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1010 | 1026 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1011 | 1027 | self.n = n |
|
1012 | 1028 | self.__dataReady = True |
|
1013 | 1029 | |
|
1014 | 1030 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1015 | 1031 | |
|
1016 | 1032 | def integrate(self, datatime, *args): |
|
1017 | 1033 | |
|
1018 | 1034 | if self.__profIndex == 0: |
|
1019 | 1035 | self.__initime = datatime |
|
1020 | 1036 | |
|
1021 | 1037 | if self.__byTime: |
|
1022 | 1038 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1023 | 1039 | datatime, *args) |
|
1024 | 1040 | else: |
|
1025 | 1041 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1026 | 1042 | |
|
1027 | 1043 | if not self.__dataReady: |
|
1028 | 1044 | return None, None, None, None |
|
1029 | 1045 | |
|
1030 | 1046 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1031 | 1047 | |
|
1032 | 1048 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1033 | 1049 | if n == 1: |
|
1034 | 1050 | return |
|
1035 | ||
|
1051 | ||
|
1036 | 1052 | dataOut.flagNoData = True |
|
1037 | 1053 | |
|
1038 | 1054 | if not self.isConfig: |
|
1039 | 1055 | self.setup(n, timeInterval, overlapping) |
|
1040 | 1056 | self.isConfig = True |
|
1041 | 1057 | |
|
1042 | 1058 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1043 | 1059 | dataOut.data_spc, |
|
1044 | 1060 | dataOut.data_cspc, |
|
1045 | 1061 | dataOut.data_dc) |
|
1046 | 1062 | |
|
1047 | 1063 | if self.__dataReady: |
|
1048 | 1064 | |
|
1049 | 1065 | dataOut.data_spc = avgdata_spc |
|
1050 | 1066 | dataOut.data_cspc = avgdata_cspc |
|
1051 |
dataOut.data_dc = avgdata_dc |
|
|
1067 | dataOut.data_dc = avgdata_dc | |
|
1052 | 1068 | dataOut.nIncohInt *= self.n |
|
1053 | 1069 | dataOut.utctime = avgdatatime |
|
1054 | 1070 | dataOut.flagNoData = False |
|
1055 | 1071 | |
|
1056 | return dataOut No newline at end of file | |
|
1072 | return dataOut | |
|
1073 | ||
|
1074 | ||
|
1075 | class PulsePair(Operation): | |
|
1076 | isConfig = False | |
|
1077 | __profIndex = 0 | |
|
1078 | __profIndex2 = 0 | |
|
1079 | __initime = None | |
|
1080 | __lastdatatime = None | |
|
1081 | __buffer = None | |
|
1082 | __buffer2 = [] | |
|
1083 | __buffer3 = None | |
|
1084 | __dataReady = False | |
|
1085 | n = None | |
|
1086 | ||
|
1087 | __nch =0 | |
|
1088 | __nProf =0 | |
|
1089 | __nHeis =0 | |
|
1090 | ||
|
1091 | def __init__(self,**kwargs): | |
|
1092 | Operation.__init__(self,**kwargs) | |
|
1093 | ||
|
1094 | def setup(self,dataOut,n =None, m = None): | |
|
1095 | ||
|
1096 | self.__initime = None | |
|
1097 | self.__lastdatatime = 0 | |
|
1098 | self.__buffer = 0 | |
|
1099 | self.__bufferV = 0 | |
|
1100 | #self.__buffer2 = [] | |
|
1101 | self.__buffer3 = 0 | |
|
1102 | self.__dataReady = False | |
|
1103 | self.__profIndex = 0 | |
|
1104 | self.__profIndex2 = 0 | |
|
1105 | self.count = 0 | |
|
1106 | ||
|
1107 | ||
|
1108 | self.__nch = dataOut.nChannels | |
|
1109 | self.__nHeis = dataOut.nHeights | |
|
1110 | self.__nProf = dataOut.nProfiles | |
|
1111 | self.__nFFT = dataOut.nFFTPoints | |
|
1112 | #print("Valores de Ch,Samples,Perfiles,nFFT",self.__nch,self.__nHeis,self.__nProf, self.__nFFT) | |
|
1113 | #print("EL VALOR DE n es:",n) | |
|
1114 | if n == None: | |
|
1115 | raise ValueError("n Should be specified.") | |
|
1116 | ||
|
1117 | if n != None: | |
|
1118 | if n<2: | |
|
1119 | raise ValueError("n Should be greather than 2 ") | |
|
1120 | self.n = n | |
|
1121 | if m == None: | |
|
1122 | m = n | |
|
1123 | if m != None: | |
|
1124 | if m<2: | |
|
1125 | raise ValueError("n Should be greather than 2 ") | |
|
1126 | ||
|
1127 | self.m = m | |
|
1128 | self.__buffer2 = numpy.zeros((self.__nch,self.m,self.__nHeis)) | |
|
1129 | self.__bufferV2 = numpy.zeros((self.__nch,self.m,self.__nHeis)) | |
|
1130 | ||
|
1131 | ||
|
1132 | ||
|
1133 | def putData(self,data): | |
|
1134 | #print("###################################################") | |
|
1135 | ''' | |
|
1136 | data_tmp = numpy.zeros(self.__nch,self.n,self.__nHeis, dtype= complex) | |
|
1137 | if self.count < self.__nProf: | |
|
1138 | ||
|
1139 | for i in range(self.n): | |
|
1140 | data_tmp[:,i,:] = data[:,i+self.count,:] | |
|
1141 | ||
|
1142 | self.__buffer = data_tmp*numpy.conjugate(data_tmp) | |
|
1143 | ||
|
1144 | ||
|
1145 | #####self.__buffer = data*numpy.conjugate(data) | |
|
1146 | #####self.__bufferV = data[:,(self.__nProf-1):,:]*numpy.conjugate(data[:,1:,:]) | |
|
1147 | ||
|
1148 | #self.__buffer2.append(numpy.conjugate(data)) | |
|
1149 | ||
|
1150 | #####self.__profIndex = data.shape[1] | |
|
1151 | self.count = self.count + self.n -1 | |
|
1152 | self.__profIndex = self.n | |
|
1153 | ''' | |
|
1154 | self.__buffer = data*numpy.conjugate(data) | |
|
1155 | self.__bufferV = data[:,(self.__nProf-1):,:]*numpy.conjugate(data[:,1:,:]) | |
|
1156 | self.__profIndex = self.n | |
|
1157 | return | |
|
1158 | ||
|
1159 | def pushData(self): | |
|
1160 | ||
|
1161 | data_I = numpy.zeros((self.__nch,self.__nHeis)) | |
|
1162 | data_IV = numpy.zeros((self.__nch,self.__nHeis)) | |
|
1163 | ||
|
1164 | for i in range(self.__nch): | |
|
1165 | data_I[i,:] = numpy.sum(numpy.sum(self.__buffer[i],axis=0),axis=0)/self.n | |
|
1166 | data_IV[i,:] = numpy.sum(numpy.sum(self.__bufferV[i],axis=0),axis=0)/(self.n-1) | |
|
1167 | ||
|
1168 | n = self.__profIndex | |
|
1169 | ####data_intensity = numpy.sum(numpy.sum(self.__buffer,axis=0),axis=0)/self.n | |
|
1170 | #print("data_intensity push data",data_intensity.shape) | |
|
1171 | #data_velocity = self.__buffer3/(self.n-1) | |
|
1172 | ####n = self.__profIndex | |
|
1173 | ||
|
1174 | self.__buffer = 0 | |
|
1175 | self.__buffer3 = 0 | |
|
1176 | self.__profIndex = 0 | |
|
1177 | ||
|
1178 | #return data_intensity,data_velocity,n | |
|
1179 | return data_I,data_IV,n | |
|
1180 | ||
|
1181 | def pulsePairbyProfiles(self,data): | |
|
1182 | self.__dataReady = False | |
|
1183 | data_intensity = None | |
|
1184 | data_velocity = None | |
|
1185 | ||
|
1186 | self.putData(data) | |
|
1187 | ||
|
1188 | if self.__profIndex == self.n: | |
|
1189 | #data_intensity,data_velocity,n = self.pushData() | |
|
1190 | data_intensity,data_velocity,n = self.pushData() | |
|
1191 | #print(data_intensity.shape) | |
|
1192 | #print("self.__profIndex2", self.__profIndex2) | |
|
1193 | if self.__profIndex2 == 0: | |
|
1194 | #print("PRIMERA VEZ") | |
|
1195 | #print("self.__buffer2",self.__buffer2) | |
|
1196 | for i in range(self.__nch): | |
|
1197 | self.__buffer2[i][self.__profIndex2] = data_intensity[i] | |
|
1198 | self.__bufferV2[i][self.__profIndex2] = data_velocity[i] | |
|
1199 | self.__profIndex2 += 1 | |
|
1200 | return None,None | |
|
1201 | ||
|
1202 | if self.__profIndex2 > 0: | |
|
1203 | for i in range(self.__nch): | |
|
1204 | self.__buffer2[i][self.__profIndex2] = data_intensity[i] | |
|
1205 | self.__bufferV2[i][self.__profIndex2] = data_velocity[i] | |
|
1206 | #print("Dentro del bucle",self.__buffer2) | |
|
1207 | self.__profIndex2 += 1 | |
|
1208 | if self.__profIndex2 == self.m : | |
|
1209 | data_i = self.__buffer2 | |
|
1210 | data_v = self.__bufferV2 | |
|
1211 | #print(data_i.shape) | |
|
1212 | self.__dataReady = True | |
|
1213 | self.__profIndex2 = 0 | |
|
1214 | self.__buffer2 = numpy.zeros((self.__nch,self.m,self.__nHeis)) | |
|
1215 | self.__bufferV2 = numpy.zeros((self.__nch,self.m,self.__nHeis)) | |
|
1216 | return data_i,data_v | |
|
1217 | return None,None | |
|
1218 | ||
|
1219 | def pulsePairOp(self,data,datatime=None): | |
|
1220 | if self.__initime == None: | |
|
1221 | self.__initime = datatime | |
|
1222 | ||
|
1223 | data_intensity,data_velocity = self.pulsePairbyProfiles(data) | |
|
1224 | self.__lastdatatime = datatime | |
|
1225 | ||
|
1226 | if data_intensity is None: | |
|
1227 | return None,None,None | |
|
1228 | ||
|
1229 | avgdatatime = self.__initime | |
|
1230 | self.__initime = datatime | |
|
1231 | ||
|
1232 | return data_intensity,data_velocity,avgdatatime | |
|
1233 | ||
|
1234 | def run(self,dataOut,n =None,m=None): | |
|
1235 | ||
|
1236 | if not self.isConfig: | |
|
1237 | self.setup(dataOut = dataOut, n = n, m = m) | |
|
1238 | self.isConfig = True | |
|
1239 | ||
|
1240 | data_intensity,data_velocity,avgdatatime = self.pulsePairOp(dataOut.data_wr,dataOut.utctime) | |
|
1241 | dataOut.flagNoData = True | |
|
1242 | ||
|
1243 | if self.__dataReady: | |
|
1244 | #print(" DATA " , data_intensity.shape) | |
|
1245 | #dataOut.data = numpy.array([data_intensity])#aqui amigo revisa | |
|
1246 | #tmp = numpy.zeros([1,data_intensity.shape[0],data_intensity.shape[1]]) | |
|
1247 | #tmp[0] = data_intensity | |
|
1248 | dataOut.data = data_intensity | |
|
1249 | dataOut.data_velocity = data_velocity | |
|
1250 | #dataOut.data = tmp | |
|
1251 | #print(" DATA " , dataOut.data.shape) | |
|
1252 | dataOut.nIncohInt *= self.n | |
|
1253 | dataOut.nProfiles = self.m | |
|
1254 | dataOut.nFFTPoints = self.m | |
|
1255 | #dataOut.data_intensity = data_intensity | |
|
1256 | dataOut.PRFbyAngle = self.n | |
|
1257 | dataOut.utctime = avgdatatime | |
|
1258 | dataOut.flagNoData = False | |
|
1259 | #####print("TIEMPO: ",dataOut.utctime) | |
|
1260 | return dataOut |
@@ -1,1328 +1,1623 | |||
|
1 | 1 | import sys |
|
2 | 2 | import numpy |
|
3 | 3 | from scipy import interpolate |
|
4 | 4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
5 | 5 | from schainpy.model.data.jrodata import Voltage |
|
6 | 6 | from schainpy.utils import log |
|
7 | 7 | from time import time |
|
8 | 8 | |
|
9 | 9 | |
|
10 | 10 | @MPDecorator |
|
11 |
class VoltageProc(ProcessingUnit): |
|
|
12 | ||
|
11 | class VoltageProc(ProcessingUnit): | |
|
12 | ||
|
13 | 13 | def __init__(self): |
|
14 | 14 | |
|
15 | 15 | ProcessingUnit.__init__(self) |
|
16 | 16 | |
|
17 | 17 | self.dataOut = Voltage() |
|
18 | 18 | self.flip = 1 |
|
19 | 19 | self.setupReq = False |
|
20 | 20 | |
|
21 | 21 | def run(self): |
|
22 | 22 | |
|
23 | 23 | if self.dataIn.type == 'AMISR': |
|
24 | 24 | self.__updateObjFromAmisrInput() |
|
25 | 25 | |
|
26 | 26 | if self.dataIn.type == 'Voltage': |
|
27 | 27 | self.dataOut.copy(self.dataIn) |
|
28 | 28 | |
|
29 | 29 | # self.dataOut.copy(self.dataIn) |
|
30 | 30 | |
|
31 | 31 | def __updateObjFromAmisrInput(self): |
|
32 | 32 | |
|
33 | 33 | self.dataOut.timeZone = self.dataIn.timeZone |
|
34 | 34 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
35 | 35 | self.dataOut.errorCount = self.dataIn.errorCount |
|
36 | 36 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
37 | 37 | |
|
38 | 38 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
39 | 39 | self.dataOut.data = self.dataIn.data |
|
40 | 40 | self.dataOut.utctime = self.dataIn.utctime |
|
41 | 41 | self.dataOut.channelList = self.dataIn.channelList |
|
42 | 42 | #self.dataOut.timeInterval = self.dataIn.timeInterval |
|
43 | 43 | self.dataOut.heightList = self.dataIn.heightList |
|
44 | 44 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
45 | 45 | |
|
46 | 46 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
47 | 47 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
48 | 48 | self.dataOut.frequency = self.dataIn.frequency |
|
49 | 49 | |
|
50 | 50 | self.dataOut.azimuth = self.dataIn.azimuth |
|
51 | 51 | self.dataOut.zenith = self.dataIn.zenith |
|
52 | 52 | |
|
53 | 53 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
54 | 54 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
55 | 55 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
56 | 56 | # |
|
57 | 57 | # pass# |
|
58 | 58 | # |
|
59 | 59 | # def init(self): |
|
60 | 60 | # |
|
61 | 61 | # |
|
62 | 62 | # if self.dataIn.type == 'AMISR': |
|
63 | 63 | # self.__updateObjFromAmisrInput() |
|
64 | 64 | # |
|
65 | 65 | # if self.dataIn.type == 'Voltage': |
|
66 | 66 | # self.dataOut.copy(self.dataIn) |
|
67 | 67 | # # No necesita copiar en cada init() los atributos de dataIn |
|
68 | 68 | # # la copia deberia hacerse por cada nuevo bloque de datos |
|
69 | 69 | |
|
70 | 70 | def selectChannels(self, channelList): |
|
71 | 71 | |
|
72 | 72 | channelIndexList = [] |
|
73 | 73 | |
|
74 | 74 | for channel in channelList: |
|
75 | 75 | if channel not in self.dataOut.channelList: |
|
76 | 76 | raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList))) |
|
77 | 77 | |
|
78 | 78 | index = self.dataOut.channelList.index(channel) |
|
79 | 79 | channelIndexList.append(index) |
|
80 | 80 | |
|
81 | 81 | self.selectChannelsByIndex(channelIndexList) |
|
82 | 82 | |
|
83 | 83 | def selectChannelsByIndex(self, channelIndexList): |
|
84 | 84 | """ |
|
85 | 85 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
86 | 86 | |
|
87 | 87 | Input: |
|
88 | 88 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
89 | 89 | |
|
90 | 90 | Affected: |
|
91 | 91 | self.dataOut.data |
|
92 | 92 | self.dataOut.channelIndexList |
|
93 | 93 | self.dataOut.nChannels |
|
94 | 94 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
95 | 95 | self.dataOut.systemHeaderObj.numChannels |
|
96 | 96 | self.dataOut.m_ProcessingHeader.blockSize |
|
97 | 97 | |
|
98 | 98 | Return: |
|
99 | 99 | None |
|
100 | 100 | """ |
|
101 | 101 | |
|
102 | 102 | for channelIndex in channelIndexList: |
|
103 | 103 | if channelIndex not in self.dataOut.channelIndexList: |
|
104 | 104 | print(channelIndexList) |
|
105 | 105 | raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) |
|
106 | 106 | |
|
107 | 107 | if self.dataOut.flagDataAsBlock: |
|
108 | 108 | """ |
|
109 | 109 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
110 | 110 | """ |
|
111 | 111 | data = self.dataOut.data[channelIndexList,:,:] |
|
112 | 112 | else: |
|
113 | 113 | data = self.dataOut.data[channelIndexList,:] |
|
114 | 114 | |
|
115 | 115 | self.dataOut.data = data |
|
116 | 116 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
117 | 117 | self.dataOut.channelList = range(len(channelIndexList)) |
|
118 | ||
|
118 | ||
|
119 | 119 | return 1 |
|
120 | 120 | |
|
121 | 121 | def selectHeights(self, minHei=None, maxHei=None): |
|
122 | 122 | """ |
|
123 | 123 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
124 | 124 | minHei <= height <= maxHei |
|
125 | 125 | |
|
126 | 126 | Input: |
|
127 | 127 | minHei : valor minimo de altura a considerar |
|
128 | 128 | maxHei : valor maximo de altura a considerar |
|
129 | 129 | |
|
130 | 130 | Affected: |
|
131 | 131 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
132 | 132 | |
|
133 | 133 | Return: |
|
134 | 134 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
135 | 135 | """ |
|
136 | 136 | |
|
137 | 137 | if minHei == None: |
|
138 | 138 | minHei = self.dataOut.heightList[0] |
|
139 | 139 | |
|
140 | 140 | if maxHei == None: |
|
141 | 141 | maxHei = self.dataOut.heightList[-1] |
|
142 | 142 | |
|
143 | 143 | if (minHei < self.dataOut.heightList[0]): |
|
144 | 144 | minHei = self.dataOut.heightList[0] |
|
145 | 145 | |
|
146 | 146 | if (maxHei > self.dataOut.heightList[-1]): |
|
147 | 147 | maxHei = self.dataOut.heightList[-1] |
|
148 | 148 | |
|
149 | 149 | minIndex = 0 |
|
150 | 150 | maxIndex = 0 |
|
151 | 151 | heights = self.dataOut.heightList |
|
152 | 152 | |
|
153 | 153 | inda = numpy.where(heights >= minHei) |
|
154 | 154 | indb = numpy.where(heights <= maxHei) |
|
155 | 155 | |
|
156 | 156 | try: |
|
157 | 157 | minIndex = inda[0][0] |
|
158 | 158 | except: |
|
159 | 159 | minIndex = 0 |
|
160 | 160 | |
|
161 | 161 | try: |
|
162 | 162 | maxIndex = indb[0][-1] |
|
163 | 163 | except: |
|
164 | 164 | maxIndex = len(heights) |
|
165 | 165 | |
|
166 | 166 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
167 | 167 | |
|
168 | 168 | return 1 |
|
169 | 169 | |
|
170 | 170 | |
|
171 | 171 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
172 | 172 | """ |
|
173 | 173 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
174 | 174 | minIndex <= index <= maxIndex |
|
175 | 175 | |
|
176 | 176 | Input: |
|
177 | 177 | minIndex : valor de indice minimo de altura a considerar |
|
178 | 178 | maxIndex : valor de indice maximo de altura a considerar |
|
179 | 179 | |
|
180 | 180 | Affected: |
|
181 | 181 | self.dataOut.data |
|
182 | 182 | self.dataOut.heightList |
|
183 | 183 | |
|
184 | 184 | Return: |
|
185 | 185 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
186 | 186 | """ |
|
187 | 187 | |
|
188 | 188 | if (minIndex < 0) or (minIndex > maxIndex): |
|
189 | 189 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
190 | 190 | |
|
191 | 191 | if (maxIndex >= self.dataOut.nHeights): |
|
192 | 192 | maxIndex = self.dataOut.nHeights |
|
193 | 193 | |
|
194 | 194 | #voltage |
|
195 | 195 | if self.dataOut.flagDataAsBlock: |
|
196 | 196 | """ |
|
197 | 197 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
198 | 198 | """ |
|
199 | 199 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
200 | 200 | else: |
|
201 | 201 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
202 | 202 | |
|
203 | 203 | # firstHeight = self.dataOut.heightList[minIndex] |
|
204 | 204 | |
|
205 | 205 | self.dataOut.data = data |
|
206 | 206 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
207 | 207 | |
|
208 | 208 | if self.dataOut.nHeights <= 1: |
|
209 | 209 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) |
|
210 | 210 | |
|
211 | 211 | return 1 |
|
212 | 212 | |
|
213 | 213 | |
|
214 | 214 | def filterByHeights(self, window): |
|
215 | 215 | |
|
216 | 216 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
217 | 217 | |
|
218 | 218 | if window == None: |
|
219 | 219 | window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
220 | 220 | |
|
221 | 221 | newdelta = deltaHeight * window |
|
222 | 222 | r = self.dataOut.nHeights % window |
|
223 | 223 | newheights = (self.dataOut.nHeights-r)/window |
|
224 | 224 | |
|
225 | 225 | if newheights <= 1: |
|
226 | 226 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(self.dataOut.nHeights, window)) |
|
227 | 227 | |
|
228 | 228 | if self.dataOut.flagDataAsBlock: |
|
229 | 229 | """ |
|
230 | 230 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
231 | 231 | """ |
|
232 |
buffer = self.dataOut.data[:, :, 0:int(self.dataOut.nHeights-r)] |
|
|
232 | buffer = self.dataOut.data[:, :, 0:int(self.dataOut.nHeights-r)] | |
|
233 | 233 | buffer = buffer.reshape(self.dataOut.nChannels, self.dataOut.nProfiles, int(self.dataOut.nHeights/window), window) |
|
234 | 234 | buffer = numpy.sum(buffer,3) |
|
235 | 235 | |
|
236 | 236 | else: |
|
237 | 237 | buffer = self.dataOut.data[:,0:int(self.dataOut.nHeights-r)] |
|
238 | 238 | buffer = buffer.reshape(self.dataOut.nChannels,int(self.dataOut.nHeights/window),int(window)) |
|
239 | 239 | buffer = numpy.sum(buffer,2) |
|
240 | 240 | |
|
241 | 241 | self.dataOut.data = buffer |
|
242 | 242 | self.dataOut.heightList = self.dataOut.heightList[0] + numpy.arange( newheights )*newdelta |
|
243 | 243 | self.dataOut.windowOfFilter = window |
|
244 | 244 | |
|
245 | 245 | def setH0(self, h0, deltaHeight = None): |
|
246 | 246 | |
|
247 | 247 | if not deltaHeight: |
|
248 | 248 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
249 | 249 | |
|
250 | 250 | nHeights = self.dataOut.nHeights |
|
251 | 251 | |
|
252 | 252 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
253 | 253 | |
|
254 | 254 | self.dataOut.heightList = newHeiRange |
|
255 | 255 | |
|
256 | 256 | def deFlip(self, channelList = []): |
|
257 | 257 | |
|
258 | 258 | data = self.dataOut.data.copy() |
|
259 | 259 | |
|
260 | 260 | if self.dataOut.flagDataAsBlock: |
|
261 | 261 | flip = self.flip |
|
262 | 262 | profileList = list(range(self.dataOut.nProfiles)) |
|
263 | 263 | |
|
264 | 264 | if not channelList: |
|
265 | 265 | for thisProfile in profileList: |
|
266 | 266 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
267 | 267 | flip *= -1.0 |
|
268 | 268 | else: |
|
269 | 269 | for thisChannel in channelList: |
|
270 | 270 | if thisChannel not in self.dataOut.channelList: |
|
271 | 271 | continue |
|
272 | 272 | |
|
273 | 273 | for thisProfile in profileList: |
|
274 | 274 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
275 | 275 | flip *= -1.0 |
|
276 | 276 | |
|
277 | 277 | self.flip = flip |
|
278 | 278 | |
|
279 | 279 | else: |
|
280 | 280 | if not channelList: |
|
281 | 281 | data[:,:] = data[:,:]*self.flip |
|
282 | 282 | else: |
|
283 | 283 | for thisChannel in channelList: |
|
284 | 284 | if thisChannel not in self.dataOut.channelList: |
|
285 | 285 | continue |
|
286 | 286 | |
|
287 | 287 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
288 | 288 | |
|
289 | 289 | self.flip *= -1. |
|
290 | 290 | |
|
291 | 291 | self.dataOut.data = data |
|
292 | 292 | |
|
293 | 293 | def setRadarFrequency(self, frequency=None): |
|
294 | 294 | |
|
295 | 295 | if frequency != None: |
|
296 | 296 | self.dataOut.frequency = frequency |
|
297 | 297 | |
|
298 | 298 | return 1 |
|
299 | 299 | |
|
300 | 300 | def interpolateHeights(self, topLim, botLim): |
|
301 | 301 | #69 al 72 para julia |
|
302 | 302 | #82-84 para meteoros |
|
303 | 303 | if len(numpy.shape(self.dataOut.data))==2: |
|
304 | 304 | sampInterp = (self.dataOut.data[:,botLim-1] + self.dataOut.data[:,topLim+1])/2 |
|
305 | 305 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) |
|
306 | 306 | #self.dataOut.data[:,botLim:limSup+1] = sampInterp |
|
307 | 307 | self.dataOut.data[:,botLim:topLim+1] = sampInterp |
|
308 | 308 | else: |
|
309 | 309 | nHeights = self.dataOut.data.shape[2] |
|
310 | 310 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) |
|
311 | 311 | y = self.dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] |
|
312 | 312 | f = interpolate.interp1d(x, y, axis = 2) |
|
313 | 313 | xnew = numpy.arange(botLim,topLim+1) |
|
314 | 314 | ynew = f(xnew) |
|
315 | 315 | |
|
316 | 316 | self.dataOut.data[:,:,botLim:topLim+1] = ynew |
|
317 | 317 | |
|
318 | 318 | # import collections |
|
319 | 319 | |
|
320 | 320 | class CohInt(Operation): |
|
321 | 321 | |
|
322 | 322 | isConfig = False |
|
323 | 323 | __profIndex = 0 |
|
324 | 324 | __byTime = False |
|
325 | 325 | __initime = None |
|
326 | 326 | __lastdatatime = None |
|
327 | 327 | __integrationtime = None |
|
328 | 328 | __buffer = None |
|
329 | 329 | __bufferStride = [] |
|
330 | 330 | __dataReady = False |
|
331 | 331 | __profIndexStride = 0 |
|
332 | 332 | __dataToPutStride = False |
|
333 | 333 | n = None |
|
334 | 334 | |
|
335 | 335 | def __init__(self, **kwargs): |
|
336 | 336 | |
|
337 | 337 | Operation.__init__(self, **kwargs) |
|
338 | 338 | |
|
339 | 339 | # self.isConfig = False |
|
340 | 340 | |
|
341 | 341 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): |
|
342 | 342 | """ |
|
343 | 343 | Set the parameters of the integration class. |
|
344 | 344 | |
|
345 | 345 | Inputs: |
|
346 | 346 | |
|
347 | 347 | n : Number of coherent integrations |
|
348 | 348 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
349 | 349 | overlapping : |
|
350 | 350 | """ |
|
351 | 351 | |
|
352 | 352 | self.__initime = None |
|
353 | 353 | self.__lastdatatime = 0 |
|
354 | 354 | self.__buffer = None |
|
355 | 355 | self.__dataReady = False |
|
356 | 356 | self.byblock = byblock |
|
357 | 357 | self.stride = stride |
|
358 | 358 | |
|
359 | 359 | if n == None and timeInterval == None: |
|
360 | 360 | raise ValueError("n or timeInterval should be specified ...") |
|
361 | 361 | |
|
362 | 362 | if n != None: |
|
363 | 363 | self.n = n |
|
364 | 364 | self.__byTime = False |
|
365 | 365 | else: |
|
366 | 366 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
367 | 367 | self.n = 9999 |
|
368 | 368 | self.__byTime = True |
|
369 | 369 | |
|
370 | 370 | if overlapping: |
|
371 | 371 | self.__withOverlapping = True |
|
372 | 372 | self.__buffer = None |
|
373 | 373 | else: |
|
374 | 374 | self.__withOverlapping = False |
|
375 | 375 | self.__buffer = 0 |
|
376 | 376 | |
|
377 | 377 | self.__profIndex = 0 |
|
378 | 378 | |
|
379 | 379 | def putData(self, data): |
|
380 | 380 | |
|
381 | 381 | """ |
|
382 | 382 | Add a profile to the __buffer and increase in one the __profileIndex |
|
383 | 383 | |
|
384 | 384 | """ |
|
385 | 385 | |
|
386 | 386 | if not self.__withOverlapping: |
|
387 | print("inside over") | |
|
387 | 388 | self.__buffer += data.copy() |
|
388 | 389 | self.__profIndex += 1 |
|
389 | 390 | return |
|
390 | 391 | |
|
391 | 392 | #Overlapping data |
|
392 | 393 | nChannels, nHeis = data.shape |
|
394 | print("show me the light",data.shape) | |
|
393 | 395 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
394 | ||
|
396 | print(data.shape) | |
|
395 | 397 | #If the buffer is empty then it takes the data value |
|
396 | 398 | if self.__buffer is None: |
|
397 | 399 | self.__buffer = data |
|
398 | 400 | self.__profIndex += 1 |
|
399 | 401 | return |
|
400 | 402 | |
|
401 | 403 | #If the buffer length is lower than n then stakcing the data value |
|
402 | 404 | if self.__profIndex < self.n: |
|
403 | 405 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
404 | 406 | self.__profIndex += 1 |
|
405 | 407 | return |
|
406 | 408 | |
|
407 | 409 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
408 | 410 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
409 | 411 | self.__buffer[self.n-1] = data |
|
410 | 412 | self.__profIndex = self.n |
|
411 | 413 | return |
|
412 | 414 | |
|
413 | 415 | |
|
414 | 416 | def pushData(self): |
|
415 | 417 | """ |
|
416 | 418 | Return the sum of the last profiles and the profiles used in the sum. |
|
417 | 419 | |
|
418 | 420 | Affected: |
|
419 | 421 | |
|
420 | 422 | self.__profileIndex |
|
421 | 423 | |
|
422 | 424 | """ |
|
423 | 425 | |
|
424 | 426 | if not self.__withOverlapping: |
|
427 | #print("ahora que fue") | |
|
425 | 428 | data = self.__buffer |
|
426 | 429 | n = self.__profIndex |
|
427 | 430 | |
|
428 | 431 | self.__buffer = 0 |
|
429 | 432 | self.__profIndex = 0 |
|
430 | 433 | |
|
431 | 434 | return data, n |
|
432 | 435 | |
|
436 | #print("cual funciona") | |
|
433 | 437 | #Integration with Overlapping |
|
434 | 438 | data = numpy.sum(self.__buffer, axis=0) |
|
435 | 439 | # print data |
|
436 | 440 | # raise |
|
437 | 441 | n = self.__profIndex |
|
438 | 442 | |
|
439 | 443 | return data, n |
|
440 | 444 | |
|
441 | 445 | def byProfiles(self, data): |
|
442 | 446 | |
|
443 | 447 | self.__dataReady = False |
|
444 | 448 | avgdata = None |
|
445 | 449 | # n = None |
|
446 | 450 | # print data |
|
447 | 451 | # raise |
|
452 | #print("beforeputdata") | |
|
448 | 453 | self.putData(data) |
|
449 | 454 | |
|
450 | 455 | if self.__profIndex == self.n: |
|
451 | 456 | avgdata, n = self.pushData() |
|
452 | 457 | self.__dataReady = True |
|
453 | 458 | |
|
454 | 459 | return avgdata |
|
455 | 460 | |
|
456 | 461 | def byTime(self, data, datatime): |
|
457 | 462 | |
|
458 | 463 | self.__dataReady = False |
|
459 | 464 | avgdata = None |
|
460 | 465 | n = None |
|
461 | 466 | |
|
462 | 467 | self.putData(data) |
|
463 | 468 | |
|
464 | 469 | if (datatime - self.__initime) >= self.__integrationtime: |
|
465 | 470 | avgdata, n = self.pushData() |
|
466 | 471 | self.n = n |
|
467 | 472 | self.__dataReady = True |
|
468 | 473 | |
|
469 | 474 | return avgdata |
|
470 | 475 | |
|
471 | 476 | def integrateByStride(self, data, datatime): |
|
472 | 477 | # print data |
|
473 | 478 | if self.__profIndex == 0: |
|
474 | 479 | self.__buffer = [[data.copy(), datatime]] |
|
475 | 480 | else: |
|
476 | 481 | self.__buffer.append([data.copy(),datatime]) |
|
477 | 482 | self.__profIndex += 1 |
|
478 | 483 | self.__dataReady = False |
|
479 | 484 | |
|
480 | 485 | if self.__profIndex == self.n * self.stride : |
|
481 | 486 | self.__dataToPutStride = True |
|
482 | 487 | self.__profIndexStride = 0 |
|
483 | 488 | self.__profIndex = 0 |
|
484 | 489 | self.__bufferStride = [] |
|
485 | 490 | for i in range(self.stride): |
|
486 | 491 | current = self.__buffer[i::self.stride] |
|
487 | 492 | data = numpy.sum([t[0] for t in current], axis=0) |
|
488 | 493 | avgdatatime = numpy.average([t[1] for t in current]) |
|
489 | 494 | # print data |
|
490 | 495 | self.__bufferStride.append((data, avgdatatime)) |
|
491 | 496 | |
|
492 | 497 | if self.__dataToPutStride: |
|
493 | 498 | self.__dataReady = True |
|
494 | 499 | self.__profIndexStride += 1 |
|
495 | 500 | if self.__profIndexStride == self.stride: |
|
496 | 501 | self.__dataToPutStride = False |
|
497 | 502 | # print self.__bufferStride[self.__profIndexStride - 1] |
|
498 | 503 | # raise |
|
499 | 504 | return self.__bufferStride[self.__profIndexStride - 1] |
|
500 | ||
|
501 | ||
|
505 | ||
|
506 | ||
|
502 | 507 | return None, None |
|
503 | 508 | |
|
504 | 509 | def integrate(self, data, datatime=None): |
|
505 | 510 | |
|
506 | 511 | if self.__initime == None: |
|
507 | 512 | self.__initime = datatime |
|
508 | 513 | |
|
509 | 514 | if self.__byTime: |
|
510 | 515 | avgdata = self.byTime(data, datatime) |
|
511 | 516 | else: |
|
512 | 517 | avgdata = self.byProfiles(data) |
|
513 | 518 | |
|
514 | 519 | |
|
515 | 520 | self.__lastdatatime = datatime |
|
516 | 521 | |
|
517 | 522 | if avgdata is None: |
|
518 | 523 | return None, None |
|
519 | 524 | |
|
520 | 525 | avgdatatime = self.__initime |
|
521 | 526 | |
|
522 | 527 | deltatime = datatime - self.__lastdatatime |
|
523 | ||
|
528 | ||
|
524 | 529 | if not self.__withOverlapping: |
|
525 | 530 | self.__initime = datatime |
|
526 | 531 | else: |
|
527 | 532 | self.__initime += deltatime |
|
528 | 533 | |
|
529 | 534 | return avgdata, avgdatatime |
|
530 | 535 | |
|
531 | 536 | def integrateByBlock(self, dataOut): |
|
532 | 537 | |
|
533 | 538 | times = int(dataOut.data.shape[1]/self.n) |
|
534 | 539 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
535 | 540 | |
|
536 | 541 | id_min = 0 |
|
537 | 542 | id_max = self.n |
|
538 | 543 | |
|
539 | 544 | for i in range(times): |
|
540 | 545 | junk = dataOut.data[:,id_min:id_max,:] |
|
541 | 546 | avgdata[:,i,:] = junk.sum(axis=1) |
|
542 | 547 | id_min += self.n |
|
543 | 548 | id_max += self.n |
|
544 | 549 | |
|
545 | 550 | timeInterval = dataOut.ippSeconds*self.n |
|
546 | 551 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
547 | 552 | self.__dataReady = True |
|
548 | 553 | return avgdata, avgdatatime |
|
549 | ||
|
554 | ||
|
550 | 555 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): |
|
551 | 556 | |
|
552 | 557 | if not self.isConfig: |
|
553 | 558 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) |
|
554 | 559 | self.isConfig = True |
|
555 | 560 | |
|
556 | 561 | if dataOut.flagDataAsBlock: |
|
557 | 562 | """ |
|
558 | 563 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
559 | 564 | """ |
|
560 | 565 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
561 | 566 | dataOut.nProfiles /= self.n |
|
562 | 567 | else: |
|
563 |
if stride is None: |
|
|
568 | if stride is None: | |
|
564 | 569 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
565 | 570 | else: |
|
566 | 571 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) |
|
567 | 572 | |
|
568 | ||
|
573 | ||
|
569 | 574 | # dataOut.timeInterval *= n |
|
570 | 575 | dataOut.flagNoData = True |
|
571 | 576 | |
|
572 | 577 | if self.__dataReady: |
|
573 | 578 | dataOut.data = avgdata |
|
574 | 579 | dataOut.nCohInt *= self.n |
|
575 | 580 | dataOut.utctime = avgdatatime |
|
576 | 581 | # print avgdata, avgdatatime |
|
577 | 582 | # raise |
|
578 | 583 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
579 | 584 | dataOut.flagNoData = False |
|
580 | 585 | return dataOut |
|
581 | 586 | |
|
582 | 587 | class Decoder(Operation): |
|
583 | 588 | |
|
584 | 589 | isConfig = False |
|
585 | 590 | __profIndex = 0 |
|
586 | 591 | |
|
587 | 592 | code = None |
|
588 | 593 | |
|
589 | 594 | nCode = None |
|
590 | 595 | nBaud = None |
|
591 | 596 | |
|
592 | 597 | def __init__(self, **kwargs): |
|
593 | 598 | |
|
594 | 599 | Operation.__init__(self, **kwargs) |
|
595 | 600 | |
|
596 | 601 | self.times = None |
|
597 | 602 | self.osamp = None |
|
598 | 603 | # self.__setValues = False |
|
599 | 604 | self.isConfig = False |
|
600 | 605 | self.setupReq = False |
|
601 | 606 | def setup(self, code, osamp, dataOut): |
|
602 | 607 | |
|
603 | 608 | self.__profIndex = 0 |
|
604 | 609 | |
|
605 | 610 | self.code = code |
|
606 | 611 | |
|
607 | 612 | self.nCode = len(code) |
|
608 | 613 | self.nBaud = len(code[0]) |
|
609 | 614 | |
|
610 | 615 | if (osamp != None) and (osamp >1): |
|
611 | 616 | self.osamp = osamp |
|
612 | 617 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
613 | 618 | self.nBaud = self.nBaud*self.osamp |
|
614 | 619 | |
|
615 | 620 | self.__nChannels = dataOut.nChannels |
|
616 | 621 | self.__nProfiles = dataOut.nProfiles |
|
617 | 622 | self.__nHeis = dataOut.nHeights |
|
618 | 623 | |
|
619 | 624 | if self.__nHeis < self.nBaud: |
|
620 | 625 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) |
|
621 | 626 | |
|
622 | 627 | #Frequency |
|
623 | 628 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
624 | 629 | |
|
625 | 630 | __codeBuffer[:,0:self.nBaud] = self.code |
|
626 | 631 | |
|
627 | 632 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
628 | 633 | |
|
629 | 634 | if dataOut.flagDataAsBlock: |
|
630 | 635 | |
|
631 | 636 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
632 | 637 | |
|
633 | 638 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
634 | 639 | |
|
635 | 640 | else: |
|
636 | 641 | |
|
637 | 642 | #Time |
|
638 | 643 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
639 | 644 | |
|
640 | 645 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
641 | 646 | |
|
642 | 647 | def __convolutionInFreq(self, data): |
|
643 | 648 | |
|
644 | 649 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
645 | 650 | |
|
646 | 651 | fft_data = numpy.fft.fft(data, axis=1) |
|
647 | 652 | |
|
648 | 653 | conv = fft_data*fft_code |
|
649 | 654 | |
|
650 | 655 | data = numpy.fft.ifft(conv,axis=1) |
|
651 | 656 | |
|
652 | 657 | return data |
|
653 | 658 | |
|
654 | 659 | def __convolutionInFreqOpt(self, data): |
|
655 | 660 | |
|
656 | 661 | raise NotImplementedError |
|
657 | 662 | |
|
658 | 663 | def __convolutionInTime(self, data): |
|
659 | 664 | |
|
660 | 665 | code = self.code[self.__profIndex] |
|
661 | 666 | for i in range(self.__nChannels): |
|
662 | 667 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
663 | 668 | |
|
664 | 669 | return self.datadecTime |
|
665 | 670 | |
|
666 | 671 | def __convolutionByBlockInTime(self, data): |
|
667 | 672 | |
|
668 | 673 | repetitions = int(self.__nProfiles / self.nCode) |
|
669 | 674 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
670 | 675 | junk = junk.flatten() |
|
671 | 676 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
672 | 677 | profilesList = range(self.__nProfiles) |
|
673 | ||
|
674 |
for i in range(self.__nChannels): |
|
|
675 |
for j in profilesList: |
|
|
676 |
self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
|
677 |
return self.datadecTime |
|
|
678 | ||
|
679 | for i in range(self.__nChannels): | |
|
680 | for j in profilesList: | |
|
681 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] | |
|
682 | return self.datadecTime | |
|
678 | 683 | |
|
679 | 684 | def __convolutionByBlockInFreq(self, data): |
|
680 | 685 | |
|
681 | 686 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") |
|
682 | 687 | |
|
683 | 688 | |
|
684 | 689 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
685 | 690 | |
|
686 | 691 | fft_data = numpy.fft.fft(data, axis=2) |
|
687 | 692 | |
|
688 | 693 | conv = fft_data*fft_code |
|
689 | 694 | |
|
690 | 695 | data = numpy.fft.ifft(conv,axis=2) |
|
691 | 696 | |
|
692 | 697 | return data |
|
693 | 698 | |
|
694 | ||
|
699 | ||
|
695 | 700 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
696 | 701 | |
|
697 | 702 | if dataOut.flagDecodeData: |
|
698 | 703 | print("This data is already decoded, recoding again ...") |
|
699 | 704 | |
|
700 | 705 | if not self.isConfig: |
|
701 | 706 | |
|
702 | 707 | if code is None: |
|
703 | 708 | if dataOut.code is None: |
|
704 | 709 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) |
|
705 | 710 | |
|
706 | 711 | code = dataOut.code |
|
707 | 712 | else: |
|
708 | 713 | code = numpy.array(code).reshape(nCode,nBaud) |
|
709 | 714 | self.setup(code, osamp, dataOut) |
|
710 | 715 | |
|
711 | 716 | self.isConfig = True |
|
712 | 717 | |
|
713 | 718 | if mode == 3: |
|
714 | 719 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) |
|
715 | 720 | |
|
716 | 721 | if times != None: |
|
717 | 722 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") |
|
718 | 723 | |
|
719 | 724 | if self.code is None: |
|
720 | 725 | print("Fail decoding: Code is not defined.") |
|
721 | 726 | return |
|
722 | 727 | |
|
723 | 728 | self.__nProfiles = dataOut.nProfiles |
|
724 | 729 | datadec = None |
|
725 | ||
|
730 | ||
|
726 | 731 | if mode == 3: |
|
727 | 732 | mode = 0 |
|
728 | 733 | |
|
729 | 734 | if dataOut.flagDataAsBlock: |
|
730 | 735 | """ |
|
731 | 736 | Decoding when data have been read as block, |
|
732 | 737 | """ |
|
733 | 738 | |
|
734 | 739 | if mode == 0: |
|
735 | 740 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
736 | 741 | if mode == 1: |
|
737 | 742 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
738 | 743 | else: |
|
739 | 744 | """ |
|
740 | 745 | Decoding when data have been read profile by profile |
|
741 | 746 | """ |
|
742 | 747 | if mode == 0: |
|
743 | 748 | datadec = self.__convolutionInTime(dataOut.data) |
|
744 | 749 | |
|
745 | 750 | if mode == 1: |
|
746 | 751 | datadec = self.__convolutionInFreq(dataOut.data) |
|
747 | 752 | |
|
748 | 753 | if mode == 2: |
|
749 | 754 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
750 | 755 | |
|
751 | 756 | if datadec is None: |
|
752 | 757 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) |
|
753 | 758 | |
|
754 | 759 | dataOut.code = self.code |
|
755 | 760 | dataOut.nCode = self.nCode |
|
756 | 761 | dataOut.nBaud = self.nBaud |
|
757 | 762 | |
|
758 | 763 | dataOut.data = datadec |
|
759 | 764 | |
|
760 | 765 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
761 | 766 | |
|
762 | 767 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
763 | 768 | |
|
764 | 769 | if self.__profIndex == self.nCode-1: |
|
765 | 770 | self.__profIndex = 0 |
|
766 | 771 | return dataOut |
|
767 | 772 | |
|
768 | 773 | self.__profIndex += 1 |
|
769 | 774 | |
|
770 | 775 | return dataOut |
|
771 | 776 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
772 | 777 | |
|
773 | 778 | |
|
774 | 779 | class ProfileConcat(Operation): |
|
775 | 780 | |
|
776 | 781 | isConfig = False |
|
777 | 782 | buffer = None |
|
778 | 783 | |
|
779 | 784 | def __init__(self, **kwargs): |
|
780 | 785 | |
|
781 | 786 | Operation.__init__(self, **kwargs) |
|
782 | 787 | self.profileIndex = 0 |
|
783 | 788 | |
|
784 | 789 | def reset(self): |
|
785 | 790 | self.buffer = numpy.zeros_like(self.buffer) |
|
786 | 791 | self.start_index = 0 |
|
787 | 792 | self.times = 1 |
|
788 | 793 | |
|
789 | 794 | def setup(self, data, m, n=1): |
|
790 | 795 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
791 | 796 | self.nHeights = data.shape[1]#.nHeights |
|
792 | 797 | self.start_index = 0 |
|
793 | 798 | self.times = 1 |
|
794 | 799 | |
|
795 | 800 | def concat(self, data): |
|
796 | 801 | |
|
797 | 802 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() |
|
798 | 803 | self.start_index = self.start_index + self.nHeights |
|
799 | 804 | |
|
800 | 805 | def run(self, dataOut, m): |
|
801 | 806 | dataOut.flagNoData = True |
|
802 | 807 | |
|
803 | 808 | if not self.isConfig: |
|
804 | 809 | self.setup(dataOut.data, m, 1) |
|
805 | 810 | self.isConfig = True |
|
806 | 811 | |
|
807 | 812 | if dataOut.flagDataAsBlock: |
|
808 | 813 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") |
|
809 | 814 | |
|
810 | 815 | else: |
|
811 | 816 | self.concat(dataOut.data) |
|
812 | 817 | self.times += 1 |
|
813 | 818 | if self.times > m: |
|
814 | 819 | dataOut.data = self.buffer |
|
815 | 820 | self.reset() |
|
816 | 821 | dataOut.flagNoData = False |
|
817 | 822 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
818 | 823 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
819 | 824 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
820 | 825 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
821 | 826 | dataOut.ippSeconds *= m |
|
822 | 827 | return dataOut |
|
823 | 828 | |
|
824 | 829 | class ProfileSelector(Operation): |
|
825 | 830 | |
|
826 | 831 | profileIndex = None |
|
827 | 832 | # Tamanho total de los perfiles |
|
828 | 833 | nProfiles = None |
|
829 | 834 | |
|
830 | 835 | def __init__(self, **kwargs): |
|
831 | 836 | |
|
832 | 837 | Operation.__init__(self, **kwargs) |
|
833 | 838 | self.profileIndex = 0 |
|
834 | 839 | |
|
835 | 840 | def incProfileIndex(self): |
|
836 | 841 | |
|
837 | 842 | self.profileIndex += 1 |
|
838 | 843 | |
|
839 | 844 | if self.profileIndex >= self.nProfiles: |
|
840 | 845 | self.profileIndex = 0 |
|
841 | 846 | |
|
842 | 847 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
843 | 848 | |
|
844 | 849 | if profileIndex < minIndex: |
|
845 | 850 | return False |
|
846 | 851 | |
|
847 | 852 | if profileIndex > maxIndex: |
|
848 | 853 | return False |
|
849 | 854 | |
|
850 | 855 | return True |
|
851 | 856 | |
|
852 | 857 | def isThisProfileInList(self, profileIndex, profileList): |
|
853 | 858 | |
|
854 | 859 | if profileIndex not in profileList: |
|
855 | 860 | return False |
|
856 | 861 | |
|
857 | 862 | return True |
|
858 | 863 | |
|
859 | 864 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): |
|
860 | 865 | |
|
861 | 866 | """ |
|
862 | 867 | ProfileSelector: |
|
863 | 868 | |
|
864 | 869 | Inputs: |
|
865 | 870 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
866 | 871 | |
|
867 | 872 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
868 | 873 | |
|
869 | 874 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
870 | 875 | |
|
871 | 876 | """ |
|
872 | 877 | |
|
873 | 878 | if rangeList is not None: |
|
874 | 879 | if type(rangeList[0]) not in (tuple, list): |
|
875 | 880 | rangeList = [rangeList] |
|
876 | 881 | |
|
877 | 882 | dataOut.flagNoData = True |
|
878 | 883 | |
|
879 | 884 | if dataOut.flagDataAsBlock: |
|
880 | 885 | """ |
|
881 | 886 | data dimension = [nChannels, nProfiles, nHeis] |
|
882 | 887 | """ |
|
883 | 888 | if profileList != None: |
|
884 | 889 | dataOut.data = dataOut.data[:,profileList,:] |
|
885 | 890 | |
|
886 | 891 | if profileRangeList != None: |
|
887 | 892 | minIndex = profileRangeList[0] |
|
888 | 893 | maxIndex = profileRangeList[1] |
|
889 | 894 | profileList = list(range(minIndex, maxIndex+1)) |
|
890 | 895 | |
|
891 | 896 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
892 | 897 | |
|
893 | 898 | if rangeList != None: |
|
894 | 899 | |
|
895 | 900 | profileList = [] |
|
896 | 901 | |
|
897 | 902 | for thisRange in rangeList: |
|
898 | 903 | minIndex = thisRange[0] |
|
899 | 904 | maxIndex = thisRange[1] |
|
900 | 905 | |
|
901 | 906 | profileList.extend(list(range(minIndex, maxIndex+1))) |
|
902 | 907 | |
|
903 | 908 | dataOut.data = dataOut.data[:,profileList,:] |
|
904 | 909 | |
|
905 | 910 | dataOut.nProfiles = len(profileList) |
|
906 | 911 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
907 | 912 | dataOut.flagNoData = False |
|
908 | 913 | |
|
909 | 914 | return dataOut |
|
910 | 915 | |
|
911 | 916 | """ |
|
912 | 917 | data dimension = [nChannels, nHeis] |
|
913 | 918 | """ |
|
914 | 919 | |
|
915 | 920 | if profileList != None: |
|
916 | 921 | |
|
917 | 922 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
918 | 923 | |
|
919 | 924 | self.nProfiles = len(profileList) |
|
920 | 925 | dataOut.nProfiles = self.nProfiles |
|
921 | 926 | dataOut.profileIndex = self.profileIndex |
|
922 | 927 | dataOut.flagNoData = False |
|
923 | 928 | |
|
924 | 929 | self.incProfileIndex() |
|
925 | 930 | return dataOut |
|
926 | 931 | |
|
927 | 932 | if profileRangeList != None: |
|
928 | 933 | |
|
929 | 934 | minIndex = profileRangeList[0] |
|
930 | 935 | maxIndex = profileRangeList[1] |
|
931 | 936 | |
|
932 | 937 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
933 | 938 | |
|
934 | 939 | self.nProfiles = maxIndex - minIndex + 1 |
|
935 | 940 | dataOut.nProfiles = self.nProfiles |
|
936 | 941 | dataOut.profileIndex = self.profileIndex |
|
937 | 942 | dataOut.flagNoData = False |
|
938 | 943 | |
|
939 | 944 | self.incProfileIndex() |
|
940 | 945 | return dataOut |
|
941 | 946 | |
|
942 | 947 | if rangeList != None: |
|
943 | 948 | |
|
944 | 949 | nProfiles = 0 |
|
945 | 950 | |
|
946 | 951 | for thisRange in rangeList: |
|
947 | 952 | minIndex = thisRange[0] |
|
948 | 953 | maxIndex = thisRange[1] |
|
949 | 954 | |
|
950 | 955 | nProfiles += maxIndex - minIndex + 1 |
|
951 | 956 | |
|
952 | 957 | for thisRange in rangeList: |
|
953 | 958 | |
|
954 | 959 | minIndex = thisRange[0] |
|
955 | 960 | maxIndex = thisRange[1] |
|
956 | 961 | |
|
957 | 962 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
958 | 963 | |
|
959 | 964 | self.nProfiles = nProfiles |
|
960 | 965 | dataOut.nProfiles = self.nProfiles |
|
961 | 966 | dataOut.profileIndex = self.profileIndex |
|
962 | 967 | dataOut.flagNoData = False |
|
963 | 968 | |
|
964 | 969 | self.incProfileIndex() |
|
965 | 970 | |
|
966 | 971 | break |
|
967 | 972 | |
|
968 | 973 | return dataOut |
|
969 | 974 | |
|
970 | 975 | |
|
971 | 976 | if beam != None: #beam is only for AMISR data |
|
972 | 977 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
973 | 978 | dataOut.flagNoData = False |
|
974 | 979 | dataOut.profileIndex = self.profileIndex |
|
975 | 980 | |
|
976 | 981 | self.incProfileIndex() |
|
977 | 982 | |
|
978 | 983 | return dataOut |
|
979 | 984 | |
|
980 | 985 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") |
|
981 | 986 | |
|
982 | 987 | #return False |
|
983 | 988 | return dataOut |
|
984 | 989 | |
|
985 | 990 | class Reshaper(Operation): |
|
986 | 991 | |
|
987 | 992 | def __init__(self, **kwargs): |
|
988 | 993 | |
|
989 | 994 | Operation.__init__(self, **kwargs) |
|
990 | 995 | |
|
991 | 996 | self.__buffer = None |
|
992 | 997 | self.__nitems = 0 |
|
993 | 998 | |
|
994 | 999 | def __appendProfile(self, dataOut, nTxs): |
|
995 | 1000 | |
|
996 | 1001 | if self.__buffer is None: |
|
997 | 1002 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) |
|
998 | 1003 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) |
|
999 | 1004 | |
|
1000 | 1005 | ini = dataOut.nHeights * self.__nitems |
|
1001 | 1006 | end = ini + dataOut.nHeights |
|
1002 | 1007 | |
|
1003 | 1008 | self.__buffer[:, ini:end] = dataOut.data |
|
1004 | 1009 | |
|
1005 | 1010 | self.__nitems += 1 |
|
1006 | 1011 | |
|
1007 | 1012 | return int(self.__nitems*nTxs) |
|
1008 | 1013 | |
|
1009 | 1014 | def __getBuffer(self): |
|
1010 | 1015 | |
|
1011 | 1016 | if self.__nitems == int(1./self.__nTxs): |
|
1012 | 1017 | |
|
1013 | 1018 | self.__nitems = 0 |
|
1014 | 1019 | |
|
1015 | 1020 | return self.__buffer.copy() |
|
1016 | 1021 | |
|
1017 | 1022 | return None |
|
1018 | 1023 | |
|
1019 | 1024 | def __checkInputs(self, dataOut, shape, nTxs): |
|
1020 | 1025 | |
|
1021 | 1026 | if shape is None and nTxs is None: |
|
1022 | 1027 | raise ValueError("Reshaper: shape of factor should be defined") |
|
1023 | 1028 | |
|
1024 | 1029 | if nTxs: |
|
1025 | 1030 | if nTxs < 0: |
|
1026 | 1031 | raise ValueError("nTxs should be greater than 0") |
|
1027 | 1032 | |
|
1028 | 1033 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: |
|
1029 | 1034 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) |
|
1030 | 1035 | |
|
1031 | 1036 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] |
|
1032 | 1037 | |
|
1033 | 1038 | return shape, nTxs |
|
1034 | 1039 | |
|
1035 | 1040 | if len(shape) != 2 and len(shape) != 3: |
|
1036 | 1041 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) |
|
1037 | 1042 | |
|
1038 | 1043 | if len(shape) == 2: |
|
1039 | 1044 | shape_tuple = [dataOut.nChannels] |
|
1040 | 1045 | shape_tuple.extend(shape) |
|
1041 | 1046 | else: |
|
1042 | 1047 | shape_tuple = list(shape) |
|
1043 | 1048 | |
|
1044 | 1049 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles |
|
1045 | 1050 | |
|
1046 | 1051 | return shape_tuple, nTxs |
|
1047 | 1052 | |
|
1048 | 1053 | def run(self, dataOut, shape=None, nTxs=None): |
|
1049 | 1054 | |
|
1050 | 1055 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) |
|
1051 | 1056 | |
|
1052 | 1057 | dataOut.flagNoData = True |
|
1053 | 1058 | profileIndex = None |
|
1054 | 1059 | |
|
1055 | 1060 | if dataOut.flagDataAsBlock: |
|
1056 | 1061 | |
|
1057 | 1062 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
1058 | 1063 | dataOut.flagNoData = False |
|
1059 | 1064 | |
|
1060 | 1065 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 |
|
1061 | 1066 | |
|
1062 | 1067 | else: |
|
1063 | 1068 | |
|
1064 | 1069 | if self.__nTxs < 1: |
|
1065 | 1070 | |
|
1066 | 1071 | self.__appendProfile(dataOut, self.__nTxs) |
|
1067 | 1072 | new_data = self.__getBuffer() |
|
1068 | 1073 | |
|
1069 | 1074 | if new_data is not None: |
|
1070 | 1075 | dataOut.data = new_data |
|
1071 | 1076 | dataOut.flagNoData = False |
|
1072 | 1077 | |
|
1073 | 1078 | profileIndex = dataOut.profileIndex*nTxs |
|
1074 | 1079 | |
|
1075 | 1080 | else: |
|
1076 | 1081 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") |
|
1077 | 1082 | |
|
1078 | 1083 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1079 | 1084 | |
|
1080 | 1085 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] |
|
1081 | 1086 | |
|
1082 | 1087 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) |
|
1083 | 1088 | |
|
1084 | 1089 | dataOut.profileIndex = profileIndex |
|
1085 | 1090 | |
|
1086 | 1091 | dataOut.ippSeconds /= self.__nTxs |
|
1087 | 1092 | |
|
1088 | 1093 | return dataOut |
|
1089 | 1094 | |
|
1090 | 1095 | class SplitProfiles(Operation): |
|
1091 | 1096 | |
|
1092 | 1097 | def __init__(self, **kwargs): |
|
1093 | 1098 | |
|
1094 | 1099 | Operation.__init__(self, **kwargs) |
|
1095 | 1100 | |
|
1096 | 1101 | def run(self, dataOut, n): |
|
1097 | 1102 | |
|
1098 | 1103 | dataOut.flagNoData = True |
|
1099 | 1104 | profileIndex = None |
|
1100 | 1105 | |
|
1101 | 1106 | if dataOut.flagDataAsBlock: |
|
1102 | 1107 | |
|
1103 | 1108 | #nchannels, nprofiles, nsamples |
|
1104 | 1109 | shape = dataOut.data.shape |
|
1105 | 1110 | |
|
1106 | 1111 | if shape[2] % n != 0: |
|
1107 | 1112 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) |
|
1108 | ||
|
1113 | ||
|
1109 | 1114 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) |
|
1110 | ||
|
1115 | ||
|
1111 | 1116 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1112 | 1117 | dataOut.flagNoData = False |
|
1113 | 1118 | |
|
1114 | 1119 | profileIndex = int(dataOut.nProfiles/n) - 1 |
|
1115 | 1120 | |
|
1116 | 1121 | else: |
|
1117 | 1122 | |
|
1118 | 1123 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") |
|
1119 | 1124 | |
|
1120 | 1125 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1121 | 1126 | |
|
1122 | 1127 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] |
|
1123 | 1128 | |
|
1124 | 1129 | dataOut.nProfiles = int(dataOut.nProfiles*n) |
|
1125 | 1130 | |
|
1126 | 1131 | dataOut.profileIndex = profileIndex |
|
1127 | 1132 | |
|
1128 | 1133 | dataOut.ippSeconds /= n |
|
1129 | 1134 | |
|
1130 | 1135 | return dataOut |
|
1131 | 1136 | |
|
1132 | 1137 | class CombineProfiles(Operation): |
|
1133 | 1138 | def __init__(self, **kwargs): |
|
1134 | 1139 | |
|
1135 | 1140 | Operation.__init__(self, **kwargs) |
|
1136 | 1141 | |
|
1137 | 1142 | self.__remData = None |
|
1138 | 1143 | self.__profileIndex = 0 |
|
1139 | 1144 | |
|
1140 | 1145 | def run(self, dataOut, n): |
|
1141 | 1146 | |
|
1142 | 1147 | dataOut.flagNoData = True |
|
1143 | 1148 | profileIndex = None |
|
1144 | 1149 | |
|
1145 | 1150 | if dataOut.flagDataAsBlock: |
|
1146 | 1151 | |
|
1147 | 1152 | #nchannels, nprofiles, nsamples |
|
1148 | 1153 | shape = dataOut.data.shape |
|
1149 | 1154 | new_shape = shape[0], shape[1]/n, shape[2]*n |
|
1150 | 1155 | |
|
1151 | 1156 | if shape[1] % n != 0: |
|
1152 | 1157 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) |
|
1153 | 1158 | |
|
1154 | 1159 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1155 | 1160 | dataOut.flagNoData = False |
|
1156 | 1161 | |
|
1157 | 1162 | profileIndex = int(dataOut.nProfiles*n) - 1 |
|
1158 | 1163 | |
|
1159 | 1164 | else: |
|
1160 | 1165 | |
|
1161 | 1166 | #nchannels, nsamples |
|
1162 | 1167 | if self.__remData is None: |
|
1163 | 1168 | newData = dataOut.data |
|
1164 | 1169 | else: |
|
1165 | 1170 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) |
|
1166 | 1171 | |
|
1167 | 1172 | self.__profileIndex += 1 |
|
1168 | 1173 | |
|
1169 | 1174 | if self.__profileIndex < n: |
|
1170 | 1175 | self.__remData = newData |
|
1171 | 1176 | #continue |
|
1172 | 1177 | return |
|
1173 | 1178 | |
|
1174 | 1179 | self.__profileIndex = 0 |
|
1175 | 1180 | self.__remData = None |
|
1176 | 1181 | |
|
1177 | 1182 | dataOut.data = newData |
|
1178 | 1183 | dataOut.flagNoData = False |
|
1179 | 1184 | |
|
1180 | 1185 | profileIndex = dataOut.profileIndex/n |
|
1181 | 1186 | |
|
1182 | 1187 | |
|
1183 | 1188 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1184 | 1189 | |
|
1185 | 1190 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] |
|
1186 | 1191 | |
|
1187 | 1192 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1188 | 1193 | |
|
1189 | 1194 | dataOut.profileIndex = profileIndex |
|
1190 | 1195 | |
|
1191 | 1196 | dataOut.ippSeconds *= n |
|
1192 | 1197 | |
|
1193 | 1198 | return dataOut |
|
1199 | ||
|
1200 | ||
|
1201 | ||
|
1202 | class CreateBlockVoltage(Operation): | |
|
1203 | ||
|
1204 | isConfig = False | |
|
1205 | __Index = 0 | |
|
1206 | bufferShape = None | |
|
1207 | buffer = None | |
|
1208 | firstdatatime = None | |
|
1209 | ||
|
1210 | def __init__(self,**kwargs): | |
|
1211 | Operation.__init__(self,**kwargs) | |
|
1212 | self.isConfig = False | |
|
1213 | self.__Index = 0 | |
|
1214 | self.firstdatatime = None | |
|
1215 | ||
|
1216 | def setup(self,dataOut, m = None ): | |
|
1217 | ''' | |
|
1218 | m= Numero perfiles | |
|
1219 | ''' | |
|
1220 | #print("CONFIGURANDO CBV") | |
|
1221 | self.__nChannels = dataOut.nChannels | |
|
1222 | self.__nHeis = dataOut.nHeights | |
|
1223 | shape = dataOut.data.shape #nchannels, nprofiles, nsamples | |
|
1224 | #print("input nChannels",self.__nChannels) | |
|
1225 | #print("input nHeis",self.__nHeis) | |
|
1226 | #print("SETUP CREATE BLOCK VOLTAGE") | |
|
1227 | #print("input Shape",shape) | |
|
1228 | #print("dataOut.nProfiles",dataOut.nProfiles) | |
|
1229 | numberSamples = self.__nHeis | |
|
1230 | numberProfile = int(m) | |
|
1231 | dataOut.nProfiles = numberProfile | |
|
1232 | #print("new numberProfile",numberProfile) | |
|
1233 | #print("new numberSamples",numberSamples) | |
|
1234 | ||
|
1235 | self.bufferShape = shape[0], numberProfile, numberSamples # nchannels,nprofiles,nsamples | |
|
1236 | self.buffer = numpy.zeros((self.bufferShape)) | |
|
1237 | self.bufferVel = numpy.zeros((self.bufferShape)) | |
|
1238 | ||
|
1239 | def run(self, dataOut, m=None): | |
|
1240 | #print("RUN") | |
|
1241 | dataOut.flagNoData = True | |
|
1242 | dataOut.flagDataAsBlock = False | |
|
1243 | #print("BLOCK INDEX ",self.__Index) | |
|
1244 | ||
|
1245 | if not self.isConfig: | |
|
1246 | self.setup(dataOut, m= m) | |
|
1247 | self.isConfig = True | |
|
1248 | if self.__Index < m: | |
|
1249 | #print("PROFINDEX BLOCK CBV",self.__Index) | |
|
1250 | self.buffer[:,self.__Index,:] = dataOut.data | |
|
1251 | self.bufferVel[:,self.__Index,:] = dataOut.data_velocity | |
|
1252 | self.__Index += 1 | |
|
1253 | dataOut.flagNoData = True | |
|
1254 | ||
|
1255 | if self.firstdatatime == None: | |
|
1256 | self.firstdatatime = dataOut.utctime | |
|
1257 | ||
|
1258 | if self.__Index == m: | |
|
1259 | #print("**********************************************") | |
|
1260 | #print("self.buffer.shape ",self.buffer.shape) | |
|
1261 | #print("##############",self.firstdatatime) | |
|
1262 | ##print("*********************************************") | |
|
1263 | ##print("*********************************************") | |
|
1264 | ##print("******* nProfiles *******", dataOut.nProfiles) | |
|
1265 | ##print("*********************************************") | |
|
1266 | ##print("*********************************************") | |
|
1267 | dataOut.data = self.buffer | |
|
1268 | dataOut.data_velocity = self.bufferVel | |
|
1269 | dataOut.utctime = self.firstdatatime | |
|
1270 | dataOut.nProfiles = m | |
|
1271 | self.firstdatatime = None | |
|
1272 | dataOut.flagNoData = False | |
|
1273 | dataOut.flagDataAsBlock = True | |
|
1274 | self.__Index = 0 | |
|
1275 | dataOut.identifierWR = True | |
|
1276 | return dataOut | |
|
1277 | ||
|
1278 | class PulsePairVoltage(Operation): | |
|
1279 | ''' | |
|
1280 | Function PulsePair(Signal Power, Velocity) | |
|
1281 | The real component of Lag[0] provides Intensity Information | |
|
1282 | The imag component of Lag[1] Phase provides Velocity Information | |
|
1283 | ||
|
1284 | Configuration Parameters: | |
|
1285 | nPRF = Number of Several PRF | |
|
1286 | theta = Degree Azimuth angel Boundaries | |
|
1287 | ||
|
1288 | Input: | |
|
1289 | self.dataOut | |
|
1290 | lag[N] | |
|
1291 | Affected: | |
|
1292 | self.dataOut.spc | |
|
1293 | ''' | |
|
1294 | isConfig = False | |
|
1295 | __profIndex = 0 | |
|
1296 | __initime = None | |
|
1297 | __lastdatatime = None | |
|
1298 | __buffer = None | |
|
1299 | __buffer2 = [] | |
|
1300 | __buffer3 = None | |
|
1301 | __dataReady = False | |
|
1302 | n = None | |
|
1303 | __nch = 0 | |
|
1304 | __nHeis = 0 | |
|
1305 | ||
|
1306 | def __init__(self,**kwargs): | |
|
1307 | Operation.__init__(self,**kwargs) | |
|
1308 | ||
|
1309 | def setup(self, dataOut, n = None ): | |
|
1310 | ''' | |
|
1311 | n= Numero de PRF's de entrada | |
|
1312 | ''' | |
|
1313 | self.__initime = None | |
|
1314 | self.__lastdatatime = 0 | |
|
1315 | self.__dataReady = False | |
|
1316 | self.__buffer = 0 | |
|
1317 | self.__buffer2 = [] | |
|
1318 | self.__buffer3 = 0 | |
|
1319 | self.__profIndex = 0 | |
|
1320 | ||
|
1321 | self.__nch = dataOut.nChannels | |
|
1322 | self.__nHeis = dataOut.nHeights | |
|
1323 | ||
|
1324 | print("ELVALOR DE n es:", n) | |
|
1325 | if n == None: | |
|
1326 | raise ValueError("n should be specified.") | |
|
1327 | ||
|
1328 | if n != None: | |
|
1329 | if n<2: | |
|
1330 | raise ValueError("n should be greater than 2") | |
|
1331 | ||
|
1332 | self.n = n | |
|
1333 | self.__nProf = n | |
|
1334 | ''' | |
|
1335 | if overlapping: | |
|
1336 | self.__withOverlapping = True | |
|
1337 | self.__buffer = None | |
|
1338 | ||
|
1339 | else: | |
|
1340 | #print ("estoy sin __withO") | |
|
1341 | self.__withOverlapping = False | |
|
1342 | self.__buffer = 0 | |
|
1343 | self.__buffer2 = [] | |
|
1344 | self.__buffer3 = 0 | |
|
1345 | ''' | |
|
1346 | ||
|
1347 | def putData(self,data): | |
|
1348 | ''' | |
|
1349 | Add a profile to he __buffer and increase in one the __profiel Index | |
|
1350 | ''' | |
|
1351 | #print("self.__profIndex :",self.__profIndex) | |
|
1352 | self.__buffer += data*numpy.conjugate(data) | |
|
1353 | self.__buffer2.append(numpy.conjugate(data)) | |
|
1354 | if self.__profIndex > 0: | |
|
1355 | self.__buffer3 += self.__buffer2[self.__profIndex-1]*data | |
|
1356 | self.__profIndex += 1 | |
|
1357 | return | |
|
1358 | ''' | |
|
1359 | if not self.__withOverlapping: | |
|
1360 | #print("Putdata inside over") | |
|
1361 | self.__buffer += data* numpy.conjugate(data) | |
|
1362 | self.__buffer2.append(numpy.conjugate(data)) | |
|
1363 | ||
|
1364 | if self.__profIndex >0: | |
|
1365 | self.__buffer3 += self.__buffer2[self.__profIndex-1]*data | |
|
1366 | self.__profIndex += 1 | |
|
1367 | return | |
|
1368 | ||
|
1369 | if self.__buffer is None: | |
|
1370 | #print("aqui bro") | |
|
1371 | self.__buffer = data* numpy.conjugate(data) | |
|
1372 | self.__buffer2.append(numpy.conjugate(data)) | |
|
1373 | self.__profIndex += 1 | |
|
1374 | ||
|
1375 | return | |
|
1376 | ||
|
1377 | if self.__profIndex < self.n: | |
|
1378 | self.__buffer = numpy.vstack(self.__buffer,data* numpy.conjugate(data)) | |
|
1379 | self.__buffer2.append(numpy.conjugate(data)) | |
|
1380 | ||
|
1381 | if self.__profIndex == 1: | |
|
1382 | self.__buffer3 = self.__buffer2[self.__profIndex -1] * data | |
|
1383 | else: | |
|
1384 | self.__buffer3 = numpy.vstack(self.__buffer3, self.__buffer2[self.profIndex-1]*data) | |
|
1385 | ||
|
1386 | self.__profIndex += 1 | |
|
1387 | return | |
|
1388 | ''' | |
|
1389 | ||
|
1390 | def pushData(self): | |
|
1391 | ''' | |
|
1392 | Return the PULSEPAIR and the profiles used in the operation | |
|
1393 | Affected : self.__profileIndex | |
|
1394 | ''' | |
|
1395 | #print("************************************************") | |
|
1396 | #print("push data int vel n") | |
|
1397 | data_intensity = self.__buffer/self.n | |
|
1398 | data_velocity = self.__buffer3/(self.n-1) | |
|
1399 | n = self.__profIndex | |
|
1400 | ||
|
1401 | self.__buffer = 0 | |
|
1402 | self.__buffer2 = [] | |
|
1403 | self.__buffer3 = 0 | |
|
1404 | self.__profIndex = 0 | |
|
1405 | ||
|
1406 | return data_intensity, data_velocity,n | |
|
1407 | ''' | |
|
1408 | if not self.__withOverlapping: | |
|
1409 | #print("ahora que fue") | |
|
1410 | data_intensity = self.__buffer/self.n | |
|
1411 | data_velocity = self.__buffer3/(self.n-1) | |
|
1412 | n = self.__profIndex | |
|
1413 | ||
|
1414 | self.__buffer = 0 | |
|
1415 | self.__buffer2 = [] | |
|
1416 | self.__buffer3 = 0 | |
|
1417 | self.__profIndex = 0 | |
|
1418 | return data_intensity, data_velocity,n | |
|
1419 | ||
|
1420 | data_intensity = numpy.sum(self.__buffer,axis = 0) | |
|
1421 | data_velocity = numpy.sum(self.__buffer3,axis = 0) | |
|
1422 | n = self.__profIndex | |
|
1423 | #self.__buffer = 0 | |
|
1424 | #self.__buffer2 = [] | |
|
1425 | #self.__buffer3 = 0 | |
|
1426 | #self.__profIndex = 0 | |
|
1427 | return data_intensity, data_velocity,n | |
|
1428 | ''' | |
|
1429 | ||
|
1430 | def pulsePairbyProfiles(self,data): | |
|
1431 | ||
|
1432 | self.__dataReady = False | |
|
1433 | data_intensity = None | |
|
1434 | data_velocity = None | |
|
1435 | #print("beforeputada") | |
|
1436 | self.putData(data) | |
|
1437 | #print("ProfileIndex:",self.__profIndex) | |
|
1438 | if self.__profIndex == self.n: | |
|
1439 | data_intensity, data_velocity, n = self.pushData() | |
|
1440 | self.__dataReady = True | |
|
1441 | #print("-----------------------------------------------") | |
|
1442 | #print("data_intensity",data_intensity.shape,"data_velocity",data_velocity.shape) | |
|
1443 | return data_intensity, data_velocity | |
|
1444 | ||
|
1445 | def pulsePairOp(self, data, datatime= None): | |
|
1446 | ||
|
1447 | if self.__initime == None: | |
|
1448 | self.__initime = datatime | |
|
1449 | ||
|
1450 | data_intensity, data_velocity = self.pulsePairbyProfiles(data) | |
|
1451 | self.__lastdatatime = datatime | |
|
1452 | ||
|
1453 | if data_intensity is None: | |
|
1454 | return None, None, None | |
|
1455 | ||
|
1456 | avgdatatime = self.__initime | |
|
1457 | deltatime = datatime - self.__lastdatatime | |
|
1458 | self.__initime = datatime | |
|
1459 | ''' | |
|
1460 | if not self.__withOverlapping: | |
|
1461 | self.__initime = datatime | |
|
1462 | else: | |
|
1463 | self.__initime += deltatime | |
|
1464 | ''' | |
|
1465 | return data_intensity, data_velocity, avgdatatime | |
|
1466 | ||
|
1467 | def run(self, dataOut,n = None, overlapping= False,**kwargs): | |
|
1468 | ||
|
1469 | if not self.isConfig: | |
|
1470 | self.setup(dataOut = dataOut, n = n , **kwargs) | |
|
1471 | self.isConfig = True | |
|
1472 | #print("*******************") | |
|
1473 | #print("print Shape input data:",dataOut.data.shape) | |
|
1474 | data_intensity, data_velocity, avgdatatime = self.pulsePairOp(dataOut.data, dataOut.utctime) | |
|
1475 | dataOut.flagNoData = True | |
|
1476 | ||
|
1477 | if self.__dataReady: | |
|
1478 | #print("#------------------------------------------------------") | |
|
1479 | #print("data_ready",data_intensity.shape) | |
|
1480 | dataOut.data = data_intensity #valor para plotear RTI | |
|
1481 | dataOut.nCohInt *= self.n | |
|
1482 | dataOut.data_intensity = data_intensity #valor para intensidad | |
|
1483 | dataOut.data_velocity = data_velocity #valor para velocidad | |
|
1484 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. | |
|
1485 | dataOut.utctime = avgdatatime | |
|
1486 | dataOut.flagNoData = False | |
|
1487 | return dataOut | |
|
1488 | ||
|
1194 | 1489 | # import collections |
|
1195 | 1490 | # from scipy.stats import mode |
|
1196 | 1491 | # |
|
1197 | 1492 | # class Synchronize(Operation): |
|
1198 | 1493 | # |
|
1199 | 1494 | # isConfig = False |
|
1200 | 1495 | # __profIndex = 0 |
|
1201 | 1496 | # |
|
1202 | 1497 | # def __init__(self, **kwargs): |
|
1203 | 1498 | # |
|
1204 | 1499 | # Operation.__init__(self, **kwargs) |
|
1205 | 1500 | # # self.isConfig = False |
|
1206 | 1501 | # self.__powBuffer = None |
|
1207 | 1502 | # self.__startIndex = 0 |
|
1208 | 1503 | # self.__pulseFound = False |
|
1209 | 1504 | # |
|
1210 | 1505 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): |
|
1211 | 1506 | # |
|
1212 | 1507 | # #Read data |
|
1213 | 1508 | # |
|
1214 | 1509 | # powerdB = dataOut.getPower(channel = channel) |
|
1215 | 1510 | # noisedB = dataOut.getNoise(channel = channel)[0] |
|
1216 | 1511 | # |
|
1217 | 1512 | # self.__powBuffer.extend(powerdB.flatten()) |
|
1218 | 1513 | # |
|
1219 | 1514 | # dataArray = numpy.array(self.__powBuffer) |
|
1220 | 1515 | # |
|
1221 | 1516 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") |
|
1222 | 1517 | # |
|
1223 | 1518 | # maxValue = numpy.nanmax(filteredPower) |
|
1224 | 1519 | # |
|
1225 | 1520 | # if maxValue < noisedB + 10: |
|
1226 | 1521 | # #No se encuentra ningun pulso de transmision |
|
1227 | 1522 | # return None |
|
1228 | 1523 | # |
|
1229 | 1524 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] |
|
1230 | 1525 | # |
|
1231 | 1526 | # if len(maxValuesIndex) < 2: |
|
1232 | 1527 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX |
|
1233 | 1528 | # return None |
|
1234 | 1529 | # |
|
1235 | 1530 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples |
|
1236 | 1531 | # |
|
1237 | 1532 | # #Seleccionar solo valores con un espaciamiento de nSamples |
|
1238 | 1533 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) |
|
1239 | 1534 | # |
|
1240 | 1535 | # if len(pulseIndex) < 2: |
|
1241 | 1536 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1242 | 1537 | # return None |
|
1243 | 1538 | # |
|
1244 | 1539 | # spacing = pulseIndex[1:] - pulseIndex[:-1] |
|
1245 | 1540 | # |
|
1246 | 1541 | # #remover senales que se distancien menos de 10 unidades o muestras |
|
1247 | 1542 | # #(No deberian existir IPP menor a 10 unidades) |
|
1248 | 1543 | # |
|
1249 | 1544 | # realIndex = numpy.where(spacing > 10 )[0] |
|
1250 | 1545 | # |
|
1251 | 1546 | # if len(realIndex) < 2: |
|
1252 | 1547 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1253 | 1548 | # return None |
|
1254 | 1549 | # |
|
1255 | 1550 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) |
|
1256 | 1551 | # realPulseIndex = pulseIndex[realIndex] |
|
1257 | 1552 | # |
|
1258 | 1553 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] |
|
1259 | 1554 | # |
|
1260 | 1555 | # print "IPP = %d samples" %period |
|
1261 | 1556 | # |
|
1262 | 1557 | # self.__newNSamples = dataOut.nHeights #int(period) |
|
1263 | 1558 | # self.__startIndex = int(realPulseIndex[0]) |
|
1264 | 1559 | # |
|
1265 | 1560 | # return 1 |
|
1266 | 1561 | # |
|
1267 | 1562 | # |
|
1268 | 1563 | # def setup(self, nSamples, nChannels, buffer_size = 4): |
|
1269 | 1564 | # |
|
1270 | 1565 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), |
|
1271 | 1566 | # maxlen = buffer_size*nSamples) |
|
1272 | 1567 | # |
|
1273 | 1568 | # bufferList = [] |
|
1274 | 1569 | # |
|
1275 | 1570 | # for i in range(nChannels): |
|
1276 | 1571 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, |
|
1277 | 1572 | # maxlen = buffer_size*nSamples) |
|
1278 | 1573 | # |
|
1279 | 1574 | # bufferList.append(bufferByChannel) |
|
1280 | 1575 | # |
|
1281 | 1576 | # self.__nSamples = nSamples |
|
1282 | 1577 | # self.__nChannels = nChannels |
|
1283 | 1578 | # self.__bufferList = bufferList |
|
1284 | 1579 | # |
|
1285 | 1580 | # def run(self, dataOut, channel = 0): |
|
1286 | 1581 | # |
|
1287 | 1582 | # if not self.isConfig: |
|
1288 | 1583 | # nSamples = dataOut.nHeights |
|
1289 | 1584 | # nChannels = dataOut.nChannels |
|
1290 | 1585 | # self.setup(nSamples, nChannels) |
|
1291 | 1586 | # self.isConfig = True |
|
1292 | 1587 | # |
|
1293 | 1588 | # #Append new data to internal buffer |
|
1294 | 1589 | # for thisChannel in range(self.__nChannels): |
|
1295 | 1590 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1296 | 1591 | # bufferByChannel.extend(dataOut.data[thisChannel]) |
|
1297 | 1592 | # |
|
1298 | 1593 | # if self.__pulseFound: |
|
1299 | 1594 | # self.__startIndex -= self.__nSamples |
|
1300 | 1595 | # |
|
1301 | 1596 | # #Finding Tx Pulse |
|
1302 | 1597 | # if not self.__pulseFound: |
|
1303 | 1598 | # indexFound = self.__findTxPulse(dataOut, channel) |
|
1304 | 1599 | # |
|
1305 | 1600 | # if indexFound == None: |
|
1306 | 1601 | # dataOut.flagNoData = True |
|
1307 | 1602 | # return |
|
1308 | 1603 | # |
|
1309 | 1604 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) |
|
1310 | 1605 | # self.__pulseFound = True |
|
1311 | 1606 | # self.__startIndex = indexFound |
|
1312 | 1607 | # |
|
1313 | 1608 | # #If pulse was found ... |
|
1314 | 1609 | # for thisChannel in range(self.__nChannels): |
|
1315 | 1610 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1316 | 1611 | # #print self.__startIndex |
|
1317 | 1612 | # x = numpy.array(bufferByChannel) |
|
1318 | 1613 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] |
|
1319 | 1614 | # |
|
1320 | 1615 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1321 | 1616 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight |
|
1322 | 1617 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 |
|
1323 | 1618 | # |
|
1324 | 1619 | # dataOut.data = self.__arrayBuffer |
|
1325 | 1620 | # |
|
1326 | 1621 | # self.__startIndex += self.__newNSamples |
|
1327 | 1622 | # |
|
1328 | 1623 | # return |
@@ -1,183 +1,203 | |||
|
1 | 1 | #!python |
|
2 | 2 | ''' |
|
3 | 3 | ''' |
|
4 | 4 | |
|
5 | 5 | import os, sys |
|
6 | 6 | import datetime |
|
7 | 7 | import time |
|
8 | 8 | |
|
9 | 9 | #path = os.path.dirname(os.getcwd()) |
|
10 | 10 | #path = os.path.dirname(path) |
|
11 | 11 | #sys.path.insert(0, path) |
|
12 | 12 | |
|
13 | 13 | from schainpy.controller import Project |
|
14 | 14 | |
|
15 | 15 | desc = "USRP_test" |
|
16 | 16 | filename = "USRP_processing.xml" |
|
17 | 17 | controllerObj = Project() |
|
18 | 18 | controllerObj.setup(id = '191', name='Test_USRP', description=desc) |
|
19 | 19 | |
|
20 | 20 | ############## USED TO PLOT IQ VOLTAGE, POWER AND SPECTRA ############# |
|
21 | 21 | |
|
22 | 22 | ####################################################################### |
|
23 | 23 | ######PATH DE LECTURA, ESCRITURA, GRAFICOS Y ENVIO WEB################# |
|
24 | 24 | ####################################################################### |
|
25 | 25 | #path = '/media/data/data/vientos/57.2063km/echoes/NCO_Woodman' |
|
26 | 26 | |
|
27 | 27 | |
|
28 | path = '/home/soporte/data_hdf5' #### with clock 35.16 db noise | |
|
29 | ||
|
30 | figpath = '/home/soporte/data_hdf5_imag' | |
|
28 | #path = '/home/soporte/data_hdf5' #### with clock 35.16 db noise | |
|
29 | path = '/home/alex/WEATHER_DATA/DATA' | |
|
30 | figpath = '/home/alex/WEATHER_DATA/DATA/pic' | |
|
31 | #figpath = '/home/soporte/data_hdf5_imag' | |
|
31 | 32 | #remotefolder = "/home/wmaster/graficos" |
|
32 | 33 | ####################################################################### |
|
33 | 34 | ################# RANGO DE PLOTEO###################################### |
|
34 | 35 | ####################################################################### |
|
35 | 36 | dBmin = '30' |
|
36 | 37 | dBmax = '60' |
|
37 | 38 | xmin = '0' |
|
38 | 39 | xmax ='24' |
|
39 | 40 | ymin = '0' |
|
40 | 41 | ymax = '600' |
|
41 | 42 | ####################################################################### |
|
42 | 43 | ########################FECHA########################################## |
|
43 | 44 | ####################################################################### |
|
44 | 45 | str = datetime.date.today() |
|
45 | 46 | today = str.strftime("%Y/%m/%d") |
|
46 | 47 | str2 = str - datetime.timedelta(days=1) |
|
47 | 48 | yesterday = str2.strftime("%Y/%m/%d") |
|
48 | 49 | ####################################################################### |
|
49 | 50 | ######################## UNIDAD DE LECTURA############################# |
|
50 | 51 | ####################################################################### |
|
51 | 52 | readUnitConfObj = controllerObj.addReadUnit(datatype='DigitalRFReader', |
|
52 | 53 | path=path, |
|
53 | 54 | startDate="2019/01/01",#today, |
|
54 | 55 | endDate="2109/12/30",#today, |
|
55 | 56 | startTime='00:00:00', |
|
56 | 57 | endTime='23:59:59', |
|
57 | 58 | delay=0, |
|
58 | 59 | #set=0, |
|
59 | 60 | online=0, |
|
60 | 61 | walk=1, |
|
61 | 62 | ippKm = 1000) |
|
62 | 63 | |
|
63 | 64 | opObj11 = readUnitConfObj.addOperation(name='printInfo') |
|
64 | 65 | opObj11 = readUnitConfObj.addOperation(name='printNumberOfBlock') |
|
65 | 66 | ####################################################################### |
|
66 | 67 | ################ OPERACIONES DOMINIO DEL TIEMPO######################## |
|
67 | 68 | ####################################################################### |
|
68 | 69 | |
|
69 | 70 | procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) |
|
70 | 71 | # |
|
71 | 72 | # codigo64='1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0,1,0,0,1,0,1,1,1,0,0,0,1,0,'+\ |
|
72 | 73 | # '1,1,1,0,1,1,0,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1,0,0,0,1,1,1,0,1' |
|
73 | 74 | |
|
74 | 75 | #opObj11 = procUnitConfObjA.addOperation(name='setRadarFrequency') |
|
75 | 76 | #opObj11.addParameter(name='frequency', value='30e6', format='float') |
|
76 | 77 | |
|
77 | 78 | #opObj10 = procUnitConfObjA.addOperation(name='Scope', optype='external') |
|
78 | 79 | #opObj10.addParameter(name='id', value='10', format='int') |
|
79 | 80 | ##opObj10.addParameter(name='xmin', value='0', format='int') |
|
80 | 81 | ##opObj10.addParameter(name='xmax', value='50', format='int') |
|
81 | 82 | #opObj10.addParameter(name='type', value='iq') |
|
82 | 83 | #opObj10.addParameter(name='ymin', value='-5000', format='int') |
|
83 | 84 | ##opObj10.addParameter(name='ymax', value='8500', format='int') |
|
84 | 85 | |
|
85 | 86 | #opObj10 = procUnitConfObjA.addOperation(name='setH0') |
|
86 | 87 | #opObj10.addParameter(name='h0', value='-5000', format='float') |
|
87 | 88 | |
|
88 | 89 | #opObj11 = procUnitConfObjA.addOperation(name='filterByHeights') |
|
89 | 90 | #opObj11.addParameter(name='window', value='1', format='int') |
|
90 | 91 | |
|
91 | 92 | #codigo='1,1,-1,1,1,-1,1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1' |
|
92 | 93 | #opObj11 = procUnitConfObjSousy.addOperation(name='Decoder', optype='other') |
|
93 | 94 | #opObj11.addParameter(name='code', value=codigo, format='floatlist') |
|
94 | 95 | #opObj11.addParameter(name='nCode', value='1', format='int') |
|
95 | 96 | #opObj11.addParameter(name='nBaud', value='28', format='int') |
|
96 | 97 | |
|
97 | 98 | #opObj11 = procUnitConfObjA.addOperation(name='CohInt', optype='other') |
|
98 |
#opObj11.addParameter(name='n', value='10 |
|
|
99 | #opObj11.addParameter(name='n', value='10', format='int') | |
|
100 | ||
|
101 | ||
|
102 | opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other') | |
|
103 | opObj11.addParameter(name='n', value='10', format='int') | |
|
104 | ||
|
105 | opObj11 = procUnitConfObjA.addOperation(name='CreateBlockVoltage', optype='other') | |
|
106 | opObj11.addParameter(name='m', value='16', format='int') | |
|
107 | ||
|
108 | procUnitConfObj2 = controllerObj.addProcUnit(datatype='ParametersProc', inputId=procUnitConfObjA.getId()) | |
|
99 | 109 | |
|
110 | #Not used because the RGB data is obtained directly from the HF Reader. | |
|
111 | #opObj21 = procUnitConfObj2.addOperation(name='GetRGBData') | |
|
112 | ||
|
113 | opObj21 = procUnitConfObj2.addOperation(name='ParamWriter', optype='external') | |
|
114 | opObj21.addParameter(name='path', value=figpath+'/NEWData') | |
|
115 | opObj21.addParameter(name='blocksPerFile', value='1', format='int') | |
|
116 | opObj21.addParameter(name='metadataList',value='heightList',format='list') | |
|
117 | opObj21.addParameter(name='dataList',value='data_intensity',format='list') | |
|
118 | ||
|
119 | ''' | |
|
100 | 120 |
|
|
101 | 121 |
|
|
102 | 122 |
|
|
103 | 123 | procUnitConfObjSousySpectra = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId()) |
|
104 |
procUnitConfObjSousySpectra.addParameter(name='nFFTPoints', value='1 |
|
|
105 |
procUnitConfObjSousySpectra.addParameter(name='nProfiles', value='1 |
|
|
124 | procUnitConfObjSousySpectra.addParameter(name='nFFTPoints', value='16', format='int') | |
|
125 | procUnitConfObjSousySpectra.addParameter(name='nProfiles', value='16', format='int') | |
|
106 | 126 |
|
|
107 | 127 |
|
|
108 | 128 |
|
|
109 | 129 |
|
|
110 | 130 |
|
|
111 | 131 |
|
|
112 | 132 |
|
|
113 | 133 |
|
|
114 | 134 |
|
|
115 | 135 |
|
|
116 | 136 |
|
|
117 | 137 |
|
|
118 | 138 | opObj11 = procUnitConfObjSousySpectra.addOperation(name='SpectraPlot', optype='external') |
|
119 | 139 | opObj11.addParameter(name='id', value='1', format='int') |
|
120 | 140 | opObj11.addParameter(name='wintitle', value='Spectra', format='str') |
|
121 | 141 |
|
|
122 | 142 |
|
|
123 | 143 |
|
|
124 | 144 |
|
|
125 | 145 |
|
|
126 | 146 |
|
|
127 | 147 | opObj11.addParameter(name='showprofile', value='1', format='int') |
|
128 | 148 | opObj11.addParameter(name='save', value=figpath, format='str') |
|
129 | 149 | opObj11.addParameter(name='save_period', value=10, format='int') |
|
130 | 150 |
|
|
131 | 151 |
|
|
132 | 152 |
|
|
133 | 153 |
|
|
134 | 154 | opObj11 = procUnitConfObjSousySpectra.addOperation(name='RTIPlot', optype='external') |
|
135 | 155 | opObj11.addParameter(name='id', value='2', format='int') |
|
136 | 156 | opObj11.addParameter(name='wintitle', value='RTIPlot', format='str') |
|
137 | 157 |
|
|
138 | 158 |
|
|
139 | 159 |
|
|
140 | 160 |
|
|
141 | 161 | opObj11.addParameter(name='xmin', value=0, format='int') |
|
142 | 162 | opObj11.addParameter(name='xmax', value=23, format='int') |
|
143 | 163 |
|
|
144 | 164 | opObj11.addParameter(name='showprofile', value='1', format='int') |
|
145 | 165 | opObj11.addParameter(name='save', value=figpath, format='str') |
|
146 | 166 | opObj11.addParameter(name='save_period', value=10, format='int') |
|
147 | 167 |
|
|
148 | 168 |
|
|
149 | 169 |
|
|
150 | 170 |
|
|
151 | 171 |
|
|
152 | 172 |
|
|
153 | 173 |
|
|
154 | 174 |
|
|
155 | 175 |
|
|
156 | 176 |
|
|
157 | 177 |
|
|
158 | 178 |
|
|
159 | 179 |
|
|
160 | 180 |
|
|
161 | 181 |
|
|
162 | 182 |
|
|
163 | 183 |
|
|
164 | 184 |
|
|
165 | 185 |
|
|
166 | 186 |
|
|
167 | 187 |
|
|
168 | 188 |
|
|
169 | 189 |
|
|
170 | 190 |
|
|
171 | 191 |
|
|
172 | 192 |
|
|
173 | 193 |
|
|
174 | 194 |
|
|
175 | 195 |
|
|
176 | 196 |
|
|
197 | ''' | |
|
177 | 198 | print ("Escribiendo el archivo XML") |
|
178 | 199 | print ("Leyendo el archivo XML") |
|
179 | 200 | |
|
180 | 201 | |
|
181 | 202 | |
|
182 | 203 | controllerObj.start() |
|
183 |
General Comments 0
You need to be logged in to leave comments.
Login now