@@ -548,7 +548,7 class Spectra(JROData): | |||
|
548 | 548 | |
|
549 | 549 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
550 | 550 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
551 | ||
|
551 | ||
|
552 | 552 | if self.nmodes: |
|
553 | 553 | return velrange/self.nmodes |
|
554 | 554 | else: |
@@ -1104,7 +1104,7 class PlotterData(object): | |||
|
1104 | 1104 | MAXNUMY = 100 |
|
1105 | 1105 | |
|
1106 | 1106 | def __init__(self, code, throttle_value, exp_code, buffering=True, snr=False): |
|
1107 | ||
|
1107 | ||
|
1108 | 1108 | self.key = code |
|
1109 | 1109 | self.throttle = throttle_value |
|
1110 | 1110 | self.exp_code = exp_code |
@@ -1139,7 +1139,7 class PlotterData(object): | |||
|
1139 | 1139 | return len(self.__times) |
|
1140 | 1140 | |
|
1141 | 1141 | def __getitem__(self, key): |
|
1142 | ||
|
1142 | ||
|
1143 | 1143 | if key not in self.data: |
|
1144 | 1144 | raise KeyError(log.error('Missing key: {}'.format(key))) |
|
1145 | 1145 | if 'spc' in key or not self.buffering: |
@@ -1172,7 +1172,7 class PlotterData(object): | |||
|
1172 | 1172 | elif 'spc_moments' == plot: |
|
1173 | 1173 | plot = 'moments' |
|
1174 | 1174 | self.data[plot] = {} |
|
1175 | ||
|
1175 | ||
|
1176 | 1176 | if 'spc' in self.data or 'rti' in self.data or 'cspc' in self.data or 'moments' in self.data: |
|
1177 | 1177 | self.data['noise'] = {} |
|
1178 | 1178 | self.data['rti'] = {} |
@@ -1180,7 +1180,7 class PlotterData(object): | |||
|
1180 | 1180 | self.plottypes.append('noise') |
|
1181 | 1181 | if 'rti' not in self.plottypes: |
|
1182 | 1182 | self.plottypes.append('rti') |
|
1183 | ||
|
1183 | ||
|
1184 | 1184 | def shape(self, key): |
|
1185 | 1185 | ''' |
|
1186 | 1186 | Get the shape of the one-element data for the given key |
@@ -1196,17 +1196,17 class PlotterData(object): | |||
|
1196 | 1196 | ''' |
|
1197 | 1197 | Update data object with new dataOut |
|
1198 | 1198 | ''' |
|
1199 | ||
|
1199 | ||
|
1200 | 1200 | if tm in self.__times: |
|
1201 | 1201 | return |
|
1202 | 1202 | self.profileIndex = dataOut.profileIndex |
|
1203 | 1203 | self.tm = tm |
|
1204 | 1204 | self.type = dataOut.type |
|
1205 | 1205 | self.parameters = getattr(dataOut, 'parameters', []) |
|
1206 | ||
|
1206 | ||
|
1207 | 1207 | if hasattr(dataOut, 'meta'): |
|
1208 | 1208 | self.meta.update(dataOut.meta) |
|
1209 | ||
|
1209 | ||
|
1210 | 1210 | self.pairs = dataOut.pairsList |
|
1211 | 1211 | self.interval = dataOut.getTimeInterval() |
|
1212 | 1212 | self.localtime = dataOut.useLocalTime |
@@ -1217,7 +1217,7 class PlotterData(object): | |||
|
1217 | 1217 | self.__heights.append(dataOut.heightList) |
|
1218 | 1218 | self.__all_heights.update(dataOut.heightList) |
|
1219 | 1219 | self.__times.append(tm) |
|
1220 | ||
|
1220 | ||
|
1221 | 1221 | for plot in self.plottypes: |
|
1222 | 1222 | if plot in ('spc', 'spc_moments'): |
|
1223 | 1223 | z = dataOut.data_spc/dataOut.normFactor |
@@ -1250,8 +1250,8 class PlotterData(object): | |||
|
1250 | 1250 | if plot == 'scope': |
|
1251 | 1251 | buffer = dataOut.data |
|
1252 | 1252 | self.flagDataAsBlock = dataOut.flagDataAsBlock |
|
1253 |
self.nProfiles = dataOut.nProfiles |
|
|
1254 | ||
|
1253 | self.nProfiles = dataOut.nProfiles | |
|
1254 | ||
|
1255 | 1255 | if plot == 'spc': |
|
1256 | 1256 | self.data['spc'] = buffer |
|
1257 | 1257 | elif plot == 'cspc': |
@@ -1326,7 +1326,7 class PlotterData(object): | |||
|
1326 | 1326 | else: |
|
1327 | 1327 | meta['xrange'] = [] |
|
1328 | 1328 | |
|
1329 |
meta.update(self.meta) |
|
|
1329 | meta.update(self.meta) | |
|
1330 | 1330 | ret['metadata'] = meta |
|
1331 | 1331 | return json.dumps(ret) |
|
1332 | 1332 |
@@ -42,7 +42,7 class SpectraPlot_(Figure): | |||
|
42 | 42 | |
|
43 | 43 | self.__xfilter_ena = False |
|
44 | 44 | self.__yfilter_ena = False |
|
45 | ||
|
45 | ||
|
46 | 46 | self.indice=1 |
|
47 | 47 | |
|
48 | 48 | def getSubplots(self): |
@@ -225,11 +225,231 class SpectraPlot_(Figure): | |||
|
225 | 225 | ftp=ftp, |
|
226 | 226 | wr_period=wr_period, |
|
227 | 227 | thisDatetime=thisDatetime) |
|
228 | ||
|
228 | ||
|
229 | 229 | |
|
230 | 230 | return dataOut |
|
231 | 231 | |
|
232 | 232 | @MPDecorator |
|
233 | class WpowerPlot_(Figure): | |
|
234 | ||
|
235 | isConfig = None | |
|
236 | __nsubplots = None | |
|
237 | ||
|
238 | WIDTHPROF = None | |
|
239 | HEIGHTPROF = None | |
|
240 | PREFIX = 'wpo' | |
|
241 | ||
|
242 | def __init__(self): | |
|
243 | Figure.__init__(self) | |
|
244 | self.isConfig = False | |
|
245 | self.__nsubplots = 1 | |
|
246 | self.WIDTH = 250 | |
|
247 | self.HEIGHT = 250 | |
|
248 | self.WIDTHPROF = 120 | |
|
249 | self.HEIGHTPROF = 0 | |
|
250 | self.counter_imagwr = 0 | |
|
251 | ||
|
252 | self.PLOT_CODE = WPO_CODE | |
|
253 | ||
|
254 | self.FTP_WEI = None | |
|
255 | self.EXP_CODE = None | |
|
256 | self.SUB_EXP_CODE = None | |
|
257 | self.PLOT_POS = None | |
|
258 | ||
|
259 | self.__xfilter_ena = False | |
|
260 | self.__yfilter_ena = False | |
|
261 | ||
|
262 | self.indice=1 | |
|
263 | ||
|
264 | def getSubplots(self): | |
|
265 | ||
|
266 | ncol = int(numpy.sqrt(self.nplots)+0.9) | |
|
267 | nrow = int(self.nplots*1./ncol + 0.9) | |
|
268 | ||
|
269 | return nrow, ncol | |
|
270 | ||
|
271 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
|
272 | ||
|
273 | self.__showprofile = showprofile | |
|
274 | self.nplots = nplots | |
|
275 | ||
|
276 | ncolspan = 1 | |
|
277 | colspan = 1 | |
|
278 | if showprofile: | |
|
279 | ncolspan = 3 | |
|
280 | colspan = 2 | |
|
281 | self.__nsubplots = 2 | |
|
282 | ||
|
283 | self.createFigure(id = id, | |
|
284 | wintitle = wintitle, | |
|
285 | widthplot = self.WIDTH + self.WIDTHPROF, | |
|
286 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
|
287 | show=show) | |
|
288 | ||
|
289 | nrow, ncol = self.getSubplots() | |
|
290 | ||
|
291 | counter = 0 | |
|
292 | for y in range(nrow): | |
|
293 | for x in range(ncol): | |
|
294 | ||
|
295 | if counter >= self.nplots: | |
|
296 | break | |
|
297 | ||
|
298 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
|
299 | ||
|
300 | if showprofile: | |
|
301 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
|
302 | ||
|
303 | counter += 1 | |
|
304 | ||
|
305 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, | |
|
306 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
|
307 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
|
308 | server=None, folder=None, username=None, password=None, | |
|
309 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, | |
|
310 | xaxis="frequency", colormap='jet', normFactor=None): | |
|
311 | ||
|
312 | """ | |
|
313 | ||
|
314 | Input: | |
|
315 | dataOut : | |
|
316 | id : | |
|
317 | wintitle : | |
|
318 | channelList : | |
|
319 | showProfile : | |
|
320 | xmin : None, | |
|
321 | xmax : None, | |
|
322 | ymin : None, | |
|
323 | ymax : None, | |
|
324 | zmin : None, | |
|
325 | zmax : None | |
|
326 | """ | |
|
327 | print("***************PLOTEO******************") | |
|
328 | print("DATAOUT SHAPE : ",dataOut.data.shape) | |
|
329 | if dataOut.flagNoData: | |
|
330 | return dataOut | |
|
331 | ||
|
332 | if realtime: | |
|
333 | if not(isRealtime(utcdatatime = dataOut.utctime)): | |
|
334 | print('Skipping this plot function') | |
|
335 | return | |
|
336 | ||
|
337 | if channelList == None: | |
|
338 | channelIndexList = dataOut.channelIndexList | |
|
339 | else: | |
|
340 | channelIndexList = [] | |
|
341 | for channel in channelList: | |
|
342 | if channel not in dataOut.channelList: | |
|
343 | raise ValueError("Channel %d is not in dataOut.channelList" %channel) | |
|
344 | channelIndexList.append(dataOut.channelList.index(channel)) | |
|
345 | ||
|
346 | ||
|
347 | print("channelIndexList",channelIndexList) | |
|
348 | if normFactor is None: | |
|
349 | factor = dataOut.normFactor | |
|
350 | else: | |
|
351 | factor = normFactor | |
|
352 | if xaxis == "frequency": | |
|
353 | x = dataOut.getFreqRange(1)/1000. | |
|
354 | xlabel = "Frequency (kHz)" | |
|
355 | ||
|
356 | elif xaxis == "time": | |
|
357 | x = dataOut.getAcfRange(1) | |
|
358 | xlabel = "Time (ms)" | |
|
359 | ||
|
360 | else: | |
|
361 | x = dataOut.getVelRange(1) | |
|
362 | xlabel = "Velocity (m/s)" | |
|
363 | ||
|
364 | ylabel = "Range (km)" | |
|
365 | ||
|
366 | y = dataOut.getHeiRange() | |
|
367 | print("factor",factor) | |
|
368 | ||
|
369 | z = dataOut.data/factor # dividido /factor | |
|
370 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
|
371 | zdB = 10*numpy.log10(z) | |
|
372 | ||
|
373 | avg = numpy.average(z, axis=1) | |
|
374 | avgdB = 10*numpy.log10(avg) | |
|
375 | ||
|
376 | noise = dataOut.getNoise()/factor | |
|
377 | noisedB = 10*numpy.log10(noise) | |
|
378 | ||
|
379 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
|
380 | title = wintitle + "Weather Power" | |
|
381 | ||
|
382 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
|
383 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) | |
|
384 | ||
|
385 | if not self.isConfig: | |
|
386 | ||
|
387 | nplots = len(channelIndexList) | |
|
388 | ||
|
389 | self.setup(id=id, | |
|
390 | nplots=nplots, | |
|
391 | wintitle=wintitle, | |
|
392 | showprofile=showprofile, | |
|
393 | show=show) | |
|
394 | ||
|
395 | if xmin == None: xmin = numpy.nanmin(x) | |
|
396 | if xmax == None: xmax = numpy.nanmax(x) | |
|
397 | if ymin == None: ymin = numpy.nanmin(y) | |
|
398 | if ymax == None: ymax = numpy.nanmax(y) | |
|
399 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 | |
|
400 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 | |
|
401 | ||
|
402 | self.FTP_WEI = ftp_wei | |
|
403 | self.EXP_CODE = exp_code | |
|
404 | self.SUB_EXP_CODE = sub_exp_code | |
|
405 | self.PLOT_POS = plot_pos | |
|
406 | ||
|
407 | self.isConfig = True | |
|
408 | ||
|
409 | self.setWinTitle(title) | |
|
410 | ||
|
411 | for i in range(self.nplots): | |
|
412 | index = channelIndexList[i] | |
|
413 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) | |
|
414 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) | |
|
415 | if len(dataOut.beam.codeList) != 0: | |
|
416 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) | |
|
417 | ||
|
418 | axes = self.axesList[i*self.__nsubplots] | |
|
419 | axes.pcolor(x, y, zdB[index,:,:], | |
|
420 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
|
421 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap, | |
|
422 | ticksize=9, cblabel='') | |
|
423 | ||
|
424 | if self.__showprofile: | |
|
425 | axes = self.axesList[i*self.__nsubplots +1] | |
|
426 | axes.pline(avgdB[index,:], y, | |
|
427 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, | |
|
428 | xlabel='dB', ylabel='', title='', | |
|
429 | ytick_visible=False, | |
|
430 | grid='x') | |
|
431 | ||
|
432 | noiseline = numpy.repeat(noisedB[index], len(y)) | |
|
433 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) | |
|
434 | ||
|
435 | self.draw() | |
|
436 | ||
|
437 | if figfile == None: | |
|
438 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
|
439 | name = str_datetime | |
|
440 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
|
441 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) | |
|
442 | figfile = self.getFilename(name) | |
|
443 | ||
|
444 | self.save(figpath=figpath, | |
|
445 | figfile=figfile, | |
|
446 | save=save, | |
|
447 | ftp=ftp, | |
|
448 | wr_period=wr_period, | |
|
449 | thisDatetime=thisDatetime) | |
|
450 | return dataOut | |
|
451 | ||
|
452 | @MPDecorator | |
|
233 | 453 | class CrossSpectraPlot_(Figure): |
|
234 | 454 | |
|
235 | 455 | isConfig = None |
@@ -256,7 +476,7 class CrossSpectraPlot_(Figure): | |||
|
256 | 476 | self.EXP_CODE = None |
|
257 | 477 | self.SUB_EXP_CODE = None |
|
258 | 478 | self.PLOT_POS = None |
|
259 | ||
|
479 | ||
|
260 | 480 | self.indice=0 |
|
261 | 481 | |
|
262 | 482 | def getSubplots(self): |
@@ -314,7 +534,7 class CrossSpectraPlot_(Figure): | |||
|
314 | 534 | zmax : None |
|
315 | 535 | """ |
|
316 | 536 | |
|
317 |
if dataOut.flagNoData: |
|
|
537 | if dataOut.flagNoData: | |
|
318 | 538 | return dataOut |
|
319 | 539 | |
|
320 | 540 | if pairsList == None: |
@@ -331,7 +551,7 class CrossSpectraPlot_(Figure): | |||
|
331 | 551 | |
|
332 | 552 | if len(pairsIndexList) > 4: |
|
333 | 553 | pairsIndexList = pairsIndexList[0:4] |
|
334 | ||
|
554 | ||
|
335 | 555 | if normFactor is None: |
|
336 | 556 | factor = dataOut.normFactor |
|
337 | 557 | else: |
@@ -402,7 +622,7 class CrossSpectraPlot_(Figure): | |||
|
402 | 622 | self.isConfig = True |
|
403 | 623 | |
|
404 | 624 | self.setWinTitle(title) |
|
405 | ||
|
625 | ||
|
406 | 626 | |
|
407 | 627 | for i in range(self.nplots): |
|
408 | 628 | pair = dataOut.pairsList[pairsIndexList[i]] |
@@ -563,7 +783,7 class RTIPlot_(Figure): | |||
|
563 | 783 | #colormap = kwargs.get('colormap', 'jet') |
|
564 | 784 | if HEIGHT is not None: |
|
565 | 785 | self.HEIGHT = HEIGHT |
|
566 | ||
|
786 | ||
|
567 | 787 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
568 | 788 | return |
|
569 | 789 | |
@@ -745,7 +965,7 class CoherenceMap_(Figure): | |||
|
745 | 965 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
746 | 966 | |
|
747 | 967 | |
|
748 |
if dataOut.flagNoData: |
|
|
968 | if dataOut.flagNoData: | |
|
749 | 969 | return dataOut |
|
750 | 970 | |
|
751 | 971 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
@@ -935,7 +1155,7 class PowerProfilePlot_(Figure): | |||
|
935 | 1155 | ftp=False, wr_period=1, server=None, |
|
936 | 1156 | folder=None, username=None, password=None): |
|
937 | 1157 | |
|
938 |
if dataOut.flagNoData: |
|
|
1158 | if dataOut.flagNoData: | |
|
939 | 1159 | return dataOut |
|
940 | 1160 | |
|
941 | 1161 | |
@@ -1009,7 +1229,7 class PowerProfilePlot_(Figure): | |||
|
1009 | 1229 | ftp=ftp, |
|
1010 | 1230 | wr_period=wr_period, |
|
1011 | 1231 | thisDatetime=thisDatetime) |
|
1012 | ||
|
1232 | ||
|
1013 | 1233 | return dataOut |
|
1014 | 1234 | |
|
1015 | 1235 | @MPDecorator |
@@ -1066,7 +1286,7 class SpectraCutPlot_(Figure): | |||
|
1066 | 1286 | folder=None, username=None, password=None, |
|
1067 | 1287 | xaxis="frequency"): |
|
1068 | 1288 | |
|
1069 |
if dataOut.flagNoData: |
|
|
1289 | if dataOut.flagNoData: | |
|
1070 | 1290 | return dataOut |
|
1071 | 1291 | |
|
1072 | 1292 | if channelList == None: |
@@ -1248,7 +1468,7 class Noise_(Figure): | |||
|
1248 | 1468 | server=None, folder=None, username=None, password=None, |
|
1249 | 1469 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1250 | 1470 | |
|
1251 |
if dataOut.flagNoData: |
|
|
1471 | if dataOut.flagNoData: | |
|
1252 | 1472 | return dataOut |
|
1253 | 1473 | |
|
1254 | 1474 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
@@ -1444,7 +1664,7 class BeaconPhase_(Figure): | |||
|
1444 | 1664 | server=None, folder=None, username=None, password=None, |
|
1445 | 1665 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1446 | 1666 | |
|
1447 |
if dataOut.flagNoData: |
|
|
1667 | if dataOut.flagNoData: | |
|
1448 | 1668 | return dataOut |
|
1449 | 1669 | |
|
1450 | 1670 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
@@ -1586,4 +1806,4 class BeaconPhase_(Figure): | |||
|
1586 | 1806 | thisDatetime=thisDatetime, |
|
1587 | 1807 | update_figfile=update_figfile) |
|
1588 | 1808 | |
|
1589 | return dataOut No newline at end of file | |
|
1809 | return dataOut |
@@ -13,62 +13,62 from .figure import Figure | |||
|
13 | 13 | |
|
14 | 14 | @MPDecorator |
|
15 | 15 | class Scope_(Figure): |
|
16 | ||
|
16 | ||
|
17 | 17 | isConfig = None |
|
18 | ||
|
18 | ||
|
19 | 19 | def __init__(self):#, **kwargs): #YONG |
|
20 | 20 | Figure.__init__(self)#, **kwargs) |
|
21 | 21 | self.isConfig = False |
|
22 | 22 | self.WIDTH = 300 |
|
23 | 23 | self.HEIGHT = 200 |
|
24 | 24 | self.counter_imagwr = 0 |
|
25 | ||
|
25 | ||
|
26 | 26 | def getSubplots(self): |
|
27 | ||
|
27 | ||
|
28 | 28 | nrow = self.nplots |
|
29 | 29 | ncol = 3 |
|
30 | 30 | return nrow, ncol |
|
31 | ||
|
31 | ||
|
32 | 32 | def setup(self, id, nplots, wintitle, show): |
|
33 | ||
|
33 | ||
|
34 | 34 | self.nplots = nplots |
|
35 | ||
|
36 |
self.createFigure(id=id, |
|
|
37 |
wintitle=wintitle, |
|
|
35 | ||
|
36 | self.createFigure(id=id, | |
|
37 | wintitle=wintitle, | |
|
38 | 38 | show=show) |
|
39 | ||
|
39 | ||
|
40 | 40 | nrow,ncol = self.getSubplots() |
|
41 | 41 | colspan = 3 |
|
42 | 42 | rowspan = 1 |
|
43 | ||
|
43 | ||
|
44 | 44 | for i in range(nplots): |
|
45 | 45 | self.addAxes(nrow, ncol, i, 0, colspan, rowspan) |
|
46 | ||
|
46 | ||
|
47 | 47 | def plot_iq(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax): |
|
48 | 48 | yreal = y[channelIndexList,:].real |
|
49 | 49 | yimag = y[channelIndexList,:].imag |
|
50 | ||
|
50 | ||
|
51 | 51 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
52 | 52 | xlabel = "Range (Km)" |
|
53 | 53 | ylabel = "Intensity - IQ" |
|
54 | ||
|
54 | ||
|
55 | 55 | if not self.isConfig: |
|
56 | 56 | nplots = len(channelIndexList) |
|
57 | ||
|
57 | ||
|
58 | 58 | self.setup(id=id, |
|
59 | 59 | nplots=nplots, |
|
60 | 60 | wintitle='', |
|
61 | 61 | show=show) |
|
62 | ||
|
62 | ||
|
63 | 63 | if xmin == None: xmin = numpy.nanmin(x) |
|
64 | 64 | if xmax == None: xmax = numpy.nanmax(x) |
|
65 | 65 | if ymin == None: ymin = min(numpy.nanmin(yreal),numpy.nanmin(yimag)) |
|
66 | 66 | if ymax == None: ymax = max(numpy.nanmax(yreal),numpy.nanmax(yimag)) |
|
67 | ||
|
67 | ||
|
68 | 68 | self.isConfig = True |
|
69 | ||
|
69 | ||
|
70 | 70 | self.setWinTitle(title) |
|
71 | ||
|
71 | ||
|
72 | 72 | for i in range(len(self.axesList)): |
|
73 | 73 | title = "Channel %d" %(i) |
|
74 | 74 | axes = self.axesList[i] |
@@ -78,32 +78,32 class Scope_(Figure): | |||
|
78 | 78 | xlabel=xlabel, ylabel=ylabel, title=title) |
|
79 | 79 | |
|
80 | 80 | axes.addpline(x, yimag[i,:], idline=1, color="red", linestyle="solid", lw=2) |
|
81 | ||
|
81 | ||
|
82 | 82 | def plot_power(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax): |
|
83 | 83 | y = y[channelIndexList,:] * numpy.conjugate(y[channelIndexList,:]) |
|
84 | 84 | yreal = y.real |
|
85 | ||
|
85 | ||
|
86 | 86 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
87 | 87 | xlabel = "Range (Km)" |
|
88 | 88 | ylabel = "Intensity" |
|
89 | ||
|
89 | ||
|
90 | 90 | if not self.isConfig: |
|
91 | 91 | nplots = len(channelIndexList) |
|
92 | ||
|
92 | ||
|
93 | 93 | self.setup(id=id, |
|
94 | 94 | nplots=nplots, |
|
95 | 95 | wintitle='', |
|
96 | 96 | show=show) |
|
97 | ||
|
97 | ||
|
98 | 98 | if xmin == None: xmin = numpy.nanmin(x) |
|
99 | 99 | if xmax == None: xmax = numpy.nanmax(x) |
|
100 | 100 | if ymin == None: ymin = numpy.nanmin(yreal) |
|
101 | 101 | if ymax == None: ymax = numpy.nanmax(yreal) |
|
102 | ||
|
102 | ||
|
103 | 103 | self.isConfig = True |
|
104 | ||
|
104 | ||
|
105 | 105 | self.setWinTitle(title) |
|
106 | ||
|
106 | ||
|
107 | 107 | for i in range(len(self.axesList)): |
|
108 | 108 | title = "Channel %d" %(i) |
|
109 | 109 | axes = self.axesList[i] |
@@ -112,14 +112,48 class Scope_(Figure): | |||
|
112 | 112 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
113 | 113 | xlabel=xlabel, ylabel=ylabel, title=title) |
|
114 | 114 | |
|
115 | ||
|
115 | def plot_weatherpower(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax): | |
|
116 | y = y[channelIndexList,:] | |
|
117 | yreal = y | |
|
118 | ||
|
119 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
|
120 | xlabel = "Range (Km)" | |
|
121 | ylabel = "Intensity" | |
|
122 | ||
|
123 | if not self.isConfig: | |
|
124 | nplots = len(channelIndexList) | |
|
125 | ||
|
126 | self.setup(id=id, | |
|
127 | nplots=nplots, | |
|
128 | wintitle='', | |
|
129 | show=show) | |
|
130 | ||
|
131 | if xmin == None: xmin = numpy.nanmin(x) | |
|
132 | if xmax == None: xmax = numpy.nanmax(x) | |
|
133 | if ymin == None: ymin = numpy.nanmin(yreal) | |
|
134 | if ymax == None: ymax = numpy.nanmax(yreal) | |
|
135 | ||
|
136 | self.isConfig = True | |
|
137 | ||
|
138 | self.setWinTitle(title) | |
|
139 | ||
|
140 | for i in range(len(self.axesList)): | |
|
141 | title = "Channel %d" %(i) | |
|
142 | axes = self.axesList[i] | |
|
143 | ychannel = yreal[i,:] | |
|
144 | axes.pline(x, ychannel, | |
|
145 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |
|
146 | xlabel=xlabel, ylabel=ylabel, title=title) | |
|
147 | ||
|
148 | ||
|
149 | ||
|
116 | 150 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
117 | 151 | xmin=None, xmax=None, ymin=None, ymax=None, save=False, |
|
118 | 152 | figpath='./', figfile=None, show=True, wr_period=1, |
|
119 | 153 | ftp=False, server=None, folder=None, username=None, password=None, type='power', **kwargs): |
|
120 | ||
|
154 | ||
|
121 | 155 | """ |
|
122 | ||
|
156 | ||
|
123 | 157 | Input: |
|
124 | 158 | dataOut : |
|
125 | 159 | id : |
@@ -130,9 +164,9 class Scope_(Figure): | |||
|
130 | 164 | ymin : None, |
|
131 | 165 | ymax : None, |
|
132 | 166 | """ |
|
133 |
if dataOut.flagNoData: |
|
|
167 | if dataOut.flagNoData: | |
|
134 | 168 | return dataOut |
|
135 | ||
|
169 | ||
|
136 | 170 | if channelList == None: |
|
137 | 171 | channelIndexList = dataOut.channelIndexList |
|
138 | 172 | else: |
@@ -141,20 +175,22 class Scope_(Figure): | |||
|
141 | 175 | if channel not in dataOut.channelList: |
|
142 | 176 | raise ValueError("Channel %d is not in dataOut.channelList") |
|
143 | 177 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
144 | ||
|
178 | ||
|
145 | 179 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
146 | ||
|
180 | ### print("***************** PLOTEO **************************") | |
|
181 | ### print(dataOut.nProfiles) | |
|
182 | ### print(dataOut.heightList.shape) | |
|
147 | 183 | if dataOut.flagDataAsBlock: |
|
148 | ||
|
184 | ||
|
149 | 185 | for i in range(dataOut.nProfiles): |
|
150 | ||
|
186 | ||
|
151 | 187 | wintitle1 = wintitle + " [Profile = %d] " %i |
|
152 | ||
|
188 | ||
|
153 | 189 | if type == "power": |
|
154 |
self.plot_power(dataOut.heightList, |
|
|
190 | self.plot_power(dataOut.heightList, | |
|
155 | 191 | dataOut.data[:,i,:], |
|
156 |
id, |
|
|
157 |
channelIndexList, |
|
|
192 | id, | |
|
193 | channelIndexList, | |
|
158 | 194 | thisDatetime, |
|
159 | 195 | wintitle1, |
|
160 | 196 | show, |
@@ -162,12 +198,38 class Scope_(Figure): | |||
|
162 | 198 | xmax, |
|
163 | 199 | ymin, |
|
164 | 200 | ymax) |
|
165 | ||
|
201 | ||
|
202 | if type == "weatherpower": | |
|
203 | self.plot_weatherpower(dataOut.heightList, | |
|
204 | dataOut.data[:,i,:], | |
|
205 | id, | |
|
206 | channelIndexList, | |
|
207 | thisDatetime, | |
|
208 | wintitle1, | |
|
209 | show, | |
|
210 | xmin, | |
|
211 | xmax, | |
|
212 | ymin, | |
|
213 | ymax) | |
|
214 | ||
|
215 | if type == "weathervelocity": | |
|
216 | self.plot_weatherpower(dataOut.heightList, | |
|
217 | dataOut.data_velocity[:,i,:], | |
|
218 | id, | |
|
219 | channelIndexList, | |
|
220 | thisDatetime, | |
|
221 | wintitle1, | |
|
222 | show, | |
|
223 | xmin, | |
|
224 | xmax, | |
|
225 | ymin, | |
|
226 | ymax) | |
|
227 | ||
|
166 | 228 | if type == "iq": |
|
167 |
self.plot_iq(dataOut.heightList, |
|
|
229 | self.plot_iq(dataOut.heightList, | |
|
168 | 230 | dataOut.data[:,i,:], |
|
169 |
id, |
|
|
170 |
channelIndexList, |
|
|
231 | id, | |
|
232 | channelIndexList, | |
|
171 | 233 | thisDatetime, |
|
172 | 234 | wintitle1, |
|
173 | 235 | show, |
@@ -175,27 +237,27 class Scope_(Figure): | |||
|
175 | 237 | xmax, |
|
176 | 238 | ymin, |
|
177 | 239 | ymax) |
|
178 | ||
|
240 | ||
|
179 | 241 | self.draw() |
|
180 | ||
|
242 | ||
|
181 | 243 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
182 | 244 | figfile = self.getFilename(name = str_datetime) + "_" + str(i) |
|
183 | ||
|
245 | ||
|
184 | 246 | self.save(figpath=figpath, |
|
185 | 247 | figfile=figfile, |
|
186 | 248 | save=save, |
|
187 | 249 | ftp=ftp, |
|
188 | 250 | wr_period=wr_period, |
|
189 | 251 | thisDatetime=thisDatetime) |
|
190 | ||
|
252 | ||
|
191 | 253 | else: |
|
192 | 254 | wintitle += " [Profile = %d] " %dataOut.profileIndex |
|
193 | ||
|
255 | ||
|
194 | 256 | if type == "power": |
|
195 |
self.plot_power(dataOut.heightList, |
|
|
257 | self.plot_power(dataOut.heightList, | |
|
196 | 258 | dataOut.data, |
|
197 |
id, |
|
|
198 |
channelIndexList, |
|
|
259 | id, | |
|
260 | channelIndexList, | |
|
199 | 261 | thisDatetime, |
|
200 | 262 | wintitle, |
|
201 | 263 | show, |
@@ -203,12 +265,12 class Scope_(Figure): | |||
|
203 | 265 | xmax, |
|
204 | 266 | ymin, |
|
205 | 267 | ymax) |
|
206 | ||
|
268 | ||
|
207 | 269 | if type == "iq": |
|
208 |
self.plot_iq(dataOut.heightList, |
|
|
270 | self.plot_iq(dataOut.heightList, | |
|
209 | 271 | dataOut.data, |
|
210 |
id, |
|
|
211 |
channelIndexList, |
|
|
272 | id, | |
|
273 | channelIndexList, | |
|
212 | 274 | thisDatetime, |
|
213 | 275 | wintitle, |
|
214 | 276 | show, |
@@ -216,12 +278,12 class Scope_(Figure): | |||
|
216 | 278 | xmax, |
|
217 | 279 | ymin, |
|
218 | 280 | ymax) |
|
219 | ||
|
281 | ||
|
220 | 282 | self.draw() |
|
221 | ||
|
283 | ||
|
222 | 284 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") + "_" + str(dataOut.profileIndex) |
|
223 |
figfile = self.getFilename(name = str_datetime) |
|
|
224 | ||
|
285 | figfile = self.getFilename(name = str_datetime) | |
|
286 | ||
|
225 | 287 | self.save(figpath=figpath, |
|
226 | 288 | figfile=figfile, |
|
227 | 289 | save=save, |
@@ -229,4 +291,4 class Scope_(Figure): | |||
|
229 | 291 | wr_period=wr_period, |
|
230 | 292 | thisDatetime=thisDatetime) |
|
231 | 293 | |
|
232 |
return dataOut |
|
|
294 | return dataOut |
@@ -23,6 +23,8 MSKYMAP_CODE = 23 | |||
|
23 | 23 | MPHASE_CODE = 24 |
|
24 | 24 | |
|
25 | 25 | MOMENTS_CODE = 25 |
|
26 | PARMS_CODE = 26 | |
|
26 | PARMS_CODE = 26 | |
|
27 | 27 | SPECFIT_CODE = 27 |
|
28 | 28 | EWDRIFT_CODE = 28 |
|
29 | ||
|
30 | WPO_CODE = 29 #Weather Intensity - Power |
@@ -183,7 +183,7 class ParamReader(JRODataReader,ProcessingUnit): | |||
|
183 | 183 | except IOError: |
|
184 | 184 | traceback.print_exc() |
|
185 | 185 | raise IOError("The file %s can't be opened" %(filename)) |
|
186 | ||
|
186 | ||
|
187 | 187 | #In case has utctime attribute |
|
188 | 188 | grp2 = grp1['utctime'] |
|
189 | 189 | # thisUtcTime = grp2.value[0] - 5*3600 #To convert to local time |
@@ -497,7 +497,7 class ParamWriter(Operation): | |||
|
497 | 497 | setType = None |
|
498 | 498 | |
|
499 | 499 | def __init__(self): |
|
500 | ||
|
500 | ||
|
501 | 501 | Operation.__init__(self) |
|
502 | 502 | return |
|
503 | 503 | |
@@ -530,9 +530,9 class ParamWriter(Operation): | |||
|
530 | 530 | dsDict['variable'] = self.dataList[i] |
|
531 | 531 | #--------------------- Conditionals ------------------------ |
|
532 | 532 | #There is no data |
|
533 | ||
|
533 | ||
|
534 | 534 | if dataAux is None: |
|
535 | ||
|
535 | ||
|
536 | 536 | return 0 |
|
537 | 537 | |
|
538 | 538 | if isinstance(dataAux, (int, float, numpy.integer, numpy.float)): |
@@ -704,7 +704,7 class ParamWriter(Operation): | |||
|
704 | 704 | return False |
|
705 | 705 | |
|
706 | 706 | def setNextFile(self): |
|
707 | ||
|
707 | ||
|
708 | 708 | ext = self.ext |
|
709 | 709 | path = self.path |
|
710 | 710 | setFile = self.setFile |
@@ -785,7 +785,7 class ParamWriter(Operation): | |||
|
785 | 785 | for j in range(dsInfo['dsNumber']): |
|
786 | 786 | dsInfo = dsList[i] |
|
787 | 787 | tableName = dsInfo['dsName'] |
|
788 | ||
|
788 | ||
|
789 | 789 | |
|
790 | 790 | if dsInfo['nDim'] == 3: |
|
791 | 791 | shape = dsInfo['shape'].astype(int) |
@@ -869,7 +869,8 class ParamWriter(Operation): | |||
|
869 | 869 | dsList = self.dsList |
|
870 | 870 | data = self.data |
|
871 | 871 | ind = 0 |
|
872 | ||
|
872 | #print("dsList ",dsList) | |
|
873 | #print("len ",len(dsList)) | |
|
873 | 874 | while ind < len(dsList): |
|
874 | 875 | dsInfo = dsList[ind] |
|
875 | 876 | dataAux = getattr(self.dataOut, dsInfo['variable']) |
@@ -902,22 +903,41 class ParamWriter(Operation): | |||
|
902 | 903 | dsList = self.dsList |
|
903 | 904 | |
|
904 | 905 | for i in range(len(self.ds)): |
|
906 | print("#############", i , "#######################") | |
|
905 | 907 | dsInfo = dsList[i] |
|
906 | 908 | nDim = dsInfo['nDim'] |
|
907 | 909 | mode = dsInfo['mode'] |
|
908 | ||
|
910 | print("dsInfo",dsInfo) | |
|
911 | print("nDim",nDim) | |
|
912 | print("mode",mode) | |
|
909 | 913 | # First time |
|
910 | 914 | if self.firsttime: |
|
915 | print("ENTRE FIRSTIME") | |
|
911 | 916 | if type(self.data[i]) == numpy.ndarray: |
|
912 | 917 | |
|
913 | 918 | if nDim == 3: |
|
919 | print("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx") | |
|
920 | print("ndim","dentro del primer if 3") | |
|
914 | 921 | self.data[i] = self.data[i].reshape((self.data[i].shape[0],self.data[i].shape[1],1)) |
|
922 | print(self.data[i].shape) | |
|
923 | print(type(self.data[i])) | |
|
915 | 924 | self.ds[i].resize(self.data[i].shape) |
|
925 | print(self.ds[i].shape) | |
|
926 | print(type(self.ds[i])) | |
|
916 | 927 | if mode == 2: |
|
917 | 928 | self.ds[i].resize(self.data[i].shape) |
|
918 | self.ds[i][:] = self.data[i] | |
|
919 | else: | |
|
929 | try: | |
|
930 | print("PTM ODIO ESTO") | |
|
931 | print(self.ds[i][:].shape) | |
|
932 | self.ds[i][:] = self.data[i] | |
|
933 | print("*****___________********______******") | |
|
920 | 934 | |
|
935 | except: | |
|
936 | print("q habra pasaado") | |
|
937 | return | |
|
938 | print("LLEGUE Y CUMPLI EL IF") | |
|
939 | else: | |
|
940 | print("ELSE -----------------------") | |
|
921 | 941 | # From second time |
|
922 | 942 | # Meteors! |
|
923 | 943 | if mode == 2: |
@@ -944,7 +964,8 class ParamWriter(Operation): | |||
|
944 | 964 | |
|
945 | 965 | self.firsttime = False |
|
946 | 966 | self.blockIndex += 1 |
|
947 | ||
|
967 | print("HOLA AMIGOS COMO ESTAN LLEGUE") | |
|
968 | print("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx") | |
|
948 | 969 | #Close to save changes |
|
949 | 970 | self.fp.flush() |
|
950 | 971 | self.fp.close() |
@@ -954,7 +975,7 class ParamWriter(Operation): | |||
|
954 | 975 | |
|
955 | 976 | self.dataOut = dataOut |
|
956 | 977 | if not(self.isConfig): |
|
957 |
self.setup(dataOut, path=path, blocksPerFile=blocksPerFile, |
|
|
978 | self.setup(dataOut, path=path, blocksPerFile=blocksPerFile, | |
|
958 | 979 | metadataList=metadataList, dataList=dataList, mode=mode, |
|
959 | 980 | setType=setType) |
|
960 | 981 | |
@@ -963,7 +984,7 class ParamWriter(Operation): | |||
|
963 | 984 | |
|
964 | 985 | self.putData() |
|
965 | 986 | return |
|
966 | ||
|
987 | ||
|
967 | 988 | |
|
968 | 989 | @MPDecorator |
|
969 | 990 | class ParameterReader(Reader, ProcessingUnit): |
@@ -992,43 +1013,43 class ParameterReader(Reader, ProcessingUnit): | |||
|
992 | 1013 | |
|
993 | 1014 | self.set_kwargs(**kwargs) |
|
994 | 1015 | if not self.ext.startswith('.'): |
|
995 |
self.ext = '.{}'.format(self.ext) |
|
|
1016 | self.ext = '.{}'.format(self.ext) | |
|
996 | 1017 | |
|
997 | 1018 | if self.online: |
|
998 | 1019 | log.log("Searching files in online mode...", self.name) |
|
999 | 1020 | |
|
1000 | 1021 | for nTries in range(self.nTries): |
|
1001 | 1022 | fullpath = self.searchFilesOnLine(self.path, self.startDate, |
|
1002 |
self.endDate, self.expLabel, self.ext, self.walk, |
|
|
1023 | self.endDate, self.expLabel, self.ext, self.walk, | |
|
1003 | 1024 | self.filefmt, self.folderfmt) |
|
1004 | 1025 | |
|
1005 | 1026 | try: |
|
1006 | 1027 | fullpath = next(fullpath) |
|
1007 | 1028 | except: |
|
1008 | 1029 | fullpath = None |
|
1009 | ||
|
1030 | ||
|
1010 | 1031 | if fullpath: |
|
1011 | 1032 | break |
|
1012 | 1033 | |
|
1013 | 1034 | log.warning( |
|
1014 | 1035 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( |
|
1015 |
self.delay, self.path, nTries + 1), |
|
|
1036 | self.delay, self.path, nTries + 1), | |
|
1016 | 1037 | self.name) |
|
1017 | 1038 | time.sleep(self.delay) |
|
1018 | 1039 | |
|
1019 | 1040 | if not(fullpath): |
|
1020 | 1041 | raise schainpy.admin.SchainError( |
|
1021 |
'There isn\'t any valid file in {}'.format(self.path)) |
|
|
1042 | 'There isn\'t any valid file in {}'.format(self.path)) | |
|
1022 | 1043 | |
|
1023 | 1044 | pathname, filename = os.path.split(fullpath) |
|
1024 | 1045 | self.year = int(filename[1:5]) |
|
1025 | 1046 | self.doy = int(filename[5:8]) |
|
1026 |
self.set = int(filename[8:11]) - 1 |
|
|
1047 | self.set = int(filename[8:11]) - 1 | |
|
1027 | 1048 | else: |
|
1028 | 1049 | log.log("Searching files in {}".format(self.path), self.name) |
|
1029 |
self.filenameList = self.searchFilesOffLine(self.path, self.startDate, |
|
|
1050 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, | |
|
1030 | 1051 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) |
|
1031 | ||
|
1052 | ||
|
1032 | 1053 | self.setNextFile() |
|
1033 | 1054 | |
|
1034 | 1055 | return |
@@ -1036,11 +1057,11 class ParameterReader(Reader, ProcessingUnit): | |||
|
1036 | 1057 | def readFirstHeader(self): |
|
1037 | 1058 | '''Read metadata and data''' |
|
1038 | 1059 | |
|
1039 |
self.__readMetadata() |
|
|
1060 | self.__readMetadata() | |
|
1040 | 1061 | self.__readData() |
|
1041 | 1062 | self.__setBlockList() |
|
1042 | 1063 | self.blockIndex = 0 |
|
1043 | ||
|
1064 | ||
|
1044 | 1065 | return |
|
1045 | 1066 | |
|
1046 | 1067 | def __setBlockList(self): |
@@ -1099,7 +1120,7 class ParameterReader(Reader, ProcessingUnit): | |||
|
1099 | 1120 | else: |
|
1100 | 1121 | data = gp[name].value |
|
1101 | 1122 | listMetaname.append(name) |
|
1102 |
listMetadata.append(data) |
|
|
1123 | listMetadata.append(data) | |
|
1103 | 1124 | elif self.metadata: |
|
1104 | 1125 | metadata = json.loads(self.metadata) |
|
1105 | 1126 | listShapes = {} |
@@ -1115,7 +1136,7 class ParameterReader(Reader, ProcessingUnit): | |||
|
1115 | 1136 | |
|
1116 | 1137 | self.listShapes = listShapes |
|
1117 | 1138 | self.listMetaname = listMetaname |
|
1118 |
self.listMeta = listMetadata |
|
|
1139 | self.listMeta = listMetadata | |
|
1119 | 1140 | |
|
1120 | 1141 | return |
|
1121 | 1142 | |
@@ -1123,7 +1144,7 class ParameterReader(Reader, ProcessingUnit): | |||
|
1123 | 1144 | |
|
1124 | 1145 | listdataname = [] |
|
1125 | 1146 | listdata = [] |
|
1126 | ||
|
1147 | ||
|
1127 | 1148 | if 'Data' in self.fp: |
|
1128 | 1149 | grp = self.fp['Data'] |
|
1129 | 1150 | for item in list(grp.items()): |
@@ -1137,7 +1158,7 class ParameterReader(Reader, ProcessingUnit): | |||
|
1137 | 1158 | for i in range(dim): |
|
1138 | 1159 | array.append(grp[name]['table{:02d}'.format(i)].value) |
|
1139 | 1160 | array = numpy.array(array) |
|
1140 | ||
|
1161 | ||
|
1141 | 1162 | listdata.append(array) |
|
1142 | 1163 | elif self.metadata: |
|
1143 | 1164 | metadata = json.loads(self.metadata) |
@@ -1160,7 +1181,7 class ParameterReader(Reader, ProcessingUnit): | |||
|
1160 | 1181 | self.listDataname = listdataname |
|
1161 | 1182 | self.listData = listdata |
|
1162 | 1183 | return |
|
1163 | ||
|
1184 | ||
|
1164 | 1185 | def getData(self): |
|
1165 | 1186 | |
|
1166 | 1187 | for i in range(len(self.listMeta)): |
@@ -1230,7 +1251,7 class ParameterWriter(Operation): | |||
|
1230 | 1251 | lastTime = None |
|
1231 | 1252 | |
|
1232 | 1253 | def __init__(self): |
|
1233 | ||
|
1254 | ||
|
1234 | 1255 | Operation.__init__(self) |
|
1235 | 1256 | return |
|
1236 | 1257 | |
@@ -1257,7 +1278,7 class ParameterWriter(Operation): | |||
|
1257 | 1278 | dsDict['nDim'] = len(dataAux.shape) |
|
1258 | 1279 | dsDict['shape'] = dataAux.shape |
|
1259 | 1280 | dsDict['dsNumber'] = dataAux.shape[0] |
|
1260 | ||
|
1281 | ||
|
1261 | 1282 | dsList.append(dsDict) |
|
1262 | 1283 | tableList.append((self.dataList[i], dsDict['nDim'])) |
|
1263 | 1284 | |
@@ -1274,7 +1295,7 class ParameterWriter(Operation): | |||
|
1274 | 1295 | self.lastTime = currentTime |
|
1275 | 1296 | self.currentDay = dataDay |
|
1276 | 1297 | return False |
|
1277 | ||
|
1298 | ||
|
1278 | 1299 | timeDiff = currentTime - self.lastTime |
|
1279 | 1300 | |
|
1280 | 1301 | #Si el dia es diferente o si la diferencia entre un dato y otro supera la hora |
@@ -1292,7 +1313,7 class ParameterWriter(Operation): | |||
|
1292 | 1313 | |
|
1293 | 1314 | self.dataOut = dataOut |
|
1294 | 1315 | if not(self.isConfig): |
|
1295 |
self.setup(path=path, blocksPerFile=blocksPerFile, |
|
|
1316 | self.setup(path=path, blocksPerFile=blocksPerFile, | |
|
1296 | 1317 | metadataList=metadataList, dataList=dataList, |
|
1297 | 1318 | setType=setType) |
|
1298 | 1319 | |
@@ -1301,9 +1322,9 class ParameterWriter(Operation): | |||
|
1301 | 1322 | |
|
1302 | 1323 | self.putData() |
|
1303 | 1324 | return |
|
1304 | ||
|
1325 | ||
|
1305 | 1326 | def setNextFile(self): |
|
1306 | ||
|
1327 | ||
|
1307 | 1328 | ext = self.ext |
|
1308 | 1329 | path = self.path |
|
1309 | 1330 | setFile = self.setFile |
@@ -1369,17 +1390,17 class ParameterWriter(Operation): | |||
|
1369 | 1390 | return |
|
1370 | 1391 | |
|
1371 | 1392 | def writeData(self, fp): |
|
1372 | ||
|
1393 | ||
|
1373 | 1394 | grp = fp.create_group("Data") |
|
1374 | 1395 | dtsets = [] |
|
1375 | 1396 | data = [] |
|
1376 | ||
|
1397 | ||
|
1377 | 1398 | for dsInfo in self.dsList: |
|
1378 | 1399 | if dsInfo['nDim'] == 0: |
|
1379 | 1400 | ds = grp.create_dataset( |
|
1380 |
dsInfo['variable'], |
|
|
1401 | dsInfo['variable'], | |
|
1381 | 1402 | (self.blocksPerFile, ), |
|
1382 |
chunks=True, |
|
|
1403 | chunks=True, | |
|
1383 | 1404 | dtype=numpy.float64) |
|
1384 | 1405 | dtsets.append(ds) |
|
1385 | 1406 | data.append((dsInfo['variable'], -1)) |
@@ -1387,7 +1408,7 class ParameterWriter(Operation): | |||
|
1387 | 1408 | sgrp = grp.create_group(dsInfo['variable']) |
|
1388 | 1409 | for i in range(dsInfo['dsNumber']): |
|
1389 | 1410 | ds = sgrp.create_dataset( |
|
1390 |
'table{:02d}'.format(i), |
|
|
1411 | 'table{:02d}'.format(i), | |
|
1391 | 1412 | (self.blocksPerFile, ) + dsInfo['shape'][1:], |
|
1392 | 1413 | chunks=True) |
|
1393 | 1414 | dtsets.append(ds) |
@@ -1395,7 +1416,7 class ParameterWriter(Operation): | |||
|
1395 | 1416 | fp.flush() |
|
1396 | 1417 | |
|
1397 | 1418 | log.log('Creating file: {}'.format(fp.filename), self.name) |
|
1398 | ||
|
1419 | ||
|
1399 | 1420 | self.ds = dtsets |
|
1400 | 1421 | self.data = data |
|
1401 | 1422 | self.firsttime = True |
@@ -1409,10 +1430,12 class ParameterWriter(Operation): | |||
|
1409 | 1430 | self.setNextFile() |
|
1410 | 1431 | |
|
1411 | 1432 | for i, ds in enumerate(self.ds): |
|
1433 | print(i,ds) | |
|
1412 | 1434 | attr, ch = self.data[i] |
|
1413 | 1435 | if ch == -1: |
|
1414 | 1436 | ds[self.blockIndex] = getattr(self.dataOut, attr) |
|
1415 | 1437 | else: |
|
1438 | print(ch, getattr(self.dataOut, attr).shape) | |
|
1416 | 1439 | ds[self.blockIndex] = getattr(self.dataOut, attr)[ch] |
|
1417 | 1440 | |
|
1418 | 1441 | self.fp.flush() |
This diff has been collapsed as it changes many lines, (2157 lines changed) Show them Hide them | |||
@@ -8,12 +8,12 import copy | |||
|
8 | 8 | import sys |
|
9 | 9 | import importlib |
|
10 | 10 | import itertools |
|
11 |
from multiprocessing import Pool, TimeoutError |
|
|
11 | from multiprocessing import Pool, TimeoutError | |
|
12 | 12 | from multiprocessing.pool import ThreadPool |
|
13 | 13 | import time |
|
14 | 14 | |
|
15 | 15 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters |
|
16 |
from .jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
|
16 | from .jroproc_base import ProcessingUnit, Operation, MPDecorator | |
|
17 | 17 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon |
|
18 | 18 | from scipy import asarray as ar,exp |
|
19 | 19 | from scipy.optimize import curve_fit |
@@ -48,13 +48,13 def _unpickle_method(func_name, obj, cls): | |||
|
48 | 48 | |
|
49 | 49 | @MPDecorator |
|
50 | 50 | class ParametersProc(ProcessingUnit): |
|
51 | ||
|
51 | ||
|
52 | 52 | METHODS = {} |
|
53 | 53 | nSeconds = None |
|
54 | 54 | |
|
55 | 55 | def __init__(self): |
|
56 | 56 | ProcessingUnit.__init__(self) |
|
57 | ||
|
57 | ||
|
58 | 58 | # self.objectDict = {} |
|
59 | 59 | self.buffer = None |
|
60 | 60 | self.firstdatatime = None |
@@ -63,14 +63,14 class ParametersProc(ProcessingUnit): | |||
|
63 | 63 | self.setupReq = False #Agregar a todas las unidades de proc |
|
64 | 64 | |
|
65 | 65 | def __updateObjFromInput(self): |
|
66 | ||
|
66 | ||
|
67 | 67 | self.dataOut.inputUnit = self.dataIn.type |
|
68 | ||
|
68 | ||
|
69 | 69 | self.dataOut.timeZone = self.dataIn.timeZone |
|
70 | 70 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
71 | 71 | self.dataOut.errorCount = self.dataIn.errorCount |
|
72 | 72 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
73 | ||
|
73 | ||
|
74 | 74 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
75 | 75 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
76 | 76 | self.dataOut.channelList = self.dataIn.channelList |
@@ -92,27 +92,32 class ParametersProc(ProcessingUnit): | |||
|
92 | 92 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
93 | 93 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
94 | 94 | self.dataOut.timeInterval1 = self.dataIn.timeInterval |
|
95 |
self.dataOut.heightList = self.dataIn.getHeiRange() |
|
|
95 | self.dataOut.heightList = self.dataIn.getHeiRange() | |
|
96 | 96 | self.dataOut.frequency = self.dataIn.frequency |
|
97 | 97 | # self.dataOut.noise = self.dataIn.noise |
|
98 | ||
|
99 | def run(self): | |
|
100 | ||
|
101 | ||
|
102 | 98 | |
|
99 | def run(self): | |
|
103 | 100 | #---------------------- Voltage Data --------------------------- |
|
104 | ||
|
105 | 101 | if self.dataIn.type == "Voltage": |
|
106 | ||
|
102 | print(" *************INSIDE PARAMETER********") | |
|
107 | 103 | self.__updateObjFromInput() |
|
108 | 104 | self.dataOut.data_pre = self.dataIn.data.copy() |
|
109 | 105 | self.dataOut.flagNoData = False |
|
110 | 106 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
111 |
self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds |
|
|
107 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds | |
|
108 | ||
|
109 | if self.dataIn.identifierWR== True: | |
|
110 | print("**********************************************") | |
|
111 | self.dataOut.data_intensity = self.dataIn.data #valor para intensidad | |
|
112 | self.dataOut.data_velocity = self.dataIn.data_velocity #valor para velocidad | |
|
113 | self.dataOut.identifierWR = self.dataIn.identifierWR | |
|
114 | self.dataOut.PRFbyAngle = self.dataIn.PRFbyAngle | |
|
115 | print(self.dataOut.data_intensity.shape) | |
|
116 | print(self.dataOut.utctimeInit) | |
|
117 | print(self.dataOut.nCohInt ) | |
|
118 | print(self.dataOut.PRFbyAngle) | |
|
112 | 119 | return |
|
113 | ||
|
114 | 120 | #---------------------- Spectra Data --------------------------- |
|
115 | ||
|
116 | 121 | if self.dataIn.type == "Spectra": |
|
117 | 122 | |
|
118 | 123 | self.dataOut.data_pre = (self.dataIn.data_spc, self.dataIn.data_cspc) |
@@ -126,243 +131,256 class ParametersProc(ProcessingUnit): | |||
|
126 | 131 | self.dataOut.spc_noise = self.dataIn.getNoise() |
|
127 | 132 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) |
|
128 | 133 | # self.dataOut.normFactor = self.dataIn.normFactor |
|
129 |
self.dataOut.pairsList = self.dataIn.pairsList |
|
|
134 | self.dataOut.pairsList = self.dataIn.pairsList | |
|
130 | 135 | self.dataOut.groupList = self.dataIn.pairsList |
|
131 |
self.dataOut.flagNoData = False |
|
|
132 | ||
|
136 | self.dataOut.flagNoData = False | |
|
137 | ||
|
138 | if self.dataIn.flagWR== True: | |
|
139 | print("##############################################") | |
|
140 | self.dataOut.nIncohInt = self.dataIn.nIncohInt | |
|
141 | self.dataOut.utctimeInit = self.dataIn.utctime | |
|
142 | self.dataOut.data_intensity = self.dataIn.data #valor para intensidad | |
|
143 | self.dataOut.data_velocity = self.dataIn.data_velocity #valor para velocidad | |
|
144 | self.dataOut.flagWR = self.dataIn.flagWR | |
|
145 | self.dataOut.PRFbyAngle = self.dataIn.PRFbyAngle | |
|
146 | print(self.dataOut.data_intensity.shape) | |
|
147 | print(self.dataOut.utctimeInit) | |
|
148 | print(self.dataOut.nIncohInt ) | |
|
149 | print(self.dataOut.PRFbyAngle) | |
|
150 | ||
|
133 | 151 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels |
|
134 | 152 | self.dataOut.ChanDist = self.dataIn.ChanDist |
|
135 |
else: self.dataOut.ChanDist = None |
|
|
136 | ||
|
153 | else: self.dataOut.ChanDist = None | |
|
154 | ||
|
137 | 155 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range |
|
138 | 156 | # self.dataOut.VelRange = self.dataIn.VelRange |
|
139 | 157 | #else: self.dataOut.VelRange = None |
|
140 | ||
|
158 | ||
|
141 | 159 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant |
|
142 | 160 | self.dataOut.RadarConst = self.dataIn.RadarConst |
|
143 | ||
|
161 | ||
|
144 | 162 | if hasattr(self.dataIn, 'NPW'): #NPW |
|
145 | 163 | self.dataOut.NPW = self.dataIn.NPW |
|
146 | ||
|
164 | ||
|
147 | 165 | if hasattr(self.dataIn, 'COFA'): #COFA |
|
148 | 166 | self.dataOut.COFA = self.dataIn.COFA |
|
149 | ||
|
150 | ||
|
151 | ||
|
167 | ||
|
168 | ||
|
169 | ||
|
152 | 170 | #---------------------- Correlation Data --------------------------- |
|
153 | ||
|
171 | ||
|
154 | 172 | if self.dataIn.type == "Correlation": |
|
155 | 173 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() |
|
156 | ||
|
174 | ||
|
157 | 175 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) |
|
158 | 176 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) |
|
159 | 177 | self.dataOut.groupList = (acf_pairs, ccf_pairs) |
|
160 | ||
|
178 | ||
|
161 | 179 | self.dataOut.abscissaList = self.dataIn.lagRange |
|
162 | 180 | self.dataOut.noise = self.dataIn.noise |
|
163 | 181 | self.dataOut.data_SNR = self.dataIn.SNR |
|
164 | 182 | self.dataOut.flagNoData = False |
|
165 | 183 | self.dataOut.nAvg = self.dataIn.nAvg |
|
166 | ||
|
184 | ||
|
167 | 185 | #---------------------- Parameters Data --------------------------- |
|
168 | ||
|
186 | ||
|
169 | 187 | if self.dataIn.type == "Parameters": |
|
170 | 188 | self.dataOut.copy(self.dataIn) |
|
171 | 189 | self.dataOut.flagNoData = False |
|
172 | ||
|
190 | ||
|
173 | 191 | return True |
|
174 | ||
|
192 | ||
|
175 | 193 | self.__updateObjFromInput() |
|
176 | 194 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
177 | 195 | self.dataOut.paramInterval = self.dataIn.timeInterval |
|
178 | ||
|
196 | ||
|
179 | 197 | return |
|
180 | 198 | |
|
181 | 199 | |
|
182 | 200 | def target(tups): |
|
183 | ||
|
201 | ||
|
184 | 202 | obj, args = tups |
|
185 | ||
|
203 | ||
|
186 | 204 | return obj.FitGau(args) |
|
187 | ||
|
188 | ||
|
205 | ||
|
206 | ||
|
189 | 207 | class SpectralFilters(Operation): |
|
190 | ||
|
208 | ||
|
191 | 209 | '''This class allows the Rainfall / Wind Selection for CLAIRE RADAR |
|
192 | ||
|
210 | ||
|
193 | 211 | LimitR : It is the limit in m/s of Rainfall |
|
194 | 212 | LimitW : It is the limit in m/s for Winds |
|
195 | ||
|
213 | ||
|
196 | 214 | Input: |
|
197 | ||
|
215 | ||
|
198 | 216 | self.dataOut.data_pre : SPC and CSPC |
|
199 | 217 | self.dataOut.spc_range : To select wind and rainfall velocities |
|
200 | ||
|
218 | ||
|
201 | 219 | Affected: |
|
202 | ||
|
220 | ||
|
203 | 221 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind |
|
204 |
self.dataOut.spcparam_range : Used in SpcParamPlot |
|
|
222 | self.dataOut.spcparam_range : Used in SpcParamPlot | |
|
205 | 223 | self.dataOut.SPCparam : Used in PrecipitationProc |
|
206 | ||
|
207 | ||
|
224 | ||
|
225 | ||
|
208 | 226 | ''' |
|
209 | ||
|
227 | ||
|
210 | 228 | def __init__(self): |
|
211 | 229 | Operation.__init__(self) |
|
212 | 230 | self.i=0 |
|
213 | ||
|
214 |
def run(self, dataOut, PositiveLimit=1.5, NegativeLimit=2.5): |
|
|
215 | ||
|
216 | ||
|
217 |
#Limite de vientos |
|
|
231 | ||
|
232 | def run(self, dataOut, PositiveLimit=1.5, NegativeLimit=2.5): | |
|
233 | ||
|
234 | ||
|
235 | #Limite de vientos | |
|
218 | 236 | LimitR = PositiveLimit |
|
219 | 237 | LimitN = NegativeLimit |
|
220 | ||
|
238 | ||
|
221 | 239 | self.spc = dataOut.data_pre[0].copy() |
|
222 | 240 | self.cspc = dataOut.data_pre[1].copy() |
|
223 | ||
|
241 | ||
|
224 | 242 | self.Num_Hei = self.spc.shape[2] |
|
225 | 243 | self.Num_Bin = self.spc.shape[1] |
|
226 | 244 | self.Num_Chn = self.spc.shape[0] |
|
227 | ||
|
245 | ||
|
228 | 246 | VelRange = dataOut.spc_range[2] |
|
229 | 247 | TimeRange = dataOut.spc_range[1] |
|
230 | 248 | FrecRange = dataOut.spc_range[0] |
|
231 | ||
|
249 | ||
|
232 | 250 | Vmax= 2*numpy.max(dataOut.spc_range[2]) |
|
233 | 251 | Tmax= 2*numpy.max(dataOut.spc_range[1]) |
|
234 | 252 | Fmax= 2*numpy.max(dataOut.spc_range[0]) |
|
235 | ||
|
253 | ||
|
236 | 254 | Breaker1R=VelRange[numpy.abs(VelRange-(-LimitN)).argmin()] |
|
237 | 255 | Breaker1R=numpy.where(VelRange == Breaker1R) |
|
238 | ||
|
239 |
Delta = self.Num_Bin/2 - Breaker1R[0] |
|
|
240 | ||
|
241 | ||
|
256 | ||
|
257 | Delta = self.Num_Bin/2 - Breaker1R[0] | |
|
258 | ||
|
259 | ||
|
242 | 260 | '''Reacomodando SPCrange''' |
|
243 | 261 | |
|
244 | 262 | VelRange=numpy.roll(VelRange,-(int(self.Num_Bin/2)) ,axis=0) |
|
245 | ||
|
263 | ||
|
246 | 264 | VelRange[-(int(self.Num_Bin/2)):]+= Vmax |
|
247 | ||
|
265 | ||
|
248 | 266 | FrecRange=numpy.roll(FrecRange,-(int(self.Num_Bin/2)),axis=0) |
|
249 | ||
|
267 | ||
|
250 | 268 | FrecRange[-(int(self.Num_Bin/2)):]+= Fmax |
|
251 | ||
|
269 | ||
|
252 | 270 | TimeRange=numpy.roll(TimeRange,-(int(self.Num_Bin/2)),axis=0) |
|
253 | ||
|
271 | ||
|
254 | 272 | TimeRange[-(int(self.Num_Bin/2)):]+= Tmax |
|
255 | ||
|
273 | ||
|
256 | 274 | ''' ------------------ ''' |
|
257 | ||
|
275 | ||
|
258 | 276 | Breaker2R=VelRange[numpy.abs(VelRange-(LimitR)).argmin()] |
|
259 | 277 | Breaker2R=numpy.where(VelRange == Breaker2R) |
|
260 | ||
|
261 | ||
|
278 | ||
|
279 | ||
|
262 | 280 | SPCroll = numpy.roll(self.spc,-(int(self.Num_Bin/2)) ,axis=1) |
|
263 | ||
|
281 | ||
|
264 | 282 | SPCcut = SPCroll.copy() |
|
265 | 283 | for i in range(self.Num_Chn): |
|
266 | ||
|
284 | ||
|
267 | 285 | SPCcut[i,0:int(Breaker2R[0]),:] = dataOut.noise[i] |
|
268 | 286 | SPCcut[i,-int(Delta):,:] = dataOut.noise[i] |
|
269 | ||
|
287 | ||
|
270 | 288 | SPCcut[i]=SPCcut[i]- dataOut.noise[i] |
|
271 | 289 | SPCcut[ numpy.where( SPCcut<0 ) ] = 1e-20 |
|
272 | ||
|
290 | ||
|
273 | 291 | SPCroll[i]=SPCroll[i]-dataOut.noise[i] |
|
274 | 292 | SPCroll[ numpy.where( SPCroll<0 ) ] = 1e-20 |
|
275 | ||
|
293 | ||
|
276 | 294 | SPC_ch1 = SPCroll |
|
277 | ||
|
295 | ||
|
278 | 296 | SPC_ch2 = SPCcut |
|
279 | ||
|
297 | ||
|
280 | 298 | SPCparam = (SPC_ch1, SPC_ch2, self.spc) |
|
281 |
dataOut.SPCparam = numpy.asarray(SPCparam) |
|
|
282 | ||
|
283 | ||
|
299 | dataOut.SPCparam = numpy.asarray(SPCparam) | |
|
300 | ||
|
301 | ||
|
284 | 302 | dataOut.spcparam_range=numpy.zeros([self.Num_Chn,self.Num_Bin+1]) |
|
285 | ||
|
303 | ||
|
286 | 304 | dataOut.spcparam_range[2]=VelRange |
|
287 | 305 | dataOut.spcparam_range[1]=TimeRange |
|
288 | 306 | dataOut.spcparam_range[0]=FrecRange |
|
289 | 307 | return dataOut |
|
290 | ||
|
308 | ||
|
291 | 309 | class GaussianFit(Operation): |
|
292 | ||
|
310 | ||
|
293 | 311 | ''' |
|
294 |
Function that fit of one and two generalized gaussians (gg) based |
|
|
295 |
on the PSD shape across an "power band" identified from a cumsum of |
|
|
312 | Function that fit of one and two generalized gaussians (gg) based | |
|
313 | on the PSD shape across an "power band" identified from a cumsum of | |
|
296 | 314 | the measured spectrum - noise. |
|
297 | ||
|
315 | ||
|
298 | 316 | Input: |
|
299 | 317 | self.dataOut.data_pre : SelfSpectra |
|
300 | ||
|
318 | ||
|
301 | 319 | Output: |
|
302 | 320 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 |
|
303 | ||
|
321 | ||
|
304 | 322 | ''' |
|
305 | 323 | def __init__(self): |
|
306 | 324 | Operation.__init__(self) |
|
307 | 325 | self.i=0 |
|
308 | ||
|
309 | ||
|
326 | ||
|
327 | ||
|
310 | 328 | def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points |
|
311 | 329 | """This routine will find a couple of generalized Gaussians to a power spectrum |
|
312 | 330 | input: spc |
|
313 | 331 | output: |
|
314 | 332 | Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise |
|
315 | 333 | """ |
|
316 | ||
|
334 | ||
|
317 | 335 | self.spc = dataOut.data_pre[0].copy() |
|
318 | 336 | self.Num_Hei = self.spc.shape[2] |
|
319 | 337 | self.Num_Bin = self.spc.shape[1] |
|
320 | 338 | self.Num_Chn = self.spc.shape[0] |
|
321 | 339 | Vrange = dataOut.abscissaList |
|
322 | ||
|
340 | ||
|
323 | 341 | GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei]) |
|
324 | 342 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
325 | 343 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
326 | 344 | SPC_ch1[:] = numpy.NaN |
|
327 | 345 | SPC_ch2[:] = numpy.NaN |
|
328 | 346 | |
|
329 | ||
|
347 | ||
|
330 | 348 | start_time = time.time() |
|
331 | ||
|
349 | ||
|
332 | 350 | noise_ = dataOut.spc_noise[0].copy() |
|
333 | ||
|
334 | ||
|
335 |
pool = Pool(processes=self.Num_Chn) |
|
|
351 | ||
|
352 | ||
|
353 | pool = Pool(processes=self.Num_Chn) | |
|
336 | 354 | args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)] |
|
337 |
objs = [self for __ in range(self.Num_Chn)] |
|
|
338 |
attrs = list(zip(objs, args)) |
|
|
355 | objs = [self for __ in range(self.Num_Chn)] | |
|
356 | attrs = list(zip(objs, args)) | |
|
339 | 357 | gauSPC = pool.map(target, attrs) |
|
340 | 358 | dataOut.SPCparam = numpy.asarray(SPCparam) |
|
341 | ||
|
359 | ||
|
342 | 360 | ''' Parameters: |
|
343 | 361 | 1. Amplitude |
|
344 | 362 | 2. Shift |
|
345 | 363 | 3. Width |
|
346 | 364 | 4. Power |
|
347 | 365 | ''' |
|
348 | ||
|
366 | ||
|
349 | 367 | def FitGau(self, X): |
|
350 | ||
|
368 | ||
|
351 | 369 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X |
|
352 | ||
|
370 | ||
|
353 | 371 | SPCparam = [] |
|
354 | 372 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
355 | 373 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
356 | 374 | SPC_ch1[:] = 0#numpy.NaN |
|
357 | 375 | SPC_ch2[:] = 0#numpy.NaN |
|
358 | ||
|
359 | ||
|
360 | ||
|
376 | ||
|
377 | ||
|
378 | ||
|
361 | 379 | for ht in range(self.Num_Hei): |
|
362 | ||
|
363 | ||
|
380 | ||
|
381 | ||
|
364 | 382 | spc = numpy.asarray(self.spc)[ch,:,ht] |
|
365 | ||
|
383 | ||
|
366 | 384 | ############################################# |
|
367 | 385 | # normalizing spc and noise |
|
368 | 386 | # This part differs from gg1 |
@@ -370,60 +388,60 class GaussianFit(Operation): | |||
|
370 | 388 | #spc = spc / spc_norm_max |
|
371 | 389 | pnoise = pnoise #/ spc_norm_max |
|
372 | 390 | ############################################# |
|
373 | ||
|
391 | ||
|
374 | 392 | fatspectra=1.0 |
|
375 | ||
|
393 | ||
|
376 | 394 | wnoise = noise_ #/ spc_norm_max |
|
377 | 395 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used |
|
378 |
#if wnoise>1.1*pnoise: # to be tested later |
|
|
396 | #if wnoise>1.1*pnoise: # to be tested later | |
|
379 | 397 | # wnoise=pnoise |
|
380 |
noisebl=wnoise*0.9; |
|
|
398 | noisebl=wnoise*0.9; | |
|
381 | 399 | noisebh=wnoise*1.1 |
|
382 | 400 | spc=spc-wnoise |
|
383 | ||
|
401 | ||
|
384 | 402 | minx=numpy.argmin(spc) |
|
385 |
#spcs=spc.copy() |
|
|
403 | #spcs=spc.copy() | |
|
386 | 404 | spcs=numpy.roll(spc,-minx) |
|
387 | 405 | cum=numpy.cumsum(spcs) |
|
388 | 406 | tot_noise=wnoise * self.Num_Bin #64; |
|
389 | ||
|
407 | ||
|
390 | 408 | snr = sum(spcs)/tot_noise |
|
391 | 409 | snrdB=10.*numpy.log10(snr) |
|
392 | ||
|
410 | ||
|
393 | 411 | if snrdB < SNRlimit : |
|
394 | 412 | snr = numpy.NaN |
|
395 | 413 | SPC_ch1[:,ht] = 0#numpy.NaN |
|
396 | 414 | SPC_ch1[:,ht] = 0#numpy.NaN |
|
397 | 415 | SPCparam = (SPC_ch1,SPC_ch2) |
|
398 | 416 | continue |
|
399 | ||
|
400 | ||
|
417 | ||
|
418 | ||
|
401 | 419 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: |
|
402 | 420 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
403 | ||
|
404 |
cummax=max(cum); |
|
|
421 | ||
|
422 | cummax=max(cum); | |
|
405 | 423 | epsi=0.08*fatspectra # cumsum to narrow down the energy region |
|
406 |
cumlo=cummax*epsi; |
|
|
424 | cumlo=cummax*epsi; | |
|
407 | 425 | cumhi=cummax*(1-epsi) |
|
408 | 426 | powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) |
|
409 | ||
|
410 | ||
|
427 | ||
|
428 | ||
|
411 | 429 | if len(powerindex) < 1:# case for powerindex 0 |
|
412 | 430 | continue |
|
413 | 431 | powerlo=powerindex[0] |
|
414 | 432 | powerhi=powerindex[-1] |
|
415 | 433 | powerwidth=powerhi-powerlo |
|
416 | ||
|
434 | ||
|
417 | 435 | firstpeak=powerlo+powerwidth/10.# first gaussian energy location |
|
418 | 436 | secondpeak=powerhi-powerwidth/10.#second gaussian energy location |
|
419 | 437 | midpeak=(firstpeak+secondpeak)/2. |
|
420 | 438 | firstamp=spcs[int(firstpeak)] |
|
421 | 439 | secondamp=spcs[int(secondpeak)] |
|
422 | 440 | midamp=spcs[int(midpeak)] |
|
423 | ||
|
441 | ||
|
424 | 442 | x=numpy.arange( self.Num_Bin ) |
|
425 | 443 | y_data=spc+wnoise |
|
426 | ||
|
444 | ||
|
427 | 445 | ''' single Gaussian ''' |
|
428 | 446 | shift0=numpy.mod(midpeak+minx, self.Num_Bin ) |
|
429 | 447 | width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 |
@@ -432,10 +450,10 class GaussianFit(Operation): | |||
|
432 | 450 | state0=[shift0,width0,amplitude0,power0,wnoise] |
|
433 | 451 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
434 | 452 | lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
435 | ||
|
436 | chiSq1=lsq1[1]; | |
|
437 | 453 | |
|
438 | ||
|
454 | chiSq1=lsq1[1]; | |
|
455 | ||
|
456 | ||
|
439 | 457 | if fatspectra<1.0 and powerwidth<4: |
|
440 | 458 | choice=0 |
|
441 | 459 | Amplitude0=lsq1[0][2] |
@@ -449,31 +467,31 class GaussianFit(Operation): | |||
|
449 | 467 | noise=lsq1[0][4] |
|
450 | 468 | #return (numpy.array([shift0,width0,Amplitude0,p0]), |
|
451 | 469 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) |
|
452 | ||
|
470 | ||
|
453 | 471 | ''' two gaussians ''' |
|
454 | 472 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) |
|
455 |
shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); |
|
|
473 | shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); | |
|
456 | 474 | shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) |
|
457 |
width0=powerwidth/6.; |
|
|
475 | width0=powerwidth/6.; | |
|
458 | 476 | width1=width0 |
|
459 |
power0=2.; |
|
|
477 | power0=2.; | |
|
460 | 478 | power1=power0 |
|
461 |
amplitude0=firstamp; |
|
|
479 | amplitude0=firstamp; | |
|
462 | 480 | amplitude1=secondamp |
|
463 | 481 | state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] |
|
464 | 482 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
465 | 483 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
466 | 484 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) |
|
467 | ||
|
485 | ||
|
468 | 486 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) |
|
469 | ||
|
470 | ||
|
471 |
chiSq2=lsq2[1]; |
|
|
472 | ||
|
473 | ||
|
474 | ||
|
487 | ||
|
488 | ||
|
489 | chiSq2=lsq2[1]; | |
|
490 | ||
|
491 | ||
|
492 | ||
|
475 | 493 | oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) |
|
476 | ||
|
494 | ||
|
477 | 495 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error |
|
478 | 496 | if oneG: |
|
479 | 497 | choice=0 |
@@ -481,10 +499,10 class GaussianFit(Operation): | |||
|
481 | 499 | w1=lsq2[0][1]; w2=lsq2[0][5] |
|
482 | 500 | a1=lsq2[0][2]; a2=lsq2[0][6] |
|
483 | 501 | p1=lsq2[0][3]; p2=lsq2[0][7] |
|
484 |
s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; |
|
|
502 | s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; | |
|
485 | 503 | s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; |
|
486 | 504 | gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling |
|
487 | ||
|
505 | ||
|
488 | 506 | if gp1>gp2: |
|
489 | 507 | if a1>0.7*a2: |
|
490 | 508 | choice=1 |
@@ -499,157 +517,157 class GaussianFit(Operation): | |||
|
499 | 517 | choice=numpy.argmax([a1,a2])+1 |
|
500 | 518 | #else: |
|
501 | 519 | #choice=argmin([std2a,std2b])+1 |
|
502 | ||
|
520 | ||
|
503 | 521 | else: # with low SNR go to the most energetic peak |
|
504 | 522 | choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) |
|
505 | ||
|
506 | ||
|
507 |
shift0=lsq2[0][0]; |
|
|
523 | ||
|
524 | ||
|
525 | shift0=lsq2[0][0]; | |
|
508 | 526 | vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0]) |
|
509 |
shift1=lsq2[0][4]; |
|
|
527 | shift1=lsq2[0][4]; | |
|
510 | 528 | vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0]) |
|
511 | ||
|
529 | ||
|
512 | 530 | max_vel = 1.0 |
|
513 | ||
|
531 | ||
|
514 | 532 | #first peak will be 0, second peak will be 1 |
|
515 | 533 | if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range |
|
516 | 534 | shift0=lsq2[0][0] |
|
517 | 535 | width0=lsq2[0][1] |
|
518 | 536 | Amplitude0=lsq2[0][2] |
|
519 | 537 | p0=lsq2[0][3] |
|
520 | ||
|
538 | ||
|
521 | 539 | shift1=lsq2[0][4] |
|
522 | 540 | width1=lsq2[0][5] |
|
523 | 541 | Amplitude1=lsq2[0][6] |
|
524 | 542 | p1=lsq2[0][7] |
|
525 |
noise=lsq2[0][8] |
|
|
543 | noise=lsq2[0][8] | |
|
526 | 544 | else: |
|
527 | 545 | shift1=lsq2[0][0] |
|
528 | 546 | width1=lsq2[0][1] |
|
529 | 547 | Amplitude1=lsq2[0][2] |
|
530 | 548 | p1=lsq2[0][3] |
|
531 | ||
|
549 | ||
|
532 | 550 | shift0=lsq2[0][4] |
|
533 | 551 | width0=lsq2[0][5] |
|
534 | 552 | Amplitude0=lsq2[0][6] |
|
535 |
p0=lsq2[0][7] |
|
|
536 |
noise=lsq2[0][8] |
|
|
537 | ||
|
553 | p0=lsq2[0][7] | |
|
554 | noise=lsq2[0][8] | |
|
555 | ||
|
538 | 556 | if Amplitude0<0.05: # in case the peak is noise |
|
539 |
shift0,width0,Amplitude0,p0 = [0,0,0,0]#4*[numpy.NaN] |
|
|
557 | shift0,width0,Amplitude0,p0 = [0,0,0,0]#4*[numpy.NaN] | |
|
540 | 558 | if Amplitude1<0.05: |
|
541 |
shift1,width1,Amplitude1,p1 = [0,0,0,0]#4*[numpy.NaN] |
|
|
542 | ||
|
543 | ||
|
559 | shift1,width1,Amplitude1,p1 = [0,0,0,0]#4*[numpy.NaN] | |
|
560 | ||
|
561 | ||
|
544 | 562 | SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 |
|
545 | 563 | SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 |
|
546 | 564 | SPCparam = (SPC_ch1,SPC_ch2) |
|
547 | ||
|
548 | ||
|
565 | ||
|
566 | ||
|
549 | 567 | return GauSPC |
|
550 | ||
|
568 | ||
|
551 | 569 | def y_model1(self,x,state): |
|
552 | 570 | shift0,width0,amplitude0,power0,noise=state |
|
553 | 571 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) |
|
554 | ||
|
572 | ||
|
555 | 573 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) |
|
556 | ||
|
574 | ||
|
557 | 575 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) |
|
558 | 576 | return model0+model0u+model0d+noise |
|
559 | ||
|
560 |
def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist |
|
|
577 | ||
|
578 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist | |
|
561 | 579 | shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state |
|
562 | 580 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) |
|
563 | ||
|
581 | ||
|
564 | 582 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) |
|
565 | ||
|
583 | ||
|
566 | 584 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) |
|
567 | 585 | model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1) |
|
568 | ||
|
586 | ||
|
569 | 587 | model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1) |
|
570 | ||
|
588 | ||
|
571 | 589 | model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1) |
|
572 | 590 | return model0+model0u+model0d+model1+model1u+model1d+noise |
|
573 | ||
|
574 |
def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. |
|
|
591 | ||
|
592 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. | |
|
575 | 593 | |
|
576 | 594 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented |
|
577 | ||
|
595 | ||
|
578 | 596 | def misfit2(self,state,y_data,x,num_intg): |
|
579 | 597 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) |
|
580 | ||
|
581 |
|
|
|
598 | ||
|
599 | ||
|
582 | 600 | |
|
583 | 601 | class PrecipitationProc(Operation): |
|
584 | ||
|
602 | ||
|
585 | 603 | ''' |
|
586 | 604 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) |
|
587 | ||
|
588 |
Input: |
|
|
605 | ||
|
606 | Input: | |
|
589 | 607 | self.dataOut.data_pre : SelfSpectra |
|
590 | ||
|
591 |
Output: |
|
|
592 | ||
|
593 |
self.dataOut.data_output : Reflectivity factor, rainfall Rate |
|
|
594 | ||
|
595 | ||
|
596 |
Parameters affected: |
|
|
608 | ||
|
609 | Output: | |
|
610 | ||
|
611 | self.dataOut.data_output : Reflectivity factor, rainfall Rate | |
|
612 | ||
|
613 | ||
|
614 | Parameters affected: | |
|
597 | 615 | ''' |
|
598 | ||
|
616 | ||
|
599 | 617 | def __init__(self): |
|
600 | 618 | Operation.__init__(self) |
|
601 | 619 | self.i=0 |
|
602 | ||
|
603 | ||
|
620 | ||
|
621 | ||
|
604 | 622 | def gaus(self,xSamples,Amp,Mu,Sigma): |
|
605 | 623 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) |
|
606 | ||
|
607 | ||
|
608 | ||
|
624 | ||
|
625 | ||
|
626 | ||
|
609 | 627 | def Moments(self, ySamples, xSamples): |
|
610 | 628 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 |
|
611 | 629 | yNorm = ySamples / Pot |
|
612 | ||
|
630 | ||
|
613 | 631 | Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento |
|
614 |
Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento |
|
|
632 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento | |
|
615 | 633 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral |
|
616 | ||
|
617 |
return numpy.array([Pot, Vr, Desv]) |
|
|
618 | ||
|
619 |
def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, |
|
|
634 | ||
|
635 | return numpy.array([Pot, Vr, Desv]) | |
|
636 | ||
|
637 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, | |
|
620 | 638 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km = 0.93, Altitude=3350): |
|
621 | ||
|
622 | ||
|
639 | ||
|
640 | ||
|
623 | 641 | Velrange = dataOut.spcparam_range[2] |
|
624 | 642 | FrecRange = dataOut.spcparam_range[0] |
|
625 | ||
|
643 | ||
|
626 | 644 | dV= Velrange[1]-Velrange[0] |
|
627 | 645 | dF= FrecRange[1]-FrecRange[0] |
|
628 | ||
|
646 | ||
|
629 | 647 | if radar == "MIRA35C" : |
|
630 | ||
|
648 | ||
|
631 | 649 | self.spc = dataOut.data_pre[0].copy() |
|
632 | 650 | self.Num_Hei = self.spc.shape[2] |
|
633 | 651 | self.Num_Bin = self.spc.shape[1] |
|
634 | 652 | self.Num_Chn = self.spc.shape[0] |
|
635 | 653 | Ze = self.dBZeMODE2(dataOut) |
|
636 | ||
|
654 | ||
|
637 | 655 | else: |
|
638 | ||
|
656 | ||
|
639 | 657 | self.spc = dataOut.SPCparam[1].copy() #dataOut.data_pre[0].copy() # |
|
640 | ||
|
658 | ||
|
641 | 659 | """NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX""" |
|
642 | ||
|
643 |
self.spc[:,:,0:7]= numpy.NaN |
|
|
644 | ||
|
660 | ||
|
661 | self.spc[:,:,0:7]= numpy.NaN | |
|
662 | ||
|
645 | 663 | """##########################################""" |
|
646 | ||
|
664 | ||
|
647 | 665 | self.Num_Hei = self.spc.shape[2] |
|
648 | 666 | self.Num_Bin = self.spc.shape[1] |
|
649 | 667 | self.Num_Chn = self.spc.shape[0] |
|
650 | ||
|
668 | ||
|
651 | 669 | ''' Se obtiene la constante del RADAR ''' |
|
652 | ||
|
670 | ||
|
653 | 671 | self.Pt = Pt |
|
654 | 672 | self.Gt = Gt |
|
655 | 673 | self.Gr = Gr |
@@ -658,30 +676,30 class PrecipitationProc(Operation): | |||
|
658 | 676 | self.tauW = tauW |
|
659 | 677 | self.ThetaT = ThetaT |
|
660 | 678 | self.ThetaR = ThetaR |
|
661 | ||
|
679 | ||
|
662 | 680 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
663 | 681 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) |
|
664 | 682 | RadarConstant = 10e-26 * Numerator / Denominator # |
|
665 | ||
|
683 | ||
|
666 | 684 | ''' ============================= ''' |
|
667 | ||
|
668 |
self.spc[0] = (self.spc[0]-dataOut.noise[0]) |
|
|
669 |
self.spc[1] = (self.spc[1]-dataOut.noise[1]) |
|
|
670 |
self.spc[2] = (self.spc[2]-dataOut.noise[2]) |
|
|
671 | ||
|
685 | ||
|
686 | self.spc[0] = (self.spc[0]-dataOut.noise[0]) | |
|
687 | self.spc[1] = (self.spc[1]-dataOut.noise[1]) | |
|
688 | self.spc[2] = (self.spc[2]-dataOut.noise[2]) | |
|
689 | ||
|
672 | 690 | self.spc[ numpy.where(self.spc < 0)] = 0 |
|
673 | ||
|
674 |
SPCmean = (numpy.mean(self.spc,0) - numpy.mean(dataOut.noise)) |
|
|
691 | ||
|
692 | SPCmean = (numpy.mean(self.spc,0) - numpy.mean(dataOut.noise)) | |
|
675 | 693 | SPCmean[ numpy.where(SPCmean < 0)] = 0 |
|
676 | ||
|
694 | ||
|
677 | 695 | ETAn = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
678 | 696 | ETAv = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
679 | 697 | ETAd = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
680 | ||
|
698 | ||
|
681 | 699 | Pr = SPCmean[:,:] |
|
682 | ||
|
700 | ||
|
683 | 701 | VelMeteoro = numpy.mean(SPCmean,axis=0) |
|
684 | ||
|
702 | ||
|
685 | 703 | D_range = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
686 | 704 | SIGMA = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
687 | 705 | N_dist = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
@@ -690,102 +708,102 class PrecipitationProc(Operation): | |||
|
690 | 708 | Z = numpy.zeros(self.Num_Hei) |
|
691 | 709 | Ze = numpy.zeros(self.Num_Hei) |
|
692 | 710 | RR = numpy.zeros(self.Num_Hei) |
|
693 | ||
|
711 | ||
|
694 | 712 | Range = dataOut.heightList*1000. |
|
695 | ||
|
713 | ||
|
696 | 714 | for R in range(self.Num_Hei): |
|
697 | ||
|
715 | ||
|
698 | 716 | h = Range[R] + Altitude #Range from ground to radar pulse altitude |
|
699 | 717 | del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity |
|
700 | ||
|
718 | ||
|
701 | 719 | D_range[:,R] = numpy.log( (9.65 - (Velrange[0:self.Num_Bin] / del_V[R])) / 10.3 ) / -0.6 #Diameter range [m]x10**-3 |
|
702 | ||
|
720 | ||
|
703 | 721 | '''NOTA: ETA(n) dn = ETA(f) df |
|
704 | ||
|
722 | ||
|
705 | 723 | dn = 1 Diferencial de muestreo |
|
706 | 724 | df = ETA(n) / ETA(f) |
|
707 | ||
|
725 | ||
|
708 | 726 | ''' |
|
709 | ||
|
727 | ||
|
710 | 728 | ETAn[:,R] = RadarConstant * Pr[:,R] * (Range[R] )**2 #Reflectivity (ETA) |
|
711 | ||
|
729 | ||
|
712 | 730 | ETAv[:,R]=ETAn[:,R]/dV |
|
713 | ||
|
731 | ||
|
714 | 732 | ETAd[:,R]=ETAv[:,R]*6.18*exp(-0.6*D_range[:,R]) |
|
715 | ||
|
733 | ||
|
716 | 734 | SIGMA[:,R] = Km * (D_range[:,R] * 1e-3 )**6 * numpy.pi**5 / Lambda**4 #Equivalent Section of drops (sigma) |
|
717 | ||
|
718 |
N_dist[:,R] = ETAn[:,R] / SIGMA[:,R] |
|
|
719 | ||
|
735 | ||
|
736 | N_dist[:,R] = ETAn[:,R] / SIGMA[:,R] | |
|
737 | ||
|
720 | 738 | DMoments = self.Moments(Pr[:,R], Velrange[0:self.Num_Bin]) |
|
721 | ||
|
739 | ||
|
722 | 740 | try: |
|
723 | 741 | popt01,pcov = curve_fit(self.gaus, Velrange[0:self.Num_Bin] , Pr[:,R] , p0=DMoments) |
|
724 |
except: |
|
|
742 | except: | |
|
725 | 743 | popt01=numpy.zeros(3) |
|
726 | 744 | popt01[1]= DMoments[1] |
|
727 | ||
|
745 | ||
|
728 | 746 | if popt01[1]<0 or popt01[1]>20: |
|
729 | 747 | popt01[1]=numpy.NaN |
|
730 | ||
|
731 | ||
|
748 | ||
|
749 | ||
|
732 | 750 | V_mean[R]=popt01[1] |
|
733 | ||
|
751 | ||
|
734 | 752 | Z[R] = numpy.nansum( N_dist[:,R] * (D_range[:,R])**6 )#*10**-18 |
|
735 | ||
|
753 | ||
|
736 | 754 | RR[R] = 0.0006*numpy.pi * numpy.nansum( D_range[:,R]**3 * N_dist[:,R] * Velrange[0:self.Num_Bin] ) #Rainfall rate |
|
737 | ||
|
755 | ||
|
738 | 756 | Ze[R] = (numpy.nansum( ETAn[:,R]) * Lambda**4) / ( 10**-18*numpy.pi**5 * Km) |
|
739 | ||
|
740 | ||
|
741 | ||
|
757 | ||
|
758 | ||
|
759 | ||
|
742 | 760 | RR2 = (Z/200)**(1/1.6) |
|
743 | 761 | dBRR = 10*numpy.log10(RR) |
|
744 | 762 | dBRR2 = 10*numpy.log10(RR2) |
|
745 | ||
|
763 | ||
|
746 | 764 | dBZe = 10*numpy.log10(Ze) |
|
747 | 765 | dBZ = 10*numpy.log10(Z) |
|
748 | ||
|
766 | ||
|
749 | 767 | dataOut.data_output = RR[8] |
|
750 | 768 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) |
|
751 | 769 | dataOut.channelList = [0,1,2] |
|
752 | ||
|
770 | ||
|
753 | 771 | dataOut.data_param[0]=dBZ |
|
754 | 772 | dataOut.data_param[1]=V_mean |
|
755 | 773 | dataOut.data_param[2]=RR |
|
756 | 774 | |
|
757 | 775 | return dataOut |
|
758 | ||
|
776 | ||
|
759 | 777 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C |
|
760 | ||
|
778 | ||
|
761 | 779 | NPW = dataOut.NPW |
|
762 | 780 | COFA = dataOut.COFA |
|
763 | ||
|
781 | ||
|
764 | 782 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) |
|
765 | 783 | RadarConst = dataOut.RadarConst |
|
766 | 784 | #frequency = 34.85*10**9 |
|
767 | ||
|
785 | ||
|
768 | 786 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) |
|
769 | 787 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN |
|
770 | ||
|
788 | ||
|
771 | 789 | ETA = numpy.sum(SNR,1) |
|
772 | ||
|
790 | ||
|
773 | 791 | ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN) |
|
774 | ||
|
792 | ||
|
775 | 793 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) |
|
776 | ||
|
794 | ||
|
777 | 795 | for r in range(self.Num_Hei): |
|
778 | ||
|
796 | ||
|
779 | 797 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) |
|
780 | 798 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) |
|
781 | ||
|
799 | ||
|
782 | 800 | return Ze |
|
783 | ||
|
801 | ||
|
784 | 802 | # def GetRadarConstant(self): |
|
785 | # | |
|
786 |
# """ |
|
|
803 | # | |
|
804 | # """ | |
|
787 | 805 | # Constants: |
|
788 | # | |
|
806 | # | |
|
789 | 807 | # Pt: Transmission Power dB 5kW 5000 |
|
790 | 808 | # Gt: Transmission Gain dB 24.7 dB 295.1209 |
|
791 | 809 | # Gr: Reception Gain dB 18.5 dB 70.7945 |
@@ -794,55 +812,55 class PrecipitationProc(Operation): | |||
|
794 | 812 | # tauW: Width of transmission pulse s 4us 4e-6 |
|
795 | 813 | # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 |
|
796 | 814 | # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 |
|
797 | # | |
|
815 | # | |
|
798 | 816 | # """ |
|
799 | # | |
|
817 | # | |
|
800 | 818 | # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
801 | 819 | # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) |
|
802 | 820 | # RadarConstant = Numerator / Denominator |
|
803 | # | |
|
821 | # | |
|
804 | 822 | # return RadarConstant |
|
805 | ||
|
806 | ||
|
807 | ||
|
808 |
class FullSpectralAnalysis(Operation): |
|
|
809 | ||
|
823 | ||
|
824 | ||
|
825 | ||
|
826 | class FullSpectralAnalysis(Operation): | |
|
827 | ||
|
810 | 828 | """ |
|
811 | 829 | Function that implements Full Spectral Analysis technique. |
|
812 | ||
|
813 |
Input: |
|
|
830 | ||
|
831 | Input: | |
|
814 | 832 | self.dataOut.data_pre : SelfSpectra and CrossSpectra data |
|
815 | 833 | self.dataOut.groupList : Pairlist of channels |
|
816 | 834 | self.dataOut.ChanDist : Physical distance between receivers |
|
817 | ||
|
818 | ||
|
819 |
Output: |
|
|
820 | ||
|
821 |
self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind |
|
|
822 | ||
|
823 | ||
|
835 | ||
|
836 | ||
|
837 | Output: | |
|
838 | ||
|
839 | self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind | |
|
840 | ||
|
841 | ||
|
824 | 842 | Parameters affected: Winds, height range, SNR |
|
825 | ||
|
843 | ||
|
826 | 844 | """ |
|
827 | 845 | def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRlimit=7, minheight=None, maxheight=None): |
|
828 | ||
|
829 |
self.indice=int(numpy.random.rand()*1000) |
|
|
830 | ||
|
846 | ||
|
847 | self.indice=int(numpy.random.rand()*1000) | |
|
848 | ||
|
831 | 849 | spc = dataOut.data_pre[0].copy() |
|
832 | 850 | cspc = dataOut.data_pre[1] |
|
833 | ||
|
851 | ||
|
834 | 852 | """Erick: NOTE THE RANGE OF THE PULSE TX MUST BE REMOVED""" |
|
835 | 853 | |
|
836 | 854 | SNRspc = spc.copy() |
|
837 | 855 | SNRspc[:,:,0:7]= numpy.NaN |
|
838 | ||
|
856 | ||
|
839 | 857 | """##########################################""" |
|
840 | ||
|
841 | ||
|
858 | ||
|
859 | ||
|
842 | 860 | nChannel = spc.shape[0] |
|
843 | 861 | nProfiles = spc.shape[1] |
|
844 | 862 | nHeights = spc.shape[2] |
|
845 | ||
|
863 | ||
|
846 | 864 | # first_height = 0.75 #km (ref: data header 20170822) |
|
847 | 865 | # resolution_height = 0.075 #km |
|
848 | 866 | ''' |
@@ -866,37 +884,37 class FullSpectralAnalysis(Operation): | |||
|
866 | 884 | ChanDist = dataOut.ChanDist |
|
867 | 885 | else: |
|
868 | 886 | ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]]) |
|
869 | ||
|
887 | ||
|
870 | 888 | FrecRange = dataOut.spc_range[0] |
|
871 | ||
|
889 | ||
|
872 | 890 | data_SNR=numpy.zeros([nProfiles]) |
|
873 | 891 | noise = dataOut.noise |
|
874 | ||
|
892 | ||
|
875 | 893 | dataOut.data_SNR = (numpy.mean(SNRspc,axis=1)- noise[0]) / noise[0] |
|
876 | ||
|
894 | ||
|
877 | 895 | dataOut.data_SNR[numpy.where( dataOut.data_SNR <0 )] = 1e-20 |
|
878 | ||
|
879 |
|
|
|
896 | ||
|
897 | ||
|
880 | 898 | data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN |
|
881 | ||
|
899 | ||
|
882 | 900 | velocityX=[] |
|
883 | 901 | velocityY=[] |
|
884 |
velocityV=[] |
|
|
885 | ||
|
902 | velocityV=[] | |
|
903 | ||
|
886 | 904 | dbSNR = 10*numpy.log10(dataOut.data_SNR) |
|
887 | 905 | dbSNR = numpy.average(dbSNR,0) |
|
888 | ||
|
906 | ||
|
889 | 907 | '''***********************************************WIND ESTIMATION**************************************''' |
|
890 | ||
|
908 | ||
|
891 | 909 | for Height in range(nHeights): |
|
892 |
|
|
|
893 |
if Height >= range_min and Height < range_max: |
|
|
894 |
# error_code unused, yet maybe useful for future analysis. |
|
|
910 | ||
|
911 | if Height >= range_min and Height < range_max: | |
|
912 | # error_code unused, yet maybe useful for future analysis. | |
|
895 | 913 | [Vzon,Vmer,Vver, error_code] = self.WindEstimation(spc[:,:,Height], cspc[:,:,Height], pairsList, ChanDist, Height, noise, dataOut.spc_range, dbSNR[Height], SNRlimit) |
|
896 | 914 | else: |
|
897 | 915 | Vzon,Vmer,Vver = 0., 0., numpy.NaN |
|
898 | ||
|
899 | ||
|
916 | ||
|
917 | ||
|
900 | 918 | if abs(Vzon) < 100. and abs(Vzon) > 0. and abs(Vmer) < 100. and abs(Vmer) > 0.: |
|
901 | 919 | velocityX=numpy.append(velocityX, Vzon) |
|
902 | 920 | velocityY=numpy.append(velocityY, -Vmer) |
@@ -904,33 +922,33 class FullSpectralAnalysis(Operation): | |||
|
904 | 922 | else: |
|
905 | 923 | velocityX=numpy.append(velocityX, numpy.NaN) |
|
906 | 924 | velocityY=numpy.append(velocityY, numpy.NaN) |
|
907 | ||
|
925 | ||
|
908 | 926 | if dbSNR[Height] > SNRlimit: |
|
909 | 927 | velocityV=numpy.append(velocityV, -Vver) # reason for this minus sign -> convention? (taken from Ericks version) |
|
910 | 928 | else: |
|
911 | 929 | velocityV=numpy.append(velocityV, numpy.NaN) |
|
912 | ||
|
913 | ||
|
930 | ||
|
931 | ||
|
914 | 932 | '''Change the numpy.array (velocityX) sign when trying to process BLTR data (Erick)''' |
|
915 |
data_output[0] = numpy.array(velocityX) |
|
|
916 |
data_output[1] = numpy.array(velocityY) |
|
|
933 | data_output[0] = numpy.array(velocityX) | |
|
934 | data_output[1] = numpy.array(velocityY) | |
|
917 | 935 | data_output[2] = velocityV |
|
918 | ||
|
919 | ||
|
936 | ||
|
937 | ||
|
920 | 938 | dataOut.data_output = data_output |
|
921 | ||
|
939 | ||
|
922 | 940 | return dataOut |
|
923 | ||
|
941 | ||
|
924 | 942 | |
|
925 | 943 | def moving_average(self,x, N=2): |
|
926 | 944 | """ convolution for smoothenig data. note that last N-1 values are convolution with zeroes """ |
|
927 | 945 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] |
|
928 | ||
|
946 | ||
|
929 | 947 | def gaus(self,xSamples,Amp,Mu,Sigma): |
|
930 | 948 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) |
|
931 | ||
|
949 | ||
|
932 | 950 | def Moments(self, ySamples, xSamples): |
|
933 |
'''*** |
|
|
951 | '''*** | |
|
934 | 952 | Variables corresponding to moments of distribution. |
|
935 | 953 | Also used as initial coefficients for curve_fit. |
|
936 | 954 | Vr was corrected. Only a velocity when x is velocity, of course. |
@@ -939,9 +957,9 class FullSpectralAnalysis(Operation): | |||
|
939 | 957 | yNorm = ySamples / Pot |
|
940 | 958 | x_range = (numpy.max(xSamples)-numpy.min(xSamples)) |
|
941 | 959 | Vr = numpy.nansum( yNorm * xSamples )*x_range/len(xSamples) # Velocidad radial, mu, corrimiento doppler, primer momento |
|
942 |
Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento |
|
|
960 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento | |
|
943 | 961 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral |
|
944 | ||
|
962 | ||
|
945 | 963 | return numpy.array([Pot, Vr, Desv]) |
|
946 | 964 | |
|
947 | 965 | def StopWindEstimation(self, error_code): |
@@ -954,7 +972,7 class FullSpectralAnalysis(Operation): | |||
|
954 | 972 | return Vzon, Vmer, Vver, error_code |
|
955 | 973 | |
|
956 | 974 | def AntiAliasing(self, interval, maxstep): |
|
957 |
""" |
|
|
975 | """ | |
|
958 | 976 | function to prevent errors from aliased values when computing phaseslope |
|
959 | 977 | """ |
|
960 | 978 | antialiased = numpy.zeros(len(interval))*0.0 |
@@ -964,8 +982,8 class FullSpectralAnalysis(Operation): | |||
|
964 | 982 | |
|
965 | 983 | for i in range(1,len(antialiased)): |
|
966 | 984 | |
|
967 |
step = interval[i] - interval[i-1] |
|
|
968 | ||
|
985 | step = interval[i] - interval[i-1] | |
|
986 | ||
|
969 | 987 | if step > maxstep: |
|
970 | 988 | copyinterval -= 2*numpy.pi |
|
971 | 989 | antialiased[i] = copyinterval[i] |
@@ -973,7 +991,7 class FullSpectralAnalysis(Operation): | |||
|
973 | 991 | elif step < maxstep*(-1): |
|
974 | 992 | copyinterval += 2*numpy.pi |
|
975 | 993 | antialiased[i] = copyinterval[i] |
|
976 | ||
|
994 | ||
|
977 | 995 | else: |
|
978 | 996 | antialiased[i] = copyinterval[i].copy() |
|
979 | 997 | |
@@ -1003,27 +1021,27 class FullSpectralAnalysis(Operation): | |||
|
1003 | 1021 | 3 : SNR to low or velocity to high -> prec. e.g. |
|
1004 | 1022 | 4 : at least one Gaussian of cspc exceeds widthlimit |
|
1005 | 1023 | 5 : zero out of three cspc Gaussian fits converged |
|
1006 |
6 : phase slope fit could not be found |
|
|
1024 | 6 : phase slope fit could not be found | |
|
1007 | 1025 | 7 : arrays used to fit phase have different length |
|
1008 | 1026 | 8 : frequency range is either too short (len <= 5) or very long (> 30% of cspc) |
|
1009 | 1027 | |
|
1010 | 1028 | """ |
|
1011 | 1029 | |
|
1012 | 1030 | error_code = 0 |
|
1013 |
|
|
|
1031 | ||
|
1014 | 1032 | |
|
1015 | 1033 | SPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]]) # for normalized spc values for one height |
|
1016 | 1034 | phase = numpy.ones([spc.shape[0],spc.shape[1]]) # phase between channels |
|
1017 | 1035 | CSPC_Samples = numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) # for normalized cspc values |
|
1018 | 1036 | PhaseSlope = numpy.zeros(spc.shape[0]) # slope of the phases, channelwise |
|
1019 | 1037 | PhaseInter = numpy.ones(spc.shape[0]) # intercept to the slope of the phases, channelwise |
|
1020 |
xFrec = AbbsisaRange[0][0:spc.shape[1]] # frequency range |
|
|
1038 | xFrec = AbbsisaRange[0][0:spc.shape[1]] # frequency range | |
|
1021 | 1039 | xVel = AbbsisaRange[2][0:spc.shape[1]] # velocity range |
|
1022 | 1040 | SPCav = numpy.average(spc, axis=0)-numpy.average(noise) # spc[0]-noise[0] |
|
1023 | ||
|
1041 | ||
|
1024 | 1042 | SPCmoments_vel = self.Moments(SPCav, xVel ) # SPCmoments_vel[1] corresponds to vertical velocity and is used to determine if signal corresponds to wind (if .. <3) |
|
1025 | 1043 | CSPCmoments = [] |
|
1026 | ||
|
1044 | ||
|
1027 | 1045 | |
|
1028 | 1046 | '''Getting Eij and Nij''' |
|
1029 | 1047 | |
@@ -1038,13 +1056,13 class FullSpectralAnalysis(Operation): | |||
|
1038 | 1056 | spc_norm = spc.copy() # need copy() because untouched spc is needed for normalization of cspc below |
|
1039 | 1057 | spc_norm = numpy.where(numpy.isfinite(spc_norm), spc_norm, numpy.NAN) |
|
1040 | 1058 | |
|
1041 |
for i in range(spc.shape[0]): |
|
|
1042 | ||
|
1059 | for i in range(spc.shape[0]): | |
|
1060 | ||
|
1043 | 1061 | spc_sub = spc_norm[i,:] - noise[i] # spc not smoothed here or in previous version. |
|
1044 | 1062 | |
|
1045 | 1063 | Factor_Norm = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc_sub)) # usually = Freq range / nfft |
|
1046 |
normalized_spc = spc_sub / (numpy.nansum(numpy.abs(spc_sub)) * Factor_Norm) |
|
|
1047 | ||
|
1064 | normalized_spc = spc_sub / (numpy.nansum(numpy.abs(spc_sub)) * Factor_Norm) | |
|
1065 | ||
|
1048 | 1066 | xSamples = xFrec # the frequency range is taken |
|
1049 | 1067 | SPC_Samples[i] = normalized_spc # Normalized SPC values are taken |
|
1050 | 1068 | |
@@ -1055,49 +1073,49 class FullSpectralAnalysis(Operation): | |||
|
1055 | 1073 | only for estimation of width. for normalization of cross spectra, you need initial, |
|
1056 | 1074 | unnormalized self-spectra With noise. |
|
1057 | 1075 | |
|
1058 |
Technically, you don't even need to normalize the self-spectra, as you only need the |
|
|
1076 | Technically, you don't even need to normalize the self-spectra, as you only need the | |
|
1059 | 1077 | width of the peak. However, it was left this way. Note that the normalization has a flaw: |
|
1060 | 1078 | due to subtraction of the noise, some values are below zero. Raw "spc" values should be |
|
1061 | 1079 | >= 0, as it is the modulus squared of the signals (complex * it's conjugate) |
|
1062 | 1080 | """ |
|
1063 | 1081 | |
|
1064 |
SPCMean = numpy.average(SPC_Samples, axis=0) |
|
|
1065 | ||
|
1082 | SPCMean = numpy.average(SPC_Samples, axis=0) | |
|
1083 | ||
|
1066 | 1084 | popt = [1e-10,0,1e-10] |
|
1067 | 1085 | SPCMoments = self.Moments(SPCMean, xSamples) |
|
1068 | 1086 | |
|
1069 |
if dbSNR > SNRlimit and numpy.abs(SPCmoments_vel[1]) < 3: |
|
|
1087 | if dbSNR > SNRlimit and numpy.abs(SPCmoments_vel[1]) < 3: | |
|
1070 | 1088 | try: |
|
1071 | 1089 | popt,pcov = curve_fit(self.gaus,xSamples,SPCMean,p0=SPCMoments)#, bounds=(-numpy.inf, [numpy.inf, numpy.inf, 10])). Setting bounds does not make the code faster but only keeps the fit from finding the minimum. |
|
1072 | 1090 | if popt[2] > widthlimit: # CONDITION |
|
1073 | 1091 | return self.StopWindEstimation(error_code = 1) |
|
1074 | 1092 | |
|
1075 | 1093 | FitGauss = self.gaus(xSamples,*popt) |
|
1076 | ||
|
1094 | ||
|
1077 | 1095 | except :#RuntimeError: |
|
1078 | 1096 | return self.StopWindEstimation(error_code = 2) |
|
1079 | 1097 | |
|
1080 | 1098 | else: |
|
1081 | 1099 | return self.StopWindEstimation(error_code = 3) |
|
1082 | ||
|
1100 | ||
|
1083 | 1101 | |
|
1084 | 1102 | |
|
1085 | 1103 | '''***************************** CSPC Normalization ************************* |
|
1086 | 1104 | new section: |
|
1087 | 1105 | The Spc spectra are used to normalize the crossspectra. Peaks from precipitation |
|
1088 |
influence the norm which is not desired. First, a range is identified where the |
|
|
1089 |
wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area |
|
|
1090 |
around it gets cut off and values replaced by mean determined by the boundary |
|
|
1106 | influence the norm which is not desired. First, a range is identified where the | |
|
1107 | wind peak is estimated -> sum_wind is sum of those frequencies. Next, the area | |
|
1108 | around it gets cut off and values replaced by mean determined by the boundary | |
|
1091 | 1109 | data -> sum_noise (spc is not normalized here, thats why the noise is important) |
|
1092 | 1110 | |
|
1093 | 1111 | The sums are then added and multiplied by range/datapoints, because you need |
|
1094 | 1112 | an integral and not a sum for normalization. |
|
1095 | ||
|
1096 |
A norm is found according to Briggs 92. |
|
|
1113 | ||
|
1114 | A norm is found according to Briggs 92. | |
|
1097 | 1115 | ''' |
|
1098 | 1116 | |
|
1099 | 1117 | radarWavelength = 0.6741 # meters |
|
1100 |
count_limit_freq = numpy.abs(popt[1]) + widthlimit # Hz, m/s can be also used if velocity is desired abscissa. |
|
|
1118 | count_limit_freq = numpy.abs(popt[1]) + widthlimit # Hz, m/s can be also used if velocity is desired abscissa. | |
|
1101 | 1119 | # count_limit_freq = numpy.max(xFrec) |
|
1102 | 1120 | |
|
1103 | 1121 | channel_integrals = numpy.zeros(3) |
@@ -1108,11 +1126,11 class FullSpectralAnalysis(Operation): | |||
|
1108 | 1126 | sum over all frequencies in the range around zero Hz @ math.ceil(N_freq/2) |
|
1109 | 1127 | ''' |
|
1110 | 1128 | N_freq = numpy.count_nonzero(~numpy.isnan(spc[i,:])) |
|
1111 |
count_limit_int = int(math.ceil( count_limit_freq / numpy.max(xFrec) * (N_freq / 2) )) # gives integer point |
|
|
1129 | count_limit_int = int(math.ceil( count_limit_freq / numpy.max(xFrec) * (N_freq / 2) )) # gives integer point | |
|
1112 | 1130 | sum_wind = numpy.nansum( spc[i, (math.ceil(N_freq/2) - count_limit_int) : (math.ceil(N_freq / 2) + count_limit_int)] ) #N_freq/2 is where frequency (velocity) is zero, i.e. middle of spectrum. |
|
1113 | 1131 | sum_noise = (numpy.mean(spc[i, :4]) + numpy.mean(spc[i, -6:-2]))/2.0 * (N_freq - 2*count_limit_int) |
|
1114 | 1132 | channel_integrals[i] = (sum_noise + sum_wind) * (2*numpy.max(xFrec) / N_freq) |
|
1115 | ||
|
1133 | ||
|
1116 | 1134 | |
|
1117 | 1135 | cross_integrals_peak = numpy.zeros(3) |
|
1118 | 1136 | # cross_integrals_totalrange = numpy.zeros(3) |
@@ -1125,45 +1143,45 class FullSpectralAnalysis(Operation): | |||
|
1125 | 1143 | chan_index1 = pairsList[i][1] |
|
1126 | 1144 | |
|
1127 | 1145 | cross_integrals_peak[i] = channel_integrals[chan_index0]*channel_integrals[chan_index1] |
|
1128 |
normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_peak[i]) |
|
|
1146 | normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_peak[i]) | |
|
1129 | 1147 | CSPC_Samples[i] = normalized_cspc |
|
1130 | 1148 | |
|
1131 | 1149 | ''' Finding cross integrals without subtracting any peaks:''' |
|
1132 | 1150 | # FactorNorm0 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index0,:])) |
|
1133 | 1151 | # FactorNorm1 = 2*numpy.max(xFrec) / numpy.count_nonzero(~numpy.isnan(spc[chan_index1,:])) |
|
1134 |
# cross_integrals_totalrange[i] = (numpy.nansum(spc[chan_index0,:])) * FactorNorm0 * (numpy.nansum(spc[chan_index1,:])) * FactorNorm1 |
|
|
1135 |
# normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_totalrange[i]) |
|
|
1152 | # cross_integrals_totalrange[i] = (numpy.nansum(spc[chan_index0,:])) * FactorNorm0 * (numpy.nansum(spc[chan_index1,:])) * FactorNorm1 | |
|
1153 | # normalized_cspc = cspc_norm / numpy.sqrt(cross_integrals_totalrange[i]) | |
|
1136 | 1154 | # CSPC_Samples[i] = normalized_cspc |
|
1137 | ||
|
1138 | ||
|
1155 | ||
|
1156 | ||
|
1139 | 1157 | phase[i] = numpy.arctan2(CSPC_Samples[i].imag, CSPC_Samples[i].real) |
|
1140 | 1158 | |
|
1141 | 1159 | |
|
1142 | 1160 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPC_Samples[0]), xSamples), |
|
1143 | 1161 | self.Moments(numpy.abs(CSPC_Samples[1]), xSamples), |
|
1144 | 1162 | self.Moments(numpy.abs(CSPC_Samples[2]), xSamples)]) |
|
1145 | ||
|
1163 | ||
|
1146 | 1164 | |
|
1147 | 1165 | '''***Sorting out NaN entries***''' |
|
1148 | 1166 | CSPCMask01 = numpy.abs(CSPC_Samples[0]) |
|
1149 | 1167 | CSPCMask02 = numpy.abs(CSPC_Samples[1]) |
|
1150 | 1168 | CSPCMask12 = numpy.abs(CSPC_Samples[2]) |
|
1151 | ||
|
1169 | ||
|
1152 | 1170 | mask01 = ~numpy.isnan(CSPCMask01) |
|
1153 | 1171 | mask02 = ~numpy.isnan(CSPCMask02) |
|
1154 | 1172 | mask12 = ~numpy.isnan(CSPCMask12) |
|
1155 | ||
|
1173 | ||
|
1156 | 1174 | CSPCMask01 = CSPCMask01[mask01] |
|
1157 | 1175 | CSPCMask02 = CSPCMask02[mask02] |
|
1158 | 1176 | CSPCMask12 = CSPCMask12[mask12] |
|
1159 | 1177 | |
|
1160 | ||
|
1161 |
popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10] |
|
|
1178 | ||
|
1179 | popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10] | |
|
1162 | 1180 | FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0 |
|
1163 | ||
|
1181 | ||
|
1164 | 1182 | '''*******************************FIT GAUSS CSPC************************************''' |
|
1165 | 1183 | |
|
1166 |
try: |
|
|
1184 | try: | |
|
1167 | 1185 | popt01,pcov = curve_fit(self.gaus,xSamples[mask01],numpy.abs(CSPCMask01),p0=CSPCmoments[0]) |
|
1168 | 1186 | if popt01[2] > widthlimit: # CONDITION |
|
1169 | 1187 | return self.StopWindEstimation(error_code = 4) |
@@ -1186,53 +1204,53 class FullSpectralAnalysis(Operation): | |||
|
1186 | 1204 | |
|
1187 | 1205 | '''************* Getting Fij ***************''' |
|
1188 | 1206 | |
|
1189 | ||
|
1190 |
#Punto en Eje X de la Gaussiana donde se encuentra el centro -- x-axis point of the gaussian where the center is located |
|
|
1191 |
# -> PointGauCenter |
|
|
1192 |
GaussCenter = popt[1] |
|
|
1207 | ||
|
1208 | #Punto en Eje X de la Gaussiana donde se encuentra el centro -- x-axis point of the gaussian where the center is located | |
|
1209 | # -> PointGauCenter | |
|
1210 | GaussCenter = popt[1] | |
|
1193 | 1211 | ClosestCenter = xSamples[numpy.abs(xSamples-GaussCenter).argmin()] |
|
1194 | 1212 | PointGauCenter = numpy.where(xSamples==ClosestCenter)[0][0] |
|
1195 | ||
|
1213 | ||
|
1196 | 1214 | #Punto e^-1 hubicado en la Gaussiana -- point where e^-1 is located in the gaussian |
|
1197 | 1215 | PeMinus1 = numpy.max(FitGauss) * numpy.exp(-1) |
|
1198 | 1216 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # El punto mas cercano a "Peminus1" dentro de "FitGauss" |
|
1199 | 1217 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] |
|
1200 | 1218 | |
|
1201 | 1219 | Fij = numpy.abs(xSamples[PointFij] - xSamples[PointGauCenter]) |
|
1202 | ||
|
1220 | ||
|
1203 | 1221 | '''********** Taking frequency ranges from mean SPCs **********''' |
|
1204 | ||
|
1222 | ||
|
1205 | 1223 | #GaussCenter = popt[1] #Primer momento 01 |
|
1206 | 1224 | GauWidth = popt[2] * 3/2 #Ancho de banda de Gau01 -- Bandwidth of Gau01 TODO why *3/2? |
|
1207 | 1225 | Range = numpy.empty(2) |
|
1208 | 1226 | Range[0] = GaussCenter - GauWidth |
|
1209 |
Range[1] = GaussCenter + GauWidth |
|
|
1227 | Range[1] = GaussCenter + GauWidth | |
|
1210 | 1228 | #Punto en Eje X de la Gaussiana donde se encuentra ancho de banda (min:max) -- Point in x-axis where the bandwidth is located (min:max) |
|
1211 | 1229 | ClosRangeMin = xSamples[numpy.abs(xSamples-Range[0]).argmin()] |
|
1212 | 1230 | ClosRangeMax = xSamples[numpy.abs(xSamples-Range[1]).argmin()] |
|
1213 | ||
|
1231 | ||
|
1214 | 1232 | PointRangeMin = numpy.where(xSamples==ClosRangeMin)[0][0] |
|
1215 | 1233 | PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0] |
|
1216 | ||
|
1234 | ||
|
1217 | 1235 | Range = numpy.array([ PointRangeMin, PointRangeMax ]) |
|
1218 | ||
|
1236 | ||
|
1219 | 1237 | FrecRange = xFrec[ Range[0] : Range[1] ] |
|
1220 | 1238 | |
|
1221 | ||
|
1222 |
'''************************** Getting Phase Slope ***************************''' |
|
|
1223 | ||
|
1224 |
for i in range(1,3): # Changed to only compute two |
|
|
1225 | ||
|
1239 | ||
|
1240 | '''************************** Getting Phase Slope ***************************''' | |
|
1241 | ||
|
1242 | for i in range(1,3): # Changed to only compute two | |
|
1243 | ||
|
1226 | 1244 | if len(FrecRange) > 5 and len(FrecRange) < spc.shape[1] * 0.3: |
|
1227 | 1245 | # PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=1) #used before to smooth phase with N=3 |
|
1228 | 1246 | PhaseRange = phase[i,Range[0]:Range[1]].copy() |
|
1229 | ||
|
1247 | ||
|
1230 | 1248 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) |
|
1231 | ||
|
1249 | ||
|
1232 | 1250 | |
|
1233 | 1251 | if len(FrecRange) == len(PhaseRange): |
|
1234 | ||
|
1235 |
try: |
|
|
1252 | ||
|
1253 | try: | |
|
1236 | 1254 | slope, intercept, _, _, _ = stats.linregress(FrecRange[mask], self.AntiAliasing(PhaseRange[mask], 4.5)) |
|
1237 | 1255 | PhaseSlope[i] = slope |
|
1238 | 1256 | PhaseInter[i] = intercept |
@@ -1242,49 +1260,49 class FullSpectralAnalysis(Operation): | |||
|
1242 | 1260 | |
|
1243 | 1261 | else: |
|
1244 | 1262 | return self.StopWindEstimation(error_code = 7) |
|
1245 | ||
|
1263 | ||
|
1246 | 1264 | else: |
|
1247 | 1265 | return self.StopWindEstimation(error_code = 8) |
|
1248 | ||
|
1249 | ||
|
1250 | ||
|
1266 | ||
|
1267 | ||
|
1268 | ||
|
1251 | 1269 | '''*** Constants A-H correspond to the convention as in Briggs and Vincent 1992 ***''' |
|
1252 | 1270 | |
|
1253 | 1271 | '''Getting constant C''' |
|
1254 | 1272 | cC=(Fij*numpy.pi)**2 |
|
1255 | ||
|
1273 | ||
|
1256 | 1274 | '''****** Getting constants F and G ******''' |
|
1257 | 1275 | MijEijNij = numpy.array([[Xi02,Eta02], [Xi12,Eta12]]) |
|
1258 | 1276 | MijResult0 = (-PhaseSlope[1] * cC) / (2*numpy.pi) |
|
1259 |
MijResult1 = (-PhaseSlope[2] * cC) / (2*numpy.pi) |
|
|
1277 | MijResult1 = (-PhaseSlope[2] * cC) / (2*numpy.pi) | |
|
1260 | 1278 | MijResults = numpy.array([MijResult0,MijResult1]) |
|
1261 |
(cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) |
|
|
1262 | ||
|
1279 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | |
|
1280 | ||
|
1263 | 1281 | '''****** Getting constants A, B and H ******''' |
|
1264 |
W01 = numpy.nanmax( FitGauss01 ) |
|
|
1265 |
W02 = numpy.nanmax( FitGauss02 ) |
|
|
1266 |
W12 = numpy.nanmax( FitGauss12 ) |
|
|
1267 | ||
|
1282 | W01 = numpy.nanmax( FitGauss01 ) | |
|
1283 | W02 = numpy.nanmax( FitGauss02 ) | |
|
1284 | W12 = numpy.nanmax( FitGauss12 ) | |
|
1285 | ||
|
1268 | 1286 | WijResult0 = ((cF * Xi01 + cG * Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi / cC)) |
|
1269 | 1287 | WijResult1 = ((cF * Xi02 + cG * Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi / cC)) |
|
1270 | 1288 | WijResult2 = ((cF * Xi12 + cG * Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi / cC)) |
|
1271 | ||
|
1289 | ||
|
1272 | 1290 | WijResults = numpy.array([WijResult0, WijResult1, WijResult2]) |
|
1273 | ||
|
1274 |
WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) |
|
|
1291 | ||
|
1292 | WijEijNij = numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) | |
|
1275 | 1293 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) |
|
1276 | ||
|
1294 | ||
|
1277 | 1295 | VxVy = numpy.array([[cA,cH],[cH,cB]]) |
|
1278 | 1296 | VxVyResults = numpy.array([-cF,-cG]) |
|
1279 | 1297 | (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) |
|
1280 | ||
|
1298 | ||
|
1281 | 1299 | Vzon = Vy |
|
1282 | 1300 | Vmer = Vx |
|
1283 | ||
|
1301 | ||
|
1284 | 1302 | # Vmag=numpy.sqrt(Vzon**2+Vmer**2) # unused |
|
1285 | 1303 | # Vang=numpy.arctan2(Vmer,Vzon) # unused |
|
1286 | 1304 | |
|
1287 | ||
|
1305 | ||
|
1288 | 1306 | ''' using frequency as abscissa. Due to three channels, the offzenith angle is zero |
|
1289 | 1307 | and Vrad equal to Vver. formula taken from Briggs 92, figure 4. |
|
1290 | 1308 | ''' |
@@ -1295,62 +1313,62 class FullSpectralAnalysis(Operation): | |||
|
1295 | 1313 | |
|
1296 | 1314 | error_code = 0 |
|
1297 | 1315 | |
|
1298 |
return Vzon, Vmer, Vver, error_code |
|
|
1316 | return Vzon, Vmer, Vver, error_code | |
|
1299 | 1317 | |
|
1300 | 1318 | |
|
1301 | 1319 | class SpectralMoments(Operation): |
|
1302 | ||
|
1320 | ||
|
1303 | 1321 | ''' |
|
1304 | 1322 | Function SpectralMoments() |
|
1305 | ||
|
1323 | ||
|
1306 | 1324 | Calculates moments (power, mean, standard deviation) and SNR of the signal |
|
1307 | ||
|
1325 | ||
|
1308 | 1326 | Type of dataIn: Spectra |
|
1309 | ||
|
1327 | ||
|
1310 | 1328 | Configuration Parameters: |
|
1311 | ||
|
1329 | ||
|
1312 | 1330 | dirCosx : Cosine director in X axis |
|
1313 | 1331 | dirCosy : Cosine director in Y axis |
|
1314 | ||
|
1332 | ||
|
1315 | 1333 | elevation : |
|
1316 | 1334 | azimuth : |
|
1317 | ||
|
1335 | ||
|
1318 | 1336 | Input: |
|
1319 |
channelList : simple channel list to select e.g. [2,3,7] |
|
|
1337 | channelList : simple channel list to select e.g. [2,3,7] | |
|
1320 | 1338 | self.dataOut.data_pre : Spectral data |
|
1321 | 1339 | self.dataOut.abscissaList : List of frequencies |
|
1322 | 1340 | self.dataOut.noise : Noise level per channel |
|
1323 | ||
|
1341 | ||
|
1324 | 1342 | Affected: |
|
1325 | 1343 | self.dataOut.moments : Parameters per channel |
|
1326 | 1344 | self.dataOut.data_SNR : SNR per channel |
|
1327 | ||
|
1345 | ||
|
1328 | 1346 | ''' |
|
1329 | ||
|
1347 | ||
|
1330 | 1348 | def run(self, dataOut): |
|
1331 | ||
|
1349 | ||
|
1332 | 1350 | #dataOut.data_pre = dataOut.data_pre[0] |
|
1333 | 1351 | data = dataOut.data_pre[0] |
|
1334 | 1352 | absc = dataOut.abscissaList[:-1] |
|
1335 | 1353 | noise = dataOut.noise |
|
1336 | 1354 | nChannel = data.shape[0] |
|
1337 | 1355 | data_param = numpy.zeros((nChannel, 4, data.shape[2])) |
|
1338 | ||
|
1356 | ||
|
1339 | 1357 | for ind in range(nChannel): |
|
1340 | 1358 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) |
|
1341 | ||
|
1359 | ||
|
1342 | 1360 | dataOut.moments = data_param[:,1:,:] |
|
1343 | 1361 | dataOut.data_SNR = data_param[:,0] |
|
1344 | 1362 | dataOut.data_POW = data_param[:,1] |
|
1345 | 1363 | dataOut.data_DOP = data_param[:,2] |
|
1346 | 1364 | dataOut.data_WIDTH = data_param[:,3] |
|
1347 | 1365 | return dataOut |
|
1348 | ||
|
1349 |
def __calculateMoments(self, oldspec, oldfreq, n0, |
|
|
1366 | ||
|
1367 | def __calculateMoments(self, oldspec, oldfreq, n0, | |
|
1350 | 1368 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): |
|
1351 | ||
|
1369 | ||
|
1352 | 1370 | if (nicoh is None): nicoh = 1 |
|
1353 |
if (graph is None): graph = 0 |
|
|
1371 | if (graph is None): graph = 0 | |
|
1354 | 1372 | if (smooth is None): smooth = 0 |
|
1355 | 1373 | elif (self.smooth < 3): smooth = 0 |
|
1356 | 1374 | |
@@ -1361,98 +1379,98 class SpectralMoments(Operation): | |||
|
1361 | 1379 | if (aliasing is None): aliasing = 0 |
|
1362 | 1380 | if (oldfd is None): oldfd = 0 |
|
1363 | 1381 | if (wwauto is None): wwauto = 0 |
|
1364 | ||
|
1382 | ||
|
1365 | 1383 | if (n0 < 1.e-20): n0 = 1.e-20 |
|
1366 | ||
|
1384 | ||
|
1367 | 1385 | freq = oldfreq |
|
1368 | 1386 | vec_power = numpy.zeros(oldspec.shape[1]) |
|
1369 | 1387 | vec_fd = numpy.zeros(oldspec.shape[1]) |
|
1370 | 1388 | vec_w = numpy.zeros(oldspec.shape[1]) |
|
1371 | 1389 | vec_snr = numpy.zeros(oldspec.shape[1]) |
|
1372 | ||
|
1390 | ||
|
1373 | 1391 | oldspec = numpy.ma.masked_invalid(oldspec) |
|
1374 | 1392 | |
|
1375 | 1393 | for ind in range(oldspec.shape[1]): |
|
1376 | ||
|
1394 | ||
|
1377 | 1395 | spec = oldspec[:,ind] |
|
1378 | 1396 | aux = spec*fwindow |
|
1379 | 1397 | max_spec = aux.max() |
|
1380 | 1398 | m = list(aux).index(max_spec) |
|
1381 | ||
|
1382 |
#Smooth |
|
|
1399 | ||
|
1400 | #Smooth | |
|
1383 | 1401 | if (smooth == 0): spec2 = spec |
|
1384 | 1402 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) |
|
1385 | ||
|
1403 | ||
|
1386 | 1404 | # Calculo de Momentos |
|
1387 | 1405 | bb = spec2[list(range(m,spec2.size))] |
|
1388 | 1406 | bb = (bb<n0).nonzero() |
|
1389 | 1407 | bb = bb[0] |
|
1390 | ||
|
1408 | ||
|
1391 | 1409 | ss = spec2[list(range(0,m + 1))] |
|
1392 | 1410 | ss = (ss<n0).nonzero() |
|
1393 | 1411 | ss = ss[0] |
|
1394 | ||
|
1412 | ||
|
1395 | 1413 | if (bb.size == 0): |
|
1396 | 1414 | bb0 = spec.size - 1 - m |
|
1397 |
else: |
|
|
1415 | else: | |
|
1398 | 1416 | bb0 = bb[0] - 1 |
|
1399 | 1417 | if (bb0 < 0): |
|
1400 | 1418 | bb0 = 0 |
|
1401 | ||
|
1419 | ||
|
1402 | 1420 | if (ss.size == 0): ss1 = 1 |
|
1403 | 1421 | else: ss1 = max(ss) + 1 |
|
1404 | ||
|
1422 | ||
|
1405 | 1423 | if (ss1 > m): ss1 = m |
|
1406 | ||
|
1407 |
valid = numpy.asarray(list(range(int(m + bb0 - ss1 + 1)))) + ss1 |
|
|
1424 | ||
|
1425 | valid = numpy.asarray(list(range(int(m + bb0 - ss1 + 1)))) + ss1 | |
|
1408 | 1426 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() |
|
1409 | 1427 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power |
|
1410 | 1428 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) |
|
1411 |
snr = (spec2.mean()-n0)/n0 |
|
|
1412 | ||
|
1413 |
if (snr < 1.e-20) : |
|
|
1429 | snr = (spec2.mean()-n0)/n0 | |
|
1430 | ||
|
1431 | if (snr < 1.e-20) : | |
|
1414 | 1432 | snr = 1.e-20 |
|
1415 | ||
|
1433 | ||
|
1416 | 1434 | vec_power[ind] = power |
|
1417 | 1435 | vec_fd[ind] = fd |
|
1418 | 1436 | vec_w[ind] = w |
|
1419 | 1437 | vec_snr[ind] = snr |
|
1420 | ||
|
1438 | ||
|
1421 | 1439 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) |
|
1422 | 1440 | return moments |
|
1423 | ||
|
1441 | ||
|
1424 | 1442 | #------------------ Get SA Parameters -------------------------- |
|
1425 | ||
|
1443 | ||
|
1426 | 1444 | def GetSAParameters(self): |
|
1427 | 1445 | #SA en frecuencia |
|
1428 | 1446 | pairslist = self.dataOut.groupList |
|
1429 | 1447 | num_pairs = len(pairslist) |
|
1430 | ||
|
1448 | ||
|
1431 | 1449 | vel = self.dataOut.abscissaList |
|
1432 | 1450 | spectra = self.dataOut.data_pre |
|
1433 | 1451 | cspectra = self.dataIn.data_cspc |
|
1434 |
delta_v = vel[1] - vel[0] |
|
|
1435 | ||
|
1452 | delta_v = vel[1] - vel[0] | |
|
1453 | ||
|
1436 | 1454 | #Calculating the power spectrum |
|
1437 | 1455 | spc_pow = numpy.sum(spectra, 3)*delta_v |
|
1438 | 1456 | #Normalizing Spectra |
|
1439 | 1457 | norm_spectra = spectra/spc_pow |
|
1440 | 1458 | #Calculating the norm_spectra at peak |
|
1441 |
max_spectra = numpy.max(norm_spectra, 3) |
|
|
1442 | ||
|
1459 | max_spectra = numpy.max(norm_spectra, 3) | |
|
1460 | ||
|
1443 | 1461 | #Normalizing Cross Spectra |
|
1444 | 1462 | norm_cspectra = numpy.zeros(cspectra.shape) |
|
1445 | ||
|
1463 | ||
|
1446 | 1464 | for i in range(num_chan): |
|
1447 | 1465 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) |
|
1448 | ||
|
1466 | ||
|
1449 | 1467 | max_cspectra = numpy.max(norm_cspectra,2) |
|
1450 | 1468 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) |
|
1451 | ||
|
1469 | ||
|
1452 | 1470 | for i in range(num_pairs): |
|
1453 | 1471 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) |
|
1454 | 1472 | #------------------- Get Lags ---------------------------------- |
|
1455 | ||
|
1473 | ||
|
1456 | 1474 | class SALags(Operation): |
|
1457 | 1475 | ''' |
|
1458 | 1476 | Function GetMoments() |
@@ -1465,19 +1483,19 class SALags(Operation): | |||
|
1465 | 1483 | self.dataOut.data_SNR |
|
1466 | 1484 | self.dataOut.groupList |
|
1467 | 1485 | self.dataOut.nChannels |
|
1468 | ||
|
1486 | ||
|
1469 | 1487 | Affected: |
|
1470 | 1488 | self.dataOut.data_param |
|
1471 | ||
|
1489 | ||
|
1472 | 1490 | ''' |
|
1473 |
def run(self, dataOut): |
|
|
1491 | def run(self, dataOut): | |
|
1474 | 1492 | data_acf = dataOut.data_pre[0] |
|
1475 | 1493 | data_ccf = dataOut.data_pre[1] |
|
1476 | 1494 | normFactor_acf = dataOut.normFactor[0] |
|
1477 | 1495 | normFactor_ccf = dataOut.normFactor[1] |
|
1478 | 1496 | pairs_acf = dataOut.groupList[0] |
|
1479 | 1497 | pairs_ccf = dataOut.groupList[1] |
|
1480 | ||
|
1498 | ||
|
1481 | 1499 | nHeights = dataOut.nHeights |
|
1482 | 1500 | absc = dataOut.abscissaList |
|
1483 | 1501 | noise = dataOut.noise |
@@ -1488,97 +1506,97 class SALags(Operation): | |||
|
1488 | 1506 | |
|
1489 | 1507 | for l in range(len(pairs_acf)): |
|
1490 | 1508 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] |
|
1491 | ||
|
1509 | ||
|
1492 | 1510 | for l in range(len(pairs_ccf)): |
|
1493 | 1511 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] |
|
1494 | ||
|
1512 | ||
|
1495 | 1513 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) |
|
1496 | 1514 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) |
|
1497 | 1515 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) |
|
1498 | 1516 | return |
|
1499 | ||
|
1517 | ||
|
1500 | 1518 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
1501 |
# |
|
|
1519 | # | |
|
1502 | 1520 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
1503 | # | |
|
1504 |
# for l in range(len(pairsList)): |
|
|
1521 | # | |
|
1522 | # for l in range(len(pairsList)): | |
|
1505 | 1523 | # firstChannel = pairsList[l][0] |
|
1506 | 1524 | # secondChannel = pairsList[l][1] |
|
1507 | # | |
|
1508 |
# #Obteniendo pares de Autocorrelacion |
|
|
1525 | # | |
|
1526 | # #Obteniendo pares de Autocorrelacion | |
|
1509 | 1527 | # if firstChannel == secondChannel: |
|
1510 | 1528 | # pairsAutoCorr[firstChannel] = int(l) |
|
1511 | # | |
|
1529 | # | |
|
1512 | 1530 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
1513 | # | |
|
1531 | # | |
|
1514 | 1532 | # pairsCrossCorr = range(len(pairsList)) |
|
1515 | 1533 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
1516 | # | |
|
1534 | # | |
|
1517 | 1535 | # return pairsAutoCorr, pairsCrossCorr |
|
1518 | ||
|
1536 | ||
|
1519 | 1537 | def __calculateTaus(self, data_acf, data_ccf, lagRange): |
|
1520 | ||
|
1538 | ||
|
1521 | 1539 | lag0 = data_acf.shape[1]/2 |
|
1522 | 1540 | #Funcion de Autocorrelacion |
|
1523 | 1541 | mean_acf = stats.nanmean(data_acf, axis = 0) |
|
1524 | ||
|
1542 | ||
|
1525 | 1543 | #Obtencion Indice de TauCross |
|
1526 | 1544 | ind_ccf = data_ccf.argmax(axis = 1) |
|
1527 | 1545 | #Obtencion Indice de TauAuto |
|
1528 | 1546 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') |
|
1529 | 1547 | ccf_lag0 = data_ccf[:,lag0,:] |
|
1530 | ||
|
1548 | ||
|
1531 | 1549 | for i in range(ccf_lag0.shape[0]): |
|
1532 | 1550 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) |
|
1533 | ||
|
1551 | ||
|
1534 | 1552 | #Obtencion de TauCross y TauAuto |
|
1535 | 1553 | tau_ccf = lagRange[ind_ccf] |
|
1536 | 1554 | tau_acf = lagRange[ind_acf] |
|
1537 | ||
|
1555 | ||
|
1538 | 1556 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) |
|
1539 | ||
|
1557 | ||
|
1540 | 1558 | tau_ccf[Nan1,Nan2] = numpy.nan |
|
1541 | 1559 | tau_acf[Nan1,Nan2] = numpy.nan |
|
1542 | 1560 | tau = numpy.vstack((tau_ccf,tau_acf)) |
|
1543 | ||
|
1561 | ||
|
1544 | 1562 | return tau |
|
1545 | ||
|
1563 | ||
|
1546 | 1564 | def __calculateLag1Phase(self, data, lagTRange): |
|
1547 | 1565 | data1 = stats.nanmean(data, axis = 0) |
|
1548 | 1566 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 |
|
1549 | 1567 | |
|
1550 | 1568 | phase = numpy.angle(data1[lag1,:]) |
|
1551 | ||
|
1569 | ||
|
1552 | 1570 | return phase |
|
1553 | ||
|
1571 | ||
|
1554 | 1572 | class SpectralFitting(Operation): |
|
1555 | 1573 | ''' |
|
1556 | 1574 | Function GetMoments() |
|
1557 | ||
|
1575 | ||
|
1558 | 1576 | Input: |
|
1559 | 1577 | Output: |
|
1560 | 1578 | Variables modified: |
|
1561 | 1579 | ''' |
|
1562 | ||
|
1563 |
def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): |
|
|
1564 | ||
|
1565 | ||
|
1580 | ||
|
1581 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): | |
|
1582 | ||
|
1583 | ||
|
1566 | 1584 | if path != None: |
|
1567 | 1585 | sys.path.append(path) |
|
1568 | 1586 | self.dataOut.library = importlib.import_module(file) |
|
1569 | ||
|
1587 | ||
|
1570 | 1588 | #To be inserted as a parameter |
|
1571 | 1589 | groupArray = numpy.array(groupList) |
|
1572 |
# groupArray = numpy.array([[0,1],[2,3]]) |
|
|
1590 | # groupArray = numpy.array([[0,1],[2,3]]) | |
|
1573 | 1591 | self.dataOut.groupList = groupArray |
|
1574 | ||
|
1592 | ||
|
1575 | 1593 | nGroups = groupArray.shape[0] |
|
1576 | 1594 | nChannels = self.dataIn.nChannels |
|
1577 | 1595 | nHeights=self.dataIn.heightList.size |
|
1578 | ||
|
1596 | ||
|
1579 | 1597 | #Parameters Array |
|
1580 | 1598 | self.dataOut.data_param = None |
|
1581 | ||
|
1599 | ||
|
1582 | 1600 | #Set constants |
|
1583 | 1601 | constants = self.dataOut.library.setConstants(self.dataIn) |
|
1584 | 1602 | self.dataOut.constants = constants |
@@ -1587,24 +1605,24 class SpectralFitting(Operation): | |||
|
1587 | 1605 | ippSeconds = self.dataIn.ippSeconds |
|
1588 | 1606 | K = self.dataIn.nIncohInt |
|
1589 | 1607 | pairsArray = numpy.array(self.dataIn.pairsList) |
|
1590 | ||
|
1608 | ||
|
1591 | 1609 | #List of possible combinations |
|
1592 | 1610 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) |
|
1593 | 1611 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') |
|
1594 | ||
|
1612 | ||
|
1595 | 1613 | if getSNR: |
|
1596 | 1614 | listChannels = groupArray.reshape((groupArray.size)) |
|
1597 | 1615 | listChannels.sort() |
|
1598 | 1616 | noise = self.dataIn.getNoise() |
|
1599 | 1617 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) |
|
1600 | ||
|
1601 |
for i in range(nGroups): |
|
|
1618 | ||
|
1619 | for i in range(nGroups): | |
|
1602 | 1620 | coord = groupArray[i,:] |
|
1603 | ||
|
1621 | ||
|
1604 | 1622 | #Input data array |
|
1605 | 1623 | data = self.dataIn.data_spc[coord,:,:]/(M*N) |
|
1606 | 1624 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) |
|
1607 | ||
|
1625 | ||
|
1608 | 1626 | #Cross Spectra data array for Covariance Matrixes |
|
1609 | 1627 | ind = 0 |
|
1610 | 1628 | for pairs in listComb: |
@@ -1613,9 +1631,9 class SpectralFitting(Operation): | |||
|
1613 | 1631 | ind += 1 |
|
1614 | 1632 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) |
|
1615 | 1633 | dataCross = dataCross**2/K |
|
1616 | ||
|
1634 | ||
|
1617 | 1635 | for h in range(nHeights): |
|
1618 | ||
|
1636 | ||
|
1619 | 1637 | #Input |
|
1620 | 1638 | d = data[:,h] |
|
1621 | 1639 | |
@@ -1624,7 +1642,7 class SpectralFitting(Operation): | |||
|
1624 | 1642 | ind = 0 |
|
1625 | 1643 | for pairs in listComb: |
|
1626 | 1644 | #Coordinates in Covariance Matrix |
|
1627 |
x = pairs[0] |
|
|
1645 | x = pairs[0] | |
|
1628 | 1646 | y = pairs[1] |
|
1629 | 1647 | #Channel Index |
|
1630 | 1648 | S12 = dataCross[ind,:,h] |
@@ -1638,15 +1656,15 class SpectralFitting(Operation): | |||
|
1638 | 1656 | LT=L.T |
|
1639 | 1657 | |
|
1640 | 1658 | dp = numpy.dot(LT,d) |
|
1641 | ||
|
1659 | ||
|
1642 | 1660 | #Initial values |
|
1643 | 1661 | data_spc = self.dataIn.data_spc[coord,:,h] |
|
1644 | ||
|
1662 | ||
|
1645 | 1663 | if (h>0)and(error1[3]<5): |
|
1646 | 1664 | p0 = self.dataOut.data_param[i,:,h-1] |
|
1647 | 1665 | else: |
|
1648 | 1666 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) |
|
1649 | ||
|
1667 | ||
|
1650 | 1668 | try: |
|
1651 | 1669 | #Least Squares |
|
1652 | 1670 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) |
@@ -1659,30 +1677,30 class SpectralFitting(Operation): | |||
|
1659 | 1677 | minp = p0*numpy.nan |
|
1660 | 1678 | error0 = numpy.nan |
|
1661 | 1679 | error1 = p0*numpy.nan |
|
1662 | ||
|
1680 | ||
|
1663 | 1681 | #Save |
|
1664 | 1682 | if self.dataOut.data_param is None: |
|
1665 | 1683 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan |
|
1666 | 1684 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan |
|
1667 | ||
|
1685 | ||
|
1668 | 1686 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) |
|
1669 | 1687 | self.dataOut.data_param[i,:,h] = minp |
|
1670 | 1688 | return |
|
1671 | ||
|
1689 | ||
|
1672 | 1690 | def __residFunction(self, p, dp, LT, constants): |
|
1673 | 1691 | |
|
1674 | 1692 | fm = self.dataOut.library.modelFunction(p, constants) |
|
1675 | 1693 | fmp=numpy.dot(LT,fm) |
|
1676 | ||
|
1694 | ||
|
1677 | 1695 | return dp-fmp |
|
1678 | 1696 | |
|
1679 | 1697 | def __getSNR(self, z, noise): |
|
1680 | ||
|
1698 | ||
|
1681 | 1699 | avg = numpy.average(z, axis=1) |
|
1682 | 1700 | SNR = (avg.T-noise)/noise |
|
1683 | 1701 | SNR = SNR.T |
|
1684 | 1702 | return SNR |
|
1685 | ||
|
1703 | ||
|
1686 | 1704 | def __chisq(p,chindex,hindex): |
|
1687 | 1705 | #similar to Resid but calculates CHI**2 |
|
1688 | 1706 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) |
@@ -1690,53 +1708,53 class SpectralFitting(Operation): | |||
|
1690 | 1708 | fmp=numpy.dot(LT,fm) |
|
1691 | 1709 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) |
|
1692 | 1710 | return chisq |
|
1693 | ||
|
1711 | ||
|
1694 | 1712 | class WindProfiler(Operation): |
|
1695 | ||
|
1713 | ||
|
1696 | 1714 | __isConfig = False |
|
1697 | ||
|
1715 | ||
|
1698 | 1716 | __initime = None |
|
1699 | 1717 | __lastdatatime = None |
|
1700 | 1718 | __integrationtime = None |
|
1701 | ||
|
1719 | ||
|
1702 | 1720 | __buffer = None |
|
1703 | ||
|
1721 | ||
|
1704 | 1722 | __dataReady = False |
|
1705 | ||
|
1723 | ||
|
1706 | 1724 | __firstdata = None |
|
1707 | ||
|
1725 | ||
|
1708 | 1726 | n = None |
|
1709 | ||
|
1710 |
def __init__(self): |
|
|
1727 | ||
|
1728 | def __init__(self): | |
|
1711 | 1729 | Operation.__init__(self) |
|
1712 | ||
|
1730 | ||
|
1713 | 1731 | def __calculateCosDir(self, elev, azim): |
|
1714 | 1732 | zen = (90 - elev)*numpy.pi/180 |
|
1715 | 1733 | azim = azim*numpy.pi/180 |
|
1716 |
cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) |
|
|
1734 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) | |
|
1717 | 1735 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) |
|
1718 | ||
|
1736 | ||
|
1719 | 1737 | signX = numpy.sign(numpy.cos(azim)) |
|
1720 | 1738 | signY = numpy.sign(numpy.sin(azim)) |
|
1721 | ||
|
1739 | ||
|
1722 | 1740 | cosDirX = numpy.copysign(cosDirX, signX) |
|
1723 | 1741 | cosDirY = numpy.copysign(cosDirY, signY) |
|
1724 | 1742 | return cosDirX, cosDirY |
|
1725 | ||
|
1743 | ||
|
1726 | 1744 | def __calculateAngles(self, theta_x, theta_y, azimuth): |
|
1727 | ||
|
1745 | ||
|
1728 | 1746 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) |
|
1729 | 1747 | zenith_arr = numpy.arccos(dir_cosw) |
|
1730 | 1748 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 |
|
1731 | ||
|
1749 | ||
|
1732 | 1750 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) |
|
1733 | 1751 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) |
|
1734 | ||
|
1752 | ||
|
1735 | 1753 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw |
|
1736 | 1754 | |
|
1737 | 1755 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): |
|
1738 | ||
|
1739 | # | |
|
1756 | ||
|
1757 | # | |
|
1740 | 1758 | if horOnly: |
|
1741 | 1759 | A = numpy.c_[dir_cosu,dir_cosv] |
|
1742 | 1760 | else: |
@@ -1750,37 +1768,37 class WindProfiler(Operation): | |||
|
1750 | 1768 | listPhi = phi.tolist() |
|
1751 | 1769 | maxid = listPhi.index(max(listPhi)) |
|
1752 | 1770 | minid = listPhi.index(min(listPhi)) |
|
1753 | ||
|
1754 |
rango = list(range(len(phi))) |
|
|
1771 | ||
|
1772 | rango = list(range(len(phi))) | |
|
1755 | 1773 | # rango = numpy.delete(rango,maxid) |
|
1756 | ||
|
1774 | ||
|
1757 | 1775 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
1758 | 1776 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
1759 | 1777 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
1760 | 1778 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
1761 | ||
|
1779 | ||
|
1762 | 1780 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1763 | 1781 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1764 | ||
|
1782 | ||
|
1765 | 1783 | for i in rango: |
|
1766 | 1784 | x = heiRang*math.cos(phi[i]) |
|
1767 | 1785 | y1 = velRadial[i,:] |
|
1768 | 1786 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
1769 | ||
|
1787 | ||
|
1770 | 1788 | x1 = heiRang1 |
|
1771 | 1789 | y11 = f1(x1) |
|
1772 | ||
|
1790 | ||
|
1773 | 1791 | y2 = SNR[i,:] |
|
1774 | 1792 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
1775 | 1793 | y21 = f2(x1) |
|
1776 | ||
|
1794 | ||
|
1777 | 1795 | velRadial1[i,:] = y11 |
|
1778 | 1796 | SNR1[i,:] = y21 |
|
1779 | ||
|
1797 | ||
|
1780 | 1798 | return heiRang1, velRadial1, SNR1 |
|
1781 | 1799 | |
|
1782 | 1800 | def __calculateVelUVW(self, A, velRadial): |
|
1783 | ||
|
1801 | ||
|
1784 | 1802 | #Operacion Matricial |
|
1785 | 1803 | # velUVW = numpy.zeros((velRadial.shape[1],3)) |
|
1786 | 1804 | # for ind in range(velRadial.shape[1]): |
@@ -1788,27 +1806,27 class WindProfiler(Operation): | |||
|
1788 | 1806 | # velUVW = velUVW.transpose() |
|
1789 | 1807 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) |
|
1790 | 1808 | velUVW[:,:] = numpy.dot(A,velRadial) |
|
1791 | ||
|
1792 | ||
|
1809 | ||
|
1810 | ||
|
1793 | 1811 | return velUVW |
|
1794 | ||
|
1812 | ||
|
1795 | 1813 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): |
|
1796 | ||
|
1814 | ||
|
1797 | 1815 | def techniqueDBS(self, kwargs): |
|
1798 | 1816 | """ |
|
1799 | 1817 | Function that implements Doppler Beam Swinging (DBS) technique. |
|
1800 | ||
|
1818 | ||
|
1801 | 1819 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1802 | 1820 | Direction correction (if necessary), Ranges and SNR |
|
1803 | ||
|
1821 | ||
|
1804 | 1822 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1805 | ||
|
1823 | ||
|
1806 | 1824 | Parameters affected: Winds, height range, SNR |
|
1807 | 1825 | """ |
|
1808 | 1826 | velRadial0 = kwargs['velRadial'] |
|
1809 | 1827 | heiRang = kwargs['heightList'] |
|
1810 | 1828 | SNR0 = kwargs['SNR'] |
|
1811 | ||
|
1829 | ||
|
1812 | 1830 | if 'dirCosx' in kwargs and 'dirCosy' in kwargs: |
|
1813 | 1831 | theta_x = numpy.array(kwargs['dirCosx']) |
|
1814 | 1832 | theta_y = numpy.array(kwargs['dirCosy']) |
@@ -1816,7 +1834,7 class WindProfiler(Operation): | |||
|
1816 | 1834 | elev = numpy.array(kwargs['elevation']) |
|
1817 | 1835 | azim = numpy.array(kwargs['azimuth']) |
|
1818 | 1836 | theta_x, theta_y = self.__calculateCosDir(elev, azim) |
|
1819 |
azimuth = kwargs['correctAzimuth'] |
|
|
1837 | azimuth = kwargs['correctAzimuth'] | |
|
1820 | 1838 | if 'horizontalOnly' in kwargs: |
|
1821 | 1839 | horizontalOnly = kwargs['horizontalOnly'] |
|
1822 | 1840 | else: horizontalOnly = False |
@@ -1831,22 +1849,22 class WindProfiler(Operation): | |||
|
1831 | 1849 | param = param[arrayChannel,:,:] |
|
1832 | 1850 | theta_x = theta_x[arrayChannel] |
|
1833 | 1851 | theta_y = theta_y[arrayChannel] |
|
1834 | ||
|
1835 |
azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) |
|
|
1836 |
heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) |
|
|
1852 | ||
|
1853 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |
|
1854 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) | |
|
1837 | 1855 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) |
|
1838 | ||
|
1856 | ||
|
1839 | 1857 | #Calculo de Componentes de la velocidad con DBS |
|
1840 | 1858 | winds = self.__calculateVelUVW(A,velRadial1) |
|
1841 | ||
|
1859 | ||
|
1842 | 1860 | return winds, heiRang1, SNR1 |
|
1843 | ||
|
1861 | ||
|
1844 | 1862 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): |
|
1845 | ||
|
1863 | ||
|
1846 | 1864 | nPairs = len(pairs_ccf) |
|
1847 | 1865 | posx = numpy.asarray(posx) |
|
1848 | 1866 | posy = numpy.asarray(posy) |
|
1849 | ||
|
1867 | ||
|
1850 | 1868 | #Rotacion Inversa para alinear con el azimuth |
|
1851 | 1869 | if azimuth!= None: |
|
1852 | 1870 | azimuth = azimuth*math.pi/180 |
@@ -1855,126 +1873,126 class WindProfiler(Operation): | |||
|
1855 | 1873 | else: |
|
1856 | 1874 | posx1 = posx |
|
1857 | 1875 | posy1 = posy |
|
1858 | ||
|
1876 | ||
|
1859 | 1877 | #Calculo de Distancias |
|
1860 | 1878 | distx = numpy.zeros(nPairs) |
|
1861 | 1879 | disty = numpy.zeros(nPairs) |
|
1862 | 1880 | dist = numpy.zeros(nPairs) |
|
1863 | 1881 | ang = numpy.zeros(nPairs) |
|
1864 | ||
|
1882 | ||
|
1865 | 1883 | for i in range(nPairs): |
|
1866 | 1884 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] |
|
1867 |
disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] |
|
|
1885 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] | |
|
1868 | 1886 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) |
|
1869 | 1887 | ang[i] = numpy.arctan2(disty[i],distx[i]) |
|
1870 | ||
|
1888 | ||
|
1871 | 1889 | return distx, disty, dist, ang |
|
1872 |
#Calculo de Matrices |
|
|
1890 | #Calculo de Matrices | |
|
1873 | 1891 | # nPairs = len(pairs) |
|
1874 | 1892 | # ang1 = numpy.zeros((nPairs, 2, 1)) |
|
1875 | 1893 | # dist1 = numpy.zeros((nPairs, 2, 1)) |
|
1876 | # | |
|
1894 | # | |
|
1877 | 1895 | # for j in range(nPairs): |
|
1878 | 1896 | # dist1[j,0,0] = dist[pairs[j][0]] |
|
1879 | 1897 | # dist1[j,1,0] = dist[pairs[j][1]] |
|
1880 | 1898 | # ang1[j,0,0] = ang[pairs[j][0]] |
|
1881 | 1899 | # ang1[j,1,0] = ang[pairs[j][1]] |
|
1882 | # | |
|
1900 | # | |
|
1883 | 1901 | # return distx,disty, dist1,ang1 |
|
1884 | 1902 | |
|
1885 | ||
|
1903 | ||
|
1886 | 1904 | def __calculateVelVer(self, phase, lagTRange, _lambda): |
|
1887 | 1905 | |
|
1888 | 1906 | Ts = lagTRange[1] - lagTRange[0] |
|
1889 | 1907 | velW = -_lambda*phase/(4*math.pi*Ts) |
|
1890 | ||
|
1908 | ||
|
1891 | 1909 | return velW |
|
1892 | ||
|
1910 | ||
|
1893 | 1911 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): |
|
1894 | 1912 | nPairs = tau1.shape[0] |
|
1895 | 1913 | nHeights = tau1.shape[1] |
|
1896 |
vel = numpy.zeros((nPairs,3,nHeights)) |
|
|
1914 | vel = numpy.zeros((nPairs,3,nHeights)) | |
|
1897 | 1915 | dist1 = numpy.reshape(dist, (dist.size,1)) |
|
1898 | ||
|
1916 | ||
|
1899 | 1917 | angCos = numpy.cos(ang) |
|
1900 | 1918 | angSin = numpy.sin(ang) |
|
1901 | ||
|
1902 |
vel0 = dist1*tau1/(2*tau2**2) |
|
|
1919 | ||
|
1920 | vel0 = dist1*tau1/(2*tau2**2) | |
|
1903 | 1921 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) |
|
1904 | 1922 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) |
|
1905 | ||
|
1923 | ||
|
1906 | 1924 | ind = numpy.where(numpy.isinf(vel)) |
|
1907 | 1925 | vel[ind] = numpy.nan |
|
1908 | ||
|
1926 | ||
|
1909 | 1927 | return vel |
|
1910 | ||
|
1928 | ||
|
1911 | 1929 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
1912 |
# |
|
|
1930 | # | |
|
1913 | 1931 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
1914 | # | |
|
1915 |
# for l in range(len(pairsList)): |
|
|
1932 | # | |
|
1933 | # for l in range(len(pairsList)): | |
|
1916 | 1934 | # firstChannel = pairsList[l][0] |
|
1917 | 1935 | # secondChannel = pairsList[l][1] |
|
1918 | # | |
|
1919 |
# #Obteniendo pares de Autocorrelacion |
|
|
1936 | # | |
|
1937 | # #Obteniendo pares de Autocorrelacion | |
|
1920 | 1938 | # if firstChannel == secondChannel: |
|
1921 | 1939 | # pairsAutoCorr[firstChannel] = int(l) |
|
1922 | # | |
|
1940 | # | |
|
1923 | 1941 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
1924 | # | |
|
1942 | # | |
|
1925 | 1943 | # pairsCrossCorr = range(len(pairsList)) |
|
1926 | 1944 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
1927 | # | |
|
1945 | # | |
|
1928 | 1946 | # return pairsAutoCorr, pairsCrossCorr |
|
1929 | ||
|
1947 | ||
|
1930 | 1948 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): |
|
1931 | 1949 | def techniqueSA(self, kwargs): |
|
1932 | ||
|
1933 |
""" |
|
|
1950 | ||
|
1951 | """ | |
|
1934 | 1952 | Function that implements Spaced Antenna (SA) technique. |
|
1935 | ||
|
1953 | ||
|
1936 | 1954 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1937 | 1955 | Direction correction (if necessary), Ranges and SNR |
|
1938 | ||
|
1956 | ||
|
1939 | 1957 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1940 | ||
|
1958 | ||
|
1941 | 1959 | Parameters affected: Winds |
|
1942 | 1960 | """ |
|
1943 | 1961 | position_x = kwargs['positionX'] |
|
1944 | 1962 | position_y = kwargs['positionY'] |
|
1945 | 1963 | azimuth = kwargs['azimuth'] |
|
1946 | ||
|
1964 | ||
|
1947 | 1965 | if 'correctFactor' in kwargs: |
|
1948 | 1966 | correctFactor = kwargs['correctFactor'] |
|
1949 | 1967 | else: |
|
1950 | 1968 | correctFactor = 1 |
|
1951 | ||
|
1969 | ||
|
1952 | 1970 | groupList = kwargs['groupList'] |
|
1953 | 1971 | pairs_ccf = groupList[1] |
|
1954 | 1972 | tau = kwargs['tau'] |
|
1955 | 1973 | _lambda = kwargs['_lambda'] |
|
1956 | ||
|
1974 | ||
|
1957 | 1975 | #Cross Correlation pairs obtained |
|
1958 | 1976 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) |
|
1959 | 1977 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] |
|
1960 | 1978 | # pairsSelArray = numpy.array(pairsSelected) |
|
1961 | 1979 | # pairs = [] |
|
1962 | # | |
|
1980 | # | |
|
1963 | 1981 | # #Wind estimation pairs obtained |
|
1964 | 1982 | # for i in range(pairsSelArray.shape[0]/2): |
|
1965 | 1983 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] |
|
1966 | 1984 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] |
|
1967 | 1985 | # pairs.append((ind1,ind2)) |
|
1968 | ||
|
1986 | ||
|
1969 | 1987 | indtau = tau.shape[0]/2 |
|
1970 | 1988 | tau1 = tau[:indtau,:] |
|
1971 | 1989 | tau2 = tau[indtau:-1,:] |
|
1972 | 1990 | # tau1 = tau1[pairs,:] |
|
1973 | 1991 | # tau2 = tau2[pairs,:] |
|
1974 | 1992 | phase1 = tau[-1,:] |
|
1975 | ||
|
1993 | ||
|
1976 | 1994 | #--------------------------------------------------------------------- |
|
1977 |
#Metodo Directo |
|
|
1995 | #Metodo Directo | |
|
1978 | 1996 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) |
|
1979 | 1997 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) |
|
1980 | 1998 | winds = stats.nanmean(winds, axis=0) |
@@ -1990,97 +2008,97 class WindProfiler(Operation): | |||
|
1990 | 2008 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) |
|
1991 | 2009 | winds = correctFactor*winds |
|
1992 | 2010 | return winds |
|
1993 | ||
|
2011 | ||
|
1994 | 2012 | def __checkTime(self, currentTime, paramInterval, outputInterval): |
|
1995 | ||
|
2013 | ||
|
1996 | 2014 | dataTime = currentTime + paramInterval |
|
1997 | 2015 | deltaTime = dataTime - self.__initime |
|
1998 | ||
|
2016 | ||
|
1999 | 2017 | if deltaTime >= outputInterval or deltaTime < 0: |
|
2000 | 2018 | self.__dataReady = True |
|
2001 |
return |
|
|
2002 | ||
|
2019 | return | |
|
2020 | ||
|
2003 | 2021 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): |
|
2004 | 2022 | ''' |
|
2005 | 2023 | Function that implements winds estimation technique with detected meteors. |
|
2006 | ||
|
2024 | ||
|
2007 | 2025 | Input: Detected meteors, Minimum meteor quantity to wind estimation |
|
2008 | ||
|
2026 | ||
|
2009 | 2027 | Output: Winds estimation (Zonal and Meridional) |
|
2010 | ||
|
2028 | ||
|
2011 | 2029 | Parameters affected: Winds |
|
2012 |
''' |
|
|
2030 | ''' | |
|
2013 | 2031 | #Settings |
|
2014 | 2032 | nInt = (heightMax - heightMin)/2 |
|
2015 | 2033 | nInt = int(nInt) |
|
2016 |
winds = numpy.zeros((2,nInt))*numpy.nan |
|
|
2017 | ||
|
2034 | winds = numpy.zeros((2,nInt))*numpy.nan | |
|
2035 | ||
|
2018 | 2036 | #Filter errors |
|
2019 | 2037 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] |
|
2020 | 2038 | finalMeteor = arrayMeteor[error,:] |
|
2021 | ||
|
2039 | ||
|
2022 | 2040 | #Meteor Histogram |
|
2023 | 2041 | finalHeights = finalMeteor[:,2] |
|
2024 | 2042 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) |
|
2025 | 2043 | nMeteorsPerI = hist[0] |
|
2026 | 2044 | heightPerI = hist[1] |
|
2027 | ||
|
2045 | ||
|
2028 | 2046 | #Sort of meteors |
|
2029 | 2047 | indSort = finalHeights.argsort() |
|
2030 | 2048 | finalMeteor2 = finalMeteor[indSort,:] |
|
2031 | ||
|
2049 | ||
|
2032 | 2050 | # Calculating winds |
|
2033 | 2051 | ind1 = 0 |
|
2034 |
ind2 = 0 |
|
|
2035 | ||
|
2052 | ind2 = 0 | |
|
2053 | ||
|
2036 | 2054 | for i in range(nInt): |
|
2037 | 2055 | nMet = nMeteorsPerI[i] |
|
2038 | 2056 | ind1 = ind2 |
|
2039 | 2057 | ind2 = ind1 + nMet |
|
2040 | ||
|
2058 | ||
|
2041 | 2059 | meteorAux = finalMeteor2[ind1:ind2,:] |
|
2042 | ||
|
2060 | ||
|
2043 | 2061 | if meteorAux.shape[0] >= meteorThresh: |
|
2044 | 2062 | vel = meteorAux[:, 6] |
|
2045 | 2063 | zen = meteorAux[:, 4]*numpy.pi/180 |
|
2046 | 2064 | azim = meteorAux[:, 3]*numpy.pi/180 |
|
2047 | ||
|
2065 | ||
|
2048 | 2066 | n = numpy.cos(zen) |
|
2049 | 2067 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) |
|
2050 | 2068 | # l = m*numpy.tan(azim) |
|
2051 | 2069 | l = numpy.sin(zen)*numpy.sin(azim) |
|
2052 | 2070 | m = numpy.sin(zen)*numpy.cos(azim) |
|
2053 | ||
|
2071 | ||
|
2054 | 2072 | A = numpy.vstack((l, m)).transpose() |
|
2055 | 2073 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) |
|
2056 | 2074 | windsAux = numpy.dot(A1, vel) |
|
2057 | ||
|
2075 | ||
|
2058 | 2076 | winds[0,i] = windsAux[0] |
|
2059 | 2077 | winds[1,i] = windsAux[1] |
|
2060 | ||
|
2078 | ||
|
2061 | 2079 | return winds, heightPerI[:-1] |
|
2062 | ||
|
2080 | ||
|
2063 | 2081 | def techniqueNSM_SA(self, **kwargs): |
|
2064 | 2082 | metArray = kwargs['metArray'] |
|
2065 | 2083 | heightList = kwargs['heightList'] |
|
2066 | 2084 | timeList = kwargs['timeList'] |
|
2067 | ||
|
2085 | ||
|
2068 | 2086 | rx_location = kwargs['rx_location'] |
|
2069 | 2087 | groupList = kwargs['groupList'] |
|
2070 | 2088 | azimuth = kwargs['azimuth'] |
|
2071 | 2089 | dfactor = kwargs['dfactor'] |
|
2072 | 2090 | k = kwargs['k'] |
|
2073 | ||
|
2091 | ||
|
2074 | 2092 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) |
|
2075 | 2093 | d = dist*dfactor |
|
2076 | 2094 | #Phase calculation |
|
2077 | 2095 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) |
|
2078 | ||
|
2096 | ||
|
2079 | 2097 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities |
|
2080 | ||
|
2098 | ||
|
2081 | 2099 | velEst = numpy.zeros((heightList.size,2))*numpy.nan |
|
2082 | 2100 | azimuth1 = azimuth1*numpy.pi/180 |
|
2083 | ||
|
2101 | ||
|
2084 | 2102 | for i in range(heightList.size): |
|
2085 | 2103 | h = heightList[i] |
|
2086 | 2104 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] |
@@ -2093,71 +2111,71 class WindProfiler(Operation): | |||
|
2093 | 2111 | A = numpy.asmatrix(A) |
|
2094 | 2112 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() |
|
2095 | 2113 | velHor = numpy.dot(A1,velAux) |
|
2096 | ||
|
2114 | ||
|
2097 | 2115 | velEst[i,:] = numpy.squeeze(velHor) |
|
2098 | 2116 | return velEst |
|
2099 | ||
|
2117 | ||
|
2100 | 2118 | def __getPhaseSlope(self, metArray, heightList, timeList): |
|
2101 | 2119 | meteorList = [] |
|
2102 | 2120 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 |
|
2103 | 2121 | #Putting back together the meteor matrix |
|
2104 | 2122 | utctime = metArray[:,0] |
|
2105 | 2123 | uniqueTime = numpy.unique(utctime) |
|
2106 | ||
|
2124 | ||
|
2107 | 2125 | phaseDerThresh = 0.5 |
|
2108 | 2126 | ippSeconds = timeList[1] - timeList[0] |
|
2109 | 2127 | sec = numpy.where(timeList>1)[0][0] |
|
2110 | 2128 | nPairs = metArray.shape[1] - 6 |
|
2111 | 2129 | nHeights = len(heightList) |
|
2112 | ||
|
2130 | ||
|
2113 | 2131 | for t in uniqueTime: |
|
2114 | 2132 | metArray1 = metArray[utctime==t,:] |
|
2115 | 2133 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh |
|
2116 | 2134 | tmet = metArray1[:,1].astype(int) |
|
2117 | 2135 | hmet = metArray1[:,2].astype(int) |
|
2118 | ||
|
2136 | ||
|
2119 | 2137 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) |
|
2120 | 2138 | metPhase[:,:] = numpy.nan |
|
2121 | 2139 | metPhase[:,hmet,tmet] = metArray1[:,6:].T |
|
2122 | ||
|
2140 | ||
|
2123 | 2141 | #Delete short trails |
|
2124 | 2142 | metBool = ~numpy.isnan(metPhase[0,:,:]) |
|
2125 | 2143 | heightVect = numpy.sum(metBool, axis = 1) |
|
2126 | 2144 | metBool[heightVect<sec,:] = False |
|
2127 | 2145 | metPhase[:,heightVect<sec,:] = numpy.nan |
|
2128 | ||
|
2146 | ||
|
2129 | 2147 | #Derivative |
|
2130 | 2148 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) |
|
2131 | 2149 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) |
|
2132 | 2150 | metPhase[phDerAux] = numpy.nan |
|
2133 | ||
|
2151 | ||
|
2134 | 2152 | #--------------------------METEOR DETECTION ----------------------------------------- |
|
2135 | 2153 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] |
|
2136 | ||
|
2154 | ||
|
2137 | 2155 | for p in numpy.arange(nPairs): |
|
2138 | 2156 | phase = metPhase[p,:,:] |
|
2139 | 2157 | phDer = metDer[p,:,:] |
|
2140 | ||
|
2158 | ||
|
2141 | 2159 | for h in indMet: |
|
2142 | 2160 | height = heightList[h] |
|
2143 | 2161 | phase1 = phase[h,:] #82 |
|
2144 | 2162 | phDer1 = phDer[h,:] |
|
2145 | ||
|
2163 | ||
|
2146 | 2164 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap |
|
2147 | ||
|
2165 | ||
|
2148 | 2166 | indValid = numpy.where(~numpy.isnan(phase1))[0] |
|
2149 | 2167 | initMet = indValid[0] |
|
2150 | 2168 | endMet = 0 |
|
2151 | ||
|
2169 | ||
|
2152 | 2170 | for i in range(len(indValid)-1): |
|
2153 | ||
|
2171 | ||
|
2154 | 2172 | #Time difference |
|
2155 | 2173 | inow = indValid[i] |
|
2156 | 2174 | inext = indValid[i+1] |
|
2157 | 2175 | idiff = inext - inow |
|
2158 | 2176 | #Phase difference |
|
2159 |
phDiff = numpy.abs(phase1[inext] - phase1[inow]) |
|
|
2160 | ||
|
2177 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) | |
|
2178 | ||
|
2161 | 2179 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor |
|
2162 | 2180 | sizeTrail = inow - initMet + 1 |
|
2163 | 2181 | if sizeTrail>3*sec: #Too short meteors |
@@ -2173,43 +2191,43 class WindProfiler(Operation): | |||
|
2173 | 2191 | vel = slope#*height*1000/(k*d) |
|
2174 | 2192 | estAux = numpy.array([utctime,p,height, vel, rsq]) |
|
2175 | 2193 | meteorList.append(estAux) |
|
2176 |
initMet = inext |
|
|
2194 | initMet = inext | |
|
2177 | 2195 | metArray2 = numpy.array(meteorList) |
|
2178 | ||
|
2196 | ||
|
2179 | 2197 | return metArray2 |
|
2180 | ||
|
2198 | ||
|
2181 | 2199 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): |
|
2182 | ||
|
2200 | ||
|
2183 | 2201 | azimuth1 = numpy.zeros(len(pairslist)) |
|
2184 | 2202 | dist = numpy.zeros(len(pairslist)) |
|
2185 | ||
|
2203 | ||
|
2186 | 2204 | for i in range(len(rx_location)): |
|
2187 | 2205 | ch0 = pairslist[i][0] |
|
2188 | 2206 | ch1 = pairslist[i][1] |
|
2189 | ||
|
2207 | ||
|
2190 | 2208 | diffX = rx_location[ch0][0] - rx_location[ch1][0] |
|
2191 | 2209 | diffY = rx_location[ch0][1] - rx_location[ch1][1] |
|
2192 | 2210 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi |
|
2193 | 2211 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) |
|
2194 | ||
|
2212 | ||
|
2195 | 2213 | azimuth1 -= azimuth0 |
|
2196 | 2214 | return azimuth1, dist |
|
2197 | ||
|
2215 | ||
|
2198 | 2216 | def techniqueNSM_DBS(self, **kwargs): |
|
2199 | 2217 | metArray = kwargs['metArray'] |
|
2200 | 2218 | heightList = kwargs['heightList'] |
|
2201 |
timeList = kwargs['timeList'] |
|
|
2219 | timeList = kwargs['timeList'] | |
|
2202 | 2220 | azimuth = kwargs['azimuth'] |
|
2203 | 2221 | theta_x = numpy.array(kwargs['theta_x']) |
|
2204 | 2222 | theta_y = numpy.array(kwargs['theta_y']) |
|
2205 | ||
|
2223 | ||
|
2206 | 2224 | utctime = metArray[:,0] |
|
2207 | 2225 | cmet = metArray[:,1].astype(int) |
|
2208 | 2226 | hmet = metArray[:,3].astype(int) |
|
2209 | 2227 | SNRmet = metArray[:,4] |
|
2210 | 2228 | vmet = metArray[:,5] |
|
2211 | 2229 | spcmet = metArray[:,6] |
|
2212 | ||
|
2230 | ||
|
2213 | 2231 | nChan = numpy.max(cmet) + 1 |
|
2214 | 2232 | nHeights = len(heightList) |
|
2215 | 2233 | |
@@ -2225,20 +2243,20 class WindProfiler(Operation): | |||
|
2225 | 2243 | |
|
2226 | 2244 | thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10) |
|
2227 | 2245 | indthisH = numpy.where(thisH) |
|
2228 | ||
|
2246 | ||
|
2229 | 2247 | if numpy.size(indthisH) > 3: |
|
2230 | ||
|
2248 | ||
|
2231 | 2249 | vel_aux = vmet[thisH] |
|
2232 | 2250 | chan_aux = cmet[thisH] |
|
2233 | 2251 | cosu_aux = dir_cosu[chan_aux] |
|
2234 | 2252 | cosv_aux = dir_cosv[chan_aux] |
|
2235 | 2253 | cosw_aux = dir_cosw[chan_aux] |
|
2236 | ||
|
2237 |
nch = numpy.size(numpy.unique(chan_aux)) |
|
|
2254 | ||
|
2255 | nch = numpy.size(numpy.unique(chan_aux)) | |
|
2238 | 2256 | if nch > 1: |
|
2239 | 2257 | A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True) |
|
2240 | 2258 | velEst[i,:] = numpy.dot(A,vel_aux) |
|
2241 | ||
|
2259 | ||
|
2242 | 2260 | return velEst |
|
2243 | 2261 | |
|
2244 | 2262 | def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs): |
@@ -2249,39 +2267,39 class WindProfiler(Operation): | |||
|
2249 | 2267 | # noise = dataOut.noise |
|
2250 | 2268 | heightList = dataOut.heightList |
|
2251 | 2269 | SNR = dataOut.data_SNR |
|
2252 | ||
|
2270 | ||
|
2253 | 2271 | if technique == 'DBS': |
|
2254 | ||
|
2255 |
kwargs['velRadial'] = param[:,1,:] #Radial velocity |
|
|
2272 | ||
|
2273 | kwargs['velRadial'] = param[:,1,:] #Radial velocity | |
|
2256 | 2274 | kwargs['heightList'] = heightList |
|
2257 | 2275 | kwargs['SNR'] = SNR |
|
2258 | ||
|
2276 | ||
|
2259 | 2277 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function |
|
2260 | 2278 | dataOut.utctimeInit = dataOut.utctime |
|
2261 | 2279 | dataOut.outputInterval = dataOut.paramInterval |
|
2262 | ||
|
2280 | ||
|
2263 | 2281 | elif technique == 'SA': |
|
2264 | ||
|
2282 | ||
|
2265 | 2283 | #Parameters |
|
2266 | 2284 | # position_x = kwargs['positionX'] |
|
2267 | 2285 | # position_y = kwargs['positionY'] |
|
2268 | 2286 | # azimuth = kwargs['azimuth'] |
|
2269 | # | |
|
2287 | # | |
|
2270 | 2288 | # if kwargs.has_key('crosspairsList'): |
|
2271 | 2289 | # pairs = kwargs['crosspairsList'] |
|
2272 | 2290 | # else: |
|
2273 |
# pairs = None |
|
|
2274 |
# |
|
|
2291 | # pairs = None | |
|
2292 | # | |
|
2275 | 2293 | # if kwargs.has_key('correctFactor'): |
|
2276 | 2294 | # correctFactor = kwargs['correctFactor'] |
|
2277 | 2295 | # else: |
|
2278 | 2296 | # correctFactor = 1 |
|
2279 | ||
|
2297 | ||
|
2280 | 2298 | # tau = dataOut.data_param |
|
2281 | 2299 | # _lambda = dataOut.C/dataOut.frequency |
|
2282 | 2300 | # pairsList = dataOut.groupList |
|
2283 | 2301 | # nChannels = dataOut.nChannels |
|
2284 | ||
|
2302 | ||
|
2285 | 2303 | kwargs['groupList'] = dataOut.groupList |
|
2286 | 2304 | kwargs['tau'] = dataOut.data_param |
|
2287 | 2305 | kwargs['_lambda'] = dataOut.C/dataOut.frequency |
@@ -2289,30 +2307,30 class WindProfiler(Operation): | |||
|
2289 | 2307 | dataOut.data_output = self.techniqueSA(kwargs) |
|
2290 | 2308 | dataOut.utctimeInit = dataOut.utctime |
|
2291 | 2309 | dataOut.outputInterval = dataOut.timeInterval |
|
2292 | ||
|
2293 |
elif technique == 'Meteors': |
|
|
2310 | ||
|
2311 | elif technique == 'Meteors': | |
|
2294 | 2312 | dataOut.flagNoData = True |
|
2295 | 2313 | self.__dataReady = False |
|
2296 | ||
|
2314 | ||
|
2297 | 2315 | if 'nHours' in kwargs: |
|
2298 | 2316 | nHours = kwargs['nHours'] |
|
2299 |
else: |
|
|
2317 | else: | |
|
2300 | 2318 | nHours = 1 |
|
2301 | ||
|
2319 | ||
|
2302 | 2320 | if 'meteorsPerBin' in kwargs: |
|
2303 | 2321 | meteorThresh = kwargs['meteorsPerBin'] |
|
2304 | 2322 | else: |
|
2305 | 2323 | meteorThresh = 6 |
|
2306 | ||
|
2324 | ||
|
2307 | 2325 | if 'hmin' in kwargs: |
|
2308 | 2326 | hmin = kwargs['hmin'] |
|
2309 | 2327 | else: hmin = 70 |
|
2310 | 2328 | if 'hmax' in kwargs: |
|
2311 | 2329 | hmax = kwargs['hmax'] |
|
2312 | 2330 | else: hmax = 110 |
|
2313 | ||
|
2331 | ||
|
2314 | 2332 | dataOut.outputInterval = nHours*3600 |
|
2315 | ||
|
2333 | ||
|
2316 | 2334 | if self.__isConfig == False: |
|
2317 | 2335 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2318 | 2336 | #Get Initial LTC time |
@@ -2320,29 +2338,29 class WindProfiler(Operation): | |||
|
2320 | 2338 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2321 | 2339 | |
|
2322 | 2340 | self.__isConfig = True |
|
2323 | ||
|
2341 | ||
|
2324 | 2342 | if self.__buffer is None: |
|
2325 | 2343 | self.__buffer = dataOut.data_param |
|
2326 | 2344 | self.__firstdata = copy.copy(dataOut) |
|
2327 | 2345 | |
|
2328 | 2346 | else: |
|
2329 | 2347 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2330 | ||
|
2348 | ||
|
2331 | 2349 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2332 | ||
|
2350 | ||
|
2333 | 2351 | if self.__dataReady: |
|
2334 | 2352 | dataOut.utctimeInit = self.__initime |
|
2335 | ||
|
2353 | ||
|
2336 | 2354 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2337 | ||
|
2355 | ||
|
2338 | 2356 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) |
|
2339 | 2357 | dataOut.flagNoData = False |
|
2340 | 2358 | self.__buffer = None |
|
2341 | ||
|
2359 | ||
|
2342 | 2360 | elif technique == 'Meteors1': |
|
2343 | 2361 | dataOut.flagNoData = True |
|
2344 | 2362 | self.__dataReady = False |
|
2345 | ||
|
2363 | ||
|
2346 | 2364 | if 'nMins' in kwargs: |
|
2347 | 2365 | nMins = kwargs['nMins'] |
|
2348 | 2366 | else: nMins = 20 |
@@ -2357,7 +2375,7 class WindProfiler(Operation): | |||
|
2357 | 2375 | if 'mode' in kwargs: |
|
2358 | 2376 | mode = kwargs['mode'] |
|
2359 | 2377 | if 'theta_x' in kwargs: |
|
2360 |
theta_x = kwargs['theta_x'] |
|
|
2378 | theta_x = kwargs['theta_x'] | |
|
2361 | 2379 | if 'theta_y' in kwargs: |
|
2362 | 2380 | theta_y = kwargs['theta_y'] |
|
2363 | 2381 | else: mode = 'SA' |
@@ -2370,10 +2388,10 class WindProfiler(Operation): | |||
|
2370 | 2388 | freq = 50e6 |
|
2371 | 2389 | lamb = C/freq |
|
2372 | 2390 | k = 2*numpy.pi/lamb |
|
2373 | ||
|
2391 | ||
|
2374 | 2392 | timeList = dataOut.abscissaList |
|
2375 | 2393 | heightList = dataOut.heightList |
|
2376 | ||
|
2394 | ||
|
2377 | 2395 | if self.__isConfig == False: |
|
2378 | 2396 | dataOut.outputInterval = nMins*60 |
|
2379 | 2397 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
@@ -2384,20 +2402,20 class WindProfiler(Operation): | |||
|
2384 | 2402 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2385 | 2403 | |
|
2386 | 2404 | self.__isConfig = True |
|
2387 | ||
|
2405 | ||
|
2388 | 2406 | if self.__buffer is None: |
|
2389 | 2407 | self.__buffer = dataOut.data_param |
|
2390 | 2408 | self.__firstdata = copy.copy(dataOut) |
|
2391 | 2409 | |
|
2392 | 2410 | else: |
|
2393 | 2411 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2394 | ||
|
2412 | ||
|
2395 | 2413 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2396 | ||
|
2414 | ||
|
2397 | 2415 | if self.__dataReady: |
|
2398 | 2416 | dataOut.utctimeInit = self.__initime |
|
2399 | 2417 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2400 | ||
|
2418 | ||
|
2401 | 2419 | metArray = self.__buffer |
|
2402 | 2420 | if mode == 'SA': |
|
2403 | 2421 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) |
@@ -2408,71 +2426,71 class WindProfiler(Operation): | |||
|
2408 | 2426 | self.__buffer = None |
|
2409 | 2427 | |
|
2410 | 2428 | return |
|
2411 | ||
|
2429 | ||
|
2412 | 2430 | class EWDriftsEstimation(Operation): |
|
2413 | ||
|
2414 |
def __init__(self): |
|
|
2415 |
Operation.__init__(self) |
|
|
2416 | ||
|
2431 | ||
|
2432 | def __init__(self): | |
|
2433 | Operation.__init__(self) | |
|
2434 | ||
|
2417 | 2435 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
2418 | 2436 | listPhi = phi.tolist() |
|
2419 | 2437 | maxid = listPhi.index(max(listPhi)) |
|
2420 | 2438 | minid = listPhi.index(min(listPhi)) |
|
2421 | ||
|
2422 |
rango = list(range(len(phi))) |
|
|
2439 | ||
|
2440 | rango = list(range(len(phi))) | |
|
2423 | 2441 | # rango = numpy.delete(rango,maxid) |
|
2424 | ||
|
2442 | ||
|
2425 | 2443 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
2426 | 2444 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
2427 | 2445 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
2428 | 2446 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
2429 | ||
|
2447 | ||
|
2430 | 2448 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2431 | 2449 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2432 | ||
|
2450 | ||
|
2433 | 2451 | for i in rango: |
|
2434 | 2452 | x = heiRang*math.cos(phi[i]) |
|
2435 | 2453 | y1 = velRadial[i,:] |
|
2436 | 2454 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
2437 | ||
|
2455 | ||
|
2438 | 2456 | x1 = heiRang1 |
|
2439 | 2457 | y11 = f1(x1) |
|
2440 | ||
|
2458 | ||
|
2441 | 2459 | y2 = SNR[i,:] |
|
2442 | 2460 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
2443 | 2461 | y21 = f2(x1) |
|
2444 | ||
|
2462 | ||
|
2445 | 2463 | velRadial1[i,:] = y11 |
|
2446 | 2464 | SNR1[i,:] = y21 |
|
2447 | ||
|
2465 | ||
|
2448 | 2466 | return heiRang1, velRadial1, SNR1 |
|
2449 | 2467 | |
|
2450 | 2468 | def run(self, dataOut, zenith, zenithCorrection): |
|
2451 | 2469 | heiRang = dataOut.heightList |
|
2452 | 2470 | velRadial = dataOut.data_param[:,3,:] |
|
2453 | 2471 | SNR = dataOut.data_SNR |
|
2454 | ||
|
2472 | ||
|
2455 | 2473 | zenith = numpy.array(zenith) |
|
2456 |
zenith -= zenithCorrection |
|
|
2474 | zenith -= zenithCorrection | |
|
2457 | 2475 | zenith *= numpy.pi/180 |
|
2458 | ||
|
2476 | ||
|
2459 | 2477 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) |
|
2460 |
|
|
|
2478 | ||
|
2461 | 2479 | alp = zenith[0] |
|
2462 | 2480 | bet = zenith[1] |
|
2463 | ||
|
2481 | ||
|
2464 | 2482 | w_w = velRadial1[0,:] |
|
2465 | 2483 | w_e = velRadial1[1,:] |
|
2466 | ||
|
2467 |
w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) |
|
|
2468 |
u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) |
|
|
2469 | ||
|
2484 | ||
|
2485 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) | |
|
2486 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) | |
|
2487 | ||
|
2470 | 2488 | winds = numpy.vstack((u,w)) |
|
2471 | ||
|
2489 | ||
|
2472 | 2490 | dataOut.heightList = heiRang1 |
|
2473 | 2491 | dataOut.data_output = winds |
|
2474 | 2492 | dataOut.data_SNR = SNR1 |
|
2475 | ||
|
2493 | ||
|
2476 | 2494 | dataOut.utctimeInit = dataOut.utctime |
|
2477 | 2495 | dataOut.outputInterval = dataOut.timeInterval |
|
2478 | 2496 | return |
@@ -2485,11 +2503,11 class NonSpecularMeteorDetection(Operation): | |||
|
2485 | 2503 | data_acf = dataOut.data_pre[0] |
|
2486 | 2504 | data_ccf = dataOut.data_pre[1] |
|
2487 | 2505 | pairsList = dataOut.groupList[1] |
|
2488 | ||
|
2506 | ||
|
2489 | 2507 | lamb = dataOut.C/dataOut.frequency |
|
2490 | 2508 | tSamp = dataOut.ippSeconds*dataOut.nCohInt |
|
2491 | 2509 | paramInterval = dataOut.paramInterval |
|
2492 | ||
|
2510 | ||
|
2493 | 2511 | nChannels = data_acf.shape[0] |
|
2494 | 2512 | nLags = data_acf.shape[1] |
|
2495 | 2513 | nProfiles = data_acf.shape[2] |
@@ -2499,7 +2517,7 class NonSpecularMeteorDetection(Operation): | |||
|
2499 | 2517 | heightList = dataOut.heightList |
|
2500 | 2518 | ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg |
|
2501 | 2519 | utctime = dataOut.utctime |
|
2502 | ||
|
2520 | ||
|
2503 | 2521 | dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) |
|
2504 | 2522 | |
|
2505 | 2523 | #------------------------ SNR -------------------------------------- |
@@ -2511,7 +2529,7 class NonSpecularMeteorDetection(Operation): | |||
|
2511 | 2529 | SNR[i] = (power[i]-noise[i])/noise[i] |
|
2512 | 2530 | SNRm = numpy.nanmean(SNR, axis = 0) |
|
2513 | 2531 | SNRdB = 10*numpy.log10(SNR) |
|
2514 | ||
|
2532 | ||
|
2515 | 2533 | if mode == 'SA': |
|
2516 | 2534 | dataOut.groupList = dataOut.groupList[1] |
|
2517 | 2535 | nPairs = data_ccf.shape[0] |
@@ -2519,22 +2537,22 class NonSpecularMeteorDetection(Operation): | |||
|
2519 | 2537 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
2520 | 2538 | # phase1 = numpy.copy(phase) |
|
2521 | 2539 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
2522 | ||
|
2540 | ||
|
2523 | 2541 | for p in range(nPairs): |
|
2524 | 2542 | ch0 = pairsList[p][0] |
|
2525 | 2543 | ch1 = pairsList[p][1] |
|
2526 | 2544 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) |
|
2527 |
phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter |
|
|
2528 |
# phase1[p,:,:] = numpy.angle(ccf) #median filter |
|
|
2529 |
coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter |
|
|
2530 |
# coh1[p,:,:] = numpy.abs(ccf) #median filter |
|
|
2545 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter | |
|
2546 | # phase1[p,:,:] = numpy.angle(ccf) #median filter | |
|
2547 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter | |
|
2548 | # coh1[p,:,:] = numpy.abs(ccf) #median filter | |
|
2531 | 2549 | coh = numpy.nanmax(coh1, axis = 0) |
|
2532 | 2550 | # struc = numpy.ones((5,1)) |
|
2533 | 2551 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) |
|
2534 | 2552 | #---------------------- Radial Velocity ---------------------------- |
|
2535 | 2553 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) |
|
2536 | 2554 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) |
|
2537 | ||
|
2555 | ||
|
2538 | 2556 | if allData: |
|
2539 | 2557 | boolMetFin = ~numpy.isnan(SNRm) |
|
2540 | 2558 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
@@ -2542,31 +2560,31 class NonSpecularMeteorDetection(Operation): | |||
|
2542 | 2560 | #------------------------ Meteor mask --------------------------------- |
|
2543 | 2561 | # #SNR mask |
|
2544 | 2562 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) |
|
2545 | # | |
|
2563 | # | |
|
2546 | 2564 | # #Erase small objects |
|
2547 |
# boolMet1 = self.__erase_small(boolMet, 2*sec, 5) |
|
|
2548 | # | |
|
2565 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) | |
|
2566 | # | |
|
2549 | 2567 | # auxEEJ = numpy.sum(boolMet1,axis=0) |
|
2550 | 2568 | # indOver = auxEEJ>nProfiles*0.8 #Use this later |
|
2551 | 2569 | # indEEJ = numpy.where(indOver)[0] |
|
2552 | 2570 | # indNEEJ = numpy.where(~indOver)[0] |
|
2553 | # | |
|
2571 | # | |
|
2554 | 2572 | # boolMetFin = boolMet1 |
|
2555 | # | |
|
2573 | # | |
|
2556 | 2574 | # if indEEJ.size > 0: |
|
2557 |
# boolMet1[:,indEEJ] = False #Erase heights with EEJ |
|
|
2558 | # | |
|
2575 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ | |
|
2576 | # | |
|
2559 | 2577 | # boolMet2 = coh > cohThresh |
|
2560 | 2578 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) |
|
2561 | # | |
|
2579 | # | |
|
2562 | 2580 | # #Final Meteor mask |
|
2563 | 2581 | # boolMetFin = boolMet1|boolMet2 |
|
2564 | ||
|
2582 | ||
|
2565 | 2583 | #Coherence mask |
|
2566 | 2584 | boolMet1 = coh > 0.75 |
|
2567 | 2585 | struc = numpy.ones((30,1)) |
|
2568 | 2586 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) |
|
2569 | ||
|
2587 | ||
|
2570 | 2588 | #Derivative mask |
|
2571 | 2589 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
2572 | 2590 | boolMet2 = derPhase < 0.2 |
@@ -2583,7 +2601,7 class NonSpecularMeteorDetection(Operation): | |||
|
2583 | 2601 | |
|
2584 | 2602 | tmet = coordMet[0] |
|
2585 | 2603 | hmet = coordMet[1] |
|
2586 | ||
|
2604 | ||
|
2587 | 2605 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) |
|
2588 | 2606 | data_param[:,0] = utctime |
|
2589 | 2607 | data_param[:,1] = tmet |
@@ -2592,7 +2610,7 class NonSpecularMeteorDetection(Operation): | |||
|
2592 | 2610 | data_param[:,4] = velRad[tmet,hmet] |
|
2593 | 2611 | data_param[:,5] = coh[tmet,hmet] |
|
2594 | 2612 | data_param[:,6:] = phase[:,tmet,hmet].T |
|
2595 | ||
|
2613 | ||
|
2596 | 2614 | elif mode == 'DBS': |
|
2597 | 2615 | dataOut.groupList = numpy.arange(nChannels) |
|
2598 | 2616 | |
@@ -2600,7 +2618,7 class NonSpecularMeteorDetection(Operation): | |||
|
2600 | 2618 | phase = numpy.angle(data_acf[:,1,:,:]) |
|
2601 | 2619 | # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) |
|
2602 | 2620 | velRad = phase*lamb/(4*numpy.pi*tSamp) |
|
2603 | ||
|
2621 | ||
|
2604 | 2622 | #Spectral width |
|
2605 | 2623 | # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) |
|
2606 | 2624 | # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) |
@@ -2615,24 +2633,24 class NonSpecularMeteorDetection(Operation): | |||
|
2615 | 2633 | #SNR |
|
2616 | 2634 | boolMet1 = (SNRdB>SNRthresh) #SNR mask |
|
2617 | 2635 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) |
|
2618 | ||
|
2636 | ||
|
2619 | 2637 | #Radial velocity |
|
2620 | 2638 | boolMet2 = numpy.abs(velRad) < 20 |
|
2621 | 2639 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) |
|
2622 | ||
|
2640 | ||
|
2623 | 2641 | #Spectral Width |
|
2624 | 2642 | boolMet3 = spcWidth < 30 |
|
2625 | 2643 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) |
|
2626 | 2644 | # boolMetFin = self.__erase_small(boolMet1, 10,5) |
|
2627 | 2645 | boolMetFin = boolMet1&boolMet2&boolMet3 |
|
2628 | ||
|
2646 | ||
|
2629 | 2647 | #Creating data_param |
|
2630 | 2648 | coordMet = numpy.where(boolMetFin) |
|
2631 | 2649 | |
|
2632 | 2650 | cmet = coordMet[0] |
|
2633 | 2651 | tmet = coordMet[1] |
|
2634 | 2652 | hmet = coordMet[2] |
|
2635 | ||
|
2653 | ||
|
2636 | 2654 | data_param = numpy.zeros((tmet.size, 7)) |
|
2637 | 2655 | data_param[:,0] = utctime |
|
2638 | 2656 | data_param[:,1] = cmet |
@@ -2641,7 +2659,7 class NonSpecularMeteorDetection(Operation): | |||
|
2641 | 2659 | data_param[:,4] = SNR[cmet,tmet,hmet].T |
|
2642 | 2660 | data_param[:,5] = velRad[cmet,tmet,hmet].T |
|
2643 | 2661 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T |
|
2644 | ||
|
2662 | ||
|
2645 | 2663 | # self.dataOut.data_param = data_int |
|
2646 | 2664 | if len(data_param) == 0: |
|
2647 | 2665 | dataOut.flagNoData = True |
@@ -2651,21 +2669,21 class NonSpecularMeteorDetection(Operation): | |||
|
2651 | 2669 | def __erase_small(self, binArray, threshX, threshY): |
|
2652 | 2670 | labarray, numfeat = ndimage.measurements.label(binArray) |
|
2653 | 2671 | binArray1 = numpy.copy(binArray) |
|
2654 | ||
|
2672 | ||
|
2655 | 2673 | for i in range(1,numfeat + 1): |
|
2656 | 2674 | auxBin = (labarray==i) |
|
2657 | 2675 | auxSize = auxBin.sum() |
|
2658 | ||
|
2676 | ||
|
2659 | 2677 | x,y = numpy.where(auxBin) |
|
2660 | 2678 | widthX = x.max() - x.min() |
|
2661 | 2679 | widthY = y.max() - y.min() |
|
2662 | ||
|
2680 | ||
|
2663 | 2681 | #width X: 3 seg -> 12.5*3 |
|
2664 |
#width Y: |
|
|
2665 | ||
|
2682 | #width Y: | |
|
2683 | ||
|
2666 | 2684 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): |
|
2667 | 2685 | binArray1[auxBin] = False |
|
2668 | ||
|
2686 | ||
|
2669 | 2687 | return binArray1 |
|
2670 | 2688 | |
|
2671 | 2689 | #--------------- Specular Meteor ---------------- |
@@ -2675,36 +2693,36 class SMDetection(Operation): | |||
|
2675 | 2693 | Function DetectMeteors() |
|
2676 | 2694 | Project developed with paper: |
|
2677 | 2695 | HOLDSWORTH ET AL. 2004 |
|
2678 | ||
|
2696 | ||
|
2679 | 2697 | Input: |
|
2680 | 2698 | self.dataOut.data_pre |
|
2681 | ||
|
2699 | ||
|
2682 | 2700 | centerReceiverIndex: From the channels, which is the center receiver |
|
2683 | ||
|
2701 | ||
|
2684 | 2702 | hei_ref: Height reference for the Beacon signal extraction |
|
2685 | 2703 | tauindex: |
|
2686 | 2704 | predefinedPhaseShifts: Predefined phase offset for the voltge signals |
|
2687 | ||
|
2705 | ||
|
2688 | 2706 | cohDetection: Whether to user Coherent detection or not |
|
2689 | 2707 | cohDet_timeStep: Coherent Detection calculation time step |
|
2690 | 2708 | cohDet_thresh: Coherent Detection phase threshold to correct phases |
|
2691 | ||
|
2709 | ||
|
2692 | 2710 | noise_timeStep: Noise calculation time step |
|
2693 | 2711 | noise_multiple: Noise multiple to define signal threshold |
|
2694 | ||
|
2712 | ||
|
2695 | 2713 | multDet_timeLimit: Multiple Detection Removal time limit in seconds |
|
2696 | 2714 | multDet_rangeLimit: Multiple Detection Removal range limit in km |
|
2697 | ||
|
2715 | ||
|
2698 | 2716 | phaseThresh: Maximum phase difference between receiver to be consider a meteor |
|
2699 |
SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor |
|
|
2700 | ||
|
2717 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor | |
|
2718 | ||
|
2701 | 2719 | hmin: Minimum Height of the meteor to use it in the further wind estimations |
|
2702 | 2720 | hmax: Maximum Height of the meteor to use it in the further wind estimations |
|
2703 | 2721 | azimuth: Azimuth angle correction |
|
2704 | ||
|
2722 | ||
|
2705 | 2723 | Affected: |
|
2706 | 2724 | self.dataOut.data_param |
|
2707 | ||
|
2725 | ||
|
2708 | 2726 | Rejection Criteria (Errors): |
|
2709 | 2727 | 0: No error; analysis OK |
|
2710 | 2728 | 1: SNR < SNR threshold |
@@ -2723,9 +2741,9 class SMDetection(Operation): | |||
|
2723 | 2741 | 14: height ambiguous echo: more then one possible height within 70 to 110 km |
|
2724 | 2742 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s |
|
2725 | 2743 | 16: oscilatory echo, indicating event most likely not an underdense echo |
|
2726 | ||
|
2744 | ||
|
2727 | 2745 | 17: phase difference in meteor Reestimation |
|
2728 | ||
|
2746 | ||
|
2729 | 2747 | Data Storage: |
|
2730 | 2748 | Meteors for Wind Estimation (8): |
|
2731 | 2749 | Utc Time | Range Height |
@@ -2733,19 +2751,19 class SMDetection(Operation): | |||
|
2733 | 2751 | VelRad errorVelRad |
|
2734 | 2752 | Phase0 Phase1 Phase2 Phase3 |
|
2735 | 2753 | TypeError |
|
2736 | ||
|
2737 |
''' |
|
|
2738 | ||
|
2754 | ||
|
2755 | ''' | |
|
2756 | ||
|
2739 | 2757 | def run(self, dataOut, hei_ref = None, tauindex = 0, |
|
2740 | 2758 | phaseOffsets = None, |
|
2741 |
cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, |
|
|
2759 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, | |
|
2742 | 2760 | noise_timeStep = 4, noise_multiple = 4, |
|
2743 | 2761 | multDet_timeLimit = 1, multDet_rangeLimit = 3, |
|
2744 | 2762 | phaseThresh = 20, SNRThresh = 5, |
|
2745 | 2763 | hmin = 50, hmax=150, azimuth = 0, |
|
2746 | 2764 | channelPositions = None) : |
|
2747 | ||
|
2748 | ||
|
2765 | ||
|
2766 | ||
|
2749 | 2767 | #Getting Pairslist |
|
2750 | 2768 | if channelPositions is None: |
|
2751 | 2769 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
@@ -2755,53 +2773,53 class SMDetection(Operation): | |||
|
2755 | 2773 | heiRang = dataOut.getHeiRange() |
|
2756 | 2774 | #Get Beacon signal - No Beacon signal anymore |
|
2757 | 2775 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
2758 | # | |
|
2776 | # | |
|
2759 | 2777 | # if hei_ref != None: |
|
2760 | 2778 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
2761 | # | |
|
2762 | ||
|
2763 | ||
|
2779 | # | |
|
2780 | ||
|
2781 | ||
|
2764 | 2782 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** |
|
2765 | 2783 | # see if the user put in pre defined phase shifts |
|
2766 | 2784 | voltsPShift = dataOut.data_pre.copy() |
|
2767 | ||
|
2785 | ||
|
2768 | 2786 | # if predefinedPhaseShifts != None: |
|
2769 | 2787 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 |
|
2770 | # | |
|
2788 | # | |
|
2771 | 2789 | # # elif beaconPhaseShifts: |
|
2772 | 2790 | # # #get hardware phase shifts using beacon signal |
|
2773 | 2791 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) |
|
2774 | 2792 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) |
|
2775 | # | |
|
2793 | # | |
|
2776 | 2794 | # else: |
|
2777 |
# hardwarePhaseShifts = numpy.zeros(5) |
|
|
2778 |
# |
|
|
2795 | # hardwarePhaseShifts = numpy.zeros(5) | |
|
2796 | # | |
|
2779 | 2797 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') |
|
2780 | 2798 | # for i in range(self.dataOut.data_pre.shape[0]): |
|
2781 | 2799 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) |
|
2782 | 2800 | |
|
2783 | 2801 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* |
|
2784 | ||
|
2802 | ||
|
2785 | 2803 | #Remove DC |
|
2786 | 2804 | voltsDC = numpy.mean(voltsPShift,1) |
|
2787 | 2805 | voltsDC = numpy.mean(voltsDC,1) |
|
2788 | 2806 | for i in range(voltsDC.shape[0]): |
|
2789 | 2807 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] |
|
2790 | ||
|
2791 |
#Don't considerate last heights, theyre used to calculate Hardware Phase Shift |
|
|
2808 | ||
|
2809 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift | |
|
2792 | 2810 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] |
|
2793 | ||
|
2811 | ||
|
2794 | 2812 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** |
|
2795 | 2813 | #Coherent Detection |
|
2796 | 2814 | if cohDetection: |
|
2797 | 2815 | #use coherent detection to get the net power |
|
2798 | 2816 | cohDet_thresh = cohDet_thresh*numpy.pi/180 |
|
2799 | 2817 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) |
|
2800 | ||
|
2818 | ||
|
2801 | 2819 | #Non-coherent detection! |
|
2802 | 2820 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) |
|
2803 | 2821 | #********** END OF COH/NON-COH POWER CALCULATION********************** |
|
2804 | ||
|
2822 | ||
|
2805 | 2823 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** |
|
2806 | 2824 | #Get noise |
|
2807 | 2825 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) |
@@ -2811,7 +2829,7 class SMDetection(Operation): | |||
|
2811 | 2829 | #Meteor echoes detection |
|
2812 | 2830 | listMeteors = self.__findMeteors(powerNet, signalThresh) |
|
2813 | 2831 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** |
|
2814 | ||
|
2832 | ||
|
2815 | 2833 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** |
|
2816 | 2834 | #Parameters |
|
2817 | 2835 | heiRange = dataOut.getHeiRange() |
@@ -2821,7 +2839,7 class SMDetection(Operation): | |||
|
2821 | 2839 | #Multiple detection removals |
|
2822 | 2840 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) |
|
2823 | 2841 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** |
|
2824 | ||
|
2842 | ||
|
2825 | 2843 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** |
|
2826 | 2844 | #Parameters |
|
2827 | 2845 | phaseThresh = phaseThresh*numpy.pi/180 |
@@ -2832,40 +2850,40 class SMDetection(Operation): | |||
|
2832 | 2850 | #Estimation of decay times (Errors N 7, 8, 11) |
|
2833 | 2851 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) |
|
2834 | 2852 | #******************* END OF METEOR REESTIMATION ******************* |
|
2835 | ||
|
2853 | ||
|
2836 | 2854 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** |
|
2837 | 2855 | #Calculating Radial Velocity (Error N 15) |
|
2838 | 2856 | radialStdThresh = 10 |
|
2839 |
listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) |
|
|
2857 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) | |
|
2840 | 2858 | |
|
2841 | 2859 | if len(listMeteors4) > 0: |
|
2842 | 2860 | #Setting New Array |
|
2843 | 2861 | date = dataOut.utctime |
|
2844 | 2862 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) |
|
2845 | ||
|
2863 | ||
|
2846 | 2864 | #Correcting phase offset |
|
2847 | 2865 | if phaseOffsets != None: |
|
2848 | 2866 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
2849 | 2867 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
2850 | ||
|
2868 | ||
|
2851 | 2869 | #Second Pairslist |
|
2852 | 2870 | pairsList = [] |
|
2853 | 2871 | pairx = (0,1) |
|
2854 | 2872 | pairy = (2,3) |
|
2855 | 2873 | pairsList.append(pairx) |
|
2856 | 2874 | pairsList.append(pairy) |
|
2857 | ||
|
2875 | ||
|
2858 | 2876 | jph = numpy.array([0,0,0,0]) |
|
2859 | 2877 | h = (hmin,hmax) |
|
2860 | 2878 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
2861 | ||
|
2879 | ||
|
2862 | 2880 | # #Calculate AOA (Error N 3, 4) |
|
2863 | 2881 | # #JONES ET AL. 1998 |
|
2864 | 2882 | # error = arrayParameters[:,-1] |
|
2865 | 2883 | # AOAthresh = numpy.pi/8 |
|
2866 | 2884 | # phases = -arrayParameters[:,9:13] |
|
2867 | 2885 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) |
|
2868 | # | |
|
2886 | # | |
|
2869 | 2887 | # #Calculate Heights (Error N 13 and 14) |
|
2870 | 2888 | # error = arrayParameters[:,-1] |
|
2871 | 2889 | # Ranges = arrayParameters[:,2] |
@@ -2873,73 +2891,73 class SMDetection(Operation): | |||
|
2873 | 2891 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) |
|
2874 | 2892 | # error = arrayParameters[:,-1] |
|
2875 | 2893 | #********************* END OF PARAMETERS CALCULATION ************************** |
|
2876 | ||
|
2877 |
#***************************+ PASS DATA TO NEXT STEP ********************** |
|
|
2894 | ||
|
2895 | #***************************+ PASS DATA TO NEXT STEP ********************** | |
|
2878 | 2896 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) |
|
2879 | 2897 | dataOut.data_param = arrayParameters |
|
2880 | ||
|
2898 | ||
|
2881 | 2899 | if arrayParameters is None: |
|
2882 | 2900 | dataOut.flagNoData = True |
|
2883 | 2901 | else: |
|
2884 | 2902 | dataOut.flagNoData = True |
|
2885 | ||
|
2903 | ||
|
2886 | 2904 | return |
|
2887 | ||
|
2905 | ||
|
2888 | 2906 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): |
|
2889 | ||
|
2907 | ||
|
2890 | 2908 | minIndex = min(newheis[0]) |
|
2891 | 2909 | maxIndex = max(newheis[0]) |
|
2892 | ||
|
2910 | ||
|
2893 | 2911 | voltage = voltage0[:,:,minIndex:maxIndex+1] |
|
2894 | 2912 | nLength = voltage.shape[1]/n |
|
2895 | 2913 | nMin = 0 |
|
2896 | 2914 | nMax = 0 |
|
2897 | 2915 | phaseOffset = numpy.zeros((len(pairslist),n)) |
|
2898 | ||
|
2916 | ||
|
2899 | 2917 | for i in range(n): |
|
2900 | 2918 | nMax += nLength |
|
2901 | 2919 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) |
|
2902 | 2920 | phaseCCF = numpy.mean(phaseCCF, axis = 2) |
|
2903 |
phaseOffset[:,i] = phaseCCF.transpose() |
|
|
2921 | phaseOffset[:,i] = phaseCCF.transpose() | |
|
2904 | 2922 | nMin = nMax |
|
2905 | 2923 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) |
|
2906 | ||
|
2924 | ||
|
2907 | 2925 | #Remove Outliers |
|
2908 | 2926 | factor = 2 |
|
2909 | 2927 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) |
|
2910 | 2928 | dw = numpy.std(wt,axis = 1) |
|
2911 | 2929 | dw = dw.reshape((dw.size,1)) |
|
2912 |
ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) |
|
|
2930 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) | |
|
2913 | 2931 | phaseOffset[ind] = numpy.nan |
|
2914 |
phaseOffset = stats.nanmean(phaseOffset, axis=1) |
|
|
2915 | ||
|
2932 | phaseOffset = stats.nanmean(phaseOffset, axis=1) | |
|
2933 | ||
|
2916 | 2934 | return phaseOffset |
|
2917 | ||
|
2935 | ||
|
2918 | 2936 | def __shiftPhase(self, data, phaseShift): |
|
2919 | 2937 | #this will shift the phase of a complex number |
|
2920 |
dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) |
|
|
2938 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) | |
|
2921 | 2939 | return dataShifted |
|
2922 | ||
|
2940 | ||
|
2923 | 2941 | def __estimatePhaseDifference(self, array, pairslist): |
|
2924 | 2942 | nChannel = array.shape[0] |
|
2925 | 2943 | nHeights = array.shape[2] |
|
2926 | 2944 | numPairs = len(pairslist) |
|
2927 | 2945 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) |
|
2928 | 2946 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) |
|
2929 | ||
|
2947 | ||
|
2930 | 2948 | #Correct phases |
|
2931 | 2949 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] |
|
2932 | 2950 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
2933 | ||
|
2934 |
if indDer[0].shape[0] > 0: |
|
|
2951 | ||
|
2952 | if indDer[0].shape[0] > 0: | |
|
2935 | 2953 | for i in range(indDer[0].shape[0]): |
|
2936 | 2954 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) |
|
2937 | 2955 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi |
|
2938 | ||
|
2956 | ||
|
2939 | 2957 | # for j in range(numSides): |
|
2940 | 2958 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) |
|
2941 | 2959 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) |
|
2942 | # | |
|
2960 | # | |
|
2943 | 2961 | #Linear |
|
2944 | 2962 | phaseInt = numpy.zeros((numPairs,1)) |
|
2945 | 2963 | angAllCCF = phaseCCF[:,[0,1,3,4],0] |
@@ -2949,16 +2967,16 class SMDetection(Operation): | |||
|
2949 | 2967 | #Phase Differences |
|
2950 | 2968 | phaseDiff = phaseInt - phaseCCF[:,2,:] |
|
2951 | 2969 | phaseArrival = phaseInt.reshape(phaseInt.size) |
|
2952 | ||
|
2970 | ||
|
2953 | 2971 | #Dealias |
|
2954 | 2972 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) |
|
2955 | 2973 | # indAlias = numpy.where(phaseArrival > numpy.pi) |
|
2956 | 2974 | # phaseArrival[indAlias] -= 2*numpy.pi |
|
2957 | 2975 | # indAlias = numpy.where(phaseArrival < -numpy.pi) |
|
2958 | 2976 | # phaseArrival[indAlias] += 2*numpy.pi |
|
2959 | ||
|
2977 | ||
|
2960 | 2978 | return phaseDiff, phaseArrival |
|
2961 | ||
|
2979 | ||
|
2962 | 2980 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): |
|
2963 | 2981 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power |
|
2964 | 2982 | #find the phase shifts of each channel over 1 second intervals |
@@ -2968,25 +2986,25 class SMDetection(Operation): | |||
|
2968 | 2986 | numHeights = volts.shape[2] |
|
2969 | 2987 | nChannel = volts.shape[0] |
|
2970 | 2988 | voltsCohDet = volts.copy() |
|
2971 | ||
|
2989 | ||
|
2972 | 2990 | pairsarray = numpy.array(pairslist) |
|
2973 | 2991 | indSides = pairsarray[:,1] |
|
2974 | 2992 | # indSides = numpy.array(range(nChannel)) |
|
2975 | 2993 | # indSides = numpy.delete(indSides, indCenter) |
|
2976 | # | |
|
2994 | # | |
|
2977 | 2995 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) |
|
2978 | 2996 | listBlocks = numpy.array_split(volts, numBlocks, 1) |
|
2979 | ||
|
2997 | ||
|
2980 | 2998 | startInd = 0 |
|
2981 | 2999 | endInd = 0 |
|
2982 | ||
|
3000 | ||
|
2983 | 3001 | for i in range(numBlocks): |
|
2984 | 3002 | startInd = endInd |
|
2985 |
endInd = endInd + listBlocks[i].shape[1] |
|
|
2986 | ||
|
3003 | endInd = endInd + listBlocks[i].shape[1] | |
|
3004 | ||
|
2987 | 3005 | arrayBlock = listBlocks[i] |
|
2988 | 3006 | # arrayBlockCenter = listCenter[i] |
|
2989 | ||
|
3007 | ||
|
2990 | 3008 | #Estimate the Phase Difference |
|
2991 | 3009 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) |
|
2992 | 3010 | #Phase Difference RMS |
@@ -2998,21 +3016,21 class SMDetection(Operation): | |||
|
2998 | 3016 | for j in range(indSides.size): |
|
2999 | 3017 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) |
|
3000 | 3018 | voltsCohDet[:,startInd:endInd,:] = arrayBlock |
|
3001 | ||
|
3019 | ||
|
3002 | 3020 | return voltsCohDet |
|
3003 | ||
|
3021 | ||
|
3004 | 3022 | def __calculateCCF(self, volts, pairslist ,laglist): |
|
3005 | ||
|
3023 | ||
|
3006 | 3024 | nHeights = volts.shape[2] |
|
3007 |
nPoints = volts.shape[1] |
|
|
3025 | nPoints = volts.shape[1] | |
|
3008 | 3026 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') |
|
3009 | ||
|
3027 | ||
|
3010 | 3028 | for i in range(len(pairslist)): |
|
3011 | 3029 | volts1 = volts[pairslist[i][0]] |
|
3012 |
volts2 = volts[pairslist[i][1]] |
|
|
3013 | ||
|
3030 | volts2 = volts[pairslist[i][1]] | |
|
3031 | ||
|
3014 | 3032 | for t in range(len(laglist)): |
|
3015 |
idxT = laglist[t] |
|
|
3033 | idxT = laglist[t] | |
|
3016 | 3034 | if idxT >= 0: |
|
3017 | 3035 | vStacked = numpy.vstack((volts2[idxT:,:], |
|
3018 | 3036 | numpy.zeros((idxT, nHeights),dtype='complex'))) |
@@ -3020,10 +3038,10 class SMDetection(Operation): | |||
|
3020 | 3038 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), |
|
3021 | 3039 | volts2[:(nPoints + idxT),:])) |
|
3022 | 3040 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) |
|
3023 | ||
|
3041 | ||
|
3024 | 3042 | vStacked = None |
|
3025 | 3043 | return voltsCCF |
|
3026 | ||
|
3044 | ||
|
3027 | 3045 | def __getNoise(self, power, timeSegment, timeInterval): |
|
3028 | 3046 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
3029 | 3047 | numBlocks = int(power.shape[0]/numProfPerBlock) |
@@ -3032,100 +3050,100 class SMDetection(Operation): | |||
|
3032 | 3050 | listPower = numpy.array_split(power, numBlocks, 0) |
|
3033 | 3051 | noise = numpy.zeros((power.shape[0], power.shape[1])) |
|
3034 | 3052 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) |
|
3035 | ||
|
3053 | ||
|
3036 | 3054 | startInd = 0 |
|
3037 | 3055 | endInd = 0 |
|
3038 | ||
|
3056 | ||
|
3039 | 3057 | for i in range(numBlocks): #split por canal |
|
3040 | 3058 | startInd = endInd |
|
3041 |
endInd = endInd + listPower[i].shape[0] |
|
|
3042 | ||
|
3059 | endInd = endInd + listPower[i].shape[0] | |
|
3060 | ||
|
3043 | 3061 | arrayBlock = listPower[i] |
|
3044 | 3062 | noiseAux = numpy.mean(arrayBlock, 0) |
|
3045 | 3063 | # noiseAux = numpy.median(noiseAux) |
|
3046 | 3064 | # noiseAux = numpy.mean(arrayBlock) |
|
3047 |
noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux |
|
|
3048 | ||
|
3065 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux | |
|
3066 | ||
|
3049 | 3067 | noiseAux1 = numpy.mean(arrayBlock) |
|
3050 |
noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 |
|
|
3051 | ||
|
3068 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 | |
|
3069 | ||
|
3052 | 3070 | return noise, noise1 |
|
3053 | ||
|
3071 | ||
|
3054 | 3072 | def __findMeteors(self, power, thresh): |
|
3055 | 3073 | nProf = power.shape[0] |
|
3056 | 3074 | nHeights = power.shape[1] |
|
3057 | 3075 | listMeteors = [] |
|
3058 | ||
|
3076 | ||
|
3059 | 3077 | for i in range(nHeights): |
|
3060 | 3078 | powerAux = power[:,i] |
|
3061 | 3079 | threshAux = thresh[:,i] |
|
3062 | ||
|
3080 | ||
|
3063 | 3081 | indUPthresh = numpy.where(powerAux > threshAux)[0] |
|
3064 | 3082 | indDNthresh = numpy.where(powerAux <= threshAux)[0] |
|
3065 | ||
|
3083 | ||
|
3066 | 3084 | j = 0 |
|
3067 | ||
|
3085 | ||
|
3068 | 3086 | while (j < indUPthresh.size - 2): |
|
3069 | 3087 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): |
|
3070 | 3088 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) |
|
3071 | 3089 | indDNthresh = indDNthresh[indDNAux] |
|
3072 | ||
|
3090 | ||
|
3073 | 3091 | if (indDNthresh.size > 0): |
|
3074 | 3092 | indEnd = indDNthresh[0] - 1 |
|
3075 | 3093 | indInit = indUPthresh[j] |
|
3076 | ||
|
3094 | ||
|
3077 | 3095 | meteor = powerAux[indInit:indEnd + 1] |
|
3078 | 3096 | indPeak = meteor.argmax() + indInit |
|
3079 | 3097 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) |
|
3080 | ||
|
3098 | ||
|
3081 | 3099 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! |
|
3082 | 3100 | j = numpy.where(indUPthresh == indEnd)[0] + 1 |
|
3083 | 3101 | else: j+=1 |
|
3084 | 3102 | else: j+=1 |
|
3085 | ||
|
3103 | ||
|
3086 | 3104 | return listMeteors |
|
3087 | ||
|
3105 | ||
|
3088 | 3106 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): |
|
3089 | ||
|
3090 |
arrayMeteors = numpy.asarray(listMeteors) |
|
|
3107 | ||
|
3108 | arrayMeteors = numpy.asarray(listMeteors) | |
|
3091 | 3109 | listMeteors1 = [] |
|
3092 | ||
|
3110 | ||
|
3093 | 3111 | while arrayMeteors.shape[0] > 0: |
|
3094 | 3112 | FLAs = arrayMeteors[:,4] |
|
3095 | 3113 | maxFLA = FLAs.argmax() |
|
3096 | 3114 | listMeteors1.append(arrayMeteors[maxFLA,:]) |
|
3097 | ||
|
3115 | ||
|
3098 | 3116 | MeteorInitTime = arrayMeteors[maxFLA,1] |
|
3099 | 3117 | MeteorEndTime = arrayMeteors[maxFLA,3] |
|
3100 | 3118 | MeteorHeight = arrayMeteors[maxFLA,0] |
|
3101 | ||
|
3119 | ||
|
3102 | 3120 | #Check neighborhood |
|
3103 | 3121 | maxHeightIndex = MeteorHeight + rangeLimit |
|
3104 | 3122 | minHeightIndex = MeteorHeight - rangeLimit |
|
3105 | 3123 | minTimeIndex = MeteorInitTime - timeLimit |
|
3106 | 3124 | maxTimeIndex = MeteorEndTime + timeLimit |
|
3107 | ||
|
3125 | ||
|
3108 | 3126 | #Check Heights |
|
3109 | 3127 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) |
|
3110 | 3128 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) |
|
3111 | 3129 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) |
|
3112 | ||
|
3130 | ||
|
3113 | 3131 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) |
|
3114 | ||
|
3132 | ||
|
3115 | 3133 | return listMeteors1 |
|
3116 | ||
|
3134 | ||
|
3117 | 3135 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): |
|
3118 | 3136 | numHeights = volts.shape[2] |
|
3119 | 3137 | nChannel = volts.shape[0] |
|
3120 | ||
|
3138 | ||
|
3121 | 3139 | thresholdPhase = thresh[0] |
|
3122 | 3140 | thresholdNoise = thresh[1] |
|
3123 | 3141 | thresholdDB = float(thresh[2]) |
|
3124 | ||
|
3142 | ||
|
3125 | 3143 | thresholdDB1 = 10**(thresholdDB/10) |
|
3126 | 3144 | pairsarray = numpy.array(pairslist) |
|
3127 | 3145 | indSides = pairsarray[:,1] |
|
3128 | ||
|
3146 | ||
|
3129 | 3147 | pairslist1 = list(pairslist) |
|
3130 | 3148 | pairslist1.append((0,1)) |
|
3131 | 3149 | pairslist1.append((3,4)) |
@@ -3134,31 +3152,31 class SMDetection(Operation): | |||
|
3134 | 3152 | listPowerSeries = [] |
|
3135 | 3153 | listVoltageSeries = [] |
|
3136 | 3154 | #volts has the war data |
|
3137 | ||
|
3155 | ||
|
3138 | 3156 | if frequency == 30e6: |
|
3139 | 3157 | timeLag = 45*10**-3 |
|
3140 | 3158 | else: |
|
3141 | 3159 | timeLag = 15*10**-3 |
|
3142 | 3160 | lag = numpy.ceil(timeLag/timeInterval) |
|
3143 | ||
|
3161 | ||
|
3144 | 3162 | for i in range(len(listMeteors)): |
|
3145 | ||
|
3163 | ||
|
3146 | 3164 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### |
|
3147 | 3165 | meteorAux = numpy.zeros(16) |
|
3148 | ||
|
3166 | ||
|
3149 | 3167 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) |
|
3150 | 3168 | mHeight = listMeteors[i][0] |
|
3151 | 3169 | mStart = listMeteors[i][1] |
|
3152 | 3170 | mPeak = listMeteors[i][2] |
|
3153 | 3171 | mEnd = listMeteors[i][3] |
|
3154 | ||
|
3172 | ||
|
3155 | 3173 | #get the volt data between the start and end times of the meteor |
|
3156 | 3174 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] |
|
3157 | 3175 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
3158 | ||
|
3176 | ||
|
3159 | 3177 | #3.6. Phase Difference estimation |
|
3160 | 3178 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) |
|
3161 | ||
|
3179 | ||
|
3162 | 3180 | #3.7. Phase difference removal & meteor start, peak and end times reestimated |
|
3163 | 3181 | #meteorVolts0.- all Channels, all Profiles |
|
3164 | 3182 | meteorVolts0 = volts[:,:,mHeight] |
@@ -3166,15 +3184,15 class SMDetection(Operation): | |||
|
3166 | 3184 | meteorNoise = noise[:,mHeight] |
|
3167 | 3185 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting |
|
3168 | 3186 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power |
|
3169 | ||
|
3187 | ||
|
3170 | 3188 | #Times reestimation |
|
3171 | 3189 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] |
|
3172 | 3190 | if mStart1.size > 0: |
|
3173 | 3191 | mStart1 = mStart1[-1] + 1 |
|
3174 | ||
|
3175 |
else: |
|
|
3192 | ||
|
3193 | else: | |
|
3176 | 3194 | mStart1 = mPeak |
|
3177 | ||
|
3195 | ||
|
3178 | 3196 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 |
|
3179 | 3197 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] |
|
3180 | 3198 | if mEndDecayTime1.size == 0: |
@@ -3182,7 +3200,7 class SMDetection(Operation): | |||
|
3182 | 3200 | else: |
|
3183 | 3201 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 |
|
3184 | 3202 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() |
|
3185 | ||
|
3203 | ||
|
3186 | 3204 | #meteorVolts1.- all Channels, from start to end |
|
3187 | 3205 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] |
|
3188 | 3206 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] |
@@ -3191,17 +3209,17 class SMDetection(Operation): | |||
|
3191 | 3209 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) |
|
3192 | 3210 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) |
|
3193 | 3211 | ##################### END PARAMETERS REESTIMATION ######################### |
|
3194 | ||
|
3212 | ||
|
3195 | 3213 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## |
|
3196 | 3214 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis |
|
3197 |
if meteorVolts2.shape[1] > 0: |
|
|
3215 | if meteorVolts2.shape[1] > 0: | |
|
3198 | 3216 | #Phase Difference re-estimation |
|
3199 | 3217 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation |
|
3200 | 3218 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) |
|
3201 | 3219 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) |
|
3202 | 3220 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) |
|
3203 | 3221 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting |
|
3204 | ||
|
3222 | ||
|
3205 | 3223 | #Phase Difference RMS |
|
3206 | 3224 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) |
|
3207 | 3225 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) |
@@ -3216,27 +3234,27 class SMDetection(Operation): | |||
|
3216 | 3234 | #Vectorize |
|
3217 | 3235 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] |
|
3218 | 3236 | meteorAux[7:11] = phaseDiffint[0:4] |
|
3219 | ||
|
3237 | ||
|
3220 | 3238 | #Rejection Criterions |
|
3221 | 3239 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation |
|
3222 | 3240 | meteorAux[-1] = 17 |
|
3223 | 3241 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB |
|
3224 | 3242 | meteorAux[-1] = 1 |
|
3225 | ||
|
3226 | ||
|
3227 |
else: |
|
|
3243 | ||
|
3244 | ||
|
3245 | else: | |
|
3228 | 3246 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] |
|
3229 | 3247 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis |
|
3230 | 3248 | PowerSeries = 0 |
|
3231 | ||
|
3249 | ||
|
3232 | 3250 | listMeteors1.append(meteorAux) |
|
3233 | 3251 | listPowerSeries.append(PowerSeries) |
|
3234 | 3252 | listVoltageSeries.append(meteorVolts1) |
|
3235 | ||
|
3236 |
return listMeteors1, listPowerSeries, listVoltageSeries |
|
|
3237 | ||
|
3253 | ||
|
3254 | return listMeteors1, listPowerSeries, listVoltageSeries | |
|
3255 | ||
|
3238 | 3256 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): |
|
3239 | ||
|
3257 | ||
|
3240 | 3258 | threshError = 10 |
|
3241 | 3259 | #Depending if it is 30 or 50 MHz |
|
3242 | 3260 | if frequency == 30e6: |
@@ -3244,22 +3262,22 class SMDetection(Operation): | |||
|
3244 | 3262 | else: |
|
3245 | 3263 | timeLag = 15*10**-3 |
|
3246 | 3264 | lag = numpy.ceil(timeLag/timeInterval) |
|
3247 | ||
|
3265 | ||
|
3248 | 3266 | listMeteors1 = [] |
|
3249 | ||
|
3267 | ||
|
3250 | 3268 | for i in range(len(listMeteors)): |
|
3251 | 3269 | meteorPower = listPower[i] |
|
3252 | 3270 | meteorAux = listMeteors[i] |
|
3253 | ||
|
3271 | ||
|
3254 | 3272 | if meteorAux[-1] == 0: |
|
3255 | 3273 | |
|
3256 |
try: |
|
|
3274 | try: | |
|
3257 | 3275 | indmax = meteorPower.argmax() |
|
3258 | 3276 | indlag = indmax + lag |
|
3259 | ||
|
3277 | ||
|
3260 | 3278 | y = meteorPower[indlag:] |
|
3261 | 3279 | x = numpy.arange(0, y.size)*timeLag |
|
3262 | ||
|
3280 | ||
|
3263 | 3281 | #first guess |
|
3264 | 3282 | a = y[0] |
|
3265 | 3283 | tau = timeLag |
@@ -3268,26 +3286,26 class SMDetection(Operation): | |||
|
3268 | 3286 | y1 = self.__exponential_function(x, *popt) |
|
3269 | 3287 | #error estimation |
|
3270 | 3288 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) |
|
3271 | ||
|
3289 | ||
|
3272 | 3290 | decayTime = popt[1] |
|
3273 | 3291 | riseTime = indmax*timeInterval |
|
3274 | 3292 | meteorAux[11:13] = [decayTime, error] |
|
3275 | ||
|
3293 | ||
|
3276 | 3294 | #Table items 7, 8 and 11 |
|
3277 | 3295 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s |
|
3278 |
meteorAux[-1] = 7 |
|
|
3296 | meteorAux[-1] = 7 | |
|
3279 | 3297 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time |
|
3280 | 3298 | meteorAux[-1] = 8 |
|
3281 | 3299 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time |
|
3282 |
meteorAux[-1] = 11 |
|
|
3283 | ||
|
3284 | ||
|
3300 | meteorAux[-1] = 11 | |
|
3301 | ||
|
3302 | ||
|
3285 | 3303 | except: |
|
3286 |
meteorAux[-1] = 11 |
|
|
3287 | ||
|
3288 | ||
|
3304 | meteorAux[-1] = 11 | |
|
3305 | ||
|
3306 | ||
|
3289 | 3307 | listMeteors1.append(meteorAux) |
|
3290 | ||
|
3308 | ||
|
3291 | 3309 | return listMeteors1 |
|
3292 | 3310 | |
|
3293 | 3311 | #Exponential Function |
@@ -3295,9 +3313,9 class SMDetection(Operation): | |||
|
3295 | 3313 | def __exponential_function(self, x, a, tau): |
|
3296 | 3314 | y = a*numpy.exp(-x/tau) |
|
3297 | 3315 | return y |
|
3298 | ||
|
3316 | ||
|
3299 | 3317 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): |
|
3300 | ||
|
3318 | ||
|
3301 | 3319 | pairslist1 = list(pairslist) |
|
3302 | 3320 | pairslist1.append((0,1)) |
|
3303 | 3321 | pairslist1.append((3,4)) |
@@ -3307,33 +3325,33 class SMDetection(Operation): | |||
|
3307 | 3325 | c = 3e8 |
|
3308 | 3326 | lag = numpy.ceil(timeLag/timeInterval) |
|
3309 | 3327 | freq = 30e6 |
|
3310 | ||
|
3328 | ||
|
3311 | 3329 | listMeteors1 = [] |
|
3312 | ||
|
3330 | ||
|
3313 | 3331 | for i in range(len(listMeteors)): |
|
3314 | 3332 | meteorAux = listMeteors[i] |
|
3315 | 3333 | if meteorAux[-1] == 0: |
|
3316 | 3334 | mStart = listMeteors[i][1] |
|
3317 |
mPeak = listMeteors[i][2] |
|
|
3335 | mPeak = listMeteors[i][2] | |
|
3318 | 3336 | mLag = mPeak - mStart + lag |
|
3319 | ||
|
3337 | ||
|
3320 | 3338 | #get the volt data between the start and end times of the meteor |
|
3321 | 3339 | meteorVolts = listVolts[i] |
|
3322 | 3340 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
3323 | 3341 | |
|
3324 | 3342 | #Get CCF |
|
3325 | 3343 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) |
|
3326 | ||
|
3344 | ||
|
3327 | 3345 | #Method 2 |
|
3328 | 3346 | slopes = numpy.zeros(numPairs) |
|
3329 | 3347 | time = numpy.array([-2,-1,1,2])*timeInterval |
|
3330 | 3348 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) |
|
3331 | ||
|
3349 | ||
|
3332 | 3350 | #Correct phases |
|
3333 | 3351 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] |
|
3334 | 3352 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
3335 | ||
|
3336 |
if indDer[0].shape[0] > 0: |
|
|
3353 | ||
|
3354 | if indDer[0].shape[0] > 0: | |
|
3337 | 3355 | for i in range(indDer[0].shape[0]): |
|
3338 | 3356 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) |
|
3339 | 3357 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi |
@@ -3342,51 +3360,51 class SMDetection(Operation): | |||
|
3342 | 3360 | for j in range(numPairs): |
|
3343 | 3361 | fit = stats.linregress(time, angAllCCF[j,:]) |
|
3344 | 3362 | slopes[j] = fit[0] |
|
3345 | ||
|
3363 | ||
|
3346 | 3364 | #Remove Outlier |
|
3347 | 3365 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
3348 | 3366 | # slopes = numpy.delete(slopes,indOut) |
|
3349 | 3367 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
3350 | 3368 | # slopes = numpy.delete(slopes,indOut) |
|
3351 | ||
|
3369 | ||
|
3352 | 3370 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) |
|
3353 | 3371 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) |
|
3354 | 3372 | meteorAux[-2] = radialError |
|
3355 | 3373 | meteorAux[-3] = radialVelocity |
|
3356 | ||
|
3374 | ||
|
3357 | 3375 | #Setting Error |
|
3358 | 3376 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s |
|
3359 |
if numpy.abs(radialVelocity) > 200: |
|
|
3377 | if numpy.abs(radialVelocity) > 200: | |
|
3360 | 3378 | meteorAux[-1] = 15 |
|
3361 | 3379 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity |
|
3362 | 3380 | elif radialError > radialStdThresh: |
|
3363 | 3381 | meteorAux[-1] = 12 |
|
3364 | ||
|
3382 | ||
|
3365 | 3383 | listMeteors1.append(meteorAux) |
|
3366 | 3384 | return listMeteors1 |
|
3367 | ||
|
3385 | ||
|
3368 | 3386 | def __setNewArrays(self, listMeteors, date, heiRang): |
|
3369 | ||
|
3387 | ||
|
3370 | 3388 | #New arrays |
|
3371 | 3389 | arrayMeteors = numpy.array(listMeteors) |
|
3372 | 3390 | arrayParameters = numpy.zeros((len(listMeteors), 13)) |
|
3373 | ||
|
3391 | ||
|
3374 | 3392 | #Date inclusion |
|
3375 | 3393 | # date = re.findall(r'\((.*?)\)', date) |
|
3376 | 3394 | # date = date[0].split(',') |
|
3377 | 3395 | # date = map(int, date) |
|
3378 | # | |
|
3396 | # | |
|
3379 | 3397 | # if len(date)<6: |
|
3380 | 3398 | # date.append(0) |
|
3381 | # | |
|
3399 | # | |
|
3382 | 3400 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] |
|
3383 | 3401 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) |
|
3384 | 3402 | arrayDate = numpy.tile(date, (len(listMeteors))) |
|
3385 | ||
|
3403 | ||
|
3386 | 3404 | #Meteor array |
|
3387 | 3405 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] |
|
3388 | 3406 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) |
|
3389 | ||
|
3407 | ||
|
3390 | 3408 | #Parameters Array |
|
3391 | 3409 | arrayParameters[:,0] = arrayDate #Date |
|
3392 | 3410 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range |
@@ -3394,13 +3412,13 class SMDetection(Operation): | |||
|
3394 | 3412 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases |
|
3395 | 3413 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error |
|
3396 | 3414 | |
|
3397 | ||
|
3415 | ||
|
3398 | 3416 | return arrayParameters |
|
3399 | ||
|
3417 | ||
|
3400 | 3418 | class CorrectSMPhases(Operation): |
|
3401 | ||
|
3419 | ||
|
3402 | 3420 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): |
|
3403 | ||
|
3421 | ||
|
3404 | 3422 | arrayParameters = dataOut.data_param |
|
3405 | 3423 | pairsList = [] |
|
3406 | 3424 | pairx = (0,1) |
@@ -3408,49 +3426,49 class CorrectSMPhases(Operation): | |||
|
3408 | 3426 | pairsList.append(pairx) |
|
3409 | 3427 | pairsList.append(pairy) |
|
3410 | 3428 | jph = numpy.zeros(4) |
|
3411 | ||
|
3429 | ||
|
3412 | 3430 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
3413 | 3431 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
3414 | 3432 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) |
|
3415 | ||
|
3433 | ||
|
3416 | 3434 | meteorOps = SMOperations() |
|
3417 | 3435 | if channelPositions is None: |
|
3418 | 3436 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
3419 | 3437 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
3420 | ||
|
3438 | ||
|
3421 | 3439 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
3422 | 3440 | h = (hmin,hmax) |
|
3423 | ||
|
3441 | ||
|
3424 | 3442 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
3425 | ||
|
3443 | ||
|
3426 | 3444 | dataOut.data_param = arrayParameters |
|
3427 | 3445 | return |
|
3428 | 3446 | |
|
3429 | 3447 | class SMPhaseCalibration(Operation): |
|
3430 | ||
|
3448 | ||
|
3431 | 3449 | __buffer = None |
|
3432 | 3450 | |
|
3433 | 3451 | __initime = None |
|
3434 | 3452 | |
|
3435 | 3453 | __dataReady = False |
|
3436 | ||
|
3454 | ||
|
3437 | 3455 | __isConfig = False |
|
3438 | ||
|
3456 | ||
|
3439 | 3457 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): |
|
3440 | ||
|
3458 | ||
|
3441 | 3459 | dataTime = currentTime + paramInterval |
|
3442 | 3460 | deltaTime = dataTime - initTime |
|
3443 | ||
|
3461 | ||
|
3444 | 3462 | if deltaTime >= outputInterval or deltaTime < 0: |
|
3445 | 3463 | return True |
|
3446 | ||
|
3464 | ||
|
3447 | 3465 | return False |
|
3448 | ||
|
3466 | ||
|
3449 | 3467 | def __getGammas(self, pairs, d, phases): |
|
3450 | 3468 | gammas = numpy.zeros(2) |
|
3451 | ||
|
3469 | ||
|
3452 | 3470 | for i in range(len(pairs)): |
|
3453 | ||
|
3471 | ||
|
3454 | 3472 | pairi = pairs[i] |
|
3455 | 3473 | |
|
3456 | 3474 | phip3 = phases[:,pairi[0]] |
@@ -3464,7 +3482,7 class SMPhaseCalibration(Operation): | |||
|
3464 | 3482 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) |
|
3465 | 3483 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi |
|
3466 | 3484 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi |
|
3467 | ||
|
3485 | ||
|
3468 | 3486 | #Revised distribution |
|
3469 | 3487 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) |
|
3470 | 3488 | |
@@ -3473,39 +3491,39 class SMPhaseCalibration(Operation): | |||
|
3473 | 3491 | rmin = -0.5*numpy.pi |
|
3474 | 3492 | rmax = 0.5*numpy.pi |
|
3475 | 3493 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) |
|
3476 | ||
|
3494 | ||
|
3477 | 3495 | meteorsY = phaseHisto[0] |
|
3478 | 3496 | phasesX = phaseHisto[1][:-1] |
|
3479 | 3497 | width = phasesX[1] - phasesX[0] |
|
3480 | 3498 | phasesX += width/2 |
|
3481 | ||
|
3499 | ||
|
3482 | 3500 | #Gaussian aproximation |
|
3483 | 3501 | bpeak = meteorsY.argmax() |
|
3484 | 3502 | peak = meteorsY.max() |
|
3485 | 3503 | jmin = bpeak - 5 |
|
3486 | 3504 | jmax = bpeak + 5 + 1 |
|
3487 | ||
|
3505 | ||
|
3488 | 3506 | if jmin<0: |
|
3489 | 3507 | jmin = 0 |
|
3490 | 3508 | jmax = 6 |
|
3491 | 3509 | elif jmax > meteorsY.size: |
|
3492 | 3510 | jmin = meteorsY.size - 6 |
|
3493 | 3511 | jmax = meteorsY.size |
|
3494 | ||
|
3512 | ||
|
3495 | 3513 | x0 = numpy.array([peak,bpeak,50]) |
|
3496 | 3514 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) |
|
3497 | ||
|
3515 | ||
|
3498 | 3516 | #Gammas |
|
3499 | 3517 | gammas[i] = coeff[0][1] |
|
3500 | ||
|
3518 | ||
|
3501 | 3519 | return gammas |
|
3502 | ||
|
3520 | ||
|
3503 | 3521 | def __residualFunction(self, coeffs, y, t): |
|
3504 | ||
|
3522 | ||
|
3505 | 3523 | return y - self.__gauss_function(t, coeffs) |
|
3506 | 3524 | |
|
3507 | 3525 | def __gauss_function(self, t, coeffs): |
|
3508 | ||
|
3526 | ||
|
3509 | 3527 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) |
|
3510 | 3528 | |
|
3511 | 3529 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): |
@@ -3526,16 +3544,16 class SMPhaseCalibration(Operation): | |||
|
3526 | 3544 | max_xangle = range_angle[iz]/2 + center_xangle |
|
3527 | 3545 | min_yangle = -range_angle[iz]/2 + center_yangle |
|
3528 | 3546 | max_yangle = range_angle[iz]/2 + center_yangle |
|
3529 | ||
|
3547 | ||
|
3530 | 3548 | inc_x = (max_xangle-min_xangle)/nstepsx |
|
3531 | 3549 | inc_y = (max_yangle-min_yangle)/nstepsy |
|
3532 | ||
|
3550 | ||
|
3533 | 3551 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle |
|
3534 | 3552 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle |
|
3535 | 3553 | penalty = numpy.zeros((nstepsx,nstepsy)) |
|
3536 | 3554 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) |
|
3537 | 3555 | jph = numpy.zeros(nchan) |
|
3538 | ||
|
3556 | ||
|
3539 | 3557 | # Iterations looking for the offset |
|
3540 | 3558 | for iy in range(int(nstepsy)): |
|
3541 | 3559 | for ix in range(int(nstepsx)): |
@@ -3543,46 +3561,46 class SMPhaseCalibration(Operation): | |||
|
3543 | 3561 | d2 = d[pairsList[1][1]] |
|
3544 | 3562 | d5 = d[pairsList[0][0]] |
|
3545 | 3563 | d4 = d[pairsList[0][1]] |
|
3546 | ||
|
3564 | ||
|
3547 | 3565 | alp2 = alpha_y[iy] #gamma 1 |
|
3548 |
alp4 = alpha_x[ix] #gamma 0 |
|
|
3549 | ||
|
3566 | alp4 = alpha_x[ix] #gamma 0 | |
|
3567 | ||
|
3550 | 3568 | alp3 = -alp2*d3/d2 - gammas[1] |
|
3551 | 3569 | alp5 = -alp4*d5/d4 - gammas[0] |
|
3552 | 3570 | # jph[pairy[1]] = alpha_y[iy] |
|
3553 |
# jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] |
|
|
3554 | ||
|
3571 | # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] | |
|
3572 | ||
|
3555 | 3573 | # jph[pairx[1]] = alpha_x[ix] |
|
3556 | 3574 | # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] |
|
3557 | 3575 | jph[pairsList[0][1]] = alp4 |
|
3558 | 3576 | jph[pairsList[0][0]] = alp5 |
|
3559 | 3577 | jph[pairsList[1][0]] = alp3 |
|
3560 |
jph[pairsList[1][1]] = alp2 |
|
|
3578 | jph[pairsList[1][1]] = alp2 | |
|
3561 | 3579 | jph_array[:,ix,iy] = jph |
|
3562 | 3580 | # d = [2.0,2.5,2.5,2.0] |
|
3563 |
#falta chequear si va a leer bien los meteoros |
|
|
3581 | #falta chequear si va a leer bien los meteoros | |
|
3564 | 3582 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) |
|
3565 | 3583 | error = meteorsArray1[:,-1] |
|
3566 | 3584 | ind1 = numpy.where(error==0)[0] |
|
3567 | 3585 | penalty[ix,iy] = ind1.size |
|
3568 | ||
|
3586 | ||
|
3569 | 3587 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) |
|
3570 | 3588 | phOffset = jph_array[:,i,j] |
|
3571 | ||
|
3589 | ||
|
3572 | 3590 | center_xangle = phOffset[pairx[1]] |
|
3573 | 3591 | center_yangle = phOffset[pairy[1]] |
|
3574 | ||
|
3592 | ||
|
3575 | 3593 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) |
|
3576 |
phOffset = phOffset*180/numpy.pi |
|
|
3594 | phOffset = phOffset*180/numpy.pi | |
|
3577 | 3595 | return phOffset |
|
3578 | ||
|
3579 | ||
|
3596 | ||
|
3597 | ||
|
3580 | 3598 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): |
|
3581 | ||
|
3599 | ||
|
3582 | 3600 | dataOut.flagNoData = True |
|
3583 |
self.__dataReady = False |
|
|
3601 | self.__dataReady = False | |
|
3584 | 3602 | dataOut.outputInterval = nHours*3600 |
|
3585 | ||
|
3603 | ||
|
3586 | 3604 | if self.__isConfig == False: |
|
3587 | 3605 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
3588 | 3606 | #Get Initial LTC time |
@@ -3590,19 +3608,19 class SMPhaseCalibration(Operation): | |||
|
3590 | 3608 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
3591 | 3609 | |
|
3592 | 3610 | self.__isConfig = True |
|
3593 | ||
|
3611 | ||
|
3594 | 3612 | if self.__buffer is None: |
|
3595 | 3613 | self.__buffer = dataOut.data_param.copy() |
|
3596 | 3614 | |
|
3597 | 3615 | else: |
|
3598 | 3616 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
3599 | ||
|
3617 | ||
|
3600 | 3618 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
3601 | ||
|
3619 | ||
|
3602 | 3620 | if self.__dataReady: |
|
3603 | 3621 | dataOut.utctimeInit = self.__initime |
|
3604 | 3622 | self.__initime += dataOut.outputInterval #to erase time offset |
|
3605 | ||
|
3623 | ||
|
3606 | 3624 | freq = dataOut.frequency |
|
3607 | 3625 | c = dataOut.C #m/s |
|
3608 | 3626 | lamb = c/freq |
@@ -3624,13 +3642,13 class SMPhaseCalibration(Operation): | |||
|
3624 | 3642 | pairs.append((1,0)) |
|
3625 | 3643 | else: |
|
3626 | 3644 | pairs.append((0,1)) |
|
3627 | ||
|
3645 | ||
|
3628 | 3646 | if distances[3] > distances[2]: |
|
3629 | 3647 | pairs.append((3,2)) |
|
3630 | 3648 | else: |
|
3631 | 3649 | pairs.append((2,3)) |
|
3632 | 3650 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] |
|
3633 | ||
|
3651 | ||
|
3634 | 3652 | meteorsArray = self.__buffer |
|
3635 | 3653 | error = meteorsArray[:,-1] |
|
3636 | 3654 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) |
@@ -3638,7 +3656,7 class SMPhaseCalibration(Operation): | |||
|
3638 | 3656 | meteorsArray = meteorsArray[ind1,:] |
|
3639 | 3657 | meteorsArray[:,-1] = 0 |
|
3640 | 3658 | phases = meteorsArray[:,8:12] |
|
3641 | ||
|
3659 | ||
|
3642 | 3660 | #Calculate Gammas |
|
3643 | 3661 | gammas = self.__getGammas(pairs, distances, phases) |
|
3644 | 3662 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 |
@@ -3648,22 +3666,22 class SMPhaseCalibration(Operation): | |||
|
3648 | 3666 | dataOut.data_output = -phasesOff |
|
3649 | 3667 | dataOut.flagNoData = False |
|
3650 | 3668 | self.__buffer = None |
|
3651 | ||
|
3652 | ||
|
3669 | ||
|
3670 | ||
|
3653 | 3671 | return |
|
3654 | ||
|
3672 | ||
|
3655 | 3673 | class SMOperations(): |
|
3656 | ||
|
3674 | ||
|
3657 | 3675 | def __init__(self): |
|
3658 | ||
|
3676 | ||
|
3659 | 3677 | return |
|
3660 | ||
|
3678 | ||
|
3661 | 3679 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): |
|
3662 | ||
|
3680 | ||
|
3663 | 3681 | arrayParameters = arrayParameters0.copy() |
|
3664 | 3682 | hmin = h[0] |
|
3665 | 3683 | hmax = h[1] |
|
3666 | ||
|
3684 | ||
|
3667 | 3685 | #Calculate AOA (Error N 3, 4) |
|
3668 | 3686 | #JONES ET AL. 1998 |
|
3669 | 3687 | AOAthresh = numpy.pi/8 |
@@ -3671,72 +3689,72 class SMOperations(): | |||
|
3671 | 3689 | phases = -arrayParameters[:,8:12] + jph |
|
3672 | 3690 | # phases = numpy.unwrap(phases) |
|
3673 | 3691 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) |
|
3674 | ||
|
3692 | ||
|
3675 | 3693 | #Calculate Heights (Error N 13 and 14) |
|
3676 | 3694 | error = arrayParameters[:,-1] |
|
3677 | 3695 | Ranges = arrayParameters[:,1] |
|
3678 | 3696 | zenith = arrayParameters[:,4] |
|
3679 | 3697 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) |
|
3680 | ||
|
3698 | ||
|
3681 | 3699 | #----------------------- Get Final data ------------------------------------ |
|
3682 | 3700 | # error = arrayParameters[:,-1] |
|
3683 | 3701 | # ind1 = numpy.where(error==0)[0] |
|
3684 | 3702 | # arrayParameters = arrayParameters[ind1,:] |
|
3685 | ||
|
3703 | ||
|
3686 | 3704 | return arrayParameters |
|
3687 | ||
|
3705 | ||
|
3688 | 3706 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): |
|
3689 | ||
|
3707 | ||
|
3690 | 3708 | arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
3691 | 3709 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) |
|
3692 | ||
|
3710 | ||
|
3693 | 3711 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
3694 | 3712 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
3695 | 3713 | arrayAOA[:,2] = cosDirError |
|
3696 | ||
|
3714 | ||
|
3697 | 3715 | azimuthAngle = arrayAOA[:,0] |
|
3698 | 3716 | zenithAngle = arrayAOA[:,1] |
|
3699 | ||
|
3717 | ||
|
3700 | 3718 | #Setting Error |
|
3701 | 3719 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] |
|
3702 | 3720 | error[indError] = 0 |
|
3703 | 3721 | #Number 3: AOA not fesible |
|
3704 | 3722 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
3705 |
error[indInvalid] = 3 |
|
|
3723 | error[indInvalid] = 3 | |
|
3706 | 3724 | #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
3707 | 3725 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
3708 |
error[indInvalid] = 4 |
|
|
3726 | error[indInvalid] = 4 | |
|
3709 | 3727 | return arrayAOA, error |
|
3710 | ||
|
3728 | ||
|
3711 | 3729 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): |
|
3712 | ||
|
3730 | ||
|
3713 | 3731 | #Initializing some variables |
|
3714 | 3732 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
3715 | 3733 | ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
3716 | ||
|
3734 | ||
|
3717 | 3735 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
3718 | 3736 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
3719 | ||
|
3720 | ||
|
3737 | ||
|
3738 | ||
|
3721 | 3739 | for i in range(2): |
|
3722 | 3740 | ph0 = arrayPhase[:,pairsList[i][0]] |
|
3723 | 3741 | ph1 = arrayPhase[:,pairsList[i][1]] |
|
3724 | 3742 | d0 = distances[pairsList[i][0]] |
|
3725 | 3743 | d1 = distances[pairsList[i][1]] |
|
3726 | ||
|
3727 |
ph0_aux = ph0 + ph1 |
|
|
3744 | ||
|
3745 | ph0_aux = ph0 + ph1 | |
|
3728 | 3746 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) |
|
3729 | 3747 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi |
|
3730 |
# ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi |
|
|
3748 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi | |
|
3731 | 3749 | #First Estimation |
|
3732 | 3750 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) |
|
3733 | ||
|
3751 | ||
|
3734 | 3752 | #Most-Accurate Second Estimation |
|
3735 | 3753 | phi1_aux = ph0 - ph1 |
|
3736 | 3754 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
3737 | 3755 | #Direction Cosine 1 |
|
3738 | 3756 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) |
|
3739 | ||
|
3757 | ||
|
3740 | 3758 | #Searching the correct Direction Cosine |
|
3741 | 3759 | cosdir0_aux = cosdir0[:,i] |
|
3742 | 3760 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
@@ -3745,59 +3763,59 class SMOperations(): | |||
|
3745 | 3763 | indcos = cosDiff.argmin(axis = 1) |
|
3746 | 3764 | #Saving Value obtained |
|
3747 | 3765 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
3748 | ||
|
3766 | ||
|
3749 | 3767 | return cosdir0, cosdir |
|
3750 | ||
|
3768 | ||
|
3751 | 3769 | def __calculateAOA(self, cosdir, azimuth): |
|
3752 | 3770 | cosdirX = cosdir[:,0] |
|
3753 | 3771 | cosdirY = cosdir[:,1] |
|
3754 | ||
|
3772 | ||
|
3755 | 3773 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
3756 | 3774 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east |
|
3757 | 3775 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
3758 | ||
|
3776 | ||
|
3759 | 3777 | return angles |
|
3760 | ||
|
3778 | ||
|
3761 | 3779 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
3762 | ||
|
3780 | ||
|
3763 | 3781 | Ramb = 375 #Ramb = c/(2*PRF) |
|
3764 | 3782 | Re = 6371 #Earth Radius |
|
3765 | 3783 | heights = numpy.zeros(Ranges.shape) |
|
3766 | ||
|
3784 | ||
|
3767 | 3785 | R_aux = numpy.array([0,1,2])*Ramb |
|
3768 | 3786 | R_aux = R_aux.reshape(1,R_aux.size) |
|
3769 | 3787 | |
|
3770 | 3788 | Ranges = Ranges.reshape(Ranges.size,1) |
|
3771 | ||
|
3789 | ||
|
3772 | 3790 | Ri = Ranges + R_aux |
|
3773 | 3791 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
3774 | ||
|
3792 | ||
|
3775 | 3793 | #Check if there is a height between 70 and 110 km |
|
3776 | 3794 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
3777 | 3795 | ind_h = numpy.where(h_bool == 1)[0] |
|
3778 | ||
|
3796 | ||
|
3779 | 3797 | hCorr = hi[ind_h, :] |
|
3780 | 3798 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
3781 | ||
|
3799 | ||
|
3782 | 3800 | hCorr = hi[ind_hCorr][:len(ind_h)] |
|
3783 | 3801 | heights[ind_h] = hCorr |
|
3784 | ||
|
3802 | ||
|
3785 | 3803 | #Setting Error |
|
3786 | 3804 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
3787 |
#Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
|
3805 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
|
3788 | 3806 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] |
|
3789 | 3807 | error[indError] = 0 |
|
3790 |
indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
|
3808 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
|
3791 | 3809 | error[indInvalid2] = 14 |
|
3792 | 3810 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
3793 |
error[indInvalid1] = 13 |
|
|
3794 | ||
|
3811 | error[indInvalid1] = 13 | |
|
3812 | ||
|
3795 | 3813 | return heights, error |
|
3796 | ||
|
3814 | ||
|
3797 | 3815 | def getPhasePairs(self, channelPositions): |
|
3798 | 3816 | chanPos = numpy.array(channelPositions) |
|
3799 | 3817 | listOper = list(itertools.combinations(list(range(5)),2)) |
|
3800 | ||
|
3818 | ||
|
3801 | 3819 | distances = numpy.zeros(4) |
|
3802 | 3820 | axisX = [] |
|
3803 | 3821 | axisY = [] |
@@ -3805,15 +3823,15 class SMOperations(): | |||
|
3805 | 3823 | distY = numpy.zeros(3) |
|
3806 | 3824 | ix = 0 |
|
3807 | 3825 | iy = 0 |
|
3808 | ||
|
3826 | ||
|
3809 | 3827 | pairX = numpy.zeros((2,2)) |
|
3810 | 3828 | pairY = numpy.zeros((2,2)) |
|
3811 | ||
|
3829 | ||
|
3812 | 3830 | for i in range(len(listOper)): |
|
3813 | 3831 | pairi = listOper[i] |
|
3814 | ||
|
3832 | ||
|
3815 | 3833 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) |
|
3816 | ||
|
3834 | ||
|
3817 | 3835 | if posDif[0] == 0: |
|
3818 | 3836 | axisY.append(pairi) |
|
3819 | 3837 | distY[iy] = posDif[1] |
@@ -3822,7 +3840,7 class SMOperations(): | |||
|
3822 | 3840 | axisX.append(pairi) |
|
3823 | 3841 | distX[ix] = posDif[0] |
|
3824 | 3842 | ix += 1 |
|
3825 |
|
|
|
3843 | ||
|
3826 | 3844 | for i in range(2): |
|
3827 | 3845 | if i==0: |
|
3828 | 3846 | dist0 = distX |
@@ -3830,7 +3848,7 class SMOperations(): | |||
|
3830 | 3848 | else: |
|
3831 | 3849 | dist0 = distY |
|
3832 | 3850 | axis0 = axisY |
|
3833 | ||
|
3851 | ||
|
3834 | 3852 | side = numpy.argsort(dist0)[:-1] |
|
3835 | 3853 | axis0 = numpy.array(axis0)[side,:] |
|
3836 | 3854 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) |
@@ -3838,7 +3856,7 class SMOperations(): | |||
|
3838 | 3856 | side = axis1[axis1 != chanC] |
|
3839 | 3857 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] |
|
3840 | 3858 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] |
|
3841 |
if diff1<0: |
|
|
3859 | if diff1<0: | |
|
3842 | 3860 | chan2 = side[0] |
|
3843 | 3861 | d2 = numpy.abs(diff1) |
|
3844 | 3862 | chan1 = side[1] |
@@ -3848,7 +3866,7 class SMOperations(): | |||
|
3848 | 3866 | d2 = numpy.abs(diff2) |
|
3849 | 3867 | chan1 = side[0] |
|
3850 | 3868 | d1 = numpy.abs(diff1) |
|
3851 | ||
|
3869 | ||
|
3852 | 3870 | if i==0: |
|
3853 | 3871 | chanCX = chanC |
|
3854 | 3872 | chan1X = chan1 |
@@ -3860,10 +3878,10 class SMOperations(): | |||
|
3860 | 3878 | chan2Y = chan2 |
|
3861 | 3879 | distances[2:4] = numpy.array([d1,d2]) |
|
3862 | 3880 | # axisXsides = numpy.reshape(axisX[ix,:],4) |
|
3863 | # | |
|
3881 | # | |
|
3864 | 3882 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) |
|
3865 | 3883 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) |
|
3866 | # | |
|
3884 | # | |
|
3867 | 3885 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] |
|
3868 | 3886 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] |
|
3869 | 3887 | # channel25X = int(pairX[0,ind25X]) |
@@ -3872,59 +3890,59 class SMOperations(): | |||
|
3872 | 3890 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] |
|
3873 | 3891 | # channel25Y = int(pairY[0,ind25Y]) |
|
3874 | 3892 | # channel20Y = int(pairY[1,ind20Y]) |
|
3875 | ||
|
3893 | ||
|
3876 | 3894 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] |
|
3877 |
pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] |
|
|
3878 | ||
|
3895 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] | |
|
3896 | ||
|
3879 | 3897 | return pairslist, distances |
|
3880 | 3898 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): |
|
3881 | # | |
|
3899 | # | |
|
3882 | 3900 | # arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
3883 | 3901 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) |
|
3884 | # | |
|
3902 | # | |
|
3885 | 3903 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
3886 | 3904 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
3887 | 3905 | # arrayAOA[:,2] = cosDirError |
|
3888 | # | |
|
3906 | # | |
|
3889 | 3907 | # azimuthAngle = arrayAOA[:,0] |
|
3890 | 3908 | # zenithAngle = arrayAOA[:,1] |
|
3891 | # | |
|
3909 | # | |
|
3892 | 3910 | # #Setting Error |
|
3893 | 3911 | # #Number 3: AOA not fesible |
|
3894 | 3912 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
3895 |
# error[indInvalid] = 3 |
|
|
3913 | # error[indInvalid] = 3 | |
|
3896 | 3914 | # #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
3897 | 3915 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
3898 |
# error[indInvalid] = 4 |
|
|
3916 | # error[indInvalid] = 4 | |
|
3899 | 3917 | # return arrayAOA, error |
|
3900 | # | |
|
3918 | # | |
|
3901 | 3919 | # def __getDirectionCosines(self, arrayPhase, pairsList): |
|
3902 | # | |
|
3920 | # | |
|
3903 | 3921 | # #Initializing some variables |
|
3904 | 3922 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
3905 | 3923 | # ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
3906 | # | |
|
3924 | # | |
|
3907 | 3925 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
3908 | 3926 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
3909 | # | |
|
3910 | # | |
|
3927 | # | |
|
3928 | # | |
|
3911 | 3929 | # for i in range(2): |
|
3912 | 3930 | # #First Estimation |
|
3913 | 3931 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] |
|
3914 | 3932 | # #Dealias |
|
3915 | 3933 | # indcsi = numpy.where(phi0_aux > numpy.pi) |
|
3916 |
# phi0_aux[indcsi] -= 2*numpy.pi |
|
|
3934 | # phi0_aux[indcsi] -= 2*numpy.pi | |
|
3917 | 3935 | # indcsi = numpy.where(phi0_aux < -numpy.pi) |
|
3918 |
# phi0_aux[indcsi] += 2*numpy.pi |
|
|
3936 | # phi0_aux[indcsi] += 2*numpy.pi | |
|
3919 | 3937 | # #Direction Cosine 0 |
|
3920 | 3938 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) |
|
3921 | # | |
|
3939 | # | |
|
3922 | 3940 | # #Most-Accurate Second Estimation |
|
3923 | 3941 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] |
|
3924 | 3942 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
3925 | 3943 | # #Direction Cosine 1 |
|
3926 | 3944 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) |
|
3927 | # | |
|
3945 | # | |
|
3928 | 3946 | # #Searching the correct Direction Cosine |
|
3929 | 3947 | # cosdir0_aux = cosdir0[:,i] |
|
3930 | 3948 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
@@ -3933,51 +3951,50 class SMOperations(): | |||
|
3933 | 3951 | # indcos = cosDiff.argmin(axis = 1) |
|
3934 | 3952 | # #Saving Value obtained |
|
3935 | 3953 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
3936 | # | |
|
3954 | # | |
|
3937 | 3955 | # return cosdir0, cosdir |
|
3938 | # | |
|
3956 | # | |
|
3939 | 3957 | # def __calculateAOA(self, cosdir, azimuth): |
|
3940 | 3958 | # cosdirX = cosdir[:,0] |
|
3941 | 3959 | # cosdirY = cosdir[:,1] |
|
3942 | # | |
|
3960 | # | |
|
3943 | 3961 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
3944 | 3962 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east |
|
3945 | 3963 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
3946 | # | |
|
3964 | # | |
|
3947 | 3965 | # return angles |
|
3948 | # | |
|
3966 | # | |
|
3949 | 3967 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
3950 | # | |
|
3968 | # | |
|
3951 | 3969 | # Ramb = 375 #Ramb = c/(2*PRF) |
|
3952 | 3970 | # Re = 6371 #Earth Radius |
|
3953 | 3971 | # heights = numpy.zeros(Ranges.shape) |
|
3954 | # | |
|
3972 | # | |
|
3955 | 3973 | # R_aux = numpy.array([0,1,2])*Ramb |
|
3956 | 3974 | # R_aux = R_aux.reshape(1,R_aux.size) |
|
3957 |
# |
|
|
3975 | # | |
|
3958 | 3976 | # Ranges = Ranges.reshape(Ranges.size,1) |
|
3959 | # | |
|
3977 | # | |
|
3960 | 3978 | # Ri = Ranges + R_aux |
|
3961 | 3979 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
3962 | # | |
|
3980 | # | |
|
3963 | 3981 | # #Check if there is a height between 70 and 110 km |
|
3964 | 3982 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
3965 | 3983 | # ind_h = numpy.where(h_bool == 1)[0] |
|
3966 | # | |
|
3984 | # | |
|
3967 | 3985 | # hCorr = hi[ind_h, :] |
|
3968 | 3986 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
3969 | # | |
|
3970 |
# hCorr = hi[ind_hCorr] |
|
|
3987 | # | |
|
3988 | # hCorr = hi[ind_hCorr] | |
|
3971 | 3989 | # heights[ind_h] = hCorr |
|
3972 | # | |
|
3990 | # | |
|
3973 | 3991 | # #Setting Error |
|
3974 | 3992 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
3975 |
# #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
|
3976 | # | |
|
3977 |
# indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
|
3993 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
|
3994 | # | |
|
3995 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
|
3978 | 3996 | # error[indInvalid2] = 14 |
|
3979 | 3997 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
3980 |
# error[indInvalid1] = 13 |
|
|
3981 | # | |
|
3982 |
# return heights, error |
|
|
3983 | No newline at end of file | |
|
3998 | # error[indInvalid1] = 13 | |
|
3999 | # | |
|
4000 | # return heights, error |
@@ -94,6 +94,12 class SpectraProc(ProcessingUnit): | |||
|
94 | 94 | blocksize += dc.size |
|
95 | 95 | blocksize += spc.size |
|
96 | 96 | |
|
97 | #print("spc :",spc.shape) | |
|
98 | data_wr = None | |
|
99 | if self.dataOut.flagWR: | |
|
100 | data_wr = fft_volt | |
|
101 | blocksize = fft_volt.size | |
|
102 | ||
|
97 | 103 | cspc = None |
|
98 | 104 | pairIndex = 0 |
|
99 | 105 | if self.dataOut.pairsList != None: |
@@ -113,16 +119,20 class SpectraProc(ProcessingUnit): | |||
|
113 | 119 | pairIndex += 1 |
|
114 | 120 | blocksize += cspc.size |
|
115 | 121 | |
|
116 | self.dataOut.data_spc = spc | |
|
117 | self.dataOut.data_cspc = cspc | |
|
118 |
self.dataOut.data_ |
|
|
119 |
self.dataOut. |
|
|
122 | self.dataOut.data_spc = spc | |
|
123 | self.dataOut.data_cspc = cspc | |
|
124 | self.dataOut.data_wr = data_wr | |
|
125 | self.dataOut.data_dc = dc | |
|
126 | self.dataOut.blockSize = blocksize | |
|
120 | 127 | self.dataOut.flagShiftFFT = False |
|
121 | 128 | |
|
122 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], ippFactor=None, shift_fft=False): | |
|
129 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], ippFactor=None, shift_fft=False,flagWR= 0): | |
|
130 | ||
|
131 | self.dataOut.flagWR = flagWR | |
|
123 | 132 | |
|
124 | 133 | if self.dataIn.type == "Spectra": |
|
125 | 134 | self.dataOut.copy(self.dataIn) |
|
135 | ||
|
126 | 136 | if shift_fft: |
|
127 | 137 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
128 | 138 | shift = int(self.dataOut.nFFTPoints/2) |
@@ -135,7 +145,7 class SpectraProc(ProcessingUnit): | |||
|
135 | 145 | return True |
|
136 | 146 | |
|
137 | 147 | if self.dataIn.type == "Voltage": |
|
138 | ||
|
148 | #print("VOLTAGE INPUT SPECTRA") | |
|
139 | 149 | self.dataOut.flagNoData = True |
|
140 | 150 | |
|
141 | 151 | if nFFTPoints == None: |
@@ -157,6 +167,7 class SpectraProc(ProcessingUnit): | |||
|
157 | 167 | nProfiles, |
|
158 | 168 | self.dataIn.nHeights), |
|
159 | 169 | dtype='complex') |
|
170 | #print("buffer :",self.buffer.shape) | |
|
160 | 171 | |
|
161 | 172 | if self.dataIn.flagDataAsBlock: |
|
162 | 173 | nVoltProfiles = self.dataIn.data.shape[1] |
@@ -182,6 +193,7 class SpectraProc(ProcessingUnit): | |||
|
182 | 193 | self.dataOut.flagNoData = True |
|
183 | 194 | return 0 |
|
184 | 195 | else: |
|
196 | #print("Spectra ",self.profIndex) | |
|
185 | 197 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
186 | 198 | self.profIndex += 1 |
|
187 | 199 | |
@@ -191,6 +203,7 class SpectraProc(ProcessingUnit): | |||
|
191 | 203 | if self.profIndex == nProfiles: |
|
192 | 204 | self.__updateSpecFromVoltage() |
|
193 | 205 | self.__getFft() |
|
206 | #print(" DATAOUT SHAPE SPEC",self.dataOut.data_spc.shape) | |
|
194 | 207 | |
|
195 | 208 | self.dataOut.flagNoData = False |
|
196 | 209 | self.firstdatatime = None |
@@ -291,16 +304,16 class SpectraProc(ProcessingUnit): | |||
|
291 | 304 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
292 | 305 | self.dataOut.channelList = range(len(channelIndexList)) |
|
293 | 306 | self.__selectPairsByChannel(channelIndexList) |
|
294 | ||
|
307 | ||
|
295 | 308 | return 1 |
|
296 | ||
|
297 | ||
|
309 | ||
|
310 | ||
|
298 | 311 | def selectFFTs(self, minFFT, maxFFT ): |
|
299 | 312 | """ |
|
300 |
Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
|
313 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango | |
|
301 | 314 | minFFT<= FFT <= maxFFT |
|
302 | 315 | """ |
|
303 | ||
|
316 | ||
|
304 | 317 | if (minFFT > maxFFT): |
|
305 | 318 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
306 | 319 | |
@@ -330,20 +343,20 class SpectraProc(ProcessingUnit): | |||
|
330 | 343 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
331 | 344 | |
|
332 | 345 | return 1 |
|
333 | ||
|
334 | ||
|
346 | ||
|
347 | ||
|
335 | 348 | def setH0(self, h0, deltaHeight = None): |
|
336 | ||
|
349 | ||
|
337 | 350 | if not deltaHeight: |
|
338 | 351 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
339 | ||
|
352 | ||
|
340 | 353 | nHeights = self.dataOut.nHeights |
|
341 | ||
|
354 | ||
|
342 | 355 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
343 | ||
|
356 | ||
|
344 | 357 | self.dataOut.heightList = newHeiRange |
|
345 | ||
|
346 | ||
|
358 | ||
|
359 | ||
|
347 | 360 | def selectHeights(self, minHei, maxHei): |
|
348 | 361 | """ |
|
349 | 362 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
@@ -360,7 +373,7 class SpectraProc(ProcessingUnit): | |||
|
360 | 373 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
361 | 374 | """ |
|
362 | 375 | |
|
363 | ||
|
376 | ||
|
364 | 377 | if (minHei > maxHei): |
|
365 | 378 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei)) |
|
366 | 379 | |
@@ -388,7 +401,7 class SpectraProc(ProcessingUnit): | |||
|
388 | 401 | maxIndex = len(heights) |
|
389 | 402 | |
|
390 | 403 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
391 | ||
|
404 | ||
|
392 | 405 | |
|
393 | 406 | return 1 |
|
394 | 407 | |
@@ -436,7 +449,7 class SpectraProc(ProcessingUnit): | |||
|
436 | 449 | |
|
437 | 450 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
438 | 451 | """ |
|
439 | ||
|
452 | ||
|
440 | 453 | """ |
|
441 | 454 | |
|
442 | 455 | if (minIndex < 0) or (minIndex > maxIndex): |
@@ -459,7 +472,7 class SpectraProc(ProcessingUnit): | |||
|
459 | 472 | self.dataOut.data_spc = data_spc |
|
460 | 473 | self.dataOut.data_cspc = data_cspc |
|
461 | 474 | self.dataOut.data_dc = data_dc |
|
462 | ||
|
475 | ||
|
463 | 476 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
464 | 477 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
465 | 478 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
@@ -552,7 +565,7 class SpectraProc(ProcessingUnit): | |||
|
552 | 565 | xx_inv = numpy.linalg.inv(xx) |
|
553 | 566 | xx_aux = xx_inv[0, :] |
|
554 | 567 | |
|
555 |
for ich in range(num_chan): |
|
|
568 | for ich in range(num_chan): | |
|
556 | 569 | yy = jspectra[ich, ind_vel, :] |
|
557 | 570 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
558 | 571 | |
@@ -574,12 +587,12 class SpectraProc(ProcessingUnit): | |||
|
574 | 587 | return 1 |
|
575 | 588 | |
|
576 | 589 | def removeInterference2(self): |
|
577 | ||
|
590 | ||
|
578 | 591 | cspc = self.dataOut.data_cspc |
|
579 | 592 | spc = self.dataOut.data_spc |
|
580 |
Heights = numpy.arange(cspc.shape[2]) |
|
|
593 | Heights = numpy.arange(cspc.shape[2]) | |
|
581 | 594 | realCspc = numpy.abs(cspc) |
|
582 | ||
|
595 | ||
|
583 | 596 | for i in range(cspc.shape[0]): |
|
584 | 597 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
585 | 598 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
@@ -587,17 +600,17 class SpectraProc(ProcessingUnit): | |||
|
587 | 600 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
588 | 601 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
589 | 602 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
590 | ||
|
591 | ||
|
603 | ||
|
604 | ||
|
592 | 605 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
593 | 606 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
594 | 607 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
595 | 608 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
596 | ||
|
597 | ||
|
598 | ||
|
609 | ||
|
610 | ||
|
611 | ||
|
599 | 612 | self.dataOut.data_cspc = cspc |
|
600 | ||
|
613 | ||
|
601 | 614 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
602 | 615 | |
|
603 | 616 | jspectra = self.dataOut.data_spc |
@@ -931,7 +944,7 class IncohInt(Operation): | |||
|
931 | 944 | if n is not None: |
|
932 | 945 | self.n = int(n) |
|
933 | 946 | else: |
|
934 | ||
|
947 | ||
|
935 | 948 | self.__integrationtime = int(timeInterval) |
|
936 | 949 | self.n = None |
|
937 | 950 | self.__byTime = True |
@@ -941,6 +954,9 class IncohInt(Operation): | |||
|
941 | 954 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
942 | 955 | |
|
943 | 956 | """ |
|
957 | print("profIndex: ",self.__profIndex) | |
|
958 | print("data_spc.shape: ",data_spc.shape) | |
|
959 | print("data_spc.shape: ",data_spc[0,0,:]) | |
|
944 | 960 | |
|
945 | 961 | self.__buffer_spc += data_spc |
|
946 | 962 | |
@@ -1032,7 +1048,7 class IncohInt(Operation): | |||
|
1032 | 1048 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1033 | 1049 | if n == 1: |
|
1034 | 1050 | return |
|
1035 | ||
|
1051 | ||
|
1036 | 1052 | dataOut.flagNoData = True |
|
1037 | 1053 | |
|
1038 | 1054 | if not self.isConfig: |
@@ -1048,9 +1064,197 class IncohInt(Operation): | |||
|
1048 | 1064 | |
|
1049 | 1065 | dataOut.data_spc = avgdata_spc |
|
1050 | 1066 | dataOut.data_cspc = avgdata_cspc |
|
1051 |
dataOut.data_dc = avgdata_dc |
|
|
1067 | dataOut.data_dc = avgdata_dc | |
|
1052 | 1068 | dataOut.nIncohInt *= self.n |
|
1053 | 1069 | dataOut.utctime = avgdatatime |
|
1054 | 1070 | dataOut.flagNoData = False |
|
1055 | 1071 | |
|
1056 | return dataOut No newline at end of file | |
|
1072 | return dataOut | |
|
1073 | ||
|
1074 | ||
|
1075 | class PulsePair(Operation): | |
|
1076 | isConfig = False | |
|
1077 | __profIndex = 0 | |
|
1078 | __profIndex2 = 0 | |
|
1079 | __initime = None | |
|
1080 | __lastdatatime = None | |
|
1081 | __buffer = None | |
|
1082 | __buffer2 = [] | |
|
1083 | __buffer3 = None | |
|
1084 | __dataReady = False | |
|
1085 | n = None | |
|
1086 | ||
|
1087 | __nch =0 | |
|
1088 | __nProf =0 | |
|
1089 | __nHeis =0 | |
|
1090 | ||
|
1091 | def __init__(self,**kwargs): | |
|
1092 | Operation.__init__(self,**kwargs) | |
|
1093 | ||
|
1094 | def setup(self,dataOut,n =None, m = None): | |
|
1095 | ||
|
1096 | self.__initime = None | |
|
1097 | self.__lastdatatime = 0 | |
|
1098 | self.__buffer = 0 | |
|
1099 | self.__bufferV = 0 | |
|
1100 | #self.__buffer2 = [] | |
|
1101 | self.__buffer3 = 0 | |
|
1102 | self.__dataReady = False | |
|
1103 | self.__profIndex = 0 | |
|
1104 | self.__profIndex2 = 0 | |
|
1105 | self.count = 0 | |
|
1106 | ||
|
1107 | ||
|
1108 | self.__nch = dataOut.nChannels | |
|
1109 | self.__nHeis = dataOut.nHeights | |
|
1110 | self.__nProf = dataOut.nProfiles | |
|
1111 | self.__nFFT = dataOut.nFFTPoints | |
|
1112 | #print("Valores de Ch,Samples,Perfiles,nFFT",self.__nch,self.__nHeis,self.__nProf, self.__nFFT) | |
|
1113 | #print("EL VALOR DE n es:",n) | |
|
1114 | if n == None: | |
|
1115 | raise ValueError("n Should be specified.") | |
|
1116 | ||
|
1117 | if n != None: | |
|
1118 | if n<2: | |
|
1119 | raise ValueError("n Should be greather than 2 ") | |
|
1120 | self.n = n | |
|
1121 | if m == None: | |
|
1122 | m = n | |
|
1123 | if m != None: | |
|
1124 | if m<2: | |
|
1125 | raise ValueError("n Should be greather than 2 ") | |
|
1126 | ||
|
1127 | self.m = m | |
|
1128 | self.__buffer2 = numpy.zeros((self.__nch,self.m,self.__nHeis)) | |
|
1129 | self.__bufferV2 = numpy.zeros((self.__nch,self.m,self.__nHeis)) | |
|
1130 | ||
|
1131 | ||
|
1132 | ||
|
1133 | def putData(self,data): | |
|
1134 | #print("###################################################") | |
|
1135 | ''' | |
|
1136 | data_tmp = numpy.zeros(self.__nch,self.n,self.__nHeis, dtype= complex) | |
|
1137 | if self.count < self.__nProf: | |
|
1138 | ||
|
1139 | for i in range(self.n): | |
|
1140 | data_tmp[:,i,:] = data[:,i+self.count,:] | |
|
1141 | ||
|
1142 | self.__buffer = data_tmp*numpy.conjugate(data_tmp) | |
|
1143 | ||
|
1144 | ||
|
1145 | #####self.__buffer = data*numpy.conjugate(data) | |
|
1146 | #####self.__bufferV = data[:,(self.__nProf-1):,:]*numpy.conjugate(data[:,1:,:]) | |
|
1147 | ||
|
1148 | #self.__buffer2.append(numpy.conjugate(data)) | |
|
1149 | ||
|
1150 | #####self.__profIndex = data.shape[1] | |
|
1151 | self.count = self.count + self.n -1 | |
|
1152 | self.__profIndex = self.n | |
|
1153 | ''' | |
|
1154 | self.__buffer = data*numpy.conjugate(data) | |
|
1155 | self.__bufferV = data[:,(self.__nProf-1):,:]*numpy.conjugate(data[:,1:,:]) | |
|
1156 | self.__profIndex = self.n | |
|
1157 | return | |
|
1158 | ||
|
1159 | def pushData(self): | |
|
1160 | ||
|
1161 | data_I = numpy.zeros((self.__nch,self.__nHeis)) | |
|
1162 | data_IV = numpy.zeros((self.__nch,self.__nHeis)) | |
|
1163 | ||
|
1164 | for i in range(self.__nch): | |
|
1165 | data_I[i,:] = numpy.sum(numpy.sum(self.__buffer[i],axis=0),axis=0)/self.n | |
|
1166 | data_IV[i,:] = numpy.sum(numpy.sum(self.__bufferV[i],axis=0),axis=0)/(self.n-1) | |
|
1167 | ||
|
1168 | n = self.__profIndex | |
|
1169 | ####data_intensity = numpy.sum(numpy.sum(self.__buffer,axis=0),axis=0)/self.n | |
|
1170 | #print("data_intensity push data",data_intensity.shape) | |
|
1171 | #data_velocity = self.__buffer3/(self.n-1) | |
|
1172 | ####n = self.__profIndex | |
|
1173 | ||
|
1174 | self.__buffer = 0 | |
|
1175 | self.__buffer3 = 0 | |
|
1176 | self.__profIndex = 0 | |
|
1177 | ||
|
1178 | #return data_intensity,data_velocity,n | |
|
1179 | return data_I,data_IV,n | |
|
1180 | ||
|
1181 | def pulsePairbyProfiles(self,data): | |
|
1182 | self.__dataReady = False | |
|
1183 | data_intensity = None | |
|
1184 | data_velocity = None | |
|
1185 | ||
|
1186 | self.putData(data) | |
|
1187 | ||
|
1188 | if self.__profIndex == self.n: | |
|
1189 | #data_intensity,data_velocity,n = self.pushData() | |
|
1190 | data_intensity,data_velocity,n = self.pushData() | |
|
1191 | #print(data_intensity.shape) | |
|
1192 | #print("self.__profIndex2", self.__profIndex2) | |
|
1193 | if self.__profIndex2 == 0: | |
|
1194 | #print("PRIMERA VEZ") | |
|
1195 | #print("self.__buffer2",self.__buffer2) | |
|
1196 | for i in range(self.__nch): | |
|
1197 | self.__buffer2[i][self.__profIndex2] = data_intensity[i] | |
|
1198 | self.__bufferV2[i][self.__profIndex2] = data_velocity[i] | |
|
1199 | self.__profIndex2 += 1 | |
|
1200 | return None,None | |
|
1201 | ||
|
1202 | if self.__profIndex2 > 0: | |
|
1203 | for i in range(self.__nch): | |
|
1204 | self.__buffer2[i][self.__profIndex2] = data_intensity[i] | |
|
1205 | self.__bufferV2[i][self.__profIndex2] = data_velocity[i] | |
|
1206 | #print("Dentro del bucle",self.__buffer2) | |
|
1207 | self.__profIndex2 += 1 | |
|
1208 | if self.__profIndex2 == self.m : | |
|
1209 | data_i = self.__buffer2 | |
|
1210 | data_v = self.__bufferV2 | |
|
1211 | #print(data_i.shape) | |
|
1212 | self.__dataReady = True | |
|
1213 | self.__profIndex2 = 0 | |
|
1214 | self.__buffer2 = numpy.zeros((self.__nch,self.m,self.__nHeis)) | |
|
1215 | self.__bufferV2 = numpy.zeros((self.__nch,self.m,self.__nHeis)) | |
|
1216 | return data_i,data_v | |
|
1217 | return None,None | |
|
1218 | ||
|
1219 | def pulsePairOp(self,data,datatime=None): | |
|
1220 | if self.__initime == None: | |
|
1221 | self.__initime = datatime | |
|
1222 | ||
|
1223 | data_intensity,data_velocity = self.pulsePairbyProfiles(data) | |
|
1224 | self.__lastdatatime = datatime | |
|
1225 | ||
|
1226 | if data_intensity is None: | |
|
1227 | return None,None,None | |
|
1228 | ||
|
1229 | avgdatatime = self.__initime | |
|
1230 | self.__initime = datatime | |
|
1231 | ||
|
1232 | return data_intensity,data_velocity,avgdatatime | |
|
1233 | ||
|
1234 | def run(self,dataOut,n =None,m=None): | |
|
1235 | ||
|
1236 | if not self.isConfig: | |
|
1237 | self.setup(dataOut = dataOut, n = n, m = m) | |
|
1238 | self.isConfig = True | |
|
1239 | ||
|
1240 | data_intensity,data_velocity,avgdatatime = self.pulsePairOp(dataOut.data_wr,dataOut.utctime) | |
|
1241 | dataOut.flagNoData = True | |
|
1242 | ||
|
1243 | if self.__dataReady: | |
|
1244 | #print(" DATA " , data_intensity.shape) | |
|
1245 | #dataOut.data = numpy.array([data_intensity])#aqui amigo revisa | |
|
1246 | #tmp = numpy.zeros([1,data_intensity.shape[0],data_intensity.shape[1]]) | |
|
1247 | #tmp[0] = data_intensity | |
|
1248 | dataOut.data = data_intensity | |
|
1249 | dataOut.data_velocity = data_velocity | |
|
1250 | #dataOut.data = tmp | |
|
1251 | #print(" DATA " , dataOut.data.shape) | |
|
1252 | dataOut.nIncohInt *= self.n | |
|
1253 | dataOut.nProfiles = self.m | |
|
1254 | dataOut.nFFTPoints = self.m | |
|
1255 | #dataOut.data_intensity = data_intensity | |
|
1256 | dataOut.PRFbyAngle = self.n | |
|
1257 | dataOut.utctime = avgdatatime | |
|
1258 | dataOut.flagNoData = False | |
|
1259 | #####print("TIEMPO: ",dataOut.utctime) | |
|
1260 | return dataOut |
@@ -8,8 +8,8 from time import time | |||
|
8 | 8 | |
|
9 | 9 | |
|
10 | 10 | @MPDecorator |
|
11 |
class VoltageProc(ProcessingUnit): |
|
|
12 | ||
|
11 | class VoltageProc(ProcessingUnit): | |
|
12 | ||
|
13 | 13 | def __init__(self): |
|
14 | 14 | |
|
15 | 15 | ProcessingUnit.__init__(self) |
@@ -115,7 +115,7 class VoltageProc(ProcessingUnit): | |||
|
115 | 115 | self.dataOut.data = data |
|
116 | 116 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
117 | 117 | self.dataOut.channelList = range(len(channelIndexList)) |
|
118 | ||
|
118 | ||
|
119 | 119 | return 1 |
|
120 | 120 | |
|
121 | 121 | def selectHeights(self, minHei=None, maxHei=None): |
@@ -229,7 +229,7 class VoltageProc(ProcessingUnit): | |||
|
229 | 229 | """ |
|
230 | 230 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
231 | 231 | """ |
|
232 |
buffer = self.dataOut.data[:, :, 0:int(self.dataOut.nHeights-r)] |
|
|
232 | buffer = self.dataOut.data[:, :, 0:int(self.dataOut.nHeights-r)] | |
|
233 | 233 | buffer = buffer.reshape(self.dataOut.nChannels, self.dataOut.nProfiles, int(self.dataOut.nHeights/window), window) |
|
234 | 234 | buffer = numpy.sum(buffer,3) |
|
235 | 235 | |
@@ -384,14 +384,16 class CohInt(Operation): | |||
|
384 | 384 | """ |
|
385 | 385 | |
|
386 | 386 | if not self.__withOverlapping: |
|
387 | print("inside over") | |
|
387 | 388 | self.__buffer += data.copy() |
|
388 | 389 | self.__profIndex += 1 |
|
389 | 390 | return |
|
390 | 391 | |
|
391 | 392 | #Overlapping data |
|
392 | 393 | nChannels, nHeis = data.shape |
|
394 | print("show me the light",data.shape) | |
|
393 | 395 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
394 | ||
|
396 | print(data.shape) | |
|
395 | 397 | #If the buffer is empty then it takes the data value |
|
396 | 398 | if self.__buffer is None: |
|
397 | 399 | self.__buffer = data |
@@ -422,6 +424,7 class CohInt(Operation): | |||
|
422 | 424 | """ |
|
423 | 425 | |
|
424 | 426 | if not self.__withOverlapping: |
|
427 | #print("ahora que fue") | |
|
425 | 428 | data = self.__buffer |
|
426 | 429 | n = self.__profIndex |
|
427 | 430 | |
@@ -430,6 +433,7 class CohInt(Operation): | |||
|
430 | 433 | |
|
431 | 434 | return data, n |
|
432 | 435 | |
|
436 | #print("cual funciona") | |
|
433 | 437 | #Integration with Overlapping |
|
434 | 438 | data = numpy.sum(self.__buffer, axis=0) |
|
435 | 439 | # print data |
@@ -445,6 +449,7 class CohInt(Operation): | |||
|
445 | 449 | # n = None |
|
446 | 450 | # print data |
|
447 | 451 | # raise |
|
452 | #print("beforeputdata") | |
|
448 | 453 | self.putData(data) |
|
449 | 454 | |
|
450 | 455 | if self.__profIndex == self.n: |
@@ -497,8 +502,8 class CohInt(Operation): | |||
|
497 | 502 | # print self.__bufferStride[self.__profIndexStride - 1] |
|
498 | 503 | # raise |
|
499 | 504 | return self.__bufferStride[self.__profIndexStride - 1] |
|
500 | ||
|
501 | ||
|
505 | ||
|
506 | ||
|
502 | 507 | return None, None |
|
503 | 508 | |
|
504 | 509 | def integrate(self, data, datatime=None): |
@@ -520,7 +525,7 class CohInt(Operation): | |||
|
520 | 525 | avgdatatime = self.__initime |
|
521 | 526 | |
|
522 | 527 | deltatime = datatime - self.__lastdatatime |
|
523 | ||
|
528 | ||
|
524 | 529 | if not self.__withOverlapping: |
|
525 | 530 | self.__initime = datatime |
|
526 | 531 | else: |
@@ -546,7 +551,7 class CohInt(Operation): | |||
|
546 | 551 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
547 | 552 | self.__dataReady = True |
|
548 | 553 | return avgdata, avgdatatime |
|
549 | ||
|
554 | ||
|
550 | 555 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): |
|
551 | 556 | |
|
552 | 557 | if not self.isConfig: |
@@ -560,12 +565,12 class CohInt(Operation): | |||
|
560 | 565 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
561 | 566 | dataOut.nProfiles /= self.n |
|
562 | 567 | else: |
|
563 |
if stride is None: |
|
|
568 | if stride is None: | |
|
564 | 569 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
565 | 570 | else: |
|
566 | 571 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) |
|
567 | 572 | |
|
568 | ||
|
573 | ||
|
569 | 574 | # dataOut.timeInterval *= n |
|
570 | 575 | dataOut.flagNoData = True |
|
571 | 576 | |
@@ -670,11 +675,11 class Decoder(Operation): | |||
|
670 | 675 | junk = junk.flatten() |
|
671 | 676 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
672 | 677 | profilesList = range(self.__nProfiles) |
|
673 | ||
|
674 |
for i in range(self.__nChannels): |
|
|
675 |
for j in profilesList: |
|
|
676 |
self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
|
677 |
return self.datadecTime |
|
|
678 | ||
|
679 | for i in range(self.__nChannels): | |
|
680 | for j in profilesList: | |
|
681 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] | |
|
682 | return self.datadecTime | |
|
678 | 683 | |
|
679 | 684 | def __convolutionByBlockInFreq(self, data): |
|
680 | 685 | |
@@ -691,7 +696,7 class Decoder(Operation): | |||
|
691 | 696 | |
|
692 | 697 | return data |
|
693 | 698 | |
|
694 | ||
|
699 | ||
|
695 | 700 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
696 | 701 | |
|
697 | 702 | if dataOut.flagDecodeData: |
@@ -722,7 +727,7 class Decoder(Operation): | |||
|
722 | 727 | |
|
723 | 728 | self.__nProfiles = dataOut.nProfiles |
|
724 | 729 | datadec = None |
|
725 | ||
|
730 | ||
|
726 | 731 | if mode == 3: |
|
727 | 732 | mode = 0 |
|
728 | 733 | |
@@ -1105,9 +1110,9 class SplitProfiles(Operation): | |||
|
1105 | 1110 | |
|
1106 | 1111 | if shape[2] % n != 0: |
|
1107 | 1112 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) |
|
1108 | ||
|
1113 | ||
|
1109 | 1114 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) |
|
1110 | ||
|
1115 | ||
|
1111 | 1116 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1112 | 1117 | dataOut.flagNoData = False |
|
1113 | 1118 | |
@@ -1191,6 +1196,296 class CombineProfiles(Operation): | |||
|
1191 | 1196 | dataOut.ippSeconds *= n |
|
1192 | 1197 | |
|
1193 | 1198 | return dataOut |
|
1199 | ||
|
1200 | ||
|
1201 | ||
|
1202 | class CreateBlockVoltage(Operation): | |
|
1203 | ||
|
1204 | isConfig = False | |
|
1205 | __Index = 0 | |
|
1206 | bufferShape = None | |
|
1207 | buffer = None | |
|
1208 | firstdatatime = None | |
|
1209 | ||
|
1210 | def __init__(self,**kwargs): | |
|
1211 | Operation.__init__(self,**kwargs) | |
|
1212 | self.isConfig = False | |
|
1213 | self.__Index = 0 | |
|
1214 | self.firstdatatime = None | |
|
1215 | ||
|
1216 | def setup(self,dataOut, m = None ): | |
|
1217 | ''' | |
|
1218 | m= Numero perfiles | |
|
1219 | ''' | |
|
1220 | #print("CONFIGURANDO CBV") | |
|
1221 | self.__nChannels = dataOut.nChannels | |
|
1222 | self.__nHeis = dataOut.nHeights | |
|
1223 | shape = dataOut.data.shape #nchannels, nprofiles, nsamples | |
|
1224 | #print("input nChannels",self.__nChannels) | |
|
1225 | #print("input nHeis",self.__nHeis) | |
|
1226 | #print("SETUP CREATE BLOCK VOLTAGE") | |
|
1227 | #print("input Shape",shape) | |
|
1228 | #print("dataOut.nProfiles",dataOut.nProfiles) | |
|
1229 | numberSamples = self.__nHeis | |
|
1230 | numberProfile = int(m) | |
|
1231 | dataOut.nProfiles = numberProfile | |
|
1232 | #print("new numberProfile",numberProfile) | |
|
1233 | #print("new numberSamples",numberSamples) | |
|
1234 | ||
|
1235 | self.bufferShape = shape[0], numberProfile, numberSamples # nchannels,nprofiles,nsamples | |
|
1236 | self.buffer = numpy.zeros((self.bufferShape)) | |
|
1237 | self.bufferVel = numpy.zeros((self.bufferShape)) | |
|
1238 | ||
|
1239 | def run(self, dataOut, m=None): | |
|
1240 | #print("RUN") | |
|
1241 | dataOut.flagNoData = True | |
|
1242 | dataOut.flagDataAsBlock = False | |
|
1243 | #print("BLOCK INDEX ",self.__Index) | |
|
1244 | ||
|
1245 | if not self.isConfig: | |
|
1246 | self.setup(dataOut, m= m) | |
|
1247 | self.isConfig = True | |
|
1248 | if self.__Index < m: | |
|
1249 | #print("PROFINDEX BLOCK CBV",self.__Index) | |
|
1250 | self.buffer[:,self.__Index,:] = dataOut.data | |
|
1251 | self.bufferVel[:,self.__Index,:] = dataOut.data_velocity | |
|
1252 | self.__Index += 1 | |
|
1253 | dataOut.flagNoData = True | |
|
1254 | ||
|
1255 | if self.firstdatatime == None: | |
|
1256 | self.firstdatatime = dataOut.utctime | |
|
1257 | ||
|
1258 | if self.__Index == m: | |
|
1259 | #print("**********************************************") | |
|
1260 | #print("self.buffer.shape ",self.buffer.shape) | |
|
1261 | #print("##############",self.firstdatatime) | |
|
1262 | ##print("*********************************************") | |
|
1263 | ##print("*********************************************") | |
|
1264 | ##print("******* nProfiles *******", dataOut.nProfiles) | |
|
1265 | ##print("*********************************************") | |
|
1266 | ##print("*********************************************") | |
|
1267 | dataOut.data = self.buffer | |
|
1268 | dataOut.data_velocity = self.bufferVel | |
|
1269 | dataOut.utctime = self.firstdatatime | |
|
1270 | dataOut.nProfiles = m | |
|
1271 | self.firstdatatime = None | |
|
1272 | dataOut.flagNoData = False | |
|
1273 | dataOut.flagDataAsBlock = True | |
|
1274 | self.__Index = 0 | |
|
1275 | dataOut.identifierWR = True | |
|
1276 | return dataOut | |
|
1277 | ||
|
1278 | class PulsePairVoltage(Operation): | |
|
1279 | ''' | |
|
1280 | Function PulsePair(Signal Power, Velocity) | |
|
1281 | The real component of Lag[0] provides Intensity Information | |
|
1282 | The imag component of Lag[1] Phase provides Velocity Information | |
|
1283 | ||
|
1284 | Configuration Parameters: | |
|
1285 | nPRF = Number of Several PRF | |
|
1286 | theta = Degree Azimuth angel Boundaries | |
|
1287 | ||
|
1288 | Input: | |
|
1289 | self.dataOut | |
|
1290 | lag[N] | |
|
1291 | Affected: | |
|
1292 | self.dataOut.spc | |
|
1293 | ''' | |
|
1294 | isConfig = False | |
|
1295 | __profIndex = 0 | |
|
1296 | __initime = None | |
|
1297 | __lastdatatime = None | |
|
1298 | __buffer = None | |
|
1299 | __buffer2 = [] | |
|
1300 | __buffer3 = None | |
|
1301 | __dataReady = False | |
|
1302 | n = None | |
|
1303 | __nch = 0 | |
|
1304 | __nHeis = 0 | |
|
1305 | ||
|
1306 | def __init__(self,**kwargs): | |
|
1307 | Operation.__init__(self,**kwargs) | |
|
1308 | ||
|
1309 | def setup(self, dataOut, n = None ): | |
|
1310 | ''' | |
|
1311 | n= Numero de PRF's de entrada | |
|
1312 | ''' | |
|
1313 | self.__initime = None | |
|
1314 | self.__lastdatatime = 0 | |
|
1315 | self.__dataReady = False | |
|
1316 | self.__buffer = 0 | |
|
1317 | self.__buffer2 = [] | |
|
1318 | self.__buffer3 = 0 | |
|
1319 | self.__profIndex = 0 | |
|
1320 | ||
|
1321 | self.__nch = dataOut.nChannels | |
|
1322 | self.__nHeis = dataOut.nHeights | |
|
1323 | ||
|
1324 | print("ELVALOR DE n es:", n) | |
|
1325 | if n == None: | |
|
1326 | raise ValueError("n should be specified.") | |
|
1327 | ||
|
1328 | if n != None: | |
|
1329 | if n<2: | |
|
1330 | raise ValueError("n should be greater than 2") | |
|
1331 | ||
|
1332 | self.n = n | |
|
1333 | self.__nProf = n | |
|
1334 | ''' | |
|
1335 | if overlapping: | |
|
1336 | self.__withOverlapping = True | |
|
1337 | self.__buffer = None | |
|
1338 | ||
|
1339 | else: | |
|
1340 | #print ("estoy sin __withO") | |
|
1341 | self.__withOverlapping = False | |
|
1342 | self.__buffer = 0 | |
|
1343 | self.__buffer2 = [] | |
|
1344 | self.__buffer3 = 0 | |
|
1345 | ''' | |
|
1346 | ||
|
1347 | def putData(self,data): | |
|
1348 | ''' | |
|
1349 | Add a profile to he __buffer and increase in one the __profiel Index | |
|
1350 | ''' | |
|
1351 | #print("self.__profIndex :",self.__profIndex) | |
|
1352 | self.__buffer += data*numpy.conjugate(data) | |
|
1353 | self.__buffer2.append(numpy.conjugate(data)) | |
|
1354 | if self.__profIndex > 0: | |
|
1355 | self.__buffer3 += self.__buffer2[self.__profIndex-1]*data | |
|
1356 | self.__profIndex += 1 | |
|
1357 | return | |
|
1358 | ''' | |
|
1359 | if not self.__withOverlapping: | |
|
1360 | #print("Putdata inside over") | |
|
1361 | self.__buffer += data* numpy.conjugate(data) | |
|
1362 | self.__buffer2.append(numpy.conjugate(data)) | |
|
1363 | ||
|
1364 | if self.__profIndex >0: | |
|
1365 | self.__buffer3 += self.__buffer2[self.__profIndex-1]*data | |
|
1366 | self.__profIndex += 1 | |
|
1367 | return | |
|
1368 | ||
|
1369 | if self.__buffer is None: | |
|
1370 | #print("aqui bro") | |
|
1371 | self.__buffer = data* numpy.conjugate(data) | |
|
1372 | self.__buffer2.append(numpy.conjugate(data)) | |
|
1373 | self.__profIndex += 1 | |
|
1374 | ||
|
1375 | return | |
|
1376 | ||
|
1377 | if self.__profIndex < self.n: | |
|
1378 | self.__buffer = numpy.vstack(self.__buffer,data* numpy.conjugate(data)) | |
|
1379 | self.__buffer2.append(numpy.conjugate(data)) | |
|
1380 | ||
|
1381 | if self.__profIndex == 1: | |
|
1382 | self.__buffer3 = self.__buffer2[self.__profIndex -1] * data | |
|
1383 | else: | |
|
1384 | self.__buffer3 = numpy.vstack(self.__buffer3, self.__buffer2[self.profIndex-1]*data) | |
|
1385 | ||
|
1386 | self.__profIndex += 1 | |
|
1387 | return | |
|
1388 | ''' | |
|
1389 | ||
|
1390 | def pushData(self): | |
|
1391 | ''' | |
|
1392 | Return the PULSEPAIR and the profiles used in the operation | |
|
1393 | Affected : self.__profileIndex | |
|
1394 | ''' | |
|
1395 | #print("************************************************") | |
|
1396 | #print("push data int vel n") | |
|
1397 | data_intensity = self.__buffer/self.n | |
|
1398 | data_velocity = self.__buffer3/(self.n-1) | |
|
1399 | n = self.__profIndex | |
|
1400 | ||
|
1401 | self.__buffer = 0 | |
|
1402 | self.__buffer2 = [] | |
|
1403 | self.__buffer3 = 0 | |
|
1404 | self.__profIndex = 0 | |
|
1405 | ||
|
1406 | return data_intensity, data_velocity,n | |
|
1407 | ''' | |
|
1408 | if not self.__withOverlapping: | |
|
1409 | #print("ahora que fue") | |
|
1410 | data_intensity = self.__buffer/self.n | |
|
1411 | data_velocity = self.__buffer3/(self.n-1) | |
|
1412 | n = self.__profIndex | |
|
1413 | ||
|
1414 | self.__buffer = 0 | |
|
1415 | self.__buffer2 = [] | |
|
1416 | self.__buffer3 = 0 | |
|
1417 | self.__profIndex = 0 | |
|
1418 | return data_intensity, data_velocity,n | |
|
1419 | ||
|
1420 | data_intensity = numpy.sum(self.__buffer,axis = 0) | |
|
1421 | data_velocity = numpy.sum(self.__buffer3,axis = 0) | |
|
1422 | n = self.__profIndex | |
|
1423 | #self.__buffer = 0 | |
|
1424 | #self.__buffer2 = [] | |
|
1425 | #self.__buffer3 = 0 | |
|
1426 | #self.__profIndex = 0 | |
|
1427 | return data_intensity, data_velocity,n | |
|
1428 | ''' | |
|
1429 | ||
|
1430 | def pulsePairbyProfiles(self,data): | |
|
1431 | ||
|
1432 | self.__dataReady = False | |
|
1433 | data_intensity = None | |
|
1434 | data_velocity = None | |
|
1435 | #print("beforeputada") | |
|
1436 | self.putData(data) | |
|
1437 | #print("ProfileIndex:",self.__profIndex) | |
|
1438 | if self.__profIndex == self.n: | |
|
1439 | data_intensity, data_velocity, n = self.pushData() | |
|
1440 | self.__dataReady = True | |
|
1441 | #print("-----------------------------------------------") | |
|
1442 | #print("data_intensity",data_intensity.shape,"data_velocity",data_velocity.shape) | |
|
1443 | return data_intensity, data_velocity | |
|
1444 | ||
|
1445 | def pulsePairOp(self, data, datatime= None): | |
|
1446 | ||
|
1447 | if self.__initime == None: | |
|
1448 | self.__initime = datatime | |
|
1449 | ||
|
1450 | data_intensity, data_velocity = self.pulsePairbyProfiles(data) | |
|
1451 | self.__lastdatatime = datatime | |
|
1452 | ||
|
1453 | if data_intensity is None: | |
|
1454 | return None, None, None | |
|
1455 | ||
|
1456 | avgdatatime = self.__initime | |
|
1457 | deltatime = datatime - self.__lastdatatime | |
|
1458 | self.__initime = datatime | |
|
1459 | ''' | |
|
1460 | if not self.__withOverlapping: | |
|
1461 | self.__initime = datatime | |
|
1462 | else: | |
|
1463 | self.__initime += deltatime | |
|
1464 | ''' | |
|
1465 | return data_intensity, data_velocity, avgdatatime | |
|
1466 | ||
|
1467 | def run(self, dataOut,n = None, overlapping= False,**kwargs): | |
|
1468 | ||
|
1469 | if not self.isConfig: | |
|
1470 | self.setup(dataOut = dataOut, n = n , **kwargs) | |
|
1471 | self.isConfig = True | |
|
1472 | #print("*******************") | |
|
1473 | #print("print Shape input data:",dataOut.data.shape) | |
|
1474 | data_intensity, data_velocity, avgdatatime = self.pulsePairOp(dataOut.data, dataOut.utctime) | |
|
1475 | dataOut.flagNoData = True | |
|
1476 | ||
|
1477 | if self.__dataReady: | |
|
1478 | #print("#------------------------------------------------------") | |
|
1479 | #print("data_ready",data_intensity.shape) | |
|
1480 | dataOut.data = data_intensity #valor para plotear RTI | |
|
1481 | dataOut.nCohInt *= self.n | |
|
1482 | dataOut.data_intensity = data_intensity #valor para intensidad | |
|
1483 | dataOut.data_velocity = data_velocity #valor para velocidad | |
|
1484 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. | |
|
1485 | dataOut.utctime = avgdatatime | |
|
1486 | dataOut.flagNoData = False | |
|
1487 | return dataOut | |
|
1488 | ||
|
1194 | 1489 | # import collections |
|
1195 | 1490 | # from scipy.stats import mode |
|
1196 | 1491 | # |
@@ -25,9 +25,10 controllerObj.setup(id = '191', name='Test_USRP', description=desc) | |||
|
25 | 25 | #path = '/media/data/data/vientos/57.2063km/echoes/NCO_Woodman' |
|
26 | 26 | |
|
27 | 27 | |
|
28 | path = '/home/soporte/data_hdf5' #### with clock 35.16 db noise | |
|
29 | ||
|
30 | figpath = '/home/soporte/data_hdf5_imag' | |
|
28 | #path = '/home/soporte/data_hdf5' #### with clock 35.16 db noise | |
|
29 | path = '/home/alex/WEATHER_DATA/DATA' | |
|
30 | figpath = '/home/alex/WEATHER_DATA/DATA/pic' | |
|
31 | #figpath = '/home/soporte/data_hdf5_imag' | |
|
31 | 32 | #remotefolder = "/home/wmaster/graficos" |
|
32 | 33 | ####################################################################### |
|
33 | 34 | ################# RANGO DE PLOTEO###################################### |
@@ -95,14 +96,33 procUnitConfObjA = controllerObj.addProcUnit(datatype='VoltageProc', inputId=rea | |||
|
95 | 96 | #opObj11.addParameter(name='nBaud', value='28', format='int') |
|
96 | 97 | |
|
97 | 98 | #opObj11 = procUnitConfObjA.addOperation(name='CohInt', optype='other') |
|
98 |
#opObj11.addParameter(name='n', value='10 |
|
|
99 | #opObj11.addParameter(name='n', value='10', format='int') | |
|
100 | ||
|
101 | ||
|
102 | opObj11 = procUnitConfObjA.addOperation(name='PulsePair', optype='other') | |
|
103 | opObj11.addParameter(name='n', value='10', format='int') | |
|
104 | ||
|
105 | opObj11 = procUnitConfObjA.addOperation(name='CreateBlockVoltage', optype='other') | |
|
106 | opObj11.addParameter(name='m', value='16', format='int') | |
|
107 | ||
|
108 | procUnitConfObj2 = controllerObj.addProcUnit(datatype='ParametersProc', inputId=procUnitConfObjA.getId()) | |
|
99 | 109 | |
|
110 | #Not used because the RGB data is obtained directly from the HF Reader. | |
|
111 | #opObj21 = procUnitConfObj2.addOperation(name='GetRGBData') | |
|
112 | ||
|
113 | opObj21 = procUnitConfObj2.addOperation(name='ParamWriter', optype='external') | |
|
114 | opObj21.addParameter(name='path', value=figpath+'/NEWData') | |
|
115 | opObj21.addParameter(name='blocksPerFile', value='1', format='int') | |
|
116 | opObj21.addParameter(name='metadataList',value='heightList',format='list') | |
|
117 | opObj21.addParameter(name='dataList',value='data_intensity',format='list') | |
|
118 | ||
|
119 | ''' | |
|
100 | 120 |
|
|
101 | 121 |
|
|
102 | 122 |
|
|
103 | 123 | procUnitConfObjSousySpectra = controllerObj.addProcUnit(datatype='SpectraProc', inputId=procUnitConfObjA.getId()) |
|
104 |
procUnitConfObjSousySpectra.addParameter(name='nFFTPoints', value='1 |
|
|
105 |
procUnitConfObjSousySpectra.addParameter(name='nProfiles', value='1 |
|
|
124 | procUnitConfObjSousySpectra.addParameter(name='nFFTPoints', value='16', format='int') | |
|
125 | procUnitConfObjSousySpectra.addParameter(name='nProfiles', value='16', format='int') | |
|
106 | 126 |
|
|
107 | 127 |
|
|
108 | 128 |
|
@@ -174,10 +194,10 opObj11.addParameter(name='save_period', value=10, format='int') | |||
|
174 | 194 |
|
|
175 | 195 |
|
|
176 | 196 |
|
|
197 | ''' | |
|
177 | 198 | print ("Escribiendo el archivo XML") |
|
178 | 199 | print ("Leyendo el archivo XML") |
|
179 | 200 | |
|
180 | 201 | |
|
181 | 202 | |
|
182 | 203 | controllerObj.start() |
|
183 |
General Comments 0
You need to be logged in to leave comments.
Login now