@@ -1,1169 +1,1170 | |||
|
1 | 1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
2 | 2 | # All rights reserved. |
|
3 | 3 | # |
|
4 | 4 | # Distributed under the terms of the BSD 3-clause license. |
|
5 | 5 | """Definition of diferent Data objects for different types of data |
|
6 | 6 | |
|
7 | 7 | Here you will find the diferent data objects for the different types |
|
8 | 8 | of data, this data objects must be used as dataIn or dataOut objects in |
|
9 | 9 | processing units and operations. Currently the supported data objects are: |
|
10 | 10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters |
|
11 | 11 | """ |
|
12 | 12 | |
|
13 | 13 | import copy |
|
14 | 14 | import numpy |
|
15 | 15 | import datetime |
|
16 | 16 | import json |
|
17 | 17 | |
|
18 | 18 | import schainpy.admin |
|
19 | 19 | from schainpy.utils import log |
|
20 | 20 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
21 | 21 | from schainpy.model.data import _noise |
|
22 | 22 | |
|
23 | 23 | |
|
24 | 24 | def getNumpyDtype(dataTypeCode): |
|
25 | 25 | |
|
26 | 26 | if dataTypeCode == 0: |
|
27 | 27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
28 | 28 | elif dataTypeCode == 1: |
|
29 | 29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
30 | 30 | elif dataTypeCode == 2: |
|
31 | 31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
32 | 32 | elif dataTypeCode == 3: |
|
33 | 33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
34 | 34 | elif dataTypeCode == 4: |
|
35 | 35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
36 | 36 | elif dataTypeCode == 5: |
|
37 | 37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
38 | 38 | else: |
|
39 | 39 | raise ValueError('dataTypeCode was not defined') |
|
40 | 40 | |
|
41 | 41 | return numpyDtype |
|
42 | 42 | |
|
43 | 43 | |
|
44 | 44 | def getDataTypeCode(numpyDtype): |
|
45 | 45 | |
|
46 | 46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
47 | 47 | datatype = 0 |
|
48 | 48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
49 | 49 | datatype = 1 |
|
50 | 50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
51 | 51 | datatype = 2 |
|
52 | 52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
53 | 53 | datatype = 3 |
|
54 | 54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
55 | 55 | datatype = 4 |
|
56 | 56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
57 | 57 | datatype = 5 |
|
58 | 58 | else: |
|
59 | 59 | datatype = None |
|
60 | 60 | |
|
61 | 61 | return datatype |
|
62 | 62 | |
|
63 | 63 | |
|
64 | 64 | def hildebrand_sekhon(data, navg): |
|
65 | 65 | """ |
|
66 | 66 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
67 | 67 | implementation technique is based on the fact that the standard deviation of the spectral |
|
68 | 68 | densities is equal to the mean spectral density for white Gaussian noise |
|
69 | 69 | |
|
70 | 70 | Inputs: |
|
71 | 71 | Data : heights |
|
72 | 72 | navg : numbers of averages |
|
73 | 73 | |
|
74 | 74 | Return: |
|
75 | 75 | mean : noise's level |
|
76 | 76 | """ |
|
77 | 77 | |
|
78 | 78 | sortdata = numpy.sort(data, axis=None) |
|
79 | 79 | #print(numpy.shape(data)) |
|
80 | 80 | #exit() |
|
81 | 81 | ''' |
|
82 | 82 | lenOfData = len(sortdata) |
|
83 | 83 | nums_min = lenOfData*0.2 |
|
84 | 84 | |
|
85 | 85 | if nums_min <= 5: |
|
86 | 86 | |
|
87 | 87 | nums_min = 5 |
|
88 | 88 | |
|
89 | 89 | sump = 0. |
|
90 | 90 | sumq = 0. |
|
91 | 91 | |
|
92 | 92 | j = 0 |
|
93 | 93 | cont = 1 |
|
94 | 94 | |
|
95 | 95 | while((cont == 1)and(j < lenOfData)): |
|
96 | 96 | |
|
97 | 97 | sump += sortdata[j] |
|
98 | 98 | sumq += sortdata[j]**2 |
|
99 | 99 | |
|
100 | 100 | if j > nums_min: |
|
101 | 101 | rtest = float(j)/(j-1) + 1.0/navg |
|
102 | 102 | if ((sumq*j) > (rtest*sump**2)): |
|
103 | 103 | j = j - 1 |
|
104 | 104 | sump = sump - sortdata[j] |
|
105 | 105 | sumq = sumq - sortdata[j]**2 |
|
106 | 106 | cont = 0 |
|
107 | 107 | |
|
108 | 108 | j += 1 |
|
109 | 109 | |
|
110 | 110 | lnoise = sump / j |
|
111 | 111 | ''' |
|
112 | 112 | return _noise.hildebrand_sekhon(sortdata, navg) |
|
113 | 113 | |
|
114 | 114 | |
|
115 | 115 | class Beam: |
|
116 | 116 | |
|
117 | 117 | def __init__(self): |
|
118 | 118 | self.codeList = [] |
|
119 | 119 | self.azimuthList = [] |
|
120 | 120 | self.zenithList = [] |
|
121 | 121 | |
|
122 | 122 | |
|
123 | 123 | class GenericData(object): |
|
124 | 124 | |
|
125 | 125 | flagNoData = True |
|
126 | 126 | |
|
127 | 127 | def copy(self, inputObj=None): |
|
128 | 128 | |
|
129 | 129 | if inputObj == None: |
|
130 | 130 | return copy.deepcopy(self) |
|
131 | 131 | |
|
132 | 132 | for key in list(inputObj.__dict__.keys()): |
|
133 | 133 | |
|
134 | 134 | attribute = inputObj.__dict__[key] |
|
135 | 135 | |
|
136 | 136 | # If this attribute is a tuple or list |
|
137 | 137 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
138 | 138 | self.__dict__[key] = attribute[:] |
|
139 | 139 | continue |
|
140 | 140 | |
|
141 | 141 | # If this attribute is another object or instance |
|
142 | 142 | if hasattr(attribute, '__dict__'): |
|
143 | 143 | self.__dict__[key] = attribute.copy() |
|
144 | 144 | continue |
|
145 | 145 | |
|
146 | 146 | self.__dict__[key] = inputObj.__dict__[key] |
|
147 | 147 | |
|
148 | 148 | def deepcopy(self): |
|
149 | 149 | |
|
150 | 150 | return copy.deepcopy(self) |
|
151 | 151 | |
|
152 | 152 | def isEmpty(self): |
|
153 | 153 | |
|
154 | 154 | return self.flagNoData |
|
155 | 155 | |
|
156 | 156 | def isReady(self): |
|
157 | 157 | |
|
158 | 158 | return not self.flagNoData |
|
159 | 159 | |
|
160 | 160 | |
|
161 | 161 | class JROData(GenericData): |
|
162 | 162 | |
|
163 | 163 | systemHeaderObj = SystemHeader() |
|
164 | 164 | radarControllerHeaderObj = RadarControllerHeader() |
|
165 | 165 | type = None |
|
166 | 166 | datatype = None # dtype but in string |
|
167 | 167 | nProfiles = None |
|
168 | 168 | heightList = None |
|
169 | 169 | channelList = None |
|
170 | 170 | flagDiscontinuousBlock = False |
|
171 | 171 | useLocalTime = False |
|
172 | 172 | utctime = None |
|
173 | 173 | timeZone = None |
|
174 | 174 | dstFlag = None |
|
175 | 175 | errorCount = None |
|
176 | 176 | blocksize = None |
|
177 | 177 | flagDecodeData = False # asumo q la data no esta decodificada |
|
178 | 178 | flagDeflipData = False # asumo q la data no esta sin flip |
|
179 | 179 | flagShiftFFT = False |
|
180 | 180 | nCohInt = None |
|
181 | 181 | windowOfFilter = 1 |
|
182 | 182 | C = 3e8 |
|
183 | 183 | frequency = 49.92e6 |
|
184 | 184 | realtime = False |
|
185 | 185 | beacon_heiIndexList = None |
|
186 | 186 | last_block = None |
|
187 | 187 | blocknow = None |
|
188 | 188 | azimuth = None |
|
189 | 189 | zenith = None |
|
190 | 190 | beam = Beam() |
|
191 | 191 | profileIndex = None |
|
192 | 192 | error = None |
|
193 | 193 | data = None |
|
194 | 194 | nmodes = None |
|
195 | 195 | metadata_list = ['heightList', 'timeZone', 'type'] |
|
196 | 196 | |
|
197 | 197 | def __str__(self): |
|
198 | 198 | |
|
199 | 199 | return '{} - {}'.format(self.type, self.datatime()) |
|
200 | 200 | |
|
201 | 201 | def getNoise(self): |
|
202 | 202 | |
|
203 | 203 | raise NotImplementedError |
|
204 | 204 | |
|
205 | 205 | @property |
|
206 | 206 | def nChannels(self): |
|
207 | 207 | |
|
208 | 208 | return len(self.channelList) |
|
209 | 209 | |
|
210 | 210 | @property |
|
211 | 211 | def channelIndexList(self): |
|
212 | 212 | |
|
213 | 213 | return list(range(self.nChannels)) |
|
214 | 214 | |
|
215 | 215 | @property |
|
216 | 216 | def nHeights(self): |
|
217 | 217 | |
|
218 | 218 | return len(self.heightList) |
|
219 | 219 | |
|
220 | 220 | def getDeltaH(self): |
|
221 | 221 | |
|
222 | 222 | return self.heightList[1] - self.heightList[0] |
|
223 | 223 | |
|
224 | 224 | @property |
|
225 | 225 | def ltctime(self): |
|
226 | 226 | |
|
227 | 227 | if self.useLocalTime: |
|
228 | 228 | return self.utctime - self.timeZone * 60 |
|
229 | 229 | |
|
230 | 230 | return self.utctime |
|
231 | 231 | |
|
232 | 232 | @property |
|
233 | 233 | def datatime(self): |
|
234 | 234 | |
|
235 | 235 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
236 | 236 | return datatimeValue |
|
237 | 237 | |
|
238 | 238 | def getTimeRange(self): |
|
239 | 239 | |
|
240 | 240 | datatime = [] |
|
241 | 241 | |
|
242 | 242 | datatime.append(self.ltctime) |
|
243 | 243 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
244 | 244 | |
|
245 | 245 | datatime = numpy.array(datatime) |
|
246 | 246 | |
|
247 | 247 | return datatime |
|
248 | 248 | |
|
249 | 249 | def getFmaxTimeResponse(self): |
|
250 | 250 | |
|
251 | 251 | period = (10 ** -6) * self.getDeltaH() / (0.15) |
|
252 | 252 | |
|
253 | 253 | PRF = 1. / (period * self.nCohInt) |
|
254 | 254 | |
|
255 | 255 | fmax = PRF |
|
256 | 256 | |
|
257 | 257 | return fmax |
|
258 | 258 | |
|
259 | 259 | def getFmax(self): |
|
260 | 260 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
261 | 261 | |
|
262 | 262 | fmax = PRF |
|
263 | 263 | return fmax |
|
264 | 264 | |
|
265 | 265 | def getVmax(self): |
|
266 | 266 | |
|
267 | 267 | _lambda = self.C / self.frequency |
|
268 | 268 | |
|
269 | 269 | vmax = self.getFmax() * _lambda / 2 |
|
270 | 270 | |
|
271 | 271 | return vmax |
|
272 | 272 | |
|
273 | 273 | @property |
|
274 | 274 | def ippSeconds(self): |
|
275 | 275 | ''' |
|
276 | 276 | ''' |
|
277 | 277 | return self.radarControllerHeaderObj.ippSeconds |
|
278 | 278 | |
|
279 | 279 | @ippSeconds.setter |
|
280 | 280 | def ippSeconds(self, ippSeconds): |
|
281 | 281 | ''' |
|
282 | 282 | ''' |
|
283 | 283 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
284 | 284 | |
|
285 | 285 | @property |
|
286 | 286 | def code(self): |
|
287 | 287 | ''' |
|
288 | 288 | ''' |
|
289 | 289 | return self.radarControllerHeaderObj.code |
|
290 | 290 | |
|
291 | 291 | @code.setter |
|
292 | 292 | def code(self, code): |
|
293 | 293 | ''' |
|
294 | 294 | ''' |
|
295 | 295 | self.radarControllerHeaderObj.code = code |
|
296 | 296 | |
|
297 | 297 | @property |
|
298 | 298 | def nCode(self): |
|
299 | 299 | ''' |
|
300 | 300 | ''' |
|
301 | 301 | return self.radarControllerHeaderObj.nCode |
|
302 | 302 | |
|
303 | 303 | @nCode.setter |
|
304 | 304 | def nCode(self, ncode): |
|
305 | 305 | ''' |
|
306 | 306 | ''' |
|
307 | 307 | self.radarControllerHeaderObj.nCode = ncode |
|
308 | 308 | |
|
309 | 309 | @property |
|
310 | 310 | def nBaud(self): |
|
311 | 311 | ''' |
|
312 | 312 | ''' |
|
313 | 313 | return self.radarControllerHeaderObj.nBaud |
|
314 | 314 | |
|
315 | 315 | @nBaud.setter |
|
316 | 316 | def nBaud(self, nbaud): |
|
317 | 317 | ''' |
|
318 | 318 | ''' |
|
319 | 319 | self.radarControllerHeaderObj.nBaud = nbaud |
|
320 | 320 | |
|
321 | 321 | @property |
|
322 | 322 | def ipp(self): |
|
323 | 323 | ''' |
|
324 | 324 | ''' |
|
325 | 325 | return self.radarControllerHeaderObj.ipp |
|
326 | 326 | |
|
327 | 327 | @ipp.setter |
|
328 | 328 | def ipp(self, ipp): |
|
329 | 329 | ''' |
|
330 | 330 | ''' |
|
331 | 331 | self.radarControllerHeaderObj.ipp = ipp |
|
332 | 332 | |
|
333 | 333 | @property |
|
334 | 334 | def metadata(self): |
|
335 | 335 | ''' |
|
336 | 336 | ''' |
|
337 | 337 | |
|
338 | 338 | return {attr: getattr(self, attr) for attr in self.metadata_list} |
|
339 | 339 | |
|
340 | 340 | |
|
341 | 341 | class Voltage(JROData): |
|
342 | 342 | |
|
343 | 343 | dataPP_POW = None |
|
344 | 344 | dataPP_DOP = None |
|
345 | 345 | dataPP_WIDTH = None |
|
346 | 346 | dataPP_SNR = None |
|
347 | 347 | |
|
348 | 348 | def __init__(self): |
|
349 | 349 | ''' |
|
350 | 350 | Constructor |
|
351 | 351 | ''' |
|
352 | 352 | |
|
353 | 353 | self.useLocalTime = True |
|
354 | 354 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
355 | 355 | self.systemHeaderObj = SystemHeader() |
|
356 | 356 | self.type = "Voltage" |
|
357 | 357 | self.data = None |
|
358 | 358 | self.nProfiles = None |
|
359 | 359 | self.heightList = None |
|
360 | 360 | self.channelList = None |
|
361 | 361 | self.flagNoData = True |
|
362 | 362 | self.flagDiscontinuousBlock = False |
|
363 | 363 | self.utctime = None |
|
364 | 364 | self.timeZone = 0 |
|
365 | 365 | self.dstFlag = None |
|
366 | 366 | self.errorCount = None |
|
367 | 367 | self.nCohInt = None |
|
368 | 368 | self.blocksize = None |
|
369 | 369 | self.flagCohInt = False |
|
370 | 370 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
371 | 371 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
372 | 372 | self.flagShiftFFT = False |
|
373 | 373 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
374 | 374 | self.profileIndex = 0 |
|
375 | 375 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', |
|
376 | 376 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] |
|
377 | 377 | |
|
378 | 378 | def getNoisebyHildebrand(self, channel=None): |
|
379 | 379 | """ |
|
380 | 380 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
381 | 381 | |
|
382 | 382 | Return: |
|
383 | 383 | noiselevel |
|
384 | 384 | """ |
|
385 | 385 | |
|
386 | 386 | if channel != None: |
|
387 | 387 | data = self.data[channel] |
|
388 | 388 | nChannels = 1 |
|
389 | 389 | else: |
|
390 | 390 | data = self.data |
|
391 | 391 | nChannels = self.nChannels |
|
392 | 392 | |
|
393 | 393 | noise = numpy.zeros(nChannels) |
|
394 | 394 | power = data * numpy.conjugate(data) |
|
395 | 395 | |
|
396 | 396 | for thisChannel in range(nChannels): |
|
397 | 397 | if nChannels == 1: |
|
398 | 398 | daux = power[:].real |
|
399 | 399 | else: |
|
400 | 400 | daux = power[thisChannel, :].real |
|
401 | 401 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
402 | 402 | |
|
403 | 403 | return noise |
|
404 | 404 | |
|
405 | 405 | def getNoise(self, type=1, channel=None): |
|
406 | 406 | |
|
407 | 407 | if type == 1: |
|
408 | 408 | noise = self.getNoisebyHildebrand(channel) |
|
409 | 409 | |
|
410 | 410 | return noise |
|
411 | 411 | |
|
412 | 412 | def getPower(self, channel=None): |
|
413 | 413 | |
|
414 | 414 | if channel != None: |
|
415 | 415 | data = self.data[channel] |
|
416 | 416 | else: |
|
417 | 417 | data = self.data |
|
418 | 418 | |
|
419 | 419 | power = data * numpy.conjugate(data) |
|
420 | 420 | powerdB = 10 * numpy.log10(power.real) |
|
421 | 421 | powerdB = numpy.squeeze(powerdB) |
|
422 | 422 | |
|
423 | 423 | return powerdB |
|
424 | 424 | |
|
425 | 425 | @property |
|
426 | 426 | def timeInterval(self): |
|
427 | 427 | |
|
428 | 428 | return self.ippSeconds * self.nCohInt |
|
429 | 429 | |
|
430 | 430 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
431 | 431 | |
|
432 | 432 | |
|
433 | 433 | class CrossProds(JROData): |
|
434 | 434 | |
|
435 | 435 | # data es un numpy array de 2 dmensiones (canales, alturas) |
|
436 | 436 | data = None |
|
437 | 437 | |
|
438 | 438 | def __init__(self): |
|
439 | 439 | ''' |
|
440 | 440 | Constructor |
|
441 | 441 | ''' |
|
442 | 442 | |
|
443 | 443 | self.useLocalTime = True |
|
444 | 444 | ''' |
|
445 | 445 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
446 | 446 | self.systemHeaderObj = SystemHeader() |
|
447 | 447 | self.type = "Voltage" |
|
448 | 448 | self.data = None |
|
449 | 449 | # self.dtype = None |
|
450 | 450 | # self.nChannels = 0 |
|
451 | 451 | # self.nHeights = 0 |
|
452 | 452 | self.nProfiles = None |
|
453 | 453 | self.heightList = None |
|
454 | 454 | self.channelList = None |
|
455 | 455 | # self.channelIndexList = None |
|
456 | 456 | self.flagNoData = True |
|
457 | 457 | self.flagDiscontinuousBlock = False |
|
458 | 458 | self.utctime = None |
|
459 | 459 | self.timeZone = None |
|
460 | 460 | self.dstFlag = None |
|
461 | 461 | self.errorCount = None |
|
462 | 462 | self.nCohInt = None |
|
463 | 463 | self.blocksize = None |
|
464 | 464 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
465 | 465 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
466 | 466 | self.flagShiftFFT = False |
|
467 | 467 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
468 | 468 | self.profileIndex = 0 |
|
469 | 469 | |
|
470 | 470 | |
|
471 | 471 | def getNoisebyHildebrand(self, channel=None): |
|
472 | 472 | |
|
473 | 473 | |
|
474 | 474 | if channel != None: |
|
475 | 475 | data = self.data[channel] |
|
476 | 476 | nChannels = 1 |
|
477 | 477 | else: |
|
478 | 478 | data = self.data |
|
479 | 479 | nChannels = self.nChannels |
|
480 | 480 | |
|
481 | 481 | noise = numpy.zeros(nChannels) |
|
482 | 482 | power = data * numpy.conjugate(data) |
|
483 | 483 | |
|
484 | 484 | for thisChannel in range(nChannels): |
|
485 | 485 | if nChannels == 1: |
|
486 | 486 | daux = power[:].real |
|
487 | 487 | else: |
|
488 | 488 | daux = power[thisChannel, :].real |
|
489 | 489 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
490 | 490 | |
|
491 | 491 | return noise |
|
492 | 492 | |
|
493 | 493 | def getNoise(self, type=1, channel=None): |
|
494 | 494 | |
|
495 | 495 | if type == 1: |
|
496 | 496 | noise = self.getNoisebyHildebrand(channel) |
|
497 | 497 | |
|
498 | 498 | return noise |
|
499 | 499 | |
|
500 | 500 | def getPower(self, channel=None): |
|
501 | 501 | |
|
502 | 502 | if channel != None: |
|
503 | 503 | data = self.data[channel] |
|
504 | 504 | else: |
|
505 | 505 | data = self.data |
|
506 | 506 | |
|
507 | 507 | power = data * numpy.conjugate(data) |
|
508 | 508 | powerdB = 10 * numpy.log10(power.real) |
|
509 | 509 | powerdB = numpy.squeeze(powerdB) |
|
510 | 510 | |
|
511 | 511 | return powerdB |
|
512 | 512 | |
|
513 | 513 | def getTimeInterval(self): |
|
514 | 514 | |
|
515 | 515 | timeInterval = self.ippSeconds * self.nCohInt |
|
516 | 516 | |
|
517 | 517 | return timeInterval |
|
518 | 518 | |
|
519 | 519 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
520 | 520 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
521 | 521 | ''' |
|
522 | 522 | def getTimeInterval(self): |
|
523 | 523 | |
|
524 | 524 | timeInterval = self.ippSeconds * self.nCohInt |
|
525 | 525 | |
|
526 | 526 | return timeInterval |
|
527 | 527 | |
|
528 | 528 | |
|
529 | 529 | |
|
530 | 530 | class Spectra(JROData): |
|
531 | 531 | |
|
532 | 532 | def __init__(self): |
|
533 | 533 | ''' |
|
534 | 534 | Constructor |
|
535 | 535 | ''' |
|
536 | 536 | |
|
537 | 537 | self.data_dc = None |
|
538 | 538 | self.data_spc = None |
|
539 | 539 | self.data_cspc = None |
|
540 | 540 | self.useLocalTime = True |
|
541 | 541 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
542 | 542 | self.systemHeaderObj = SystemHeader() |
|
543 | 543 | self.type = "Spectra" |
|
544 | 544 | self.timeZone = 0 |
|
545 | 545 | self.nProfiles = None |
|
546 | 546 | self.heightList = None |
|
547 | 547 | self.channelList = None |
|
548 | 548 | self.pairsList = None |
|
549 | 549 | self.flagNoData = True |
|
550 | 550 | self.flagDiscontinuousBlock = False |
|
551 | 551 | self.utctime = None |
|
552 | 552 | self.nCohInt = None |
|
553 | 553 | self.nIncohInt = None |
|
554 | 554 | self.blocksize = None |
|
555 | 555 | self.nFFTPoints = None |
|
556 | 556 | self.wavelength = None |
|
557 | 557 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
558 | 558 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
559 | 559 | self.flagShiftFFT = False |
|
560 | 560 | self.ippFactor = 1 |
|
561 | 561 | self.beacon_heiIndexList = [] |
|
562 | 562 | self.noise_estimation = None |
|
563 | 563 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', |
|
564 | 564 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp', 'nIncohInt', 'nFFTPoints', 'nProfiles'] |
|
565 | 565 | |
|
566 | 566 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
567 | 567 | """ |
|
568 | 568 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
569 | 569 | |
|
570 | 570 | Return: |
|
571 | 571 | noiselevel |
|
572 | 572 | """ |
|
573 | 573 | |
|
574 | 574 | noise = numpy.zeros(self.nChannels) |
|
575 | 575 | |
|
576 | 576 | for channel in range(self.nChannels): |
|
577 | 577 | daux = self.data_spc[channel, |
|
578 | 578 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
579 | 579 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
580 | 580 | |
|
581 | 581 | return noise |
|
582 | 582 | |
|
583 | 583 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
584 | 584 | |
|
585 | 585 | if self.noise_estimation is not None: |
|
586 | 586 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
587 | 587 | return self.noise_estimation |
|
588 | 588 | else: |
|
589 | 589 | noise = self.getNoisebyHildebrand( |
|
590 | 590 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
591 | 591 | return noise |
|
592 | 592 | |
|
593 | 593 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
594 | 594 | |
|
595 | 595 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
596 | 596 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
597 | 597 | |
|
598 | 598 | return freqrange |
|
599 | 599 | |
|
600 | 600 | def getAcfRange(self, extrapoints=0): |
|
601 | 601 | |
|
602 | 602 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
603 | 603 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
604 | 604 | |
|
605 | 605 | return freqrange |
|
606 | 606 | |
|
607 | 607 | def getFreqRange(self, extrapoints=0): |
|
608 | 608 | |
|
609 | 609 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
610 | 610 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
611 | 611 | |
|
612 | 612 | return freqrange |
|
613 | 613 | |
|
614 | 614 | def getVelRange(self, extrapoints=0): |
|
615 | 615 | |
|
616 | 616 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
617 | 617 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
618 | 618 | |
|
619 | 619 | if self.nmodes: |
|
620 | 620 | return velrange / self.nmodes |
|
621 | 621 | else: |
|
622 | 622 | return velrange |
|
623 | 623 | |
|
624 | 624 | @property |
|
625 | 625 | def nPairs(self): |
|
626 | 626 | |
|
627 | 627 | return len(self.pairsList) |
|
628 | 628 | |
|
629 | 629 | @property |
|
630 | 630 | def pairsIndexList(self): |
|
631 | 631 | |
|
632 | 632 | return list(range(self.nPairs)) |
|
633 | 633 | |
|
634 | 634 | @property |
|
635 | 635 | def normFactor(self): |
|
636 | 636 | |
|
637 | 637 | pwcode = 1 |
|
638 | 638 | |
|
639 | 639 | if self.flagDecodeData: |
|
640 | 640 | pwcode = numpy.sum(self.code[0] ** 2) |
|
641 | 641 | # normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
642 | 642 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
643 | 643 | |
|
644 | 644 | return normFactor |
|
645 | 645 | |
|
646 | 646 | @property |
|
647 | 647 | def flag_cspc(self): |
|
648 | 648 | |
|
649 | 649 | if self.data_cspc is None: |
|
650 | 650 | return True |
|
651 | 651 | |
|
652 | 652 | return False |
|
653 | 653 | |
|
654 | 654 | @property |
|
655 | 655 | def flag_dc(self): |
|
656 | 656 | |
|
657 | 657 | if self.data_dc is None: |
|
658 | 658 | return True |
|
659 | 659 | |
|
660 | 660 | return False |
|
661 | 661 | |
|
662 | 662 | @property |
|
663 | 663 | def timeInterval(self): |
|
664 | 664 | |
|
665 | 665 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
666 | 666 | if self.nmodes: |
|
667 | 667 | return self.nmodes * timeInterval |
|
668 | 668 | else: |
|
669 | 669 | return timeInterval |
|
670 | 670 | |
|
671 | 671 | def getPower(self): |
|
672 | 672 | |
|
673 | 673 | factor = self.normFactor |
|
674 | 674 | z = self.data_spc / factor |
|
675 | 675 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
676 | 676 | avg = numpy.average(z, axis=1) |
|
677 | 677 | |
|
678 | 678 | return 10 * numpy.log10(avg) |
|
679 | 679 | |
|
680 | 680 | def getCoherence(self, pairsList=None, phase=False): |
|
681 | 681 | |
|
682 | 682 | z = [] |
|
683 | 683 | if pairsList is None: |
|
684 | 684 | pairsIndexList = self.pairsIndexList |
|
685 | 685 | else: |
|
686 | 686 | pairsIndexList = [] |
|
687 | 687 | for pair in pairsList: |
|
688 | 688 | if pair not in self.pairsList: |
|
689 | 689 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
690 | 690 | pair)) |
|
691 | 691 | pairsIndexList.append(self.pairsList.index(pair)) |
|
692 | 692 | for i in range(len(pairsIndexList)): |
|
693 | 693 | pair = self.pairsList[pairsIndexList[i]] |
|
694 | 694 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
695 | 695 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
696 | 696 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
697 | 697 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
698 | 698 | if phase: |
|
699 | 699 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
700 | 700 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
701 | 701 | else: |
|
702 | 702 | data = numpy.abs(avgcoherenceComplex) |
|
703 | 703 | |
|
704 | 704 | z.append(data) |
|
705 | 705 | |
|
706 | 706 | return numpy.array(z) |
|
707 | 707 | |
|
708 | 708 | def setValue(self, value): |
|
709 | 709 | |
|
710 | 710 | print("This property should not be initialized") |
|
711 | 711 | |
|
712 | 712 | return |
|
713 | 713 | |
|
714 | 714 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
715 | 715 | |
|
716 | 716 | |
|
717 | 717 | class SpectraHeis(Spectra): |
|
718 | 718 | |
|
719 | 719 | def __init__(self): |
|
720 | 720 | |
|
721 | 721 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
722 | 722 | self.systemHeaderObj = SystemHeader() |
|
723 | 723 | self.type = "SpectraHeis" |
|
724 | 724 | self.nProfiles = None |
|
725 | 725 | self.heightList = None |
|
726 | 726 | self.channelList = None |
|
727 | 727 | self.flagNoData = True |
|
728 | 728 | self.flagDiscontinuousBlock = False |
|
729 | 729 | self.utctime = None |
|
730 | 730 | self.blocksize = None |
|
731 | 731 | self.profileIndex = 0 |
|
732 | 732 | self.nCohInt = 1 |
|
733 | 733 | self.nIncohInt = 1 |
|
734 | 734 | |
|
735 | 735 | @property |
|
736 | 736 | def normFactor(self): |
|
737 | 737 | pwcode = 1 |
|
738 | 738 | if self.flagDecodeData: |
|
739 | 739 | pwcode = numpy.sum(self.code[0] ** 2) |
|
740 | 740 | |
|
741 | 741 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
742 | 742 | |
|
743 | 743 | return normFactor |
|
744 | 744 | |
|
745 | 745 | @property |
|
746 | 746 | def timeInterval(self): |
|
747 | 747 | |
|
748 | 748 | return self.ippSeconds * self.nCohInt * self.nIncohInt |
|
749 | 749 | |
|
750 | 750 | |
|
751 | 751 | class Fits(JROData): |
|
752 | 752 | |
|
753 | 753 | def __init__(self): |
|
754 | 754 | |
|
755 | 755 | self.type = "Fits" |
|
756 | 756 | self.nProfiles = None |
|
757 | 757 | self.heightList = None |
|
758 | 758 | self.channelList = None |
|
759 | 759 | self.flagNoData = True |
|
760 | 760 | self.utctime = None |
|
761 | 761 | self.nCohInt = 1 |
|
762 | 762 | self.nIncohInt = 1 |
|
763 | 763 | self.useLocalTime = True |
|
764 | 764 | self.profileIndex = 0 |
|
765 | 765 | self.timeZone = 0 |
|
766 | 766 | |
|
767 | 767 | def getTimeRange(self): |
|
768 | 768 | |
|
769 | 769 | datatime = [] |
|
770 | 770 | |
|
771 | 771 | datatime.append(self.ltctime) |
|
772 | 772 | datatime.append(self.ltctime + self.timeInterval) |
|
773 | 773 | |
|
774 | 774 | datatime = numpy.array(datatime) |
|
775 | 775 | |
|
776 | 776 | return datatime |
|
777 | 777 | |
|
778 | 778 | def getChannelIndexList(self): |
|
779 | 779 | |
|
780 | 780 | return list(range(self.nChannels)) |
|
781 | 781 | |
|
782 | 782 | def getNoise(self, type=1): |
|
783 | 783 | |
|
784 | 784 | |
|
785 | 785 | if type == 1: |
|
786 | 786 | noise = self.getNoisebyHildebrand() |
|
787 | 787 | |
|
788 | 788 | if type == 2: |
|
789 | 789 | noise = self.getNoisebySort() |
|
790 | 790 | |
|
791 | 791 | if type == 3: |
|
792 | 792 | noise = self.getNoisebyWindow() |
|
793 | 793 | |
|
794 | 794 | return noise |
|
795 | 795 | |
|
796 | 796 | @property |
|
797 | 797 | def timeInterval(self): |
|
798 | 798 | |
|
799 | 799 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
800 | 800 | |
|
801 | 801 | return timeInterval |
|
802 | 802 | |
|
803 | 803 | @property |
|
804 | 804 | def ippSeconds(self): |
|
805 | 805 | ''' |
|
806 | 806 | ''' |
|
807 | 807 | return self.ipp_sec |
|
808 | 808 | |
|
809 | 809 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
810 | 810 | |
|
811 | 811 | |
|
812 | 812 | class Correlation(JROData): |
|
813 | 813 | |
|
814 | 814 | def __init__(self): |
|
815 | 815 | ''' |
|
816 | 816 | Constructor |
|
817 | 817 | ''' |
|
818 | 818 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
819 | 819 | self.systemHeaderObj = SystemHeader() |
|
820 | 820 | self.type = "Correlation" |
|
821 | 821 | self.data = None |
|
822 | 822 | self.dtype = None |
|
823 | 823 | self.nProfiles = None |
|
824 | 824 | self.heightList = None |
|
825 | 825 | self.channelList = None |
|
826 | 826 | self.flagNoData = True |
|
827 | 827 | self.flagDiscontinuousBlock = False |
|
828 | 828 | self.utctime = None |
|
829 | 829 | self.timeZone = 0 |
|
830 | 830 | self.dstFlag = None |
|
831 | 831 | self.errorCount = None |
|
832 | 832 | self.blocksize = None |
|
833 | 833 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
834 | 834 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
835 | 835 | self.pairsList = None |
|
836 | 836 | self.nPoints = None |
|
837 | 837 | |
|
838 | 838 | def getPairsList(self): |
|
839 | 839 | |
|
840 | 840 | return self.pairsList |
|
841 | 841 | |
|
842 | 842 | def getNoise(self, mode=2): |
|
843 | 843 | |
|
844 | 844 | indR = numpy.where(self.lagR == 0)[0][0] |
|
845 | 845 | indT = numpy.where(self.lagT == 0)[0][0] |
|
846 | 846 | |
|
847 | 847 | jspectra0 = self.data_corr[:, :, indR, :] |
|
848 | 848 | jspectra = copy.copy(jspectra0) |
|
849 | 849 | |
|
850 | 850 | num_chan = jspectra.shape[0] |
|
851 | 851 | num_hei = jspectra.shape[2] |
|
852 | 852 | |
|
853 | 853 | freq_dc = jspectra.shape[1] / 2 |
|
854 | 854 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
855 | 855 | |
|
856 | 856 | if ind_vel[0] < 0: |
|
857 | 857 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
858 | 858 | range(0, 1))] + self.num_prof |
|
859 | 859 | |
|
860 | 860 | if mode == 1: |
|
861 | 861 | jspectra[:, freq_dc, :] = ( |
|
862 | 862 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
863 | 863 | |
|
864 | 864 | if mode == 2: |
|
865 | 865 | |
|
866 | 866 | vel = numpy.array([-2, -1, 1, 2]) |
|
867 | 867 | xx = numpy.zeros([4, 4]) |
|
868 | 868 | |
|
869 | 869 | for fil in range(4): |
|
870 | 870 | xx[fil, :] = vel[fil] ** numpy.asarray(list(range(4))) |
|
871 | 871 | |
|
872 | 872 | xx_inv = numpy.linalg.inv(xx) |
|
873 | 873 | xx_aux = xx_inv[0, :] |
|
874 | 874 | |
|
875 | 875 | for ich in range(num_chan): |
|
876 | 876 | yy = jspectra[ich, ind_vel, :] |
|
877 | 877 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
878 | 878 | |
|
879 | 879 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
880 | 880 | cjunkid = sum(junkid) |
|
881 | 881 | |
|
882 | 882 | if cjunkid.any(): |
|
883 | 883 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
884 | 884 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
885 | 885 | |
|
886 | 886 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
887 | 887 | |
|
888 | 888 | return noise |
|
889 | 889 | |
|
890 | 890 | @property |
|
891 | 891 | def timeInterval(self): |
|
892 | 892 | |
|
893 | 893 | return self.ippSeconds * self.nCohInt * self.nProfiles |
|
894 | 894 | |
|
895 | 895 | def splitFunctions(self): |
|
896 | 896 | |
|
897 | 897 | pairsList = self.pairsList |
|
898 | 898 | ccf_pairs = [] |
|
899 | 899 | acf_pairs = [] |
|
900 | 900 | ccf_ind = [] |
|
901 | 901 | acf_ind = [] |
|
902 | 902 | for l in range(len(pairsList)): |
|
903 | 903 | chan0 = pairsList[l][0] |
|
904 | 904 | chan1 = pairsList[l][1] |
|
905 | 905 | |
|
906 | 906 | # Obteniendo pares de Autocorrelacion |
|
907 | 907 | if chan0 == chan1: |
|
908 | 908 | acf_pairs.append(chan0) |
|
909 | 909 | acf_ind.append(l) |
|
910 | 910 | else: |
|
911 | 911 | ccf_pairs.append(pairsList[l]) |
|
912 | 912 | ccf_ind.append(l) |
|
913 | 913 | |
|
914 | 914 | data_acf = self.data_cf[acf_ind] |
|
915 | 915 | data_ccf = self.data_cf[ccf_ind] |
|
916 | 916 | |
|
917 | 917 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
918 | 918 | |
|
919 | 919 | @property |
|
920 | 920 | def normFactor(self): |
|
921 | 921 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
922 | 922 | acf_pairs = numpy.array(acf_pairs) |
|
923 | 923 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
924 | 924 | |
|
925 | 925 | for p in range(self.nPairs): |
|
926 | 926 | pair = self.pairsList[p] |
|
927 | 927 | |
|
928 | 928 | ch0 = pair[0] |
|
929 | 929 | ch1 = pair[1] |
|
930 | 930 | |
|
931 | 931 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
932 | 932 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
933 | 933 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
934 | 934 | |
|
935 | 935 | return normFactor |
|
936 | 936 | |
|
937 | 937 | |
|
938 | 938 | class Parameters(Spectra): |
|
939 | 939 | |
|
940 | 940 | groupList = None # List of Pairs, Groups, etc |
|
941 | 941 | data_param = None # Parameters obtained |
|
942 | 942 | data_pre = None # Data Pre Parametrization |
|
943 | 943 | data_SNR = None # Signal to Noise Ratio |
|
944 | 944 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
945 | 945 | utctimeInit = None # Initial UTC time |
|
946 | 946 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
947 | 947 | useLocalTime = True |
|
948 | 948 | # Fitting |
|
949 | 949 | data_error = None # Error of the estimation |
|
950 | 950 | constants = None |
|
951 | 951 | library = None |
|
952 | 952 | # Output signal |
|
953 | 953 | outputInterval = None # Time interval to calculate output signal in seconds |
|
954 | 954 | data_output = None # Out signal |
|
955 | 955 | nAvg = None |
|
956 | 956 | noise_estimation = None |
|
957 | 957 | GauSPC = None # Fit gaussian SPC |
|
958 | 958 | |
|
959 | 959 | def __init__(self): |
|
960 | 960 | ''' |
|
961 | 961 | Constructor |
|
962 | 962 | ''' |
|
963 | 963 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
964 | 964 | self.systemHeaderObj = SystemHeader() |
|
965 | 965 | self.type = "Parameters" |
|
966 | 966 | self.timeZone = 0 |
|
967 | self.ippFactor = 1 | |
|
967 | 968 | |
|
968 | 969 | def getTimeRange1(self, interval): |
|
969 | 970 | |
|
970 | 971 | datatime = [] |
|
971 | 972 | |
|
972 | 973 | if self.useLocalTime: |
|
973 | 974 | time1 = self.utctimeInit - self.timeZone * 60 |
|
974 | 975 | else: |
|
975 | 976 | time1 = self.utctimeInit |
|
976 | 977 | |
|
977 | 978 | datatime.append(time1) |
|
978 | 979 | datatime.append(time1 + interval) |
|
979 | 980 | datatime = numpy.array(datatime) |
|
980 | 981 | |
|
981 | 982 | return datatime |
|
982 | 983 | |
|
983 | 984 | @property |
|
984 | 985 | def timeInterval(self): |
|
985 | 986 | |
|
986 | 987 | if hasattr(self, 'timeInterval1'): |
|
987 | 988 | return self.timeInterval1 |
|
988 | 989 | else: |
|
989 | 990 | return self.paramInterval |
|
990 | 991 | |
|
991 | 992 | |
|
992 | 993 | def setValue(self, value): |
|
993 | 994 | |
|
994 | 995 | print("This property should not be initialized") |
|
995 | 996 | |
|
996 | 997 | return |
|
997 | 998 | |
|
998 | 999 | def getNoise(self): |
|
999 | 1000 | |
|
1000 | 1001 | return self.spc_noise |
|
1001 | 1002 | |
|
1002 | 1003 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
1003 | 1004 | |
|
1004 | 1005 | |
|
1005 | 1006 | class PlotterData(object): |
|
1006 | 1007 | ''' |
|
1007 | 1008 | Object to hold data to be plotted |
|
1008 | 1009 | ''' |
|
1009 | 1010 | |
|
1010 | 1011 | MAXNUMX = 200 |
|
1011 | 1012 | MAXNUMY = 200 |
|
1012 | 1013 | |
|
1013 | 1014 | def __init__(self, code, exp_code, localtime=True): |
|
1014 | 1015 | |
|
1015 | 1016 | self.key = code |
|
1016 | 1017 | self.exp_code = exp_code |
|
1017 | 1018 | self.ready = False |
|
1018 | 1019 | self.flagNoData = False |
|
1019 | 1020 | self.localtime = localtime |
|
1020 | 1021 | self.data = {} |
|
1021 | 1022 | self.meta = {} |
|
1022 | 1023 | self.__heights = [] |
|
1023 | 1024 | |
|
1024 | 1025 | def __str__(self): |
|
1025 | 1026 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
1026 | 1027 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) |
|
1027 | 1028 | |
|
1028 | 1029 | def __len__(self): |
|
1029 | 1030 | return len(self.data) |
|
1030 | 1031 | |
|
1031 | 1032 | def __getitem__(self, key): |
|
1032 | 1033 | if isinstance(key, int): |
|
1033 | 1034 | return self.data[self.times[key]] |
|
1034 | 1035 | elif isinstance(key, str): |
|
1035 | 1036 | ret = numpy.array([self.data[x][key] for x in self.times]) |
|
1036 | 1037 | if ret.ndim > 1: |
|
1037 | 1038 | ret = numpy.swapaxes(ret, 0, 1) |
|
1038 | 1039 | return ret |
|
1039 | 1040 | |
|
1040 | 1041 | def __contains__(self, key): |
|
1041 | 1042 | return key in self.data[self.min_time] |
|
1042 | 1043 | |
|
1043 | 1044 | def setup(self): |
|
1044 | 1045 | ''' |
|
1045 | 1046 | Configure object |
|
1046 | 1047 | ''' |
|
1047 | 1048 | self.type = '' |
|
1048 | 1049 | self.ready = False |
|
1049 | 1050 | del self.data |
|
1050 | 1051 | self.data = {} |
|
1051 | 1052 | self.__heights = [] |
|
1052 | 1053 | self.__all_heights = set() |
|
1053 | 1054 | |
|
1054 | 1055 | def shape(self, key): |
|
1055 | 1056 | ''' |
|
1056 | 1057 | Get the shape of the one-element data for the given key |
|
1057 | 1058 | ''' |
|
1058 | 1059 | |
|
1059 | 1060 | if len(self.data[self.min_time][key]): |
|
1060 | 1061 | return self.data[self.min_time][key].shape |
|
1061 | 1062 | return (0,) |
|
1062 | 1063 | |
|
1063 | 1064 | def update(self, data, tm, meta={}): |
|
1064 | 1065 | ''' |
|
1065 | 1066 | Update data object with new dataOut |
|
1066 | 1067 | ''' |
|
1067 | 1068 | |
|
1068 | 1069 | self.data[tm] = data |
|
1069 | 1070 | |
|
1070 | 1071 | for key, value in meta.items(): |
|
1071 | 1072 | setattr(self, key, value) |
|
1072 | 1073 | |
|
1073 | 1074 | def normalize_heights(self): |
|
1074 | 1075 | ''' |
|
1075 | 1076 | Ensure same-dimension of the data for different heighList |
|
1076 | 1077 | ''' |
|
1077 | 1078 | |
|
1078 | 1079 | H = numpy.array(list(self.__all_heights)) |
|
1079 | 1080 | H.sort() |
|
1080 | 1081 | for key in self.data: |
|
1081 | 1082 | shape = self.shape(key)[:-1] + H.shape |
|
1082 | 1083 | for tm, obj in list(self.data[key].items()): |
|
1083 | 1084 | h = self.__heights[self.times.tolist().index(tm)] |
|
1084 | 1085 | if H.size == h.size: |
|
1085 | 1086 | continue |
|
1086 | 1087 | index = numpy.where(numpy.in1d(H, h))[0] |
|
1087 | 1088 | dummy = numpy.zeros(shape) + numpy.nan |
|
1088 | 1089 | if len(shape) == 2: |
|
1089 | 1090 | dummy[:, index] = obj |
|
1090 | 1091 | else: |
|
1091 | 1092 | dummy[index] = obj |
|
1092 | 1093 | self.data[key][tm] = dummy |
|
1093 | 1094 | |
|
1094 | 1095 | self.__heights = [H for tm in self.times] |
|
1095 | 1096 | |
|
1096 | 1097 | def jsonify(self, tm, plot_name, plot_type, decimate=False): |
|
1097 | 1098 | ''' |
|
1098 | 1099 | Convert data to json |
|
1099 | 1100 | ''' |
|
1100 | 1101 | |
|
1101 | 1102 | meta = {} |
|
1102 | 1103 | meta['xrange'] = [] |
|
1103 | 1104 | dy = int(len(self.yrange) / self.MAXNUMY) + 1 |
|
1104 | 1105 | tmp = self.data[tm][self.key] |
|
1105 | 1106 | shape = tmp.shape |
|
1106 | 1107 | if len(shape) == 2: |
|
1107 | 1108 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) |
|
1108 | 1109 | elif len(shape) == 3: |
|
1109 | 1110 | dx = int(self.data[tm][self.key].shape[1] / self.MAXNUMX) + 1 |
|
1110 | 1111 | data = self.roundFloats( |
|
1111 | 1112 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) |
|
1112 | 1113 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1113 | 1114 | else: |
|
1114 | 1115 | data = self.roundFloats(self.data[tm][self.key].tolist()) |
|
1115 | 1116 | |
|
1116 | 1117 | ret = { |
|
1117 | 1118 | 'plot': plot_name, |
|
1118 | 1119 | 'code': self.exp_code, |
|
1119 | 1120 | 'time': float(tm), |
|
1120 | 1121 | 'data': data, |
|
1121 | 1122 | } |
|
1122 | 1123 | meta['type'] = plot_type |
|
1123 | 1124 | meta['interval'] = float(self.interval) |
|
1124 | 1125 | meta['localtime'] = self.localtime |
|
1125 | 1126 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) |
|
1126 | 1127 | meta.update(self.meta) |
|
1127 | 1128 | ret['metadata'] = meta |
|
1128 | 1129 | return json.dumps(ret) |
|
1129 | 1130 | |
|
1130 | 1131 | @property |
|
1131 | 1132 | def times(self): |
|
1132 | 1133 | ''' |
|
1133 | 1134 | Return the list of times of the current data |
|
1134 | 1135 | ''' |
|
1135 | 1136 | |
|
1136 | 1137 | ret = [t for t in self.data] |
|
1137 | 1138 | ret.sort() |
|
1138 | 1139 | return numpy.array(ret) |
|
1139 | 1140 | |
|
1140 | 1141 | @property |
|
1141 | 1142 | def min_time(self): |
|
1142 | 1143 | ''' |
|
1143 | 1144 | Return the minimun time value |
|
1144 | 1145 | ''' |
|
1145 | 1146 | |
|
1146 | 1147 | return self.times[0] |
|
1147 | 1148 | |
|
1148 | 1149 | @property |
|
1149 | 1150 | def max_time(self): |
|
1150 | 1151 | ''' |
|
1151 | 1152 | Return the maximun time value |
|
1152 | 1153 | ''' |
|
1153 | 1154 | |
|
1154 | 1155 | return self.times[-1] |
|
1155 | 1156 | |
|
1156 | 1157 | # @property |
|
1157 | 1158 | # def heights(self): |
|
1158 | 1159 | # ''' |
|
1159 | 1160 | # Return the list of heights of the current data |
|
1160 | 1161 | # ''' |
|
1161 | 1162 | |
|
1162 | 1163 | # return numpy.array(self.__heights[-1]) |
|
1163 | 1164 | |
|
1164 | 1165 | @staticmethod |
|
1165 | 1166 | def roundFloats(obj): |
|
1166 | 1167 | if isinstance(obj, list): |
|
1167 | 1168 | return list(map(PlotterData.roundFloats, obj)) |
|
1168 | 1169 | elif isinstance(obj, float): |
|
1169 | 1170 | return round(obj, 2) |
@@ -1,909 +1,908 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JROHeaderIO.py 151 2012-10-31 19:00:51Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | import sys |
|
7 | 7 | import numpy |
|
8 | 8 | import copy |
|
9 | 9 | import datetime |
|
10 | 10 | import inspect |
|
11 | 11 | from schainpy.utils import log |
|
12 | 12 | |
|
13 | 13 | SPEED_OF_LIGHT = 299792458 |
|
14 | 14 | SPEED_OF_LIGHT = 3e8 |
|
15 | 15 | |
|
16 | 16 | BASIC_STRUCTURE = numpy.dtype([ |
|
17 | 17 | ('nSize', '<u4'), |
|
18 | 18 | ('nVersion', '<u2'), |
|
19 | 19 | ('nDataBlockId', '<u4'), |
|
20 | 20 | ('nUtime', '<u4'), |
|
21 | 21 | ('nMilsec', '<u2'), |
|
22 | 22 | ('nTimezone', '<i2'), |
|
23 | 23 | ('nDstflag', '<i2'), |
|
24 | 24 | ('nErrorCount', '<u4') |
|
25 | 25 | ]) |
|
26 | 26 | |
|
27 | 27 | SYSTEM_STRUCTURE = numpy.dtype([ |
|
28 | 28 | ('nSize', '<u4'), |
|
29 | 29 | ('nNumSamples', '<u4'), |
|
30 | 30 | ('nNumProfiles', '<u4'), |
|
31 | 31 | ('nNumChannels', '<u4'), |
|
32 | 32 | ('nADCResolution', '<u4'), |
|
33 | 33 | ('nPCDIOBusWidth', '<u4'), |
|
34 | 34 | ]) |
|
35 | 35 | |
|
36 | 36 | RADAR_STRUCTURE = numpy.dtype([ |
|
37 | 37 | ('nSize', '<u4'), |
|
38 | 38 | ('nExpType', '<u4'), |
|
39 | 39 | ('nNTx', '<u4'), |
|
40 | 40 | ('fIpp', '<f4'), |
|
41 | 41 | ('fTxA', '<f4'), |
|
42 | 42 | ('fTxB', '<f4'), |
|
43 | 43 | ('nNumWindows', '<u4'), |
|
44 | 44 | ('nNumTaus', '<u4'), |
|
45 | 45 | ('nCodeType', '<u4'), |
|
46 | 46 | ('nLine6Function', '<u4'), |
|
47 | 47 | ('nLine5Function', '<u4'), |
|
48 | 48 | ('fClock', '<f4'), |
|
49 | 49 | ('nPrePulseBefore', '<u4'), |
|
50 | 50 | ('nPrePulseAfter', '<u4'), |
|
51 | 51 | ('sRangeIPP', '<a20'), |
|
52 | 52 | ('sRangeTxA', '<a20'), |
|
53 | 53 | ('sRangeTxB', '<a20'), |
|
54 | 54 | ]) |
|
55 | 55 | |
|
56 | 56 | SAMPLING_STRUCTURE = numpy.dtype( |
|
57 | 57 | [('h0', '<f4'), ('dh', '<f4'), ('nsa', '<u4')]) |
|
58 | 58 | |
|
59 | 59 | |
|
60 | 60 | PROCESSING_STRUCTURE = numpy.dtype([ |
|
61 | 61 | ('nSize', '<u4'), |
|
62 | 62 | ('nDataType', '<u4'), |
|
63 | 63 | ('nSizeOfDataBlock', '<u4'), |
|
64 | 64 | ('nProfilesperBlock', '<u4'), |
|
65 | 65 | ('nDataBlocksperFile', '<u4'), |
|
66 | 66 | ('nNumWindows', '<u4'), |
|
67 | 67 | ('nProcessFlags', '<u4'), |
|
68 | 68 | ('nCoherentIntegrations', '<u4'), |
|
69 | 69 | ('nIncoherentIntegrations', '<u4'), |
|
70 | 70 | ('nTotalSpectra', '<u4') |
|
71 | 71 | ]) |
|
72 | 72 | |
|
73 | 73 | |
|
74 | 74 | class Header(object): |
|
75 | 75 | |
|
76 | 76 | def __init__(self): |
|
77 | 77 | raise NotImplementedError |
|
78 | 78 | |
|
79 | 79 | def copy(self): |
|
80 | 80 | return copy.deepcopy(self) |
|
81 | 81 | |
|
82 | 82 | def read(self): |
|
83 | 83 | |
|
84 | 84 | raise NotImplementedError |
|
85 | 85 | |
|
86 | 86 | def write(self): |
|
87 | 87 | |
|
88 | 88 | raise NotImplementedError |
|
89 | 89 | |
|
90 | 90 | def getAllowedArgs(self): |
|
91 | 91 | args = inspect.getargspec(self.__init__).args |
|
92 | 92 | try: |
|
93 | 93 | args.remove('self') |
|
94 | 94 | except: |
|
95 | 95 | pass |
|
96 | 96 | return args |
|
97 | 97 | |
|
98 | 98 | def getAsDict(self): |
|
99 | 99 | args = self.getAllowedArgs() |
|
100 | 100 | asDict = {} |
|
101 | 101 | for x in args: |
|
102 | 102 | asDict[x] = self[x] |
|
103 | 103 | return asDict |
|
104 | 104 | |
|
105 | 105 | def __getitem__(self, name): |
|
106 | 106 | return getattr(self, name) |
|
107 | 107 | |
|
108 | 108 | def printInfo(self): |
|
109 | 109 | |
|
110 | 110 | message = "#" * 50 + "\n" |
|
111 | 111 | message += self.__class__.__name__.upper() + "\n" |
|
112 | 112 | message += "#" * 50 + "\n" |
|
113 | 113 | |
|
114 | 114 | keyList = list(self.__dict__.keys()) |
|
115 | 115 | keyList.sort() |
|
116 | 116 | |
|
117 | 117 | for key in keyList: |
|
118 | 118 | message += "%s = %s" % (key, self.__dict__[key]) + "\n" |
|
119 | 119 | |
|
120 | 120 | if "size" not in keyList: |
|
121 | 121 | attr = getattr(self, "size") |
|
122 | 122 | |
|
123 | 123 | if attr: |
|
124 | 124 | message += "%s = %s" % ("size", attr) + "\n" |
|
125 | 125 | |
|
126 | 126 | print(message) |
|
127 | 127 | |
|
128 | 128 | |
|
129 | 129 | class BasicHeader(Header): |
|
130 | 130 | |
|
131 | 131 | size = None |
|
132 | 132 | version = None |
|
133 | 133 | dataBlock = None |
|
134 | 134 | utc = None |
|
135 | 135 | ltc = None |
|
136 | 136 | miliSecond = None |
|
137 | 137 | timeZone = None |
|
138 | 138 | dstFlag = None |
|
139 | 139 | errorCount = None |
|
140 | 140 | F = None |
|
141 | 141 | structure = BASIC_STRUCTURE |
|
142 | 142 | __LOCALTIME = None |
|
143 | 143 | |
|
144 | 144 | def __init__(self, useLocalTime=True): |
|
145 | 145 | |
|
146 | 146 | self.size = 24 |
|
147 | 147 | self.version = 0 |
|
148 | 148 | self.dataBlock = 0 |
|
149 | 149 | self.utc = 0 |
|
150 | 150 | self.miliSecond = 0 |
|
151 | 151 | self.timeZone = 0 |
|
152 | 152 | self.dstFlag = 0 |
|
153 | 153 | self.errorCount = 0 |
|
154 | ||
|
155 | 154 | self.useLocalTime = useLocalTime |
|
156 | 155 | |
|
157 | 156 | def read(self, fp): |
|
158 | 157 | |
|
159 | 158 | self.length = 0 |
|
160 | 159 | try: |
|
161 | 160 | if hasattr(fp, 'read'): |
|
162 | 161 | header = numpy.fromfile(fp, BASIC_STRUCTURE, 1) |
|
163 | 162 | else: |
|
164 | 163 | header = numpy.fromstring(fp, BASIC_STRUCTURE, 1) |
|
165 | 164 | except Exception as e: |
|
166 | 165 | print("BasicHeader: ") |
|
167 | 166 | print(e) |
|
168 | 167 | return 0 |
|
169 | 168 | |
|
170 | 169 | self.size = int(header['nSize'][0]) |
|
171 | 170 | self.version = int(header['nVersion'][0]) |
|
172 | 171 | self.dataBlock = int(header['nDataBlockId'][0]) |
|
173 | 172 | self.utc = int(header['nUtime'][0]) |
|
174 | 173 | self.miliSecond = int(header['nMilsec'][0]) |
|
175 | 174 | self.timeZone = int(header['nTimezone'][0]) |
|
176 | 175 | self.dstFlag = int(header['nDstflag'][0]) |
|
177 | 176 | self.errorCount = int(header['nErrorCount'][0]) |
|
178 | 177 | |
|
179 | 178 | if self.size < 24: |
|
180 | 179 | return 0 |
|
181 | 180 | |
|
182 | 181 | self.length = header.nbytes |
|
183 | 182 | return 1 |
|
184 | 183 | |
|
185 | 184 | def write(self, fp): |
|
186 | 185 | |
|
187 | 186 | headerTuple = (self.size, self.version, self.dataBlock, self.utc, |
|
188 | 187 | self.miliSecond, self.timeZone, self.dstFlag, self.errorCount) |
|
189 | 188 | header = numpy.array(headerTuple, BASIC_STRUCTURE) |
|
190 | 189 | header.tofile(fp) |
|
191 | 190 | |
|
192 | 191 | return 1 |
|
193 | 192 | |
|
194 | 193 | def get_ltc(self): |
|
195 | 194 | |
|
196 | 195 | return self.utc - self.timeZone * 60 |
|
197 | 196 | |
|
198 | 197 | def set_ltc(self, value): |
|
199 | 198 | |
|
200 | 199 | self.utc = value + self.timeZone * 60 |
|
201 | 200 | |
|
202 | 201 | def get_datatime(self): |
|
203 | 202 | |
|
204 | 203 | return datetime.datetime.utcfromtimestamp(self.ltc) |
|
205 | 204 | |
|
206 | 205 | ltc = property(get_ltc, set_ltc) |
|
207 | 206 | datatime = property(get_datatime) |
|
208 | 207 | |
|
209 | 208 | |
|
210 | 209 | class SystemHeader(Header): |
|
211 | 210 | |
|
212 | 211 | size = None |
|
213 | 212 | nSamples = None |
|
214 | 213 | nProfiles = None |
|
215 | 214 | nChannels = None |
|
216 | 215 | adcResolution = None |
|
217 | 216 | pciDioBusWidth = None |
|
218 | 217 | structure = SYSTEM_STRUCTURE |
|
219 | 218 | |
|
220 | 219 | def __init__(self, nSamples=0, nProfiles=0, nChannels=0, adcResolution=14, pciDioBusWidth=0): |
|
221 | 220 | |
|
222 | 221 | self.size = 24 |
|
223 | 222 | self.nSamples = nSamples |
|
224 | 223 | self.nProfiles = nProfiles |
|
225 | 224 | self.nChannels = nChannels |
|
226 | 225 | self.adcResolution = adcResolution |
|
227 | 226 | self.pciDioBusWidth = pciDioBusWidth |
|
228 | 227 | |
|
229 | 228 | def read(self, fp): |
|
230 | 229 | self.length = 0 |
|
231 | 230 | try: |
|
232 | 231 | startFp = fp.tell() |
|
233 | 232 | except Exception as e: |
|
234 | 233 | startFp = None |
|
235 | 234 | pass |
|
236 | 235 | |
|
237 | 236 | try: |
|
238 | 237 | if hasattr(fp, 'read'): |
|
239 | 238 | header = numpy.fromfile(fp, SYSTEM_STRUCTURE, 1) |
|
240 | 239 | else: |
|
241 | 240 | header = numpy.fromstring(fp, SYSTEM_STRUCTURE, 1) |
|
242 | 241 | except Exception as e: |
|
243 | 242 | print("System Header: " + str(e)) |
|
244 | 243 | return 0 |
|
245 | 244 | |
|
246 | 245 | self.size = header['nSize'][0] |
|
247 | 246 | self.nSamples = header['nNumSamples'][0] |
|
248 | 247 | self.nProfiles = header['nNumProfiles'][0] |
|
249 | 248 | self.nChannels = header['nNumChannels'][0] |
|
250 | 249 | self.adcResolution = header['nADCResolution'][0] |
|
251 | 250 | self.pciDioBusWidth = header['nPCDIOBusWidth'][0] |
|
252 | 251 | |
|
253 | 252 | if startFp is not None: |
|
254 | 253 | endFp = self.size + startFp |
|
255 | 254 | |
|
256 | 255 | if fp.tell() > endFp: |
|
257 | 256 | sys.stderr.write( |
|
258 | 257 | "Warning %s: Size value read from System Header is lower than it has to be\n" % fp.name) |
|
259 | 258 | return 0 |
|
260 | 259 | |
|
261 | 260 | if fp.tell() < endFp: |
|
262 | 261 | sys.stderr.write( |
|
263 | 262 | "Warning %s: Size value read from System Header size is greater than it has to be\n" % fp.name) |
|
264 | 263 | return 0 |
|
265 | 264 | |
|
266 | 265 | self.length = header.nbytes |
|
267 | 266 | return 1 |
|
268 | 267 | |
|
269 | 268 | def write(self, fp): |
|
270 | 269 | |
|
271 | 270 | headerTuple = (self.size, self.nSamples, self.nProfiles, |
|
272 | 271 | self.nChannels, self.adcResolution, self.pciDioBusWidth) |
|
273 | 272 | header = numpy.array(headerTuple, SYSTEM_STRUCTURE) |
|
274 | 273 | header.tofile(fp) |
|
275 | 274 | |
|
276 | 275 | return 1 |
|
277 | 276 | |
|
278 | 277 | |
|
279 | 278 | class RadarControllerHeader(Header): |
|
280 | 279 | |
|
281 | 280 | expType = None |
|
282 | 281 | nTx = None |
|
283 | 282 | ipp = None |
|
284 | 283 | txA = None |
|
285 | 284 | txB = None |
|
286 | 285 | nWindows = None |
|
287 | 286 | numTaus = None |
|
288 | 287 | codeType = None |
|
289 | 288 | line6Function = None |
|
290 | 289 | line5Function = None |
|
291 | 290 | fClock = None |
|
292 | 291 | prePulseBefore = None |
|
293 | 292 | prePulseAfter = None |
|
294 | 293 | rangeIpp = None |
|
295 | 294 | rangeTxA = None |
|
296 | 295 | rangeTxB = None |
|
297 | 296 | structure = RADAR_STRUCTURE |
|
298 | 297 | __size = None |
|
299 | 298 | |
|
300 | 299 | def __init__(self, expType=2, nTx=1, |
|
301 | 300 | ipp=None, txA=0, txB=0, |
|
302 | 301 | nWindows=None, nHeights=None, firstHeight=None, deltaHeight=None, |
|
303 | 302 | numTaus=0, line6Function=0, line5Function=0, fClock=None, |
|
304 | 303 | prePulseBefore=0, prePulseAfter=0, |
|
305 | 304 | codeType=0, nCode=0, nBaud=0, code=[], |
|
306 | 305 | flip1=0, flip2=0): |
|
307 | 306 | |
|
308 | 307 | # self.size = 116 |
|
309 | 308 | self.expType = expType |
|
310 | 309 | self.nTx = nTx |
|
311 | 310 | self.ipp = ipp |
|
312 | 311 | self.txA = txA |
|
313 | 312 | self.txB = txB |
|
314 | 313 | self.rangeIpp = ipp |
|
315 | 314 | self.rangeTxA = txA |
|
316 | 315 | self.rangeTxB = txB |
|
317 | 316 | |
|
318 | 317 | self.nWindows = nWindows |
|
319 | 318 | self.numTaus = numTaus |
|
320 | 319 | self.codeType = codeType |
|
321 | 320 | self.line6Function = line6Function |
|
322 | 321 | self.line5Function = line5Function |
|
323 | 322 | self.fClock = fClock |
|
324 | 323 | self.prePulseBefore = prePulseBefore |
|
325 | 324 | self.prePulseAfter = prePulseAfter |
|
326 | 325 | |
|
327 | 326 | self.nHeights = nHeights |
|
328 | 327 | self.firstHeight = firstHeight |
|
329 | 328 | self.deltaHeight = deltaHeight |
|
330 | 329 | self.samplesWin = nHeights |
|
331 | 330 | |
|
332 | 331 | self.nCode = nCode |
|
333 | 332 | self.nBaud = nBaud |
|
334 | 333 | self.code = code |
|
335 | 334 | self.flip1 = flip1 |
|
336 | 335 | self.flip2 = flip2 |
|
337 | 336 | |
|
338 | 337 | self.code_size = int(numpy.ceil(self.nBaud / 32.)) * self.nCode * 4 |
|
339 | 338 | # self.dynamic = numpy.array([],numpy.dtype('byte')) |
|
340 | 339 | |
|
341 | 340 | if self.fClock is None and self.deltaHeight is not None: |
|
342 | 341 | self.fClock = 0.15 / (deltaHeight * 1e-6) # 0.15Km / (height * 1u) |
|
343 | 342 | |
|
344 | 343 | def read(self, fp): |
|
345 | 344 | self.length = 0 |
|
346 | 345 | try: |
|
347 | 346 | startFp = fp.tell() |
|
348 | 347 | except Exception as e: |
|
349 | 348 | startFp = None |
|
350 | 349 | pass |
|
351 | 350 | |
|
352 | 351 | try: |
|
353 | 352 | if hasattr(fp, 'read'): |
|
354 | 353 | header = numpy.fromfile(fp, RADAR_STRUCTURE, 1) |
|
355 | 354 | else: |
|
356 | 355 | header = numpy.fromstring(fp, RADAR_STRUCTURE, 1) |
|
357 | 356 | self.length += header.nbytes |
|
358 | 357 | except Exception as e: |
|
359 | 358 | print("RadarControllerHeader: " + str(e)) |
|
360 | 359 | return 0 |
|
361 | 360 | |
|
362 | 361 | size = int(header['nSize'][0]) |
|
363 | 362 | self.expType = int(header['nExpType'][0]) |
|
364 | 363 | self.nTx = int(header['nNTx'][0]) |
|
365 | 364 | self.ipp = float(header['fIpp'][0]) |
|
366 | 365 | #print(self.ipp) |
|
367 | 366 | self.txA = float(header['fTxA'][0]) |
|
368 | 367 | self.txB = float(header['fTxB'][0]) |
|
369 | 368 | self.nWindows = int(header['nNumWindows'][0]) |
|
370 | 369 | self.numTaus = int(header['nNumTaus'][0]) |
|
371 | 370 | self.codeType = int(header['nCodeType'][0]) |
|
372 | 371 | self.line6Function = int(header['nLine6Function'][0]) |
|
373 | 372 | self.line5Function = int(header['nLine5Function'][0]) |
|
374 | 373 | self.fClock = float(header['fClock'][0]) |
|
375 | 374 | self.prePulseBefore = int(header['nPrePulseBefore'][0]) |
|
376 | 375 | self.prePulseAfter = int(header['nPrePulseAfter'][0]) |
|
377 | 376 | self.rangeIpp = header['sRangeIPP'][0] |
|
378 | 377 | self.rangeTxA = header['sRangeTxA'][0] |
|
379 | 378 | self.rangeTxB = header['sRangeTxB'][0] |
|
380 | 379 | |
|
381 | 380 | try: |
|
382 | 381 | if hasattr(fp, 'read'): |
|
383 | 382 | samplingWindow = numpy.fromfile( |
|
384 | 383 | fp, SAMPLING_STRUCTURE, self.nWindows) |
|
385 | 384 | else: |
|
386 | 385 | samplingWindow = numpy.fromstring( |
|
387 | 386 | fp[self.length:], SAMPLING_STRUCTURE, self.nWindows) |
|
388 | 387 | self.length += samplingWindow.nbytes |
|
389 | 388 | except Exception as e: |
|
390 | 389 | print("RadarControllerHeader: " + str(e)) |
|
391 | 390 | return 0 |
|
392 | 391 | self.nHeights = int(numpy.sum(samplingWindow['nsa'])) |
|
393 | 392 | self.firstHeight = samplingWindow['h0'] |
|
394 | 393 | self.deltaHeight = samplingWindow['dh'] |
|
395 | 394 | self.samplesWin = samplingWindow['nsa'] |
|
396 | 395 | |
|
397 | 396 | try: |
|
398 | 397 | if hasattr(fp, 'read'): |
|
399 | 398 | self.Taus = numpy.fromfile(fp, '<f4', self.numTaus) |
|
400 | 399 | else: |
|
401 | 400 | self.Taus = numpy.fromstring( |
|
402 | 401 | fp[self.length:], '<f4', self.numTaus) |
|
403 | 402 | self.length += self.Taus.nbytes |
|
404 | 403 | except Exception as e: |
|
405 | 404 | print("RadarControllerHeader: " + str(e)) |
|
406 | 405 | return 0 |
|
407 | 406 | |
|
408 | 407 | self.code_size = 0 |
|
409 | 408 | if self.codeType != 0: |
|
410 | 409 | |
|
411 | 410 | try: |
|
412 | 411 | if hasattr(fp, 'read'): |
|
413 | 412 | self.nCode = numpy.fromfile(fp, '<u4', 1)[0] |
|
414 | 413 | self.length += self.nCode.nbytes |
|
415 | 414 | self.nBaud = numpy.fromfile(fp, '<u4', 1)[0] |
|
416 | 415 | self.length += self.nBaud.nbytes |
|
417 | 416 | else: |
|
418 | 417 | self.nCode = numpy.fromstring( |
|
419 | 418 | fp[self.length:], '<u4', 1)[0] |
|
420 | 419 | self.length += self.nCode.nbytes |
|
421 | 420 | self.nBaud = numpy.fromstring( |
|
422 | 421 | fp[self.length:], '<u4', 1)[0] |
|
423 | 422 | self.length += self.nBaud.nbytes |
|
424 | 423 | except Exception as e: |
|
425 | 424 | print("RadarControllerHeader: " + str(e)) |
|
426 | 425 | return 0 |
|
427 | 426 | code = numpy.empty([self.nCode, self.nBaud], dtype='i1') |
|
428 | 427 | |
|
429 | 428 | for ic in range(self.nCode): |
|
430 | 429 | try: |
|
431 | 430 | if hasattr(fp, 'read'): |
|
432 | 431 | temp = numpy.fromfile(fp, 'u4', int( |
|
433 | 432 | numpy.ceil(self.nBaud / 32.))) |
|
434 | 433 | else: |
|
435 | 434 | temp = numpy.fromstring( |
|
436 | 435 | fp, 'u4', int(numpy.ceil(self.nBaud / 32.))) |
|
437 | 436 | self.length += temp.nbytes |
|
438 | 437 | except Exception as e: |
|
439 | 438 | print("RadarControllerHeader: " + str(e)) |
|
440 | 439 | return 0 |
|
441 | 440 | |
|
442 | 441 | for ib in range(self.nBaud - 1, -1, -1): |
|
443 | 442 | code[ic, ib] = temp[int(ib / 32)] % 2 |
|
444 | 443 | temp[int(ib / 32)] = temp[int(ib / 32)] / 2 |
|
445 | 444 | |
|
446 | 445 | self.code = 2.0 * code - 1.0 |
|
447 | 446 | self.code_size = int(numpy.ceil(self.nBaud / 32.)) * self.nCode * 4 |
|
448 | 447 | |
|
449 | 448 | # if self.line5Function == RCfunction.FLIP: |
|
450 | 449 | # self.flip1 = numpy.fromfile(fp,'<u4',1) |
|
451 | 450 | # |
|
452 | 451 | # if self.line6Function == RCfunction.FLIP: |
|
453 | 452 | # self.flip2 = numpy.fromfile(fp,'<u4',1) |
|
454 | 453 | if startFp is not None: |
|
455 | 454 | endFp = size + startFp |
|
456 | 455 | |
|
457 | 456 | if fp.tell() != endFp: |
|
458 | 457 | # fp.seek(endFp) |
|
459 | 458 | print("%s: Radar Controller Header size is not consistent: from data [%d] != from header field [%d]" % (fp.name, fp.tell() - startFp, size)) |
|
460 | 459 | # return 0 |
|
461 | 460 | |
|
462 | 461 | if fp.tell() > endFp: |
|
463 | 462 | sys.stderr.write( |
|
464 | 463 | "Warning %s: Size value read from Radar Controller header is lower than it has to be\n" % fp.name) |
|
465 | 464 | # return 0 |
|
466 | 465 | |
|
467 | 466 | if fp.tell() < endFp: |
|
468 | 467 | sys.stderr.write( |
|
469 | 468 | "Warning %s: Size value read from Radar Controller header is greater than it has to be\n" % fp.name) |
|
470 | 469 | |
|
471 | 470 | return 1 |
|
472 | 471 | |
|
473 | 472 | def write(self, fp): |
|
474 | 473 | |
|
475 | 474 | headerTuple = (self.size, |
|
476 | 475 | self.expType, |
|
477 | 476 | self.nTx, |
|
478 | 477 | self.ipp, |
|
479 | 478 | self.txA, |
|
480 | 479 | self.txB, |
|
481 | 480 | self.nWindows, |
|
482 | 481 | self.numTaus, |
|
483 | 482 | self.codeType, |
|
484 | 483 | self.line6Function, |
|
485 | 484 | self.line5Function, |
|
486 | 485 | self.fClock, |
|
487 | 486 | self.prePulseBefore, |
|
488 | 487 | self.prePulseAfter, |
|
489 | 488 | self.rangeIpp, |
|
490 | 489 | self.rangeTxA, |
|
491 | 490 | self.rangeTxB) |
|
492 | 491 | |
|
493 | 492 | header = numpy.array(headerTuple, RADAR_STRUCTURE) |
|
494 | 493 | header.tofile(fp) |
|
495 | 494 | |
|
496 | 495 | sampleWindowTuple = ( |
|
497 | 496 | self.firstHeight, self.deltaHeight, self.samplesWin) |
|
498 | 497 | samplingWindow = numpy.array(sampleWindowTuple, SAMPLING_STRUCTURE) |
|
499 | 498 | samplingWindow.tofile(fp) |
|
500 | 499 | |
|
501 | 500 | if self.numTaus > 0: |
|
502 | 501 | self.Taus.tofile(fp) |
|
503 | 502 | |
|
504 | 503 | if self.codeType != 0: |
|
505 | 504 | nCode = numpy.array(self.nCode, '<u4') |
|
506 | 505 | nCode.tofile(fp) |
|
507 | 506 | nBaud = numpy.array(self.nBaud, '<u4') |
|
508 | 507 | nBaud.tofile(fp) |
|
509 | 508 | code1 = (self.code + 1.0) / 2. |
|
510 | 509 | |
|
511 | 510 | for ic in range(self.nCode): |
|
512 | 511 | tempx = numpy.zeros(int(numpy.ceil(self.nBaud / 32.))) |
|
513 | 512 | start = 0 |
|
514 | 513 | end = 32 |
|
515 | 514 | for i in range(len(tempx)): |
|
516 | 515 | code_selected = code1[ic, start:end] |
|
517 | 516 | for j in range(len(code_selected) - 1, -1, -1): |
|
518 | 517 | if code_selected[j] == 1: |
|
519 | 518 | tempx[i] = tempx[i] + \ |
|
520 | 519 | 2 ** (len(code_selected) - 1 - j) |
|
521 | 520 | start = start + 32 |
|
522 | 521 | end = end + 32 |
|
523 | 522 | |
|
524 | 523 | tempx = tempx.astype('u4') |
|
525 | 524 | tempx.tofile(fp) |
|
526 | 525 | |
|
527 | 526 | # if self.line5Function == RCfunction.FLIP: |
|
528 | 527 | # self.flip1.tofile(fp) |
|
529 | 528 | # |
|
530 | 529 | # if self.line6Function == RCfunction.FLIP: |
|
531 | 530 | # self.flip2.tofile(fp) |
|
532 | 531 | |
|
533 | 532 | return 1 |
|
534 | 533 | |
|
535 | 534 | def get_ippSeconds(self): |
|
536 | 535 | ''' |
|
537 | 536 | ''' |
|
538 | 537 | |
|
539 | 538 | ippSeconds = 2.0 * 1000 * self.ipp / SPEED_OF_LIGHT |
|
540 | 539 | |
|
541 | 540 | return ippSeconds |
|
542 | 541 | |
|
543 | 542 | def set_ippSeconds(self, ippSeconds): |
|
544 | 543 | ''' |
|
545 | 544 | ''' |
|
546 | 545 | |
|
547 | 546 | self.ipp = ippSeconds * SPEED_OF_LIGHT / (2.0 * 1000) |
|
548 | 547 | |
|
549 | 548 | return |
|
550 | 549 | |
|
551 | 550 | def get_size(self): |
|
552 | 551 | |
|
553 | 552 | self.__size = 116 + 12 * self.nWindows + 4 * self.numTaus |
|
554 | 553 | |
|
555 | 554 | if self.codeType != 0: |
|
556 | 555 | self.__size += 4 + 4 + 4 * self.nCode * \ |
|
557 | 556 | numpy.ceil(self.nBaud / 32.) |
|
558 | 557 | |
|
559 | 558 | return self.__size |
|
560 | 559 | |
|
561 | 560 | def set_size(self, value): |
|
562 | 561 | |
|
563 | 562 | raise IOError("size is a property and it cannot be set, just read") |
|
564 | 563 | |
|
565 | 564 | return |
|
566 | 565 | |
|
567 | 566 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
568 | 567 | size = property(get_size, set_size) |
|
569 | 568 | |
|
570 | 569 | |
|
571 | 570 | class ProcessingHeader(Header): |
|
572 | 571 | |
|
573 | 572 | # size = None |
|
574 | 573 | dtype = None |
|
575 | 574 | blockSize = None |
|
576 | 575 | profilesPerBlock = None |
|
577 | 576 | dataBlocksPerFile = None |
|
578 | 577 | nWindows = None |
|
579 | 578 | processFlags = None |
|
580 | 579 | nCohInt = None |
|
581 | 580 | nIncohInt = None |
|
582 | 581 | totalSpectra = None |
|
583 | 582 | structure = PROCESSING_STRUCTURE |
|
584 | 583 | flag_dc = None |
|
585 | 584 | flag_cspc = None |
|
586 | 585 | |
|
587 | 586 | def __init__(self, dtype=0, blockSize=0, profilesPerBlock=0, dataBlocksPerFile=0, nWindows=0, processFlags=0, nCohInt=0, |
|
588 | 587 | nIncohInt=0, totalSpectra=0, nHeights=0, firstHeight=0, deltaHeight=0, samplesWin=0, spectraComb=0, nCode=0, |
|
589 | 588 | code=0, nBaud=None, shif_fft=False, flag_dc=False, flag_cspc=False, flag_decode=False, flag_deflip=False |
|
590 | 589 | ): |
|
591 | 590 | |
|
592 | 591 | # self.size = 0 |
|
593 | 592 | self.dtype = dtype |
|
594 | 593 | self.blockSize = blockSize |
|
595 | 594 | self.profilesPerBlock = 0 |
|
596 | 595 | self.dataBlocksPerFile = 0 |
|
597 | 596 | self.nWindows = 0 |
|
598 | 597 | self.processFlags = 0 |
|
599 | 598 | self.nCohInt = 0 |
|
600 | 599 | self.nIncohInt = 0 |
|
601 | 600 | self.totalSpectra = 0 |
|
602 | 601 | |
|
603 | 602 | self.nHeights = 0 |
|
604 | 603 | self.firstHeight = 0 |
|
605 | 604 | self.deltaHeight = 0 |
|
606 | 605 | self.samplesWin = 0 |
|
607 | 606 | self.spectraComb = 0 |
|
608 | 607 | self.nCode = None |
|
609 | 608 | self.code = None |
|
610 | 609 | self.nBaud = None |
|
611 | 610 | |
|
612 | 611 | self.shif_fft = False |
|
613 | 612 | self.flag_dc = False |
|
614 | 613 | self.flag_cspc = False |
|
615 | 614 | self.flag_decode = False |
|
616 | 615 | self.flag_deflip = False |
|
617 | 616 | self.length = 0 |
|
618 | 617 | |
|
619 | 618 | def read(self, fp): |
|
620 | 619 | self.length = 0 |
|
621 | 620 | try: |
|
622 | 621 | startFp = fp.tell() |
|
623 | 622 | except Exception as e: |
|
624 | 623 | startFp = None |
|
625 | 624 | pass |
|
626 | 625 | |
|
627 | 626 | try: |
|
628 | 627 | if hasattr(fp, 'read'): |
|
629 | 628 | header = numpy.fromfile(fp, PROCESSING_STRUCTURE, 1) |
|
630 | 629 | else: |
|
631 | 630 | header = numpy.fromstring(fp, PROCESSING_STRUCTURE, 1) |
|
632 | 631 | self.length += header.nbytes |
|
633 | 632 | except Exception as e: |
|
634 | 633 | print("ProcessingHeader: " + str(e)) |
|
635 | 634 | return 0 |
|
636 | 635 | |
|
637 | 636 | size = int(header['nSize'][0]) |
|
638 | 637 | self.dtype = int(header['nDataType'][0]) |
|
639 | 638 | self.blockSize = int(header['nSizeOfDataBlock'][0]) |
|
640 | 639 | self.profilesPerBlock = int(header['nProfilesperBlock'][0]) |
|
641 | 640 | self.dataBlocksPerFile = int(header['nDataBlocksperFile'][0]) |
|
642 | 641 | self.nWindows = int(header['nNumWindows'][0]) |
|
643 | 642 | self.processFlags = header['nProcessFlags'] |
|
644 | 643 | self.nCohInt = int(header['nCoherentIntegrations'][0]) |
|
645 | 644 | |
|
646 | 645 | self.nIncohInt = int(header['nIncoherentIntegrations'][0]) |
|
647 | 646 | self.totalSpectra = int(header['nTotalSpectra'][0]) |
|
648 | 647 | |
|
649 | 648 | try: |
|
650 | 649 | if hasattr(fp, 'read'): |
|
651 | 650 | samplingWindow = numpy.fromfile( |
|
652 | 651 | fp, SAMPLING_STRUCTURE, self.nWindows) |
|
653 | 652 | else: |
|
654 | 653 | samplingWindow = numpy.fromstring( |
|
655 | 654 | fp[self.length:], SAMPLING_STRUCTURE, self.nWindows) |
|
656 | 655 | self.length += samplingWindow.nbytes |
|
657 | 656 | except Exception as e: |
|
658 | 657 | print("ProcessingHeader: " + str(e)) |
|
659 | 658 | return 0 |
|
660 | 659 | |
|
661 | 660 | self.nHeights = int(numpy.sum(samplingWindow['nsa'])) |
|
662 | 661 | self.firstHeight = float(samplingWindow['h0'][0]) |
|
663 | 662 | self.deltaHeight = float(samplingWindow['dh'][0]) |
|
664 | 663 | self.samplesWin = samplingWindow['nsa'][0] |
|
665 | 664 | |
|
666 | 665 | try: |
|
667 | 666 | if hasattr(fp, 'read'): |
|
668 | 667 | self.spectraComb = numpy.fromfile( |
|
669 | 668 | fp, 'u1', 2 * self.totalSpectra) |
|
670 | 669 | else: |
|
671 | 670 | self.spectraComb = numpy.fromstring( |
|
672 | 671 | fp[self.length:], 'u1', 2 * self.totalSpectra) |
|
673 | 672 | self.length += self.spectraComb.nbytes |
|
674 | 673 | except Exception as e: |
|
675 | 674 | print("ProcessingHeader: " + str(e)) |
|
676 | 675 | return 0 |
|
677 | 676 | |
|
678 | 677 | if ((self.processFlags & PROCFLAG.DEFINE_PROCESS_CODE) == PROCFLAG.DEFINE_PROCESS_CODE): |
|
679 | 678 | self.nCode = int(numpy.fromfile(fp, '<u4', 1)) |
|
680 | 679 | self.nBaud = int(numpy.fromfile(fp, '<u4', 1)) |
|
681 | 680 | self.code = numpy.fromfile( |
|
682 | 681 | fp, '<f4', self.nCode * self.nBaud).reshape(self.nCode, self.nBaud) |
|
683 | 682 | |
|
684 | 683 | if ((self.processFlags & PROCFLAG.EXP_NAME_ESP) == PROCFLAG.EXP_NAME_ESP): |
|
685 | 684 | exp_name_len = int(numpy.fromfile(fp, '<u4', 1)) |
|
686 | 685 | exp_name = numpy.fromfile(fp, 'u1', exp_name_len + 1) |
|
687 | 686 | |
|
688 | 687 | if ((self.processFlags & PROCFLAG.SHIFT_FFT_DATA) == PROCFLAG.SHIFT_FFT_DATA): |
|
689 | 688 | self.shif_fft = True |
|
690 | 689 | else: |
|
691 | 690 | self.shif_fft = False |
|
692 | 691 | |
|
693 | 692 | if ((self.processFlags & PROCFLAG.SAVE_CHANNELS_DC) == PROCFLAG.SAVE_CHANNELS_DC): |
|
694 | 693 | self.flag_dc = True |
|
695 | 694 | else: |
|
696 | 695 | self.flag_dc = False |
|
697 | 696 | |
|
698 | 697 | if ((self.processFlags & PROCFLAG.DECODE_DATA) == PROCFLAG.DECODE_DATA): |
|
699 | 698 | self.flag_decode = True |
|
700 | 699 | else: |
|
701 | 700 | self.flag_decode = False |
|
702 | 701 | |
|
703 | 702 | if ((self.processFlags & PROCFLAG.DEFLIP_DATA) == PROCFLAG.DEFLIP_DATA): |
|
704 | 703 | self.flag_deflip = True |
|
705 | 704 | else: |
|
706 | 705 | self.flag_deflip = False |
|
707 | 706 | |
|
708 | 707 | nChannels = 0 |
|
709 | 708 | nPairs = 0 |
|
710 | 709 | pairList = [] |
|
711 | 710 | |
|
712 | 711 | for i in range(0, self.totalSpectra * 2, 2): |
|
713 | 712 | if self.spectraComb[i] == self.spectraComb[i + 1]: |
|
714 | 713 | nChannels = nChannels + 1 # par de canales iguales |
|
715 | 714 | else: |
|
716 | 715 | nPairs = nPairs + 1 # par de canales diferentes |
|
717 | 716 | pairList.append((self.spectraComb[i], self.spectraComb[i + 1])) |
|
718 | 717 | |
|
719 | 718 | self.flag_cspc = False |
|
720 | 719 | if nPairs > 0: |
|
721 | 720 | self.flag_cspc = True |
|
722 | 721 | |
|
723 | 722 | if startFp is not None: |
|
724 | 723 | endFp = size + startFp |
|
725 | 724 | if fp.tell() > endFp: |
|
726 | 725 | sys.stderr.write( |
|
727 | 726 | "Warning: Processing header size is lower than it has to be") |
|
728 | 727 | return 0 |
|
729 | 728 | |
|
730 | 729 | if fp.tell() < endFp: |
|
731 | 730 | sys.stderr.write( |
|
732 | 731 | "Warning: Processing header size is greater than it is considered") |
|
733 | 732 | |
|
734 | 733 | return 1 |
|
735 | 734 | |
|
736 | 735 | def write(self, fp): |
|
737 | 736 | # Clear DEFINE_PROCESS_CODE |
|
738 | 737 | self.processFlags = self.processFlags & (~PROCFLAG.DEFINE_PROCESS_CODE) |
|
739 | 738 | |
|
740 | 739 | headerTuple = (self.size, |
|
741 | 740 | self.dtype, |
|
742 | 741 | self.blockSize, |
|
743 | 742 | self.profilesPerBlock, |
|
744 | 743 | self.dataBlocksPerFile, |
|
745 | 744 | self.nWindows, |
|
746 | 745 | self.processFlags, |
|
747 | 746 | self.nCohInt, |
|
748 | 747 | self.nIncohInt, |
|
749 | 748 | self.totalSpectra) |
|
750 | 749 | |
|
751 | 750 | header = numpy.array(headerTuple, PROCESSING_STRUCTURE) |
|
752 | 751 | header.tofile(fp) |
|
753 | 752 | |
|
754 | 753 | if self.nWindows != 0: |
|
755 | 754 | sampleWindowTuple = ( |
|
756 | 755 | self.firstHeight, self.deltaHeight, self.samplesWin) |
|
757 | 756 | samplingWindow = numpy.array(sampleWindowTuple, SAMPLING_STRUCTURE) |
|
758 | 757 | samplingWindow.tofile(fp) |
|
759 | 758 | |
|
760 | 759 | if self.totalSpectra != 0: |
|
761 | 760 | # spectraComb = numpy.array([],numpy.dtype('u1')) |
|
762 | 761 | spectraComb = self.spectraComb |
|
763 | 762 | spectraComb.tofile(fp) |
|
764 | 763 | |
|
765 | 764 | # if self.processFlags & PROCFLAG.DEFINE_PROCESS_CODE == PROCFLAG.DEFINE_PROCESS_CODE: |
|
766 | 765 | # nCode = numpy.array([self.nCode], numpy.dtype('u4')) #Probar con un dato que almacene codigo, hasta el momento no se hizo la prueba |
|
767 | 766 | # nCode.tofile(fp) |
|
768 | 767 | # |
|
769 | 768 | # nBaud = numpy.array([self.nBaud], numpy.dtype('u4')) |
|
770 | 769 | # nBaud.tofile(fp) |
|
771 | 770 | # |
|
772 | 771 | # code = self.code.reshape(self.nCode*self.nBaud) |
|
773 | 772 | # code = code.astype(numpy.dtype('<f4')) |
|
774 | 773 | # code.tofile(fp) |
|
775 | 774 | |
|
776 | 775 | return 1 |
|
777 | 776 | |
|
778 | 777 | def get_size(self): |
|
779 | 778 | |
|
780 | 779 | self.__size = 40 + 12 * self.nWindows + 2 * self.totalSpectra |
|
781 | 780 | |
|
782 | 781 | # if self.processFlags & PROCFLAG.DEFINE_PROCESS_CODE == PROCFLAG.DEFINE_PROCESS_CODE: |
|
783 | 782 | # self.__size += 4 + 4 + 4*self.nCode*numpy.ceil(self.nBaud/32.) |
|
784 | 783 | # self.__size += 4 + 4 + 4 * self.nCode * self.nBaud |
|
785 | 784 | |
|
786 | 785 | return self.__size |
|
787 | 786 | |
|
788 | 787 | def set_size(self, value): |
|
789 | 788 | |
|
790 | 789 | raise IOError("size is a property and it cannot be set, just read") |
|
791 | 790 | |
|
792 | 791 | return |
|
793 | 792 | |
|
794 | 793 | size = property(get_size, set_size) |
|
795 | 794 | |
|
796 | 795 | |
|
797 | 796 | class RCfunction: |
|
798 | 797 | NONE = 0 |
|
799 | 798 | FLIP = 1 |
|
800 | 799 | CODE = 2 |
|
801 | 800 | SAMPLING = 3 |
|
802 | 801 | LIN6DIV256 = 4 |
|
803 | 802 | SYNCHRO = 5 |
|
804 | 803 | |
|
805 | 804 | |
|
806 | 805 | class nCodeType: |
|
807 | 806 | NONE = 0 |
|
808 | 807 | USERDEFINE = 1 |
|
809 | 808 | BARKER2 = 2 |
|
810 | 809 | BARKER3 = 3 |
|
811 | 810 | BARKER4 = 4 |
|
812 | 811 | BARKER5 = 5 |
|
813 | 812 | BARKER7 = 6 |
|
814 | 813 | BARKER11 = 7 |
|
815 | 814 | BARKER13 = 8 |
|
816 | 815 | AC128 = 9 |
|
817 | 816 | COMPLEMENTARYCODE2 = 10 |
|
818 | 817 | COMPLEMENTARYCODE4 = 11 |
|
819 | 818 | COMPLEMENTARYCODE8 = 12 |
|
820 | 819 | COMPLEMENTARYCODE16 = 13 |
|
821 | 820 | COMPLEMENTARYCODE32 = 14 |
|
822 | 821 | COMPLEMENTARYCODE64 = 15 |
|
823 | 822 | COMPLEMENTARYCODE128 = 16 |
|
824 | 823 | CODE_BINARY28 = 17 |
|
825 | 824 | |
|
826 | 825 | |
|
827 | 826 | class PROCFLAG: |
|
828 | 827 | |
|
829 | 828 | COHERENT_INTEGRATION = numpy.uint32(0x00000001) |
|
830 | 829 | DECODE_DATA = numpy.uint32(0x00000002) |
|
831 | 830 | SPECTRA_CALC = numpy.uint32(0x00000004) |
|
832 | 831 | INCOHERENT_INTEGRATION = numpy.uint32(0x00000008) |
|
833 | 832 | POST_COHERENT_INTEGRATION = numpy.uint32(0x00000010) |
|
834 | 833 | SHIFT_FFT_DATA = numpy.uint32(0x00000020) |
|
835 | 834 | |
|
836 | 835 | DATATYPE_CHAR = numpy.uint32(0x00000040) |
|
837 | 836 | DATATYPE_SHORT = numpy.uint32(0x00000080) |
|
838 | 837 | DATATYPE_LONG = numpy.uint32(0x00000100) |
|
839 | 838 | DATATYPE_INT64 = numpy.uint32(0x00000200) |
|
840 | 839 | DATATYPE_FLOAT = numpy.uint32(0x00000400) |
|
841 | 840 | DATATYPE_DOUBLE = numpy.uint32(0x00000800) |
|
842 | 841 | |
|
843 | 842 | DATAARRANGE_CONTIGUOUS_CH = numpy.uint32(0x00001000) |
|
844 | 843 | DATAARRANGE_CONTIGUOUS_H = numpy.uint32(0x00002000) |
|
845 | 844 | DATAARRANGE_CONTIGUOUS_P = numpy.uint32(0x00004000) |
|
846 | 845 | |
|
847 | 846 | SAVE_CHANNELS_DC = numpy.uint32(0x00008000) |
|
848 | 847 | DEFLIP_DATA = numpy.uint32(0x00010000) |
|
849 | 848 | DEFINE_PROCESS_CODE = numpy.uint32(0x00020000) |
|
850 | 849 | |
|
851 | 850 | ACQ_SYS_NATALIA = numpy.uint32(0x00040000) |
|
852 | 851 | ACQ_SYS_ECHOTEK = numpy.uint32(0x00080000) |
|
853 | 852 | ACQ_SYS_ADRXD = numpy.uint32(0x000C0000) |
|
854 | 853 | ACQ_SYS_JULIA = numpy.uint32(0x00100000) |
|
855 | 854 | ACQ_SYS_XXXXXX = numpy.uint32(0x00140000) |
|
856 | 855 | |
|
857 | 856 | EXP_NAME_ESP = numpy.uint32(0x00200000) |
|
858 | 857 | CHANNEL_NAMES_ESP = numpy.uint32(0x00400000) |
|
859 | 858 | |
|
860 | 859 | OPERATION_MASK = numpy.uint32(0x0000003F) |
|
861 | 860 | DATATYPE_MASK = numpy.uint32(0x00000FC0) |
|
862 | 861 | DATAARRANGE_MASK = numpy.uint32(0x00007000) |
|
863 | 862 | ACQ_SYS_MASK = numpy.uint32(0x001C0000) |
|
864 | 863 | |
|
865 | 864 | |
|
866 | 865 | dtype0 = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
867 | 866 | dtype1 = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
868 | 867 | dtype2 = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
869 | 868 | dtype3 = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
870 | 869 | dtype4 = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
871 | 870 | dtype5 = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
872 | 871 | |
|
873 | 872 | NUMPY_DTYPE_LIST = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5] |
|
874 | 873 | |
|
875 | 874 | PROCFLAG_DTYPE_LIST = [PROCFLAG.DATATYPE_CHAR, |
|
876 | 875 | PROCFLAG.DATATYPE_SHORT, |
|
877 | 876 | PROCFLAG.DATATYPE_LONG, |
|
878 | 877 | PROCFLAG.DATATYPE_INT64, |
|
879 | 878 | PROCFLAG.DATATYPE_FLOAT, |
|
880 | 879 | PROCFLAG.DATATYPE_DOUBLE] |
|
881 | 880 | |
|
882 | 881 | DTYPE_WIDTH = [1, 2, 4, 8, 4, 8] |
|
883 | 882 | |
|
884 | 883 | |
|
885 | 884 | def get_dtype_index(numpy_dtype): |
|
886 | 885 | |
|
887 | 886 | index = None |
|
888 | 887 | |
|
889 | 888 | for i in range(len(NUMPY_DTYPE_LIST)): |
|
890 | 889 | if numpy_dtype == NUMPY_DTYPE_LIST[i]: |
|
891 | 890 | index = i |
|
892 | 891 | break |
|
893 | 892 | |
|
894 | 893 | return index |
|
895 | 894 | |
|
896 | 895 | |
|
897 | 896 | def get_numpy_dtype(index): |
|
898 | 897 | |
|
899 | 898 | return NUMPY_DTYPE_LIST[index] |
|
900 | 899 | |
|
901 | 900 | |
|
902 | 901 | def get_procflag_dtype(index): |
|
903 | 902 | |
|
904 | 903 | return PROCFLAG_DTYPE_LIST[index] |
|
905 | 904 | |
|
906 | 905 | |
|
907 | 906 | def get_dtype_width(index): |
|
908 | 907 | |
|
909 | 908 | return DTYPE_WIDTH[index] |
@@ -1,355 +1,361 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Nov 9, 2016 |
|
3 | 3 | |
|
4 | 4 | @author: roj- LouVD |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | |
|
8 | 8 | import os |
|
9 | 9 | import sys |
|
10 | 10 | import time |
|
11 | 11 | import glob |
|
12 | 12 | import datetime |
|
13 | 13 | |
|
14 | 14 | import numpy |
|
15 | 15 | |
|
16 | 16 | import schainpy.admin |
|
17 | 17 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator |
|
18 | 18 | from schainpy.model.data.jrodata import Parameters |
|
19 | 19 | from schainpy.model.io.jroIO_base import Reader |
|
20 | 20 | from schainpy.utils import log |
|
21 | 21 | |
|
22 | 22 | FILE_HEADER_STRUCTURE = numpy.dtype([ |
|
23 | 23 | ('FMN', '<u4'), |
|
24 | 24 | ('nrec', '<u4'), |
|
25 | 25 | ('fr_offset', '<u4'), |
|
26 | 26 | ('id', '<u4'), |
|
27 | 27 | ('site', 'u1', (32,)) |
|
28 | 28 | ]) |
|
29 | 29 | |
|
30 | 30 | REC_HEADER_STRUCTURE = numpy.dtype([ |
|
31 | 31 | ('rmn', '<u4'), |
|
32 | 32 | ('rcounter', '<u4'), |
|
33 | 33 | ('nr_offset', '<u4'), |
|
34 | 34 | ('tr_offset', '<u4'), |
|
35 | 35 | ('time', '<u4'), |
|
36 | 36 | ('time_msec', '<u4'), |
|
37 | 37 | ('tag', 'u1', (32,)), |
|
38 | 38 | ('comments', 'u1', (32,)), |
|
39 | 39 | ('lat', '<f4'), |
|
40 | 40 | ('lon', '<f4'), |
|
41 | 41 | ('gps_status', '<u4'), |
|
42 | 42 | ('freq', '<u4'), |
|
43 | 43 | ('freq0', '<u4'), |
|
44 | 44 | ('nchan', '<u4'), |
|
45 | 45 | ('delta_r', '<u4'), |
|
46 | 46 | ('nranges', '<u4'), |
|
47 | 47 | ('r0', '<u4'), |
|
48 | 48 | ('prf', '<u4'), |
|
49 | 49 | ('ncoh', '<u4'), |
|
50 | 50 | ('npoints', '<u4'), |
|
51 | 51 | ('polarization', '<i4'), |
|
52 | 52 | ('rx_filter', '<u4'), |
|
53 | 53 | ('nmodes', '<u4'), |
|
54 | 54 | ('dmode_index', '<u4'), |
|
55 | 55 | ('dmode_rngcorr', '<u4'), |
|
56 | 56 | ('nrxs', '<u4'), |
|
57 | 57 | ('acf_length', '<u4'), |
|
58 | 58 | ('acf_lags', '<u4'), |
|
59 | 59 | ('sea_to_atmos', '<f4'), |
|
60 | 60 | ('sea_notch', '<u4'), |
|
61 | 61 | ('lh_sea', '<u4'), |
|
62 | 62 | ('hh_sea', '<u4'), |
|
63 | 63 | ('nbins_sea', '<u4'), |
|
64 | 64 | ('min_snr', '<f4'), |
|
65 | 65 | ('min_cc', '<f4'), |
|
66 | 66 | ('max_time_diff', '<f4') |
|
67 | 67 | ]) |
|
68 | 68 | |
|
69 | 69 | DATA_STRUCTURE = numpy.dtype([ |
|
70 | 70 | ('range', '<u4'), |
|
71 | 71 | ('status', '<u4'), |
|
72 | 72 | ('zonal', '<f4'), |
|
73 | 73 | ('meridional', '<f4'), |
|
74 | 74 | ('vertical', '<f4'), |
|
75 | 75 | ('zonal_a', '<f4'), |
|
76 | 76 | ('meridional_a', '<f4'), |
|
77 | 77 | ('corrected_fading', '<f4'), # seconds |
|
78 | 78 | ('uncorrected_fading', '<f4'), # seconds |
|
79 | 79 | ('time_diff', '<f4'), |
|
80 | 80 | ('major_axis', '<f4'), |
|
81 | 81 | ('axial_ratio', '<f4'), |
|
82 | 82 | ('orientation', '<f4'), |
|
83 | 83 | ('sea_power', '<u4'), |
|
84 | 84 | ('sea_algorithm', '<u4') |
|
85 | 85 | ]) |
|
86 | 86 | |
|
87 | 87 | |
|
88 | 88 | class BLTRParamReader(Reader, ProcessingUnit): |
|
89 | 89 | ''' |
|
90 | 90 | Boundary Layer and Tropospheric Radar (BLTR) reader, Wind velocities and SNR |
|
91 | 91 | from *.sswma files |
|
92 | 92 | ''' |
|
93 | 93 | |
|
94 | 94 | ext = '.sswma' |
|
95 | 95 | |
|
96 | 96 | def __init__(self): |
|
97 | 97 | |
|
98 | 98 | ProcessingUnit.__init__(self) |
|
99 | 99 | |
|
100 | 100 | self.dataOut = Parameters() |
|
101 | 101 | self.dataOut.timezone = 300 |
|
102 | 102 | self.counter_records = 0 |
|
103 | 103 | self.flagNoMoreFiles = 0 |
|
104 | 104 | self.isConfig = False |
|
105 | 105 | self.filename = None |
|
106 | 106 | self.status_value = 0 |
|
107 | 107 | self.datatime = datetime.datetime(1900, 1, 1) |
|
108 | 108 | self.filefmt = "*********%Y%m%d******" |
|
109 | 109 | |
|
110 | 110 | def setup(self, **kwargs): |
|
111 | 111 | |
|
112 | 112 | self.set_kwargs(**kwargs) |
|
113 | 113 | |
|
114 | 114 | if self.path is None: |
|
115 | 115 | raise ValueError("The path is not valid") |
|
116 | 116 | |
|
117 | 117 | if self.online: |
|
118 | 118 | log.log("Searching files in online mode...", self.name) |
|
119 | 119 | |
|
120 | 120 | for nTries in range(self.nTries): |
|
121 | 121 | fullpath = self.searchFilesOnLine(self.path, self.startDate, |
|
122 | 122 | self.endDate, self.expLabel, self.ext, self.walk, |
|
123 | 123 | self.filefmt, self.folderfmt) |
|
124 | 124 | try: |
|
125 | 125 | fullpath = next(fullpath) |
|
126 | 126 | except: |
|
127 | 127 | fullpath = None |
|
128 | 128 | |
|
129 | 129 | if fullpath: |
|
130 | 130 | self.fileSize = os.path.getsize(fullpath) |
|
131 | 131 | self.filename = fullpath |
|
132 | 132 | self.flagIsNewFile = 1 |
|
133 | 133 | if self.fp != None: |
|
134 | 134 | self.fp.close() |
|
135 | 135 | self.fp = self.open_file(fullpath, self.open_mode) |
|
136 | 136 | self.flagNoMoreFiles = 0 |
|
137 | 137 | break |
|
138 | 138 | |
|
139 | 139 | log.warning( |
|
140 | 140 | 'Waiting {} sec for a valid file in {}: try {} ...'.format( |
|
141 | 141 | self.delay, self.path, nTries + 1), |
|
142 | 142 | self.name) |
|
143 | 143 | time.sleep(self.delay) |
|
144 | 144 | |
|
145 | 145 | if not(fullpath): |
|
146 | 146 | raise schainpy.admin.SchainError( |
|
147 | 147 | 'There isn\'t any valid file in {}'.format(self.path)) |
|
148 | 148 | self.readFirstHeader() |
|
149 | 149 | else: |
|
150 | 150 | log.log("Searching files in {}".format(self.path), self.name) |
|
151 | 151 | self.filenameList = self.searchFilesOffLine(self.path, self.startDate, |
|
152 | 152 | self.endDate, self.expLabel, self.ext, self.walk, self.filefmt, self.folderfmt) |
|
153 | 153 | self.setNextFile() |
|
154 | 154 | |
|
155 | 155 | def checkForRealPath(self, nextFile, nextDay): |
|
156 | 156 | ''' |
|
157 | 157 | ''' |
|
158 | 158 | |
|
159 | 159 | dt = self.datatime + datetime.timedelta(1) |
|
160 | 160 | filename = '{}.{}{}'.format(self.siteFile, dt.strftime('%Y%m%d'), self.ext) |
|
161 | 161 | fullfilename = os.path.join(self.path, filename) |
|
162 | 162 | if os.path.exists(fullfilename): |
|
163 | 163 | return fullfilename, filename |
|
164 | 164 | return None, filename |
|
165 | 165 | |
|
166 | 166 | |
|
167 | 167 | def readFirstHeader(self): |
|
168 | 168 | ''' |
|
169 | 169 | ''' |
|
170 | 170 | |
|
171 | 171 | # 'peru2' ---> Piura - 'peru1' ---> Huancayo or Porcuya |
|
172 | 172 | self.siteFile = self.filename.split('/')[-1].split('.')[0] |
|
173 | 173 | self.header_file = numpy.fromfile(self.fp, FILE_HEADER_STRUCTURE, 1) |
|
174 | 174 | self.nrecords = self.header_file['nrec'][0] |
|
175 | 175 | self.counter_records = 0 |
|
176 | 176 | self.flagIsNewFile = 0 |
|
177 |
self.fileIndex += 1 |
|
|
177 | self.fileIndex += 1 | |
|
178 | 178 | |
|
179 | 179 | def readNextBlock(self): |
|
180 | 180 | |
|
181 | 181 | while True: |
|
182 | 182 | if not self.online and self.counter_records == self.nrecords: |
|
183 | 183 | self.flagIsNewFile = 1 |
|
184 | 184 | if not self.setNextFile(): |
|
185 | 185 | return 0 |
|
186 | 186 | try: |
|
187 | pointer = self.fp.tell() | |
|
187 | if self.online and self.counter_records == 0: | |
|
188 | pos = int(self.fileSize / (38512)) | |
|
189 | self.counter_records = pos*2 - 2 | |
|
190 | pointer = 38512 * (pos-1) + 48 | |
|
191 | self.fp.seek(pointer) | |
|
192 | else: | |
|
193 | pointer = self.fp.tell() | |
|
188 | 194 | self.readBlock() |
|
189 | 195 | except: |
|
190 | 196 | if self.online and self.waitDataBlock(pointer, 38512) == 1: |
|
191 | 197 | continue |
|
192 | 198 | else: |
|
193 | 199 | if not self.setNextFile(): |
|
194 | 200 | return 0 |
|
195 | 201 | |
|
196 | 202 | if (self.datatime < datetime.datetime.combine(self.startDate, self.startTime)) or \ |
|
197 | 203 | (self.datatime > datetime.datetime.combine(self.endDate, self.endTime)): |
|
198 | 204 | log.warning( |
|
199 | 205 | 'Reading Record No. {}/{} -> {} [Skipping]'.format( |
|
200 | 206 | self.counter_records, |
|
201 | 207 | self.nrecords, |
|
202 | 208 | self.datatime.ctime()), |
|
203 | 209 | 'BLTRParamReader') |
|
204 | 210 | continue |
|
205 | 211 | break |
|
206 | 212 | |
|
207 | 213 | log.log('Reading Record No. {} -> {}'.format( |
|
208 | 214 | self.counter_records, |
|
209 | 215 | self.datatime.ctime()), 'BLTRParamReader') |
|
210 | 216 | |
|
211 | 217 | return 1 |
|
212 | 218 | |
|
213 | 219 | def readBlock(self): |
|
214 | 220 | |
|
215 | 221 | pointer = self.fp.tell() |
|
216 | 222 | header_rec = numpy.fromfile(self.fp, REC_HEADER_STRUCTURE, 1) |
|
217 | 223 | self.nchannels = int(header_rec['nchan'][0] / 2) |
|
218 | 224 | self.kchan = header_rec['nrxs'][0] |
|
219 | 225 | self.nmodes = header_rec['nmodes'][0] |
|
220 | 226 | self.nranges = header_rec['nranges'][0] |
|
221 | 227 | self.fp.seek(pointer) |
|
222 | 228 | self.height = numpy.empty((self.nmodes, self.nranges)) |
|
223 | 229 | self.snr = numpy.empty((self.nmodes, int(self.nchannels), self.nranges)) |
|
224 | 230 | self.buffer = numpy.empty((self.nmodes, 3, self.nranges)) |
|
225 | 231 | self.flagDiscontinuousBlock = 0 |
|
226 | 232 | |
|
227 | 233 | for mode in range(self.nmodes): |
|
228 | 234 | self.readHeader() |
|
229 | 235 | data = self.readData() |
|
230 | 236 | self.height[mode] = (data[0] - self.correction) / 1000. |
|
231 | 237 | self.buffer[mode] = data[1] |
|
232 | 238 | self.snr[mode] = data[2] |
|
233 | 239 | |
|
234 | 240 | self.counter_records = self.counter_records + self.nmodes |
|
235 | 241 | |
|
236 | 242 | return |
|
237 | 243 | |
|
238 | 244 | def readHeader(self): |
|
239 | 245 | ''' |
|
240 | 246 | RecordHeader of BLTR rawdata file |
|
241 | 247 | ''' |
|
242 | 248 | |
|
243 | 249 | header_structure = numpy.dtype( |
|
244 | 250 | REC_HEADER_STRUCTURE.descr + [ |
|
245 | 251 | ('antenna_coord', 'f4', (2, int(self.nchannels))), |
|
246 | 252 | ('rx_gains', 'u4', (int(self.nchannels),)), |
|
247 | 253 | ('rx_analysis', 'u4', (int(self.nchannels),)) |
|
248 | 254 | ] |
|
249 | 255 | ) |
|
250 | 256 | |
|
251 | 257 | self.header_rec = numpy.fromfile(self.fp, header_structure, 1) |
|
252 | 258 | self.lat = self.header_rec['lat'][0] |
|
253 | 259 | self.lon = self.header_rec['lon'][0] |
|
254 | 260 | self.delta = self.header_rec['delta_r'][0] |
|
255 | 261 | self.correction = self.header_rec['dmode_rngcorr'][0] |
|
256 | 262 | self.imode = self.header_rec['dmode_index'][0] |
|
257 | 263 | self.antenna = self.header_rec['antenna_coord'] |
|
258 | 264 | self.rx_gains = self.header_rec['rx_gains'] |
|
259 | 265 | self.time = self.header_rec['time'][0] |
|
260 | 266 | dt = datetime.datetime.utcfromtimestamp(self.time) |
|
261 | 267 | if dt.date() > self.datatime.date(): |
|
262 | 268 | self.flagDiscontinuousBlock = 1 |
|
263 | 269 | self.datatime = dt |
|
264 | 270 | |
|
265 | 271 | def readData(self): |
|
266 | 272 | ''' |
|
267 | 273 | Reading and filtering data block record of BLTR rawdata file, |
|
268 | 274 | filtering is according to status_value. |
|
269 | 275 | |
|
270 | 276 | Input: |
|
271 | 277 | status_value - Array data is set to NAN for values that are not |
|
272 | 278 | equal to status_value |
|
273 | 279 | |
|
274 | 280 | ''' |
|
275 | 281 | self.nchannels = int(self.nchannels) |
|
276 | 282 | |
|
277 | 283 | data_structure = numpy.dtype( |
|
278 | 284 | DATA_STRUCTURE.descr + [ |
|
279 | 285 | ('rx_saturation', 'u4', (self.nchannels,)), |
|
280 | 286 | ('chan_offset', 'u4', (2 * self.nchannels,)), |
|
281 | 287 | ('rx_amp', 'u4', (self.nchannels,)), |
|
282 | 288 | ('rx_snr', 'f4', (self.nchannels,)), |
|
283 | 289 | ('cross_snr', 'f4', (self.kchan,)), |
|
284 | 290 | ('sea_power_relative', 'f4', (self.kchan,))] |
|
285 | 291 | ) |
|
286 | 292 | |
|
287 | 293 | data = numpy.fromfile(self.fp, data_structure, self.nranges) |
|
288 | 294 | |
|
289 | 295 | height = data['range'] |
|
290 | 296 | winds = numpy.array( |
|
291 | 297 | (data['zonal'], data['meridional'], data['vertical'])) |
|
292 | 298 | snr = data['rx_snr'].T |
|
293 | 299 | |
|
294 | 300 | winds[numpy.where(winds == -9999.)] = numpy.nan |
|
295 | 301 | winds[:, numpy.where(data['status'] != self.status_value)] = numpy.nan |
|
296 | 302 | snr[numpy.where(snr == -9999.)] = numpy.nan |
|
297 | 303 | snr[:, numpy.where(data['status'] != self.status_value)] = numpy.nan |
|
298 | 304 | snr = numpy.power(10, snr / 10) |
|
299 | 305 | |
|
300 | 306 | return height, winds, snr |
|
301 | 307 | |
|
302 | 308 | def set_output(self): |
|
303 | 309 | ''' |
|
304 | 310 | Storing data from databuffer to dataOut object |
|
305 | 311 | ''' |
|
306 | 312 | |
|
307 | 313 | self.dataOut.data_snr = self.snr |
|
308 | 314 | self.dataOut.height = self.height |
|
309 | 315 | self.dataOut.data = self.buffer |
|
310 | 316 | self.dataOut.utctimeInit = self.time |
|
311 | 317 | self.dataOut.utctime = self.dataOut.utctimeInit |
|
312 | 318 | self.dataOut.useLocalTime = False |
|
313 | 319 | self.dataOut.paramInterval = 157 |
|
314 | 320 | self.dataOut.site = self.siteFile |
|
315 | 321 | self.dataOut.nrecords = self.nrecords / self.nmodes |
|
316 | 322 | self.dataOut.lat = self.lat |
|
317 | 323 | self.dataOut.lon = self.lon |
|
318 | 324 | self.dataOut.channelList = list(range(self.nchannels)) |
|
319 | 325 | self.dataOut.kchan = self.kchan |
|
320 | 326 | self.dataOut.delta = self.delta |
|
321 | 327 | self.dataOut.correction = self.correction |
|
322 | 328 | self.dataOut.nmodes = self.nmodes |
|
323 | 329 | self.dataOut.imode = self.imode |
|
324 | 330 | self.dataOut.antenna = self.antenna |
|
325 | 331 | self.dataOut.rx_gains = self.rx_gains |
|
326 | 332 | self.dataOut.flagNoData = False |
|
327 | 333 | self.dataOut.flagDiscontinuousBlock = self.flagDiscontinuousBlock |
|
328 | 334 | |
|
329 | 335 | def getData(self): |
|
330 | 336 | ''' |
|
331 | 337 | Storing data from databuffer to dataOut object |
|
332 | 338 | ''' |
|
333 | 339 | if self.flagNoMoreFiles: |
|
334 | 340 | self.dataOut.flagNoData = True |
|
335 | 341 | return 0 |
|
336 | 342 | |
|
337 | 343 | if not self.readNextBlock(): |
|
338 | 344 | self.dataOut.flagNoData = True |
|
339 | 345 | return 0 |
|
340 | 346 | |
|
341 | 347 | self.set_output() |
|
342 | 348 | |
|
343 | 349 | return 1 |
|
344 | 350 | |
|
345 | 351 | def run(self, **kwargs): |
|
346 | 352 | ''' |
|
347 | 353 | ''' |
|
348 | 354 | |
|
349 | 355 | if not(self.isConfig): |
|
350 | 356 | self.setup(**kwargs) |
|
351 | 357 | self.isConfig = True |
|
352 | 358 | |
|
353 | 359 | self.getData() |
|
354 | 360 | |
|
355 | 361 | return |
General Comments 0
You need to be logged in to leave comments.
Login now