@@ -1,1068 +1,1069 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Definition of diferent Data objects for different types of data |
|
5 | """Definition of diferent Data objects for different types of data | |
6 |
|
6 | |||
7 | Here you will find the diferent data objects for the different types |
|
7 | Here you will find the diferent data objects for the different types | |
8 | of data, this data objects must be used as dataIn or dataOut objects in |
|
8 | of data, this data objects must be used as dataIn or dataOut objects in | |
9 | processing units and operations. Currently the supported data objects are: |
|
9 | processing units and operations. Currently the supported data objects are: | |
10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters |
|
10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters | |
11 | """ |
|
11 | """ | |
12 |
|
12 | |||
13 | import copy |
|
13 | import copy | |
14 | import numpy |
|
14 | import numpy | |
15 | import datetime |
|
15 | import datetime | |
16 | import json |
|
16 | import json | |
17 |
|
17 | |||
18 | import schainpy.admin |
|
18 | import schainpy.admin | |
19 | from schainpy.utils import log |
|
19 | from schainpy.utils import log | |
20 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
20 | from .jroheaderIO import SystemHeader, RadarControllerHeader | |
21 | from schainpy.model.data import _noise |
|
21 | from schainpy.model.data import _noise | |
22 |
|
22 | |||
23 |
|
23 | |||
24 | def getNumpyDtype(dataTypeCode): |
|
24 | def getNumpyDtype(dataTypeCode): | |
25 |
|
25 | |||
26 | if dataTypeCode == 0: |
|
26 | if dataTypeCode == 0: | |
27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) | |
28 | elif dataTypeCode == 1: |
|
28 | elif dataTypeCode == 1: | |
29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) | |
30 | elif dataTypeCode == 2: |
|
30 | elif dataTypeCode == 2: | |
31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) | |
32 | elif dataTypeCode == 3: |
|
32 | elif dataTypeCode == 3: | |
33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) | |
34 | elif dataTypeCode == 4: |
|
34 | elif dataTypeCode == 4: | |
35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
36 | elif dataTypeCode == 5: |
|
36 | elif dataTypeCode == 5: | |
37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) | |
38 | else: |
|
38 | else: | |
39 | raise ValueError('dataTypeCode was not defined') |
|
39 | raise ValueError('dataTypeCode was not defined') | |
40 |
|
40 | |||
41 | return numpyDtype |
|
41 | return numpyDtype | |
42 |
|
42 | |||
43 |
|
43 | |||
44 | def getDataTypeCode(numpyDtype): |
|
44 | def getDataTypeCode(numpyDtype): | |
45 |
|
45 | |||
46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): | |
47 | datatype = 0 |
|
47 | datatype = 0 | |
48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): | |
49 | datatype = 1 |
|
49 | datatype = 1 | |
50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): | |
51 | datatype = 2 |
|
51 | datatype = 2 | |
52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): | |
53 | datatype = 3 |
|
53 | datatype = 3 | |
54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): | |
55 | datatype = 4 |
|
55 | datatype = 4 | |
56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): | |
57 | datatype = 5 |
|
57 | datatype = 5 | |
58 | else: |
|
58 | else: | |
59 | datatype = None |
|
59 | datatype = None | |
60 |
|
60 | |||
61 | return datatype |
|
61 | return datatype | |
62 |
|
62 | |||
63 |
|
63 | |||
64 | def hildebrand_sekhon(data, navg): |
|
64 | def hildebrand_sekhon(data, navg): | |
65 | """ |
|
65 | """ | |
66 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
66 | This method is for the objective determination of the noise level in Doppler spectra. This | |
67 | implementation technique is based on the fact that the standard deviation of the spectral |
|
67 | implementation technique is based on the fact that the standard deviation of the spectral | |
68 | densities is equal to the mean spectral density for white Gaussian noise |
|
68 | densities is equal to the mean spectral density for white Gaussian noise | |
69 |
|
69 | |||
70 | Inputs: |
|
70 | Inputs: | |
71 | Data : heights |
|
71 | Data : heights | |
72 | navg : numbers of averages |
|
72 | navg : numbers of averages | |
73 |
|
73 | |||
74 | Return: |
|
74 | Return: | |
75 | mean : noise's level |
|
75 | mean : noise's level | |
76 | """ |
|
76 | """ | |
77 |
|
77 | |||
78 | sortdata = numpy.sort(data, axis=None) |
|
78 | sortdata = numpy.sort(data, axis=None) | |
79 | ''' |
|
79 | ''' | |
80 | lenOfData = len(sortdata) |
|
80 | lenOfData = len(sortdata) | |
81 | nums_min = lenOfData*0.2 |
|
81 | nums_min = lenOfData*0.2 | |
82 |
|
82 | |||
83 | if nums_min <= 5: |
|
83 | if nums_min <= 5: | |
84 |
|
84 | |||
85 | nums_min = 5 |
|
85 | nums_min = 5 | |
86 |
|
86 | |||
87 | sump = 0. |
|
87 | sump = 0. | |
88 | sumq = 0. |
|
88 | sumq = 0. | |
89 |
|
89 | |||
90 | j = 0 |
|
90 | j = 0 | |
91 | cont = 1 |
|
91 | cont = 1 | |
92 |
|
92 | |||
93 | while((cont == 1)and(j < lenOfData)): |
|
93 | while((cont == 1)and(j < lenOfData)): | |
94 |
|
94 | |||
95 | sump += sortdata[j] |
|
95 | sump += sortdata[j] | |
96 | sumq += sortdata[j]**2 |
|
96 | sumq += sortdata[j]**2 | |
97 |
|
97 | |||
98 | if j > nums_min: |
|
98 | if j > nums_min: | |
99 | rtest = float(j)/(j-1) + 1.0/navg |
|
99 | rtest = float(j)/(j-1) + 1.0/navg | |
100 | if ((sumq*j) > (rtest*sump**2)): |
|
100 | if ((sumq*j) > (rtest*sump**2)): | |
101 | j = j - 1 |
|
101 | j = j - 1 | |
102 | sump = sump - sortdata[j] |
|
102 | sump = sump - sortdata[j] | |
103 | sumq = sumq - sortdata[j]**2 |
|
103 | sumq = sumq - sortdata[j]**2 | |
104 | cont = 0 |
|
104 | cont = 0 | |
105 |
|
105 | |||
106 | j += 1 |
|
106 | j += 1 | |
107 |
|
107 | |||
108 | lnoise = sump / j |
|
108 | lnoise = sump / j | |
109 | ''' |
|
109 | ''' | |
110 | return _noise.hildebrand_sekhon(sortdata, navg) |
|
110 | return _noise.hildebrand_sekhon(sortdata, navg) | |
111 |
|
111 | |||
112 |
|
112 | |||
113 | class Beam: |
|
113 | class Beam: | |
114 |
|
114 | |||
115 | def __init__(self): |
|
115 | def __init__(self): | |
116 | self.codeList = [] |
|
116 | self.codeList = [] | |
117 | self.azimuthList = [] |
|
117 | self.azimuthList = [] | |
118 | self.zenithList = [] |
|
118 | self.zenithList = [] | |
119 |
|
119 | |||
120 |
|
120 | |||
121 | class GenericData(object): |
|
121 | class GenericData(object): | |
122 |
|
122 | |||
123 | flagNoData = True |
|
123 | flagNoData = True | |
124 |
|
124 | |||
125 | def copy(self, inputObj=None): |
|
125 | def copy(self, inputObj=None): | |
126 |
|
126 | |||
127 | if inputObj == None: |
|
127 | if inputObj == None: | |
128 | return copy.deepcopy(self) |
|
128 | return copy.deepcopy(self) | |
129 |
|
129 | |||
130 | for key in list(inputObj.__dict__.keys()): |
|
130 | for key in list(inputObj.__dict__.keys()): | |
131 |
|
131 | |||
132 | attribute = inputObj.__dict__[key] |
|
132 | attribute = inputObj.__dict__[key] | |
133 |
|
133 | |||
134 | # If this attribute is a tuple or list |
|
134 | # If this attribute is a tuple or list | |
135 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
135 | if type(inputObj.__dict__[key]) in (tuple, list): | |
136 | self.__dict__[key] = attribute[:] |
|
136 | self.__dict__[key] = attribute[:] | |
137 | continue |
|
137 | continue | |
138 |
|
138 | |||
139 | # If this attribute is another object or instance |
|
139 | # If this attribute is another object or instance | |
140 | if hasattr(attribute, '__dict__'): |
|
140 | if hasattr(attribute, '__dict__'): | |
141 | self.__dict__[key] = attribute.copy() |
|
141 | self.__dict__[key] = attribute.copy() | |
142 | continue |
|
142 | continue | |
143 |
|
143 | |||
144 | self.__dict__[key] = inputObj.__dict__[key] |
|
144 | self.__dict__[key] = inputObj.__dict__[key] | |
145 |
|
145 | |||
146 | def deepcopy(self): |
|
146 | def deepcopy(self): | |
147 |
|
147 | |||
148 | return copy.deepcopy(self) |
|
148 | return copy.deepcopy(self) | |
149 |
|
149 | |||
150 | def isEmpty(self): |
|
150 | def isEmpty(self): | |
151 |
|
151 | |||
152 | return self.flagNoData |
|
152 | return self.flagNoData | |
153 |
|
153 | |||
154 | def isReady(self): |
|
154 | def isReady(self): | |
155 |
|
155 | |||
156 | return not self.flagNoData |
|
156 | return not self.flagNoData | |
157 |
|
157 | |||
158 |
|
158 | |||
159 | class JROData(GenericData): |
|
159 | class JROData(GenericData): | |
160 |
|
160 | |||
161 | systemHeaderObj = SystemHeader() |
|
161 | systemHeaderObj = SystemHeader() | |
162 | radarControllerHeaderObj = RadarControllerHeader() |
|
162 | radarControllerHeaderObj = RadarControllerHeader() | |
163 | type = None |
|
163 | type = None | |
164 | datatype = None # dtype but in string |
|
164 | datatype = None # dtype but in string | |
165 | nProfiles = None |
|
165 | nProfiles = None | |
166 | heightList = None |
|
166 | heightList = None | |
167 | channelList = None |
|
167 | channelList = None | |
168 | flagDiscontinuousBlock = False |
|
168 | flagDiscontinuousBlock = False | |
169 | useLocalTime = False |
|
169 | useLocalTime = False | |
170 | utctime = None |
|
170 | utctime = None | |
171 | timeZone = None |
|
171 | timeZone = None | |
172 | dstFlag = None |
|
172 | dstFlag = None | |
173 | errorCount = None |
|
173 | errorCount = None | |
174 | blocksize = None |
|
174 | blocksize = None | |
175 | flagDecodeData = False # asumo q la data no esta decodificada |
|
175 | flagDecodeData = False # asumo q la data no esta decodificada | |
176 | flagDeflipData = False # asumo q la data no esta sin flip |
|
176 | flagDeflipData = False # asumo q la data no esta sin flip | |
177 | flagShiftFFT = False |
|
177 | flagShiftFFT = False | |
178 | nCohInt = None |
|
178 | nCohInt = None | |
179 | windowOfFilter = 1 |
|
179 | windowOfFilter = 1 | |
180 | C = 3e8 |
|
180 | C = 3e8 | |
181 | frequency = 49.92e6 |
|
181 | frequency = 49.92e6 | |
182 | realtime = False |
|
182 | realtime = False | |
183 | beacon_heiIndexList = None |
|
183 | beacon_heiIndexList = None | |
184 | last_block = None |
|
184 | last_block = None | |
185 | blocknow = None |
|
185 | blocknow = None | |
186 | azimuth = None |
|
186 | azimuth = None | |
187 | zenith = None |
|
187 | zenith = None | |
188 | beam = Beam() |
|
188 | beam = Beam() | |
189 | profileIndex = None |
|
189 | profileIndex = None | |
190 | error = None |
|
190 | error = None | |
191 | data = None |
|
191 | data = None | |
192 | nmodes = None |
|
192 | nmodes = None | |
|
193 | h0 = 0 | |||
193 | metadata_list = ['heightList', 'timeZone', 'type'] |
|
194 | metadata_list = ['heightList', 'timeZone', 'type'] | |
194 |
|
195 | |||
195 | def __str__(self): |
|
196 | def __str__(self): | |
196 |
|
197 | |||
197 | return '{} - {}'.format(self.type, self.datatime()) |
|
198 | return '{} - {}'.format(self.type, self.datatime()) | |
198 |
|
199 | |||
199 | def getNoise(self): |
|
200 | def getNoise(self): | |
200 |
|
201 | |||
201 | raise NotImplementedError |
|
202 | raise NotImplementedError | |
202 |
|
203 | |||
203 | @property |
|
204 | @property | |
204 | def nChannels(self): |
|
205 | def nChannels(self): | |
205 |
|
206 | |||
206 | return len(self.channelList) |
|
207 | return len(self.channelList) | |
207 |
|
208 | |||
208 | @property |
|
209 | @property | |
209 | def channelIndexList(self): |
|
210 | def channelIndexList(self): | |
210 |
|
211 | |||
211 | return list(range(self.nChannels)) |
|
212 | return list(range(self.nChannels)) | |
212 |
|
213 | |||
213 | @property |
|
214 | @property | |
214 | def nHeights(self): |
|
215 | def nHeights(self): | |
215 |
|
216 | |||
216 | return len(self.heightList) |
|
217 | return len(self.heightList) | |
217 |
|
218 | |||
218 | def getDeltaH(self): |
|
219 | def getDeltaH(self): | |
219 |
|
220 | |||
220 | return self.heightList[1] - self.heightList[0] |
|
221 | return self.heightList[1] - self.heightList[0] | |
221 |
|
222 | |||
222 | @property |
|
223 | @property | |
223 | def ltctime(self): |
|
224 | def ltctime(self): | |
224 |
|
225 | |||
225 | if self.useLocalTime: |
|
226 | if self.useLocalTime: | |
226 | return self.utctime - self.timeZone * 60 |
|
227 | return self.utctime - self.timeZone * 60 | |
227 |
|
228 | |||
228 | return self.utctime |
|
229 | return self.utctime | |
229 |
|
230 | |||
230 | @property |
|
231 | @property | |
231 | def datatime(self): |
|
232 | def datatime(self): | |
232 |
|
233 | |||
233 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
234 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) | |
234 | return datatimeValue |
|
235 | return datatimeValue | |
235 |
|
236 | |||
236 | def getTimeRange(self): |
|
237 | def getTimeRange(self): | |
237 |
|
238 | |||
238 | datatime = [] |
|
239 | datatime = [] | |
239 |
|
240 | |||
240 | datatime.append(self.ltctime) |
|
241 | datatime.append(self.ltctime) | |
241 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
242 | datatime.append(self.ltctime + self.timeInterval + 1) | |
242 |
|
243 | |||
243 | datatime = numpy.array(datatime) |
|
244 | datatime = numpy.array(datatime) | |
244 |
|
245 | |||
245 | return datatime |
|
246 | return datatime | |
246 |
|
247 | |||
247 | def getFmaxTimeResponse(self): |
|
248 | def getFmaxTimeResponse(self): | |
248 |
|
249 | |||
249 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
250 | period = (10**-6) * self.getDeltaH() / (0.15) | |
250 |
|
251 | |||
251 | PRF = 1. / (period * self.nCohInt) |
|
252 | PRF = 1. / (period * self.nCohInt) | |
252 |
|
253 | |||
253 | fmax = PRF |
|
254 | fmax = PRF | |
254 |
|
255 | |||
255 | return fmax |
|
256 | return fmax | |
256 |
|
257 | |||
257 | def getFmax(self): |
|
258 | def getFmax(self): | |
258 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
259 | PRF = 1. / (self.ippSeconds * self.nCohInt) | |
259 |
|
260 | |||
260 | fmax = PRF |
|
261 | fmax = PRF | |
261 | return fmax |
|
262 | return fmax | |
262 |
|
263 | |||
263 | def getVmax(self): |
|
264 | def getVmax(self): | |
264 |
|
265 | |||
265 | _lambda = self.C / self.frequency |
|
266 | _lambda = self.C / self.frequency | |
266 |
|
267 | |||
267 | vmax = self.getFmax() * _lambda / 2 |
|
268 | vmax = self.getFmax() * _lambda / 2 | |
268 |
|
269 | |||
269 | return vmax |
|
270 | return vmax | |
270 |
|
271 | |||
271 | @property |
|
272 | @property | |
272 | def ippSeconds(self): |
|
273 | def ippSeconds(self): | |
273 | ''' |
|
274 | ''' | |
274 | ''' |
|
275 | ''' | |
275 | return self.radarControllerHeaderObj.ippSeconds |
|
276 | return self.radarControllerHeaderObj.ippSeconds | |
276 |
|
277 | |||
277 | @ippSeconds.setter |
|
278 | @ippSeconds.setter | |
278 | def ippSeconds(self, ippSeconds): |
|
279 | def ippSeconds(self, ippSeconds): | |
279 | ''' |
|
280 | ''' | |
280 | ''' |
|
281 | ''' | |
281 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
282 | self.radarControllerHeaderObj.ippSeconds = ippSeconds | |
282 |
|
283 | |||
283 | @property |
|
284 | @property | |
284 | def code(self): |
|
285 | def code(self): | |
285 | ''' |
|
286 | ''' | |
286 | ''' |
|
287 | ''' | |
287 | return self.radarControllerHeaderObj.code |
|
288 | return self.radarControllerHeaderObj.code | |
288 |
|
289 | |||
289 | @code.setter |
|
290 | @code.setter | |
290 | def code(self, code): |
|
291 | def code(self, code): | |
291 | ''' |
|
292 | ''' | |
292 | ''' |
|
293 | ''' | |
293 | self.radarControllerHeaderObj.code = code |
|
294 | self.radarControllerHeaderObj.code = code | |
294 |
|
295 | |||
295 | @property |
|
296 | @property | |
296 | def nCode(self): |
|
297 | def nCode(self): | |
297 | ''' |
|
298 | ''' | |
298 | ''' |
|
299 | ''' | |
299 | return self.radarControllerHeaderObj.nCode |
|
300 | return self.radarControllerHeaderObj.nCode | |
300 |
|
301 | |||
301 | @nCode.setter |
|
302 | @nCode.setter | |
302 | def nCode(self, ncode): |
|
303 | def nCode(self, ncode): | |
303 | ''' |
|
304 | ''' | |
304 | ''' |
|
305 | ''' | |
305 | self.radarControllerHeaderObj.nCode = ncode |
|
306 | self.radarControllerHeaderObj.nCode = ncode | |
306 |
|
307 | |||
307 | @property |
|
308 | @property | |
308 | def nBaud(self): |
|
309 | def nBaud(self): | |
309 | ''' |
|
310 | ''' | |
310 | ''' |
|
311 | ''' | |
311 | return self.radarControllerHeaderObj.nBaud |
|
312 | return self.radarControllerHeaderObj.nBaud | |
312 |
|
313 | |||
313 | @nBaud.setter |
|
314 | @nBaud.setter | |
314 | def nBaud(self, nbaud): |
|
315 | def nBaud(self, nbaud): | |
315 | ''' |
|
316 | ''' | |
316 | ''' |
|
317 | ''' | |
317 | self.radarControllerHeaderObj.nBaud = nbaud |
|
318 | self.radarControllerHeaderObj.nBaud = nbaud | |
318 |
|
319 | |||
319 | @property |
|
320 | @property | |
320 | def ipp(self): |
|
321 | def ipp(self): | |
321 | ''' |
|
322 | ''' | |
322 | ''' |
|
323 | ''' | |
323 | return self.radarControllerHeaderObj.ipp |
|
324 | return self.radarControllerHeaderObj.ipp | |
324 |
|
325 | |||
325 | @ipp.setter |
|
326 | @ipp.setter | |
326 | def ipp(self, ipp): |
|
327 | def ipp(self, ipp): | |
327 | ''' |
|
328 | ''' | |
328 | ''' |
|
329 | ''' | |
329 | self.radarControllerHeaderObj.ipp = ipp |
|
330 | self.radarControllerHeaderObj.ipp = ipp | |
330 |
|
331 | |||
331 | @property |
|
332 | @property | |
332 | def metadata(self): |
|
333 | def metadata(self): | |
333 | ''' |
|
334 | ''' | |
334 | ''' |
|
335 | ''' | |
335 |
|
336 | |||
336 | return {attr: getattr(self, attr) for attr in self.metadata_list} |
|
337 | return {attr: getattr(self, attr) for attr in self.metadata_list} | |
337 |
|
338 | |||
338 |
|
339 | |||
339 | class Voltage(JROData): |
|
340 | class Voltage(JROData): | |
340 |
|
341 | |||
341 | dataPP_POW = None |
|
342 | dataPP_POW = None | |
342 | dataPP_DOP = None |
|
343 | dataPP_DOP = None | |
343 | dataPP_WIDTH = None |
|
344 | dataPP_WIDTH = None | |
344 | dataPP_SNR = None |
|
345 | dataPP_SNR = None | |
345 |
|
346 | |||
346 | def __init__(self): |
|
347 | def __init__(self): | |
347 | ''' |
|
348 | ''' | |
348 | Constructor |
|
349 | Constructor | |
349 | ''' |
|
350 | ''' | |
350 |
|
351 | |||
351 | self.useLocalTime = True |
|
352 | self.useLocalTime = True | |
352 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
353 | self.radarControllerHeaderObj = RadarControllerHeader() | |
353 | self.systemHeaderObj = SystemHeader() |
|
354 | self.systemHeaderObj = SystemHeader() | |
354 | self.type = "Voltage" |
|
355 | self.type = "Voltage" | |
355 | self.data = None |
|
356 | self.data = None | |
356 | self.nProfiles = None |
|
357 | self.nProfiles = None | |
357 | self.heightList = None |
|
358 | self.heightList = None | |
358 | self.channelList = None |
|
359 | self.channelList = None | |
359 | self.flagNoData = True |
|
360 | self.flagNoData = True | |
360 | self.flagDiscontinuousBlock = False |
|
361 | self.flagDiscontinuousBlock = False | |
361 | self.utctime = None |
|
362 | self.utctime = None | |
362 | self.timeZone = 0 |
|
363 | self.timeZone = 0 | |
363 | self.dstFlag = None |
|
364 | self.dstFlag = None | |
364 | self.errorCount = None |
|
365 | self.errorCount = None | |
365 | self.nCohInt = None |
|
366 | self.nCohInt = None | |
366 | self.blocksize = None |
|
367 | self.blocksize = None | |
367 | self.flagCohInt = False |
|
368 | self.flagCohInt = False | |
368 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
369 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
369 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
370 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
370 | self.flagShiftFFT = False |
|
371 | self.flagShiftFFT = False | |
371 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
372 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil | |
372 | self.profileIndex = 0 |
|
373 | self.profileIndex = 0 | |
373 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', |
|
374 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', | |
374 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] |
|
375 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] | |
375 |
|
376 | |||
376 | def getNoisebyHildebrand(self, channel=None): |
|
377 | def getNoisebyHildebrand(self, channel=None): | |
377 | """ |
|
378 | """ | |
378 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
379 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
379 |
|
380 | |||
380 | Return: |
|
381 | Return: | |
381 | noiselevel |
|
382 | noiselevel | |
382 | """ |
|
383 | """ | |
383 |
|
384 | |||
384 | if channel != None: |
|
385 | if channel != None: | |
385 | data = self.data[channel] |
|
386 | data = self.data[channel] | |
386 | nChannels = 1 |
|
387 | nChannels = 1 | |
387 | else: |
|
388 | else: | |
388 | data = self.data |
|
389 | data = self.data | |
389 | nChannels = self.nChannels |
|
390 | nChannels = self.nChannels | |
390 |
|
391 | |||
391 | noise = numpy.zeros(nChannels) |
|
392 | noise = numpy.zeros(nChannels) | |
392 | power = data * numpy.conjugate(data) |
|
393 | power = data * numpy.conjugate(data) | |
393 |
|
394 | |||
394 | for thisChannel in range(nChannels): |
|
395 | for thisChannel in range(nChannels): | |
395 | if nChannels == 1: |
|
396 | if nChannels == 1: | |
396 | daux = power[:].real |
|
397 | daux = power[:].real | |
397 | else: |
|
398 | else: | |
398 | daux = power[thisChannel, :].real |
|
399 | daux = power[thisChannel, :].real | |
399 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
400 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) | |
400 |
|
401 | |||
401 | return noise |
|
402 | return noise | |
402 |
|
403 | |||
403 | def getNoise(self, type=1, channel=None): |
|
404 | def getNoise(self, type=1, channel=None): | |
404 |
|
405 | |||
405 | if type == 1: |
|
406 | if type == 1: | |
406 | noise = self.getNoisebyHildebrand(channel) |
|
407 | noise = self.getNoisebyHildebrand(channel) | |
407 |
|
408 | |||
408 | return noise |
|
409 | return noise | |
409 |
|
410 | |||
410 | def getPower(self, channel=None): |
|
411 | def getPower(self, channel=None): | |
411 |
|
412 | |||
412 | if channel != None: |
|
413 | if channel != None: | |
413 | data = self.data[channel] |
|
414 | data = self.data[channel] | |
414 | else: |
|
415 | else: | |
415 | data = self.data |
|
416 | data = self.data | |
416 |
|
417 | |||
417 | power = data * numpy.conjugate(data) |
|
418 | power = data * numpy.conjugate(data) | |
418 | powerdB = 10 * numpy.log10(power.real) |
|
419 | powerdB = 10 * numpy.log10(power.real) | |
419 | powerdB = numpy.squeeze(powerdB) |
|
420 | powerdB = numpy.squeeze(powerdB) | |
420 |
|
421 | |||
421 | return powerdB |
|
422 | return powerdB | |
422 |
|
423 | |||
423 | @property |
|
424 | @property | |
424 | def timeInterval(self): |
|
425 | def timeInterval(self): | |
425 |
|
426 | |||
426 | return self.ippSeconds * self.nCohInt |
|
427 | return self.ippSeconds * self.nCohInt | |
427 |
|
428 | |||
428 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
429 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
429 |
|
430 | |||
430 |
|
431 | |||
431 | class Spectra(JROData): |
|
432 | class Spectra(JROData): | |
432 |
|
433 | |||
433 | def __init__(self): |
|
434 | def __init__(self): | |
434 | ''' |
|
435 | ''' | |
435 | Constructor |
|
436 | Constructor | |
436 | ''' |
|
437 | ''' | |
437 |
|
438 | |||
438 | self.data_dc = None |
|
439 | self.data_dc = None | |
439 | self.data_spc = None |
|
440 | self.data_spc = None | |
440 | self.data_cspc = None |
|
441 | self.data_cspc = None | |
441 | self.useLocalTime = True |
|
442 | self.useLocalTime = True | |
442 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
443 | self.radarControllerHeaderObj = RadarControllerHeader() | |
443 | self.systemHeaderObj = SystemHeader() |
|
444 | self.systemHeaderObj = SystemHeader() | |
444 | self.type = "Spectra" |
|
445 | self.type = "Spectra" | |
445 | self.timeZone = 0 |
|
446 | self.timeZone = 0 | |
446 | self.nProfiles = None |
|
447 | self.nProfiles = None | |
447 | self.heightList = None |
|
448 | self.heightList = None | |
448 | self.channelList = None |
|
449 | self.channelList = None | |
449 | self.pairsList = None |
|
450 | self.pairsList = None | |
450 | self.flagNoData = True |
|
451 | self.flagNoData = True | |
451 | self.flagDiscontinuousBlock = False |
|
452 | self.flagDiscontinuousBlock = False | |
452 | self.utctime = None |
|
453 | self.utctime = None | |
453 | self.nCohInt = None |
|
454 | self.nCohInt = None | |
454 | self.nIncohInt = None |
|
455 | self.nIncohInt = None | |
455 | self.blocksize = None |
|
456 | self.blocksize = None | |
456 | self.nFFTPoints = None |
|
457 | self.nFFTPoints = None | |
457 | self.wavelength = None |
|
458 | self.wavelength = None | |
458 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
459 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
459 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
460 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
460 | self.flagShiftFFT = False |
|
461 | self.flagShiftFFT = False | |
461 | self.ippFactor = 1 |
|
462 | self.ippFactor = 1 | |
462 | self.beacon_heiIndexList = [] |
|
463 | self.beacon_heiIndexList = [] | |
463 | self.noise_estimation = None |
|
464 | self.noise_estimation = None | |
464 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', |
|
465 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', | |
465 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles'] |
|
466 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles'] | |
466 |
|
467 | |||
467 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
468 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
468 | """ |
|
469 | """ | |
469 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
470 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
470 |
|
471 | |||
471 | Return: |
|
472 | Return: | |
472 | noiselevel |
|
473 | noiselevel | |
473 | """ |
|
474 | """ | |
474 |
|
475 | |||
475 | noise = numpy.zeros(self.nChannels) |
|
476 | noise = numpy.zeros(self.nChannels) | |
476 |
|
477 | |||
477 | for channel in range(self.nChannels): |
|
478 | for channel in range(self.nChannels): | |
478 | daux = self.data_spc[channel, |
|
479 | daux = self.data_spc[channel, | |
479 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
480 | xmin_index:xmax_index, ymin_index:ymax_index] | |
480 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
481 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) | |
481 |
|
482 | |||
482 | return noise |
|
483 | return noise | |
483 |
|
484 | |||
484 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
485 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
485 |
|
486 | |||
486 | if self.noise_estimation is not None: |
|
487 | if self.noise_estimation is not None: | |
487 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
488 | # this was estimated by getNoise Operation defined in jroproc_spectra.py | |
488 | return self.noise_estimation |
|
489 | return self.noise_estimation | |
489 | else: |
|
490 | else: | |
490 | noise = self.getNoisebyHildebrand( |
|
491 | noise = self.getNoisebyHildebrand( | |
491 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
492 | xmin_index, xmax_index, ymin_index, ymax_index) | |
492 | return noise |
|
493 | return noise | |
493 |
|
494 | |||
494 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
495 | def getFreqRangeTimeResponse(self, extrapoints=0): | |
495 |
|
496 | |||
496 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
497 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) | |
497 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
498 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 | |
498 |
|
499 | |||
499 | return freqrange |
|
500 | return freqrange | |
500 |
|
501 | |||
501 | def getAcfRange(self, extrapoints=0): |
|
502 | def getAcfRange(self, extrapoints=0): | |
502 |
|
503 | |||
503 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
504 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) | |
504 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
505 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 | |
505 |
|
506 | |||
506 | return freqrange |
|
507 | return freqrange | |
507 |
|
508 | |||
508 | def getFreqRange(self, extrapoints=0): |
|
509 | def getFreqRange(self, extrapoints=0): | |
509 |
|
510 | |||
510 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
511 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) | |
511 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
512 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 | |
512 |
|
513 | |||
513 | return freqrange |
|
514 | return freqrange | |
514 |
|
515 | |||
515 | def getVelRange(self, extrapoints=0): |
|
516 | def getVelRange(self, extrapoints=0): | |
516 |
|
517 | |||
517 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
518 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) | |
518 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
519 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) | |
519 |
|
520 | |||
520 | if self.nmodes: |
|
521 | if self.nmodes: | |
521 | return velrange/self.nmodes |
|
522 | return velrange/self.nmodes | |
522 | else: |
|
523 | else: | |
523 | return velrange |
|
524 | return velrange | |
524 |
|
525 | |||
525 | @property |
|
526 | @property | |
526 | def nPairs(self): |
|
527 | def nPairs(self): | |
527 |
|
528 | |||
528 | return len(self.pairsList) |
|
529 | return len(self.pairsList) | |
529 |
|
530 | |||
530 | @property |
|
531 | @property | |
531 | def pairsIndexList(self): |
|
532 | def pairsIndexList(self): | |
532 |
|
533 | |||
533 | return list(range(self.nPairs)) |
|
534 | return list(range(self.nPairs)) | |
534 |
|
535 | |||
535 | @property |
|
536 | @property | |
536 | def normFactor(self): |
|
537 | def normFactor(self): | |
537 |
|
538 | |||
538 | pwcode = 1 |
|
539 | pwcode = 1 | |
539 |
|
540 | |||
540 | if self.flagDecodeData: |
|
541 | if self.flagDecodeData: | |
541 | pwcode = numpy.sum(self.code[0]**2) |
|
542 | pwcode = numpy.sum(self.code[0]**2) | |
542 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
543 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter | |
543 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
544 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter | |
544 |
|
545 | |||
545 | return normFactor |
|
546 | return normFactor | |
546 |
|
547 | |||
547 | @property |
|
548 | @property | |
548 | def flag_cspc(self): |
|
549 | def flag_cspc(self): | |
549 |
|
550 | |||
550 | if self.data_cspc is None: |
|
551 | if self.data_cspc is None: | |
551 | return True |
|
552 | return True | |
552 |
|
553 | |||
553 | return False |
|
554 | return False | |
554 |
|
555 | |||
555 | @property |
|
556 | @property | |
556 | def flag_dc(self): |
|
557 | def flag_dc(self): | |
557 |
|
558 | |||
558 | if self.data_dc is None: |
|
559 | if self.data_dc is None: | |
559 | return True |
|
560 | return True | |
560 |
|
561 | |||
561 | return False |
|
562 | return False | |
562 |
|
563 | |||
563 | @property |
|
564 | @property | |
564 | def timeInterval(self): |
|
565 | def timeInterval(self): | |
565 |
|
566 | |||
566 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
567 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor | |
567 | if self.nmodes: |
|
568 | if self.nmodes: | |
568 | return self.nmodes*timeInterval |
|
569 | return self.nmodes*timeInterval | |
569 | else: |
|
570 | else: | |
570 | return timeInterval |
|
571 | return timeInterval | |
571 |
|
572 | |||
572 | def getPower(self): |
|
573 | def getPower(self): | |
573 |
|
574 | |||
574 | factor = self.normFactor |
|
575 | factor = self.normFactor | |
575 | z = self.data_spc / factor |
|
576 | z = self.data_spc / factor | |
576 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
577 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
577 | avg = numpy.average(z, axis=1) |
|
578 | avg = numpy.average(z, axis=1) | |
578 | return 10 * numpy.log10(avg) |
|
579 | return 10 * numpy.log10(avg) | |
579 |
|
580 | |||
580 | def getCoherence(self, pairsList=None, phase=False): |
|
581 | def getCoherence(self, pairsList=None, phase=False): | |
581 |
|
582 | |||
582 | z = [] |
|
583 | z = [] | |
583 | if pairsList is None: |
|
584 | if pairsList is None: | |
584 | pairsIndexList = self.pairsIndexList |
|
585 | pairsIndexList = self.pairsIndexList | |
585 | else: |
|
586 | else: | |
586 | pairsIndexList = [] |
|
587 | pairsIndexList = [] | |
587 | for pair in pairsList: |
|
588 | for pair in pairsList: | |
588 | if pair not in self.pairsList: |
|
589 | if pair not in self.pairsList: | |
589 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
590 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( | |
590 | pair)) |
|
591 | pair)) | |
591 | pairsIndexList.append(self.pairsList.index(pair)) |
|
592 | pairsIndexList.append(self.pairsList.index(pair)) | |
592 | for i in range(len(pairsIndexList)): |
|
593 | for i in range(len(pairsIndexList)): | |
593 | pair = self.pairsList[pairsIndexList[i]] |
|
594 | pair = self.pairsList[pairsIndexList[i]] | |
594 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
595 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) | |
595 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
596 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) | |
596 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
597 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) | |
597 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
598 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) | |
598 | if phase: |
|
599 | if phase: | |
599 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
600 | data = numpy.arctan2(avgcoherenceComplex.imag, | |
600 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
601 | avgcoherenceComplex.real) * 180 / numpy.pi | |
601 | else: |
|
602 | else: | |
602 | data = numpy.abs(avgcoherenceComplex) |
|
603 | data = numpy.abs(avgcoherenceComplex) | |
603 |
|
604 | |||
604 | z.append(data) |
|
605 | z.append(data) | |
605 |
|
606 | |||
606 | return numpy.array(z) |
|
607 | return numpy.array(z) | |
607 |
|
608 | |||
608 | def setValue(self, value): |
|
609 | def setValue(self, value): | |
609 |
|
610 | |||
610 | print("This property should not be initialized") |
|
611 | print("This property should not be initialized") | |
611 |
|
612 | |||
612 | return |
|
613 | return | |
613 |
|
614 | |||
614 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
615 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") | |
615 |
|
616 | |||
616 |
|
617 | |||
617 | class SpectraHeis(Spectra): |
|
618 | class SpectraHeis(Spectra): | |
618 |
|
619 | |||
619 | def __init__(self): |
|
620 | def __init__(self): | |
620 |
|
621 | |||
621 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
622 | self.radarControllerHeaderObj = RadarControllerHeader() | |
622 | self.systemHeaderObj = SystemHeader() |
|
623 | self.systemHeaderObj = SystemHeader() | |
623 | self.type = "SpectraHeis" |
|
624 | self.type = "SpectraHeis" | |
624 | self.nProfiles = None |
|
625 | self.nProfiles = None | |
625 | self.heightList = None |
|
626 | self.heightList = None | |
626 | self.channelList = None |
|
627 | self.channelList = None | |
627 | self.flagNoData = True |
|
628 | self.flagNoData = True | |
628 | self.flagDiscontinuousBlock = False |
|
629 | self.flagDiscontinuousBlock = False | |
629 | self.utctime = None |
|
630 | self.utctime = None | |
630 | self.blocksize = None |
|
631 | self.blocksize = None | |
631 | self.profileIndex = 0 |
|
632 | self.profileIndex = 0 | |
632 | self.nCohInt = 1 |
|
633 | self.nCohInt = 1 | |
633 | self.nIncohInt = 1 |
|
634 | self.nIncohInt = 1 | |
634 |
|
635 | |||
635 | @property |
|
636 | @property | |
636 | def normFactor(self): |
|
637 | def normFactor(self): | |
637 | pwcode = 1 |
|
638 | pwcode = 1 | |
638 | if self.flagDecodeData: |
|
639 | if self.flagDecodeData: | |
639 | pwcode = numpy.sum(self.code[0]**2) |
|
640 | pwcode = numpy.sum(self.code[0]**2) | |
640 |
|
641 | |||
641 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
642 | normFactor = self.nIncohInt * self.nCohInt * pwcode | |
642 |
|
643 | |||
643 | return normFactor |
|
644 | return normFactor | |
644 |
|
645 | |||
645 | @property |
|
646 | @property | |
646 | def timeInterval(self): |
|
647 | def timeInterval(self): | |
647 |
|
648 | |||
648 | return self.ippSeconds * self.nCohInt * self.nIncohInt |
|
649 | return self.ippSeconds * self.nCohInt * self.nIncohInt | |
649 |
|
650 | |||
650 |
|
651 | |||
651 | class Fits(JROData): |
|
652 | class Fits(JROData): | |
652 |
|
653 | |||
653 | def __init__(self): |
|
654 | def __init__(self): | |
654 |
|
655 | |||
655 | self.type = "Fits" |
|
656 | self.type = "Fits" | |
656 | self.nProfiles = None |
|
657 | self.nProfiles = None | |
657 | self.heightList = None |
|
658 | self.heightList = None | |
658 | self.channelList = None |
|
659 | self.channelList = None | |
659 | self.flagNoData = True |
|
660 | self.flagNoData = True | |
660 | self.utctime = None |
|
661 | self.utctime = None | |
661 | self.nCohInt = 1 |
|
662 | self.nCohInt = 1 | |
662 | self.nIncohInt = 1 |
|
663 | self.nIncohInt = 1 | |
663 | self.useLocalTime = True |
|
664 | self.useLocalTime = True | |
664 | self.profileIndex = 0 |
|
665 | self.profileIndex = 0 | |
665 | self.timeZone = 0 |
|
666 | self.timeZone = 0 | |
666 |
|
667 | |||
667 | def getTimeRange(self): |
|
668 | def getTimeRange(self): | |
668 |
|
669 | |||
669 | datatime = [] |
|
670 | datatime = [] | |
670 |
|
671 | |||
671 | datatime.append(self.ltctime) |
|
672 | datatime.append(self.ltctime) | |
672 | datatime.append(self.ltctime + self.timeInterval) |
|
673 | datatime.append(self.ltctime + self.timeInterval) | |
673 |
|
674 | |||
674 | datatime = numpy.array(datatime) |
|
675 | datatime = numpy.array(datatime) | |
675 |
|
676 | |||
676 | return datatime |
|
677 | return datatime | |
677 |
|
678 | |||
678 | def getChannelIndexList(self): |
|
679 | def getChannelIndexList(self): | |
679 |
|
680 | |||
680 | return list(range(self.nChannels)) |
|
681 | return list(range(self.nChannels)) | |
681 |
|
682 | |||
682 | def getNoise(self, type=1): |
|
683 | def getNoise(self, type=1): | |
683 |
|
684 | |||
684 |
|
685 | |||
685 | if type == 1: |
|
686 | if type == 1: | |
686 | noise = self.getNoisebyHildebrand() |
|
687 | noise = self.getNoisebyHildebrand() | |
687 |
|
688 | |||
688 | if type == 2: |
|
689 | if type == 2: | |
689 | noise = self.getNoisebySort() |
|
690 | noise = self.getNoisebySort() | |
690 |
|
691 | |||
691 | if type == 3: |
|
692 | if type == 3: | |
692 | noise = self.getNoisebyWindow() |
|
693 | noise = self.getNoisebyWindow() | |
693 |
|
694 | |||
694 | return noise |
|
695 | return noise | |
695 |
|
696 | |||
696 | @property |
|
697 | @property | |
697 | def timeInterval(self): |
|
698 | def timeInterval(self): | |
698 |
|
699 | |||
699 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
700 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt | |
700 |
|
701 | |||
701 | return timeInterval |
|
702 | return timeInterval | |
702 |
|
703 | |||
703 | @property |
|
704 | @property | |
704 | def ippSeconds(self): |
|
705 | def ippSeconds(self): | |
705 | ''' |
|
706 | ''' | |
706 | ''' |
|
707 | ''' | |
707 | return self.ipp_sec |
|
708 | return self.ipp_sec | |
708 |
|
709 | |||
709 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
710 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
710 |
|
711 | |||
711 |
|
712 | |||
712 | class Correlation(JROData): |
|
713 | class Correlation(JROData): | |
713 |
|
714 | |||
714 | def __init__(self): |
|
715 | def __init__(self): | |
715 | ''' |
|
716 | ''' | |
716 | Constructor |
|
717 | Constructor | |
717 | ''' |
|
718 | ''' | |
718 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
719 | self.radarControllerHeaderObj = RadarControllerHeader() | |
719 | self.systemHeaderObj = SystemHeader() |
|
720 | self.systemHeaderObj = SystemHeader() | |
720 | self.type = "Correlation" |
|
721 | self.type = "Correlation" | |
721 | self.data = None |
|
722 | self.data = None | |
722 | self.dtype = None |
|
723 | self.dtype = None | |
723 | self.nProfiles = None |
|
724 | self.nProfiles = None | |
724 | self.heightList = None |
|
725 | self.heightList = None | |
725 | self.channelList = None |
|
726 | self.channelList = None | |
726 | self.flagNoData = True |
|
727 | self.flagNoData = True | |
727 | self.flagDiscontinuousBlock = False |
|
728 | self.flagDiscontinuousBlock = False | |
728 | self.utctime = None |
|
729 | self.utctime = None | |
729 | self.timeZone = 0 |
|
730 | self.timeZone = 0 | |
730 | self.dstFlag = None |
|
731 | self.dstFlag = None | |
731 | self.errorCount = None |
|
732 | self.errorCount = None | |
732 | self.blocksize = None |
|
733 | self.blocksize = None | |
733 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
734 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
734 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
735 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
735 | self.pairsList = None |
|
736 | self.pairsList = None | |
736 | self.nPoints = None |
|
737 | self.nPoints = None | |
737 |
|
738 | |||
738 | def getPairsList(self): |
|
739 | def getPairsList(self): | |
739 |
|
740 | |||
740 | return self.pairsList |
|
741 | return self.pairsList | |
741 |
|
742 | |||
742 | def getNoise(self, mode=2): |
|
743 | def getNoise(self, mode=2): | |
743 |
|
744 | |||
744 | indR = numpy.where(self.lagR == 0)[0][0] |
|
745 | indR = numpy.where(self.lagR == 0)[0][0] | |
745 | indT = numpy.where(self.lagT == 0)[0][0] |
|
746 | indT = numpy.where(self.lagT == 0)[0][0] | |
746 |
|
747 | |||
747 | jspectra0 = self.data_corr[:, :, indR, :] |
|
748 | jspectra0 = self.data_corr[:, :, indR, :] | |
748 | jspectra = copy.copy(jspectra0) |
|
749 | jspectra = copy.copy(jspectra0) | |
749 |
|
750 | |||
750 | num_chan = jspectra.shape[0] |
|
751 | num_chan = jspectra.shape[0] | |
751 | num_hei = jspectra.shape[2] |
|
752 | num_hei = jspectra.shape[2] | |
752 |
|
753 | |||
753 | freq_dc = jspectra.shape[1] / 2 |
|
754 | freq_dc = jspectra.shape[1] / 2 | |
754 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
755 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
755 |
|
756 | |||
756 | if ind_vel[0] < 0: |
|
757 | if ind_vel[0] < 0: | |
757 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
758 | ind_vel[list(range(0, 1))] = ind_vel[list( | |
758 | range(0, 1))] + self.num_prof |
|
759 | range(0, 1))] + self.num_prof | |
759 |
|
760 | |||
760 | if mode == 1: |
|
761 | if mode == 1: | |
761 | jspectra[:, freq_dc, :] = ( |
|
762 | jspectra[:, freq_dc, :] = ( | |
762 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
763 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |
763 |
|
764 | |||
764 | if mode == 2: |
|
765 | if mode == 2: | |
765 |
|
766 | |||
766 | vel = numpy.array([-2, -1, 1, 2]) |
|
767 | vel = numpy.array([-2, -1, 1, 2]) | |
767 | xx = numpy.zeros([4, 4]) |
|
768 | xx = numpy.zeros([4, 4]) | |
768 |
|
769 | |||
769 | for fil in range(4): |
|
770 | for fil in range(4): | |
770 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
771 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |
771 |
|
772 | |||
772 | xx_inv = numpy.linalg.inv(xx) |
|
773 | xx_inv = numpy.linalg.inv(xx) | |
773 | xx_aux = xx_inv[0, :] |
|
774 | xx_aux = xx_inv[0, :] | |
774 |
|
775 | |||
775 | for ich in range(num_chan): |
|
776 | for ich in range(num_chan): | |
776 | yy = jspectra[ich, ind_vel, :] |
|
777 | yy = jspectra[ich, ind_vel, :] | |
777 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
778 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |
778 |
|
779 | |||
779 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
780 | junkid = jspectra[ich, freq_dc, :] <= 0 | |
780 | cjunkid = sum(junkid) |
|
781 | cjunkid = sum(junkid) | |
781 |
|
782 | |||
782 | if cjunkid.any(): |
|
783 | if cjunkid.any(): | |
783 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
784 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |
784 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
785 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |
785 |
|
786 | |||
786 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
787 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] | |
787 |
|
788 | |||
788 | return noise |
|
789 | return noise | |
789 |
|
790 | |||
790 | @property |
|
791 | @property | |
791 | def timeInterval(self): |
|
792 | def timeInterval(self): | |
792 |
|
793 | |||
793 | return self.ippSeconds * self.nCohInt * self.nProfiles |
|
794 | return self.ippSeconds * self.nCohInt * self.nProfiles | |
794 |
|
795 | |||
795 | def splitFunctions(self): |
|
796 | def splitFunctions(self): | |
796 |
|
797 | |||
797 | pairsList = self.pairsList |
|
798 | pairsList = self.pairsList | |
798 | ccf_pairs = [] |
|
799 | ccf_pairs = [] | |
799 | acf_pairs = [] |
|
800 | acf_pairs = [] | |
800 | ccf_ind = [] |
|
801 | ccf_ind = [] | |
801 | acf_ind = [] |
|
802 | acf_ind = [] | |
802 | for l in range(len(pairsList)): |
|
803 | for l in range(len(pairsList)): | |
803 | chan0 = pairsList[l][0] |
|
804 | chan0 = pairsList[l][0] | |
804 | chan1 = pairsList[l][1] |
|
805 | chan1 = pairsList[l][1] | |
805 |
|
806 | |||
806 | # Obteniendo pares de Autocorrelacion |
|
807 | # Obteniendo pares de Autocorrelacion | |
807 | if chan0 == chan1: |
|
808 | if chan0 == chan1: | |
808 | acf_pairs.append(chan0) |
|
809 | acf_pairs.append(chan0) | |
809 | acf_ind.append(l) |
|
810 | acf_ind.append(l) | |
810 | else: |
|
811 | else: | |
811 | ccf_pairs.append(pairsList[l]) |
|
812 | ccf_pairs.append(pairsList[l]) | |
812 | ccf_ind.append(l) |
|
813 | ccf_ind.append(l) | |
813 |
|
814 | |||
814 | data_acf = self.data_cf[acf_ind] |
|
815 | data_acf = self.data_cf[acf_ind] | |
815 | data_ccf = self.data_cf[ccf_ind] |
|
816 | data_ccf = self.data_cf[ccf_ind] | |
816 |
|
817 | |||
817 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
818 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf | |
818 |
|
819 | |||
819 | @property |
|
820 | @property | |
820 | def normFactor(self): |
|
821 | def normFactor(self): | |
821 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
822 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() | |
822 | acf_pairs = numpy.array(acf_pairs) |
|
823 | acf_pairs = numpy.array(acf_pairs) | |
823 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
824 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) | |
824 |
|
825 | |||
825 | for p in range(self.nPairs): |
|
826 | for p in range(self.nPairs): | |
826 | pair = self.pairsList[p] |
|
827 | pair = self.pairsList[p] | |
827 |
|
828 | |||
828 | ch0 = pair[0] |
|
829 | ch0 = pair[0] | |
829 | ch1 = pair[1] |
|
830 | ch1 = pair[1] | |
830 |
|
831 | |||
831 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
832 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) | |
832 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
833 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) | |
833 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
834 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) | |
834 |
|
835 | |||
835 | return normFactor |
|
836 | return normFactor | |
836 |
|
837 | |||
837 |
|
838 | |||
838 | class Parameters(Spectra): |
|
839 | class Parameters(Spectra): | |
839 |
|
840 | |||
840 | groupList = None # List of Pairs, Groups, etc |
|
841 | groupList = None # List of Pairs, Groups, etc | |
841 | data_param = None # Parameters obtained |
|
842 | data_param = None # Parameters obtained | |
842 | data_pre = None # Data Pre Parametrization |
|
843 | data_pre = None # Data Pre Parametrization | |
843 | data_SNR = None # Signal to Noise Ratio |
|
844 | data_SNR = None # Signal to Noise Ratio | |
844 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
845 | abscissaList = None # Abscissa, can be velocities, lags or time | |
845 | utctimeInit = None # Initial UTC time |
|
846 | utctimeInit = None # Initial UTC time | |
846 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
847 | paramInterval = None # Time interval to calculate Parameters in seconds | |
847 | useLocalTime = True |
|
848 | useLocalTime = True | |
848 | # Fitting |
|
849 | # Fitting | |
849 | data_error = None # Error of the estimation |
|
850 | data_error = None # Error of the estimation | |
850 | constants = None |
|
851 | constants = None | |
851 | library = None |
|
852 | library = None | |
852 | # Output signal |
|
853 | # Output signal | |
853 | outputInterval = None # Time interval to calculate output signal in seconds |
|
854 | outputInterval = None # Time interval to calculate output signal in seconds | |
854 | data_output = None # Out signal |
|
855 | data_output = None # Out signal | |
855 | nAvg = None |
|
856 | nAvg = None | |
856 | noise_estimation = None |
|
857 | noise_estimation = None | |
857 | GauSPC = None # Fit gaussian SPC |
|
858 | GauSPC = None # Fit gaussian SPC | |
858 |
|
859 | |||
859 | def __init__(self): |
|
860 | def __init__(self): | |
860 | ''' |
|
861 | ''' | |
861 | Constructor |
|
862 | Constructor | |
862 | ''' |
|
863 | ''' | |
863 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
864 | self.radarControllerHeaderObj = RadarControllerHeader() | |
864 | self.systemHeaderObj = SystemHeader() |
|
865 | self.systemHeaderObj = SystemHeader() | |
865 | self.type = "Parameters" |
|
866 | self.type = "Parameters" | |
866 | self.timeZone = 0 |
|
867 | self.timeZone = 0 | |
867 |
|
868 | |||
868 | def getTimeRange1(self, interval): |
|
869 | def getTimeRange1(self, interval): | |
869 |
|
870 | |||
870 | datatime = [] |
|
871 | datatime = [] | |
871 |
|
872 | |||
872 | if self.useLocalTime: |
|
873 | if self.useLocalTime: | |
873 | time1 = self.utctimeInit - self.timeZone * 60 |
|
874 | time1 = self.utctimeInit - self.timeZone * 60 | |
874 | else: |
|
875 | else: | |
875 | time1 = self.utctimeInit |
|
876 | time1 = self.utctimeInit | |
876 |
|
877 | |||
877 | datatime.append(time1) |
|
878 | datatime.append(time1) | |
878 | datatime.append(time1 + interval) |
|
879 | datatime.append(time1 + interval) | |
879 | datatime = numpy.array(datatime) |
|
880 | datatime = numpy.array(datatime) | |
880 |
|
881 | |||
881 | return datatime |
|
882 | return datatime | |
882 |
|
883 | |||
883 | @property |
|
884 | @property | |
884 | def timeInterval(self): |
|
885 | def timeInterval(self): | |
885 |
|
886 | |||
886 | if hasattr(self, 'timeInterval1'): |
|
887 | if hasattr(self, 'timeInterval1'): | |
887 | return self.timeInterval1 |
|
888 | return self.timeInterval1 | |
888 | else: |
|
889 | else: | |
889 | return self.paramInterval |
|
890 | return self.paramInterval | |
890 |
|
891 | |||
891 | def setValue(self, value): |
|
892 | def setValue(self, value): | |
892 |
|
893 | |||
893 | print("This property should not be initialized") |
|
894 | print("This property should not be initialized") | |
894 |
|
895 | |||
895 | return |
|
896 | return | |
896 |
|
897 | |||
897 | def getNoise(self): |
|
898 | def getNoise(self): | |
898 |
|
899 | |||
899 | return self.spc_noise |
|
900 | return self.spc_noise | |
900 |
|
901 | |||
901 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
902 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") | |
902 |
|
903 | |||
903 |
|
904 | |||
904 | class PlotterData(object): |
|
905 | class PlotterData(object): | |
905 | ''' |
|
906 | ''' | |
906 | Object to hold data to be plotted |
|
907 | Object to hold data to be plotted | |
907 | ''' |
|
908 | ''' | |
908 |
|
909 | |||
909 | MAXNUMX = 200 |
|
910 | MAXNUMX = 200 | |
910 | MAXNUMY = 200 |
|
911 | MAXNUMY = 200 | |
911 |
|
912 | |||
912 | def __init__(self, code, exp_code, localtime=True): |
|
913 | def __init__(self, code, exp_code, localtime=True): | |
913 |
|
914 | |||
914 | self.key = code |
|
915 | self.key = code | |
915 | self.exp_code = exp_code |
|
916 | self.exp_code = exp_code | |
916 | self.ready = False |
|
917 | self.ready = False | |
917 | self.flagNoData = False |
|
918 | self.flagNoData = False | |
918 | self.localtime = localtime |
|
919 | self.localtime = localtime | |
919 | self.data = {} |
|
920 | self.data = {} | |
920 | self.meta = {} |
|
921 | self.meta = {} | |
921 | self.__heights = [] |
|
922 | self.__heights = [] | |
922 |
|
923 | |||
923 | def __str__(self): |
|
924 | def __str__(self): | |
924 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
925 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] | |
925 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) |
|
926 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) | |
926 |
|
927 | |||
927 | def __len__(self): |
|
928 | def __len__(self): | |
928 | return len(self.data) |
|
929 | return len(self.data) | |
929 |
|
930 | |||
930 | def __getitem__(self, key): |
|
931 | def __getitem__(self, key): | |
931 | if isinstance(key, int): |
|
932 | if isinstance(key, int): | |
932 | return self.data[self.times[key]] |
|
933 | return self.data[self.times[key]] | |
933 | elif isinstance(key, str): |
|
934 | elif isinstance(key, str): | |
934 | ret = numpy.array([self.data[x][key] for x in self.times]) |
|
935 | ret = numpy.array([self.data[x][key] for x in self.times]) | |
935 | if ret.ndim > 1: |
|
936 | if ret.ndim > 1: | |
936 | ret = numpy.swapaxes(ret, 0, 1) |
|
937 | ret = numpy.swapaxes(ret, 0, 1) | |
937 | return ret |
|
938 | return ret | |
938 |
|
939 | |||
939 | def __contains__(self, key): |
|
940 | def __contains__(self, key): | |
940 | return key in self.data[self.min_time] |
|
941 | return key in self.data[self.min_time] | |
941 |
|
942 | |||
942 | def setup(self): |
|
943 | def setup(self): | |
943 | ''' |
|
944 | ''' | |
944 | Configure object |
|
945 | Configure object | |
945 | ''' |
|
946 | ''' | |
946 | self.type = '' |
|
947 | self.type = '' | |
947 | self.ready = False |
|
948 | self.ready = False | |
948 | del self.data |
|
949 | del self.data | |
949 | self.data = {} |
|
950 | self.data = {} | |
950 | self.__heights = [] |
|
951 | self.__heights = [] | |
951 | self.__all_heights = set() |
|
952 | self.__all_heights = set() | |
952 |
|
953 | |||
953 | def shape(self, key): |
|
954 | def shape(self, key): | |
954 | ''' |
|
955 | ''' | |
955 | Get the shape of the one-element data for the given key |
|
956 | Get the shape of the one-element data for the given key | |
956 | ''' |
|
957 | ''' | |
957 |
|
958 | |||
958 | if len(self.data[self.min_time][key]): |
|
959 | if len(self.data[self.min_time][key]): | |
959 | return self.data[self.min_time][key].shape |
|
960 | return self.data[self.min_time][key].shape | |
960 | return (0,) |
|
961 | return (0,) | |
961 |
|
962 | |||
962 | def update(self, data, tm, meta={}): |
|
963 | def update(self, data, tm, meta={}): | |
963 | ''' |
|
964 | ''' | |
964 | Update data object with new dataOut |
|
965 | Update data object with new dataOut | |
965 | ''' |
|
966 | ''' | |
966 |
|
967 | |||
967 | self.data[tm] = data |
|
968 | self.data[tm] = data | |
968 |
|
969 | |||
969 | for key, value in meta.items(): |
|
970 | for key, value in meta.items(): | |
970 | setattr(self, key, value) |
|
971 | setattr(self, key, value) | |
971 |
|
972 | |||
972 | def normalize_heights(self): |
|
973 | def normalize_heights(self): | |
973 | ''' |
|
974 | ''' | |
974 | Ensure same-dimension of the data for different heighList |
|
975 | Ensure same-dimension of the data for different heighList | |
975 | ''' |
|
976 | ''' | |
976 |
|
977 | |||
977 | H = numpy.array(list(self.__all_heights)) |
|
978 | H = numpy.array(list(self.__all_heights)) | |
978 | H.sort() |
|
979 | H.sort() | |
979 | for key in self.data: |
|
980 | for key in self.data: | |
980 | shape = self.shape(key)[:-1] + H.shape |
|
981 | shape = self.shape(key)[:-1] + H.shape | |
981 | for tm, obj in list(self.data[key].items()): |
|
982 | for tm, obj in list(self.data[key].items()): | |
982 | h = self.__heights[self.times.tolist().index(tm)] |
|
983 | h = self.__heights[self.times.tolist().index(tm)] | |
983 | if H.size == h.size: |
|
984 | if H.size == h.size: | |
984 | continue |
|
985 | continue | |
985 | index = numpy.where(numpy.in1d(H, h))[0] |
|
986 | index = numpy.where(numpy.in1d(H, h))[0] | |
986 | dummy = numpy.zeros(shape) + numpy.nan |
|
987 | dummy = numpy.zeros(shape) + numpy.nan | |
987 | if len(shape) == 2: |
|
988 | if len(shape) == 2: | |
988 | dummy[:, index] = obj |
|
989 | dummy[:, index] = obj | |
989 | else: |
|
990 | else: | |
990 | dummy[index] = obj |
|
991 | dummy[index] = obj | |
991 | self.data[key][tm] = dummy |
|
992 | self.data[key][tm] = dummy | |
992 |
|
993 | |||
993 | self.__heights = [H for tm in self.times] |
|
994 | self.__heights = [H for tm in self.times] | |
994 |
|
995 | |||
995 | def jsonify(self, tm, plot_name, plot_type, decimate=False): |
|
996 | def jsonify(self, tm, plot_name, plot_type, decimate=False): | |
996 | ''' |
|
997 | ''' | |
997 | Convert data to json |
|
998 | Convert data to json | |
998 | ''' |
|
999 | ''' | |
999 |
|
1000 | |||
1000 | meta = {} |
|
1001 | meta = {} | |
1001 | meta['xrange'] = [] |
|
1002 | meta['xrange'] = [] | |
1002 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 |
|
1003 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 | |
1003 | tmp = self.data[tm][self.key] |
|
1004 | tmp = self.data[tm][self.key] | |
1004 | shape = tmp.shape |
|
1005 | shape = tmp.shape | |
1005 | if len(shape) == 2: |
|
1006 | if len(shape) == 2: | |
1006 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) |
|
1007 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) | |
1007 | elif len(shape) == 3: |
|
1008 | elif len(shape) == 3: | |
1008 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 |
|
1009 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 | |
1009 | data = self.roundFloats( |
|
1010 | data = self.roundFloats( | |
1010 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) |
|
1011 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) | |
1011 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1012 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) | |
1012 | else: |
|
1013 | else: | |
1013 | data = self.roundFloats(self.data[tm][self.key].tolist()) |
|
1014 | data = self.roundFloats(self.data[tm][self.key].tolist()) | |
1014 |
|
1015 | |||
1015 | ret = { |
|
1016 | ret = { | |
1016 | 'plot': plot_name, |
|
1017 | 'plot': plot_name, | |
1017 | 'code': self.exp_code, |
|
1018 | 'code': self.exp_code, | |
1018 | 'time': float(tm), |
|
1019 | 'time': float(tm), | |
1019 | 'data': data, |
|
1020 | 'data': data, | |
1020 | } |
|
1021 | } | |
1021 | meta['type'] = plot_type |
|
1022 | meta['type'] = plot_type | |
1022 | meta['interval'] = float(self.interval) |
|
1023 | meta['interval'] = float(self.interval) | |
1023 | meta['localtime'] = self.localtime |
|
1024 | meta['localtime'] = self.localtime | |
1024 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) |
|
1025 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) | |
1025 | meta.update(self.meta) |
|
1026 | meta.update(self.meta) | |
1026 | ret['metadata'] = meta |
|
1027 | ret['metadata'] = meta | |
1027 | return json.dumps(ret) |
|
1028 | return json.dumps(ret) | |
1028 |
|
1029 | |||
1029 | @property |
|
1030 | @property | |
1030 | def times(self): |
|
1031 | def times(self): | |
1031 | ''' |
|
1032 | ''' | |
1032 | Return the list of times of the current data |
|
1033 | Return the list of times of the current data | |
1033 | ''' |
|
1034 | ''' | |
1034 |
|
1035 | |||
1035 | ret = [t for t in self.data] |
|
1036 | ret = [t for t in self.data] | |
1036 | ret.sort() |
|
1037 | ret.sort() | |
1037 | return numpy.array(ret) |
|
1038 | return numpy.array(ret) | |
1038 |
|
1039 | |||
1039 | @property |
|
1040 | @property | |
1040 | def min_time(self): |
|
1041 | def min_time(self): | |
1041 | ''' |
|
1042 | ''' | |
1042 | Return the minimun time value |
|
1043 | Return the minimun time value | |
1043 | ''' |
|
1044 | ''' | |
1044 |
|
1045 | |||
1045 | return self.times[0] |
|
1046 | return self.times[0] | |
1046 |
|
1047 | |||
1047 | @property |
|
1048 | @property | |
1048 | def max_time(self): |
|
1049 | def max_time(self): | |
1049 | ''' |
|
1050 | ''' | |
1050 | Return the maximun time value |
|
1051 | Return the maximun time value | |
1051 | ''' |
|
1052 | ''' | |
1052 |
|
1053 | |||
1053 | return self.times[-1] |
|
1054 | return self.times[-1] | |
1054 |
|
1055 | |||
1055 | # @property |
|
1056 | # @property | |
1056 | # def heights(self): |
|
1057 | # def heights(self): | |
1057 | # ''' |
|
1058 | # ''' | |
1058 | # Return the list of heights of the current data |
|
1059 | # Return the list of heights of the current data | |
1059 | # ''' |
|
1060 | # ''' | |
1060 |
|
1061 | |||
1061 | # return numpy.array(self.__heights[-1]) |
|
1062 | # return numpy.array(self.__heights[-1]) | |
1062 |
|
1063 | |||
1063 | @staticmethod |
|
1064 | @staticmethod | |
1064 | def roundFloats(obj): |
|
1065 | def roundFloats(obj): | |
1065 | if isinstance(obj, list): |
|
1066 | if isinstance(obj, list): | |
1066 | return list(map(PlotterData.roundFloats, obj)) |
|
1067 | return list(map(PlotterData.roundFloats, obj)) | |
1067 | elif isinstance(obj, float): |
|
1068 | elif isinstance(obj, float): | |
1068 | return round(obj, 2) |
|
1069 | return round(obj, 2) |
@@ -1,1885 +1,1886 | |||||
1 | import sys |
|
1 | import sys | |
2 | import numpy,math |
|
2 | import numpy,math | |
3 | from scipy import interpolate |
|
3 | from scipy import interpolate | |
4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
5 | from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon |
|
5 | from schainpy.model.data.jrodata import Voltage,hildebrand_sekhon | |
6 | from schainpy.utils import log |
|
6 | from schainpy.utils import log | |
7 | from time import time |
|
7 | from time import time | |
8 |
|
8 | |||
9 |
|
9 | |||
10 |
|
10 | |||
11 | class VoltageProc(ProcessingUnit): |
|
11 | class VoltageProc(ProcessingUnit): | |
12 |
|
12 | |||
13 | def __init__(self): |
|
13 | def __init__(self): | |
14 |
|
14 | |||
15 | ProcessingUnit.__init__(self) |
|
15 | ProcessingUnit.__init__(self) | |
16 |
|
16 | |||
17 | self.dataOut = Voltage() |
|
17 | self.dataOut = Voltage() | |
18 | self.flip = 1 |
|
18 | self.flip = 1 | |
19 | self.setupReq = False |
|
19 | self.setupReq = False | |
20 |
|
20 | |||
21 | def run(self): |
|
21 | def run(self): | |
22 |
|
22 | |||
23 | if self.dataIn.type == 'AMISR': |
|
23 | if self.dataIn.type == 'AMISR': | |
24 | self.__updateObjFromAmisrInput() |
|
24 | self.__updateObjFromAmisrInput() | |
25 |
|
25 | |||
26 | if self.dataIn.type == 'Voltage': |
|
26 | if self.dataIn.type == 'Voltage': | |
27 | self.dataOut.copy(self.dataIn) |
|
27 | self.dataOut.copy(self.dataIn) | |
28 |
|
28 | |||
29 | def __updateObjFromAmisrInput(self): |
|
29 | def __updateObjFromAmisrInput(self): | |
30 |
|
30 | |||
31 | self.dataOut.timeZone = self.dataIn.timeZone |
|
31 | self.dataOut.timeZone = self.dataIn.timeZone | |
32 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
32 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
33 | self.dataOut.errorCount = self.dataIn.errorCount |
|
33 | self.dataOut.errorCount = self.dataIn.errorCount | |
34 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
34 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
35 |
|
35 | |||
36 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
36 | self.dataOut.flagNoData = self.dataIn.flagNoData | |
37 | self.dataOut.data = self.dataIn.data |
|
37 | self.dataOut.data = self.dataIn.data | |
38 | self.dataOut.utctime = self.dataIn.utctime |
|
38 | self.dataOut.utctime = self.dataIn.utctime | |
39 | self.dataOut.channelList = self.dataIn.channelList |
|
39 | self.dataOut.channelList = self.dataIn.channelList | |
40 | #self.dataOut.timeInterval = self.dataIn.timeInterval |
|
40 | #self.dataOut.timeInterval = self.dataIn.timeInterval | |
41 | self.dataOut.heightList = self.dataIn.heightList |
|
41 | self.dataOut.heightList = self.dataIn.heightList | |
42 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
42 | self.dataOut.nProfiles = self.dataIn.nProfiles | |
43 |
|
43 | |||
44 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
44 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
45 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
45 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
46 | self.dataOut.frequency = self.dataIn.frequency |
|
46 | self.dataOut.frequency = self.dataIn.frequency | |
47 |
|
47 | |||
48 | self.dataOut.azimuth = self.dataIn.azimuth |
|
48 | self.dataOut.azimuth = self.dataIn.azimuth | |
49 | self.dataOut.zenith = self.dataIn.zenith |
|
49 | self.dataOut.zenith = self.dataIn.zenith | |
50 |
|
50 | |||
51 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
51 | self.dataOut.beam.codeList = self.dataIn.beam.codeList | |
52 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
52 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList | |
53 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
53 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList | |
54 |
|
54 | |||
55 |
|
55 | |||
56 | class selectChannels(Operation): |
|
56 | class selectChannels(Operation): | |
57 |
|
57 | |||
58 | def run(self, dataOut, channelList): |
|
58 | def run(self, dataOut, channelList): | |
59 |
|
59 | |||
60 | channelIndexList = [] |
|
60 | channelIndexList = [] | |
61 | self.dataOut = dataOut |
|
61 | self.dataOut = dataOut | |
62 | for channel in channelList: |
|
62 | for channel in channelList: | |
63 | if channel not in self.dataOut.channelList: |
|
63 | if channel not in self.dataOut.channelList: | |
64 | raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList))) |
|
64 | raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList))) | |
65 |
|
65 | |||
66 | index = self.dataOut.channelList.index(channel) |
|
66 | index = self.dataOut.channelList.index(channel) | |
67 | channelIndexList.append(index) |
|
67 | channelIndexList.append(index) | |
68 | self.selectChannelsByIndex(channelIndexList) |
|
68 | self.selectChannelsByIndex(channelIndexList) | |
69 | return self.dataOut |
|
69 | return self.dataOut | |
70 |
|
70 | |||
71 | def selectChannelsByIndex(self, channelIndexList): |
|
71 | def selectChannelsByIndex(self, channelIndexList): | |
72 | """ |
|
72 | """ | |
73 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
73 | Selecciona un bloque de datos en base a canales segun el channelIndexList | |
74 |
|
74 | |||
75 | Input: |
|
75 | Input: | |
76 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
76 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] | |
77 |
|
77 | |||
78 | Affected: |
|
78 | Affected: | |
79 | self.dataOut.data |
|
79 | self.dataOut.data | |
80 | self.dataOut.channelIndexList |
|
80 | self.dataOut.channelIndexList | |
81 | self.dataOut.nChannels |
|
81 | self.dataOut.nChannels | |
82 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
82 | self.dataOut.m_ProcessingHeader.totalSpectra | |
83 | self.dataOut.systemHeaderObj.numChannels |
|
83 | self.dataOut.systemHeaderObj.numChannels | |
84 | self.dataOut.m_ProcessingHeader.blockSize |
|
84 | self.dataOut.m_ProcessingHeader.blockSize | |
85 |
|
85 | |||
86 | Return: |
|
86 | Return: | |
87 | None |
|
87 | None | |
88 | """ |
|
88 | """ | |
89 |
|
89 | |||
90 | for channelIndex in channelIndexList: |
|
90 | for channelIndex in channelIndexList: | |
91 | if channelIndex not in self.dataOut.channelIndexList: |
|
91 | if channelIndex not in self.dataOut.channelIndexList: | |
92 | raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) |
|
92 | raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) | |
93 |
|
93 | |||
94 | if self.dataOut.type == 'Voltage': |
|
94 | if self.dataOut.type == 'Voltage': | |
95 | if self.dataOut.flagDataAsBlock: |
|
95 | if self.dataOut.flagDataAsBlock: | |
96 | """ |
|
96 | """ | |
97 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
97 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
98 | """ |
|
98 | """ | |
99 | data = self.dataOut.data[channelIndexList,:,:] |
|
99 | data = self.dataOut.data[channelIndexList,:,:] | |
100 | else: |
|
100 | else: | |
101 | data = self.dataOut.data[channelIndexList,:] |
|
101 | data = self.dataOut.data[channelIndexList,:] | |
102 |
|
102 | |||
103 | self.dataOut.data = data |
|
103 | self.dataOut.data = data | |
104 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
104 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
105 | self.dataOut.channelList = range(len(channelIndexList)) |
|
105 | self.dataOut.channelList = range(len(channelIndexList)) | |
106 |
|
106 | |||
107 | elif self.dataOut.type == 'Spectra': |
|
107 | elif self.dataOut.type == 'Spectra': | |
108 | data_spc = self.dataOut.data_spc[channelIndexList, :] |
|
108 | data_spc = self.dataOut.data_spc[channelIndexList, :] | |
109 | data_dc = self.dataOut.data_dc[channelIndexList, :] |
|
109 | data_dc = self.dataOut.data_dc[channelIndexList, :] | |
110 |
|
110 | |||
111 | self.dataOut.data_spc = data_spc |
|
111 | self.dataOut.data_spc = data_spc | |
112 | self.dataOut.data_dc = data_dc |
|
112 | self.dataOut.data_dc = data_dc | |
113 |
|
113 | |||
114 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
114 | # self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] | |
115 | self.dataOut.channelList = range(len(channelIndexList)) |
|
115 | self.dataOut.channelList = range(len(channelIndexList)) | |
116 | self.__selectPairsByChannel(channelIndexList) |
|
116 | self.__selectPairsByChannel(channelIndexList) | |
117 |
|
117 | |||
118 | return 1 |
|
118 | return 1 | |
119 |
|
119 | |||
120 | def __selectPairsByChannel(self, channelList=None): |
|
120 | def __selectPairsByChannel(self, channelList=None): | |
121 |
|
121 | |||
122 | if channelList == None: |
|
122 | if channelList == None: | |
123 | return |
|
123 | return | |
124 |
|
124 | |||
125 | pairsIndexListSelected = [] |
|
125 | pairsIndexListSelected = [] | |
126 | for pairIndex in self.dataOut.pairsIndexList: |
|
126 | for pairIndex in self.dataOut.pairsIndexList: | |
127 | # First pair |
|
127 | # First pair | |
128 | if self.dataOut.pairsList[pairIndex][0] not in channelList: |
|
128 | if self.dataOut.pairsList[pairIndex][0] not in channelList: | |
129 | continue |
|
129 | continue | |
130 | # Second pair |
|
130 | # Second pair | |
131 | if self.dataOut.pairsList[pairIndex][1] not in channelList: |
|
131 | if self.dataOut.pairsList[pairIndex][1] not in channelList: | |
132 | continue |
|
132 | continue | |
133 |
|
133 | |||
134 | pairsIndexListSelected.append(pairIndex) |
|
134 | pairsIndexListSelected.append(pairIndex) | |
135 |
|
135 | |||
136 | if not pairsIndexListSelected: |
|
136 | if not pairsIndexListSelected: | |
137 | self.dataOut.data_cspc = None |
|
137 | self.dataOut.data_cspc = None | |
138 | self.dataOut.pairsList = [] |
|
138 | self.dataOut.pairsList = [] | |
139 | return |
|
139 | return | |
140 |
|
140 | |||
141 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
141 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] | |
142 | self.dataOut.pairsList = [self.dataOut.pairsList[i] |
|
142 | self.dataOut.pairsList = [self.dataOut.pairsList[i] | |
143 | for i in pairsIndexListSelected] |
|
143 | for i in pairsIndexListSelected] | |
144 |
|
144 | |||
145 | return |
|
145 | return | |
146 |
|
146 | |||
147 | class selectHeights(Operation): |
|
147 | class selectHeights(Operation): | |
148 |
|
148 | |||
149 | def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None): |
|
149 | def run(self, dataOut, minHei=None, maxHei=None, minIndex=None, maxIndex=None): | |
150 | """ |
|
150 | """ | |
151 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
151 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |
152 | minHei <= height <= maxHei |
|
152 | minHei <= height <= maxHei | |
153 |
|
153 | |||
154 | Input: |
|
154 | Input: | |
155 | minHei : valor minimo de altura a considerar |
|
155 | minHei : valor minimo de altura a considerar | |
156 | maxHei : valor maximo de altura a considerar |
|
156 | maxHei : valor maximo de altura a considerar | |
157 |
|
157 | |||
158 | Affected: |
|
158 | Affected: | |
159 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
159 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex | |
160 |
|
160 | |||
161 | Return: |
|
161 | Return: | |
162 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
162 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
163 | """ |
|
163 | """ | |
164 |
|
164 | |||
165 | self.dataOut = dataOut |
|
165 | self.dataOut = dataOut | |
166 |
|
166 | |||
167 | if minHei and maxHei: |
|
167 | if minHei and maxHei: | |
168 |
|
168 | |||
169 | if (minHei < self.dataOut.heightList[0]): |
|
169 | if (minHei < self.dataOut.heightList[0]): | |
170 | minHei = self.dataOut.heightList[0] |
|
170 | minHei = self.dataOut.heightList[0] | |
171 |
|
171 | |||
172 | if (maxHei > self.dataOut.heightList[-1]): |
|
172 | if (maxHei > self.dataOut.heightList[-1]): | |
173 | maxHei = self.dataOut.heightList[-1] |
|
173 | maxHei = self.dataOut.heightList[-1] | |
174 |
|
174 | |||
175 | minIndex = 0 |
|
175 | minIndex = 0 | |
176 | maxIndex = 0 |
|
176 | maxIndex = 0 | |
177 | heights = self.dataOut.heightList |
|
177 | heights = self.dataOut.heightList | |
178 |
|
178 | |||
179 | inda = numpy.where(heights >= minHei) |
|
179 | inda = numpy.where(heights >= minHei) | |
180 | indb = numpy.where(heights <= maxHei) |
|
180 | indb = numpy.where(heights <= maxHei) | |
181 |
|
181 | |||
182 | try: |
|
182 | try: | |
183 | minIndex = inda[0][0] |
|
183 | minIndex = inda[0][0] | |
184 | except: |
|
184 | except: | |
185 | minIndex = 0 |
|
185 | minIndex = 0 | |
186 |
|
186 | |||
187 | try: |
|
187 | try: | |
188 | maxIndex = indb[0][-1] |
|
188 | maxIndex = indb[0][-1] | |
189 | except: |
|
189 | except: | |
190 | maxIndex = len(heights) |
|
190 | maxIndex = len(heights) | |
191 |
|
191 | |||
192 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
192 | self.selectHeightsByIndex(minIndex, maxIndex) | |
193 |
|
193 | |||
194 | return self.dataOut |
|
194 | return self.dataOut | |
195 |
|
195 | |||
196 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
196 | def selectHeightsByIndex(self, minIndex, maxIndex): | |
197 | """ |
|
197 | """ | |
198 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
198 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |
199 | minIndex <= index <= maxIndex |
|
199 | minIndex <= index <= maxIndex | |
200 |
|
200 | |||
201 | Input: |
|
201 | Input: | |
202 | minIndex : valor de indice minimo de altura a considerar |
|
202 | minIndex : valor de indice minimo de altura a considerar | |
203 | maxIndex : valor de indice maximo de altura a considerar |
|
203 | maxIndex : valor de indice maximo de altura a considerar | |
204 |
|
204 | |||
205 | Affected: |
|
205 | Affected: | |
206 | self.dataOut.data |
|
206 | self.dataOut.data | |
207 | self.dataOut.heightList |
|
207 | self.dataOut.heightList | |
208 |
|
208 | |||
209 | Return: |
|
209 | Return: | |
210 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
210 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
211 | """ |
|
211 | """ | |
212 |
|
212 | |||
213 | if self.dataOut.type == 'Voltage': |
|
213 | if self.dataOut.type == 'Voltage': | |
214 | if (minIndex < 0) or (minIndex > maxIndex): |
|
214 | if (minIndex < 0) or (minIndex > maxIndex): | |
215 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
215 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |
216 |
|
216 | |||
217 | if (maxIndex >= self.dataOut.nHeights): |
|
217 | if (maxIndex >= self.dataOut.nHeights): | |
218 | maxIndex = self.dataOut.nHeights |
|
218 | maxIndex = self.dataOut.nHeights | |
219 | #print("shapeeee",self.dataOut.data.shape) |
|
219 | #print("shapeeee",self.dataOut.data.shape) | |
220 | #voltage |
|
220 | #voltage | |
221 | if self.dataOut.flagDataAsBlock: |
|
221 | if self.dataOut.flagDataAsBlock: | |
222 | """ |
|
222 | """ | |
223 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
223 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
224 | """ |
|
224 | """ | |
225 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
225 | data = self.dataOut.data[:,:, minIndex:maxIndex] | |
226 | else: |
|
226 | else: | |
227 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
227 | data = self.dataOut.data[:, minIndex:maxIndex] | |
228 |
|
228 | |||
229 | # firstHeight = self.dataOut.heightList[minIndex] |
|
229 | # firstHeight = self.dataOut.heightList[minIndex] | |
230 |
|
230 | |||
231 | self.dataOut.data = data |
|
231 | self.dataOut.data = data | |
232 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
232 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] | |
233 |
|
233 | |||
234 | if self.dataOut.nHeights <= 1: |
|
234 | if self.dataOut.nHeights <= 1: | |
235 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) |
|
235 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) | |
236 | elif self.dataOut.type == 'Spectra': |
|
236 | elif self.dataOut.type == 'Spectra': | |
237 | if (minIndex < 0) or (minIndex > maxIndex): |
|
237 | if (minIndex < 0) or (minIndex > maxIndex): | |
238 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( |
|
238 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( | |
239 | minIndex, maxIndex)) |
|
239 | minIndex, maxIndex)) | |
240 |
|
240 | |||
241 | if (maxIndex >= self.dataOut.nHeights): |
|
241 | if (maxIndex >= self.dataOut.nHeights): | |
242 | maxIndex = self.dataOut.nHeights - 1 |
|
242 | maxIndex = self.dataOut.nHeights - 1 | |
243 |
|
243 | |||
244 | # Spectra |
|
244 | # Spectra | |
245 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
245 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] | |
246 |
|
246 | |||
247 | data_cspc = None |
|
247 | data_cspc = None | |
248 | if self.dataOut.data_cspc is not None: |
|
248 | if self.dataOut.data_cspc is not None: | |
249 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
249 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] | |
250 |
|
250 | |||
251 | data_dc = None |
|
251 | data_dc = None | |
252 | if self.dataOut.data_dc is not None: |
|
252 | if self.dataOut.data_dc is not None: | |
253 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
253 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] | |
254 |
|
254 | |||
255 | self.dataOut.data_spc = data_spc |
|
255 | self.dataOut.data_spc = data_spc | |
256 | self.dataOut.data_cspc = data_cspc |
|
256 | self.dataOut.data_cspc = data_cspc | |
257 | self.dataOut.data_dc = data_dc |
|
257 | self.dataOut.data_dc = data_dc | |
258 |
|
258 | |||
259 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
259 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] | |
260 |
|
260 | |||
261 | return 1 |
|
261 | return 1 | |
262 |
|
262 | |||
263 |
|
263 | |||
264 | class filterByHeights(Operation): |
|
264 | class filterByHeights(Operation): | |
265 |
|
265 | |||
266 | def run(self, dataOut, window): |
|
266 | def run(self, dataOut, window): | |
267 |
|
267 | |||
268 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
268 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
269 |
|
269 | |||
270 | if window == None: |
|
270 | if window == None: | |
271 | window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
271 | window = (dataOut.radarControllerHeaderObj.txA/dataOut.radarControllerHeaderObj.nBaud) / deltaHeight | |
272 |
|
272 | |||
273 | newdelta = deltaHeight * window |
|
273 | newdelta = deltaHeight * window | |
274 | r = dataOut.nHeights % window |
|
274 | r = dataOut.nHeights % window | |
275 | newheights = (dataOut.nHeights-r)/window |
|
275 | newheights = (dataOut.nHeights-r)/window | |
276 |
|
276 | |||
277 | if newheights <= 1: |
|
277 | if newheights <= 1: | |
278 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window)) |
|
278 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(dataOut.nHeights, window)) | |
279 |
|
279 | |||
280 | if dataOut.flagDataAsBlock: |
|
280 | if dataOut.flagDataAsBlock: | |
281 | """ |
|
281 | """ | |
282 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
282 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
283 | """ |
|
283 | """ | |
284 | buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)] |
|
284 | buffer = dataOut.data[:, :, 0:int(dataOut.nHeights-r)] | |
285 | buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window) |
|
285 | buffer = buffer.reshape(dataOut.nChannels, dataOut.nProfiles, int(dataOut.nHeights/window), window) | |
286 | buffer = numpy.sum(buffer,3) |
|
286 | buffer = numpy.sum(buffer,3) | |
287 |
|
287 | |||
288 | else: |
|
288 | else: | |
289 | buffer = dataOut.data[:,0:int(dataOut.nHeights-r)] |
|
289 | buffer = dataOut.data[:,0:int(dataOut.nHeights-r)] | |
290 | buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window)) |
|
290 | buffer = buffer.reshape(dataOut.nChannels,int(dataOut.nHeights/window),int(window)) | |
291 | buffer = numpy.sum(buffer,2) |
|
291 | buffer = numpy.sum(buffer,2) | |
292 |
|
292 | |||
293 | dataOut.data = buffer |
|
293 | dataOut.data = buffer | |
294 | dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta |
|
294 | dataOut.heightList = dataOut.heightList[0] + numpy.arange( newheights )*newdelta | |
295 | dataOut.windowOfFilter = window |
|
295 | dataOut.windowOfFilter = window | |
296 |
|
296 | |||
297 | return dataOut |
|
297 | return dataOut | |
298 |
|
298 | |||
299 |
|
299 | |||
300 | class setH0(Operation): |
|
300 | class setH0(Operation): | |
301 |
|
301 | |||
302 | def run(self, dataOut, h0, deltaHeight = None): |
|
302 | def run(self, dataOut, h0, deltaHeight = None): | |
303 |
|
303 | |||
304 | if not deltaHeight: |
|
304 | if not deltaHeight: | |
305 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
305 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
306 |
|
306 | |||
307 | nHeights = dataOut.nHeights |
|
307 | nHeights = dataOut.nHeights | |
308 |
|
308 | |||
309 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
309 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight | |
310 |
|
310 | |||
311 | dataOut.heightList = newHeiRange |
|
311 | dataOut.heightList = newHeiRange | |
|
312 | dataOut.h0 = h0 | |||
312 |
|
313 | |||
313 | return dataOut |
|
314 | return dataOut | |
314 |
|
315 | |||
315 |
|
316 | |||
316 | class deFlip(Operation): |
|
317 | class deFlip(Operation): | |
317 |
|
318 | |||
318 | def run(self, dataOut, channelList = []): |
|
319 | def run(self, dataOut, channelList = []): | |
319 |
|
320 | |||
320 | data = dataOut.data.copy() |
|
321 | data = dataOut.data.copy() | |
321 |
|
322 | |||
322 | if dataOut.flagDataAsBlock: |
|
323 | if dataOut.flagDataAsBlock: | |
323 | flip = self.flip |
|
324 | flip = self.flip | |
324 | profileList = list(range(dataOut.nProfiles)) |
|
325 | profileList = list(range(dataOut.nProfiles)) | |
325 |
|
326 | |||
326 | if not channelList: |
|
327 | if not channelList: | |
327 | for thisProfile in profileList: |
|
328 | for thisProfile in profileList: | |
328 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
329 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip | |
329 | flip *= -1.0 |
|
330 | flip *= -1.0 | |
330 | else: |
|
331 | else: | |
331 | for thisChannel in channelList: |
|
332 | for thisChannel in channelList: | |
332 | if thisChannel not in dataOut.channelList: |
|
333 | if thisChannel not in dataOut.channelList: | |
333 | continue |
|
334 | continue | |
334 |
|
335 | |||
335 | for thisProfile in profileList: |
|
336 | for thisProfile in profileList: | |
336 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
337 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip | |
337 | flip *= -1.0 |
|
338 | flip *= -1.0 | |
338 |
|
339 | |||
339 | self.flip = flip |
|
340 | self.flip = flip | |
340 |
|
341 | |||
341 | else: |
|
342 | else: | |
342 | if not channelList: |
|
343 | if not channelList: | |
343 | data[:,:] = data[:,:]*self.flip |
|
344 | data[:,:] = data[:,:]*self.flip | |
344 | else: |
|
345 | else: | |
345 | for thisChannel in channelList: |
|
346 | for thisChannel in channelList: | |
346 | if thisChannel not in dataOut.channelList: |
|
347 | if thisChannel not in dataOut.channelList: | |
347 | continue |
|
348 | continue | |
348 |
|
349 | |||
349 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
350 | data[thisChannel,:] = data[thisChannel,:]*self.flip | |
350 |
|
351 | |||
351 | self.flip *= -1. |
|
352 | self.flip *= -1. | |
352 |
|
353 | |||
353 | dataOut.data = data |
|
354 | dataOut.data = data | |
354 |
|
355 | |||
355 | return dataOut |
|
356 | return dataOut | |
356 |
|
357 | |||
357 |
|
358 | |||
358 | class setAttribute(Operation): |
|
359 | class setAttribute(Operation): | |
359 | ''' |
|
360 | ''' | |
360 | Set an arbitrary attribute(s) to dataOut |
|
361 | Set an arbitrary attribute(s) to dataOut | |
361 | ''' |
|
362 | ''' | |
362 |
|
363 | |||
363 | def __init__(self): |
|
364 | def __init__(self): | |
364 |
|
365 | |||
365 | Operation.__init__(self) |
|
366 | Operation.__init__(self) | |
366 | self._ready = False |
|
367 | self._ready = False | |
367 |
|
368 | |||
368 | def run(self, dataOut, **kwargs): |
|
369 | def run(self, dataOut, **kwargs): | |
369 |
|
370 | |||
370 | for key, value in kwargs.items(): |
|
371 | for key, value in kwargs.items(): | |
371 | setattr(dataOut, key, value) |
|
372 | setattr(dataOut, key, value) | |
372 |
|
373 | |||
373 | return dataOut |
|
374 | return dataOut | |
374 |
|
375 | |||
375 |
|
376 | |||
376 | @MPDecorator |
|
377 | @MPDecorator | |
377 | class printAttribute(Operation): |
|
378 | class printAttribute(Operation): | |
378 | ''' |
|
379 | ''' | |
379 | Print an arbitrary attribute of dataOut |
|
380 | Print an arbitrary attribute of dataOut | |
380 | ''' |
|
381 | ''' | |
381 |
|
382 | |||
382 | def __init__(self): |
|
383 | def __init__(self): | |
383 |
|
384 | |||
384 | Operation.__init__(self) |
|
385 | Operation.__init__(self) | |
385 |
|
386 | |||
386 | def run(self, dataOut, attributes): |
|
387 | def run(self, dataOut, attributes): | |
387 |
|
388 | |||
388 | if isinstance(attributes, str): |
|
389 | if isinstance(attributes, str): | |
389 | attributes = [attributes] |
|
390 | attributes = [attributes] | |
390 | for attr in attributes: |
|
391 | for attr in attributes: | |
391 | if hasattr(dataOut, attr): |
|
392 | if hasattr(dataOut, attr): | |
392 | log.log(getattr(dataOut, attr), attr) |
|
393 | log.log(getattr(dataOut, attr), attr) | |
393 |
|
394 | |||
394 |
|
395 | |||
395 | class interpolateHeights(Operation): |
|
396 | class interpolateHeights(Operation): | |
396 |
|
397 | |||
397 | def run(self, dataOut, topLim, botLim): |
|
398 | def run(self, dataOut, topLim, botLim): | |
398 | #69 al 72 para julia |
|
399 | #69 al 72 para julia | |
399 | #82-84 para meteoros |
|
400 | #82-84 para meteoros | |
400 | if len(numpy.shape(dataOut.data))==2: |
|
401 | if len(numpy.shape(dataOut.data))==2: | |
401 | sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2 |
|
402 | sampInterp = (dataOut.data[:,botLim-1] + dataOut.data[:,topLim+1])/2 | |
402 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) |
|
403 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) | |
403 | #dataOut.data[:,botLim:limSup+1] = sampInterp |
|
404 | #dataOut.data[:,botLim:limSup+1] = sampInterp | |
404 | dataOut.data[:,botLim:topLim+1] = sampInterp |
|
405 | dataOut.data[:,botLim:topLim+1] = sampInterp | |
405 | else: |
|
406 | else: | |
406 | nHeights = dataOut.data.shape[2] |
|
407 | nHeights = dataOut.data.shape[2] | |
407 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) |
|
408 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) | |
408 | y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] |
|
409 | y = dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] | |
409 | f = interpolate.interp1d(x, y, axis = 2) |
|
410 | f = interpolate.interp1d(x, y, axis = 2) | |
410 | xnew = numpy.arange(botLim,topLim+1) |
|
411 | xnew = numpy.arange(botLim,topLim+1) | |
411 | ynew = f(xnew) |
|
412 | ynew = f(xnew) | |
412 | dataOut.data[:,:,botLim:topLim+1] = ynew |
|
413 | dataOut.data[:,:,botLim:topLim+1] = ynew | |
413 |
|
414 | |||
414 | return dataOut |
|
415 | return dataOut | |
415 |
|
416 | |||
416 |
|
417 | |||
417 | class CohInt(Operation): |
|
418 | class CohInt(Operation): | |
418 |
|
419 | |||
419 | isConfig = False |
|
420 | isConfig = False | |
420 | __profIndex = 0 |
|
421 | __profIndex = 0 | |
421 | __byTime = False |
|
422 | __byTime = False | |
422 | __initime = None |
|
423 | __initime = None | |
423 | __lastdatatime = None |
|
424 | __lastdatatime = None | |
424 | __integrationtime = None |
|
425 | __integrationtime = None | |
425 | __buffer = None |
|
426 | __buffer = None | |
426 | __bufferStride = [] |
|
427 | __bufferStride = [] | |
427 | __dataReady = False |
|
428 | __dataReady = False | |
428 | __profIndexStride = 0 |
|
429 | __profIndexStride = 0 | |
429 | __dataToPutStride = False |
|
430 | __dataToPutStride = False | |
430 | n = None |
|
431 | n = None | |
431 |
|
432 | |||
432 | def __init__(self, **kwargs): |
|
433 | def __init__(self, **kwargs): | |
433 |
|
434 | |||
434 | Operation.__init__(self, **kwargs) |
|
435 | Operation.__init__(self, **kwargs) | |
435 |
|
436 | |||
436 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): |
|
437 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): | |
437 | """ |
|
438 | """ | |
438 | Set the parameters of the integration class. |
|
439 | Set the parameters of the integration class. | |
439 |
|
440 | |||
440 | Inputs: |
|
441 | Inputs: | |
441 |
|
442 | |||
442 | n : Number of coherent integrations |
|
443 | n : Number of coherent integrations | |
443 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
444 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
444 | overlapping : |
|
445 | overlapping : | |
445 | """ |
|
446 | """ | |
446 |
|
447 | |||
447 | self.__initime = None |
|
448 | self.__initime = None | |
448 | self.__lastdatatime = 0 |
|
449 | self.__lastdatatime = 0 | |
449 | self.__buffer = None |
|
450 | self.__buffer = None | |
450 | self.__dataReady = False |
|
451 | self.__dataReady = False | |
451 | self.byblock = byblock |
|
452 | self.byblock = byblock | |
452 | self.stride = stride |
|
453 | self.stride = stride | |
453 |
|
454 | |||
454 | if n == None and timeInterval == None: |
|
455 | if n == None and timeInterval == None: | |
455 | raise ValueError("n or timeInterval should be specified ...") |
|
456 | raise ValueError("n or timeInterval should be specified ...") | |
456 |
|
457 | |||
457 | if n != None: |
|
458 | if n != None: | |
458 | self.n = n |
|
459 | self.n = n | |
459 | self.__byTime = False |
|
460 | self.__byTime = False | |
460 | else: |
|
461 | else: | |
461 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
462 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line | |
462 | self.n = 9999 |
|
463 | self.n = 9999 | |
463 | self.__byTime = True |
|
464 | self.__byTime = True | |
464 |
|
465 | |||
465 | if overlapping: |
|
466 | if overlapping: | |
466 | self.__withOverlapping = True |
|
467 | self.__withOverlapping = True | |
467 | self.__buffer = None |
|
468 | self.__buffer = None | |
468 | else: |
|
469 | else: | |
469 | self.__withOverlapping = False |
|
470 | self.__withOverlapping = False | |
470 | self.__buffer = 0 |
|
471 | self.__buffer = 0 | |
471 |
|
472 | |||
472 | self.__profIndex = 0 |
|
473 | self.__profIndex = 0 | |
473 |
|
474 | |||
474 | def putData(self, data): |
|
475 | def putData(self, data): | |
475 |
|
476 | |||
476 | """ |
|
477 | """ | |
477 | Add a profile to the __buffer and increase in one the __profileIndex |
|
478 | Add a profile to the __buffer and increase in one the __profileIndex | |
478 |
|
479 | |||
479 | """ |
|
480 | """ | |
480 |
|
481 | |||
481 | if not self.__withOverlapping: |
|
482 | if not self.__withOverlapping: | |
482 | self.__buffer += data.copy() |
|
483 | self.__buffer += data.copy() | |
483 | self.__profIndex += 1 |
|
484 | self.__profIndex += 1 | |
484 | return |
|
485 | return | |
485 |
|
486 | |||
486 | #Overlapping data |
|
487 | #Overlapping data | |
487 | nChannels, nHeis = data.shape |
|
488 | nChannels, nHeis = data.shape | |
488 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
489 | data = numpy.reshape(data, (1, nChannels, nHeis)) | |
489 |
|
490 | |||
490 | #If the buffer is empty then it takes the data value |
|
491 | #If the buffer is empty then it takes the data value | |
491 | if self.__buffer is None: |
|
492 | if self.__buffer is None: | |
492 | self.__buffer = data |
|
493 | self.__buffer = data | |
493 | self.__profIndex += 1 |
|
494 | self.__profIndex += 1 | |
494 | return |
|
495 | return | |
495 |
|
496 | |||
496 | #If the buffer length is lower than n then stakcing the data value |
|
497 | #If the buffer length is lower than n then stakcing the data value | |
497 | if self.__profIndex < self.n: |
|
498 | if self.__profIndex < self.n: | |
498 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
499 | self.__buffer = numpy.vstack((self.__buffer, data)) | |
499 | self.__profIndex += 1 |
|
500 | self.__profIndex += 1 | |
500 | return |
|
501 | return | |
501 |
|
502 | |||
502 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
503 | #If the buffer length is equal to n then replacing the last buffer value with the data value | |
503 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
504 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) | |
504 | self.__buffer[self.n-1] = data |
|
505 | self.__buffer[self.n-1] = data | |
505 | self.__profIndex = self.n |
|
506 | self.__profIndex = self.n | |
506 | return |
|
507 | return | |
507 |
|
508 | |||
508 |
|
509 | |||
509 | def pushData(self): |
|
510 | def pushData(self): | |
510 | """ |
|
511 | """ | |
511 | Return the sum of the last profiles and the profiles used in the sum. |
|
512 | Return the sum of the last profiles and the profiles used in the sum. | |
512 |
|
513 | |||
513 | Affected: |
|
514 | Affected: | |
514 |
|
515 | |||
515 | self.__profileIndex |
|
516 | self.__profileIndex | |
516 |
|
517 | |||
517 | """ |
|
518 | """ | |
518 |
|
519 | |||
519 | if not self.__withOverlapping: |
|
520 | if not self.__withOverlapping: | |
520 | data = self.__buffer |
|
521 | data = self.__buffer | |
521 | n = self.__profIndex |
|
522 | n = self.__profIndex | |
522 |
|
523 | |||
523 | self.__buffer = 0 |
|
524 | self.__buffer = 0 | |
524 | self.__profIndex = 0 |
|
525 | self.__profIndex = 0 | |
525 |
|
526 | |||
526 | return data, n |
|
527 | return data, n | |
527 |
|
528 | |||
528 | #Integration with Overlapping |
|
529 | #Integration with Overlapping | |
529 | data = numpy.sum(self.__buffer, axis=0) |
|
530 | data = numpy.sum(self.__buffer, axis=0) | |
530 | # print data |
|
531 | # print data | |
531 | # raise |
|
532 | # raise | |
532 | n = self.__profIndex |
|
533 | n = self.__profIndex | |
533 |
|
534 | |||
534 | return data, n |
|
535 | return data, n | |
535 |
|
536 | |||
536 | def byProfiles(self, data): |
|
537 | def byProfiles(self, data): | |
537 |
|
538 | |||
538 | self.__dataReady = False |
|
539 | self.__dataReady = False | |
539 | avgdata = None |
|
540 | avgdata = None | |
540 | # n = None |
|
541 | # n = None | |
541 | # print data |
|
542 | # print data | |
542 | # raise |
|
543 | # raise | |
543 | self.putData(data) |
|
544 | self.putData(data) | |
544 |
|
545 | |||
545 | if self.__profIndex == self.n: |
|
546 | if self.__profIndex == self.n: | |
546 | avgdata, n = self.pushData() |
|
547 | avgdata, n = self.pushData() | |
547 | self.__dataReady = True |
|
548 | self.__dataReady = True | |
548 |
|
549 | |||
549 | return avgdata |
|
550 | return avgdata | |
550 |
|
551 | |||
551 | def byTime(self, data, datatime): |
|
552 | def byTime(self, data, datatime): | |
552 |
|
553 | |||
553 | self.__dataReady = False |
|
554 | self.__dataReady = False | |
554 | avgdata = None |
|
555 | avgdata = None | |
555 | n = None |
|
556 | n = None | |
556 |
|
557 | |||
557 | self.putData(data) |
|
558 | self.putData(data) | |
558 |
|
559 | |||
559 | if (datatime - self.__initime) >= self.__integrationtime: |
|
560 | if (datatime - self.__initime) >= self.__integrationtime: | |
560 | avgdata, n = self.pushData() |
|
561 | avgdata, n = self.pushData() | |
561 | self.n = n |
|
562 | self.n = n | |
562 | self.__dataReady = True |
|
563 | self.__dataReady = True | |
563 |
|
564 | |||
564 | return avgdata |
|
565 | return avgdata | |
565 |
|
566 | |||
566 | def integrateByStride(self, data, datatime): |
|
567 | def integrateByStride(self, data, datatime): | |
567 | # print data |
|
568 | # print data | |
568 | if self.__profIndex == 0: |
|
569 | if self.__profIndex == 0: | |
569 | self.__buffer = [[data.copy(), datatime]] |
|
570 | self.__buffer = [[data.copy(), datatime]] | |
570 | else: |
|
571 | else: | |
571 | self.__buffer.append([data.copy(),datatime]) |
|
572 | self.__buffer.append([data.copy(),datatime]) | |
572 | self.__profIndex += 1 |
|
573 | self.__profIndex += 1 | |
573 | self.__dataReady = False |
|
574 | self.__dataReady = False | |
574 |
|
575 | |||
575 | if self.__profIndex == self.n * self.stride : |
|
576 | if self.__profIndex == self.n * self.stride : | |
576 | self.__dataToPutStride = True |
|
577 | self.__dataToPutStride = True | |
577 | self.__profIndexStride = 0 |
|
578 | self.__profIndexStride = 0 | |
578 | self.__profIndex = 0 |
|
579 | self.__profIndex = 0 | |
579 | self.__bufferStride = [] |
|
580 | self.__bufferStride = [] | |
580 | for i in range(self.stride): |
|
581 | for i in range(self.stride): | |
581 | current = self.__buffer[i::self.stride] |
|
582 | current = self.__buffer[i::self.stride] | |
582 | data = numpy.sum([t[0] for t in current], axis=0) |
|
583 | data = numpy.sum([t[0] for t in current], axis=0) | |
583 | avgdatatime = numpy.average([t[1] for t in current]) |
|
584 | avgdatatime = numpy.average([t[1] for t in current]) | |
584 | # print data |
|
585 | # print data | |
585 | self.__bufferStride.append((data, avgdatatime)) |
|
586 | self.__bufferStride.append((data, avgdatatime)) | |
586 |
|
587 | |||
587 | if self.__dataToPutStride: |
|
588 | if self.__dataToPutStride: | |
588 | self.__dataReady = True |
|
589 | self.__dataReady = True | |
589 | self.__profIndexStride += 1 |
|
590 | self.__profIndexStride += 1 | |
590 | if self.__profIndexStride == self.stride: |
|
591 | if self.__profIndexStride == self.stride: | |
591 | self.__dataToPutStride = False |
|
592 | self.__dataToPutStride = False | |
592 | # print self.__bufferStride[self.__profIndexStride - 1] |
|
593 | # print self.__bufferStride[self.__profIndexStride - 1] | |
593 | # raise |
|
594 | # raise | |
594 | return self.__bufferStride[self.__profIndexStride - 1] |
|
595 | return self.__bufferStride[self.__profIndexStride - 1] | |
595 |
|
596 | |||
596 |
|
597 | |||
597 | return None, None |
|
598 | return None, None | |
598 |
|
599 | |||
599 | def integrate(self, data, datatime=None): |
|
600 | def integrate(self, data, datatime=None): | |
600 |
|
601 | |||
601 | if self.__initime == None: |
|
602 | if self.__initime == None: | |
602 | self.__initime = datatime |
|
603 | self.__initime = datatime | |
603 |
|
604 | |||
604 | if self.__byTime: |
|
605 | if self.__byTime: | |
605 | avgdata = self.byTime(data, datatime) |
|
606 | avgdata = self.byTime(data, datatime) | |
606 | else: |
|
607 | else: | |
607 | avgdata = self.byProfiles(data) |
|
608 | avgdata = self.byProfiles(data) | |
608 |
|
609 | |||
609 |
|
610 | |||
610 | self.__lastdatatime = datatime |
|
611 | self.__lastdatatime = datatime | |
611 |
|
612 | |||
612 | if avgdata is None: |
|
613 | if avgdata is None: | |
613 | return None, None |
|
614 | return None, None | |
614 |
|
615 | |||
615 | avgdatatime = self.__initime |
|
616 | avgdatatime = self.__initime | |
616 |
|
617 | |||
617 | deltatime = datatime - self.__lastdatatime |
|
618 | deltatime = datatime - self.__lastdatatime | |
618 |
|
619 | |||
619 | if not self.__withOverlapping: |
|
620 | if not self.__withOverlapping: | |
620 | self.__initime = datatime |
|
621 | self.__initime = datatime | |
621 | else: |
|
622 | else: | |
622 | self.__initime += deltatime |
|
623 | self.__initime += deltatime | |
623 |
|
624 | |||
624 | return avgdata, avgdatatime |
|
625 | return avgdata, avgdatatime | |
625 |
|
626 | |||
626 | def integrateByBlock(self, dataOut): |
|
627 | def integrateByBlock(self, dataOut): | |
627 |
|
628 | |||
628 | times = int(dataOut.data.shape[1]/self.n) |
|
629 | times = int(dataOut.data.shape[1]/self.n) | |
629 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
630 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) | |
630 |
|
631 | |||
631 | id_min = 0 |
|
632 | id_min = 0 | |
632 | id_max = self.n |
|
633 | id_max = self.n | |
633 |
|
634 | |||
634 | for i in range(times): |
|
635 | for i in range(times): | |
635 | junk = dataOut.data[:,id_min:id_max,:] |
|
636 | junk = dataOut.data[:,id_min:id_max,:] | |
636 | avgdata[:,i,:] = junk.sum(axis=1) |
|
637 | avgdata[:,i,:] = junk.sum(axis=1) | |
637 | id_min += self.n |
|
638 | id_min += self.n | |
638 | id_max += self.n |
|
639 | id_max += self.n | |
639 |
|
640 | |||
640 | timeInterval = dataOut.ippSeconds*self.n |
|
641 | timeInterval = dataOut.ippSeconds*self.n | |
641 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
642 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime | |
642 | self.__dataReady = True |
|
643 | self.__dataReady = True | |
643 | return avgdata, avgdatatime |
|
644 | return avgdata, avgdatatime | |
644 |
|
645 | |||
645 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): |
|
646 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): | |
646 |
|
647 | |||
647 | if not self.isConfig: |
|
648 | if not self.isConfig: | |
648 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) |
|
649 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) | |
649 | self.isConfig = True |
|
650 | self.isConfig = True | |
650 |
|
651 | |||
651 | if dataOut.flagDataAsBlock: |
|
652 | if dataOut.flagDataAsBlock: | |
652 | """ |
|
653 | """ | |
653 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
654 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] | |
654 | """ |
|
655 | """ | |
655 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
656 | avgdata, avgdatatime = self.integrateByBlock(dataOut) | |
656 | dataOut.nProfiles /= self.n |
|
657 | dataOut.nProfiles /= self.n | |
657 | else: |
|
658 | else: | |
658 | if stride is None: |
|
659 | if stride is None: | |
659 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
660 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) | |
660 | else: |
|
661 | else: | |
661 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) |
|
662 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) | |
662 |
|
663 | |||
663 |
|
664 | |||
664 | # dataOut.timeInterval *= n |
|
665 | # dataOut.timeInterval *= n | |
665 | dataOut.flagNoData = True |
|
666 | dataOut.flagNoData = True | |
666 |
|
667 | |||
667 | if self.__dataReady: |
|
668 | if self.__dataReady: | |
668 | dataOut.data = avgdata |
|
669 | dataOut.data = avgdata | |
669 | if not dataOut.flagCohInt: |
|
670 | if not dataOut.flagCohInt: | |
670 | dataOut.nCohInt *= self.n |
|
671 | dataOut.nCohInt *= self.n | |
671 | dataOut.flagCohInt = True |
|
672 | dataOut.flagCohInt = True | |
672 | ####################################dataOut.utctime = avgdatatime |
|
673 | ####################################dataOut.utctime = avgdatatime | |
673 | # print avgdata, avgdatatime |
|
674 | # print avgdata, avgdatatime | |
674 | # raise |
|
675 | # raise | |
675 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
676 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt | |
676 | dataOut.flagNoData = False |
|
677 | dataOut.flagNoData = False | |
677 | return dataOut |
|
678 | return dataOut | |
678 |
|
679 | |||
679 | class Decoder(Operation): |
|
680 | class Decoder(Operation): | |
680 |
|
681 | |||
681 | isConfig = False |
|
682 | isConfig = False | |
682 | __profIndex = 0 |
|
683 | __profIndex = 0 | |
683 |
|
684 | |||
684 | code = None |
|
685 | code = None | |
685 |
|
686 | |||
686 | nCode = None |
|
687 | nCode = None | |
687 | nBaud = None |
|
688 | nBaud = None | |
688 |
|
689 | |||
689 | def __init__(self, **kwargs): |
|
690 | def __init__(self, **kwargs): | |
690 |
|
691 | |||
691 | Operation.__init__(self, **kwargs) |
|
692 | Operation.__init__(self, **kwargs) | |
692 |
|
693 | |||
693 | self.times = None |
|
694 | self.times = None | |
694 | self.osamp = None |
|
695 | self.osamp = None | |
695 | # self.__setValues = False |
|
696 | # self.__setValues = False | |
696 | self.isConfig = False |
|
697 | self.isConfig = False | |
697 | self.setupReq = False |
|
698 | self.setupReq = False | |
698 | def setup(self, code, osamp, dataOut): |
|
699 | def setup(self, code, osamp, dataOut): | |
699 |
|
700 | |||
700 | self.__profIndex = 0 |
|
701 | self.__profIndex = 0 | |
701 |
|
702 | |||
702 | self.code = code |
|
703 | self.code = code | |
703 |
|
704 | |||
704 | self.nCode = len(code) |
|
705 | self.nCode = len(code) | |
705 | self.nBaud = len(code[0]) |
|
706 | self.nBaud = len(code[0]) | |
706 |
|
707 | |||
707 | if (osamp != None) and (osamp >1): |
|
708 | if (osamp != None) and (osamp >1): | |
708 | self.osamp = osamp |
|
709 | self.osamp = osamp | |
709 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
710 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) | |
710 | self.nBaud = self.nBaud*self.osamp |
|
711 | self.nBaud = self.nBaud*self.osamp | |
711 |
|
712 | |||
712 | self.__nChannels = dataOut.nChannels |
|
713 | self.__nChannels = dataOut.nChannels | |
713 | self.__nProfiles = dataOut.nProfiles |
|
714 | self.__nProfiles = dataOut.nProfiles | |
714 | self.__nHeis = dataOut.nHeights |
|
715 | self.__nHeis = dataOut.nHeights | |
715 |
|
716 | |||
716 | if self.__nHeis < self.nBaud: |
|
717 | if self.__nHeis < self.nBaud: | |
717 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) |
|
718 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) | |
718 |
|
719 | |||
719 | #Frequency |
|
720 | #Frequency | |
720 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
721 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) | |
721 |
|
722 | |||
722 | __codeBuffer[:,0:self.nBaud] = self.code |
|
723 | __codeBuffer[:,0:self.nBaud] = self.code | |
723 |
|
724 | |||
724 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
725 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) | |
725 |
|
726 | |||
726 | if dataOut.flagDataAsBlock: |
|
727 | if dataOut.flagDataAsBlock: | |
727 |
|
728 | |||
728 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
729 | self.ndatadec = self.__nHeis #- self.nBaud + 1 | |
729 |
|
730 | |||
730 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
731 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) | |
731 |
|
732 | |||
732 | else: |
|
733 | else: | |
733 |
|
734 | |||
734 | #Time |
|
735 | #Time | |
735 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
736 | self.ndatadec = self.__nHeis #- self.nBaud + 1 | |
736 |
|
737 | |||
737 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
738 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) | |
738 |
|
739 | |||
739 | def __convolutionInFreq(self, data): |
|
740 | def __convolutionInFreq(self, data): | |
740 |
|
741 | |||
741 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
742 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |
742 |
|
743 | |||
743 | fft_data = numpy.fft.fft(data, axis=1) |
|
744 | fft_data = numpy.fft.fft(data, axis=1) | |
744 |
|
745 | |||
745 | conv = fft_data*fft_code |
|
746 | conv = fft_data*fft_code | |
746 |
|
747 | |||
747 | data = numpy.fft.ifft(conv,axis=1) |
|
748 | data = numpy.fft.ifft(conv,axis=1) | |
748 |
|
749 | |||
749 | return data |
|
750 | return data | |
750 |
|
751 | |||
751 | def __convolutionInFreqOpt(self, data): |
|
752 | def __convolutionInFreqOpt(self, data): | |
752 |
|
753 | |||
753 | raise NotImplementedError |
|
754 | raise NotImplementedError | |
754 |
|
755 | |||
755 | def __convolutionInTime(self, data): |
|
756 | def __convolutionInTime(self, data): | |
756 |
|
757 | |||
757 | code = self.code[self.__profIndex] |
|
758 | code = self.code[self.__profIndex] | |
758 | for i in range(self.__nChannels): |
|
759 | for i in range(self.__nChannels): | |
759 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
760 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] | |
760 |
|
761 | |||
761 | return self.datadecTime |
|
762 | return self.datadecTime | |
762 |
|
763 | |||
763 | def __convolutionByBlockInTime(self, data): |
|
764 | def __convolutionByBlockInTime(self, data): | |
764 |
|
765 | |||
765 | repetitions = int(self.__nProfiles / self.nCode) |
|
766 | repetitions = int(self.__nProfiles / self.nCode) | |
766 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
767 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) | |
767 | junk = junk.flatten() |
|
768 | junk = junk.flatten() | |
768 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
769 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) | |
769 | profilesList = range(self.__nProfiles) |
|
770 | profilesList = range(self.__nProfiles) | |
770 |
|
771 | |||
771 | for i in range(self.__nChannels): |
|
772 | for i in range(self.__nChannels): | |
772 | for j in profilesList: |
|
773 | for j in profilesList: | |
773 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
774 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] | |
774 | return self.datadecTime |
|
775 | return self.datadecTime | |
775 |
|
776 | |||
776 | def __convolutionByBlockInFreq(self, data): |
|
777 | def __convolutionByBlockInFreq(self, data): | |
777 |
|
778 | |||
778 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") |
|
779 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") | |
779 |
|
780 | |||
780 |
|
781 | |||
781 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
782 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) | |
782 |
|
783 | |||
783 | fft_data = numpy.fft.fft(data, axis=2) |
|
784 | fft_data = numpy.fft.fft(data, axis=2) | |
784 |
|
785 | |||
785 | conv = fft_data*fft_code |
|
786 | conv = fft_data*fft_code | |
786 |
|
787 | |||
787 | data = numpy.fft.ifft(conv,axis=2) |
|
788 | data = numpy.fft.ifft(conv,axis=2) | |
788 |
|
789 | |||
789 | return data |
|
790 | return data | |
790 |
|
791 | |||
791 |
|
792 | |||
792 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
793 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): | |
793 |
|
794 | |||
794 | if dataOut.flagDecodeData: |
|
795 | if dataOut.flagDecodeData: | |
795 | print("This data is already decoded, recoding again ...") |
|
796 | print("This data is already decoded, recoding again ...") | |
796 |
|
797 | |||
797 | if not self.isConfig: |
|
798 | if not self.isConfig: | |
798 |
|
799 | |||
799 | if code is None: |
|
800 | if code is None: | |
800 | if dataOut.code is None: |
|
801 | if dataOut.code is None: | |
801 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) |
|
802 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) | |
802 |
|
803 | |||
803 | code = dataOut.code |
|
804 | code = dataOut.code | |
804 | else: |
|
805 | else: | |
805 | code = numpy.array(code).reshape(nCode,nBaud) |
|
806 | code = numpy.array(code).reshape(nCode,nBaud) | |
806 | self.setup(code, osamp, dataOut) |
|
807 | self.setup(code, osamp, dataOut) | |
807 |
|
808 | |||
808 | self.isConfig = True |
|
809 | self.isConfig = True | |
809 |
|
810 | |||
810 | if mode == 3: |
|
811 | if mode == 3: | |
811 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) |
|
812 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) | |
812 |
|
813 | |||
813 | if times != None: |
|
814 | if times != None: | |
814 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") |
|
815 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") | |
815 |
|
816 | |||
816 | if self.code is None: |
|
817 | if self.code is None: | |
817 | print("Fail decoding: Code is not defined.") |
|
818 | print("Fail decoding: Code is not defined.") | |
818 | return |
|
819 | return | |
819 |
|
820 | |||
820 | self.__nProfiles = dataOut.nProfiles |
|
821 | self.__nProfiles = dataOut.nProfiles | |
821 | datadec = None |
|
822 | datadec = None | |
822 |
|
823 | |||
823 | if mode == 3: |
|
824 | if mode == 3: | |
824 | mode = 0 |
|
825 | mode = 0 | |
825 |
|
826 | |||
826 | if dataOut.flagDataAsBlock: |
|
827 | if dataOut.flagDataAsBlock: | |
827 | """ |
|
828 | """ | |
828 | Decoding when data have been read as block, |
|
829 | Decoding when data have been read as block, | |
829 | """ |
|
830 | """ | |
830 |
|
831 | |||
831 | if mode == 0: |
|
832 | if mode == 0: | |
832 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
833 | datadec = self.__convolutionByBlockInTime(dataOut.data) | |
833 | if mode == 1: |
|
834 | if mode == 1: | |
834 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
835 | datadec = self.__convolutionByBlockInFreq(dataOut.data) | |
835 | else: |
|
836 | else: | |
836 | """ |
|
837 | """ | |
837 | Decoding when data have been read profile by profile |
|
838 | Decoding when data have been read profile by profile | |
838 | """ |
|
839 | """ | |
839 | if mode == 0: |
|
840 | if mode == 0: | |
840 | datadec = self.__convolutionInTime(dataOut.data) |
|
841 | datadec = self.__convolutionInTime(dataOut.data) | |
841 |
|
842 | |||
842 | if mode == 1: |
|
843 | if mode == 1: | |
843 | datadec = self.__convolutionInFreq(dataOut.data) |
|
844 | datadec = self.__convolutionInFreq(dataOut.data) | |
844 |
|
845 | |||
845 | if mode == 2: |
|
846 | if mode == 2: | |
846 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
847 | datadec = self.__convolutionInFreqOpt(dataOut.data) | |
847 |
|
848 | |||
848 | if datadec is None: |
|
849 | if datadec is None: | |
849 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) |
|
850 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) | |
850 |
|
851 | |||
851 | dataOut.code = self.code |
|
852 | dataOut.code = self.code | |
852 | dataOut.nCode = self.nCode |
|
853 | dataOut.nCode = self.nCode | |
853 | dataOut.nBaud = self.nBaud |
|
854 | dataOut.nBaud = self.nBaud | |
854 |
|
855 | |||
855 | dataOut.data = datadec |
|
856 | dataOut.data = datadec | |
856 |
|
857 | |||
857 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
858 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] | |
858 |
|
859 | |||
859 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
860 | dataOut.flagDecodeData = True #asumo q la data esta decodificada | |
860 |
|
861 | |||
861 | if self.__profIndex == self.nCode-1: |
|
862 | if self.__profIndex == self.nCode-1: | |
862 | self.__profIndex = 0 |
|
863 | self.__profIndex = 0 | |
863 | return dataOut |
|
864 | return dataOut | |
864 |
|
865 | |||
865 | self.__profIndex += 1 |
|
866 | self.__profIndex += 1 | |
866 |
|
867 | |||
867 | return dataOut |
|
868 | return dataOut | |
868 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
869 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip | |
869 |
|
870 | |||
870 |
|
871 | |||
871 | class ProfileConcat(Operation): |
|
872 | class ProfileConcat(Operation): | |
872 |
|
873 | |||
873 | isConfig = False |
|
874 | isConfig = False | |
874 | buffer = None |
|
875 | buffer = None | |
875 |
|
876 | |||
876 | def __init__(self, **kwargs): |
|
877 | def __init__(self, **kwargs): | |
877 |
|
878 | |||
878 | Operation.__init__(self, **kwargs) |
|
879 | Operation.__init__(self, **kwargs) | |
879 | self.profileIndex = 0 |
|
880 | self.profileIndex = 0 | |
880 |
|
881 | |||
881 | def reset(self): |
|
882 | def reset(self): | |
882 | self.buffer = numpy.zeros_like(self.buffer) |
|
883 | self.buffer = numpy.zeros_like(self.buffer) | |
883 | self.start_index = 0 |
|
884 | self.start_index = 0 | |
884 | self.times = 1 |
|
885 | self.times = 1 | |
885 |
|
886 | |||
886 | def setup(self, data, m, n=1): |
|
887 | def setup(self, data, m, n=1): | |
887 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
888 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) | |
888 | self.nHeights = data.shape[1]#.nHeights |
|
889 | self.nHeights = data.shape[1]#.nHeights | |
889 | self.start_index = 0 |
|
890 | self.start_index = 0 | |
890 | self.times = 1 |
|
891 | self.times = 1 | |
891 |
|
892 | |||
892 | def concat(self, data): |
|
893 | def concat(self, data): | |
893 |
|
894 | |||
894 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() |
|
895 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() | |
895 | self.start_index = self.start_index + self.nHeights |
|
896 | self.start_index = self.start_index + self.nHeights | |
896 |
|
897 | |||
897 | def run(self, dataOut, m): |
|
898 | def run(self, dataOut, m): | |
898 | dataOut.flagNoData = True |
|
899 | dataOut.flagNoData = True | |
899 |
|
900 | |||
900 | if not self.isConfig: |
|
901 | if not self.isConfig: | |
901 | self.setup(dataOut.data, m, 1) |
|
902 | self.setup(dataOut.data, m, 1) | |
902 | self.isConfig = True |
|
903 | self.isConfig = True | |
903 |
|
904 | |||
904 | if dataOut.flagDataAsBlock: |
|
905 | if dataOut.flagDataAsBlock: | |
905 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") |
|
906 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") | |
906 |
|
907 | |||
907 | else: |
|
908 | else: | |
908 | self.concat(dataOut.data) |
|
909 | self.concat(dataOut.data) | |
909 | self.times += 1 |
|
910 | self.times += 1 | |
910 | if self.times > m: |
|
911 | if self.times > m: | |
911 | dataOut.data = self.buffer |
|
912 | dataOut.data = self.buffer | |
912 | self.reset() |
|
913 | self.reset() | |
913 | dataOut.flagNoData = False |
|
914 | dataOut.flagNoData = False | |
914 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
915 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas | |
915 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
916 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
916 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
917 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m | |
917 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
918 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) | |
918 | dataOut.ippSeconds *= m |
|
919 | dataOut.ippSeconds *= m | |
919 | return dataOut |
|
920 | return dataOut | |
920 |
|
921 | |||
921 | class ProfileSelector(Operation): |
|
922 | class ProfileSelector(Operation): | |
922 |
|
923 | |||
923 | profileIndex = None |
|
924 | profileIndex = None | |
924 | # Tamanho total de los perfiles |
|
925 | # Tamanho total de los perfiles | |
925 | nProfiles = None |
|
926 | nProfiles = None | |
926 |
|
927 | |||
927 | def __init__(self, **kwargs): |
|
928 | def __init__(self, **kwargs): | |
928 |
|
929 | |||
929 | Operation.__init__(self, **kwargs) |
|
930 | Operation.__init__(self, **kwargs) | |
930 | self.profileIndex = 0 |
|
931 | self.profileIndex = 0 | |
931 |
|
932 | |||
932 | def incProfileIndex(self): |
|
933 | def incProfileIndex(self): | |
933 |
|
934 | |||
934 | self.profileIndex += 1 |
|
935 | self.profileIndex += 1 | |
935 |
|
936 | |||
936 | if self.profileIndex >= self.nProfiles: |
|
937 | if self.profileIndex >= self.nProfiles: | |
937 | self.profileIndex = 0 |
|
938 | self.profileIndex = 0 | |
938 |
|
939 | |||
939 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
940 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): | |
940 |
|
941 | |||
941 | if profileIndex < minIndex: |
|
942 | if profileIndex < minIndex: | |
942 | return False |
|
943 | return False | |
943 |
|
944 | |||
944 | if profileIndex > maxIndex: |
|
945 | if profileIndex > maxIndex: | |
945 | return False |
|
946 | return False | |
946 |
|
947 | |||
947 | return True |
|
948 | return True | |
948 |
|
949 | |||
949 | def isThisProfileInList(self, profileIndex, profileList): |
|
950 | def isThisProfileInList(self, profileIndex, profileList): | |
950 |
|
951 | |||
951 | if profileIndex not in profileList: |
|
952 | if profileIndex not in profileList: | |
952 | return False |
|
953 | return False | |
953 |
|
954 | |||
954 | return True |
|
955 | return True | |
955 |
|
956 | |||
956 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): |
|
957 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): | |
957 | #print("before",dataOut.data.shape) |
|
958 | #print("before",dataOut.data.shape) | |
958 | """ |
|
959 | """ | |
959 | ProfileSelector: |
|
960 | ProfileSelector: | |
960 |
|
961 | |||
961 | Inputs: |
|
962 | Inputs: | |
962 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
963 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) | |
963 |
|
964 | |||
964 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
965 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) | |
965 |
|
966 | |||
966 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
967 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) | |
967 |
|
968 | |||
968 | """ |
|
969 | """ | |
969 |
|
970 | |||
970 | if rangeList is not None: |
|
971 | if rangeList is not None: | |
971 | if type(rangeList[0]) not in (tuple, list): |
|
972 | if type(rangeList[0]) not in (tuple, list): | |
972 | rangeList = [rangeList] |
|
973 | rangeList = [rangeList] | |
973 |
|
974 | |||
974 | dataOut.flagNoData = True |
|
975 | dataOut.flagNoData = True | |
975 |
|
976 | |||
976 | if dataOut.flagDataAsBlock: |
|
977 | if dataOut.flagDataAsBlock: | |
977 | """ |
|
978 | """ | |
978 | data dimension = [nChannels, nProfiles, nHeis] |
|
979 | data dimension = [nChannels, nProfiles, nHeis] | |
979 | """ |
|
980 | """ | |
980 | if profileList != None: |
|
981 | if profileList != None: | |
981 | dataOut.data = dataOut.data[:,profileList,:] |
|
982 | dataOut.data = dataOut.data[:,profileList,:] | |
982 |
|
983 | |||
983 | if profileRangeList != None: |
|
984 | if profileRangeList != None: | |
984 | minIndex = profileRangeList[0] |
|
985 | minIndex = profileRangeList[0] | |
985 | maxIndex = profileRangeList[1] |
|
986 | maxIndex = profileRangeList[1] | |
986 | profileList = list(range(minIndex, maxIndex+1)) |
|
987 | profileList = list(range(minIndex, maxIndex+1)) | |
987 |
|
988 | |||
988 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
989 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] | |
989 |
|
990 | |||
990 | if rangeList != None: |
|
991 | if rangeList != None: | |
991 |
|
992 | |||
992 | profileList = [] |
|
993 | profileList = [] | |
993 |
|
994 | |||
994 | for thisRange in rangeList: |
|
995 | for thisRange in rangeList: | |
995 | minIndex = thisRange[0] |
|
996 | minIndex = thisRange[0] | |
996 | maxIndex = thisRange[1] |
|
997 | maxIndex = thisRange[1] | |
997 |
|
998 | |||
998 | profileList.extend(list(range(minIndex, maxIndex+1))) |
|
999 | profileList.extend(list(range(minIndex, maxIndex+1))) | |
999 |
|
1000 | |||
1000 | dataOut.data = dataOut.data[:,profileList,:] |
|
1001 | dataOut.data = dataOut.data[:,profileList,:] | |
1001 |
|
1002 | |||
1002 | dataOut.nProfiles = len(profileList) |
|
1003 | dataOut.nProfiles = len(profileList) | |
1003 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
1004 | dataOut.profileIndex = dataOut.nProfiles - 1 | |
1004 | dataOut.flagNoData = False |
|
1005 | dataOut.flagNoData = False | |
1005 | #print(dataOut.data.shape) |
|
1006 | #print(dataOut.data.shape) | |
1006 | return dataOut |
|
1007 | return dataOut | |
1007 |
|
1008 | |||
1008 | """ |
|
1009 | """ | |
1009 | data dimension = [nChannels, nHeis] |
|
1010 | data dimension = [nChannels, nHeis] | |
1010 | """ |
|
1011 | """ | |
1011 |
|
1012 | |||
1012 | if profileList != None: |
|
1013 | if profileList != None: | |
1013 |
|
1014 | |||
1014 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
1015 | if self.isThisProfileInList(dataOut.profileIndex, profileList): | |
1015 |
|
1016 | |||
1016 | self.nProfiles = len(profileList) |
|
1017 | self.nProfiles = len(profileList) | |
1017 | dataOut.nProfiles = self.nProfiles |
|
1018 | dataOut.nProfiles = self.nProfiles | |
1018 | dataOut.profileIndex = self.profileIndex |
|
1019 | dataOut.profileIndex = self.profileIndex | |
1019 | dataOut.flagNoData = False |
|
1020 | dataOut.flagNoData = False | |
1020 |
|
1021 | |||
1021 | self.incProfileIndex() |
|
1022 | self.incProfileIndex() | |
1022 | return dataOut |
|
1023 | return dataOut | |
1023 |
|
1024 | |||
1024 | if profileRangeList != None: |
|
1025 | if profileRangeList != None: | |
1025 |
|
1026 | |||
1026 | minIndex = profileRangeList[0] |
|
1027 | minIndex = profileRangeList[0] | |
1027 | maxIndex = profileRangeList[1] |
|
1028 | maxIndex = profileRangeList[1] | |
1028 |
|
1029 | |||
1029 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1030 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |
1030 |
|
1031 | |||
1031 | self.nProfiles = maxIndex - minIndex + 1 |
|
1032 | self.nProfiles = maxIndex - minIndex + 1 | |
1032 | dataOut.nProfiles = self.nProfiles |
|
1033 | dataOut.nProfiles = self.nProfiles | |
1033 | dataOut.profileIndex = self.profileIndex |
|
1034 | dataOut.profileIndex = self.profileIndex | |
1034 | dataOut.flagNoData = False |
|
1035 | dataOut.flagNoData = False | |
1035 |
|
1036 | |||
1036 | self.incProfileIndex() |
|
1037 | self.incProfileIndex() | |
1037 | return dataOut |
|
1038 | return dataOut | |
1038 |
|
1039 | |||
1039 | if rangeList != None: |
|
1040 | if rangeList != None: | |
1040 |
|
1041 | |||
1041 | nProfiles = 0 |
|
1042 | nProfiles = 0 | |
1042 |
|
1043 | |||
1043 | for thisRange in rangeList: |
|
1044 | for thisRange in rangeList: | |
1044 | minIndex = thisRange[0] |
|
1045 | minIndex = thisRange[0] | |
1045 | maxIndex = thisRange[1] |
|
1046 | maxIndex = thisRange[1] | |
1046 |
|
1047 | |||
1047 | nProfiles += maxIndex - minIndex + 1 |
|
1048 | nProfiles += maxIndex - minIndex + 1 | |
1048 |
|
1049 | |||
1049 | for thisRange in rangeList: |
|
1050 | for thisRange in rangeList: | |
1050 |
|
1051 | |||
1051 | minIndex = thisRange[0] |
|
1052 | minIndex = thisRange[0] | |
1052 | maxIndex = thisRange[1] |
|
1053 | maxIndex = thisRange[1] | |
1053 |
|
1054 | |||
1054 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
1055 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): | |
1055 |
|
1056 | |||
1056 | self.nProfiles = nProfiles |
|
1057 | self.nProfiles = nProfiles | |
1057 | dataOut.nProfiles = self.nProfiles |
|
1058 | dataOut.nProfiles = self.nProfiles | |
1058 | dataOut.profileIndex = self.profileIndex |
|
1059 | dataOut.profileIndex = self.profileIndex | |
1059 | dataOut.flagNoData = False |
|
1060 | dataOut.flagNoData = False | |
1060 |
|
1061 | |||
1061 | self.incProfileIndex() |
|
1062 | self.incProfileIndex() | |
1062 |
|
1063 | |||
1063 | break |
|
1064 | break | |
1064 |
|
1065 | |||
1065 | return dataOut |
|
1066 | return dataOut | |
1066 |
|
1067 | |||
1067 |
|
1068 | |||
1068 | if beam != None: #beam is only for AMISR data |
|
1069 | if beam != None: #beam is only for AMISR data | |
1069 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
1070 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): | |
1070 | dataOut.flagNoData = False |
|
1071 | dataOut.flagNoData = False | |
1071 | dataOut.profileIndex = self.profileIndex |
|
1072 | dataOut.profileIndex = self.profileIndex | |
1072 |
|
1073 | |||
1073 | self.incProfileIndex() |
|
1074 | self.incProfileIndex() | |
1074 |
|
1075 | |||
1075 | return dataOut |
|
1076 | return dataOut | |
1076 |
|
1077 | |||
1077 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") |
|
1078 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") | |
1078 |
|
1079 | |||
1079 |
|
1080 | |||
1080 | class Reshaper(Operation): |
|
1081 | class Reshaper(Operation): | |
1081 |
|
1082 | |||
1082 | def __init__(self, **kwargs): |
|
1083 | def __init__(self, **kwargs): | |
1083 |
|
1084 | |||
1084 | Operation.__init__(self, **kwargs) |
|
1085 | Operation.__init__(self, **kwargs) | |
1085 |
|
1086 | |||
1086 | self.__buffer = None |
|
1087 | self.__buffer = None | |
1087 | self.__nitems = 0 |
|
1088 | self.__nitems = 0 | |
1088 |
|
1089 | |||
1089 | def __appendProfile(self, dataOut, nTxs): |
|
1090 | def __appendProfile(self, dataOut, nTxs): | |
1090 |
|
1091 | |||
1091 | if self.__buffer is None: |
|
1092 | if self.__buffer is None: | |
1092 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) |
|
1093 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) | |
1093 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) |
|
1094 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) | |
1094 |
|
1095 | |||
1095 | ini = dataOut.nHeights * self.__nitems |
|
1096 | ini = dataOut.nHeights * self.__nitems | |
1096 | end = ini + dataOut.nHeights |
|
1097 | end = ini + dataOut.nHeights | |
1097 |
|
1098 | |||
1098 | self.__buffer[:, ini:end] = dataOut.data |
|
1099 | self.__buffer[:, ini:end] = dataOut.data | |
1099 |
|
1100 | |||
1100 | self.__nitems += 1 |
|
1101 | self.__nitems += 1 | |
1101 |
|
1102 | |||
1102 | return int(self.__nitems*nTxs) |
|
1103 | return int(self.__nitems*nTxs) | |
1103 |
|
1104 | |||
1104 | def __getBuffer(self): |
|
1105 | def __getBuffer(self): | |
1105 |
|
1106 | |||
1106 | if self.__nitems == int(1./self.__nTxs): |
|
1107 | if self.__nitems == int(1./self.__nTxs): | |
1107 |
|
1108 | |||
1108 | self.__nitems = 0 |
|
1109 | self.__nitems = 0 | |
1109 |
|
1110 | |||
1110 | return self.__buffer.copy() |
|
1111 | return self.__buffer.copy() | |
1111 |
|
1112 | |||
1112 | return None |
|
1113 | return None | |
1113 |
|
1114 | |||
1114 | def __checkInputs(self, dataOut, shape, nTxs): |
|
1115 | def __checkInputs(self, dataOut, shape, nTxs): | |
1115 |
|
1116 | |||
1116 | if shape is None and nTxs is None: |
|
1117 | if shape is None and nTxs is None: | |
1117 | raise ValueError("Reshaper: shape of factor should be defined") |
|
1118 | raise ValueError("Reshaper: shape of factor should be defined") | |
1118 |
|
1119 | |||
1119 | if nTxs: |
|
1120 | if nTxs: | |
1120 | if nTxs < 0: |
|
1121 | if nTxs < 0: | |
1121 | raise ValueError("nTxs should be greater than 0") |
|
1122 | raise ValueError("nTxs should be greater than 0") | |
1122 |
|
1123 | |||
1123 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: |
|
1124 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: | |
1124 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) |
|
1125 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) | |
1125 |
|
1126 | |||
1126 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] |
|
1127 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] | |
1127 |
|
1128 | |||
1128 | return shape, nTxs |
|
1129 | return shape, nTxs | |
1129 |
|
1130 | |||
1130 | if len(shape) != 2 and len(shape) != 3: |
|
1131 | if len(shape) != 2 and len(shape) != 3: | |
1131 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) |
|
1132 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) | |
1132 |
|
1133 | |||
1133 | if len(shape) == 2: |
|
1134 | if len(shape) == 2: | |
1134 | shape_tuple = [dataOut.nChannels] |
|
1135 | shape_tuple = [dataOut.nChannels] | |
1135 | shape_tuple.extend(shape) |
|
1136 | shape_tuple.extend(shape) | |
1136 | else: |
|
1137 | else: | |
1137 | shape_tuple = list(shape) |
|
1138 | shape_tuple = list(shape) | |
1138 |
|
1139 | |||
1139 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles |
|
1140 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles | |
1140 |
|
1141 | |||
1141 | return shape_tuple, nTxs |
|
1142 | return shape_tuple, nTxs | |
1142 |
|
1143 | |||
1143 | def run(self, dataOut, shape=None, nTxs=None): |
|
1144 | def run(self, dataOut, shape=None, nTxs=None): | |
1144 |
|
1145 | |||
1145 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) |
|
1146 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) | |
1146 |
|
1147 | |||
1147 | dataOut.flagNoData = True |
|
1148 | dataOut.flagNoData = True | |
1148 | profileIndex = None |
|
1149 | profileIndex = None | |
1149 |
|
1150 | |||
1150 | if dataOut.flagDataAsBlock: |
|
1151 | if dataOut.flagDataAsBlock: | |
1151 |
|
1152 | |||
1152 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
1153 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) | |
1153 | dataOut.flagNoData = False |
|
1154 | dataOut.flagNoData = False | |
1154 |
|
1155 | |||
1155 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 |
|
1156 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 | |
1156 |
|
1157 | |||
1157 | else: |
|
1158 | else: | |
1158 |
|
1159 | |||
1159 | if self.__nTxs < 1: |
|
1160 | if self.__nTxs < 1: | |
1160 |
|
1161 | |||
1161 | self.__appendProfile(dataOut, self.__nTxs) |
|
1162 | self.__appendProfile(dataOut, self.__nTxs) | |
1162 | new_data = self.__getBuffer() |
|
1163 | new_data = self.__getBuffer() | |
1163 |
|
1164 | |||
1164 | if new_data is not None: |
|
1165 | if new_data is not None: | |
1165 | dataOut.data = new_data |
|
1166 | dataOut.data = new_data | |
1166 | dataOut.flagNoData = False |
|
1167 | dataOut.flagNoData = False | |
1167 |
|
1168 | |||
1168 | profileIndex = dataOut.profileIndex*nTxs |
|
1169 | profileIndex = dataOut.profileIndex*nTxs | |
1169 |
|
1170 | |||
1170 | else: |
|
1171 | else: | |
1171 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") |
|
1172 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") | |
1172 |
|
1173 | |||
1173 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1174 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1174 |
|
1175 | |||
1175 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] |
|
1176 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] | |
1176 |
|
1177 | |||
1177 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) |
|
1178 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) | |
1178 |
|
1179 | |||
1179 | dataOut.profileIndex = profileIndex |
|
1180 | dataOut.profileIndex = profileIndex | |
1180 |
|
1181 | |||
1181 | dataOut.ippSeconds /= self.__nTxs |
|
1182 | dataOut.ippSeconds /= self.__nTxs | |
1182 |
|
1183 | |||
1183 | return dataOut |
|
1184 | return dataOut | |
1184 |
|
1185 | |||
1185 | class SplitProfiles(Operation): |
|
1186 | class SplitProfiles(Operation): | |
1186 |
|
1187 | |||
1187 | def __init__(self, **kwargs): |
|
1188 | def __init__(self, **kwargs): | |
1188 |
|
1189 | |||
1189 | Operation.__init__(self, **kwargs) |
|
1190 | Operation.__init__(self, **kwargs) | |
1190 |
|
1191 | |||
1191 | def run(self, dataOut, n): |
|
1192 | def run(self, dataOut, n): | |
1192 |
|
1193 | |||
1193 | dataOut.flagNoData = True |
|
1194 | dataOut.flagNoData = True | |
1194 | profileIndex = None |
|
1195 | profileIndex = None | |
1195 |
|
1196 | |||
1196 | if dataOut.flagDataAsBlock: |
|
1197 | if dataOut.flagDataAsBlock: | |
1197 |
|
1198 | |||
1198 | #nchannels, nprofiles, nsamples |
|
1199 | #nchannels, nprofiles, nsamples | |
1199 | shape = dataOut.data.shape |
|
1200 | shape = dataOut.data.shape | |
1200 |
|
1201 | |||
1201 | if shape[2] % n != 0: |
|
1202 | if shape[2] % n != 0: | |
1202 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) |
|
1203 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) | |
1203 |
|
1204 | |||
1204 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) |
|
1205 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) | |
1205 |
|
1206 | |||
1206 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1207 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |
1207 | dataOut.flagNoData = False |
|
1208 | dataOut.flagNoData = False | |
1208 |
|
1209 | |||
1209 | profileIndex = int(dataOut.nProfiles/n) - 1 |
|
1210 | profileIndex = int(dataOut.nProfiles/n) - 1 | |
1210 |
|
1211 | |||
1211 | else: |
|
1212 | else: | |
1212 |
|
1213 | |||
1213 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") |
|
1214 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") | |
1214 |
|
1215 | |||
1215 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1216 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1216 |
|
1217 | |||
1217 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] |
|
1218 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] | |
1218 |
|
1219 | |||
1219 | dataOut.nProfiles = int(dataOut.nProfiles*n) |
|
1220 | dataOut.nProfiles = int(dataOut.nProfiles*n) | |
1220 |
|
1221 | |||
1221 | dataOut.profileIndex = profileIndex |
|
1222 | dataOut.profileIndex = profileIndex | |
1222 |
|
1223 | |||
1223 | dataOut.ippSeconds /= n |
|
1224 | dataOut.ippSeconds /= n | |
1224 |
|
1225 | |||
1225 | return dataOut |
|
1226 | return dataOut | |
1226 |
|
1227 | |||
1227 | class CombineProfiles(Operation): |
|
1228 | class CombineProfiles(Operation): | |
1228 | def __init__(self, **kwargs): |
|
1229 | def __init__(self, **kwargs): | |
1229 |
|
1230 | |||
1230 | Operation.__init__(self, **kwargs) |
|
1231 | Operation.__init__(self, **kwargs) | |
1231 |
|
1232 | |||
1232 | self.__remData = None |
|
1233 | self.__remData = None | |
1233 | self.__profileIndex = 0 |
|
1234 | self.__profileIndex = 0 | |
1234 |
|
1235 | |||
1235 | def run(self, dataOut, n): |
|
1236 | def run(self, dataOut, n): | |
1236 |
|
1237 | |||
1237 | dataOut.flagNoData = True |
|
1238 | dataOut.flagNoData = True | |
1238 | profileIndex = None |
|
1239 | profileIndex = None | |
1239 |
|
1240 | |||
1240 | if dataOut.flagDataAsBlock: |
|
1241 | if dataOut.flagDataAsBlock: | |
1241 |
|
1242 | |||
1242 | #nchannels, nprofiles, nsamples |
|
1243 | #nchannels, nprofiles, nsamples | |
1243 | shape = dataOut.data.shape |
|
1244 | shape = dataOut.data.shape | |
1244 | new_shape = shape[0], shape[1]/n, shape[2]*n |
|
1245 | new_shape = shape[0], shape[1]/n, shape[2]*n | |
1245 |
|
1246 | |||
1246 | if shape[1] % n != 0: |
|
1247 | if shape[1] % n != 0: | |
1247 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) |
|
1248 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) | |
1248 |
|
1249 | |||
1249 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1250 | dataOut.data = numpy.reshape(dataOut.data, new_shape) | |
1250 | dataOut.flagNoData = False |
|
1251 | dataOut.flagNoData = False | |
1251 |
|
1252 | |||
1252 | profileIndex = int(dataOut.nProfiles*n) - 1 |
|
1253 | profileIndex = int(dataOut.nProfiles*n) - 1 | |
1253 |
|
1254 | |||
1254 | else: |
|
1255 | else: | |
1255 |
|
1256 | |||
1256 | #nchannels, nsamples |
|
1257 | #nchannels, nsamples | |
1257 | if self.__remData is None: |
|
1258 | if self.__remData is None: | |
1258 | newData = dataOut.data |
|
1259 | newData = dataOut.data | |
1259 | else: |
|
1260 | else: | |
1260 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) |
|
1261 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) | |
1261 |
|
1262 | |||
1262 | self.__profileIndex += 1 |
|
1263 | self.__profileIndex += 1 | |
1263 |
|
1264 | |||
1264 | if self.__profileIndex < n: |
|
1265 | if self.__profileIndex < n: | |
1265 | self.__remData = newData |
|
1266 | self.__remData = newData | |
1266 | #continue |
|
1267 | #continue | |
1267 | return |
|
1268 | return | |
1268 |
|
1269 | |||
1269 | self.__profileIndex = 0 |
|
1270 | self.__profileIndex = 0 | |
1270 | self.__remData = None |
|
1271 | self.__remData = None | |
1271 |
|
1272 | |||
1272 | dataOut.data = newData |
|
1273 | dataOut.data = newData | |
1273 | dataOut.flagNoData = False |
|
1274 | dataOut.flagNoData = False | |
1274 |
|
1275 | |||
1275 | profileIndex = dataOut.profileIndex/n |
|
1276 | profileIndex = dataOut.profileIndex/n | |
1276 |
|
1277 | |||
1277 |
|
1278 | |||
1278 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1279 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1279 |
|
1280 | |||
1280 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] |
|
1281 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] | |
1281 |
|
1282 | |||
1282 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1283 | dataOut.nProfiles = int(dataOut.nProfiles/n) | |
1283 |
|
1284 | |||
1284 | dataOut.profileIndex = profileIndex |
|
1285 | dataOut.profileIndex = profileIndex | |
1285 |
|
1286 | |||
1286 | dataOut.ippSeconds *= n |
|
1287 | dataOut.ippSeconds *= n | |
1287 |
|
1288 | |||
1288 | return dataOut |
|
1289 | return dataOut | |
1289 |
|
1290 | |||
1290 | class PulsePair(Operation): |
|
1291 | class PulsePair(Operation): | |
1291 | ''' |
|
1292 | ''' | |
1292 | Function PulsePair(Signal Power, Velocity) |
|
1293 | Function PulsePair(Signal Power, Velocity) | |
1293 | The real component of Lag[0] provides Intensity Information |
|
1294 | The real component of Lag[0] provides Intensity Information | |
1294 | The imag component of Lag[1] Phase provides Velocity Information |
|
1295 | The imag component of Lag[1] Phase provides Velocity Information | |
1295 |
|
1296 | |||
1296 | Configuration Parameters: |
|
1297 | Configuration Parameters: | |
1297 | nPRF = Number of Several PRF |
|
1298 | nPRF = Number of Several PRF | |
1298 | theta = Degree Azimuth angel Boundaries |
|
1299 | theta = Degree Azimuth angel Boundaries | |
1299 |
|
1300 | |||
1300 | Input: |
|
1301 | Input: | |
1301 | self.dataOut |
|
1302 | self.dataOut | |
1302 | lag[N] |
|
1303 | lag[N] | |
1303 | Affected: |
|
1304 | Affected: | |
1304 | self.dataOut.spc |
|
1305 | self.dataOut.spc | |
1305 | ''' |
|
1306 | ''' | |
1306 | isConfig = False |
|
1307 | isConfig = False | |
1307 | __profIndex = 0 |
|
1308 | __profIndex = 0 | |
1308 | __initime = None |
|
1309 | __initime = None | |
1309 | __lastdatatime = None |
|
1310 | __lastdatatime = None | |
1310 | __buffer = None |
|
1311 | __buffer = None | |
1311 | noise = None |
|
1312 | noise = None | |
1312 | __dataReady = False |
|
1313 | __dataReady = False | |
1313 | n = None |
|
1314 | n = None | |
1314 | __nch = 0 |
|
1315 | __nch = 0 | |
1315 | __nHeis = 0 |
|
1316 | __nHeis = 0 | |
1316 | removeDC = False |
|
1317 | removeDC = False | |
1317 | ipp = None |
|
1318 | ipp = None | |
1318 | lambda_ = 0 |
|
1319 | lambda_ = 0 | |
1319 |
|
1320 | |||
1320 | def __init__(self,**kwargs): |
|
1321 | def __init__(self,**kwargs): | |
1321 | Operation.__init__(self,**kwargs) |
|
1322 | Operation.__init__(self,**kwargs) | |
1322 |
|
1323 | |||
1323 | def setup(self, dataOut, n = None, removeDC=False): |
|
1324 | def setup(self, dataOut, n = None, removeDC=False): | |
1324 | ''' |
|
1325 | ''' | |
1325 | n= Numero de PRF's de entrada |
|
1326 | n= Numero de PRF's de entrada | |
1326 | ''' |
|
1327 | ''' | |
1327 | self.__initime = None |
|
1328 | self.__initime = None | |
1328 | ####print("[INICIO]-setup del METODO PULSE PAIR") |
|
1329 | ####print("[INICIO]-setup del METODO PULSE PAIR") | |
1329 | self.__lastdatatime = 0 |
|
1330 | self.__lastdatatime = 0 | |
1330 | self.__dataReady = False |
|
1331 | self.__dataReady = False | |
1331 | self.__buffer = 0 |
|
1332 | self.__buffer = 0 | |
1332 | self.__profIndex = 0 |
|
1333 | self.__profIndex = 0 | |
1333 | self.noise = None |
|
1334 | self.noise = None | |
1334 | self.__nch = dataOut.nChannels |
|
1335 | self.__nch = dataOut.nChannels | |
1335 | self.__nHeis = dataOut.nHeights |
|
1336 | self.__nHeis = dataOut.nHeights | |
1336 | self.removeDC = removeDC |
|
1337 | self.removeDC = removeDC | |
1337 | self.lambda_ = 3.0e8/(9345.0e6) |
|
1338 | self.lambda_ = 3.0e8/(9345.0e6) | |
1338 | self.ippSec = dataOut.ippSeconds |
|
1339 | self.ippSec = dataOut.ippSeconds | |
1339 | self.nCohInt = dataOut.nCohInt |
|
1340 | self.nCohInt = dataOut.nCohInt | |
1340 | ####print("IPPseconds",dataOut.ippSeconds) |
|
1341 | ####print("IPPseconds",dataOut.ippSeconds) | |
1341 | ####print("ELVALOR DE n es:", n) |
|
1342 | ####print("ELVALOR DE n es:", n) | |
1342 | if n == None: |
|
1343 | if n == None: | |
1343 | raise ValueError("n should be specified.") |
|
1344 | raise ValueError("n should be specified.") | |
1344 |
|
1345 | |||
1345 | if n != None: |
|
1346 | if n != None: | |
1346 | if n<2: |
|
1347 | if n<2: | |
1347 | raise ValueError("n should be greater than 2") |
|
1348 | raise ValueError("n should be greater than 2") | |
1348 |
|
1349 | |||
1349 | self.n = n |
|
1350 | self.n = n | |
1350 | self.__nProf = n |
|
1351 | self.__nProf = n | |
1351 |
|
1352 | |||
1352 | self.__buffer = numpy.zeros((dataOut.nChannels, |
|
1353 | self.__buffer = numpy.zeros((dataOut.nChannels, | |
1353 | n, |
|
1354 | n, | |
1354 | dataOut.nHeights), |
|
1355 | dataOut.nHeights), | |
1355 | dtype='complex') |
|
1356 | dtype='complex') | |
1356 |
|
1357 | |||
1357 | def putData(self,data): |
|
1358 | def putData(self,data): | |
1358 | ''' |
|
1359 | ''' | |
1359 | Add a profile to he __buffer and increase in one the __profiel Index |
|
1360 | Add a profile to he __buffer and increase in one the __profiel Index | |
1360 | ''' |
|
1361 | ''' | |
1361 | self.__buffer[:,self.__profIndex,:]= data |
|
1362 | self.__buffer[:,self.__profIndex,:]= data | |
1362 | self.__profIndex += 1 |
|
1363 | self.__profIndex += 1 | |
1363 | return |
|
1364 | return | |
1364 |
|
1365 | |||
1365 | def pushData(self,dataOut): |
|
1366 | def pushData(self,dataOut): | |
1366 | ''' |
|
1367 | ''' | |
1367 | Return the PULSEPAIR and the profiles used in the operation |
|
1368 | Return the PULSEPAIR and the profiles used in the operation | |
1368 | Affected : self.__profileIndex |
|
1369 | Affected : self.__profileIndex | |
1369 | ''' |
|
1370 | ''' | |
1370 | #----------------- Remove DC----------------------------------- |
|
1371 | #----------------- Remove DC----------------------------------- | |
1371 | if self.removeDC==True: |
|
1372 | if self.removeDC==True: | |
1372 | mean = numpy.mean(self.__buffer,1) |
|
1373 | mean = numpy.mean(self.__buffer,1) | |
1373 | tmp = mean.reshape(self.__nch,1,self.__nHeis) |
|
1374 | tmp = mean.reshape(self.__nch,1,self.__nHeis) | |
1374 | dc= numpy.tile(tmp,[1,self.__nProf,1]) |
|
1375 | dc= numpy.tile(tmp,[1,self.__nProf,1]) | |
1375 | self.__buffer = self.__buffer - dc |
|
1376 | self.__buffer = self.__buffer - dc | |
1376 | #------------------Calculo de Potencia ------------------------ |
|
1377 | #------------------Calculo de Potencia ------------------------ | |
1377 | pair0 = self.__buffer*numpy.conj(self.__buffer) |
|
1378 | pair0 = self.__buffer*numpy.conj(self.__buffer) | |
1378 | pair0 = pair0.real |
|
1379 | pair0 = pair0.real | |
1379 | lag_0 = numpy.sum(pair0,1) |
|
1380 | lag_0 = numpy.sum(pair0,1) | |
1380 | #-----------------Calculo de Cscp------------------------------ New |
|
1381 | #-----------------Calculo de Cscp------------------------------ New | |
1381 | cspc_pair01 = self.__buffer[0]*self.__buffer[1] |
|
1382 | cspc_pair01 = self.__buffer[0]*self.__buffer[1] | |
1382 | #------------------Calculo de Ruido x canal-------------------- |
|
1383 | #------------------Calculo de Ruido x canal-------------------- | |
1383 | self.noise = numpy.zeros(self.__nch) |
|
1384 | self.noise = numpy.zeros(self.__nch) | |
1384 | for i in range(self.__nch): |
|
1385 | for i in range(self.__nch): | |
1385 | daux = numpy.sort(pair0[i,:,:],axis= None) |
|
1386 | daux = numpy.sort(pair0[i,:,:],axis= None) | |
1386 | self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt) |
|
1387 | self.noise[i]=hildebrand_sekhon( daux ,self.nCohInt) | |
1387 |
|
1388 | |||
1388 | self.noise = self.noise.reshape(self.__nch,1) |
|
1389 | self.noise = self.noise.reshape(self.__nch,1) | |
1389 | self.noise = numpy.tile(self.noise,[1,self.__nHeis]) |
|
1390 | self.noise = numpy.tile(self.noise,[1,self.__nHeis]) | |
1390 | noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis) |
|
1391 | noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis) | |
1391 | noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1]) |
|
1392 | noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1]) | |
1392 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- |
|
1393 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- | |
1393 | #------------------ P= S+N ,P=lag_0/N --------------------------------- |
|
1394 | #------------------ P= S+N ,P=lag_0/N --------------------------------- | |
1394 | #-------------------- Power -------------------------------------------------- |
|
1395 | #-------------------- Power -------------------------------------------------- | |
1395 | data_power = lag_0/(self.n*self.nCohInt) |
|
1396 | data_power = lag_0/(self.n*self.nCohInt) | |
1396 | #--------------------CCF------------------------------------------------------ |
|
1397 | #--------------------CCF------------------------------------------------------ | |
1397 | data_ccf =numpy.sum(cspc_pair01,axis=0)/(self.n*self.nCohInt) |
|
1398 | data_ccf =numpy.sum(cspc_pair01,axis=0)/(self.n*self.nCohInt) | |
1398 | #------------------ Senal -------------------------------------------------- |
|
1399 | #------------------ Senal -------------------------------------------------- | |
1399 | data_intensity = pair0 - noise_buffer |
|
1400 | data_intensity = pair0 - noise_buffer | |
1400 | data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt) |
|
1401 | data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt) | |
1401 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) |
|
1402 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) | |
1402 | for i in range(self.__nch): |
|
1403 | for i in range(self.__nch): | |
1403 | for j in range(self.__nHeis): |
|
1404 | for j in range(self.__nHeis): | |
1404 | if data_intensity[i][j] < 0: |
|
1405 | if data_intensity[i][j] < 0: | |
1405 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) |
|
1406 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) | |
1406 |
|
1407 | |||
1407 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- |
|
1408 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- | |
1408 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) |
|
1409 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) | |
1409 | lag_1 = numpy.sum(pair1,1) |
|
1410 | lag_1 = numpy.sum(pair1,1) | |
1410 | data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1) |
|
1411 | data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1) | |
1411 | data_velocity = (self.lambda_/2.0)*data_freq |
|
1412 | data_velocity = (self.lambda_/2.0)*data_freq | |
1412 |
|
1413 | |||
1413 | #---------------- Potencia promedio estimada de la Senal----------- |
|
1414 | #---------------- Potencia promedio estimada de la Senal----------- | |
1414 | lag_0 = lag_0/self.n |
|
1415 | lag_0 = lag_0/self.n | |
1415 | S = lag_0-self.noise |
|
1416 | S = lag_0-self.noise | |
1416 |
|
1417 | |||
1417 | #---------------- Frecuencia Doppler promedio --------------------- |
|
1418 | #---------------- Frecuencia Doppler promedio --------------------- | |
1418 | lag_1 = lag_1/(self.n-1) |
|
1419 | lag_1 = lag_1/(self.n-1) | |
1419 | R1 = numpy.abs(lag_1) |
|
1420 | R1 = numpy.abs(lag_1) | |
1420 |
|
1421 | |||
1421 | #---------------- Calculo del SNR---------------------------------- |
|
1422 | #---------------- Calculo del SNR---------------------------------- | |
1422 | data_snrPP = S/self.noise |
|
1423 | data_snrPP = S/self.noise | |
1423 | for i in range(self.__nch): |
|
1424 | for i in range(self.__nch): | |
1424 | for j in range(self.__nHeis): |
|
1425 | for j in range(self.__nHeis): | |
1425 | if data_snrPP[i][j] < 1.e-20: |
|
1426 | if data_snrPP[i][j] < 1.e-20: | |
1426 | data_snrPP[i][j] = 1.e-20 |
|
1427 | data_snrPP[i][j] = 1.e-20 | |
1427 |
|
1428 | |||
1428 | #----------------- Calculo del ancho espectral ---------------------- |
|
1429 | #----------------- Calculo del ancho espectral ---------------------- | |
1429 | L = S/R1 |
|
1430 | L = S/R1 | |
1430 | L = numpy.where(L<0,1,L) |
|
1431 | L = numpy.where(L<0,1,L) | |
1431 | L = numpy.log(L) |
|
1432 | L = numpy.log(L) | |
1432 | tmp = numpy.sqrt(numpy.absolute(L)) |
|
1433 | tmp = numpy.sqrt(numpy.absolute(L)) | |
1433 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L) |
|
1434 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L) | |
1434 | n = self.__profIndex |
|
1435 | n = self.__profIndex | |
1435 |
|
1436 | |||
1436 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') |
|
1437 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') | |
1437 | self.__profIndex = 0 |
|
1438 | self.__profIndex = 0 | |
1438 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,data_ccf,n |
|
1439 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,data_ccf,n | |
1439 |
|
1440 | |||
1440 |
|
1441 | |||
1441 | def pulsePairbyProfiles(self,dataOut): |
|
1442 | def pulsePairbyProfiles(self,dataOut): | |
1442 |
|
1443 | |||
1443 | self.__dataReady = False |
|
1444 | self.__dataReady = False | |
1444 | data_power = None |
|
1445 | data_power = None | |
1445 | data_intensity = None |
|
1446 | data_intensity = None | |
1446 | data_velocity = None |
|
1447 | data_velocity = None | |
1447 | data_specwidth = None |
|
1448 | data_specwidth = None | |
1448 | data_snrPP = None |
|
1449 | data_snrPP = None | |
1449 | data_ccf = None |
|
1450 | data_ccf = None | |
1450 | self.putData(data=dataOut.data) |
|
1451 | self.putData(data=dataOut.data) | |
1451 | if self.__profIndex == self.n: |
|
1452 | if self.__profIndex == self.n: | |
1452 | data_power,data_intensity, data_velocity,data_snrPP,data_specwidth,data_ccf, n = self.pushData(dataOut=dataOut) |
|
1453 | data_power,data_intensity, data_velocity,data_snrPP,data_specwidth,data_ccf, n = self.pushData(dataOut=dataOut) | |
1453 | self.__dataReady = True |
|
1454 | self.__dataReady = True | |
1454 |
|
1455 | |||
1455 | return data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf |
|
1456 | return data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf | |
1456 |
|
1457 | |||
1457 |
|
1458 | |||
1458 | def pulsePairOp(self, dataOut, datatime= None): |
|
1459 | def pulsePairOp(self, dataOut, datatime= None): | |
1459 |
|
1460 | |||
1460 | if self.__initime == None: |
|
1461 | if self.__initime == None: | |
1461 | self.__initime = datatime |
|
1462 | self.__initime = datatime | |
1462 | data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf = self.pulsePairbyProfiles(dataOut) |
|
1463 | data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf = self.pulsePairbyProfiles(dataOut) | |
1463 | self.__lastdatatime = datatime |
|
1464 | self.__lastdatatime = datatime | |
1464 |
|
1465 | |||
1465 | if data_power is None: |
|
1466 | if data_power is None: | |
1466 | return None, None, None,None,None,None,None |
|
1467 | return None, None, None,None,None,None,None | |
1467 |
|
1468 | |||
1468 | avgdatatime = self.__initime |
|
1469 | avgdatatime = self.__initime | |
1469 | deltatime = datatime - self.__lastdatatime |
|
1470 | deltatime = datatime - self.__lastdatatime | |
1470 | self.__initime = datatime |
|
1471 | self.__initime = datatime | |
1471 |
|
1472 | |||
1472 | return data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf, avgdatatime |
|
1473 | return data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf, avgdatatime | |
1473 |
|
1474 | |||
1474 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): |
|
1475 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): | |
1475 | #print("hey") |
|
1476 | #print("hey") | |
1476 | #print(dataOut.data.shape) |
|
1477 | #print(dataOut.data.shape) | |
1477 | #exit(1) |
|
1478 | #exit(1) | |
1478 | #print(self.__profIndex) |
|
1479 | #print(self.__profIndex) | |
1479 | if not self.isConfig: |
|
1480 | if not self.isConfig: | |
1480 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) |
|
1481 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) | |
1481 | self.isConfig = True |
|
1482 | self.isConfig = True | |
1482 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth,data_ccf, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) |
|
1483 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth,data_ccf, avgdatatime = self.pulsePairOp(dataOut, dataOut.utctime) | |
1483 | dataOut.flagNoData = True |
|
1484 | dataOut.flagNoData = True | |
1484 |
|
1485 | |||
1485 | if self.__dataReady: |
|
1486 | if self.__dataReady: | |
1486 | ###print("READY ----------------------------------") |
|
1487 | ###print("READY ----------------------------------") | |
1487 | dataOut.nCohInt *= self.n |
|
1488 | dataOut.nCohInt *= self.n | |
1488 | dataOut.dataPP_POW = data_intensity # S |
|
1489 | dataOut.dataPP_POW = data_intensity # S | |
1489 | dataOut.dataPP_POWER = data_power # P valor que corresponde a POTENCIA MOMENTO |
|
1490 | dataOut.dataPP_POWER = data_power # P valor que corresponde a POTENCIA MOMENTO | |
1490 | dataOut.dataPP_DOP = data_velocity |
|
1491 | dataOut.dataPP_DOP = data_velocity | |
1491 | dataOut.dataPP_SNR = data_snrPP |
|
1492 | dataOut.dataPP_SNR = data_snrPP | |
1492 | dataOut.dataPP_WIDTH = data_specwidth |
|
1493 | dataOut.dataPP_WIDTH = data_specwidth | |
1493 | dataOut.dataPP_CCF = data_ccf |
|
1494 | dataOut.dataPP_CCF = data_ccf | |
1494 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. |
|
1495 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. | |
1495 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1496 | dataOut.nProfiles = int(dataOut.nProfiles/n) | |
1496 | dataOut.utctime = avgdatatime |
|
1497 | dataOut.utctime = avgdatatime | |
1497 | dataOut.flagNoData = False |
|
1498 | dataOut.flagNoData = False | |
1498 | return dataOut |
|
1499 | return dataOut | |
1499 |
|
1500 | |||
1500 | class PulsePair_vRF(Operation): |
|
1501 | class PulsePair_vRF(Operation): | |
1501 | ''' |
|
1502 | ''' | |
1502 | Function PulsePair(Signal Power, Velocity) |
|
1503 | Function PulsePair(Signal Power, Velocity) | |
1503 | The real component of Lag[0] provides Intensity Information |
|
1504 | The real component of Lag[0] provides Intensity Information | |
1504 | The imag component of Lag[1] Phase provides Velocity Information |
|
1505 | The imag component of Lag[1] Phase provides Velocity Information | |
1505 |
|
1506 | |||
1506 | Configuration Parameters: |
|
1507 | Configuration Parameters: | |
1507 | nPRF = Number of Several PRF |
|
1508 | nPRF = Number of Several PRF | |
1508 | theta = Degree Azimuth angel Boundaries |
|
1509 | theta = Degree Azimuth angel Boundaries | |
1509 |
|
1510 | |||
1510 | Input: |
|
1511 | Input: | |
1511 | self.dataOut |
|
1512 | self.dataOut | |
1512 | lag[N] |
|
1513 | lag[N] | |
1513 | Affected: |
|
1514 | Affected: | |
1514 | self.dataOut.spc |
|
1515 | self.dataOut.spc | |
1515 | ''' |
|
1516 | ''' | |
1516 | isConfig = False |
|
1517 | isConfig = False | |
1517 | __profIndex = 0 |
|
1518 | __profIndex = 0 | |
1518 | __initime = None |
|
1519 | __initime = None | |
1519 | __lastdatatime = None |
|
1520 | __lastdatatime = None | |
1520 | __buffer = None |
|
1521 | __buffer = None | |
1521 | noise = None |
|
1522 | noise = None | |
1522 | __dataReady = False |
|
1523 | __dataReady = False | |
1523 | n = None |
|
1524 | n = None | |
1524 | __nch = 0 |
|
1525 | __nch = 0 | |
1525 | __nHeis = 0 |
|
1526 | __nHeis = 0 | |
1526 | removeDC = False |
|
1527 | removeDC = False | |
1527 | ipp = None |
|
1528 | ipp = None | |
1528 | lambda_ = 0 |
|
1529 | lambda_ = 0 | |
1529 |
|
1530 | |||
1530 | def __init__(self,**kwargs): |
|
1531 | def __init__(self,**kwargs): | |
1531 | Operation.__init__(self,**kwargs) |
|
1532 | Operation.__init__(self,**kwargs) | |
1532 |
|
1533 | |||
1533 | def setup(self, dataOut, n = None, removeDC=False): |
|
1534 | def setup(self, dataOut, n = None, removeDC=False): | |
1534 | ''' |
|
1535 | ''' | |
1535 | n= Numero de PRF's de entrada |
|
1536 | n= Numero de PRF's de entrada | |
1536 | ''' |
|
1537 | ''' | |
1537 | self.__initime = None |
|
1538 | self.__initime = None | |
1538 | ####print("[INICIO]-setup del METODO PULSE PAIR") |
|
1539 | ####print("[INICIO]-setup del METODO PULSE PAIR") | |
1539 | self.__lastdatatime = 0 |
|
1540 | self.__lastdatatime = 0 | |
1540 | self.__dataReady = False |
|
1541 | self.__dataReady = False | |
1541 | self.__buffer = 0 |
|
1542 | self.__buffer = 0 | |
1542 | self.__profIndex = 0 |
|
1543 | self.__profIndex = 0 | |
1543 | self.noise = None |
|
1544 | self.noise = None | |
1544 | self.__nch = dataOut.nChannels |
|
1545 | self.__nch = dataOut.nChannels | |
1545 | self.__nHeis = dataOut.nHeights |
|
1546 | self.__nHeis = dataOut.nHeights | |
1546 | self.removeDC = removeDC |
|
1547 | self.removeDC = removeDC | |
1547 | self.lambda_ = 3.0e8/(9345.0e6) |
|
1548 | self.lambda_ = 3.0e8/(9345.0e6) | |
1548 | self.ippSec = dataOut.ippSeconds |
|
1549 | self.ippSec = dataOut.ippSeconds | |
1549 | self.nCohInt = dataOut.nCohInt |
|
1550 | self.nCohInt = dataOut.nCohInt | |
1550 | ####print("IPPseconds",dataOut.ippSeconds) |
|
1551 | ####print("IPPseconds",dataOut.ippSeconds) | |
1551 | ####print("ELVALOR DE n es:", n) |
|
1552 | ####print("ELVALOR DE n es:", n) | |
1552 | if n == None: |
|
1553 | if n == None: | |
1553 | raise ValueError("n should be specified.") |
|
1554 | raise ValueError("n should be specified.") | |
1554 |
|
1555 | |||
1555 | if n != None: |
|
1556 | if n != None: | |
1556 | if n<2: |
|
1557 | if n<2: | |
1557 | raise ValueError("n should be greater than 2") |
|
1558 | raise ValueError("n should be greater than 2") | |
1558 |
|
1559 | |||
1559 | self.n = n |
|
1560 | self.n = n | |
1560 | self.__nProf = n |
|
1561 | self.__nProf = n | |
1561 |
|
1562 | |||
1562 | self.__buffer = numpy.zeros((dataOut.nChannels, |
|
1563 | self.__buffer = numpy.zeros((dataOut.nChannels, | |
1563 | n, |
|
1564 | n, | |
1564 | dataOut.nHeights), |
|
1565 | dataOut.nHeights), | |
1565 | dtype='complex') |
|
1566 | dtype='complex') | |
1566 |
|
1567 | |||
1567 | def putData(self,data): |
|
1568 | def putData(self,data): | |
1568 | ''' |
|
1569 | ''' | |
1569 | Add a profile to he __buffer and increase in one the __profiel Index |
|
1570 | Add a profile to he __buffer and increase in one the __profiel Index | |
1570 | ''' |
|
1571 | ''' | |
1571 | self.__buffer[:,self.__profIndex,:]= data |
|
1572 | self.__buffer[:,self.__profIndex,:]= data | |
1572 | self.__profIndex += 1 |
|
1573 | self.__profIndex += 1 | |
1573 | return |
|
1574 | return | |
1574 |
|
1575 | |||
1575 | def putDataByBlock(self,data,n): |
|
1576 | def putDataByBlock(self,data,n): | |
1576 | ''' |
|
1577 | ''' | |
1577 | Add a profile to he __buffer and increase in one the __profiel Index |
|
1578 | Add a profile to he __buffer and increase in one the __profiel Index | |
1578 | ''' |
|
1579 | ''' | |
1579 | self.__buffer[:]= data |
|
1580 | self.__buffer[:]= data | |
1580 | self.__profIndex = n |
|
1581 | self.__profIndex = n | |
1581 | return |
|
1582 | return | |
1582 |
|
1583 | |||
1583 | def pushData(self,dataOut): |
|
1584 | def pushData(self,dataOut): | |
1584 | ''' |
|
1585 | ''' | |
1585 | Return the PULSEPAIR and the profiles used in the operation |
|
1586 | Return the PULSEPAIR and the profiles used in the operation | |
1586 | Affected : self.__profileIndex |
|
1587 | Affected : self.__profileIndex | |
1587 | NOTA: |
|
1588 | NOTA: | |
1588 | 1.) Calculo de Potencia |
|
1589 | 1.) Calculo de Potencia | |
1589 | PdBm = 10 *log10(10*(I**2 + Q**2)) Unidades dBm |
|
1590 | PdBm = 10 *log10(10*(I**2 + Q**2)) Unidades dBm | |
1590 | self.__buffer = I + Qj |
|
1591 | self.__buffer = I + Qj | |
1591 |
|
1592 | |||
1592 | 2.) Data decodificada |
|
1593 | 2.) Data decodificada | |
1593 | Se toma como referencia el factor estimado en jrodata.py y se adiciona |
|
1594 | Se toma como referencia el factor estimado en jrodata.py y se adiciona | |
1594 | en PulsePair solo pwcode. |
|
1595 | en PulsePair solo pwcode. | |
1595 | if self.flagDecodeData: |
|
1596 | if self.flagDecodeData: | |
1596 | pwcode = numpy.sum(self.code[0]**2) |
|
1597 | pwcode = numpy.sum(self.code[0]**2) | |
1597 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
1598 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter | |
1598 | 3.) hildebrand_sekhon |
|
1599 | 3.) hildebrand_sekhon | |
1599 | Se pasa el arreglo de Potencia pair0 que contiene canales perfiles y altura dividiendole entre el |
|
1600 | Se pasa el arreglo de Potencia pair0 que contiene canales perfiles y altura dividiendole entre el | |
1600 | factor pwcode. |
|
1601 | factor pwcode. | |
1601 | 4.) data_power |
|
1602 | 4.) data_power | |
1602 | Este parametro esta dividido por los factores: nro. perfiles, nro intCoh y pwcode |
|
1603 | Este parametro esta dividido por los factores: nro. perfiles, nro intCoh y pwcode | |
1603 | 5.) lag_0 |
|
1604 | 5.) lag_0 | |
1604 | Este parametro esta dividido por los factores: nro. perfiles, nro intCoh y pwcode |
|
1605 | Este parametro esta dividido por los factores: nro. perfiles, nro intCoh y pwcode | |
1605 | Igual a data_power |
|
1606 | Igual a data_power | |
1606 |
|
1607 | |||
1607 | ''' |
|
1608 | ''' | |
1608 | #----------------- Remove DC----------------------------------- |
|
1609 | #----------------- Remove DC----------------------------------- | |
1609 | if self.removeDC==True: |
|
1610 | if self.removeDC==True: | |
1610 | mean = numpy.mean(self.__buffer,1) |
|
1611 | mean = numpy.mean(self.__buffer,1) | |
1611 | tmp = mean.reshape(self.__nch,1,self.__nHeis) |
|
1612 | tmp = mean.reshape(self.__nch,1,self.__nHeis) | |
1612 | dc= numpy.tile(tmp,[1,self.__nProf,1]) |
|
1613 | dc= numpy.tile(tmp,[1,self.__nProf,1]) | |
1613 | self.__buffer = self.__buffer - dc |
|
1614 | self.__buffer = self.__buffer - dc | |
1614 | #------------------Calculo de Potencia ------------------------ |
|
1615 | #------------------Calculo de Potencia ------------------------ | |
1615 | pair0 = self.__buffer*numpy.conj(self.__buffer) * 10.0 |
|
1616 | pair0 = self.__buffer*numpy.conj(self.__buffer) * 10.0 | |
1616 | pair0 = pair0.real |
|
1617 | pair0 = pair0.real | |
1617 | lag_0 = numpy.sum(pair0,1) |
|
1618 | lag_0 = numpy.sum(pair0,1) | |
1618 | #-----------------Calculo de Cscp------------------------------ New |
|
1619 | #-----------------Calculo de Cscp------------------------------ New | |
1619 | cspc_pair01 = self.__buffer[0]*self.__buffer[1] |
|
1620 | cspc_pair01 = self.__buffer[0]*self.__buffer[1] | |
1620 | #------------------ Data Decodificada------------------------ |
|
1621 | #------------------ Data Decodificada------------------------ | |
1621 | pwcode = 1 |
|
1622 | pwcode = 1 | |
1622 | if dataOut.flagDecodeData == True: |
|
1623 | if dataOut.flagDecodeData == True: | |
1623 | pwcode = numpy.sum(dataOut.code[0]**2) |
|
1624 | pwcode = numpy.sum(dataOut.code[0]**2) | |
1624 | #------------------Calculo de Ruido x canal-------------------- |
|
1625 | #------------------Calculo de Ruido x canal-------------------- | |
1625 | self.noise = numpy.zeros(self.__nch) |
|
1626 | self.noise = numpy.zeros(self.__nch) | |
1626 | for i in range(self.__nch): |
|
1627 | for i in range(self.__nch): | |
1627 | daux = numpy.sort(pair0[i,:,:],axis= None) |
|
1628 | daux = numpy.sort(pair0[i,:,:],axis= None) | |
1628 | self.noise[i]=hildebrand_sekhon( daux/pwcode ,self.nCohInt) |
|
1629 | self.noise[i]=hildebrand_sekhon( daux/pwcode ,self.nCohInt) | |
1629 |
|
1630 | |||
1630 | self.noise = self.noise.reshape(self.__nch,1) |
|
1631 | self.noise = self.noise.reshape(self.__nch,1) | |
1631 | self.noise = numpy.tile(self.noise,[1,self.__nHeis]) |
|
1632 | self.noise = numpy.tile(self.noise,[1,self.__nHeis]) | |
1632 | noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis) |
|
1633 | noise_buffer = self.noise.reshape(self.__nch,1,self.__nHeis) | |
1633 | noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1]) |
|
1634 | noise_buffer = numpy.tile(noise_buffer,[1,self.__nProf,1]) | |
1634 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- |
|
1635 | #------------------ Potencia recibida= P , Potencia senal = S , Ruido= N-- | |
1635 | #------------------ P= S+N ,P=lag_0/N --------------------------------- |
|
1636 | #------------------ P= S+N ,P=lag_0/N --------------------------------- | |
1636 | #-------------------- Power -------------------------------------------------- |
|
1637 | #-------------------- Power -------------------------------------------------- | |
1637 | data_power = lag_0/(self.n*self.nCohInt*pwcode) |
|
1638 | data_power = lag_0/(self.n*self.nCohInt*pwcode) | |
1638 | #--------------------CCF------------------------------------------------------ |
|
1639 | #--------------------CCF------------------------------------------------------ | |
1639 | data_ccf =numpy.sum(cspc_pair01,axis=0)/(self.n*self.nCohInt) |
|
1640 | data_ccf =numpy.sum(cspc_pair01,axis=0)/(self.n*self.nCohInt) | |
1640 | #------------------ Senal -------------------------------------------------- |
|
1641 | #------------------ Senal -------------------------------------------------- | |
1641 | data_intensity = pair0 - noise_buffer |
|
1642 | data_intensity = pair0 - noise_buffer | |
1642 | data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt) |
|
1643 | data_intensity = numpy.sum(data_intensity,axis=1)*(self.n*self.nCohInt)#*self.nCohInt) | |
1643 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) |
|
1644 | #data_intensity = (lag_0-self.noise*self.n)*(self.n*self.nCohInt) | |
1644 | for i in range(self.__nch): |
|
1645 | for i in range(self.__nch): | |
1645 | for j in range(self.__nHeis): |
|
1646 | for j in range(self.__nHeis): | |
1646 | if data_intensity[i][j] < 0: |
|
1647 | if data_intensity[i][j] < 0: | |
1647 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) |
|
1648 | data_intensity[i][j] = numpy.min(numpy.absolute(data_intensity[i][j])) | |
1648 |
|
1649 | |||
1649 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- |
|
1650 | #----------------- Calculo de Frecuencia y Velocidad doppler-------- | |
1650 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) |
|
1651 | pair1 = self.__buffer[:,:-1,:]*numpy.conjugate(self.__buffer[:,1:,:]) | |
1651 | lag_1 = numpy.sum(pair1,1) |
|
1652 | lag_1 = numpy.sum(pair1,1) | |
1652 | data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1) |
|
1653 | data_freq = (-1/(2.0*math.pi*self.ippSec*self.nCohInt))*numpy.angle(lag_1) | |
1653 | data_velocity = (self.lambda_/2.0)*data_freq |
|
1654 | data_velocity = (self.lambda_/2.0)*data_freq | |
1654 |
|
1655 | |||
1655 | #---------------- Potencia promedio estimada de la Senal----------- |
|
1656 | #---------------- Potencia promedio estimada de la Senal----------- | |
1656 | lag_0 = data_power |
|
1657 | lag_0 = data_power | |
1657 | S = lag_0-self.noise |
|
1658 | S = lag_0-self.noise | |
1658 |
|
1659 | |||
1659 | #---------------- Frecuencia Doppler promedio --------------------- |
|
1660 | #---------------- Frecuencia Doppler promedio --------------------- | |
1660 | lag_1 = lag_1/(self.n-1) |
|
1661 | lag_1 = lag_1/(self.n-1) | |
1661 | R1 = numpy.abs(lag_1) |
|
1662 | R1 = numpy.abs(lag_1) | |
1662 |
|
1663 | |||
1663 | #---------------- Calculo del SNR---------------------------------- |
|
1664 | #---------------- Calculo del SNR---------------------------------- | |
1664 | data_snrPP = S/self.noise |
|
1665 | data_snrPP = S/self.noise | |
1665 | for i in range(self.__nch): |
|
1666 | for i in range(self.__nch): | |
1666 | for j in range(self.__nHeis): |
|
1667 | for j in range(self.__nHeis): | |
1667 | if data_snrPP[i][j] < 1.e-20: |
|
1668 | if data_snrPP[i][j] < 1.e-20: | |
1668 | data_snrPP[i][j] = 1.e-20 |
|
1669 | data_snrPP[i][j] = 1.e-20 | |
1669 |
|
1670 | |||
1670 | #----------------- Calculo del ancho espectral ---------------------- |
|
1671 | #----------------- Calculo del ancho espectral ---------------------- | |
1671 | L = S/R1 |
|
1672 | L = S/R1 | |
1672 | L = numpy.where(L<0,1,L) |
|
1673 | L = numpy.where(L<0,1,L) | |
1673 | L = numpy.log(L) |
|
1674 | L = numpy.log(L) | |
1674 | tmp = numpy.sqrt(numpy.absolute(L)) |
|
1675 | tmp = numpy.sqrt(numpy.absolute(L)) | |
1675 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L) |
|
1676 | data_specwidth = (self.lambda_/(2*math.sqrt(2)*math.pi*self.ippSec*self.nCohInt))*tmp*numpy.sign(L) | |
1676 | n = self.__profIndex |
|
1677 | n = self.__profIndex | |
1677 |
|
1678 | |||
1678 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') |
|
1679 | self.__buffer = numpy.zeros((self.__nch, self.__nProf,self.__nHeis), dtype='complex') | |
1679 | self.__profIndex = 0 |
|
1680 | self.__profIndex = 0 | |
1680 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,data_ccf,n |
|
1681 | return data_power,data_intensity,data_velocity,data_snrPP,data_specwidth,data_ccf,n | |
1681 |
|
1682 | |||
1682 |
|
1683 | |||
1683 | def pulsePairbyProfiles(self,dataOut,n): |
|
1684 | def pulsePairbyProfiles(self,dataOut,n): | |
1684 |
|
1685 | |||
1685 | self.__dataReady = False |
|
1686 | self.__dataReady = False | |
1686 | data_power = None |
|
1687 | data_power = None | |
1687 | data_intensity = None |
|
1688 | data_intensity = None | |
1688 | data_velocity = None |
|
1689 | data_velocity = None | |
1689 | data_specwidth = None |
|
1690 | data_specwidth = None | |
1690 | data_snrPP = None |
|
1691 | data_snrPP = None | |
1691 | data_ccf = None |
|
1692 | data_ccf = None | |
1692 |
|
1693 | |||
1693 | if dataOut.flagDataAsBlock: |
|
1694 | if dataOut.flagDataAsBlock: | |
1694 | self.putDataByBlock(data=dataOut.data,n=n) |
|
1695 | self.putDataByBlock(data=dataOut.data,n=n) | |
1695 | else: |
|
1696 | else: | |
1696 | self.putData(data=dataOut.data) |
|
1697 | self.putData(data=dataOut.data) | |
1697 | if self.__profIndex == self.n: |
|
1698 | if self.__profIndex == self.n: | |
1698 | data_power,data_intensity, data_velocity,data_snrPP,data_specwidth,data_ccf, n = self.pushData(dataOut=dataOut) |
|
1699 | data_power,data_intensity, data_velocity,data_snrPP,data_specwidth,data_ccf, n = self.pushData(dataOut=dataOut) | |
1699 | self.__dataReady = True |
|
1700 | self.__dataReady = True | |
1700 |
|
1701 | |||
1701 | return data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf |
|
1702 | return data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf | |
1702 |
|
1703 | |||
1703 |
|
1704 | |||
1704 | def pulsePairOp(self, dataOut, n, datatime= None): |
|
1705 | def pulsePairOp(self, dataOut, n, datatime= None): | |
1705 |
|
1706 | |||
1706 | if self.__initime == None: |
|
1707 | if self.__initime == None: | |
1707 | self.__initime = datatime |
|
1708 | self.__initime = datatime | |
1708 | data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf = self.pulsePairbyProfiles(dataOut,n) |
|
1709 | data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf = self.pulsePairbyProfiles(dataOut,n) | |
1709 | self.__lastdatatime = datatime |
|
1710 | self.__lastdatatime = datatime | |
1710 |
|
1711 | |||
1711 | if data_power is None: |
|
1712 | if data_power is None: | |
1712 | return None, None, None,None,None,None,None |
|
1713 | return None, None, None,None,None,None,None | |
1713 |
|
1714 | |||
1714 | avgdatatime = self.__initime |
|
1715 | avgdatatime = self.__initime | |
1715 | deltatime = datatime - self.__lastdatatime |
|
1716 | deltatime = datatime - self.__lastdatatime | |
1716 | self.__initime = datatime |
|
1717 | self.__initime = datatime | |
1717 |
|
1718 | |||
1718 | return data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf, avgdatatime |
|
1719 | return data_power, data_intensity, data_velocity, data_snrPP,data_specwidth,data_ccf, avgdatatime | |
1719 |
|
1720 | |||
1720 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): |
|
1721 | def run(self, dataOut,n = None,removeDC= False, overlapping= False,**kwargs): | |
1721 |
|
1722 | |||
1722 | if dataOut.flagDataAsBlock: |
|
1723 | if dataOut.flagDataAsBlock: | |
1723 | n = int(dataOut.nProfiles) |
|
1724 | n = int(dataOut.nProfiles) | |
1724 | #print("n",n) |
|
1725 | #print("n",n) | |
1725 |
|
1726 | |||
1726 | if not self.isConfig: |
|
1727 | if not self.isConfig: | |
1727 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) |
|
1728 | self.setup(dataOut = dataOut, n = n , removeDC=removeDC , **kwargs) | |
1728 | self.isConfig = True |
|
1729 | self.isConfig = True | |
1729 |
|
1730 | |||
1730 |
|
1731 | |||
1731 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth,data_ccf, avgdatatime = self.pulsePairOp(dataOut, n, dataOut.utctime) |
|
1732 | data_power, data_intensity, data_velocity,data_snrPP,data_specwidth,data_ccf, avgdatatime = self.pulsePairOp(dataOut, n, dataOut.utctime) | |
1732 |
|
1733 | |||
1733 |
|
1734 | |||
1734 | dataOut.flagNoData = True |
|
1735 | dataOut.flagNoData = True | |
1735 |
|
1736 | |||
1736 | if self.__dataReady: |
|
1737 | if self.__dataReady: | |
1737 | ###print("READY ----------------------------------") |
|
1738 | ###print("READY ----------------------------------") | |
1738 | dataOut.nCohInt *= self.n |
|
1739 | dataOut.nCohInt *= self.n | |
1739 | dataOut.dataPP_POW = data_intensity # S |
|
1740 | dataOut.dataPP_POW = data_intensity # S | |
1740 | dataOut.dataPP_POWER = data_power # P valor que corresponde a POTENCIA MOMENTO |
|
1741 | dataOut.dataPP_POWER = data_power # P valor que corresponde a POTENCIA MOMENTO | |
1741 | dataOut.dataPP_DOP = data_velocity |
|
1742 | dataOut.dataPP_DOP = data_velocity | |
1742 | dataOut.dataPP_SNR = data_snrPP |
|
1743 | dataOut.dataPP_SNR = data_snrPP | |
1743 | dataOut.dataPP_WIDTH = data_specwidth |
|
1744 | dataOut.dataPP_WIDTH = data_specwidth | |
1744 | dataOut.dataPP_CCF = data_ccf |
|
1745 | dataOut.dataPP_CCF = data_ccf | |
1745 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. |
|
1746 | dataOut.PRFbyAngle = self.n #numero de PRF*cada angulo rotado que equivale a un tiempo. | |
1746 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1747 | dataOut.nProfiles = int(dataOut.nProfiles/n) | |
1747 | dataOut.utctime = avgdatatime |
|
1748 | dataOut.utctime = avgdatatime | |
1748 | dataOut.flagNoData = False |
|
1749 | dataOut.flagNoData = False | |
1749 | return dataOut |
|
1750 | return dataOut | |
1750 |
|
1751 | |||
1751 | # import collections |
|
1752 | # import collections | |
1752 | # from scipy.stats import mode |
|
1753 | # from scipy.stats import mode | |
1753 | # |
|
1754 | # | |
1754 | # class Synchronize(Operation): |
|
1755 | # class Synchronize(Operation): | |
1755 | # |
|
1756 | # | |
1756 | # isConfig = False |
|
1757 | # isConfig = False | |
1757 | # __profIndex = 0 |
|
1758 | # __profIndex = 0 | |
1758 | # |
|
1759 | # | |
1759 | # def __init__(self, **kwargs): |
|
1760 | # def __init__(self, **kwargs): | |
1760 | # |
|
1761 | # | |
1761 | # Operation.__init__(self, **kwargs) |
|
1762 | # Operation.__init__(self, **kwargs) | |
1762 | # # self.isConfig = False |
|
1763 | # # self.isConfig = False | |
1763 | # self.__powBuffer = None |
|
1764 | # self.__powBuffer = None | |
1764 | # self.__startIndex = 0 |
|
1765 | # self.__startIndex = 0 | |
1765 | # self.__pulseFound = False |
|
1766 | # self.__pulseFound = False | |
1766 | # |
|
1767 | # | |
1767 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): |
|
1768 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): | |
1768 | # |
|
1769 | # | |
1769 | # #Read data |
|
1770 | # #Read data | |
1770 | # |
|
1771 | # | |
1771 | # powerdB = dataOut.getPower(channel = channel) |
|
1772 | # powerdB = dataOut.getPower(channel = channel) | |
1772 | # noisedB = dataOut.getNoise(channel = channel)[0] |
|
1773 | # noisedB = dataOut.getNoise(channel = channel)[0] | |
1773 | # |
|
1774 | # | |
1774 | # self.__powBuffer.extend(powerdB.flatten()) |
|
1775 | # self.__powBuffer.extend(powerdB.flatten()) | |
1775 | # |
|
1776 | # | |
1776 | # dataArray = numpy.array(self.__powBuffer) |
|
1777 | # dataArray = numpy.array(self.__powBuffer) | |
1777 | # |
|
1778 | # | |
1778 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") |
|
1779 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") | |
1779 | # |
|
1780 | # | |
1780 | # maxValue = numpy.nanmax(filteredPower) |
|
1781 | # maxValue = numpy.nanmax(filteredPower) | |
1781 | # |
|
1782 | # | |
1782 | # if maxValue < noisedB + 10: |
|
1783 | # if maxValue < noisedB + 10: | |
1783 | # #No se encuentra ningun pulso de transmision |
|
1784 | # #No se encuentra ningun pulso de transmision | |
1784 | # return None |
|
1785 | # return None | |
1785 | # |
|
1786 | # | |
1786 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] |
|
1787 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] | |
1787 | # |
|
1788 | # | |
1788 | # if len(maxValuesIndex) < 2: |
|
1789 | # if len(maxValuesIndex) < 2: | |
1789 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX |
|
1790 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX | |
1790 | # return None |
|
1791 | # return None | |
1791 | # |
|
1792 | # | |
1792 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples |
|
1793 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples | |
1793 | # |
|
1794 | # | |
1794 | # #Seleccionar solo valores con un espaciamiento de nSamples |
|
1795 | # #Seleccionar solo valores con un espaciamiento de nSamples | |
1795 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) |
|
1796 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) | |
1796 | # |
|
1797 | # | |
1797 | # if len(pulseIndex) < 2: |
|
1798 | # if len(pulseIndex) < 2: | |
1798 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1799 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |
1799 | # return None |
|
1800 | # return None | |
1800 | # |
|
1801 | # | |
1801 | # spacing = pulseIndex[1:] - pulseIndex[:-1] |
|
1802 | # spacing = pulseIndex[1:] - pulseIndex[:-1] | |
1802 | # |
|
1803 | # | |
1803 | # #remover senales que se distancien menos de 10 unidades o muestras |
|
1804 | # #remover senales que se distancien menos de 10 unidades o muestras | |
1804 | # #(No deberian existir IPP menor a 10 unidades) |
|
1805 | # #(No deberian existir IPP menor a 10 unidades) | |
1805 | # |
|
1806 | # | |
1806 | # realIndex = numpy.where(spacing > 10 )[0] |
|
1807 | # realIndex = numpy.where(spacing > 10 )[0] | |
1807 | # |
|
1808 | # | |
1808 | # if len(realIndex) < 2: |
|
1809 | # if len(realIndex) < 2: | |
1809 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1810 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 | |
1810 | # return None |
|
1811 | # return None | |
1811 | # |
|
1812 | # | |
1812 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) |
|
1813 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) | |
1813 | # realPulseIndex = pulseIndex[realIndex] |
|
1814 | # realPulseIndex = pulseIndex[realIndex] | |
1814 | # |
|
1815 | # | |
1815 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] |
|
1816 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] | |
1816 | # |
|
1817 | # | |
1817 | # print "IPP = %d samples" %period |
|
1818 | # print "IPP = %d samples" %period | |
1818 | # |
|
1819 | # | |
1819 | # self.__newNSamples = dataOut.nHeights #int(period) |
|
1820 | # self.__newNSamples = dataOut.nHeights #int(period) | |
1820 | # self.__startIndex = int(realPulseIndex[0]) |
|
1821 | # self.__startIndex = int(realPulseIndex[0]) | |
1821 | # |
|
1822 | # | |
1822 | # return 1 |
|
1823 | # return 1 | |
1823 | # |
|
1824 | # | |
1824 | # |
|
1825 | # | |
1825 | # def setup(self, nSamples, nChannels, buffer_size = 4): |
|
1826 | # def setup(self, nSamples, nChannels, buffer_size = 4): | |
1826 | # |
|
1827 | # | |
1827 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), |
|
1828 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), | |
1828 | # maxlen = buffer_size*nSamples) |
|
1829 | # maxlen = buffer_size*nSamples) | |
1829 | # |
|
1830 | # | |
1830 | # bufferList = [] |
|
1831 | # bufferList = [] | |
1831 | # |
|
1832 | # | |
1832 | # for i in range(nChannels): |
|
1833 | # for i in range(nChannels): | |
1833 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, |
|
1834 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, | |
1834 | # maxlen = buffer_size*nSamples) |
|
1835 | # maxlen = buffer_size*nSamples) | |
1835 | # |
|
1836 | # | |
1836 | # bufferList.append(bufferByChannel) |
|
1837 | # bufferList.append(bufferByChannel) | |
1837 | # |
|
1838 | # | |
1838 | # self.__nSamples = nSamples |
|
1839 | # self.__nSamples = nSamples | |
1839 | # self.__nChannels = nChannels |
|
1840 | # self.__nChannels = nChannels | |
1840 | # self.__bufferList = bufferList |
|
1841 | # self.__bufferList = bufferList | |
1841 | # |
|
1842 | # | |
1842 | # def run(self, dataOut, channel = 0): |
|
1843 | # def run(self, dataOut, channel = 0): | |
1843 | # |
|
1844 | # | |
1844 | # if not self.isConfig: |
|
1845 | # if not self.isConfig: | |
1845 | # nSamples = dataOut.nHeights |
|
1846 | # nSamples = dataOut.nHeights | |
1846 | # nChannels = dataOut.nChannels |
|
1847 | # nChannels = dataOut.nChannels | |
1847 | # self.setup(nSamples, nChannels) |
|
1848 | # self.setup(nSamples, nChannels) | |
1848 | # self.isConfig = True |
|
1849 | # self.isConfig = True | |
1849 | # |
|
1850 | # | |
1850 | # #Append new data to internal buffer |
|
1851 | # #Append new data to internal buffer | |
1851 | # for thisChannel in range(self.__nChannels): |
|
1852 | # for thisChannel in range(self.__nChannels): | |
1852 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1853 | # bufferByChannel = self.__bufferList[thisChannel] | |
1853 | # bufferByChannel.extend(dataOut.data[thisChannel]) |
|
1854 | # bufferByChannel.extend(dataOut.data[thisChannel]) | |
1854 | # |
|
1855 | # | |
1855 | # if self.__pulseFound: |
|
1856 | # if self.__pulseFound: | |
1856 | # self.__startIndex -= self.__nSamples |
|
1857 | # self.__startIndex -= self.__nSamples | |
1857 | # |
|
1858 | # | |
1858 | # #Finding Tx Pulse |
|
1859 | # #Finding Tx Pulse | |
1859 | # if not self.__pulseFound: |
|
1860 | # if not self.__pulseFound: | |
1860 | # indexFound = self.__findTxPulse(dataOut, channel) |
|
1861 | # indexFound = self.__findTxPulse(dataOut, channel) | |
1861 | # |
|
1862 | # | |
1862 | # if indexFound == None: |
|
1863 | # if indexFound == None: | |
1863 | # dataOut.flagNoData = True |
|
1864 | # dataOut.flagNoData = True | |
1864 | # return |
|
1865 | # return | |
1865 | # |
|
1866 | # | |
1866 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) |
|
1867 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) | |
1867 | # self.__pulseFound = True |
|
1868 | # self.__pulseFound = True | |
1868 | # self.__startIndex = indexFound |
|
1869 | # self.__startIndex = indexFound | |
1869 | # |
|
1870 | # | |
1870 | # #If pulse was found ... |
|
1871 | # #If pulse was found ... | |
1871 | # for thisChannel in range(self.__nChannels): |
|
1872 | # for thisChannel in range(self.__nChannels): | |
1872 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1873 | # bufferByChannel = self.__bufferList[thisChannel] | |
1873 | # #print self.__startIndex |
|
1874 | # #print self.__startIndex | |
1874 | # x = numpy.array(bufferByChannel) |
|
1875 | # x = numpy.array(bufferByChannel) | |
1875 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] |
|
1876 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] | |
1876 | # |
|
1877 | # | |
1877 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1878 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] | |
1878 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight |
|
1879 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight | |
1879 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 |
|
1880 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 | |
1880 | # |
|
1881 | # | |
1881 | # dataOut.data = self.__arrayBuffer |
|
1882 | # dataOut.data = self.__arrayBuffer | |
1882 | # |
|
1883 | # | |
1883 | # self.__startIndex += self.__newNSamples |
|
1884 | # self.__startIndex += self.__newNSamples | |
1884 | # |
|
1885 | # | |
1885 | # return |
|
1886 | # return |
General Comments 0
You need to be logged in to leave comments.
Login now