@@ -1,1541 +1,1584 | |||||
1 | ''' |
|
1 | ''' | |
2 | Created on Jul 9, 2014 |
|
2 | Created on Jul 9, 2014 | |
3 |
|
3 | |||
4 | @author: roj-idl71 |
|
4 | @author: roj-idl71 | |
5 | ''' |
|
5 | ''' | |
6 | import os |
|
6 | import os | |
7 | import datetime |
|
7 | import datetime | |
8 | import numpy |
|
8 | import numpy | |
9 |
|
9 | |||
|
10 | import matplotlib.pyplot as plt | |||
|
11 | ||||
10 | from figure import Figure, isRealtime, isTimeInHourRange |
|
12 | from figure import Figure, isRealtime, isTimeInHourRange | |
11 | from plotting_codes import * |
|
13 | from plotting_codes import * | |
|
14 | from matplotlib.pyplot import savefig | |||
12 |
|
15 | |||
13 | class SpectraPlot(Figure): |
|
16 | class SpectraPlot(Figure): | |
14 |
|
17 | |||
15 | isConfig = None |
|
18 | isConfig = None | |
16 | __nsubplots = None |
|
19 | __nsubplots = None | |
17 |
|
20 | |||
18 | WIDTHPROF = None |
|
21 | WIDTHPROF = None | |
19 | HEIGHTPROF = None |
|
22 | HEIGHTPROF = None | |
20 | PREFIX = 'spc' |
|
23 | PREFIX = 'spc' | |
21 |
|
24 | |||
22 | def __init__(self, **kwargs): |
|
25 | def __init__(self, **kwargs): | |
23 | Figure.__init__(self, **kwargs) |
|
26 | Figure.__init__(self, **kwargs) | |
24 | self.isConfig = False |
|
27 | self.isConfig = False | |
25 | self.__nsubplots = 1 |
|
28 | self.__nsubplots = 1 | |
26 |
|
29 | |||
27 | self.WIDTH = 250 |
|
30 | self.WIDTH = 250 | |
28 | self.HEIGHT = 250 |
|
31 | self.HEIGHT = 250 | |
29 | self.WIDTHPROF = 120 |
|
32 | self.WIDTHPROF = 120 | |
30 | self.HEIGHTPROF = 0 |
|
33 | self.HEIGHTPROF = 0 | |
31 | self.counter_imagwr = 0 |
|
34 | self.counter_imagwr = 0 | |
32 |
|
35 | |||
33 | self.PLOT_CODE = SPEC_CODE |
|
36 | self.PLOT_CODE = SPEC_CODE | |
34 |
|
37 | |||
35 | self.FTP_WEI = None |
|
38 | self.FTP_WEI = None | |
36 | self.EXP_CODE = None |
|
39 | self.EXP_CODE = None | |
37 | self.SUB_EXP_CODE = None |
|
40 | self.SUB_EXP_CODE = None | |
38 | self.PLOT_POS = None |
|
41 | self.PLOT_POS = None | |
39 |
|
42 | |||
40 | self.__xfilter_ena = False |
|
43 | self.__xfilter_ena = False | |
41 | self.__yfilter_ena = False |
|
44 | self.__yfilter_ena = False | |
|
45 | ||||
|
46 | self.indice=1 | |||
42 |
|
47 | |||
43 | def getSubplots(self): |
|
48 | def getSubplots(self): | |
44 |
|
49 | |||
45 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
50 | ncol = int(numpy.sqrt(self.nplots)+0.9) | |
46 | nrow = int(self.nplots*1./ncol + 0.9) |
|
51 | nrow = int(self.nplots*1./ncol + 0.9) | |
47 |
|
52 | |||
48 | return nrow, ncol |
|
53 | return nrow, ncol | |
49 |
|
54 | |||
50 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
55 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
51 |
|
56 | |||
52 | self.__showprofile = showprofile |
|
57 | self.__showprofile = showprofile | |
53 | self.nplots = nplots |
|
58 | self.nplots = nplots | |
54 |
|
59 | |||
55 | ncolspan = 1 |
|
60 | ncolspan = 1 | |
56 | colspan = 1 |
|
61 | colspan = 1 | |
57 | if showprofile: |
|
62 | if showprofile: | |
58 | ncolspan = 3 |
|
63 | ncolspan = 3 | |
59 | colspan = 2 |
|
64 | colspan = 2 | |
60 | self.__nsubplots = 2 |
|
65 | self.__nsubplots = 2 | |
61 |
|
66 | |||
62 | self.createFigure(id = id, |
|
67 | self.createFigure(id = id, | |
63 | wintitle = wintitle, |
|
68 | wintitle = wintitle, | |
64 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
69 | widthplot = self.WIDTH + self.WIDTHPROF, | |
65 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
70 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
66 | show=show) |
|
71 | show=show) | |
67 |
|
72 | |||
68 | nrow, ncol = self.getSubplots() |
|
73 | nrow, ncol = self.getSubplots() | |
69 |
|
74 | |||
70 | counter = 0 |
|
75 | counter = 0 | |
71 | for y in range(nrow): |
|
76 | for y in range(nrow): | |
72 | for x in range(ncol): |
|
77 | for x in range(ncol): | |
73 |
|
78 | |||
74 | if counter >= self.nplots: |
|
79 | if counter >= self.nplots: | |
75 | break |
|
80 | break | |
76 |
|
81 | |||
77 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
82 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
78 |
|
83 | |||
79 | if showprofile: |
|
84 | if showprofile: | |
80 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
85 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
81 |
|
86 | |||
82 | counter += 1 |
|
87 | counter += 1 | |
83 |
|
88 | |||
84 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
89 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, | |
85 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
90 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
86 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
91 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
87 | server=None, folder=None, username=None, password=None, |
|
92 | server=None, folder=None, username=None, password=None, | |
88 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
93 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, | |
89 | xaxis="frequency", colormap='jet', normFactor=None): |
|
94 | xaxis="frequency", colormap='jet', normFactor=None): | |
90 |
|
95 | |||
91 | """ |
|
96 | """ | |
92 |
|
97 | |||
93 | Input: |
|
98 | Input: | |
94 | dataOut : |
|
99 | dataOut : | |
95 | id : |
|
100 | id : | |
96 | wintitle : |
|
101 | wintitle : | |
97 | channelList : |
|
102 | channelList : | |
98 | showProfile : |
|
103 | showProfile : | |
99 | xmin : None, |
|
104 | xmin : None, | |
100 | xmax : None, |
|
105 | xmax : None, | |
101 | ymin : None, |
|
106 | ymin : None, | |
102 | ymax : None, |
|
107 | ymax : None, | |
103 | zmin : None, |
|
108 | zmin : None, | |
104 | zmax : None |
|
109 | zmax : None | |
105 | """ |
|
110 | """ | |
106 | if realtime: |
|
111 | if realtime: | |
107 | if not(isRealtime(utcdatatime = dataOut.utctime)): |
|
112 | if not(isRealtime(utcdatatime = dataOut.utctime)): | |
108 | print 'Skipping this plot function' |
|
113 | print 'Skipping this plot function' | |
109 | return |
|
114 | return | |
110 |
|
115 | |||
111 | if channelList == None: |
|
116 | if channelList == None: | |
112 | channelIndexList = dataOut.channelIndexList |
|
117 | channelIndexList = dataOut.channelIndexList | |
113 | else: |
|
118 | else: | |
114 | channelIndexList = [] |
|
119 | channelIndexList = [] | |
115 | for channel in channelList: |
|
120 | for channel in channelList: | |
116 | if channel not in dataOut.channelList: |
|
121 | if channel not in dataOut.channelList: | |
117 | raise ValueError, "Channel %d is not in dataOut.channelList" %channel |
|
122 | raise ValueError, "Channel %d is not in dataOut.channelList" %channel | |
118 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
123 | channelIndexList.append(dataOut.channelList.index(channel)) | |
119 |
|
124 | |||
120 | if normFactor is None: |
|
125 | if normFactor is None: | |
121 | factor = dataOut.normFactor |
|
126 | factor = dataOut.normFactor | |
122 | else: |
|
127 | else: | |
123 | factor = normFactor |
|
128 | factor = normFactor | |
124 | if xaxis == "frequency": |
|
129 | if xaxis == "frequency": | |
125 | x = dataOut.getFreqRange(1)/1000. |
|
130 | x = dataOut.getFreqRange(1)/1000. | |
126 | xlabel = "Frequency (kHz)" |
|
131 | xlabel = "Frequency (kHz)" | |
127 |
|
132 | |||
128 | elif xaxis == "time": |
|
133 | elif xaxis == "time": | |
129 | x = dataOut.getAcfRange(1) |
|
134 | x = dataOut.getAcfRange(1) | |
130 | xlabel = "Time (ms)" |
|
135 | xlabel = "Time (ms)" | |
131 |
|
136 | |||
132 | else: |
|
137 | else: | |
133 | x = dataOut.getVelRange(1) |
|
138 | x = dataOut.getVelRange(1) | |
134 | xlabel = "Velocity (m/s)" |
|
139 | xlabel = "Velocity (m/s)" | |
135 |
|
140 | |||
136 | ylabel = "Range (Km)" |
|
141 | ylabel = "Range (Km)" | |
137 |
|
142 | |||
138 | y = dataOut.getHeiRange() |
|
143 | y = dataOut.getHeiRange() | |
139 |
|
144 | |||
140 | z = dataOut.data_spc/factor |
|
145 | z = dataOut.data_spc/factor | |
141 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
146 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
142 | zdB = 10*numpy.log10(z) |
|
147 | zdB = 10*numpy.log10(z) | |
143 |
|
148 | |||
144 | avg = numpy.average(z, axis=1) |
|
149 | avg = numpy.average(z, axis=1) | |
145 | avgdB = 10*numpy.log10(avg) |
|
150 | avgdB = 10*numpy.log10(avg) | |
146 |
|
151 | |||
147 | noise = dataOut.getNoise()/factor |
|
152 | noise = dataOut.getNoise()/factor | |
148 | noisedB = 10*numpy.log10(noise) |
|
153 | noisedB = 10*numpy.log10(noise) | |
149 |
|
154 | |||
150 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
155 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
151 | title = wintitle + " Spectra" |
|
156 | title = wintitle + " Spectra" | |
|
157 | ||||
|
158 | ||||
|
159 | ||||
|
160 | print 'len de X',len(x), numpy.shape(x), 'len de spc line',len(dataOut.data_spc[1,:,15]), numpy.shape(dataOut.data_spc) | |||
|
161 | print 'Altura:', y[0], y[1], y[13], y[14], y[10] | |||
|
162 | #a=z[1,:,15] | |||
|
163 | ||||
|
164 | # fig = plt.figure(10+self.indice) | |||
|
165 | # plt.plot( x[0:128], zdB[0,:,10] ) | |||
|
166 | # plt.axis([-12, 12, 15, 50]) | |||
|
167 | # plt.title(" %s" %( '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))) ) | |||
|
168 | # plt.ylabel('Intensidad [dB]') | |||
|
169 | # plt.xlabel('Velocidad [m/s]') | |||
|
170 | # fig.savefig('/home/erick/Documents/Pics/to{}.png'.format(self.indice)) | |||
|
171 | # | |||
|
172 | # plt.show() | |||
|
173 | # | |||
|
174 | # self.indice=self.indice+1 | |||
|
175 | ||||
|
176 | ||||
|
177 | ||||
152 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
178 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
153 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
179 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) | |
154 |
|
180 | |||
155 | if not self.isConfig: |
|
181 | if not self.isConfig: | |
156 |
|
182 | |||
157 | nplots = len(channelIndexList) |
|
183 | nplots = len(channelIndexList) | |
158 |
|
184 | |||
159 | self.setup(id=id, |
|
185 | self.setup(id=id, | |
160 | nplots=nplots, |
|
186 | nplots=nplots, | |
161 | wintitle=wintitle, |
|
187 | wintitle=wintitle, | |
162 | showprofile=showprofile, |
|
188 | showprofile=showprofile, | |
163 | show=show) |
|
189 | show=show) | |
164 |
|
190 | |||
165 | if xmin == None: xmin = numpy.nanmin(x) |
|
191 | if xmin == None: xmin = numpy.nanmin(x) | |
166 | if xmax == None: xmax = numpy.nanmax(x) |
|
192 | if xmax == None: xmax = numpy.nanmax(x) | |
167 | if ymin == None: ymin = numpy.nanmin(y) |
|
193 | if ymin == None: ymin = numpy.nanmin(y) | |
168 | if ymax == None: ymax = numpy.nanmax(y) |
|
194 | if ymax == None: ymax = numpy.nanmax(y) | |
169 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
195 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 | |
170 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
196 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 | |
171 |
|
197 | |||
172 | self.FTP_WEI = ftp_wei |
|
198 | self.FTP_WEI = ftp_wei | |
173 | self.EXP_CODE = exp_code |
|
199 | self.EXP_CODE = exp_code | |
174 | self.SUB_EXP_CODE = sub_exp_code |
|
200 | self.SUB_EXP_CODE = sub_exp_code | |
175 | self.PLOT_POS = plot_pos |
|
201 | self.PLOT_POS = plot_pos | |
176 |
|
202 | |||
177 | self.isConfig = True |
|
203 | self.isConfig = True | |
178 |
|
204 | |||
179 | self.setWinTitle(title) |
|
205 | self.setWinTitle(title) | |
180 |
|
206 | |||
181 | for i in range(self.nplots): |
|
207 | for i in range(self.nplots): | |
182 | index = channelIndexList[i] |
|
208 | index = channelIndexList[i] | |
183 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
209 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) | |
184 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) |
|
210 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) | |
185 | if len(dataOut.beam.codeList) != 0: |
|
211 | if len(dataOut.beam.codeList) != 0: | |
186 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) |
|
212 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) | |
187 |
|
213 | |||
188 | axes = self.axesList[i*self.__nsubplots] |
|
214 | axes = self.axesList[i*self.__nsubplots] | |
189 | axes.pcolor(x, y, zdB[index,:,:], |
|
215 | axes.pcolor(x, y, zdB[index,:,:], | |
190 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
216 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
191 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap, |
|
217 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap, | |
192 | ticksize=9, cblabel='') |
|
218 | ticksize=9, cblabel='') | |
193 |
|
219 | |||
194 | if self.__showprofile: |
|
220 | if self.__showprofile: | |
195 | axes = self.axesList[i*self.__nsubplots +1] |
|
221 | axes = self.axesList[i*self.__nsubplots +1] | |
196 | axes.pline(avgdB[index,:], y, |
|
222 | axes.pline(avgdB[index,:], y, | |
197 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
223 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, | |
198 | xlabel='dB', ylabel='', title='', |
|
224 | xlabel='dB', ylabel='', title='', | |
199 | ytick_visible=False, |
|
225 | ytick_visible=False, | |
200 | grid='x') |
|
226 | grid='x') | |
201 |
|
227 | |||
202 | noiseline = numpy.repeat(noisedB[index], len(y)) |
|
228 | noiseline = numpy.repeat(noisedB[index], len(y)) | |
203 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
229 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) | |
204 |
|
230 | |||
205 | self.draw() |
|
231 | self.draw() | |
206 |
|
232 | |||
207 | if figfile == None: |
|
233 | if figfile == None: | |
208 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
234 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
209 | name = str_datetime |
|
235 | name = str_datetime | |
210 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
236 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
211 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) |
|
237 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) | |
212 | figfile = self.getFilename(name) |
|
238 | figfile = self.getFilename(name) | |
213 |
|
239 | |||
214 | self.save(figpath=figpath, |
|
240 | self.save(figpath=figpath, | |
215 | figfile=figfile, |
|
241 | figfile=figfile, | |
216 | save=save, |
|
242 | save=save, | |
217 | ftp=ftp, |
|
243 | ftp=ftp, | |
218 | wr_period=wr_period, |
|
244 | wr_period=wr_period, | |
219 | thisDatetime=thisDatetime) |
|
245 | thisDatetime=thisDatetime) | |
|
246 | ||||
220 |
|
247 | |||
221 | class CrossSpectraPlot(Figure): |
|
248 | class CrossSpectraPlot(Figure): | |
222 |
|
249 | |||
223 | isConfig = None |
|
250 | isConfig = None | |
224 | __nsubplots = None |
|
251 | __nsubplots = None | |
225 |
|
252 | |||
226 | WIDTH = None |
|
253 | WIDTH = None | |
227 | HEIGHT = None |
|
254 | HEIGHT = None | |
228 | WIDTHPROF = None |
|
255 | WIDTHPROF = None | |
229 | HEIGHTPROF = None |
|
256 | HEIGHTPROF = None | |
230 | PREFIX = 'cspc' |
|
257 | PREFIX = 'cspc' | |
231 |
|
258 | |||
232 | def __init__(self, **kwargs): |
|
259 | def __init__(self, **kwargs): | |
233 | Figure.__init__(self, **kwargs) |
|
260 | Figure.__init__(self, **kwargs) | |
234 | self.isConfig = False |
|
261 | self.isConfig = False | |
235 | self.__nsubplots = 4 |
|
262 | self.__nsubplots = 4 | |
236 | self.counter_imagwr = 0 |
|
263 | self.counter_imagwr = 0 | |
237 | self.WIDTH = 250 |
|
264 | self.WIDTH = 250 | |
238 | self.HEIGHT = 250 |
|
265 | self.HEIGHT = 250 | |
239 | self.WIDTHPROF = 0 |
|
266 | self.WIDTHPROF = 0 | |
240 | self.HEIGHTPROF = 0 |
|
267 | self.HEIGHTPROF = 0 | |
241 |
|
268 | |||
242 | self.PLOT_CODE = CROSS_CODE |
|
269 | self.PLOT_CODE = CROSS_CODE | |
243 | self.FTP_WEI = None |
|
270 | self.FTP_WEI = None | |
244 | self.EXP_CODE = None |
|
271 | self.EXP_CODE = None | |
245 | self.SUB_EXP_CODE = None |
|
272 | self.SUB_EXP_CODE = None | |
246 | self.PLOT_POS = None |
|
273 | self.PLOT_POS = None | |
|
274 | ||||
|
275 | self.indice=0 | |||
247 |
|
276 | |||
248 | def getSubplots(self): |
|
277 | def getSubplots(self): | |
249 |
|
278 | |||
250 | ncol = 4 |
|
279 | ncol = 4 | |
251 | nrow = self.nplots |
|
280 | nrow = self.nplots | |
252 |
|
281 | |||
253 | return nrow, ncol |
|
282 | return nrow, ncol | |
254 |
|
283 | |||
255 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
284 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
256 |
|
285 | |||
257 | self.__showprofile = showprofile |
|
286 | self.__showprofile = showprofile | |
258 | self.nplots = nplots |
|
287 | self.nplots = nplots | |
259 |
|
288 | |||
260 | ncolspan = 1 |
|
289 | ncolspan = 1 | |
261 | colspan = 1 |
|
290 | colspan = 1 | |
262 |
|
291 | |||
263 | self.createFigure(id = id, |
|
292 | self.createFigure(id = id, | |
264 | wintitle = wintitle, |
|
293 | wintitle = wintitle, | |
265 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
294 | widthplot = self.WIDTH + self.WIDTHPROF, | |
266 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
295 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
267 | show=True) |
|
296 | show=True) | |
268 |
|
297 | |||
269 | nrow, ncol = self.getSubplots() |
|
298 | nrow, ncol = self.getSubplots() | |
270 |
|
299 | |||
271 | counter = 0 |
|
300 | counter = 0 | |
272 | for y in range(nrow): |
|
301 | for y in range(nrow): | |
273 | for x in range(ncol): |
|
302 | for x in range(ncol): | |
274 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
303 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
275 |
|
304 | |||
276 | counter += 1 |
|
305 | counter += 1 | |
277 |
|
306 | |||
278 | def run(self, dataOut, id, wintitle="", pairsList=None, |
|
307 | def run(self, dataOut, id, wintitle="", pairsList=None, | |
279 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
308 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
280 | coh_min=None, coh_max=None, phase_min=None, phase_max=None, |
|
309 | coh_min=None, coh_max=None, phase_min=None, phase_max=None, | |
281 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
310 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, | |
282 | power_cmap='jet', coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
311 | power_cmap='jet', coherence_cmap='jet', phase_cmap='RdBu_r', show=True, | |
283 | server=None, folder=None, username=None, password=None, |
|
312 | server=None, folder=None, username=None, password=None, | |
284 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, |
|
313 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, | |
285 | xaxis='frequency'): |
|
314 | xaxis='frequency'): | |
286 |
|
315 | |||
287 | """ |
|
316 | """ | |
288 |
|
317 | |||
289 | Input: |
|
318 | Input: | |
290 | dataOut : |
|
319 | dataOut : | |
291 | id : |
|
320 | id : | |
292 | wintitle : |
|
321 | wintitle : | |
293 | channelList : |
|
322 | channelList : | |
294 | showProfile : |
|
323 | showProfile : | |
295 | xmin : None, |
|
324 | xmin : None, | |
296 | xmax : None, |
|
325 | xmax : None, | |
297 | ymin : None, |
|
326 | ymin : None, | |
298 | ymax : None, |
|
327 | ymax : None, | |
299 | zmin : None, |
|
328 | zmin : None, | |
300 | zmax : None |
|
329 | zmax : None | |
301 | """ |
|
330 | """ | |
302 |
|
331 | |||
303 | if pairsList == None: |
|
332 | if pairsList == None: | |
304 | pairsIndexList = dataOut.pairsIndexList |
|
333 | pairsIndexList = dataOut.pairsIndexList | |
305 | else: |
|
334 | else: | |
306 | pairsIndexList = [] |
|
335 | pairsIndexList = [] | |
307 | for pair in pairsList: |
|
336 | for pair in pairsList: | |
308 | if pair not in dataOut.pairsList: |
|
337 | if pair not in dataOut.pairsList: | |
309 | raise ValueError, "Pair %s is not in dataOut.pairsList" %str(pair) |
|
338 | raise ValueError, "Pair %s is not in dataOut.pairsList" %str(pair) | |
310 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
339 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
311 |
|
340 | |||
312 | if not pairsIndexList: |
|
341 | if not pairsIndexList: | |
313 | return |
|
342 | return | |
314 |
|
343 | |||
315 | if len(pairsIndexList) > 4: |
|
344 | if len(pairsIndexList) > 4: | |
316 | pairsIndexList = pairsIndexList[0:4] |
|
345 | pairsIndexList = pairsIndexList[0:4] | |
317 |
|
346 | |||
318 | if normFactor is None: |
|
347 | if normFactor is None: | |
319 | factor = dataOut.normFactor |
|
348 | factor = dataOut.normFactor | |
320 | else: |
|
349 | else: | |
321 | factor = normFactor |
|
350 | factor = normFactor | |
322 | x = dataOut.getVelRange(1) |
|
351 | x = dataOut.getVelRange(1) | |
323 | y = dataOut.getHeiRange() |
|
352 | y = dataOut.getHeiRange() | |
324 | z = dataOut.data_spc[:,:,:]/factor |
|
353 | z = dataOut.data_spc[:,:,:]/factor | |
325 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
354 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
326 |
|
355 | |||
327 | noise = dataOut.noise/factor |
|
356 | noise = dataOut.noise/factor | |
328 |
|
357 | |||
329 | zdB = 10*numpy.log10(z) |
|
358 | zdB = 10*numpy.log10(z) | |
330 | noisedB = 10*numpy.log10(noise) |
|
359 | noisedB = 10*numpy.log10(noise) | |
331 |
|
360 | |||
332 | if coh_min == None: |
|
361 | if coh_min == None: | |
333 | coh_min = 0.0 |
|
362 | coh_min = 0.0 | |
334 | if coh_max == None: |
|
363 | if coh_max == None: | |
335 | coh_max = 1.0 |
|
364 | coh_max = 1.0 | |
336 |
|
365 | |||
337 | if phase_min == None: |
|
366 | if phase_min == None: | |
338 | phase_min = -180 |
|
367 | phase_min = -180 | |
339 | if phase_max == None: |
|
368 | if phase_max == None: | |
340 | phase_max = 180 |
|
369 | phase_max = 180 | |
341 |
|
370 | |||
342 | #thisDatetime = dataOut.datatime |
|
371 | #thisDatetime = dataOut.datatime | |
343 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
372 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
344 | title = wintitle + " Cross-Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
373 | title = wintitle + " Cross-Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
345 | # xlabel = "Velocity (m/s)" |
|
374 | # xlabel = "Velocity (m/s)" | |
346 | ylabel = "Range (Km)" |
|
375 | ylabel = "Range (Km)" | |
347 |
|
376 | |||
348 | if xaxis == "frequency": |
|
377 | if xaxis == "frequency": | |
349 | x = dataOut.getFreqRange(1)/1000. |
|
378 | x = dataOut.getFreqRange(1)/1000. | |
350 | xlabel = "Frequency (kHz)" |
|
379 | xlabel = "Frequency (kHz)" | |
351 |
|
380 | |||
352 | elif xaxis == "time": |
|
381 | elif xaxis == "time": | |
353 | x = dataOut.getAcfRange(1) |
|
382 | x = dataOut.getAcfRange(1) | |
354 | xlabel = "Time (ms)" |
|
383 | xlabel = "Time (ms)" | |
355 |
|
384 | |||
356 | else: |
|
385 | else: | |
357 | x = dataOut.getVelRange(1) |
|
386 | x = dataOut.getVelRange(1) | |
358 | xlabel = "Velocity (m/s)" |
|
387 | xlabel = "Velocity (m/s)" | |
359 |
|
388 | |||
360 | if not self.isConfig: |
|
389 | if not self.isConfig: | |
361 |
|
390 | |||
362 | nplots = len(pairsIndexList) |
|
391 | nplots = len(pairsIndexList) | |
363 |
|
392 | |||
364 | self.setup(id=id, |
|
393 | self.setup(id=id, | |
365 | nplots=nplots, |
|
394 | nplots=nplots, | |
366 | wintitle=wintitle, |
|
395 | wintitle=wintitle, | |
367 | showprofile=False, |
|
396 | showprofile=False, | |
368 | show=show) |
|
397 | show=show) | |
369 |
|
398 | |||
370 | avg = numpy.abs(numpy.average(z, axis=1)) |
|
399 | avg = numpy.abs(numpy.average(z, axis=1)) | |
371 | avgdB = 10*numpy.log10(avg) |
|
400 | avgdB = 10*numpy.log10(avg) | |
372 |
|
401 | |||
373 | if xmin == None: xmin = numpy.nanmin(x) |
|
402 | if xmin == None: xmin = numpy.nanmin(x) | |
374 | if xmax == None: xmax = numpy.nanmax(x) |
|
403 | if xmax == None: xmax = numpy.nanmax(x) | |
375 | if ymin == None: ymin = numpy.nanmin(y) |
|
404 | if ymin == None: ymin = numpy.nanmin(y) | |
376 | if ymax == None: ymax = numpy.nanmax(y) |
|
405 | if ymax == None: ymax = numpy.nanmax(y) | |
377 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
406 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 | |
378 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
407 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 | |
379 |
|
408 | |||
380 | self.FTP_WEI = ftp_wei |
|
409 | self.FTP_WEI = ftp_wei | |
381 | self.EXP_CODE = exp_code |
|
410 | self.EXP_CODE = exp_code | |
382 | self.SUB_EXP_CODE = sub_exp_code |
|
411 | self.SUB_EXP_CODE = sub_exp_code | |
383 | self.PLOT_POS = plot_pos |
|
412 | self.PLOT_POS = plot_pos | |
384 |
|
413 | |||
385 | self.isConfig = True |
|
414 | self.isConfig = True | |
386 |
|
415 | |||
387 | self.setWinTitle(title) |
|
416 | self.setWinTitle(title) | |
|
417 | ||||
388 |
|
418 | |||
389 | for i in range(self.nplots): |
|
419 | for i in range(self.nplots): | |
390 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
420 | pair = dataOut.pairsList[pairsIndexList[i]] | |
391 |
|
421 | |||
392 | chan_index0 = dataOut.channelList.index(pair[0]) |
|
422 | chan_index0 = dataOut.channelList.index(pair[0]) | |
393 | chan_index1 = dataOut.channelList.index(pair[1]) |
|
423 | chan_index1 = dataOut.channelList.index(pair[1]) | |
394 |
|
424 | |||
395 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
425 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) | |
396 | title = "Ch%d: %4.2fdB: %s" %(pair[0], noisedB[chan_index0], str_datetime) |
|
426 | title = "Ch%d: %4.2fdB: %s" %(pair[0], noisedB[chan_index0], str_datetime) | |
397 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index0,:,:]/factor) |
|
427 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index0,:,:]/factor) | |
398 | axes0 = self.axesList[i*self.__nsubplots] |
|
428 | axes0 = self.axesList[i*self.__nsubplots] | |
399 | axes0.pcolor(x, y, zdB, |
|
429 | axes0.pcolor(x, y, zdB, | |
400 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
430 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
401 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
431 | xlabel=xlabel, ylabel=ylabel, title=title, | |
402 | ticksize=9, colormap=power_cmap, cblabel='') |
|
432 | ticksize=9, colormap=power_cmap, cblabel='') | |
403 |
|
433 | |||
404 | title = "Ch%d: %4.2fdB: %s" %(pair[1], noisedB[chan_index1], str_datetime) |
|
434 | title = "Ch%d: %4.2fdB: %s" %(pair[1], noisedB[chan_index1], str_datetime) | |
405 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index1,:,:]/factor) |
|
435 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index1,:,:]/factor) | |
406 | axes0 = self.axesList[i*self.__nsubplots+1] |
|
436 | axes0 = self.axesList[i*self.__nsubplots+1] | |
407 | axes0.pcolor(x, y, zdB, |
|
437 | axes0.pcolor(x, y, zdB, | |
408 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
438 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
409 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
439 | xlabel=xlabel, ylabel=ylabel, title=title, | |
410 | ticksize=9, colormap=power_cmap, cblabel='') |
|
440 | ticksize=9, colormap=power_cmap, cblabel='') | |
411 |
|
441 | |||
412 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[chan_index0,:,:]*dataOut.data_spc[chan_index1,:,:]) |
|
442 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[chan_index0,:,:]*dataOut.data_spc[chan_index1,:,:]) | |
413 | coherence = numpy.abs(coherenceComplex) |
|
443 | coherence = numpy.abs(coherenceComplex) | |
414 | # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi |
|
444 | # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi | |
415 | phase = numpy.arctan2(coherenceComplex.imag, coherenceComplex.real)*180/numpy.pi |
|
445 | phase = numpy.arctan2(coherenceComplex.imag, coherenceComplex.real)*180/numpy.pi | |
|
446 | ||||
|
447 | ||||
|
448 | # print 'FASE', numpy.shape(phase), y[10] | |||
|
449 | # fig = plt.figure(10+self.indice) | |||
|
450 | # plt.plot( x[0:128],phase[:,10] ) | |||
|
451 | # #plt.axis([-12, 12, 15, 50]) | |||
|
452 | # plt.title("%s" %( '%s %s, Channel %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S") , i))) | |||
|
453 | # plt.ylabel('Desfase [grados]') | |||
|
454 | # plt.xlabel('Velocidad [m/s]') | |||
|
455 | # fig.savefig('/home/erick/Documents/Pics/to{}.png'.format(self.indice)) | |||
|
456 | # | |||
|
457 | # plt.show() | |||
|
458 | # self.indice=self.indice+1 | |||
416 |
|
459 | |||
417 | title = "Coherence Ch%d * Ch%d" %(pair[0], pair[1]) |
|
460 | title = "Coherence Ch%d * Ch%d" %(pair[0], pair[1]) | |
418 | axes0 = self.axesList[i*self.__nsubplots+2] |
|
461 | axes0 = self.axesList[i*self.__nsubplots+2] | |
419 | axes0.pcolor(x, y, coherence, |
|
462 | axes0.pcolor(x, y, coherence, | |
420 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=coh_min, zmax=coh_max, |
|
463 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=coh_min, zmax=coh_max, | |
421 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
464 | xlabel=xlabel, ylabel=ylabel, title=title, | |
422 | ticksize=9, colormap=coherence_cmap, cblabel='') |
|
465 | ticksize=9, colormap=coherence_cmap, cblabel='') | |
423 |
|
466 | |||
424 | title = "Phase Ch%d * Ch%d" %(pair[0], pair[1]) |
|
467 | title = "Phase Ch%d * Ch%d" %(pair[0], pair[1]) | |
425 | axes0 = self.axesList[i*self.__nsubplots+3] |
|
468 | axes0 = self.axesList[i*self.__nsubplots+3] | |
426 | axes0.pcolor(x, y, phase, |
|
469 | axes0.pcolor(x, y, phase, | |
427 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
470 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, | |
428 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
471 | xlabel=xlabel, ylabel=ylabel, title=title, | |
429 | ticksize=9, colormap=phase_cmap, cblabel='') |
|
472 | ticksize=9, colormap=phase_cmap, cblabel='') | |
430 |
|
473 | |||
431 |
|
474 | |||
432 |
|
475 | |||
433 | self.draw() |
|
476 | self.draw() | |
434 |
|
477 | |||
435 | self.save(figpath=figpath, |
|
478 | self.save(figpath=figpath, | |
436 | figfile=figfile, |
|
479 | figfile=figfile, | |
437 | save=save, |
|
480 | save=save, | |
438 | ftp=ftp, |
|
481 | ftp=ftp, | |
439 | wr_period=wr_period, |
|
482 | wr_period=wr_period, | |
440 | thisDatetime=thisDatetime) |
|
483 | thisDatetime=thisDatetime) | |
441 |
|
484 | |||
442 |
|
485 | |||
443 | class RTIPlot(Figure): |
|
486 | class RTIPlot(Figure): | |
444 |
|
487 | |||
445 | __isConfig = None |
|
488 | __isConfig = None | |
446 | __nsubplots = None |
|
489 | __nsubplots = None | |
447 |
|
490 | |||
448 | WIDTHPROF = None |
|
491 | WIDTHPROF = None | |
449 | HEIGHTPROF = None |
|
492 | HEIGHTPROF = None | |
450 | PREFIX = 'rti' |
|
493 | PREFIX = 'rti' | |
451 |
|
494 | |||
452 | def __init__(self, **kwargs): |
|
495 | def __init__(self, **kwargs): | |
453 |
|
496 | |||
454 | Figure.__init__(self, **kwargs) |
|
497 | Figure.__init__(self, **kwargs) | |
455 | self.timerange = None |
|
498 | self.timerange = None | |
456 | self.isConfig = False |
|
499 | self.isConfig = False | |
457 | self.__nsubplots = 1 |
|
500 | self.__nsubplots = 1 | |
458 |
|
501 | |||
459 | self.WIDTH = 800 |
|
502 | self.WIDTH = 800 | |
460 | self.HEIGHT = 180 |
|
503 | self.HEIGHT = 180 | |
461 | self.WIDTHPROF = 120 |
|
504 | self.WIDTHPROF = 120 | |
462 | self.HEIGHTPROF = 0 |
|
505 | self.HEIGHTPROF = 0 | |
463 | self.counter_imagwr = 0 |
|
506 | self.counter_imagwr = 0 | |
464 |
|
507 | |||
465 | self.PLOT_CODE = RTI_CODE |
|
508 | self.PLOT_CODE = RTI_CODE | |
466 |
|
509 | |||
467 | self.FTP_WEI = None |
|
510 | self.FTP_WEI = None | |
468 | self.EXP_CODE = None |
|
511 | self.EXP_CODE = None | |
469 | self.SUB_EXP_CODE = None |
|
512 | self.SUB_EXP_CODE = None | |
470 | self.PLOT_POS = None |
|
513 | self.PLOT_POS = None | |
471 | self.tmin = None |
|
514 | self.tmin = None | |
472 | self.tmax = None |
|
515 | self.tmax = None | |
473 |
|
516 | |||
474 | self.xmin = None |
|
517 | self.xmin = None | |
475 | self.xmax = None |
|
518 | self.xmax = None | |
476 |
|
519 | |||
477 | self.figfile = None |
|
520 | self.figfile = None | |
478 |
|
521 | |||
479 | def getSubplots(self): |
|
522 | def getSubplots(self): | |
480 |
|
523 | |||
481 | ncol = 1 |
|
524 | ncol = 1 | |
482 | nrow = self.nplots |
|
525 | nrow = self.nplots | |
483 |
|
526 | |||
484 | return nrow, ncol |
|
527 | return nrow, ncol | |
485 |
|
528 | |||
486 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
529 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
487 |
|
530 | |||
488 | self.__showprofile = showprofile |
|
531 | self.__showprofile = showprofile | |
489 | self.nplots = nplots |
|
532 | self.nplots = nplots | |
490 |
|
533 | |||
491 | ncolspan = 1 |
|
534 | ncolspan = 1 | |
492 | colspan = 1 |
|
535 | colspan = 1 | |
493 | if showprofile: |
|
536 | if showprofile: | |
494 | ncolspan = 7 |
|
537 | ncolspan = 7 | |
495 | colspan = 6 |
|
538 | colspan = 6 | |
496 | self.__nsubplots = 2 |
|
539 | self.__nsubplots = 2 | |
497 |
|
540 | |||
498 | self.createFigure(id = id, |
|
541 | self.createFigure(id = id, | |
499 | wintitle = wintitle, |
|
542 | wintitle = wintitle, | |
500 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
543 | widthplot = self.WIDTH + self.WIDTHPROF, | |
501 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
544 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
502 | show=show) |
|
545 | show=show) | |
503 |
|
546 | |||
504 | nrow, ncol = self.getSubplots() |
|
547 | nrow, ncol = self.getSubplots() | |
505 |
|
548 | |||
506 | counter = 0 |
|
549 | counter = 0 | |
507 | for y in range(nrow): |
|
550 | for y in range(nrow): | |
508 | for x in range(ncol): |
|
551 | for x in range(ncol): | |
509 |
|
552 | |||
510 | if counter >= self.nplots: |
|
553 | if counter >= self.nplots: | |
511 | break |
|
554 | break | |
512 |
|
555 | |||
513 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
556 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
514 |
|
557 | |||
515 | if showprofile: |
|
558 | if showprofile: | |
516 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
559 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
517 |
|
560 | |||
518 | counter += 1 |
|
561 | counter += 1 | |
519 |
|
562 | |||
520 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
563 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', | |
521 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
564 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
522 | timerange=None, colormap='jet', |
|
565 | timerange=None, colormap='jet', | |
523 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
566 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, | |
524 | server=None, folder=None, username=None, password=None, |
|
567 | server=None, folder=None, username=None, password=None, | |
525 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, HEIGHT=None): |
|
568 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, HEIGHT=None): | |
526 |
|
569 | |||
527 | """ |
|
570 | """ | |
528 |
|
571 | |||
529 | Input: |
|
572 | Input: | |
530 | dataOut : |
|
573 | dataOut : | |
531 | id : |
|
574 | id : | |
532 | wintitle : |
|
575 | wintitle : | |
533 | channelList : |
|
576 | channelList : | |
534 | showProfile : |
|
577 | showProfile : | |
535 | xmin : None, |
|
578 | xmin : None, | |
536 | xmax : None, |
|
579 | xmax : None, | |
537 | ymin : None, |
|
580 | ymin : None, | |
538 | ymax : None, |
|
581 | ymax : None, | |
539 | zmin : None, |
|
582 | zmin : None, | |
540 | zmax : None |
|
583 | zmax : None | |
541 | """ |
|
584 | """ | |
542 |
|
585 | |||
543 | #colormap = kwargs.get('colormap', 'jet') |
|
586 | #colormap = kwargs.get('colormap', 'jet') | |
544 | if HEIGHT is not None: |
|
587 | if HEIGHT is not None: | |
545 | self.HEIGHT = HEIGHT |
|
588 | self.HEIGHT = HEIGHT | |
546 |
|
589 | |||
547 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
590 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
548 | return |
|
591 | return | |
549 |
|
592 | |||
550 | if channelList == None: |
|
593 | if channelList == None: | |
551 | channelIndexList = dataOut.channelIndexList |
|
594 | channelIndexList = dataOut.channelIndexList | |
552 | else: |
|
595 | else: | |
553 | channelIndexList = [] |
|
596 | channelIndexList = [] | |
554 | for channel in channelList: |
|
597 | for channel in channelList: | |
555 | if channel not in dataOut.channelList: |
|
598 | if channel not in dataOut.channelList: | |
556 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
599 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
557 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
600 | channelIndexList.append(dataOut.channelList.index(channel)) | |
558 |
|
601 | |||
559 | if normFactor is None: |
|
602 | if normFactor is None: | |
560 | factor = dataOut.normFactor |
|
603 | factor = dataOut.normFactor | |
561 | else: |
|
604 | else: | |
562 | factor = normFactor |
|
605 | factor = normFactor | |
563 |
|
606 | |||
564 | # factor = dataOut.normFactor |
|
607 | # factor = dataOut.normFactor | |
565 | x = dataOut.getTimeRange() |
|
608 | x = dataOut.getTimeRange() | |
566 | y = dataOut.getHeiRange() |
|
609 | y = dataOut.getHeiRange() | |
567 |
|
610 | |||
568 | z = dataOut.data_spc/factor |
|
611 | z = dataOut.data_spc/factor | |
569 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
612 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
570 | avg = numpy.average(z, axis=1) |
|
613 | avg = numpy.average(z, axis=1) | |
571 | avgdB = 10.*numpy.log10(avg) |
|
614 | avgdB = 10.*numpy.log10(avg) | |
572 | # avgdB = dataOut.getPower() |
|
615 | # avgdB = dataOut.getPower() | |
573 |
|
616 | |||
574 |
|
617 | |||
575 | thisDatetime = dataOut.datatime |
|
618 | thisDatetime = dataOut.datatime | |
576 | # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
619 | # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
577 | title = wintitle + " RTI" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
620 | title = wintitle + " RTI" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
578 | xlabel = "" |
|
621 | xlabel = "" | |
579 | ylabel = "Range (Km)" |
|
622 | ylabel = "Range (Km)" | |
580 |
|
623 | |||
581 | update_figfile = False |
|
624 | update_figfile = False | |
582 |
|
625 | |||
583 | if dataOut.ltctime >= self.xmax: |
|
626 | if dataOut.ltctime >= self.xmax: | |
584 | self.counter_imagwr = wr_period |
|
627 | self.counter_imagwr = wr_period | |
585 | self.isConfig = False |
|
628 | self.isConfig = False | |
586 | update_figfile = True |
|
629 | update_figfile = True | |
587 |
|
630 | |||
588 | if not self.isConfig: |
|
631 | if not self.isConfig: | |
589 |
|
632 | |||
590 | nplots = len(channelIndexList) |
|
633 | nplots = len(channelIndexList) | |
591 |
|
634 | |||
592 | self.setup(id=id, |
|
635 | self.setup(id=id, | |
593 | nplots=nplots, |
|
636 | nplots=nplots, | |
594 | wintitle=wintitle, |
|
637 | wintitle=wintitle, | |
595 | showprofile=showprofile, |
|
638 | showprofile=showprofile, | |
596 | show=show) |
|
639 | show=show) | |
597 |
|
640 | |||
598 | if timerange != None: |
|
641 | if timerange != None: | |
599 | self.timerange = timerange |
|
642 | self.timerange = timerange | |
600 |
|
643 | |||
601 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
644 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
602 |
|
645 | |||
603 | noise = dataOut.noise/factor |
|
646 | noise = dataOut.noise/factor | |
604 | noisedB = 10*numpy.log10(noise) |
|
647 | noisedB = 10*numpy.log10(noise) | |
605 |
|
648 | |||
606 | if ymin == None: ymin = numpy.nanmin(y) |
|
649 | if ymin == None: ymin = numpy.nanmin(y) | |
607 | if ymax == None: ymax = numpy.nanmax(y) |
|
650 | if ymax == None: ymax = numpy.nanmax(y) | |
608 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
651 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 | |
609 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
652 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 | |
610 |
|
653 | |||
611 | self.FTP_WEI = ftp_wei |
|
654 | self.FTP_WEI = ftp_wei | |
612 | self.EXP_CODE = exp_code |
|
655 | self.EXP_CODE = exp_code | |
613 | self.SUB_EXP_CODE = sub_exp_code |
|
656 | self.SUB_EXP_CODE = sub_exp_code | |
614 | self.PLOT_POS = plot_pos |
|
657 | self.PLOT_POS = plot_pos | |
615 |
|
658 | |||
616 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
659 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
617 | self.isConfig = True |
|
660 | self.isConfig = True | |
618 | self.figfile = figfile |
|
661 | self.figfile = figfile | |
619 | update_figfile = True |
|
662 | update_figfile = True | |
620 |
|
663 | |||
621 | self.setWinTitle(title) |
|
664 | self.setWinTitle(title) | |
622 |
|
665 | |||
623 | for i in range(self.nplots): |
|
666 | for i in range(self.nplots): | |
624 | index = channelIndexList[i] |
|
667 | index = channelIndexList[i] | |
625 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
668 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
626 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
669 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
627 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
670 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) | |
628 | axes = self.axesList[i*self.__nsubplots] |
|
671 | axes = self.axesList[i*self.__nsubplots] | |
629 | zdB = avgdB[index].reshape((1,-1)) |
|
672 | zdB = avgdB[index].reshape((1,-1)) | |
630 | axes.pcolorbuffer(x, y, zdB, |
|
673 | axes.pcolorbuffer(x, y, zdB, | |
631 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
674 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
632 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
675 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
633 | ticksize=9, cblabel='', cbsize="1%", colormap=colormap) |
|
676 | ticksize=9, cblabel='', cbsize="1%", colormap=colormap) | |
634 |
|
677 | |||
635 | if self.__showprofile: |
|
678 | if self.__showprofile: | |
636 | axes = self.axesList[i*self.__nsubplots +1] |
|
679 | axes = self.axesList[i*self.__nsubplots +1] | |
637 | axes.pline(avgdB[index], y, |
|
680 | axes.pline(avgdB[index], y, | |
638 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
681 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, | |
639 | xlabel='dB', ylabel='', title='', |
|
682 | xlabel='dB', ylabel='', title='', | |
640 | ytick_visible=False, |
|
683 | ytick_visible=False, | |
641 | grid='x') |
|
684 | grid='x') | |
642 |
|
685 | |||
643 | self.draw() |
|
686 | self.draw() | |
644 |
|
687 | |||
645 | self.save(figpath=figpath, |
|
688 | self.save(figpath=figpath, | |
646 | figfile=figfile, |
|
689 | figfile=figfile, | |
647 | save=save, |
|
690 | save=save, | |
648 | ftp=ftp, |
|
691 | ftp=ftp, | |
649 | wr_period=wr_period, |
|
692 | wr_period=wr_period, | |
650 | thisDatetime=thisDatetime, |
|
693 | thisDatetime=thisDatetime, | |
651 | update_figfile=update_figfile) |
|
694 | update_figfile=update_figfile) | |
652 |
|
695 | |||
653 | class CoherenceMap(Figure): |
|
696 | class CoherenceMap(Figure): | |
654 | isConfig = None |
|
697 | isConfig = None | |
655 | __nsubplots = None |
|
698 | __nsubplots = None | |
656 |
|
699 | |||
657 | WIDTHPROF = None |
|
700 | WIDTHPROF = None | |
658 | HEIGHTPROF = None |
|
701 | HEIGHTPROF = None | |
659 | PREFIX = 'cmap' |
|
702 | PREFIX = 'cmap' | |
660 |
|
703 | |||
661 | def __init__(self, **kwargs): |
|
704 | def __init__(self, **kwargs): | |
662 | Figure.__init__(self, **kwargs) |
|
705 | Figure.__init__(self, **kwargs) | |
663 | self.timerange = 2*60*60 |
|
706 | self.timerange = 2*60*60 | |
664 | self.isConfig = False |
|
707 | self.isConfig = False | |
665 | self.__nsubplots = 1 |
|
708 | self.__nsubplots = 1 | |
666 |
|
709 | |||
667 | self.WIDTH = 800 |
|
710 | self.WIDTH = 800 | |
668 | self.HEIGHT = 180 |
|
711 | self.HEIGHT = 180 | |
669 | self.WIDTHPROF = 120 |
|
712 | self.WIDTHPROF = 120 | |
670 | self.HEIGHTPROF = 0 |
|
713 | self.HEIGHTPROF = 0 | |
671 | self.counter_imagwr = 0 |
|
714 | self.counter_imagwr = 0 | |
672 |
|
715 | |||
673 | self.PLOT_CODE = COH_CODE |
|
716 | self.PLOT_CODE = COH_CODE | |
674 |
|
717 | |||
675 | self.FTP_WEI = None |
|
718 | self.FTP_WEI = None | |
676 | self.EXP_CODE = None |
|
719 | self.EXP_CODE = None | |
677 | self.SUB_EXP_CODE = None |
|
720 | self.SUB_EXP_CODE = None | |
678 | self.PLOT_POS = None |
|
721 | self.PLOT_POS = None | |
679 | self.counter_imagwr = 0 |
|
722 | self.counter_imagwr = 0 | |
680 |
|
723 | |||
681 | self.xmin = None |
|
724 | self.xmin = None | |
682 | self.xmax = None |
|
725 | self.xmax = None | |
683 |
|
726 | |||
684 | def getSubplots(self): |
|
727 | def getSubplots(self): | |
685 | ncol = 1 |
|
728 | ncol = 1 | |
686 | nrow = self.nplots*2 |
|
729 | nrow = self.nplots*2 | |
687 |
|
730 | |||
688 | return nrow, ncol |
|
731 | return nrow, ncol | |
689 |
|
732 | |||
690 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
733 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
691 | self.__showprofile = showprofile |
|
734 | self.__showprofile = showprofile | |
692 | self.nplots = nplots |
|
735 | self.nplots = nplots | |
693 |
|
736 | |||
694 | ncolspan = 1 |
|
737 | ncolspan = 1 | |
695 | colspan = 1 |
|
738 | colspan = 1 | |
696 | if showprofile: |
|
739 | if showprofile: | |
697 | ncolspan = 7 |
|
740 | ncolspan = 7 | |
698 | colspan = 6 |
|
741 | colspan = 6 | |
699 | self.__nsubplots = 2 |
|
742 | self.__nsubplots = 2 | |
700 |
|
743 | |||
701 | self.createFigure(id = id, |
|
744 | self.createFigure(id = id, | |
702 | wintitle = wintitle, |
|
745 | wintitle = wintitle, | |
703 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
746 | widthplot = self.WIDTH + self.WIDTHPROF, | |
704 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
747 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
705 | show=True) |
|
748 | show=True) | |
706 |
|
749 | |||
707 | nrow, ncol = self.getSubplots() |
|
750 | nrow, ncol = self.getSubplots() | |
708 |
|
751 | |||
709 | for y in range(nrow): |
|
752 | for y in range(nrow): | |
710 | for x in range(ncol): |
|
753 | for x in range(ncol): | |
711 |
|
754 | |||
712 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
755 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
713 |
|
756 | |||
714 | if showprofile: |
|
757 | if showprofile: | |
715 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
758 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
716 |
|
759 | |||
717 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
760 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
718 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
761 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
719 | timerange=None, phase_min=None, phase_max=None, |
|
762 | timerange=None, phase_min=None, phase_max=None, | |
720 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
763 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, | |
721 | coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
764 | coherence_cmap='jet', phase_cmap='RdBu_r', show=True, | |
722 | server=None, folder=None, username=None, password=None, |
|
765 | server=None, folder=None, username=None, password=None, | |
723 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
766 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
724 |
|
767 | |||
725 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
768 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
726 | return |
|
769 | return | |
727 |
|
770 | |||
728 | if pairsList == None: |
|
771 | if pairsList == None: | |
729 | pairsIndexList = dataOut.pairsIndexList |
|
772 | pairsIndexList = dataOut.pairsIndexList | |
730 | else: |
|
773 | else: | |
731 | pairsIndexList = [] |
|
774 | pairsIndexList = [] | |
732 | for pair in pairsList: |
|
775 | for pair in pairsList: | |
733 | if pair not in dataOut.pairsList: |
|
776 | if pair not in dataOut.pairsList: | |
734 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
777 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) | |
735 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
778 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
736 |
|
779 | |||
737 | if pairsIndexList == []: |
|
780 | if pairsIndexList == []: | |
738 | return |
|
781 | return | |
739 |
|
782 | |||
740 | if len(pairsIndexList) > 4: |
|
783 | if len(pairsIndexList) > 4: | |
741 | pairsIndexList = pairsIndexList[0:4] |
|
784 | pairsIndexList = pairsIndexList[0:4] | |
742 |
|
785 | |||
743 | if phase_min == None: |
|
786 | if phase_min == None: | |
744 | phase_min = -180 |
|
787 | phase_min = -180 | |
745 | if phase_max == None: |
|
788 | if phase_max == None: | |
746 | phase_max = 180 |
|
789 | phase_max = 180 | |
747 |
|
790 | |||
748 | x = dataOut.getTimeRange() |
|
791 | x = dataOut.getTimeRange() | |
749 | y = dataOut.getHeiRange() |
|
792 | y = dataOut.getHeiRange() | |
750 |
|
793 | |||
751 | thisDatetime = dataOut.datatime |
|
794 | thisDatetime = dataOut.datatime | |
752 |
|
795 | |||
753 | title = wintitle + " CoherenceMap" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
796 | title = wintitle + " CoherenceMap" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
754 | xlabel = "" |
|
797 | xlabel = "" | |
755 | ylabel = "Range (Km)" |
|
798 | ylabel = "Range (Km)" | |
756 | update_figfile = False |
|
799 | update_figfile = False | |
757 |
|
800 | |||
758 | if not self.isConfig: |
|
801 | if not self.isConfig: | |
759 | nplots = len(pairsIndexList) |
|
802 | nplots = len(pairsIndexList) | |
760 | self.setup(id=id, |
|
803 | self.setup(id=id, | |
761 | nplots=nplots, |
|
804 | nplots=nplots, | |
762 | wintitle=wintitle, |
|
805 | wintitle=wintitle, | |
763 | showprofile=showprofile, |
|
806 | showprofile=showprofile, | |
764 | show=show) |
|
807 | show=show) | |
765 |
|
808 | |||
766 | if timerange != None: |
|
809 | if timerange != None: | |
767 | self.timerange = timerange |
|
810 | self.timerange = timerange | |
768 |
|
811 | |||
769 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
812 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
770 |
|
813 | |||
771 | if ymin == None: ymin = numpy.nanmin(y) |
|
814 | if ymin == None: ymin = numpy.nanmin(y) | |
772 | if ymax == None: ymax = numpy.nanmax(y) |
|
815 | if ymax == None: ymax = numpy.nanmax(y) | |
773 | if zmin == None: zmin = 0. |
|
816 | if zmin == None: zmin = 0. | |
774 | if zmax == None: zmax = 1. |
|
817 | if zmax == None: zmax = 1. | |
775 |
|
818 | |||
776 | self.FTP_WEI = ftp_wei |
|
819 | self.FTP_WEI = ftp_wei | |
777 | self.EXP_CODE = exp_code |
|
820 | self.EXP_CODE = exp_code | |
778 | self.SUB_EXP_CODE = sub_exp_code |
|
821 | self.SUB_EXP_CODE = sub_exp_code | |
779 | self.PLOT_POS = plot_pos |
|
822 | self.PLOT_POS = plot_pos | |
780 |
|
823 | |||
781 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
824 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
782 |
|
825 | |||
783 | self.isConfig = True |
|
826 | self.isConfig = True | |
784 | update_figfile = True |
|
827 | update_figfile = True | |
785 |
|
828 | |||
786 | self.setWinTitle(title) |
|
829 | self.setWinTitle(title) | |
787 |
|
830 | |||
788 | for i in range(self.nplots): |
|
831 | for i in range(self.nplots): | |
789 |
|
832 | |||
790 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
833 | pair = dataOut.pairsList[pairsIndexList[i]] | |
791 |
|
834 | |||
792 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i],:,:],axis=0) |
|
835 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i],:,:],axis=0) | |
793 | powa = numpy.average(dataOut.data_spc[pair[0],:,:],axis=0) |
|
836 | powa = numpy.average(dataOut.data_spc[pair[0],:,:],axis=0) | |
794 | powb = numpy.average(dataOut.data_spc[pair[1],:,:],axis=0) |
|
837 | powb = numpy.average(dataOut.data_spc[pair[1],:,:],axis=0) | |
795 |
|
838 | |||
796 |
|
839 | |||
797 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
840 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
798 | coherence = numpy.abs(avgcoherenceComplex) |
|
841 | coherence = numpy.abs(avgcoherenceComplex) | |
799 |
|
842 | |||
800 | z = coherence.reshape((1,-1)) |
|
843 | z = coherence.reshape((1,-1)) | |
801 |
|
844 | |||
802 | counter = 0 |
|
845 | counter = 0 | |
803 |
|
846 | |||
804 | title = "Coherence Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
847 | title = "Coherence Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
805 | axes = self.axesList[i*self.__nsubplots*2] |
|
848 | axes = self.axesList[i*self.__nsubplots*2] | |
806 | axes.pcolorbuffer(x, y, z, |
|
849 | axes.pcolorbuffer(x, y, z, | |
807 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
850 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
808 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
851 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
809 | ticksize=9, cblabel='', colormap=coherence_cmap, cbsize="1%") |
|
852 | ticksize=9, cblabel='', colormap=coherence_cmap, cbsize="1%") | |
810 |
|
853 | |||
811 | if self.__showprofile: |
|
854 | if self.__showprofile: | |
812 | counter += 1 |
|
855 | counter += 1 | |
813 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
856 | axes = self.axesList[i*self.__nsubplots*2 + counter] | |
814 | axes.pline(coherence, y, |
|
857 | axes.pline(coherence, y, | |
815 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
858 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, | |
816 | xlabel='', ylabel='', title='', ticksize=7, |
|
859 | xlabel='', ylabel='', title='', ticksize=7, | |
817 | ytick_visible=False, nxticks=5, |
|
860 | ytick_visible=False, nxticks=5, | |
818 | grid='x') |
|
861 | grid='x') | |
819 |
|
862 | |||
820 | counter += 1 |
|
863 | counter += 1 | |
821 |
|
864 | |||
822 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
865 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
823 |
|
866 | |||
824 | z = phase.reshape((1,-1)) |
|
867 | z = phase.reshape((1,-1)) | |
825 |
|
868 | |||
826 | title = "Phase Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
869 | title = "Phase Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
827 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
870 | axes = self.axesList[i*self.__nsubplots*2 + counter] | |
828 | axes.pcolorbuffer(x, y, z, |
|
871 | axes.pcolorbuffer(x, y, z, | |
829 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
872 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, | |
830 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
873 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
831 | ticksize=9, cblabel='', colormap=phase_cmap, cbsize="1%") |
|
874 | ticksize=9, cblabel='', colormap=phase_cmap, cbsize="1%") | |
832 |
|
875 | |||
833 | if self.__showprofile: |
|
876 | if self.__showprofile: | |
834 | counter += 1 |
|
877 | counter += 1 | |
835 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
878 | axes = self.axesList[i*self.__nsubplots*2 + counter] | |
836 | axes.pline(phase, y, |
|
879 | axes.pline(phase, y, | |
837 | xmin=phase_min, xmax=phase_max, ymin=ymin, ymax=ymax, |
|
880 | xmin=phase_min, xmax=phase_max, ymin=ymin, ymax=ymax, | |
838 | xlabel='', ylabel='', title='', ticksize=7, |
|
881 | xlabel='', ylabel='', title='', ticksize=7, | |
839 | ytick_visible=False, nxticks=4, |
|
882 | ytick_visible=False, nxticks=4, | |
840 | grid='x') |
|
883 | grid='x') | |
841 |
|
884 | |||
842 | self.draw() |
|
885 | self.draw() | |
843 |
|
886 | |||
844 | if dataOut.ltctime >= self.xmax: |
|
887 | if dataOut.ltctime >= self.xmax: | |
845 | self.counter_imagwr = wr_period |
|
888 | self.counter_imagwr = wr_period | |
846 | self.isConfig = False |
|
889 | self.isConfig = False | |
847 | update_figfile = True |
|
890 | update_figfile = True | |
848 |
|
891 | |||
849 | self.save(figpath=figpath, |
|
892 | self.save(figpath=figpath, | |
850 | figfile=figfile, |
|
893 | figfile=figfile, | |
851 | save=save, |
|
894 | save=save, | |
852 | ftp=ftp, |
|
895 | ftp=ftp, | |
853 | wr_period=wr_period, |
|
896 | wr_period=wr_period, | |
854 | thisDatetime=thisDatetime, |
|
897 | thisDatetime=thisDatetime, | |
855 | update_figfile=update_figfile) |
|
898 | update_figfile=update_figfile) | |
856 |
|
899 | |||
857 | class PowerProfilePlot(Figure): |
|
900 | class PowerProfilePlot(Figure): | |
858 |
|
901 | |||
859 | isConfig = None |
|
902 | isConfig = None | |
860 | __nsubplots = None |
|
903 | __nsubplots = None | |
861 |
|
904 | |||
862 | WIDTHPROF = None |
|
905 | WIDTHPROF = None | |
863 | HEIGHTPROF = None |
|
906 | HEIGHTPROF = None | |
864 | PREFIX = 'spcprofile' |
|
907 | PREFIX = 'spcprofile' | |
865 |
|
908 | |||
866 | def __init__(self, **kwargs): |
|
909 | def __init__(self, **kwargs): | |
867 | Figure.__init__(self, **kwargs) |
|
910 | Figure.__init__(self, **kwargs) | |
868 | self.isConfig = False |
|
911 | self.isConfig = False | |
869 | self.__nsubplots = 1 |
|
912 | self.__nsubplots = 1 | |
870 |
|
913 | |||
871 | self.PLOT_CODE = POWER_CODE |
|
914 | self.PLOT_CODE = POWER_CODE | |
872 |
|
915 | |||
873 | self.WIDTH = 300 |
|
916 | self.WIDTH = 300 | |
874 | self.HEIGHT = 500 |
|
917 | self.HEIGHT = 500 | |
875 | self.counter_imagwr = 0 |
|
918 | self.counter_imagwr = 0 | |
876 |
|
919 | |||
877 | def getSubplots(self): |
|
920 | def getSubplots(self): | |
878 | ncol = 1 |
|
921 | ncol = 1 | |
879 | nrow = 1 |
|
922 | nrow = 1 | |
880 |
|
923 | |||
881 | return nrow, ncol |
|
924 | return nrow, ncol | |
882 |
|
925 | |||
883 | def setup(self, id, nplots, wintitle, show): |
|
926 | def setup(self, id, nplots, wintitle, show): | |
884 |
|
927 | |||
885 | self.nplots = nplots |
|
928 | self.nplots = nplots | |
886 |
|
929 | |||
887 | ncolspan = 1 |
|
930 | ncolspan = 1 | |
888 | colspan = 1 |
|
931 | colspan = 1 | |
889 |
|
932 | |||
890 | self.createFigure(id = id, |
|
933 | self.createFigure(id = id, | |
891 | wintitle = wintitle, |
|
934 | wintitle = wintitle, | |
892 | widthplot = self.WIDTH, |
|
935 | widthplot = self.WIDTH, | |
893 | heightplot = self.HEIGHT, |
|
936 | heightplot = self.HEIGHT, | |
894 | show=show) |
|
937 | show=show) | |
895 |
|
938 | |||
896 | nrow, ncol = self.getSubplots() |
|
939 | nrow, ncol = self.getSubplots() | |
897 |
|
940 | |||
898 | counter = 0 |
|
941 | counter = 0 | |
899 | for y in range(nrow): |
|
942 | for y in range(nrow): | |
900 | for x in range(ncol): |
|
943 | for x in range(ncol): | |
901 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
944 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
902 |
|
945 | |||
903 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
946 | def run(self, dataOut, id, wintitle="", channelList=None, | |
904 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
947 | xmin=None, xmax=None, ymin=None, ymax=None, | |
905 | save=False, figpath='./', figfile=None, show=True, |
|
948 | save=False, figpath='./', figfile=None, show=True, | |
906 | ftp=False, wr_period=1, server=None, |
|
949 | ftp=False, wr_period=1, server=None, | |
907 | folder=None, username=None, password=None): |
|
950 | folder=None, username=None, password=None): | |
908 |
|
951 | |||
909 |
|
952 | |||
910 | if channelList == None: |
|
953 | if channelList == None: | |
911 | channelIndexList = dataOut.channelIndexList |
|
954 | channelIndexList = dataOut.channelIndexList | |
912 | channelList = dataOut.channelList |
|
955 | channelList = dataOut.channelList | |
913 | else: |
|
956 | else: | |
914 | channelIndexList = [] |
|
957 | channelIndexList = [] | |
915 | for channel in channelList: |
|
958 | for channel in channelList: | |
916 | if channel not in dataOut.channelList: |
|
959 | if channel not in dataOut.channelList: | |
917 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
960 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
918 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
961 | channelIndexList.append(dataOut.channelList.index(channel)) | |
919 |
|
962 | |||
920 | factor = dataOut.normFactor |
|
963 | factor = dataOut.normFactor | |
921 |
|
964 | |||
922 | y = dataOut.getHeiRange() |
|
965 | y = dataOut.getHeiRange() | |
923 |
|
966 | |||
924 | #for voltage |
|
967 | #for voltage | |
925 | if dataOut.type == 'Voltage': |
|
968 | if dataOut.type == 'Voltage': | |
926 | x = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:]) |
|
969 | x = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:]) | |
927 | x = x.real |
|
970 | x = x.real | |
928 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
971 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) | |
929 |
|
972 | |||
930 | #for spectra |
|
973 | #for spectra | |
931 | if dataOut.type == 'Spectra': |
|
974 | if dataOut.type == 'Spectra': | |
932 | x = dataOut.data_spc[channelIndexList,:,:]/factor |
|
975 | x = dataOut.data_spc[channelIndexList,:,:]/factor | |
933 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
976 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) | |
934 | x = numpy.average(x, axis=1) |
|
977 | x = numpy.average(x, axis=1) | |
935 |
|
978 | |||
936 |
|
979 | |||
937 | xdB = 10*numpy.log10(x) |
|
980 | xdB = 10*numpy.log10(x) | |
938 |
|
981 | |||
939 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
982 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
940 | title = wintitle + " Power Profile %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
983 | title = wintitle + " Power Profile %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
941 | xlabel = "dB" |
|
984 | xlabel = "dB" | |
942 | ylabel = "Range (Km)" |
|
985 | ylabel = "Range (Km)" | |
943 |
|
986 | |||
944 | if not self.isConfig: |
|
987 | if not self.isConfig: | |
945 |
|
988 | |||
946 | nplots = 1 |
|
989 | nplots = 1 | |
947 |
|
990 | |||
948 | self.setup(id=id, |
|
991 | self.setup(id=id, | |
949 | nplots=nplots, |
|
992 | nplots=nplots, | |
950 | wintitle=wintitle, |
|
993 | wintitle=wintitle, | |
951 | show=show) |
|
994 | show=show) | |
952 |
|
995 | |||
953 | if ymin == None: ymin = numpy.nanmin(y) |
|
996 | if ymin == None: ymin = numpy.nanmin(y) | |
954 | if ymax == None: ymax = numpy.nanmax(y) |
|
997 | if ymax == None: ymax = numpy.nanmax(y) | |
955 | if xmin == None: xmin = numpy.nanmin(xdB)*0.9 |
|
998 | if xmin == None: xmin = numpy.nanmin(xdB)*0.9 | |
956 | if xmax == None: xmax = numpy.nanmax(xdB)*1.1 |
|
999 | if xmax == None: xmax = numpy.nanmax(xdB)*1.1 | |
957 |
|
1000 | |||
958 | self.isConfig = True |
|
1001 | self.isConfig = True | |
959 |
|
1002 | |||
960 | self.setWinTitle(title) |
|
1003 | self.setWinTitle(title) | |
961 |
|
1004 | |||
962 | title = "Power Profile: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1005 | title = "Power Profile: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
963 | axes = self.axesList[0] |
|
1006 | axes = self.axesList[0] | |
964 |
|
1007 | |||
965 | legendlabels = ["channel %d"%x for x in channelList] |
|
1008 | legendlabels = ["channel %d"%x for x in channelList] | |
966 | axes.pmultiline(xdB, y, |
|
1009 | axes.pmultiline(xdB, y, | |
967 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1010 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |
968 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
1011 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, | |
969 | ytick_visible=True, nxticks=5, |
|
1012 | ytick_visible=True, nxticks=5, | |
970 | grid='x') |
|
1013 | grid='x') | |
971 |
|
1014 | |||
972 | self.draw() |
|
1015 | self.draw() | |
973 |
|
1016 | |||
974 | self.save(figpath=figpath, |
|
1017 | self.save(figpath=figpath, | |
975 | figfile=figfile, |
|
1018 | figfile=figfile, | |
976 | save=save, |
|
1019 | save=save, | |
977 | ftp=ftp, |
|
1020 | ftp=ftp, | |
978 | wr_period=wr_period, |
|
1021 | wr_period=wr_period, | |
979 | thisDatetime=thisDatetime) |
|
1022 | thisDatetime=thisDatetime) | |
980 |
|
1023 | |||
981 | class SpectraCutPlot(Figure): |
|
1024 | class SpectraCutPlot(Figure): | |
982 |
|
1025 | |||
983 | isConfig = None |
|
1026 | isConfig = None | |
984 | __nsubplots = None |
|
1027 | __nsubplots = None | |
985 |
|
1028 | |||
986 | WIDTHPROF = None |
|
1029 | WIDTHPROF = None | |
987 | HEIGHTPROF = None |
|
1030 | HEIGHTPROF = None | |
988 | PREFIX = 'spc_cut' |
|
1031 | PREFIX = 'spc_cut' | |
989 |
|
1032 | |||
990 | def __init__(self, **kwargs): |
|
1033 | def __init__(self, **kwargs): | |
991 | Figure.__init__(self, **kwargs) |
|
1034 | Figure.__init__(self, **kwargs) | |
992 | self.isConfig = False |
|
1035 | self.isConfig = False | |
993 | self.__nsubplots = 1 |
|
1036 | self.__nsubplots = 1 | |
994 |
|
1037 | |||
995 | self.PLOT_CODE = POWER_CODE |
|
1038 | self.PLOT_CODE = POWER_CODE | |
996 |
|
1039 | |||
997 | self.WIDTH = 700 |
|
1040 | self.WIDTH = 700 | |
998 | self.HEIGHT = 500 |
|
1041 | self.HEIGHT = 500 | |
999 | self.counter_imagwr = 0 |
|
1042 | self.counter_imagwr = 0 | |
1000 |
|
1043 | |||
1001 | def getSubplots(self): |
|
1044 | def getSubplots(self): | |
1002 | ncol = 1 |
|
1045 | ncol = 1 | |
1003 | nrow = 1 |
|
1046 | nrow = 1 | |
1004 |
|
1047 | |||
1005 | return nrow, ncol |
|
1048 | return nrow, ncol | |
1006 |
|
1049 | |||
1007 | def setup(self, id, nplots, wintitle, show): |
|
1050 | def setup(self, id, nplots, wintitle, show): | |
1008 |
|
1051 | |||
1009 | self.nplots = nplots |
|
1052 | self.nplots = nplots | |
1010 |
|
1053 | |||
1011 | ncolspan = 1 |
|
1054 | ncolspan = 1 | |
1012 | colspan = 1 |
|
1055 | colspan = 1 | |
1013 |
|
1056 | |||
1014 | self.createFigure(id = id, |
|
1057 | self.createFigure(id = id, | |
1015 | wintitle = wintitle, |
|
1058 | wintitle = wintitle, | |
1016 | widthplot = self.WIDTH, |
|
1059 | widthplot = self.WIDTH, | |
1017 | heightplot = self.HEIGHT, |
|
1060 | heightplot = self.HEIGHT, | |
1018 | show=show) |
|
1061 | show=show) | |
1019 |
|
1062 | |||
1020 | nrow, ncol = self.getSubplots() |
|
1063 | nrow, ncol = self.getSubplots() | |
1021 |
|
1064 | |||
1022 | counter = 0 |
|
1065 | counter = 0 | |
1023 | for y in range(nrow): |
|
1066 | for y in range(nrow): | |
1024 | for x in range(ncol): |
|
1067 | for x in range(ncol): | |
1025 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1068 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
1026 |
|
1069 | |||
1027 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
1070 | def run(self, dataOut, id, wintitle="", channelList=None, | |
1028 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1071 | xmin=None, xmax=None, ymin=None, ymax=None, | |
1029 | save=False, figpath='./', figfile=None, show=True, |
|
1072 | save=False, figpath='./', figfile=None, show=True, | |
1030 | ftp=False, wr_period=1, server=None, |
|
1073 | ftp=False, wr_period=1, server=None, | |
1031 | folder=None, username=None, password=None, |
|
1074 | folder=None, username=None, password=None, | |
1032 | xaxis="frequency"): |
|
1075 | xaxis="frequency"): | |
1033 |
|
1076 | |||
1034 |
|
1077 | |||
1035 | if channelList == None: |
|
1078 | if channelList == None: | |
1036 | channelIndexList = dataOut.channelIndexList |
|
1079 | channelIndexList = dataOut.channelIndexList | |
1037 | channelList = dataOut.channelList |
|
1080 | channelList = dataOut.channelList | |
1038 | else: |
|
1081 | else: | |
1039 | channelIndexList = [] |
|
1082 | channelIndexList = [] | |
1040 | for channel in channelList: |
|
1083 | for channel in channelList: | |
1041 | if channel not in dataOut.channelList: |
|
1084 | if channel not in dataOut.channelList: | |
1042 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
1085 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
1043 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1086 | channelIndexList.append(dataOut.channelList.index(channel)) | |
1044 |
|
1087 | |||
1045 | factor = dataOut.normFactor |
|
1088 | factor = dataOut.normFactor | |
1046 |
|
1089 | |||
1047 | y = dataOut.getHeiRange() |
|
1090 | y = dataOut.getHeiRange() | |
1048 |
|
1091 | |||
1049 | z = dataOut.data_spc/factor |
|
1092 | z = dataOut.data_spc/factor | |
1050 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1093 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
1051 |
|
1094 | |||
1052 | hei_index = numpy.arange(25)*3 + 20 |
|
1095 | hei_index = numpy.arange(25)*3 + 20 | |
1053 |
|
1096 | |||
1054 | if xaxis == "frequency": |
|
1097 | if xaxis == "frequency": | |
1055 | x = dataOut.getFreqRange()/1000. |
|
1098 | x = dataOut.getFreqRange()/1000. | |
1056 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1099 | zdB = 10*numpy.log10(z[0,:,hei_index]) | |
1057 | xlabel = "Frequency (kHz)" |
|
1100 | xlabel = "Frequency (kHz)" | |
1058 | ylabel = "Power (dB)" |
|
1101 | ylabel = "Power (dB)" | |
1059 |
|
1102 | |||
1060 | elif xaxis == "time": |
|
1103 | elif xaxis == "time": | |
1061 | x = dataOut.getAcfRange() |
|
1104 | x = dataOut.getAcfRange() | |
1062 | zdB = z[0,:,hei_index] |
|
1105 | zdB = z[0,:,hei_index] | |
1063 | xlabel = "Time (ms)" |
|
1106 | xlabel = "Time (ms)" | |
1064 | ylabel = "ACF" |
|
1107 | ylabel = "ACF" | |
1065 |
|
1108 | |||
1066 | else: |
|
1109 | else: | |
1067 | x = dataOut.getVelRange() |
|
1110 | x = dataOut.getVelRange() | |
1068 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1111 | zdB = 10*numpy.log10(z[0,:,hei_index]) | |
1069 | xlabel = "Velocity (m/s)" |
|
1112 | xlabel = "Velocity (m/s)" | |
1070 | ylabel = "Power (dB)" |
|
1113 | ylabel = "Power (dB)" | |
1071 |
|
1114 | |||
1072 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1115 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
1073 | title = wintitle + " Range Cuts %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1116 | title = wintitle + " Range Cuts %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
1074 |
|
1117 | |||
1075 | if not self.isConfig: |
|
1118 | if not self.isConfig: | |
1076 |
|
1119 | |||
1077 | nplots = 1 |
|
1120 | nplots = 1 | |
1078 |
|
1121 | |||
1079 | self.setup(id=id, |
|
1122 | self.setup(id=id, | |
1080 | nplots=nplots, |
|
1123 | nplots=nplots, | |
1081 | wintitle=wintitle, |
|
1124 | wintitle=wintitle, | |
1082 | show=show) |
|
1125 | show=show) | |
1083 |
|
1126 | |||
1084 | if xmin == None: xmin = numpy.nanmin(x)*0.9 |
|
1127 | if xmin == None: xmin = numpy.nanmin(x)*0.9 | |
1085 | if xmax == None: xmax = numpy.nanmax(x)*1.1 |
|
1128 | if xmax == None: xmax = numpy.nanmax(x)*1.1 | |
1086 | if ymin == None: ymin = numpy.nanmin(zdB) |
|
1129 | if ymin == None: ymin = numpy.nanmin(zdB) | |
1087 | if ymax == None: ymax = numpy.nanmax(zdB) |
|
1130 | if ymax == None: ymax = numpy.nanmax(zdB) | |
1088 |
|
1131 | |||
1089 | self.isConfig = True |
|
1132 | self.isConfig = True | |
1090 |
|
1133 | |||
1091 | self.setWinTitle(title) |
|
1134 | self.setWinTitle(title) | |
1092 |
|
1135 | |||
1093 | title = "Spectra Cuts: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1136 | title = "Spectra Cuts: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
1094 | axes = self.axesList[0] |
|
1137 | axes = self.axesList[0] | |
1095 |
|
1138 | |||
1096 | legendlabels = ["Range = %dKm" %y[i] for i in hei_index] |
|
1139 | legendlabels = ["Range = %dKm" %y[i] for i in hei_index] | |
1097 |
|
1140 | |||
1098 | axes.pmultilineyaxis( x, zdB, |
|
1141 | axes.pmultilineyaxis( x, zdB, | |
1099 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1142 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |
1100 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
1143 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, | |
1101 | ytick_visible=True, nxticks=5, |
|
1144 | ytick_visible=True, nxticks=5, | |
1102 | grid='x') |
|
1145 | grid='x') | |
1103 |
|
1146 | |||
1104 | self.draw() |
|
1147 | self.draw() | |
1105 |
|
1148 | |||
1106 | self.save(figpath=figpath, |
|
1149 | self.save(figpath=figpath, | |
1107 | figfile=figfile, |
|
1150 | figfile=figfile, | |
1108 | save=save, |
|
1151 | save=save, | |
1109 | ftp=ftp, |
|
1152 | ftp=ftp, | |
1110 | wr_period=wr_period, |
|
1153 | wr_period=wr_period, | |
1111 | thisDatetime=thisDatetime) |
|
1154 | thisDatetime=thisDatetime) | |
1112 |
|
1155 | |||
1113 | class Noise(Figure): |
|
1156 | class Noise(Figure): | |
1114 |
|
1157 | |||
1115 | isConfig = None |
|
1158 | isConfig = None | |
1116 | __nsubplots = None |
|
1159 | __nsubplots = None | |
1117 |
|
1160 | |||
1118 | PREFIX = 'noise' |
|
1161 | PREFIX = 'noise' | |
1119 |
|
1162 | |||
1120 |
|
1163 | |||
1121 | def __init__(self, **kwargs): |
|
1164 | def __init__(self, **kwargs): | |
1122 | Figure.__init__(self, **kwargs) |
|
1165 | Figure.__init__(self, **kwargs) | |
1123 | self.timerange = 24*60*60 |
|
1166 | self.timerange = 24*60*60 | |
1124 | self.isConfig = False |
|
1167 | self.isConfig = False | |
1125 | self.__nsubplots = 1 |
|
1168 | self.__nsubplots = 1 | |
1126 | self.counter_imagwr = 0 |
|
1169 | self.counter_imagwr = 0 | |
1127 | self.WIDTH = 800 |
|
1170 | self.WIDTH = 800 | |
1128 | self.HEIGHT = 400 |
|
1171 | self.HEIGHT = 400 | |
1129 | self.WIDTHPROF = 120 |
|
1172 | self.WIDTHPROF = 120 | |
1130 | self.HEIGHTPROF = 0 |
|
1173 | self.HEIGHTPROF = 0 | |
1131 | self.xdata = None |
|
1174 | self.xdata = None | |
1132 | self.ydata = None |
|
1175 | self.ydata = None | |
1133 |
|
1176 | |||
1134 | self.PLOT_CODE = NOISE_CODE |
|
1177 | self.PLOT_CODE = NOISE_CODE | |
1135 |
|
1178 | |||
1136 | self.FTP_WEI = None |
|
1179 | self.FTP_WEI = None | |
1137 | self.EXP_CODE = None |
|
1180 | self.EXP_CODE = None | |
1138 | self.SUB_EXP_CODE = None |
|
1181 | self.SUB_EXP_CODE = None | |
1139 | self.PLOT_POS = None |
|
1182 | self.PLOT_POS = None | |
1140 | self.figfile = None |
|
1183 | self.figfile = None | |
1141 |
|
1184 | |||
1142 | self.xmin = None |
|
1185 | self.xmin = None | |
1143 | self.xmax = None |
|
1186 | self.xmax = None | |
1144 |
|
1187 | |||
1145 | def getSubplots(self): |
|
1188 | def getSubplots(self): | |
1146 |
|
1189 | |||
1147 | ncol = 1 |
|
1190 | ncol = 1 | |
1148 | nrow = 1 |
|
1191 | nrow = 1 | |
1149 |
|
1192 | |||
1150 | return nrow, ncol |
|
1193 | return nrow, ncol | |
1151 |
|
1194 | |||
1152 | def openfile(self, filename): |
|
1195 | def openfile(self, filename): | |
1153 | dirname = os.path.dirname(filename) |
|
1196 | dirname = os.path.dirname(filename) | |
1154 |
|
1197 | |||
1155 | if not os.path.exists(dirname): |
|
1198 | if not os.path.exists(dirname): | |
1156 | os.mkdir(dirname) |
|
1199 | os.mkdir(dirname) | |
1157 |
|
1200 | |||
1158 | f = open(filename,'w+') |
|
1201 | f = open(filename,'w+') | |
1159 | f.write('\n\n') |
|
1202 | f.write('\n\n') | |
1160 | f.write('JICAMARCA RADIO OBSERVATORY - Noise \n') |
|
1203 | f.write('JICAMARCA RADIO OBSERVATORY - Noise \n') | |
1161 | f.write('DD MM YYYY HH MM SS Channel0 Channel1 Channel2 Channel3\n\n' ) |
|
1204 | f.write('DD MM YYYY HH MM SS Channel0 Channel1 Channel2 Channel3\n\n' ) | |
1162 | f.close() |
|
1205 | f.close() | |
1163 |
|
1206 | |||
1164 | def save_data(self, filename_phase, data, data_datetime): |
|
1207 | def save_data(self, filename_phase, data, data_datetime): | |
1165 |
|
1208 | |||
1166 | f=open(filename_phase,'a') |
|
1209 | f=open(filename_phase,'a') | |
1167 |
|
1210 | |||
1168 | timetuple_data = data_datetime.timetuple() |
|
1211 | timetuple_data = data_datetime.timetuple() | |
1169 | day = str(timetuple_data.tm_mday) |
|
1212 | day = str(timetuple_data.tm_mday) | |
1170 | month = str(timetuple_data.tm_mon) |
|
1213 | month = str(timetuple_data.tm_mon) | |
1171 | year = str(timetuple_data.tm_year) |
|
1214 | year = str(timetuple_data.tm_year) | |
1172 | hour = str(timetuple_data.tm_hour) |
|
1215 | hour = str(timetuple_data.tm_hour) | |
1173 | minute = str(timetuple_data.tm_min) |
|
1216 | minute = str(timetuple_data.tm_min) | |
1174 | second = str(timetuple_data.tm_sec) |
|
1217 | second = str(timetuple_data.tm_sec) | |
1175 |
|
1218 | |||
1176 | data_msg = '' |
|
1219 | data_msg = '' | |
1177 | for i in range(len(data)): |
|
1220 | for i in range(len(data)): | |
1178 | data_msg += str(data[i]) + ' ' |
|
1221 | data_msg += str(data[i]) + ' ' | |
1179 |
|
1222 | |||
1180 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' ' + data_msg + '\n') |
|
1223 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' ' + data_msg + '\n') | |
1181 | f.close() |
|
1224 | f.close() | |
1182 |
|
1225 | |||
1183 |
|
1226 | |||
1184 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1227 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
1185 |
|
1228 | |||
1186 | self.__showprofile = showprofile |
|
1229 | self.__showprofile = showprofile | |
1187 | self.nplots = nplots |
|
1230 | self.nplots = nplots | |
1188 |
|
1231 | |||
1189 | ncolspan = 7 |
|
1232 | ncolspan = 7 | |
1190 | colspan = 6 |
|
1233 | colspan = 6 | |
1191 | self.__nsubplots = 2 |
|
1234 | self.__nsubplots = 2 | |
1192 |
|
1235 | |||
1193 | self.createFigure(id = id, |
|
1236 | self.createFigure(id = id, | |
1194 | wintitle = wintitle, |
|
1237 | wintitle = wintitle, | |
1195 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1238 | widthplot = self.WIDTH+self.WIDTHPROF, | |
1196 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1239 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
1197 | show=show) |
|
1240 | show=show) | |
1198 |
|
1241 | |||
1199 | nrow, ncol = self.getSubplots() |
|
1242 | nrow, ncol = self.getSubplots() | |
1200 |
|
1243 | |||
1201 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1244 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
1202 |
|
1245 | |||
1203 |
|
1246 | |||
1204 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
1247 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', | |
1205 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1248 | xmin=None, xmax=None, ymin=None, ymax=None, | |
1206 | timerange=None, |
|
1249 | timerange=None, | |
1207 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1250 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
1208 | server=None, folder=None, username=None, password=None, |
|
1251 | server=None, folder=None, username=None, password=None, | |
1209 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1252 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
1210 |
|
1253 | |||
1211 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1254 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
1212 | return |
|
1255 | return | |
1213 |
|
1256 | |||
1214 | if channelList == None: |
|
1257 | if channelList == None: | |
1215 | channelIndexList = dataOut.channelIndexList |
|
1258 | channelIndexList = dataOut.channelIndexList | |
1216 | channelList = dataOut.channelList |
|
1259 | channelList = dataOut.channelList | |
1217 | else: |
|
1260 | else: | |
1218 | channelIndexList = [] |
|
1261 | channelIndexList = [] | |
1219 | for channel in channelList: |
|
1262 | for channel in channelList: | |
1220 | if channel not in dataOut.channelList: |
|
1263 | if channel not in dataOut.channelList: | |
1221 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
1264 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
1222 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1265 | channelIndexList.append(dataOut.channelList.index(channel)) | |
1223 |
|
1266 | |||
1224 | x = dataOut.getTimeRange() |
|
1267 | x = dataOut.getTimeRange() | |
1225 | #y = dataOut.getHeiRange() |
|
1268 | #y = dataOut.getHeiRange() | |
1226 | factor = dataOut.normFactor |
|
1269 | factor = dataOut.normFactor | |
1227 | noise = dataOut.noise[channelIndexList]/factor |
|
1270 | noise = dataOut.noise[channelIndexList]/factor | |
1228 | noisedB = 10*numpy.log10(noise) |
|
1271 | noisedB = 10*numpy.log10(noise) | |
1229 |
|
1272 | |||
1230 | thisDatetime = dataOut.datatime |
|
1273 | thisDatetime = dataOut.datatime | |
1231 |
|
1274 | |||
1232 | title = wintitle + " Noise" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1275 | title = wintitle + " Noise" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
1233 | xlabel = "" |
|
1276 | xlabel = "" | |
1234 | ylabel = "Intensity (dB)" |
|
1277 | ylabel = "Intensity (dB)" | |
1235 | update_figfile = False |
|
1278 | update_figfile = False | |
1236 |
|
1279 | |||
1237 | if not self.isConfig: |
|
1280 | if not self.isConfig: | |
1238 |
|
1281 | |||
1239 | nplots = 1 |
|
1282 | nplots = 1 | |
1240 |
|
1283 | |||
1241 | self.setup(id=id, |
|
1284 | self.setup(id=id, | |
1242 | nplots=nplots, |
|
1285 | nplots=nplots, | |
1243 | wintitle=wintitle, |
|
1286 | wintitle=wintitle, | |
1244 | showprofile=showprofile, |
|
1287 | showprofile=showprofile, | |
1245 | show=show) |
|
1288 | show=show) | |
1246 |
|
1289 | |||
1247 | if timerange != None: |
|
1290 | if timerange != None: | |
1248 | self.timerange = timerange |
|
1291 | self.timerange = timerange | |
1249 |
|
1292 | |||
1250 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1293 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
1251 |
|
1294 | |||
1252 | if ymin == None: ymin = numpy.floor(numpy.nanmin(noisedB)) - 10.0 |
|
1295 | if ymin == None: ymin = numpy.floor(numpy.nanmin(noisedB)) - 10.0 | |
1253 | if ymax == None: ymax = numpy.nanmax(noisedB) + 10.0 |
|
1296 | if ymax == None: ymax = numpy.nanmax(noisedB) + 10.0 | |
1254 |
|
1297 | |||
1255 | self.FTP_WEI = ftp_wei |
|
1298 | self.FTP_WEI = ftp_wei | |
1256 | self.EXP_CODE = exp_code |
|
1299 | self.EXP_CODE = exp_code | |
1257 | self.SUB_EXP_CODE = sub_exp_code |
|
1300 | self.SUB_EXP_CODE = sub_exp_code | |
1258 | self.PLOT_POS = plot_pos |
|
1301 | self.PLOT_POS = plot_pos | |
1259 |
|
1302 | |||
1260 |
|
1303 | |||
1261 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1304 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
1262 | self.isConfig = True |
|
1305 | self.isConfig = True | |
1263 | self.figfile = figfile |
|
1306 | self.figfile = figfile | |
1264 | self.xdata = numpy.array([]) |
|
1307 | self.xdata = numpy.array([]) | |
1265 | self.ydata = numpy.array([]) |
|
1308 | self.ydata = numpy.array([]) | |
1266 |
|
1309 | |||
1267 | update_figfile = True |
|
1310 | update_figfile = True | |
1268 |
|
1311 | |||
1269 | #open file beacon phase |
|
1312 | #open file beacon phase | |
1270 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1313 | path = '%s%03d' %(self.PREFIX, self.id) | |
1271 | noise_file = os.path.join(path,'%s.txt'%self.name) |
|
1314 | noise_file = os.path.join(path,'%s.txt'%self.name) | |
1272 | self.filename_noise = os.path.join(figpath,noise_file) |
|
1315 | self.filename_noise = os.path.join(figpath,noise_file) | |
1273 |
|
1316 | |||
1274 | self.setWinTitle(title) |
|
1317 | self.setWinTitle(title) | |
1275 |
|
1318 | |||
1276 | title = "Noise %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1319 | title = "Noise %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1277 |
|
1320 | |||
1278 | legendlabels = ["channel %d"%(idchannel) for idchannel in channelList] |
|
1321 | legendlabels = ["channel %d"%(idchannel) for idchannel in channelList] | |
1279 | axes = self.axesList[0] |
|
1322 | axes = self.axesList[0] | |
1280 |
|
1323 | |||
1281 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1324 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
1282 |
|
1325 | |||
1283 | if len(self.ydata)==0: |
|
1326 | if len(self.ydata)==0: | |
1284 | self.ydata = noisedB.reshape(-1,1) |
|
1327 | self.ydata = noisedB.reshape(-1,1) | |
1285 | else: |
|
1328 | else: | |
1286 | self.ydata = numpy.hstack((self.ydata, noisedB.reshape(-1,1))) |
|
1329 | self.ydata = numpy.hstack((self.ydata, noisedB.reshape(-1,1))) | |
1287 |
|
1330 | |||
1288 |
|
1331 | |||
1289 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1332 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
1290 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1333 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
1291 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1334 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
1292 | XAxisAsTime=True, grid='both' |
|
1335 | XAxisAsTime=True, grid='both' | |
1293 | ) |
|
1336 | ) | |
1294 |
|
1337 | |||
1295 | self.draw() |
|
1338 | self.draw() | |
1296 |
|
1339 | |||
1297 | if dataOut.ltctime >= self.xmax: |
|
1340 | if dataOut.ltctime >= self.xmax: | |
1298 | self.counter_imagwr = wr_period |
|
1341 | self.counter_imagwr = wr_period | |
1299 | self.isConfig = False |
|
1342 | self.isConfig = False | |
1300 | update_figfile = True |
|
1343 | update_figfile = True | |
1301 |
|
1344 | |||
1302 | self.save(figpath=figpath, |
|
1345 | self.save(figpath=figpath, | |
1303 | figfile=figfile, |
|
1346 | figfile=figfile, | |
1304 | save=save, |
|
1347 | save=save, | |
1305 | ftp=ftp, |
|
1348 | ftp=ftp, | |
1306 | wr_period=wr_period, |
|
1349 | wr_period=wr_period, | |
1307 | thisDatetime=thisDatetime, |
|
1350 | thisDatetime=thisDatetime, | |
1308 | update_figfile=update_figfile) |
|
1351 | update_figfile=update_figfile) | |
1309 |
|
1352 | |||
1310 | #store data beacon phase |
|
1353 | #store data beacon phase | |
1311 | if save: |
|
1354 | if save: | |
1312 | self.save_data(self.filename_noise, noisedB, thisDatetime) |
|
1355 | self.save_data(self.filename_noise, noisedB, thisDatetime) | |
1313 |
|
1356 | |||
1314 | class BeaconPhase(Figure): |
|
1357 | class BeaconPhase(Figure): | |
1315 |
|
1358 | |||
1316 | __isConfig = None |
|
1359 | __isConfig = None | |
1317 | __nsubplots = None |
|
1360 | __nsubplots = None | |
1318 |
|
1361 | |||
1319 | PREFIX = 'beacon_phase' |
|
1362 | PREFIX = 'beacon_phase' | |
1320 |
|
1363 | |||
1321 | def __init__(self, **kwargs): |
|
1364 | def __init__(self, **kwargs): | |
1322 | Figure.__init__(self, **kwargs) |
|
1365 | Figure.__init__(self, **kwargs) | |
1323 | self.timerange = 24*60*60 |
|
1366 | self.timerange = 24*60*60 | |
1324 | self.isConfig = False |
|
1367 | self.isConfig = False | |
1325 | self.__nsubplots = 1 |
|
1368 | self.__nsubplots = 1 | |
1326 | self.counter_imagwr = 0 |
|
1369 | self.counter_imagwr = 0 | |
1327 | self.WIDTH = 800 |
|
1370 | self.WIDTH = 800 | |
1328 | self.HEIGHT = 400 |
|
1371 | self.HEIGHT = 400 | |
1329 | self.WIDTHPROF = 120 |
|
1372 | self.WIDTHPROF = 120 | |
1330 | self.HEIGHTPROF = 0 |
|
1373 | self.HEIGHTPROF = 0 | |
1331 | self.xdata = None |
|
1374 | self.xdata = None | |
1332 | self.ydata = None |
|
1375 | self.ydata = None | |
1333 |
|
1376 | |||
1334 | self.PLOT_CODE = BEACON_CODE |
|
1377 | self.PLOT_CODE = BEACON_CODE | |
1335 |
|
1378 | |||
1336 | self.FTP_WEI = None |
|
1379 | self.FTP_WEI = None | |
1337 | self.EXP_CODE = None |
|
1380 | self.EXP_CODE = None | |
1338 | self.SUB_EXP_CODE = None |
|
1381 | self.SUB_EXP_CODE = None | |
1339 | self.PLOT_POS = None |
|
1382 | self.PLOT_POS = None | |
1340 |
|
1383 | |||
1341 | self.filename_phase = None |
|
1384 | self.filename_phase = None | |
1342 |
|
1385 | |||
1343 | self.figfile = None |
|
1386 | self.figfile = None | |
1344 |
|
1387 | |||
1345 | self.xmin = None |
|
1388 | self.xmin = None | |
1346 | self.xmax = None |
|
1389 | self.xmax = None | |
1347 |
|
1390 | |||
1348 | def getSubplots(self): |
|
1391 | def getSubplots(self): | |
1349 |
|
1392 | |||
1350 | ncol = 1 |
|
1393 | ncol = 1 | |
1351 | nrow = 1 |
|
1394 | nrow = 1 | |
1352 |
|
1395 | |||
1353 | return nrow, ncol |
|
1396 | return nrow, ncol | |
1354 |
|
1397 | |||
1355 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1398 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
1356 |
|
1399 | |||
1357 | self.__showprofile = showprofile |
|
1400 | self.__showprofile = showprofile | |
1358 | self.nplots = nplots |
|
1401 | self.nplots = nplots | |
1359 |
|
1402 | |||
1360 | ncolspan = 7 |
|
1403 | ncolspan = 7 | |
1361 | colspan = 6 |
|
1404 | colspan = 6 | |
1362 | self.__nsubplots = 2 |
|
1405 | self.__nsubplots = 2 | |
1363 |
|
1406 | |||
1364 | self.createFigure(id = id, |
|
1407 | self.createFigure(id = id, | |
1365 | wintitle = wintitle, |
|
1408 | wintitle = wintitle, | |
1366 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1409 | widthplot = self.WIDTH+self.WIDTHPROF, | |
1367 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1410 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
1368 | show=show) |
|
1411 | show=show) | |
1369 |
|
1412 | |||
1370 | nrow, ncol = self.getSubplots() |
|
1413 | nrow, ncol = self.getSubplots() | |
1371 |
|
1414 | |||
1372 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1415 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
1373 |
|
1416 | |||
1374 | def save_phase(self, filename_phase): |
|
1417 | def save_phase(self, filename_phase): | |
1375 | f = open(filename_phase,'w+') |
|
1418 | f = open(filename_phase,'w+') | |
1376 | f.write('\n\n') |
|
1419 | f.write('\n\n') | |
1377 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1420 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') | |
1378 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1421 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) | |
1379 | f.close() |
|
1422 | f.close() | |
1380 |
|
1423 | |||
1381 | def save_data(self, filename_phase, data, data_datetime): |
|
1424 | def save_data(self, filename_phase, data, data_datetime): | |
1382 | f=open(filename_phase,'a') |
|
1425 | f=open(filename_phase,'a') | |
1383 | timetuple_data = data_datetime.timetuple() |
|
1426 | timetuple_data = data_datetime.timetuple() | |
1384 | day = str(timetuple_data.tm_mday) |
|
1427 | day = str(timetuple_data.tm_mday) | |
1385 | month = str(timetuple_data.tm_mon) |
|
1428 | month = str(timetuple_data.tm_mon) | |
1386 | year = str(timetuple_data.tm_year) |
|
1429 | year = str(timetuple_data.tm_year) | |
1387 | hour = str(timetuple_data.tm_hour) |
|
1430 | hour = str(timetuple_data.tm_hour) | |
1388 | minute = str(timetuple_data.tm_min) |
|
1431 | minute = str(timetuple_data.tm_min) | |
1389 | second = str(timetuple_data.tm_sec) |
|
1432 | second = str(timetuple_data.tm_sec) | |
1390 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1433 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') | |
1391 | f.close() |
|
1434 | f.close() | |
1392 |
|
1435 | |||
1393 |
|
1436 | |||
1394 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1437 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
1395 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1438 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, | |
1396 | timerange=None, |
|
1439 | timerange=None, | |
1397 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1440 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
1398 | server=None, folder=None, username=None, password=None, |
|
1441 | server=None, folder=None, username=None, password=None, | |
1399 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1442 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
1400 |
|
1443 | |||
1401 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1444 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
1402 | return |
|
1445 | return | |
1403 |
|
1446 | |||
1404 | if pairsList == None: |
|
1447 | if pairsList == None: | |
1405 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1448 | pairsIndexList = dataOut.pairsIndexList[:10] | |
1406 | else: |
|
1449 | else: | |
1407 | pairsIndexList = [] |
|
1450 | pairsIndexList = [] | |
1408 | for pair in pairsList: |
|
1451 | for pair in pairsList: | |
1409 | if pair not in dataOut.pairsList: |
|
1452 | if pair not in dataOut.pairsList: | |
1410 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
1453 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) | |
1411 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1454 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
1412 |
|
1455 | |||
1413 | if pairsIndexList == []: |
|
1456 | if pairsIndexList == []: | |
1414 | return |
|
1457 | return | |
1415 |
|
1458 | |||
1416 | # if len(pairsIndexList) > 4: |
|
1459 | # if len(pairsIndexList) > 4: | |
1417 | # pairsIndexList = pairsIndexList[0:4] |
|
1460 | # pairsIndexList = pairsIndexList[0:4] | |
1418 |
|
1461 | |||
1419 | hmin_index = None |
|
1462 | hmin_index = None | |
1420 | hmax_index = None |
|
1463 | hmax_index = None | |
1421 |
|
1464 | |||
1422 | if hmin != None and hmax != None: |
|
1465 | if hmin != None and hmax != None: | |
1423 | indexes = numpy.arange(dataOut.nHeights) |
|
1466 | indexes = numpy.arange(dataOut.nHeights) | |
1424 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1467 | hmin_list = indexes[dataOut.heightList >= hmin] | |
1425 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1468 | hmax_list = indexes[dataOut.heightList <= hmax] | |
1426 |
|
1469 | |||
1427 | if hmin_list.any(): |
|
1470 | if hmin_list.any(): | |
1428 | hmin_index = hmin_list[0] |
|
1471 | hmin_index = hmin_list[0] | |
1429 |
|
1472 | |||
1430 | if hmax_list.any(): |
|
1473 | if hmax_list.any(): | |
1431 | hmax_index = hmax_list[-1]+1 |
|
1474 | hmax_index = hmax_list[-1]+1 | |
1432 |
|
1475 | |||
1433 | x = dataOut.getTimeRange() |
|
1476 | x = dataOut.getTimeRange() | |
1434 | #y = dataOut.getHeiRange() |
|
1477 | #y = dataOut.getHeiRange() | |
1435 |
|
1478 | |||
1436 |
|
1479 | |||
1437 | thisDatetime = dataOut.datatime |
|
1480 | thisDatetime = dataOut.datatime | |
1438 |
|
1481 | |||
1439 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1482 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
1440 | xlabel = "Local Time" |
|
1483 | xlabel = "Local Time" | |
1441 | ylabel = "Phase (degrees)" |
|
1484 | ylabel = "Phase (degrees)" | |
1442 |
|
1485 | |||
1443 | update_figfile = False |
|
1486 | update_figfile = False | |
1444 |
|
1487 | |||
1445 | nplots = len(pairsIndexList) |
|
1488 | nplots = len(pairsIndexList) | |
1446 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1489 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |
1447 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1490 | phase_beacon = numpy.zeros(len(pairsIndexList)) | |
1448 | for i in range(nplots): |
|
1491 | for i in range(nplots): | |
1449 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1492 | pair = dataOut.pairsList[pairsIndexList[i]] | |
1450 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1493 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) | |
1451 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1494 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) | |
1452 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1495 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) | |
1453 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1496 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
1454 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1497 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
1455 |
|
1498 | |||
1456 | #print "Phase %d%d" %(pair[0], pair[1]) |
|
1499 | #print "Phase %d%d" %(pair[0], pair[1]) | |
1457 | #print phase[dataOut.beacon_heiIndexList] |
|
1500 | #print phase[dataOut.beacon_heiIndexList] | |
1458 |
|
1501 | |||
1459 | if dataOut.beacon_heiIndexList: |
|
1502 | if dataOut.beacon_heiIndexList: | |
1460 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1503 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
1461 | else: |
|
1504 | else: | |
1462 | phase_beacon[i] = numpy.average(phase) |
|
1505 | phase_beacon[i] = numpy.average(phase) | |
1463 |
|
1506 | |||
1464 | if not self.isConfig: |
|
1507 | if not self.isConfig: | |
1465 |
|
1508 | |||
1466 | nplots = len(pairsIndexList) |
|
1509 | nplots = len(pairsIndexList) | |
1467 |
|
1510 | |||
1468 | self.setup(id=id, |
|
1511 | self.setup(id=id, | |
1469 | nplots=nplots, |
|
1512 | nplots=nplots, | |
1470 | wintitle=wintitle, |
|
1513 | wintitle=wintitle, | |
1471 | showprofile=showprofile, |
|
1514 | showprofile=showprofile, | |
1472 | show=show) |
|
1515 | show=show) | |
1473 |
|
1516 | |||
1474 | if timerange != None: |
|
1517 | if timerange != None: | |
1475 | self.timerange = timerange |
|
1518 | self.timerange = timerange | |
1476 |
|
1519 | |||
1477 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1520 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
1478 |
|
1521 | |||
1479 | if ymin == None: ymin = 0 |
|
1522 | if ymin == None: ymin = 0 | |
1480 | if ymax == None: ymax = 360 |
|
1523 | if ymax == None: ymax = 360 | |
1481 |
|
1524 | |||
1482 | self.FTP_WEI = ftp_wei |
|
1525 | self.FTP_WEI = ftp_wei | |
1483 | self.EXP_CODE = exp_code |
|
1526 | self.EXP_CODE = exp_code | |
1484 | self.SUB_EXP_CODE = sub_exp_code |
|
1527 | self.SUB_EXP_CODE = sub_exp_code | |
1485 | self.PLOT_POS = plot_pos |
|
1528 | self.PLOT_POS = plot_pos | |
1486 |
|
1529 | |||
1487 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1530 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
1488 | self.isConfig = True |
|
1531 | self.isConfig = True | |
1489 | self.figfile = figfile |
|
1532 | self.figfile = figfile | |
1490 | self.xdata = numpy.array([]) |
|
1533 | self.xdata = numpy.array([]) | |
1491 | self.ydata = numpy.array([]) |
|
1534 | self.ydata = numpy.array([]) | |
1492 |
|
1535 | |||
1493 | update_figfile = True |
|
1536 | update_figfile = True | |
1494 |
|
1537 | |||
1495 | #open file beacon phase |
|
1538 | #open file beacon phase | |
1496 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1539 | path = '%s%03d' %(self.PREFIX, self.id) | |
1497 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1540 | beacon_file = os.path.join(path,'%s.txt'%self.name) | |
1498 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1541 | self.filename_phase = os.path.join(figpath,beacon_file) | |
1499 | #self.save_phase(self.filename_phase) |
|
1542 | #self.save_phase(self.filename_phase) | |
1500 |
|
1543 | |||
1501 |
|
1544 | |||
1502 | #store data beacon phase |
|
1545 | #store data beacon phase | |
1503 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1546 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |
1504 |
|
1547 | |||
1505 | self.setWinTitle(title) |
|
1548 | self.setWinTitle(title) | |
1506 |
|
1549 | |||
1507 |
|
1550 | |||
1508 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1551 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1509 |
|
1552 | |||
1510 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1553 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] | |
1511 |
|
1554 | |||
1512 | axes = self.axesList[0] |
|
1555 | axes = self.axesList[0] | |
1513 |
|
1556 | |||
1514 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1557 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
1515 |
|
1558 | |||
1516 | if len(self.ydata)==0: |
|
1559 | if len(self.ydata)==0: | |
1517 | self.ydata = phase_beacon.reshape(-1,1) |
|
1560 | self.ydata = phase_beacon.reshape(-1,1) | |
1518 | else: |
|
1561 | else: | |
1519 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1562 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) | |
1520 |
|
1563 | |||
1521 |
|
1564 | |||
1522 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1565 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
1523 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1566 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
1524 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1567 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
1525 | XAxisAsTime=True, grid='both' |
|
1568 | XAxisAsTime=True, grid='both' | |
1526 | ) |
|
1569 | ) | |
1527 |
|
1570 | |||
1528 | self.draw() |
|
1571 | self.draw() | |
1529 |
|
1572 | |||
1530 | if dataOut.ltctime >= self.xmax: |
|
1573 | if dataOut.ltctime >= self.xmax: | |
1531 | self.counter_imagwr = wr_period |
|
1574 | self.counter_imagwr = wr_period | |
1532 | self.isConfig = False |
|
1575 | self.isConfig = False | |
1533 | update_figfile = True |
|
1576 | update_figfile = True | |
1534 |
|
1577 | |||
1535 | self.save(figpath=figpath, |
|
1578 | self.save(figpath=figpath, | |
1536 | figfile=figfile, |
|
1579 | figfile=figfile, | |
1537 | save=save, |
|
1580 | save=save, | |
1538 | ftp=ftp, |
|
1581 | ftp=ftp, | |
1539 | wr_period=wr_period, |
|
1582 | wr_period=wr_period, | |
1540 | thisDatetime=thisDatetime, |
|
1583 | thisDatetime=thisDatetime, | |
1541 | update_figfile=update_figfile) |
|
1584 | update_figfile=update_figfile) |
1 | NO CONTENT: modified file, binary diff hidden |
|
NO CONTENT: modified file, binary diff hidden |
@@ -1,1193 +1,1194 | |||||
1 | import os, sys |
|
1 | import os, sys | |
2 | import glob |
|
2 | import glob | |
3 | import fnmatch |
|
3 | import fnmatch | |
4 | import datetime |
|
4 | import datetime | |
5 | import time |
|
5 | import time | |
6 | import re |
|
6 | import re | |
7 | import h5py |
|
7 | import h5py | |
8 | import numpy |
|
8 | import numpy | |
9 | import matplotlib.pyplot as plt |
|
9 | import matplotlib.pyplot as plt | |
10 |
|
10 | |||
11 | import pylab as plb |
|
11 | import pylab as plb | |
12 | from scipy.optimize import curve_fit |
|
12 | from scipy.optimize import curve_fit | |
13 | from scipy import asarray as ar,exp |
|
13 | from scipy import asarray as ar,exp | |
14 | from scipy import stats |
|
14 | from scipy import stats | |
15 |
|
15 | |||
16 | from duplicity.path import Path |
|
16 | from duplicity.path import Path | |
17 | from numpy.ma.core import getdata |
|
17 | from numpy.ma.core import getdata | |
18 |
|
18 | |||
19 | SPEED_OF_LIGHT = 299792458 |
|
19 | SPEED_OF_LIGHT = 299792458 | |
20 | SPEED_OF_LIGHT = 3e8 |
|
20 | SPEED_OF_LIGHT = 3e8 | |
21 |
|
21 | |||
22 | try: |
|
22 | try: | |
23 | from gevent import sleep |
|
23 | from gevent import sleep | |
24 | except: |
|
24 | except: | |
25 | from time import sleep |
|
25 | from time import sleep | |
26 |
|
26 | |||
27 | from schainpy.model.data.jrodata import Spectra |
|
27 | from schainpy.model.data.jrodata import Spectra | |
28 | #from schainpy.model.data.BLTRheaderIO import FileHeader, RecordHeader |
|
28 | #from schainpy.model.data.BLTRheaderIO import FileHeader, RecordHeader | |
29 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation |
|
29 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation | |
30 | #from schainpy.model.io.jroIO_bltr import BLTRReader |
|
30 | #from schainpy.model.io.jroIO_bltr import BLTRReader | |
31 | from numpy import imag, shape, NaN |
|
31 | from numpy import imag, shape, NaN | |
32 |
|
32 | |||
33 | from jroIO_base import JRODataReader |
|
33 | from jroIO_base import JRODataReader | |
34 |
|
34 | |||
35 |
|
35 | |||
36 | class Header(object): |
|
36 | class Header(object): | |
37 |
|
37 | |||
38 | def __init__(self): |
|
38 | def __init__(self): | |
39 | raise NotImplementedError |
|
39 | raise NotImplementedError | |
40 |
|
40 | |||
41 |
|
41 | |||
42 | def read(self): |
|
42 | def read(self): | |
43 |
|
43 | |||
44 | raise NotImplementedError |
|
44 | raise NotImplementedError | |
45 |
|
45 | |||
46 | def write(self): |
|
46 | def write(self): | |
47 |
|
47 | |||
48 | raise NotImplementedError |
|
48 | raise NotImplementedError | |
49 |
|
49 | |||
50 | def printInfo(self): |
|
50 | def printInfo(self): | |
51 |
|
51 | |||
52 | message = "#"*50 + "\n" |
|
52 | message = "#"*50 + "\n" | |
53 | message += self.__class__.__name__.upper() + "\n" |
|
53 | message += self.__class__.__name__.upper() + "\n" | |
54 | message += "#"*50 + "\n" |
|
54 | message += "#"*50 + "\n" | |
55 |
|
55 | |||
56 | keyList = self.__dict__.keys() |
|
56 | keyList = self.__dict__.keys() | |
57 | keyList.sort() |
|
57 | keyList.sort() | |
58 |
|
58 | |||
59 | for key in keyList: |
|
59 | for key in keyList: | |
60 | message += "%s = %s" %(key, self.__dict__[key]) + "\n" |
|
60 | message += "%s = %s" %(key, self.__dict__[key]) + "\n" | |
61 |
|
61 | |||
62 | if "size" not in keyList: |
|
62 | if "size" not in keyList: | |
63 | attr = getattr(self, "size") |
|
63 | attr = getattr(self, "size") | |
64 |
|
64 | |||
65 | if attr: |
|
65 | if attr: | |
66 | message += "%s = %s" %("size", attr) + "\n" |
|
66 | message += "%s = %s" %("size", attr) + "\n" | |
67 |
|
67 | |||
68 | #print message |
|
68 | #print message | |
69 |
|
69 | |||
70 |
|
70 | |||
71 |
|
71 | |||
72 |
|
72 | |||
73 |
|
73 | |||
74 | FILE_STRUCTURE = numpy.dtype([ #HEADER 48bytes |
|
74 | FILE_STRUCTURE = numpy.dtype([ #HEADER 48bytes | |
75 | ('FileMgcNumber','<u4'), #0x23020100 |
|
75 | ('FileMgcNumber','<u4'), #0x23020100 | |
76 | ('nFDTdataRecors','<u4'), #No Of FDT data records in this file (0 or more) |
|
76 | ('nFDTdataRecors','<u4'), #No Of FDT data records in this file (0 or more) | |
77 | ('OffsetStartHeader','<u4'), |
|
77 | ('OffsetStartHeader','<u4'), | |
78 | ('RadarUnitId','<u4'), |
|
78 | ('RadarUnitId','<u4'), | |
79 | ('SiteName',numpy.str_,32), #Null terminated |
|
79 | ('SiteName',numpy.str_,32), #Null terminated | |
80 | ]) |
|
80 | ]) | |
81 |
|
81 | |||
82 | class FileHeaderBLTR(Header): |
|
82 | class FileHeaderBLTR(Header): | |
83 |
|
83 | |||
84 | def __init__(self): |
|
84 | def __init__(self): | |
85 |
|
85 | |||
86 | self.FileMgcNumber= 0 #0x23020100 |
|
86 | self.FileMgcNumber= 0 #0x23020100 | |
87 | self.nFDTdataRecors=0 #No Of FDT data records in this file (0 or more) |
|
87 | self.nFDTdataRecors=0 #No Of FDT data records in this file (0 or more) | |
88 | self.RadarUnitId= 0 |
|
88 | self.RadarUnitId= 0 | |
89 | self.OffsetStartHeader=0 |
|
89 | self.OffsetStartHeader=0 | |
90 | self.SiteName= "" |
|
90 | self.SiteName= "" | |
91 | self.size = 48 |
|
91 | self.size = 48 | |
92 |
|
92 | |||
93 | def FHread(self, fp): |
|
93 | def FHread(self, fp): | |
94 | #try: |
|
94 | #try: | |
95 | startFp = open(fp,"rb") |
|
95 | startFp = open(fp,"rb") | |
96 |
|
96 | |||
97 | header = numpy.fromfile(startFp, FILE_STRUCTURE,1) |
|
97 | header = numpy.fromfile(startFp, FILE_STRUCTURE,1) | |
98 |
|
98 | |||
99 | print ' ' |
|
99 | print ' ' | |
100 | print 'puntero file header', startFp.tell() |
|
100 | print 'puntero file header', startFp.tell() | |
101 | print ' ' |
|
101 | print ' ' | |
102 |
|
102 | |||
103 |
|
103 | |||
104 | ''' numpy.fromfile(file, dtype, count, sep='') |
|
104 | ''' numpy.fromfile(file, dtype, count, sep='') | |
105 | file : file or str |
|
105 | file : file or str | |
106 | Open file object or filename. |
|
106 | Open file object or filename. | |
107 |
|
107 | |||
108 | dtype : data-type |
|
108 | dtype : data-type | |
109 | Data type of the returned array. For binary files, it is used to determine |
|
109 | Data type of the returned array. For binary files, it is used to determine | |
110 | the size and byte-order of the items in the file. |
|
110 | the size and byte-order of the items in the file. | |
111 |
|
111 | |||
112 | count : int |
|
112 | count : int | |
113 | Number of items to read. -1 means all items (i.e., the complete file). |
|
113 | Number of items to read. -1 means all items (i.e., the complete file). | |
114 |
|
114 | |||
115 | sep : str |
|
115 | sep : str | |
116 | Separator between items if file is a text file. Empty ("") separator means |
|
116 | Separator between items if file is a text file. Empty ("") separator means | |
117 | the file should be treated as binary. Spaces (" ") in the separator match zero |
|
117 | the file should be treated as binary. Spaces (" ") in the separator match zero | |
118 | or more whitespace characters. A separator consisting only of spaces must match |
|
118 | or more whitespace characters. A separator consisting only of spaces must match | |
119 | at least one whitespace. |
|
119 | at least one whitespace. | |
120 |
|
120 | |||
121 | ''' |
|
121 | ''' | |
122 |
|
122 | |||
123 |
|
123 | |||
124 |
|
124 | |||
125 | self.FileMgcNumber= hex(header['FileMgcNumber'][0]) |
|
125 | self.FileMgcNumber= hex(header['FileMgcNumber'][0]) | |
126 | self.nFDTdataRecors=int(header['nFDTdataRecors'][0]) #No Of FDT data records in this file (0 or more) |
|
126 | self.nFDTdataRecors=int(header['nFDTdataRecors'][0]) #No Of FDT data records in this file (0 or more) | |
127 | self.RadarUnitId= int(header['RadarUnitId'][0]) |
|
127 | self.RadarUnitId= int(header['RadarUnitId'][0]) | |
128 | self.OffsetStartHeader= int(header['OffsetStartHeader'][0]) |
|
128 | self.OffsetStartHeader= int(header['OffsetStartHeader'][0]) | |
129 | self.SiteName= str(header['SiteName'][0]) |
|
129 | self.SiteName= str(header['SiteName'][0]) | |
130 |
|
130 | |||
131 | #print 'Numero de bloques', self.nFDTdataRecors |
|
131 | #print 'Numero de bloques', self.nFDTdataRecors | |
132 |
|
132 | |||
133 |
|
133 | |||
134 | if self.size <48: |
|
134 | if self.size <48: | |
135 | return 0 |
|
135 | return 0 | |
136 |
|
136 | |||
137 | return 1 |
|
137 | return 1 | |
138 |
|
138 | |||
139 |
|
139 | |||
140 | def write(self, fp): |
|
140 | def write(self, fp): | |
141 |
|
141 | |||
142 | headerTuple = (self.FileMgcNumber, |
|
142 | headerTuple = (self.FileMgcNumber, | |
143 | self.nFDTdataRecors, |
|
143 | self.nFDTdataRecors, | |
144 | self.RadarUnitId, |
|
144 | self.RadarUnitId, | |
145 | self.SiteName, |
|
145 | self.SiteName, | |
146 | self.size) |
|
146 | self.size) | |
147 |
|
147 | |||
148 |
|
148 | |||
149 | header = numpy.array(headerTuple, FILE_STRUCTURE) |
|
149 | header = numpy.array(headerTuple, FILE_STRUCTURE) | |
150 | # numpy.array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0) |
|
150 | # numpy.array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0) | |
151 | header.tofile(fp) |
|
151 | header.tofile(fp) | |
152 | ''' ndarray.tofile(fid, sep, format) Write array to a file as text or binary (default). |
|
152 | ''' ndarray.tofile(fid, sep, format) Write array to a file as text or binary (default). | |
153 |
|
153 | |||
154 | fid : file or str |
|
154 | fid : file or str | |
155 | An open file object, or a string containing a filename. |
|
155 | An open file object, or a string containing a filename. | |
156 |
|
156 | |||
157 | sep : str |
|
157 | sep : str | |
158 | Separator between array items for text output. If "" (empty), a binary file is written, |
|
158 | Separator between array items for text output. If "" (empty), a binary file is written, | |
159 | equivalent to file.write(a.tobytes()). |
|
159 | equivalent to file.write(a.tobytes()). | |
160 |
|
160 | |||
161 | format : str |
|
161 | format : str | |
162 | Format string for text file output. Each entry in the array is formatted to text by |
|
162 | Format string for text file output. Each entry in the array is formatted to text by | |
163 | first converting it to the closest Python type, and then using "format" % item. |
|
163 | first converting it to the closest Python type, and then using "format" % item. | |
164 |
|
164 | |||
165 | ''' |
|
165 | ''' | |
166 |
|
166 | |||
167 | return 1 |
|
167 | return 1 | |
168 |
|
168 | |||
169 |
|
169 | |||
170 |
|
170 | |||
171 |
|
171 | |||
172 |
|
172 | |||
173 | RECORD_STRUCTURE = numpy.dtype([ #RECORD HEADER 180+20N bytes |
|
173 | RECORD_STRUCTURE = numpy.dtype([ #RECORD HEADER 180+20N bytes | |
174 | ('RecMgcNumber','<u4'), #0x23030001 |
|
174 | ('RecMgcNumber','<u4'), #0x23030001 | |
175 | ('RecCounter','<u4'), #Record counter(0,1, ...) |
|
175 | ('RecCounter','<u4'), #Record counter(0,1, ...) | |
176 | ('Off2StartNxtRec','<u4'), #Offset to start of next record form start of this record |
|
176 | ('Off2StartNxtRec','<u4'), #Offset to start of next record form start of this record | |
177 | ('Off2StartData','<u4'), #Offset to start of data from start of this record |
|
177 | ('Off2StartData','<u4'), #Offset to start of data from start of this record | |
178 | ('nUtime','<i4'), #Epoch time stamp of start of acquisition (seconds) |
|
178 | ('nUtime','<i4'), #Epoch time stamp of start of acquisition (seconds) | |
179 | ('nMilisec','<u4'), #Millisecond component of time stamp (0,...,999) |
|
179 | ('nMilisec','<u4'), #Millisecond component of time stamp (0,...,999) | |
180 | ('ExpTagName',numpy.str_,32), #Experiment tag name (null terminated) |
|
180 | ('ExpTagName',numpy.str_,32), #Experiment tag name (null terminated) | |
181 | ('ExpComment',numpy.str_,32), #Experiment comment (null terminated) |
|
181 | ('ExpComment',numpy.str_,32), #Experiment comment (null terminated) | |
182 | ('SiteLatDegrees','<f4'), #Site latitude (from GPS) in degrees (positive implies North) |
|
182 | ('SiteLatDegrees','<f4'), #Site latitude (from GPS) in degrees (positive implies North) | |
183 | ('SiteLongDegrees','<f4'), #Site longitude (from GPS) in degrees (positive implies East) |
|
183 | ('SiteLongDegrees','<f4'), #Site longitude (from GPS) in degrees (positive implies East) | |
184 | ('RTCgpsStatus','<u4'), #RTC GPS engine status (0=SEEK, 1=LOCK, 2=NOT FITTED, 3=UNAVAILABLE) |
|
184 | ('RTCgpsStatus','<u4'), #RTC GPS engine status (0=SEEK, 1=LOCK, 2=NOT FITTED, 3=UNAVAILABLE) | |
185 | ('TransmitFrec','<u4'), #Transmit frequency (Hz) |
|
185 | ('TransmitFrec','<u4'), #Transmit frequency (Hz) | |
186 | ('ReceiveFrec','<u4'), #Receive frequency |
|
186 | ('ReceiveFrec','<u4'), #Receive frequency | |
187 | ('FirstOsciFrec','<u4'), #First local oscillator frequency (Hz) |
|
187 | ('FirstOsciFrec','<u4'), #First local oscillator frequency (Hz) | |
188 | ('Polarisation','<u4'), #(0="O", 1="E", 2="linear 1", 3="linear2") |
|
188 | ('Polarisation','<u4'), #(0="O", 1="E", 2="linear 1", 3="linear2") | |
189 | ('ReceiverFiltSett','<u4'), #Receiver filter settings (0,1,2,3) |
|
189 | ('ReceiverFiltSett','<u4'), #Receiver filter settings (0,1,2,3) | |
190 | ('nModesInUse','<u4'), #Number of modes in use (1 or 2) |
|
190 | ('nModesInUse','<u4'), #Number of modes in use (1 or 2) | |
191 | ('DualModeIndex','<u4'), #Dual Mode index number for these data (0 or 1) |
|
191 | ('DualModeIndex','<u4'), #Dual Mode index number for these data (0 or 1) | |
192 | ('DualModeRange','<u4'), #Dual Mode range correction for these data (m) |
|
192 | ('DualModeRange','<u4'), #Dual Mode range correction for these data (m) | |
193 | ('nDigChannels','<u4'), #Number of digital channels acquired (2*N) |
|
193 | ('nDigChannels','<u4'), #Number of digital channels acquired (2*N) | |
194 | ('SampResolution','<u4'), #Sampling resolution (meters) |
|
194 | ('SampResolution','<u4'), #Sampling resolution (meters) | |
195 | ('nHeights','<u4'), #Number of range gates sampled |
|
195 | ('nHeights','<u4'), #Number of range gates sampled | |
196 | ('StartRangeSamp','<u4'), #Start range of sampling (meters) |
|
196 | ('StartRangeSamp','<u4'), #Start range of sampling (meters) | |
197 | ('PRFhz','<u4'), #PRF (Hz) |
|
197 | ('PRFhz','<u4'), #PRF (Hz) | |
198 | ('nCohInt','<u4'), #Integrations |
|
198 | ('nCohInt','<u4'), #Integrations | |
199 | ('nProfiles','<u4'), #Number of data points transformed |
|
199 | ('nProfiles','<u4'), #Number of data points transformed | |
200 | ('nChannels','<u4'), #Number of receive beams stored in file (1 or N) |
|
200 | ('nChannels','<u4'), #Number of receive beams stored in file (1 or N) | |
201 | ('nIncohInt','<u4'), #Number of spectral averages |
|
201 | ('nIncohInt','<u4'), #Number of spectral averages | |
202 | ('FFTwindowingInd','<u4'), #FFT windowing index (0 = no window) |
|
202 | ('FFTwindowingInd','<u4'), #FFT windowing index (0 = no window) | |
203 | ('BeamAngleAzim','<f4'), #Beam steer angle (azimuth) in degrees (clockwise from true North) |
|
203 | ('BeamAngleAzim','<f4'), #Beam steer angle (azimuth) in degrees (clockwise from true North) | |
204 | ('BeamAngleZen','<f4'), #Beam steer angle (zenith) in degrees (0=> vertical) |
|
204 | ('BeamAngleZen','<f4'), #Beam steer angle (zenith) in degrees (0=> vertical) | |
205 | ('AntennaCoord0','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs |
|
205 | ('AntennaCoord0','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | |
206 | ('AntennaAngl0','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs |
|
206 | ('AntennaAngl0','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | |
207 | ('AntennaCoord1','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs |
|
207 | ('AntennaCoord1','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | |
208 | ('AntennaAngl1','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs |
|
208 | ('AntennaAngl1','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | |
209 | ('AntennaCoord2','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs |
|
209 | ('AntennaCoord2','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | |
210 | ('AntennaAngl2','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs |
|
210 | ('AntennaAngl2','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs | |
211 | ('RecPhaseCalibr0','<f4'), #Receiver phase calibration (degrees) - N values |
|
211 | ('RecPhaseCalibr0','<f4'), #Receiver phase calibration (degrees) - N values | |
212 | ('RecPhaseCalibr1','<f4'), #Receiver phase calibration (degrees) - N values |
|
212 | ('RecPhaseCalibr1','<f4'), #Receiver phase calibration (degrees) - N values | |
213 | ('RecPhaseCalibr2','<f4'), #Receiver phase calibration (degrees) - N values |
|
213 | ('RecPhaseCalibr2','<f4'), #Receiver phase calibration (degrees) - N values | |
214 | ('RecAmpCalibr0','<f4'), #Receiver amplitude calibration (ratio relative to receiver one) - N values |
|
214 | ('RecAmpCalibr0','<f4'), #Receiver amplitude calibration (ratio relative to receiver one) - N values | |
215 | ('RecAmpCalibr1','<f4'), #Receiver amplitude calibration (ratio relative to receiver one) - N values |
|
215 | ('RecAmpCalibr1','<f4'), #Receiver amplitude calibration (ratio relative to receiver one) - N values | |
216 | ('RecAmpCalibr2','<f4'), #Receiver amplitude calibration (ratio relative to receiver one) - N values |
|
216 | ('RecAmpCalibr2','<f4'), #Receiver amplitude calibration (ratio relative to receiver one) - N values | |
217 | ('ReceiverGaindB0','<i4'), #Receiver gains in dB - N values |
|
217 | ('ReceiverGaindB0','<i4'), #Receiver gains in dB - N values | |
218 | ('ReceiverGaindB1','<i4'), #Receiver gains in dB - N values |
|
218 | ('ReceiverGaindB1','<i4'), #Receiver gains in dB - N values | |
219 | ('ReceiverGaindB2','<i4'), #Receiver gains in dB - N values |
|
219 | ('ReceiverGaindB2','<i4'), #Receiver gains in dB - N values | |
220 | ]) |
|
220 | ]) | |
221 |
|
221 | |||
222 |
|
222 | |||
223 | class RecordHeaderBLTR(Header): |
|
223 | class RecordHeaderBLTR(Header): | |
224 |
|
224 | |||
225 | def __init__(self, RecMgcNumber=None, RecCounter= 0, Off2StartNxtRec= 811248, |
|
225 | def __init__(self, RecMgcNumber=None, RecCounter= 0, Off2StartNxtRec= 811248, | |
226 | nUtime= 0, nMilisec= 0, ExpTagName= None, |
|
226 | nUtime= 0, nMilisec= 0, ExpTagName= None, | |
227 | ExpComment=None, SiteLatDegrees=0, SiteLongDegrees= 0, |
|
227 | ExpComment=None, SiteLatDegrees=0, SiteLongDegrees= 0, | |
228 | RTCgpsStatus= 0, TransmitFrec= 0, ReceiveFrec= 0, |
|
228 | RTCgpsStatus= 0, TransmitFrec= 0, ReceiveFrec= 0, | |
229 | FirstOsciFrec= 0, Polarisation= 0, ReceiverFiltSett= 0, |
|
229 | FirstOsciFrec= 0, Polarisation= 0, ReceiverFiltSett= 0, | |
230 | nModesInUse= 0, DualModeIndex= 0, DualModeRange= 0, |
|
230 | nModesInUse= 0, DualModeIndex= 0, DualModeRange= 0, | |
231 | nDigChannels= 0, SampResolution= 0, nHeights= 0, |
|
231 | nDigChannels= 0, SampResolution= 0, nHeights= 0, | |
232 | StartRangeSamp= 0, PRFhz= 0, nCohInt= 0, |
|
232 | StartRangeSamp= 0, PRFhz= 0, nCohInt= 0, | |
233 | nProfiles= 0, nChannels= 0, nIncohInt= 0, |
|
233 | nProfiles= 0, nChannels= 0, nIncohInt= 0, | |
234 | FFTwindowingInd= 0, BeamAngleAzim= 0, BeamAngleZen= 0, |
|
234 | FFTwindowingInd= 0, BeamAngleAzim= 0, BeamAngleZen= 0, | |
235 | AntennaCoord0= 0, AntennaCoord1= 0, AntennaCoord2= 0, |
|
235 | AntennaCoord0= 0, AntennaCoord1= 0, AntennaCoord2= 0, | |
236 | RecPhaseCalibr0= 0, RecPhaseCalibr1= 0, RecPhaseCalibr2= 0, |
|
236 | RecPhaseCalibr0= 0, RecPhaseCalibr1= 0, RecPhaseCalibr2= 0, | |
237 | RecAmpCalibr0= 0, RecAmpCalibr1= 0, RecAmpCalibr2= 0, |
|
237 | RecAmpCalibr0= 0, RecAmpCalibr1= 0, RecAmpCalibr2= 0, | |
238 | AntennaAngl0=0, AntennaAngl1=0, AntennaAngl2=0, |
|
238 | AntennaAngl0=0, AntennaAngl1=0, AntennaAngl2=0, | |
239 | ReceiverGaindB0= 0, ReceiverGaindB1= 0, ReceiverGaindB2= 0, Off2StartData=0, OffsetStartHeader=0): |
|
239 | ReceiverGaindB0= 0, ReceiverGaindB1= 0, ReceiverGaindB2= 0, Off2StartData=0, OffsetStartHeader=0): | |
240 |
|
240 | |||
241 | self.RecMgcNumber = RecMgcNumber #0x23030001 |
|
241 | self.RecMgcNumber = RecMgcNumber #0x23030001 | |
242 | self.RecCounter = RecCounter |
|
242 | self.RecCounter = RecCounter | |
243 | self.Off2StartNxtRec = Off2StartNxtRec |
|
243 | self.Off2StartNxtRec = Off2StartNxtRec | |
244 | self.Off2StartData = Off2StartData |
|
244 | self.Off2StartData = Off2StartData | |
245 | self.nUtime = nUtime |
|
245 | self.nUtime = nUtime | |
246 | self.nMilisec = nMilisec |
|
246 | self.nMilisec = nMilisec | |
247 | self.ExpTagName = ExpTagName |
|
247 | self.ExpTagName = ExpTagName | |
248 | self.ExpComment = ExpComment |
|
248 | self.ExpComment = ExpComment | |
249 | self.SiteLatDegrees = SiteLatDegrees |
|
249 | self.SiteLatDegrees = SiteLatDegrees | |
250 | self.SiteLongDegrees = SiteLongDegrees |
|
250 | self.SiteLongDegrees = SiteLongDegrees | |
251 | self.RTCgpsStatus = RTCgpsStatus |
|
251 | self.RTCgpsStatus = RTCgpsStatus | |
252 | self.TransmitFrec = TransmitFrec |
|
252 | self.TransmitFrec = TransmitFrec | |
253 | self.ReceiveFrec = ReceiveFrec |
|
253 | self.ReceiveFrec = ReceiveFrec | |
254 | self.FirstOsciFrec = FirstOsciFrec |
|
254 | self.FirstOsciFrec = FirstOsciFrec | |
255 | self.Polarisation = Polarisation |
|
255 | self.Polarisation = Polarisation | |
256 | self.ReceiverFiltSett = ReceiverFiltSett |
|
256 | self.ReceiverFiltSett = ReceiverFiltSett | |
257 | self.nModesInUse = nModesInUse |
|
257 | self.nModesInUse = nModesInUse | |
258 | self.DualModeIndex = DualModeIndex |
|
258 | self.DualModeIndex = DualModeIndex | |
259 | self.DualModeRange = DualModeRange |
|
259 | self.DualModeRange = DualModeRange | |
260 | self.nDigChannels = nDigChannels |
|
260 | self.nDigChannels = nDigChannels | |
261 | self.SampResolution = SampResolution |
|
261 | self.SampResolution = SampResolution | |
262 | self.nHeights = nHeights |
|
262 | self.nHeights = nHeights | |
263 | self.StartRangeSamp = StartRangeSamp |
|
263 | self.StartRangeSamp = StartRangeSamp | |
264 | self.PRFhz = PRFhz |
|
264 | self.PRFhz = PRFhz | |
265 | self.nCohInt = nCohInt |
|
265 | self.nCohInt = nCohInt | |
266 | self.nProfiles = nProfiles |
|
266 | self.nProfiles = nProfiles | |
267 | self.nChannels = nChannels |
|
267 | self.nChannels = nChannels | |
268 | self.nIncohInt = nIncohInt |
|
268 | self.nIncohInt = nIncohInt | |
269 | self.FFTwindowingInd = FFTwindowingInd |
|
269 | self.FFTwindowingInd = FFTwindowingInd | |
270 | self.BeamAngleAzim = BeamAngleAzim |
|
270 | self.BeamAngleAzim = BeamAngleAzim | |
271 | self.BeamAngleZen = BeamAngleZen |
|
271 | self.BeamAngleZen = BeamAngleZen | |
272 | self.AntennaCoord0 = AntennaCoord0 |
|
272 | self.AntennaCoord0 = AntennaCoord0 | |
273 | self.AntennaAngl0 = AntennaAngl0 |
|
273 | self.AntennaAngl0 = AntennaAngl0 | |
274 | self.AntennaAngl1 = AntennaAngl1 |
|
274 | self.AntennaAngl1 = AntennaAngl1 | |
275 | self.AntennaAngl2 = AntennaAngl2 |
|
275 | self.AntennaAngl2 = AntennaAngl2 | |
276 | self.AntennaCoord1 = AntennaCoord1 |
|
276 | self.AntennaCoord1 = AntennaCoord1 | |
277 | self.AntennaCoord2 = AntennaCoord2 |
|
277 | self.AntennaCoord2 = AntennaCoord2 | |
278 | self.RecPhaseCalibr0 = RecPhaseCalibr0 |
|
278 | self.RecPhaseCalibr0 = RecPhaseCalibr0 | |
279 | self.RecPhaseCalibr1 = RecPhaseCalibr1 |
|
279 | self.RecPhaseCalibr1 = RecPhaseCalibr1 | |
280 | self.RecPhaseCalibr2 = RecPhaseCalibr2 |
|
280 | self.RecPhaseCalibr2 = RecPhaseCalibr2 | |
281 | self.RecAmpCalibr0 = RecAmpCalibr0 |
|
281 | self.RecAmpCalibr0 = RecAmpCalibr0 | |
282 | self.RecAmpCalibr1 = RecAmpCalibr1 |
|
282 | self.RecAmpCalibr1 = RecAmpCalibr1 | |
283 | self.RecAmpCalibr2 = RecAmpCalibr2 |
|
283 | self.RecAmpCalibr2 = RecAmpCalibr2 | |
284 | self.ReceiverGaindB0 = ReceiverGaindB0 |
|
284 | self.ReceiverGaindB0 = ReceiverGaindB0 | |
285 | self.ReceiverGaindB1 = ReceiverGaindB1 |
|
285 | self.ReceiverGaindB1 = ReceiverGaindB1 | |
286 | self.ReceiverGaindB2 = ReceiverGaindB2 |
|
286 | self.ReceiverGaindB2 = ReceiverGaindB2 | |
287 | self.OffsetStartHeader = 48 |
|
287 | self.OffsetStartHeader = 48 | |
288 |
|
288 | |||
289 |
|
289 | |||
290 |
|
290 | |||
291 | def RHread(self, fp): |
|
291 | def RHread(self, fp): | |
292 | #print fp |
|
292 | #print fp | |
293 | #startFp = open('/home/erick/Documents/Data/huancayo.20161019.22.fdt',"rb") #The method tell() returns the current position of the file read/write pointer within the file. |
|
293 | #startFp = open('/home/erick/Documents/Data/huancayo.20161019.22.fdt',"rb") #The method tell() returns the current position of the file read/write pointer within the file. | |
294 | startFp = open(fp,"rb") #The method tell() returns the current position of the file read/write pointer within the file. |
|
294 | startFp = open(fp,"rb") #The method tell() returns the current position of the file read/write pointer within the file. | |
295 | #RecCounter=0 |
|
295 | #RecCounter=0 | |
296 | #Off2StartNxtRec=811248 |
|
296 | #Off2StartNxtRec=811248 | |
297 | OffRHeader= self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec |
|
297 | OffRHeader= self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec | |
298 | print ' ' |
|
298 | print ' ' | |
299 | print 'puntero Record Header', startFp.tell() |
|
299 | print 'puntero Record Header', startFp.tell() | |
300 | print ' ' |
|
300 | print ' ' | |
301 |
|
301 | |||
302 |
|
302 | |||
303 | startFp.seek(OffRHeader, os.SEEK_SET) |
|
303 | startFp.seek(OffRHeader, os.SEEK_SET) | |
304 |
|
304 | |||
305 | print ' ' |
|
305 | print ' ' | |
306 | print 'puntero Record Header con seek', startFp.tell() |
|
306 | print 'puntero Record Header con seek', startFp.tell() | |
307 | print ' ' |
|
307 | print ' ' | |
308 |
|
308 | |||
309 | #print 'Posicion del bloque: ',OffRHeader |
|
309 | #print 'Posicion del bloque: ',OffRHeader | |
310 |
|
310 | |||
311 | header = numpy.fromfile(startFp,RECORD_STRUCTURE,1) |
|
311 | header = numpy.fromfile(startFp,RECORD_STRUCTURE,1) | |
312 |
|
312 | |||
313 | print ' ' |
|
313 | print ' ' | |
314 | print 'puntero Record Header con seek', startFp.tell() |
|
314 | print 'puntero Record Header con seek', startFp.tell() | |
315 | print ' ' |
|
315 | print ' ' | |
316 |
|
316 | |||
317 | print ' ' |
|
317 | print ' ' | |
318 | # |
|
318 | # | |
319 | #print 'puntero Record Header despues de seek', header.tell() |
|
319 | #print 'puntero Record Header despues de seek', header.tell() | |
320 | print ' ' |
|
320 | print ' ' | |
321 |
|
321 | |||
322 | self.RecMgcNumber = hex(header['RecMgcNumber'][0]) #0x23030001 |
|
322 | self.RecMgcNumber = hex(header['RecMgcNumber'][0]) #0x23030001 | |
323 | self.RecCounter = int(header['RecCounter'][0]) |
|
323 | self.RecCounter = int(header['RecCounter'][0]) | |
324 | self.Off2StartNxtRec = int(header['Off2StartNxtRec'][0]) |
|
324 | self.Off2StartNxtRec = int(header['Off2StartNxtRec'][0]) | |
325 | self.Off2StartData = int(header['Off2StartData'][0]) |
|
325 | self.Off2StartData = int(header['Off2StartData'][0]) | |
326 | self.nUtime = header['nUtime'][0] |
|
326 | self.nUtime = header['nUtime'][0] | |
327 | self.nMilisec = header['nMilisec'][0] |
|
327 | self.nMilisec = header['nMilisec'][0] | |
328 | self.ExpTagName = str(header['ExpTagName'][0]) |
|
328 | self.ExpTagName = str(header['ExpTagName'][0]) | |
329 | self.ExpComment = str(header['ExpComment'][0]) |
|
329 | self.ExpComment = str(header['ExpComment'][0]) | |
330 | self.SiteLatDegrees = header['SiteLatDegrees'][0] |
|
330 | self.SiteLatDegrees = header['SiteLatDegrees'][0] | |
331 | self.SiteLongDegrees = header['SiteLongDegrees'][0] |
|
331 | self.SiteLongDegrees = header['SiteLongDegrees'][0] | |
332 | self.RTCgpsStatus = header['RTCgpsStatus'][0] |
|
332 | self.RTCgpsStatus = header['RTCgpsStatus'][0] | |
333 | self.TransmitFrec = header['TransmitFrec'][0] |
|
333 | self.TransmitFrec = header['TransmitFrec'][0] | |
334 | self.ReceiveFrec = header['ReceiveFrec'][0] |
|
334 | self.ReceiveFrec = header['ReceiveFrec'][0] | |
335 | self.FirstOsciFrec = header['FirstOsciFrec'][0] |
|
335 | self.FirstOsciFrec = header['FirstOsciFrec'][0] | |
336 | self.Polarisation = header['Polarisation'][0] |
|
336 | self.Polarisation = header['Polarisation'][0] | |
337 | self.ReceiverFiltSett = header['ReceiverFiltSett'][0] |
|
337 | self.ReceiverFiltSett = header['ReceiverFiltSett'][0] | |
338 | self.nModesInUse = header['nModesInUse'][0] |
|
338 | self.nModesInUse = header['nModesInUse'][0] | |
339 | self.DualModeIndex = header['DualModeIndex'][0] |
|
339 | self.DualModeIndex = header['DualModeIndex'][0] | |
340 | self.DualModeRange = header['DualModeRange'][0] |
|
340 | self.DualModeRange = header['DualModeRange'][0] | |
341 | self.nDigChannels = header['nDigChannels'][0] |
|
341 | self.nDigChannels = header['nDigChannels'][0] | |
342 | self.SampResolution = header['SampResolution'][0] |
|
342 | self.SampResolution = header['SampResolution'][0] | |
343 | self.nHeights = header['nHeights'][0] |
|
343 | self.nHeights = header['nHeights'][0] | |
344 | self.StartRangeSamp = header['StartRangeSamp'][0] |
|
344 | self.StartRangeSamp = header['StartRangeSamp'][0] | |
345 | self.PRFhz = header['PRFhz'][0] |
|
345 | self.PRFhz = header['PRFhz'][0] | |
346 | self.nCohInt = header['nCohInt'][0] |
|
346 | self.nCohInt = header['nCohInt'][0] | |
347 | self.nProfiles = header['nProfiles'][0] |
|
347 | self.nProfiles = header['nProfiles'][0] | |
348 | self.nChannels = header['nChannels'][0] |
|
348 | self.nChannels = header['nChannels'][0] | |
349 | self.nIncohInt = header['nIncohInt'][0] |
|
349 | self.nIncohInt = header['nIncohInt'][0] | |
350 | self.FFTwindowingInd = header['FFTwindowingInd'][0] |
|
350 | self.FFTwindowingInd = header['FFTwindowingInd'][0] | |
351 | self.BeamAngleAzim = header['BeamAngleAzim'][0] |
|
351 | self.BeamAngleAzim = header['BeamAngleAzim'][0] | |
352 | self.BeamAngleZen = header['BeamAngleZen'][0] |
|
352 | self.BeamAngleZen = header['BeamAngleZen'][0] | |
353 | self.AntennaCoord0 = header['AntennaCoord0'][0] |
|
353 | self.AntennaCoord0 = header['AntennaCoord0'][0] | |
354 | self.AntennaAngl0 = header['AntennaAngl0'][0] |
|
354 | self.AntennaAngl0 = header['AntennaAngl0'][0] | |
355 | self.AntennaCoord1 = header['AntennaCoord1'][0] |
|
355 | self.AntennaCoord1 = header['AntennaCoord1'][0] | |
356 | self.AntennaAngl1 = header['AntennaAngl1'][0] |
|
356 | self.AntennaAngl1 = header['AntennaAngl1'][0] | |
357 | self.AntennaCoord2 = header['AntennaCoord2'][0] |
|
357 | self.AntennaCoord2 = header['AntennaCoord2'][0] | |
358 | self.AntennaAngl2 = header['AntennaAngl2'][0] |
|
358 | self.AntennaAngl2 = header['AntennaAngl2'][0] | |
359 | self.RecPhaseCalibr0 = header['RecPhaseCalibr0'][0] |
|
359 | self.RecPhaseCalibr0 = header['RecPhaseCalibr0'][0] | |
360 | self.RecPhaseCalibr1 = header['RecPhaseCalibr1'][0] |
|
360 | self.RecPhaseCalibr1 = header['RecPhaseCalibr1'][0] | |
361 | self.RecPhaseCalibr2 = header['RecPhaseCalibr2'][0] |
|
361 | self.RecPhaseCalibr2 = header['RecPhaseCalibr2'][0] | |
362 | self.RecAmpCalibr0 = header['RecAmpCalibr0'][0] |
|
362 | self.RecAmpCalibr0 = header['RecAmpCalibr0'][0] | |
363 | self.RecAmpCalibr1 = header['RecAmpCalibr1'][0] |
|
363 | self.RecAmpCalibr1 = header['RecAmpCalibr1'][0] | |
364 | self.RecAmpCalibr2 = header['RecAmpCalibr2'][0] |
|
364 | self.RecAmpCalibr2 = header['RecAmpCalibr2'][0] | |
365 | self.ReceiverGaindB0 = header['ReceiverGaindB0'][0] |
|
365 | self.ReceiverGaindB0 = header['ReceiverGaindB0'][0] | |
366 | self.ReceiverGaindB1 = header['ReceiverGaindB1'][0] |
|
366 | self.ReceiverGaindB1 = header['ReceiverGaindB1'][0] | |
367 | self.ReceiverGaindB2 = header['ReceiverGaindB2'][0] |
|
367 | self.ReceiverGaindB2 = header['ReceiverGaindB2'][0] | |
368 |
|
368 | |||
369 | self.ipp= 0.5*(SPEED_OF_LIGHT/self.PRFhz) |
|
369 | self.ipp= 0.5*(SPEED_OF_LIGHT/self.PRFhz) | |
370 |
|
370 | |||
371 | self.RHsize = 180+20*self.nChannels |
|
371 | self.RHsize = 180+20*self.nChannels | |
372 | self.Datasize= self.nProfiles*self.nChannels*self.nHeights*2*4 |
|
372 | self.Datasize= self.nProfiles*self.nChannels*self.nHeights*2*4 | |
373 | #print 'Datasize',self.Datasize |
|
373 | #print 'Datasize',self.Datasize | |
374 | endFp = self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec |
|
374 | endFp = self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec | |
375 |
|
375 | |||
376 | print '==============================================' |
|
376 | print '==============================================' | |
377 | print 'RecMgcNumber ',self.RecMgcNumber |
|
377 | print 'RecMgcNumber ',self.RecMgcNumber | |
378 | print 'RecCounter ',self.RecCounter |
|
378 | print 'RecCounter ',self.RecCounter | |
379 | print 'Off2StartNxtRec ',self.Off2StartNxtRec |
|
379 | print 'Off2StartNxtRec ',self.Off2StartNxtRec | |
380 | print 'Off2StartData ',self.Off2StartData |
|
380 | print 'Off2StartData ',self.Off2StartData | |
381 | print 'Range Resolution ',self.SampResolution |
|
381 | print 'Range Resolution ',self.SampResolution | |
382 | print 'First Height ',self.StartRangeSamp |
|
382 | print 'First Height ',self.StartRangeSamp | |
383 | print 'PRF (Hz) ',self.PRFhz |
|
383 | print 'PRF (Hz) ',self.PRFhz | |
384 | print 'Heights (K) ',self.nHeights |
|
384 | print 'Heights (K) ',self.nHeights | |
385 | print 'Channels (N) ',self.nChannels |
|
385 | print 'Channels (N) ',self.nChannels | |
386 | print 'Profiles (J) ',self.nProfiles |
|
386 | print 'Profiles (J) ',self.nProfiles | |
387 | print 'iCoh ',self.nCohInt |
|
387 | print 'iCoh ',self.nCohInt | |
388 | print 'iInCoh ',self.nIncohInt |
|
388 | print 'iInCoh ',self.nIncohInt | |
389 | print 'BeamAngleAzim ',self.BeamAngleAzim |
|
389 | print 'BeamAngleAzim ',self.BeamAngleAzim | |
390 | print 'BeamAngleZen ',self.BeamAngleZen |
|
390 | print 'BeamAngleZen ',self.BeamAngleZen | |
391 |
|
391 | |||
392 | #print 'ModoEnUso ',self.DualModeIndex |
|
392 | #print 'ModoEnUso ',self.DualModeIndex | |
393 | #print 'UtcTime ',self.nUtime |
|
393 | #print 'UtcTime ',self.nUtime | |
394 | #print 'MiliSec ',self.nMilisec |
|
394 | #print 'MiliSec ',self.nMilisec | |
395 | #print 'Exp TagName ',self.ExpTagName |
|
395 | #print 'Exp TagName ',self.ExpTagName | |
396 | #print 'Exp Comment ',self.ExpComment |
|
396 | #print 'Exp Comment ',self.ExpComment | |
397 | #print 'FFT Window Index ',self.FFTwindowingInd |
|
397 | #print 'FFT Window Index ',self.FFTwindowingInd | |
398 | #print 'N Dig. Channels ',self.nDigChannels |
|
398 | #print 'N Dig. Channels ',self.nDigChannels | |
399 | print 'Size de bloque ',self.RHsize |
|
399 | print 'Size de bloque ',self.RHsize | |
400 | print 'DataSize ',self.Datasize |
|
400 | print 'DataSize ',self.Datasize | |
401 | print 'BeamAngleAzim ',self.BeamAngleAzim |
|
401 | print 'BeamAngleAzim ',self.BeamAngleAzim | |
402 | #print 'AntennaCoord0 ',self.AntennaCoord0 |
|
402 | #print 'AntennaCoord0 ',self.AntennaCoord0 | |
403 | #print 'AntennaAngl0 ',self.AntennaAngl0 |
|
403 | #print 'AntennaAngl0 ',self.AntennaAngl0 | |
404 | #print 'AntennaCoord1 ',self.AntennaCoord1 |
|
404 | #print 'AntennaCoord1 ',self.AntennaCoord1 | |
405 | #print 'AntennaAngl1 ',self.AntennaAngl1 |
|
405 | #print 'AntennaAngl1 ',self.AntennaAngl1 | |
406 | #print 'AntennaCoord2 ',self.AntennaCoord2 |
|
406 | #print 'AntennaCoord2 ',self.AntennaCoord2 | |
407 | #print 'AntennaAngl2 ',self.AntennaAngl2 |
|
407 | #print 'AntennaAngl2 ',self.AntennaAngl2 | |
408 | print 'RecPhaseCalibr0 ',self.RecPhaseCalibr0 |
|
408 | print 'RecPhaseCalibr0 ',self.RecPhaseCalibr0 | |
409 | print 'RecPhaseCalibr1 ',self.RecPhaseCalibr1 |
|
409 | print 'RecPhaseCalibr1 ',self.RecPhaseCalibr1 | |
410 | print 'RecPhaseCalibr2 ',self.RecPhaseCalibr2 |
|
410 | print 'RecPhaseCalibr2 ',self.RecPhaseCalibr2 | |
411 | print 'RecAmpCalibr0 ',self.RecAmpCalibr0 |
|
411 | print 'RecAmpCalibr0 ',self.RecAmpCalibr0 | |
412 | print 'RecAmpCalibr1 ',self.RecAmpCalibr1 |
|
412 | print 'RecAmpCalibr1 ',self.RecAmpCalibr1 | |
413 | print 'RecAmpCalibr2 ',self.RecAmpCalibr2 |
|
413 | print 'RecAmpCalibr2 ',self.RecAmpCalibr2 | |
414 | print 'ReceiverGaindB0 ',self.ReceiverGaindB0 |
|
414 | print 'ReceiverGaindB0 ',self.ReceiverGaindB0 | |
415 | print 'ReceiverGaindB1 ',self.ReceiverGaindB1 |
|
415 | print 'ReceiverGaindB1 ',self.ReceiverGaindB1 | |
416 | print 'ReceiverGaindB2 ',self.ReceiverGaindB2 |
|
416 | print 'ReceiverGaindB2 ',self.ReceiverGaindB2 | |
417 | print '==============================================' |
|
417 | print '==============================================' | |
418 |
|
418 | |||
419 | if OffRHeader > endFp: |
|
419 | if OffRHeader > endFp: | |
420 | sys.stderr.write("Warning %s: Size value read from System Header is lower than it has to be\n" %fp) |
|
420 | sys.stderr.write("Warning %s: Size value read from System Header is lower than it has to be\n" %fp) | |
421 | return 0 |
|
421 | return 0 | |
422 |
|
422 | |||
423 | if OffRHeader < endFp: |
|
423 | if OffRHeader < endFp: | |
424 | sys.stderr.write("Warning %s: Size value read from System Header size is greater than it has to be\n" %fp) |
|
424 | sys.stderr.write("Warning %s: Size value read from System Header size is greater than it has to be\n" %fp) | |
425 | return 0 |
|
425 | return 0 | |
426 |
|
426 | |||
427 | return 1 |
|
427 | return 1 | |
428 |
|
428 | |||
429 |
|
429 | |||
430 | class BLTRReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODataReader): |
|
430 | class BLTRReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODataReader): | |
431 |
|
431 | |||
432 | path = None |
|
432 | path = None | |
433 | startDate = None |
|
433 | startDate = None | |
434 | endDate = None |
|
434 | endDate = None | |
435 | startTime = None |
|
435 | startTime = None | |
436 | endTime = None |
|
436 | endTime = None | |
437 | walk = None |
|
437 | walk = None | |
438 | isConfig = False |
|
438 | isConfig = False | |
439 |
|
439 | |||
440 |
|
440 | |||
441 | fileList= None |
|
441 | fileList= None | |
442 |
|
442 | |||
443 | #metadata |
|
443 | #metadata | |
444 | TimeZone= None |
|
444 | TimeZone= None | |
445 | Interval= None |
|
445 | Interval= None | |
446 | heightList= None |
|
446 | heightList= None | |
447 |
|
447 | |||
448 | #data |
|
448 | #data | |
449 | data= None |
|
449 | data= None | |
450 | utctime= None |
|
450 | utctime= None | |
451 |
|
451 | |||
452 |
|
452 | |||
453 |
|
453 | |||
454 | def __init__(self, **kwargs): |
|
454 | def __init__(self, **kwargs): | |
455 |
|
455 | |||
456 | #Eliminar de la base la herencia |
|
456 | #Eliminar de la base la herencia | |
457 | ProcessingUnit.__init__(self, **kwargs) |
|
457 | ProcessingUnit.__init__(self, **kwargs) | |
458 |
|
458 | |||
459 | # self.isConfig = False |
|
459 | # self.isConfig = False | |
460 |
|
460 | |||
461 | #self.pts2read_SelfSpectra = 0 |
|
461 | #self.pts2read_SelfSpectra = 0 | |
462 | #self.pts2read_CrossSpectra = 0 |
|
462 | #self.pts2read_CrossSpectra = 0 | |
463 | #self.pts2read_DCchannels = 0 |
|
463 | #self.pts2read_DCchannels = 0 | |
464 | #self.datablock = None |
|
464 | #self.datablock = None | |
465 | self.utc = None |
|
465 | self.utc = None | |
466 | self.ext = ".fdt" |
|
466 | self.ext = ".fdt" | |
467 | self.optchar = "P" |
|
467 | self.optchar = "P" | |
468 | self.fpFile=None |
|
468 | self.fpFile=None | |
469 | self.fp = None |
|
469 | self.fp = None | |
470 | self.BlockCounter=0 |
|
470 | self.BlockCounter=0 | |
471 | self.dtype = None |
|
471 | self.dtype = None | |
472 | self.fileSizeByHeader = None |
|
472 | self.fileSizeByHeader = None | |
473 | self.filenameList = [] |
|
473 | self.filenameList = [] | |
474 | self.fileSelector = 0 |
|
474 | self.fileSelector = 0 | |
475 | self.Off2StartNxtRec=0 |
|
475 | self.Off2StartNxtRec=0 | |
476 | self.RecCounter=0 |
|
476 | self.RecCounter=0 | |
477 | self.flagNoMoreFiles = 0 |
|
477 | self.flagNoMoreFiles = 0 | |
478 | self.data_spc=None |
|
478 | self.data_spc=None | |
479 | self.data_cspc=None |
|
479 | self.data_cspc=None | |
480 | self.data_output=None |
|
480 | self.data_output=None | |
481 | self.path = None |
|
481 | self.path = None | |
482 | self.OffsetStartHeader=0 |
|
482 | self.OffsetStartHeader=0 | |
483 | self.Off2StartData=0 |
|
483 | self.Off2StartData=0 | |
484 | self.ipp = 0 |
|
484 | self.ipp = 0 | |
485 | self.nFDTdataRecors=0 |
|
485 | self.nFDTdataRecors=0 | |
486 | self.blocksize = 0 |
|
486 | self.blocksize = 0 | |
487 | self.dataOut = Spectra() |
|
487 | self.dataOut = Spectra() | |
488 | self.profileIndex = 1 #Always |
|
488 | self.profileIndex = 1 #Always | |
489 | self.dataOut.flagNoData=False |
|
489 | self.dataOut.flagNoData=False | |
490 | self.dataOut.nRdPairs = 0 |
|
490 | self.dataOut.nRdPairs = 0 | |
491 | self.dataOut.pairsList = [] |
|
491 | self.dataOut.pairsList = [] | |
492 | self.dataOut.data_spc=None |
|
492 | self.dataOut.data_spc=None | |
493 | self.dataOut.noise=[] |
|
493 | self.dataOut.noise=[] | |
494 | self.dataOut.velocityX=[] |
|
494 | self.dataOut.velocityX=[] | |
495 | self.dataOut.velocityY=[] |
|
495 | self.dataOut.velocityY=[] | |
496 | self.dataOut.velocityV=[] |
|
496 | self.dataOut.velocityV=[] | |
497 |
|
497 | |||
498 |
|
498 | |||
499 |
|
499 | |||
500 | def Files2Read(self, fp): |
|
500 | def Files2Read(self, fp): | |
501 | ''' |
|
501 | ''' | |
502 | Function that indicates the number of .fdt files that exist in the folder to be read. |
|
502 | Function that indicates the number of .fdt files that exist in the folder to be read. | |
503 | It also creates an organized list with the names of the files to read. |
|
503 | It also creates an organized list with the names of the files to read. | |
504 | ''' |
|
504 | ''' | |
505 | #self.__checkPath() |
|
505 | #self.__checkPath() | |
506 |
|
506 | |||
507 | ListaData=os.listdir(fp) #Gets the list of files within the fp address |
|
507 | ListaData=os.listdir(fp) #Gets the list of files within the fp address | |
508 | ListaData=sorted(ListaData) #Sort the list of files from least to largest by names |
|
508 | ListaData=sorted(ListaData) #Sort the list of files from least to largest by names | |
509 | nFiles=0 #File Counter |
|
509 | nFiles=0 #File Counter | |
510 | FileList=[] #A list is created that will contain the .fdt files |
|
510 | FileList=[] #A list is created that will contain the .fdt files | |
511 | for IndexFile in ListaData : |
|
511 | for IndexFile in ListaData : | |
512 | if '.fdt' in IndexFile: |
|
512 | if '.fdt' in IndexFile: | |
513 | FileList.append(IndexFile) |
|
513 | FileList.append(IndexFile) | |
514 | nFiles+=1 |
|
514 | nFiles+=1 | |
515 |
|
515 | |||
516 | #print 'Files2Read' |
|
516 | #print 'Files2Read' | |
517 | #print 'Existen '+str(nFiles)+' archivos .fdt' |
|
517 | #print 'Existen '+str(nFiles)+' archivos .fdt' | |
518 |
|
518 | |||
519 | self.filenameList=FileList #List of files from least to largest by names |
|
519 | self.filenameList=FileList #List of files from least to largest by names | |
520 |
|
520 | |||
521 |
|
521 | |||
522 | def run(self, **kwargs): |
|
522 | def run(self, **kwargs): | |
523 | ''' |
|
523 | ''' | |
524 | This method will be the one that will initiate the data entry, will be called constantly. |
|
524 | This method will be the one that will initiate the data entry, will be called constantly. | |
525 | You should first verify that your Setup () is set up and then continue to acquire |
|
525 | You should first verify that your Setup () is set up and then continue to acquire | |
526 | the data to be processed with getData (). |
|
526 | the data to be processed with getData (). | |
527 | ''' |
|
527 | ''' | |
528 | if not self.isConfig: |
|
528 | if not self.isConfig: | |
529 | self.setup(**kwargs) |
|
529 | self.setup(**kwargs) | |
530 | self.isConfig = True |
|
530 | self.isConfig = True | |
531 |
|
531 | |||
532 | self.getData() |
|
532 | self.getData() | |
533 | #print 'running' |
|
533 | #print 'running' | |
534 |
|
534 | |||
535 |
|
535 | |||
536 | def setup(self, path=None, |
|
536 | def setup(self, path=None, | |
537 | startDate=None, |
|
537 | startDate=None, | |
538 | endDate=None, |
|
538 | endDate=None, | |
539 | startTime=None, |
|
539 | startTime=None, | |
540 | endTime=None, |
|
540 | endTime=None, | |
541 | walk=True, |
|
541 | walk=True, | |
542 | timezone='utc', |
|
542 | timezone='utc', | |
543 | code = None, |
|
543 | code = None, | |
544 | online=False, |
|
544 | online=False, | |
545 | ReadMode=None, |
|
545 | ReadMode=None, | |
546 | **kwargs): |
|
546 | **kwargs): | |
547 |
|
547 | |||
548 | self.isConfig = True |
|
548 | self.isConfig = True | |
549 |
|
549 | |||
550 | self.path=path |
|
550 | self.path=path | |
551 | self.startDate=startDate |
|
551 | self.startDate=startDate | |
552 | self.endDate=endDate |
|
552 | self.endDate=endDate | |
553 | self.startTime=startTime |
|
553 | self.startTime=startTime | |
554 | self.endTime=endTime |
|
554 | self.endTime=endTime | |
555 | self.walk=walk |
|
555 | self.walk=walk | |
556 | self.ReadMode=int(ReadMode) |
|
556 | self.ReadMode=int(ReadMode) | |
557 |
|
557 | |||
558 | pass |
|
558 | pass | |
559 |
|
559 | |||
560 |
|
560 | |||
561 | def getData(self): |
|
561 | def getData(self): | |
562 | ''' |
|
562 | ''' | |
563 | Before starting this function, you should check that there is still an unread file, |
|
563 | Before starting this function, you should check that there is still an unread file, | |
564 | If there are still blocks to read or if the data block is empty. |
|
564 | If there are still blocks to read or if the data block is empty. | |
565 |
|
565 | |||
566 | You should call the file "read". |
|
566 | You should call the file "read". | |
567 |
|
567 | |||
568 | ''' |
|
568 | ''' | |
569 |
|
569 | |||
570 | if self.flagNoMoreFiles: |
|
570 | if self.flagNoMoreFiles: | |
571 | self.dataOut.flagNoData = True |
|
571 | self.dataOut.flagNoData = True | |
572 | print 'NoData se vuelve true' |
|
572 | print 'NoData se vuelve true' | |
573 | return 0 |
|
573 | return 0 | |
574 |
|
574 | |||
575 | self.fp=self.path |
|
575 | self.fp=self.path | |
576 | self.Files2Read(self.fp) |
|
576 | self.Files2Read(self.fp) | |
577 | self.readFile(self.fp) |
|
577 | self.readFile(self.fp) | |
578 | self.dataOut.data_spc = self.data_spc |
|
578 | self.dataOut.data_spc = self.data_spc | |
579 | self.dataOut.data_cspc =self.data_cspc |
|
579 | self.dataOut.data_cspc =self.data_cspc | |
580 | self.dataOut.data_output=self.data_output |
|
580 | self.dataOut.data_output=self.data_output | |
581 |
|
581 | |||
582 | print 'self.dataOut.data_output', shape(self.dataOut.data_output) |
|
582 | print 'self.dataOut.data_output', shape(self.dataOut.data_output) | |
583 |
|
583 | |||
584 | #self.removeDC() |
|
584 | #self.removeDC() | |
585 | return self.dataOut.data_spc |
|
585 | return self.dataOut.data_spc | |
586 |
|
586 | |||
587 |
|
587 | |||
588 | def readFile(self,fp): |
|
588 | def readFile(self,fp): | |
589 | ''' |
|
589 | ''' | |
590 | You must indicate if you are reading in Online or Offline mode and load the |
|
590 | You must indicate if you are reading in Online or Offline mode and load the | |
591 | The parameters for this file reading mode. |
|
591 | The parameters for this file reading mode. | |
592 |
|
592 | |||
593 | Then you must do 2 actions: |
|
593 | Then you must do 2 actions: | |
594 |
|
594 | |||
595 | 1. Get the BLTR FileHeader. |
|
595 | 1. Get the BLTR FileHeader. | |
596 | 2. Start reading the first block. |
|
596 | 2. Start reading the first block. | |
597 | ''' |
|
597 | ''' | |
598 |
|
598 | |||
599 | #The address of the folder is generated the name of the .fdt file that will be read |
|
599 | #The address of the folder is generated the name of the .fdt file that will be read | |
600 | print "File: ",self.fileSelector+1 |
|
600 | print "File: ",self.fileSelector+1 | |
601 |
|
601 | |||
602 | if self.fileSelector < len(self.filenameList): |
|
602 | if self.fileSelector < len(self.filenameList): | |
603 |
|
603 | |||
604 | self.fpFile=str(fp)+'/'+str(self.filenameList[self.fileSelector]) |
|
604 | self.fpFile=str(fp)+'/'+str(self.filenameList[self.fileSelector]) | |
605 | #print self.fpFile |
|
605 | #print self.fpFile | |
606 | fheader = FileHeaderBLTR() |
|
606 | fheader = FileHeaderBLTR() | |
607 | fheader.FHread(self.fpFile) #Bltr FileHeader Reading |
|
607 | fheader.FHread(self.fpFile) #Bltr FileHeader Reading | |
608 | self.nFDTdataRecors=fheader.nFDTdataRecors |
|
608 | self.nFDTdataRecors=fheader.nFDTdataRecors | |
609 |
|
609 | |||
610 | self.readBlock() #Block reading |
|
610 | self.readBlock() #Block reading | |
611 | else: |
|
611 | else: | |
612 | print 'readFile FlagNoData becomes true' |
|
612 | print 'readFile FlagNoData becomes true' | |
613 | self.flagNoMoreFiles=True |
|
613 | self.flagNoMoreFiles=True | |
614 | self.dataOut.flagNoData = True |
|
614 | self.dataOut.flagNoData = True | |
615 | return 0 |
|
615 | return 0 | |
616 |
|
616 | |||
617 | def getVelRange(self, extrapoints=0): |
|
617 | def getVelRange(self, extrapoints=0): | |
618 | Lambda= SPEED_OF_LIGHT/50000000 |
|
618 | Lambda= SPEED_OF_LIGHT/50000000 | |
619 | PRF = self.dataOut.PRF#1./(self.dataOut.ippSeconds * self.dataOut.nCohInt) |
|
619 | PRF = self.dataOut.PRF#1./(self.dataOut.ippSeconds * self.dataOut.nCohInt) | |
620 | Vmax=-Lambda/(4.*(1./PRF)*self.dataOut.nCohInt*2.) |
|
620 | Vmax=-Lambda/(4.*(1./PRF)*self.dataOut.nCohInt*2.) | |
621 | deltafreq = PRF / (self.nProfiles) |
|
621 | deltafreq = PRF / (self.nProfiles) | |
622 | deltavel = (Vmax*2) / (self.nProfiles) |
|
622 | deltavel = (Vmax*2) / (self.nProfiles) | |
623 | freqrange = deltafreq*(numpy.arange(self.nProfiles)-self.nProfiles/2.) - deltafreq/2 |
|
623 | freqrange = deltafreq*(numpy.arange(self.nProfiles)-self.nProfiles/2.) - deltafreq/2 | |
624 | velrange = deltavel*(numpy.arange(self.nProfiles)-self.nProfiles/2.) |
|
624 | velrange = deltavel*(numpy.arange(self.nProfiles)-self.nProfiles/2.) | |
625 | return velrange |
|
625 | return velrange | |
626 |
|
626 | |||
627 | def readBlock(self): |
|
627 | def readBlock(self): | |
628 | ''' |
|
628 | ''' | |
629 | It should be checked if the block has data, if it is not passed to the next file. |
|
629 | It should be checked if the block has data, if it is not passed to the next file. | |
630 |
|
630 | |||
631 | Then the following is done: |
|
631 | Then the following is done: | |
632 |
|
632 | |||
633 | 1. Read the RecordHeader |
|
633 | 1. Read the RecordHeader | |
634 | 2. Fill the buffer with the current block number. |
|
634 | 2. Fill the buffer with the current block number. | |
635 |
|
635 | |||
636 | ''' |
|
636 | ''' | |
637 |
|
637 | |||
638 | if self.BlockCounter < self.nFDTdataRecors-2: |
|
638 | if self.BlockCounter < self.nFDTdataRecors-2: | |
639 | print self.nFDTdataRecors, 'CONDICION!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' |
|
639 | print self.nFDTdataRecors, 'CONDICION!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' | |
640 | if self.ReadMode==1: |
|
640 | if self.ReadMode==1: | |
641 | rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter+1) |
|
641 | rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter+1) | |
642 | elif self.ReadMode==0: |
|
642 | elif self.ReadMode==0: | |
643 | rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter) |
|
643 | rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter) | |
644 |
|
644 | |||
645 | rheader.RHread(self.fpFile) #Bltr FileHeader Reading |
|
645 | rheader.RHread(self.fpFile) #Bltr FileHeader Reading | |
646 |
|
646 | |||
647 | self.OffsetStartHeader=rheader.OffsetStartHeader |
|
647 | self.OffsetStartHeader=rheader.OffsetStartHeader | |
648 | self.RecCounter=rheader.RecCounter |
|
648 | self.RecCounter=rheader.RecCounter | |
649 | self.Off2StartNxtRec=rheader.Off2StartNxtRec |
|
649 | self.Off2StartNxtRec=rheader.Off2StartNxtRec | |
650 | self.Off2StartData=rheader.Off2StartData |
|
650 | self.Off2StartData=rheader.Off2StartData | |
651 | self.nProfiles=rheader.nProfiles |
|
651 | self.nProfiles=rheader.nProfiles | |
652 | self.nChannels=rheader.nChannels |
|
652 | self.nChannels=rheader.nChannels | |
653 | self.nHeights=rheader.nHeights |
|
653 | self.nHeights=rheader.nHeights | |
654 | self.frequency=rheader.TransmitFrec |
|
654 | self.frequency=rheader.TransmitFrec | |
655 | self.DualModeIndex=rheader.DualModeIndex |
|
655 | self.DualModeIndex=rheader.DualModeIndex | |
656 |
|
656 | |||
657 | self.pairsList =[(0,1),(0,2),(1,2)] |
|
657 | self.pairsList =[(0,1),(0,2),(1,2)] | |
658 | self.dataOut.pairsList = self.pairsList |
|
658 | self.dataOut.pairsList = self.pairsList | |
659 |
|
659 | |||
660 | self.nRdPairs=len(self.dataOut.pairsList) |
|
660 | self.nRdPairs=len(self.dataOut.pairsList) | |
661 | self.dataOut.nRdPairs = self.nRdPairs |
|
661 | self.dataOut.nRdPairs = self.nRdPairs | |
662 |
|
662 | |||
663 | self.__firstHeigth=rheader.StartRangeSamp |
|
663 | self.__firstHeigth=rheader.StartRangeSamp | |
664 | self.__deltaHeigth=rheader.SampResolution |
|
664 | self.__deltaHeigth=rheader.SampResolution | |
665 | self.dataOut.heightList= self.__firstHeigth + numpy.array(range(self.nHeights))*self.__deltaHeigth |
|
665 | self.dataOut.heightList= self.__firstHeigth + numpy.array(range(self.nHeights))*self.__deltaHeigth | |
666 | self.dataOut.channelList = range(self.nChannels) |
|
666 | self.dataOut.channelList = range(self.nChannels) | |
667 | self.dataOut.nProfiles=rheader.nProfiles |
|
667 | self.dataOut.nProfiles=rheader.nProfiles | |
668 | self.dataOut.nIncohInt=rheader.nIncohInt |
|
668 | self.dataOut.nIncohInt=rheader.nIncohInt | |
669 | self.dataOut.nCohInt=rheader.nCohInt |
|
669 | self.dataOut.nCohInt=rheader.nCohInt | |
670 | self.dataOut.ippSeconds= 1/float(rheader.PRFhz) |
|
670 | self.dataOut.ippSeconds= 1/float(rheader.PRFhz) | |
671 | self.dataOut.PRF=rheader.PRFhz |
|
671 | self.dataOut.PRF=rheader.PRFhz | |
672 | self.dataOut.nFFTPoints=rheader.nProfiles |
|
672 | self.dataOut.nFFTPoints=rheader.nProfiles | |
673 | self.dataOut.utctime=rheader.nUtime |
|
673 | self.dataOut.utctime=rheader.nUtime | |
674 | self.dataOut.timeZone=0 |
|
674 | self.dataOut.timeZone=0 | |
675 | self.dataOut.normFactor= self.dataOut.nProfiles*self.dataOut.nIncohInt*self.dataOut.nCohInt |
|
675 | self.dataOut.normFactor= self.dataOut.nProfiles*self.dataOut.nIncohInt*self.dataOut.nCohInt | |
676 | self.dataOut.outputInterval= self.dataOut.ippSeconds * self.dataOut.nCohInt * self.dataOut.nIncohInt * self.nProfiles |
|
676 | self.dataOut.outputInterval= self.dataOut.ippSeconds * self.dataOut.nCohInt * self.dataOut.nIncohInt * self.nProfiles | |
677 |
|
677 | |||
678 | self.data_output=numpy.ones([3,rheader.nHeights])*numpy.NaN |
|
678 | self.data_output=numpy.ones([3,rheader.nHeights])*numpy.NaN | |
679 | print 'self.data_output', shape(self.data_output) |
|
679 | print 'self.data_output', shape(self.data_output) | |
680 | self.dataOut.velocityX=[] |
|
680 | self.dataOut.velocityX=[] | |
681 | self.dataOut.velocityY=[] |
|
681 | self.dataOut.velocityY=[] | |
682 | self.dataOut.velocityV=[] |
|
682 | self.dataOut.velocityV=[] | |
683 |
|
683 | |||
684 | '''Block Reading, the Block Data is received and Reshape is used to give it |
|
684 | '''Block Reading, the Block Data is received and Reshape is used to give it | |
685 | shape. |
|
685 | shape. | |
686 | ''' |
|
686 | ''' | |
687 |
|
687 | |||
688 | #Procedure to take the pointer to where the date block starts |
|
688 | #Procedure to take the pointer to where the date block starts | |
689 | startDATA = open(self.fpFile,"rb") |
|
689 | startDATA = open(self.fpFile,"rb") | |
690 | OffDATA= self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec+self.Off2StartData |
|
690 | OffDATA= self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec+self.Off2StartData | |
691 | startDATA.seek(OffDATA, os.SEEK_SET) |
|
691 | startDATA.seek(OffDATA, os.SEEK_SET) | |
692 |
|
692 | |||
693 | def moving_average(x, N=2): |
|
693 | def moving_average(x, N=2): | |
694 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] |
|
694 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] | |
695 |
|
695 | |||
696 | def gaus(xSamples,a,x0,sigma): |
|
696 | def gaus(xSamples,a,x0,sigma): | |
697 | return a*exp(-(xSamples-x0)**2/(2*sigma**2)) |
|
697 | return a*exp(-(xSamples-x0)**2/(2*sigma**2)) | |
698 |
|
698 | |||
699 | def Find(x,value): |
|
699 | def Find(x,value): | |
700 | for index in range(len(x)): |
|
700 | for index in range(len(x)): | |
701 | if x[index]==value: |
|
701 | if x[index]==value: | |
702 | return index |
|
702 | return index | |
703 |
|
703 | |||
704 | def pol2cart(rho, phi): |
|
704 | def pol2cart(rho, phi): | |
705 | x = rho * numpy.cos(phi) |
|
705 | x = rho * numpy.cos(phi) | |
706 | y = rho * numpy.sin(phi) |
|
706 | y = rho * numpy.sin(phi) | |
707 | return(x, y) |
|
707 | return(x, y) | |
708 |
|
708 | |||
709 |
|
709 | |||
710 |
|
710 | |||
711 |
|
711 | |||
712 | if self.DualModeIndex==self.ReadMode: |
|
712 | if self.DualModeIndex==self.ReadMode: | |
713 |
|
713 | |||
714 | self.data_fft = numpy.fromfile( startDATA, [('complex','<c8')],self.nProfiles*self.nChannels*self.nHeights ) |
|
714 | self.data_fft = numpy.fromfile( startDATA, [('complex','<c8')],self.nProfiles*self.nChannels*self.nHeights ) | |
715 |
|
715 | |||
716 | self.data_fft=self.data_fft.astype(numpy.dtype('complex')) |
|
716 | self.data_fft=self.data_fft.astype(numpy.dtype('complex')) | |
717 |
|
717 | |||
718 | self.data_block=numpy.reshape(self.data_fft,(self.nHeights, self.nChannels, self.nProfiles )) |
|
718 | self.data_block=numpy.reshape(self.data_fft,(self.nHeights, self.nChannels, self.nProfiles )) | |
719 |
|
719 | |||
720 | self.data_block = numpy.transpose(self.data_block, (1,2,0)) |
|
720 | self.data_block = numpy.transpose(self.data_block, (1,2,0)) | |
721 |
|
721 | |||
722 | copy = self.data_block.copy() |
|
722 | copy = self.data_block.copy() | |
723 | spc = copy * numpy.conjugate(copy) |
|
723 | spc = copy * numpy.conjugate(copy) | |
724 |
|
724 | |||
725 | self.data_spc = numpy.absolute(spc) # valor absoluto o magnitud |
|
725 | self.data_spc = numpy.absolute(spc) # valor absoluto o magnitud | |
726 |
|
726 | |||
727 | factor = self.dataOut.normFactor |
|
727 | factor = self.dataOut.normFactor | |
728 |
|
728 | |||
729 |
|
729 | |||
730 | z = self.data_spc.copy()#/factor |
|
730 | z = self.data_spc.copy()#/factor | |
731 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
731 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
732 | #zdB = 10*numpy.log10(z) |
|
732 | #zdB = 10*numpy.log10(z) | |
733 | print ' ' |
|
733 | print ' ' | |
734 | print 'Z: ' |
|
734 | print 'Z: ' | |
735 | print shape(z) |
|
735 | print shape(z) | |
736 | print ' ' |
|
736 | print ' ' | |
737 | print ' ' |
|
737 | print ' ' | |
738 |
|
738 | |||
739 | self.dataOut.data_spc=self.data_spc |
|
739 | self.dataOut.data_spc=self.data_spc | |
740 |
|
740 | |||
741 | self.noise = self.dataOut.getNoise(ymin_index=80, ymax_index=132)#/factor |
|
741 | self.noise = self.dataOut.getNoise(ymin_index=80, ymax_index=132)#/factor | |
742 | #noisedB = 10*numpy.log10(self.noise) |
|
742 | #noisedB = 10*numpy.log10(self.noise) | |
743 |
|
743 | |||
744 |
|
744 | |||
745 | ySamples=numpy.ones([3,self.nProfiles]) |
|
745 | ySamples=numpy.ones([3,self.nProfiles]) | |
746 | phase=numpy.ones([3,self.nProfiles]) |
|
746 | phase=numpy.ones([3,self.nProfiles]) | |
747 | CSPCSamples=numpy.ones([3,self.nProfiles],dtype=numpy.complex_) |
|
747 | CSPCSamples=numpy.ones([3,self.nProfiles],dtype=numpy.complex_) | |
748 | coherence=numpy.ones([3,self.nProfiles]) |
|
748 | coherence=numpy.ones([3,self.nProfiles]) | |
749 | PhaseSlope=numpy.ones(3) |
|
749 | PhaseSlope=numpy.ones(3) | |
750 | PhaseInter=numpy.ones(3) |
|
750 | PhaseInter=numpy.ones(3) | |
751 |
|
751 | |||
752 | '''****** Getting CrossSpectra ******''' |
|
752 | '''****** Getting CrossSpectra ******''' | |
753 | cspc=self.data_block.copy() |
|
753 | cspc=self.data_block.copy() | |
754 | self.data_cspc=self.data_block.copy() |
|
754 | self.data_cspc=self.data_block.copy() | |
755 |
|
755 | |||
756 | xFrec=self.getVelRange(1) |
|
756 | xFrec=self.getVelRange(1) | |
757 | VelRange=self.getVelRange(1) |
|
757 | VelRange=self.getVelRange(1) | |
758 | self.dataOut.VelRange=VelRange |
|
758 | self.dataOut.VelRange=VelRange | |
759 | #print ' ' |
|
759 | #print ' ' | |
760 | #print ' ' |
|
760 | #print ' ' | |
761 | #print 'xFrec',xFrec |
|
761 | #print 'xFrec',xFrec | |
762 | #print ' ' |
|
762 | #print ' ' | |
763 | #print ' ' |
|
763 | #print ' ' | |
764 | #Height=35 |
|
764 | #Height=35 | |
|
765 | ||||
765 | for i in range(self.nRdPairs): |
|
766 | for i in range(self.nRdPairs): | |
766 |
|
767 | |||
767 | chan_index0 = self.dataOut.pairsList[i][0] |
|
768 | chan_index0 = self.dataOut.pairsList[i][0] | |
768 | chan_index1 = self.dataOut.pairsList[i][1] |
|
769 | chan_index1 = self.dataOut.pairsList[i][1] | |
769 |
|
770 | |||
770 | self.data_cspc[i,:,:]=cspc[chan_index0,:,:] * numpy.conjugate(cspc[chan_index1,:,:]) |
|
771 | self.data_cspc[i,:,:]=cspc[chan_index0,:,:] * numpy.conjugate(cspc[chan_index1,:,:]) | |
771 |
|
772 | |||
772 |
|
773 | |||
773 | '''Getting Eij and Nij''' |
|
774 | '''Getting Eij and Nij''' | |
774 | (AntennaX0,AntennaY0)=pol2cart(rheader.AntennaCoord0, rheader.AntennaAngl0*numpy.pi/180) |
|
775 | (AntennaX0,AntennaY0)=pol2cart(rheader.AntennaCoord0, rheader.AntennaAngl0*numpy.pi/180) | |
775 | (AntennaX1,AntennaY1)=pol2cart(rheader.AntennaCoord1, rheader.AntennaAngl1*numpy.pi/180) |
|
776 | (AntennaX1,AntennaY1)=pol2cart(rheader.AntennaCoord1, rheader.AntennaAngl1*numpy.pi/180) | |
776 | (AntennaX2,AntennaY2)=pol2cart(rheader.AntennaCoord2, rheader.AntennaAngl2*numpy.pi/180) |
|
777 | (AntennaX2,AntennaY2)=pol2cart(rheader.AntennaCoord2, rheader.AntennaAngl2*numpy.pi/180) | |
777 |
|
778 | |||
778 | E01=AntennaX0-AntennaX1 |
|
779 | E01=AntennaX0-AntennaX1 | |
779 | N01=AntennaY0-AntennaY1 |
|
780 | N01=AntennaY0-AntennaY1 | |
780 |
|
781 | |||
781 | E02=AntennaX0-AntennaX2 |
|
782 | E02=AntennaX0-AntennaX2 | |
782 | N02=AntennaY0-AntennaY2 |
|
783 | N02=AntennaY0-AntennaY2 | |
783 |
|
784 | |||
784 | E12=AntennaX1-AntennaX2 |
|
785 | E12=AntennaX1-AntennaX2 | |
785 | N12=AntennaY1-AntennaY2 |
|
786 | N12=AntennaY1-AntennaY2 | |
786 |
|
787 | |||
787 | self.ChanDist= numpy.array([[E01, N01],[E02,N02],[E12,N12]]) |
|
788 | self.ChanDist= numpy.array([[E01, N01],[E02,N02],[E12,N12]]) | |
788 |
|
789 | |||
789 | self.dataOut.ChanDist = self.ChanDist |
|
790 | self.dataOut.ChanDist = self.ChanDist | |
790 |
|
791 | |||
791 |
|
792 | |||
792 | # for Height in range(self.nHeights): |
|
793 | # for Height in range(self.nHeights): | |
793 | # |
|
794 | # | |
794 | # for i in range(self.nRdPairs): |
|
795 | # for i in range(self.nRdPairs): | |
795 | # |
|
796 | # | |
796 | # '''****** Line of Data SPC ******''' |
|
797 | # '''****** Line of Data SPC ******''' | |
797 | # zline=z[i,:,Height] |
|
798 | # zline=z[i,:,Height] | |
798 | # |
|
799 | # | |
799 | # '''****** DC is removed ******''' |
|
800 | # '''****** DC is removed ******''' | |
800 | # DC=Find(zline,numpy.amax(zline)) |
|
801 | # DC=Find(zline,numpy.amax(zline)) | |
801 | # zline[DC]=(zline[DC-1]+zline[DC+1])/2 |
|
802 | # zline[DC]=(zline[DC-1]+zline[DC+1])/2 | |
802 | # |
|
803 | # | |
803 | # |
|
804 | # | |
804 | # '''****** SPC is normalized ******''' |
|
805 | # '''****** SPC is normalized ******''' | |
805 | # FactNorm= zline.copy() / numpy.sum(zline.copy()) |
|
806 | # FactNorm= zline.copy() / numpy.sum(zline.copy()) | |
806 | # FactNorm= FactNorm/numpy.sum(FactNorm) |
|
807 | # FactNorm= FactNorm/numpy.sum(FactNorm) | |
807 | # |
|
808 | # | |
808 | # SmoothSPC=moving_average(FactNorm,N=3) |
|
809 | # SmoothSPC=moving_average(FactNorm,N=3) | |
809 | # |
|
810 | # | |
810 | # xSamples = ar(range(len(SmoothSPC))) |
|
811 | # xSamples = ar(range(len(SmoothSPC))) | |
811 | # ySamples[i] = SmoothSPC-self.noise[i] |
|
812 | # ySamples[i] = SmoothSPC-self.noise[i] | |
812 | # |
|
813 | # | |
813 | # for i in range(self.nRdPairs): |
|
814 | # for i in range(self.nRdPairs): | |
814 | # |
|
815 | # | |
815 | # '''****** Line of Data CSPC ******''' |
|
816 | # '''****** Line of Data CSPC ******''' | |
816 | # cspcLine=self.data_cspc[i,:,Height].copy() |
|
817 | # cspcLine=self.data_cspc[i,:,Height].copy() | |
817 | # |
|
818 | # | |
818 | # |
|
819 | # | |
819 | # |
|
820 | # | |
820 | # '''****** CSPC is normalized ******''' |
|
821 | # '''****** CSPC is normalized ******''' | |
821 | # chan_index0 = self.dataOut.pairsList[i][0] |
|
822 | # chan_index0 = self.dataOut.pairsList[i][0] | |
822 | # chan_index1 = self.dataOut.pairsList[i][1] |
|
823 | # chan_index1 = self.dataOut.pairsList[i][1] | |
823 | # CSPCFactor= numpy.sum(ySamples[chan_index0]) * numpy.sum(ySamples[chan_index1]) |
|
824 | # CSPCFactor= numpy.sum(ySamples[chan_index0]) * numpy.sum(ySamples[chan_index1]) | |
824 | # |
|
825 | # | |
825 | # |
|
826 | # | |
826 | # CSPCNorm= cspcLine.copy() / numpy.sqrt(CSPCFactor) |
|
827 | # CSPCNorm= cspcLine.copy() / numpy.sqrt(CSPCFactor) | |
827 | # |
|
828 | # | |
828 | # |
|
829 | # | |
829 | # CSPCSamples[i] = CSPCNorm-self.noise[i] |
|
830 | # CSPCSamples[i] = CSPCNorm-self.noise[i] | |
830 | # coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) |
|
831 | # coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) | |
831 | # |
|
832 | # | |
832 | # '''****** DC is removed ******''' |
|
833 | # '''****** DC is removed ******''' | |
833 | # DC=Find(coherence[i],numpy.amax(coherence[i])) |
|
834 | # DC=Find(coherence[i],numpy.amax(coherence[i])) | |
834 | # coherence[i][DC]=(coherence[i][DC-1]+coherence[i][DC+1])/2 |
|
835 | # coherence[i][DC]=(coherence[i][DC-1]+coherence[i][DC+1])/2 | |
835 | # coherence[i]= moving_average(coherence[i],N=2) |
|
836 | # coherence[i]= moving_average(coherence[i],N=2) | |
836 | # |
|
837 | # | |
837 | # phase[i] = moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi |
|
838 | # phase[i] = moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi | |
838 | # |
|
839 | # | |
839 | # |
|
840 | # | |
840 | # '''****** Getting fij width ******''' |
|
841 | # '''****** Getting fij width ******''' | |
841 | # |
|
842 | # | |
842 | # yMean=[] |
|
843 | # yMean=[] | |
843 | # yMean2=[] |
|
844 | # yMean2=[] | |
844 | # |
|
845 | # | |
845 | # for j in range(len(ySamples[1])): |
|
846 | # for j in range(len(ySamples[1])): | |
846 | # yMean=numpy.append(yMean,numpy.average([ySamples[0,j],ySamples[1,j],ySamples[2,j]])) |
|
847 | # yMean=numpy.append(yMean,numpy.average([ySamples[0,j],ySamples[1,j],ySamples[2,j]])) | |
847 | # |
|
848 | # | |
848 | # '''******* Getting fitting Gaussian ******''' |
|
849 | # '''******* Getting fitting Gaussian ******''' | |
849 | # meanGauss=sum(xSamples*yMean) / len(xSamples) |
|
850 | # meanGauss=sum(xSamples*yMean) / len(xSamples) | |
850 | # sigma=sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) |
|
851 | # sigma=sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) | |
851 | # #print 'Height',Height,'SNR', meanGauss/sigma**2 |
|
852 | # #print 'Height',Height,'SNR', meanGauss/sigma**2 | |
852 | # |
|
853 | # | |
853 | # if (abs(meanGauss/sigma**2) > 0.0001) : |
|
854 | # if (abs(meanGauss/sigma**2) > 0.0001) : | |
854 | # |
|
855 | # | |
855 | # try: |
|
856 | # try: | |
856 | # popt,pcov = curve_fit(gaus,xSamples,yMean,p0=[1,meanGauss,sigma]) |
|
857 | # popt,pcov = curve_fit(gaus,xSamples,yMean,p0=[1,meanGauss,sigma]) | |
857 | # |
|
858 | # | |
858 | # if numpy.amax(popt)>numpy.amax(yMean)*0.3: |
|
859 | # if numpy.amax(popt)>numpy.amax(yMean)*0.3: | |
859 | # FitGauss=gaus(xSamples,*popt) |
|
860 | # FitGauss=gaus(xSamples,*popt) | |
860 | # |
|
861 | # | |
861 | # else: |
|
862 | # else: | |
862 | # FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
863 | # FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
863 | # print 'Verificador: Dentro', Height |
|
864 | # print 'Verificador: Dentro', Height | |
864 | # except RuntimeError: |
|
865 | # except RuntimeError: | |
865 | # |
|
866 | # | |
866 | # try: |
|
867 | # try: | |
867 | # for j in range(len(ySamples[1])): |
|
868 | # for j in range(len(ySamples[1])): | |
868 | # yMean2=numpy.append(yMean2,numpy.average([ySamples[1,j],ySamples[2,j]])) |
|
869 | # yMean2=numpy.append(yMean2,numpy.average([ySamples[1,j],ySamples[2,j]])) | |
869 | # popt,pcov = curve_fit(gaus,xSamples,yMean2,p0=[1,meanGauss,sigma]) |
|
870 | # popt,pcov = curve_fit(gaus,xSamples,yMean2,p0=[1,meanGauss,sigma]) | |
870 | # FitGauss=gaus(xSamples,*popt) |
|
871 | # FitGauss=gaus(xSamples,*popt) | |
871 | # print 'Verificador: Exepcion1', Height |
|
872 | # print 'Verificador: Exepcion1', Height | |
872 | # except RuntimeError: |
|
873 | # except RuntimeError: | |
873 | # |
|
874 | # | |
874 | # try: |
|
875 | # try: | |
875 | # popt,pcov = curve_fit(gaus,xSamples,ySamples[1],p0=[1,meanGauss,sigma]) |
|
876 | # popt,pcov = curve_fit(gaus,xSamples,ySamples[1],p0=[1,meanGauss,sigma]) | |
876 | # FitGauss=gaus(xSamples,*popt) |
|
877 | # FitGauss=gaus(xSamples,*popt) | |
877 | # print 'Verificador: Exepcion2', Height |
|
878 | # print 'Verificador: Exepcion2', Height | |
878 | # except RuntimeError: |
|
879 | # except RuntimeError: | |
879 | # FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
880 | # FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
880 | # print 'Verificador: Exepcion3', Height |
|
881 | # print 'Verificador: Exepcion3', Height | |
881 | # else: |
|
882 | # else: | |
882 | # FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
883 | # FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
883 | # #print 'Verificador: Fuera', Height |
|
884 | # #print 'Verificador: Fuera', Height | |
884 | # |
|
885 | # | |
885 | # |
|
886 | # | |
886 | # |
|
887 | # | |
887 | # Maximun=numpy.amax(yMean) |
|
888 | # Maximun=numpy.amax(yMean) | |
888 | # eMinus1=Maximun*numpy.exp(-1) |
|
889 | # eMinus1=Maximun*numpy.exp(-1) | |
889 | # |
|
890 | # | |
890 | # HWpos=Find(FitGauss,min(FitGauss, key=lambda value:abs(value-eMinus1))) |
|
891 | # HWpos=Find(FitGauss,min(FitGauss, key=lambda value:abs(value-eMinus1))) | |
891 | # HalfWidth= xFrec[HWpos] |
|
892 | # HalfWidth= xFrec[HWpos] | |
892 | # GCpos=Find(FitGauss, numpy.amax(FitGauss)) |
|
893 | # GCpos=Find(FitGauss, numpy.amax(FitGauss)) | |
893 | # Vpos=Find(FactNorm, numpy.amax(FactNorm)) |
|
894 | # Vpos=Find(FactNorm, numpy.amax(FactNorm)) | |
894 | # #Vpos=numpy.sum(FactNorm)/len(FactNorm) |
|
895 | # #Vpos=numpy.sum(FactNorm)/len(FactNorm) | |
895 | # #Vpos=Find(FactNorm, min(FactNorm, key=lambda value:abs(value- numpy.mean(FactNorm) ))) |
|
896 | # #Vpos=Find(FactNorm, min(FactNorm, key=lambda value:abs(value- numpy.mean(FactNorm) ))) | |
896 | # #print 'GCpos',GCpos, numpy.amax(FitGauss), 'HWpos',HWpos |
|
897 | # #print 'GCpos',GCpos, numpy.amax(FitGauss), 'HWpos',HWpos | |
897 | # '''****** Getting Fij ******''' |
|
898 | # '''****** Getting Fij ******''' | |
898 | # |
|
899 | # | |
899 | # GaussCenter=xFrec[GCpos] |
|
900 | # GaussCenter=xFrec[GCpos] | |
900 | # if (GaussCenter<0 and HalfWidth>0) or (GaussCenter>0 and HalfWidth<0): |
|
901 | # if (GaussCenter<0 and HalfWidth>0) or (GaussCenter>0 and HalfWidth<0): | |
901 | # Fij=abs(GaussCenter)+abs(HalfWidth)+0.0000001 |
|
902 | # Fij=abs(GaussCenter)+abs(HalfWidth)+0.0000001 | |
902 | # else: |
|
903 | # else: | |
903 | # Fij=abs(GaussCenter-HalfWidth)+0.0000001 |
|
904 | # Fij=abs(GaussCenter-HalfWidth)+0.0000001 | |
904 | # |
|
905 | # | |
905 | # '''****** Getting Frecuency range of significant data ******''' |
|
906 | # '''****** Getting Frecuency range of significant data ******''' | |
906 | # |
|
907 | # | |
907 | # Rangpos=Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.10))) |
|
908 | # Rangpos=Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.10))) | |
908 | # |
|
909 | # | |
909 | # if Rangpos<GCpos: |
|
910 | # if Rangpos<GCpos: | |
910 | # Range=numpy.array([Rangpos,2*GCpos-Rangpos]) |
|
911 | # Range=numpy.array([Rangpos,2*GCpos-Rangpos]) | |
911 | # else: |
|
912 | # else: | |
912 | # Range=numpy.array([2*GCpos-Rangpos,Rangpos]) |
|
913 | # Range=numpy.array([2*GCpos-Rangpos,Rangpos]) | |
913 | # |
|
914 | # | |
914 | # FrecRange=xFrec[Range[0]:Range[1]] |
|
915 | # FrecRange=xFrec[Range[0]:Range[1]] | |
915 | # |
|
916 | # | |
916 | # #print 'FrecRange', FrecRange |
|
917 | # #print 'FrecRange', FrecRange | |
917 | # '''****** Getting SCPC Slope ******''' |
|
918 | # '''****** Getting SCPC Slope ******''' | |
918 | # |
|
919 | # | |
919 | # for i in range(self.nRdPairs): |
|
920 | # for i in range(self.nRdPairs): | |
920 | # |
|
921 | # | |
921 | # if len(FrecRange)>5 and len(FrecRange)<self.nProfiles*0.5: |
|
922 | # if len(FrecRange)>5 and len(FrecRange)<self.nProfiles*0.5: | |
922 | # PhaseRange=moving_average(phase[i,Range[0]:Range[1]],N=3) |
|
923 | # PhaseRange=moving_average(phase[i,Range[0]:Range[1]],N=3) | |
923 | # |
|
924 | # | |
924 | # slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange,PhaseRange) |
|
925 | # slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange,PhaseRange) | |
925 | # PhaseSlope[i]=slope |
|
926 | # PhaseSlope[i]=slope | |
926 | # PhaseInter[i]=intercept |
|
927 | # PhaseInter[i]=intercept | |
927 | # else: |
|
928 | # else: | |
928 | # PhaseSlope[i]=0 |
|
929 | # PhaseSlope[i]=0 | |
929 | # PhaseInter[i]=0 |
|
930 | # PhaseInter[i]=0 | |
930 | # |
|
931 | # | |
931 | # # plt.figure(i+15) |
|
932 | # # plt.figure(i+15) | |
932 | # # plt.title('FASE ( CH%s*CH%s )' %(self.dataOut.pairsList[i][0],self.dataOut.pairsList[i][1])) |
|
933 | # # plt.title('FASE ( CH%s*CH%s )' %(self.dataOut.pairsList[i][0],self.dataOut.pairsList[i][1])) | |
933 | # # plt.xlabel('Frecuencia (KHz)') |
|
934 | # # plt.xlabel('Frecuencia (KHz)') | |
934 | # # plt.ylabel('Magnitud') |
|
935 | # # plt.ylabel('Magnitud') | |
935 | # # #plt.subplot(311+i) |
|
936 | # # #plt.subplot(311+i) | |
936 | # # plt.plot(FrecRange,PhaseRange,'b') |
|
937 | # # plt.plot(FrecRange,PhaseRange,'b') | |
937 | # # plt.plot(FrecRange,FrecRange*PhaseSlope[i]+PhaseInter[i],'r') |
|
938 | # # plt.plot(FrecRange,FrecRange*PhaseSlope[i]+PhaseInter[i],'r') | |
938 | # |
|
939 | # | |
939 | # #plt.axis([-0.6, 0.2, -3.2, 3.2]) |
|
940 | # #plt.axis([-0.6, 0.2, -3.2, 3.2]) | |
940 | # |
|
941 | # | |
941 | # |
|
942 | # | |
942 | # '''Getting constant C''' |
|
943 | # '''Getting constant C''' | |
943 | # cC=(Fij*numpy.pi)**2 |
|
944 | # cC=(Fij*numpy.pi)**2 | |
944 | # |
|
945 | # | |
945 | # # '''Getting Eij and Nij''' |
|
946 | # # '''Getting Eij and Nij''' | |
946 | # # (AntennaX0,AntennaY0)=pol2cart(rheader.AntennaCoord0, rheader.AntennaAngl0*numpy.pi/180) |
|
947 | # # (AntennaX0,AntennaY0)=pol2cart(rheader.AntennaCoord0, rheader.AntennaAngl0*numpy.pi/180) | |
947 | # # (AntennaX1,AntennaY1)=pol2cart(rheader.AntennaCoord1, rheader.AntennaAngl1*numpy.pi/180) |
|
948 | # # (AntennaX1,AntennaY1)=pol2cart(rheader.AntennaCoord1, rheader.AntennaAngl1*numpy.pi/180) | |
948 | # # (AntennaX2,AntennaY2)=pol2cart(rheader.AntennaCoord2, rheader.AntennaAngl2*numpy.pi/180) |
|
949 | # # (AntennaX2,AntennaY2)=pol2cart(rheader.AntennaCoord2, rheader.AntennaAngl2*numpy.pi/180) | |
949 | # # |
|
950 | # # | |
950 | # # E01=AntennaX0-AntennaX1 |
|
951 | # # E01=AntennaX0-AntennaX1 | |
951 | # # N01=AntennaY0-AntennaY1 |
|
952 | # # N01=AntennaY0-AntennaY1 | |
952 | # # |
|
953 | # # | |
953 | # # E02=AntennaX0-AntennaX2 |
|
954 | # # E02=AntennaX0-AntennaX2 | |
954 | # # N02=AntennaY0-AntennaY2 |
|
955 | # # N02=AntennaY0-AntennaY2 | |
955 | # # |
|
956 | # # | |
956 | # # E12=AntennaX1-AntennaX2 |
|
957 | # # E12=AntennaX1-AntennaX2 | |
957 | # # N12=AntennaY1-AntennaY2 |
|
958 | # # N12=AntennaY1-AntennaY2 | |
958 | # |
|
959 | # | |
959 | # '''****** Getting constants F and G ******''' |
|
960 | # '''****** Getting constants F and G ******''' | |
960 | # MijEijNij=numpy.array([[E02,N02], [E12,N12]]) |
|
961 | # MijEijNij=numpy.array([[E02,N02], [E12,N12]]) | |
961 | # MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) |
|
962 | # MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) | |
962 | # MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) |
|
963 | # MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) | |
963 | # MijResults=numpy.array([MijResult0,MijResult1]) |
|
964 | # MijResults=numpy.array([MijResult0,MijResult1]) | |
964 | # (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) |
|
965 | # (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | |
965 | # |
|
966 | # | |
966 | # '''****** Getting constants A, B and H ******''' |
|
967 | # '''****** Getting constants A, B and H ******''' | |
967 | # W01=numpy.amax(coherence[0]) |
|
968 | # W01=numpy.amax(coherence[0]) | |
968 | # W02=numpy.amax(coherence[1]) |
|
969 | # W02=numpy.amax(coherence[1]) | |
969 | # W12=numpy.amax(coherence[2]) |
|
970 | # W12=numpy.amax(coherence[2]) | |
970 | # |
|
971 | # | |
971 | # WijResult0=((cF*E01+cG*N01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC)) |
|
972 | # WijResult0=((cF*E01+cG*N01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC)) | |
972 | # WijResult1=((cF*E02+cG*N02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC)) |
|
973 | # WijResult1=((cF*E02+cG*N02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC)) | |
973 | # WijResult2=((cF*E12+cG*N12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC)) |
|
974 | # WijResult2=((cF*E12+cG*N12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC)) | |
974 | # |
|
975 | # | |
975 | # WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) |
|
976 | # WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) | |
976 | # |
|
977 | # | |
977 | # WijEijNij=numpy.array([ [E01**2, N01**2, 2*E01*N01] , [E02**2, N02**2, 2*E02*N02] , [E12**2, N12**2, 2*E12*N12] ]) |
|
978 | # WijEijNij=numpy.array([ [E01**2, N01**2, 2*E01*N01] , [E02**2, N02**2, 2*E02*N02] , [E12**2, N12**2, 2*E12*N12] ]) | |
978 | # (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) |
|
979 | # (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) | |
979 | # |
|
980 | # | |
980 | # VxVy=numpy.array([[cA,cH],[cH,cB]]) |
|
981 | # VxVy=numpy.array([[cA,cH],[cH,cB]]) | |
981 | # |
|
982 | # | |
982 | # VxVyResults=numpy.array([-cF,-cG]) |
|
983 | # VxVyResults=numpy.array([-cF,-cG]) | |
983 | # (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) |
|
984 | # (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) | |
984 | # Vzon = Vy |
|
985 | # Vzon = Vy | |
985 | # Vmer = Vx |
|
986 | # Vmer = Vx | |
986 | # Vmag=numpy.sqrt(Vzon**2+Vmer**2) |
|
987 | # Vmag=numpy.sqrt(Vzon**2+Vmer**2) | |
987 | # Vang=numpy.arctan2(Vmer,Vzon) |
|
988 | # Vang=numpy.arctan2(Vmer,Vzon) | |
988 | # |
|
989 | # | |
989 | # if abs(Vy)<100 and abs(Vy)> 0.: |
|
990 | # if abs(Vy)<100 and abs(Vy)> 0.: | |
990 | # self.dataOut.velocityX=numpy.append(self.dataOut.velocityX, Vzon) #Vmag |
|
991 | # self.dataOut.velocityX=numpy.append(self.dataOut.velocityX, Vzon) #Vmag | |
991 | # #print 'Vmag',Vmag |
|
992 | # #print 'Vmag',Vmag | |
992 | # else: |
|
993 | # else: | |
993 | # self.dataOut.velocityX=numpy.append(self.dataOut.velocityX, NaN) |
|
994 | # self.dataOut.velocityX=numpy.append(self.dataOut.velocityX, NaN) | |
994 | # |
|
995 | # | |
995 | # if abs(Vx)<100 and abs(Vx) > 0.: |
|
996 | # if abs(Vx)<100 and abs(Vx) > 0.: | |
996 | # self.dataOut.velocityY=numpy.append(self.dataOut.velocityY, Vmer) #Vang |
|
997 | # self.dataOut.velocityY=numpy.append(self.dataOut.velocityY, Vmer) #Vang | |
997 | # #print 'Vang',Vang |
|
998 | # #print 'Vang',Vang | |
998 | # else: |
|
999 | # else: | |
999 | # self.dataOut.velocityY=numpy.append(self.dataOut.velocityY, NaN) |
|
1000 | # self.dataOut.velocityY=numpy.append(self.dataOut.velocityY, NaN) | |
1000 | # |
|
1001 | # | |
1001 | # if abs(GaussCenter)<2: |
|
1002 | # if abs(GaussCenter)<2: | |
1002 | # self.dataOut.velocityV=numpy.append(self.dataOut.velocityV, xFrec[Vpos]) |
|
1003 | # self.dataOut.velocityV=numpy.append(self.dataOut.velocityV, xFrec[Vpos]) | |
1003 | # |
|
1004 | # | |
1004 | # else: |
|
1005 | # else: | |
1005 | # self.dataOut.velocityV=numpy.append(self.dataOut.velocityV, NaN) |
|
1006 | # self.dataOut.velocityV=numpy.append(self.dataOut.velocityV, NaN) | |
1006 | # |
|
1007 | # | |
1007 | # |
|
1008 | # | |
1008 | # # print '********************************************' |
|
1009 | # # print '********************************************' | |
1009 | # # print 'HalfWidth ', HalfWidth |
|
1010 | # # print 'HalfWidth ', HalfWidth | |
1010 | # # print 'Maximun ', Maximun |
|
1011 | # # print 'Maximun ', Maximun | |
1011 | # # print 'eMinus1 ', eMinus1 |
|
1012 | # # print 'eMinus1 ', eMinus1 | |
1012 | # # print 'Rangpos ', Rangpos |
|
1013 | # # print 'Rangpos ', Rangpos | |
1013 | # # print 'GaussCenter ',GaussCenter |
|
1014 | # # print 'GaussCenter ',GaussCenter | |
1014 | # # print 'E01 ',E01 |
|
1015 | # # print 'E01 ',E01 | |
1015 | # # print 'N01 ',N01 |
|
1016 | # # print 'N01 ',N01 | |
1016 | # # print 'E02 ',E02 |
|
1017 | # # print 'E02 ',E02 | |
1017 | # # print 'N02 ',N02 |
|
1018 | # # print 'N02 ',N02 | |
1018 | # # print 'E12 ',E12 |
|
1019 | # # print 'E12 ',E12 | |
1019 | # # print 'N12 ',N12 |
|
1020 | # # print 'N12 ',N12 | |
1020 | # #print 'self.dataOut.velocityX ', self.dataOut.velocityX |
|
1021 | # #print 'self.dataOut.velocityX ', self.dataOut.velocityX | |
1021 | # # print 'Fij ', Fij |
|
1022 | # # print 'Fij ', Fij | |
1022 | # # print 'cC ', cC |
|
1023 | # # print 'cC ', cC | |
1023 | # # print 'cF ', cF |
|
1024 | # # print 'cF ', cF | |
1024 | # # print 'cG ', cG |
|
1025 | # # print 'cG ', cG | |
1025 | # # print 'cA ', cA |
|
1026 | # # print 'cA ', cA | |
1026 | # # print 'cB ', cB |
|
1027 | # # print 'cB ', cB | |
1027 | # # print 'cH ', cH |
|
1028 | # # print 'cH ', cH | |
1028 | # # print 'Vx ', Vx |
|
1029 | # # print 'Vx ', Vx | |
1029 | # # print 'Vy ', Vy |
|
1030 | # # print 'Vy ', Vy | |
1030 | # # print 'Vmag ', Vmag |
|
1031 | # # print 'Vmag ', Vmag | |
1031 | # # print 'Vang ', Vang*180/numpy.pi |
|
1032 | # # print 'Vang ', Vang*180/numpy.pi | |
1032 | # # print 'PhaseSlope ',PhaseSlope[0] |
|
1033 | # # print 'PhaseSlope ',PhaseSlope[0] | |
1033 | # # print 'PhaseSlope ',PhaseSlope[1] |
|
1034 | # # print 'PhaseSlope ',PhaseSlope[1] | |
1034 | # # print 'PhaseSlope ',PhaseSlope[2] |
|
1035 | # # print 'PhaseSlope ',PhaseSlope[2] | |
1035 | # # print '********************************************' |
|
1036 | # # print '********************************************' | |
1036 | # #print 'data_output',shape(self.dataOut.velocityX), shape(self.dataOut.velocityY) |
|
1037 | # #print 'data_output',shape(self.dataOut.velocityX), shape(self.dataOut.velocityY) | |
1037 | # |
|
1038 | # | |
1038 | # #print 'self.dataOut.velocityX', len(self.dataOut.velocityX) |
|
1039 | # #print 'self.dataOut.velocityX', len(self.dataOut.velocityX) | |
1039 | # #print 'self.dataOut.velocityY', len(self.dataOut.velocityY) |
|
1040 | # #print 'self.dataOut.velocityY', len(self.dataOut.velocityY) | |
1040 | # #print 'self.dataOut.velocityV', self.dataOut.velocityV |
|
1041 | # #print 'self.dataOut.velocityV', self.dataOut.velocityV | |
1041 | # |
|
1042 | # | |
1042 | # self.data_output[0]=numpy.array(self.dataOut.velocityX) |
|
1043 | # self.data_output[0]=numpy.array(self.dataOut.velocityX) | |
1043 | # self.data_output[1]=numpy.array(self.dataOut.velocityY) |
|
1044 | # self.data_output[1]=numpy.array(self.dataOut.velocityY) | |
1044 | # self.data_output[2]=numpy.array(self.dataOut.velocityV) |
|
1045 | # self.data_output[2]=numpy.array(self.dataOut.velocityV) | |
1045 | # |
|
1046 | # | |
1046 | # prin= self.data_output[0][~numpy.isnan(self.data_output[0])] |
|
1047 | # prin= self.data_output[0][~numpy.isnan(self.data_output[0])] | |
1047 | # print ' ' |
|
1048 | # print ' ' | |
1048 | # print 'VmagAverage',numpy.mean(prin) |
|
1049 | # print 'VmagAverage',numpy.mean(prin) | |
1049 | # print ' ' |
|
1050 | # print ' ' | |
1050 | # # plt.figure(5) |
|
1051 | # # plt.figure(5) | |
1051 | # # plt.subplot(211) |
|
1052 | # # plt.subplot(211) | |
1052 | # # plt.plot(self.dataOut.velocityX,'yo:') |
|
1053 | # # plt.plot(self.dataOut.velocityX,'yo:') | |
1053 | # # plt.subplot(212) |
|
1054 | # # plt.subplot(212) | |
1054 | # # plt.plot(self.dataOut.velocityY,'yo:') |
|
1055 | # # plt.plot(self.dataOut.velocityY,'yo:') | |
1055 | # |
|
1056 | # | |
1056 | # # plt.figure(1) |
|
1057 | # # plt.figure(1) | |
1057 | # # # plt.subplot(121) |
|
1058 | # # # plt.subplot(121) | |
1058 | # # # plt.plot(xFrec,ySamples[0],'k',label='Ch0') |
|
1059 | # # # plt.plot(xFrec,ySamples[0],'k',label='Ch0') | |
1059 | # # # plt.plot(xFrec,ySamples[1],'g',label='Ch1') |
|
1060 | # # # plt.plot(xFrec,ySamples[1],'g',label='Ch1') | |
1060 | # # # plt.plot(xFrec,ySamples[2],'r',label='Ch2') |
|
1061 | # # # plt.plot(xFrec,ySamples[2],'r',label='Ch2') | |
1061 | # # # plt.plot(xFrec,FitGauss,'yo:',label='fit') |
|
1062 | # # # plt.plot(xFrec,FitGauss,'yo:',label='fit') | |
1062 | # # # plt.legend() |
|
1063 | # # # plt.legend() | |
1063 | # # plt.title('DATOS A ALTURA DE 2850 METROS') |
|
1064 | # # plt.title('DATOS A ALTURA DE 2850 METROS') | |
1064 | # # |
|
1065 | # # | |
1065 | # # plt.xlabel('Frecuencia (KHz)') |
|
1066 | # # plt.xlabel('Frecuencia (KHz)') | |
1066 | # # plt.ylabel('Magnitud') |
|
1067 | # # plt.ylabel('Magnitud') | |
1067 | # # # plt.subplot(122) |
|
1068 | # # # plt.subplot(122) | |
1068 | # # # plt.title('Fit for Time Constant') |
|
1069 | # # # plt.title('Fit for Time Constant') | |
1069 | # # #plt.plot(xFrec,zline) |
|
1070 | # # #plt.plot(xFrec,zline) | |
1070 | # # #plt.plot(xFrec,SmoothSPC,'g') |
|
1071 | # # #plt.plot(xFrec,SmoothSPC,'g') | |
1071 | # # plt.plot(xFrec,FactNorm) |
|
1072 | # # plt.plot(xFrec,FactNorm) | |
1072 | # # plt.axis([-4, 4, 0, 0.15]) |
|
1073 | # # plt.axis([-4, 4, 0, 0.15]) | |
1073 | # # # plt.xlabel('SelfSpectra KHz') |
|
1074 | # # # plt.xlabel('SelfSpectra KHz') | |
1074 | # # |
|
1075 | # # | |
1075 | # # plt.figure(10) |
|
1076 | # # plt.figure(10) | |
1076 | # # # plt.subplot(121) |
|
1077 | # # # plt.subplot(121) | |
1077 | # # plt.plot(xFrec,ySamples[0],'b',label='Ch0') |
|
1078 | # # plt.plot(xFrec,ySamples[0],'b',label='Ch0') | |
1078 | # # plt.plot(xFrec,ySamples[1],'y',label='Ch1') |
|
1079 | # # plt.plot(xFrec,ySamples[1],'y',label='Ch1') | |
1079 | # # plt.plot(xFrec,ySamples[2],'r',label='Ch2') |
|
1080 | # # plt.plot(xFrec,ySamples[2],'r',label='Ch2') | |
1080 | # # # plt.plot(xFrec,FitGauss,'yo:',label='fit') |
|
1081 | # # # plt.plot(xFrec,FitGauss,'yo:',label='fit') | |
1081 | # # plt.legend() |
|
1082 | # # plt.legend() | |
1082 | # # plt.title('SELFSPECTRA EN CANALES') |
|
1083 | # # plt.title('SELFSPECTRA EN CANALES') | |
1083 | # # |
|
1084 | # # | |
1084 | # # plt.xlabel('Frecuencia (KHz)') |
|
1085 | # # plt.xlabel('Frecuencia (KHz)') | |
1085 | # # plt.ylabel('Magnitud') |
|
1086 | # # plt.ylabel('Magnitud') | |
1086 | # # # plt.subplot(122) |
|
1087 | # # # plt.subplot(122) | |
1087 | # # # plt.title('Fit for Time Constant') |
|
1088 | # # # plt.title('Fit for Time Constant') | |
1088 | # # #plt.plot(xFrec,zline) |
|
1089 | # # #plt.plot(xFrec,zline) | |
1089 | # # #plt.plot(xFrec,SmoothSPC,'g') |
|
1090 | # # #plt.plot(xFrec,SmoothSPC,'g') | |
1090 | # # # plt.plot(xFrec,FactNorm) |
|
1091 | # # # plt.plot(xFrec,FactNorm) | |
1091 | # # # plt.axis([-4, 4, 0, 0.15]) |
|
1092 | # # # plt.axis([-4, 4, 0, 0.15]) | |
1092 | # # # plt.xlabel('SelfSpectra KHz') |
|
1093 | # # # plt.xlabel('SelfSpectra KHz') | |
1093 | # # |
|
1094 | # # | |
1094 | # # plt.figure(9) |
|
1095 | # # plt.figure(9) | |
1095 | # # |
|
1096 | # # | |
1096 | # # |
|
1097 | # # | |
1097 | # # plt.title('DATOS SUAVIZADOS') |
|
1098 | # # plt.title('DATOS SUAVIZADOS') | |
1098 | # # plt.xlabel('Frecuencia (KHz)') |
|
1099 | # # plt.xlabel('Frecuencia (KHz)') | |
1099 | # # plt.ylabel('Magnitud') |
|
1100 | # # plt.ylabel('Magnitud') | |
1100 | # # plt.plot(xFrec,SmoothSPC,'g') |
|
1101 | # # plt.plot(xFrec,SmoothSPC,'g') | |
1101 | # # |
|
1102 | # # | |
1102 | # # #plt.plot(xFrec,FactNorm) |
|
1103 | # # #plt.plot(xFrec,FactNorm) | |
1103 | # # plt.axis([-4, 4, 0, 0.15]) |
|
1104 | # # plt.axis([-4, 4, 0, 0.15]) | |
1104 | # # # plt.xlabel('SelfSpectra KHz') |
|
1105 | # # # plt.xlabel('SelfSpectra KHz') | |
1105 | # # # |
|
1106 | # # # | |
1106 | # # plt.figure(2) |
|
1107 | # # plt.figure(2) | |
1107 | # # # #plt.subplot(121) |
|
1108 | # # # #plt.subplot(121) | |
1108 | # # plt.plot(xFrec,yMean,'r',label='Mean SelfSpectra') |
|
1109 | # # plt.plot(xFrec,yMean,'r',label='Mean SelfSpectra') | |
1109 | # # plt.plot(xFrec,FitGauss,'yo:',label='Ajuste Gaussiano') |
|
1110 | # # plt.plot(xFrec,FitGauss,'yo:',label='Ajuste Gaussiano') | |
1110 | # # # plt.plot(xFrec[Rangpos],FitGauss[Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.1)))],'bo') |
|
1111 | # # # plt.plot(xFrec[Rangpos],FitGauss[Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.1)))],'bo') | |
1111 | # # # #plt.plot(xFrec,phase) |
|
1112 | # # # #plt.plot(xFrec,phase) | |
1112 | # # # plt.xlabel('Suavizado, promediado KHz') |
|
1113 | # # # plt.xlabel('Suavizado, promediado KHz') | |
1113 | # # plt.title('SELFSPECTRA PROMEDIADO') |
|
1114 | # # plt.title('SELFSPECTRA PROMEDIADO') | |
1114 | # # # #plt.subplot(122) |
|
1115 | # # # #plt.subplot(122) | |
1115 | # # # #plt.plot(xSamples,zline) |
|
1116 | # # # #plt.plot(xSamples,zline) | |
1116 | # # plt.xlabel('Frecuencia (KHz)') |
|
1117 | # # plt.xlabel('Frecuencia (KHz)') | |
1117 | # # plt.ylabel('Magnitud') |
|
1118 | # # plt.ylabel('Magnitud') | |
1118 | # # plt.legend() |
|
1119 | # # plt.legend() | |
1119 | # # # |
|
1120 | # # # | |
1120 | # # # plt.figure(3) |
|
1121 | # # # plt.figure(3) | |
1121 | # # # plt.subplot(311) |
|
1122 | # # # plt.subplot(311) | |
1122 | # # # #plt.plot(xFrec,phase[0]) |
|
1123 | # # # #plt.plot(xFrec,phase[0]) | |
1123 | # # # plt.plot(xFrec,phase[0],'g') |
|
1124 | # # # plt.plot(xFrec,phase[0],'g') | |
1124 | # # # plt.subplot(312) |
|
1125 | # # # plt.subplot(312) | |
1125 | # # # plt.plot(xFrec,phase[1],'g') |
|
1126 | # # # plt.plot(xFrec,phase[1],'g') | |
1126 | # # # plt.subplot(313) |
|
1127 | # # # plt.subplot(313) | |
1127 | # # # plt.plot(xFrec,phase[2],'g') |
|
1128 | # # # plt.plot(xFrec,phase[2],'g') | |
1128 | # # # #plt.plot(xFrec,phase[2]) |
|
1129 | # # # #plt.plot(xFrec,phase[2]) | |
1129 | # # # |
|
1130 | # # # | |
1130 | # # # plt.figure(4) |
|
1131 | # # # plt.figure(4) | |
1131 | # # # |
|
1132 | # # # | |
1132 | # # # plt.plot(xSamples,coherence[0],'b') |
|
1133 | # # # plt.plot(xSamples,coherence[0],'b') | |
1133 | # # # plt.plot(xSamples,coherence[1],'r') |
|
1134 | # # # plt.plot(xSamples,coherence[1],'r') | |
1134 | # # # plt.plot(xSamples,coherence[2],'g') |
|
1135 | # # # plt.plot(xSamples,coherence[2],'g') | |
1135 | # # plt.show() |
|
1136 | # # plt.show() | |
1136 | # # # |
|
1137 | # # # | |
1137 | # # # plt.clf() |
|
1138 | # # # plt.clf() | |
1138 | # # # plt.cla() |
|
1139 | # # # plt.cla() | |
1139 | # # # plt.close() |
|
1140 | # # # plt.close() | |
1140 | # |
|
1141 | # | |
1141 | # print ' ' |
|
1142 | # print ' ' | |
1142 |
|
1143 | |||
1143 |
|
1144 | |||
1144 |
|
1145 | |||
1145 | self.BlockCounter+=2 |
|
1146 | self.BlockCounter+=2 | |
1146 |
|
1147 | |||
1147 | else: |
|
1148 | else: | |
1148 | self.fileSelector+=1 |
|
1149 | self.fileSelector+=1 | |
1149 | self.BlockCounter=0 |
|
1150 | self.BlockCounter=0 | |
1150 | print "Next File" |
|
1151 | print "Next File" | |
1151 |
|
1152 | |||
1152 |
|
1153 | |||
1153 |
|
1154 | |||
1154 | class BLTRWriter(ProcessingUnit): |
|
1155 | class BLTRWriter(ProcessingUnit): | |
1155 | ''' |
|
1156 | ''' | |
1156 | classdocs |
|
1157 | classdocs | |
1157 | ''' |
|
1158 | ''' | |
1158 |
|
1159 | |||
1159 | def __init__(self): |
|
1160 | def __init__(self): | |
1160 | ''' |
|
1161 | ''' | |
1161 | Constructor |
|
1162 | Constructor | |
1162 | ''' |
|
1163 | ''' | |
1163 | self.dataOut = None |
|
1164 | self.dataOut = None | |
1164 |
|
1165 | |||
1165 | self.isConfig = False |
|
1166 | self.isConfig = False | |
1166 |
|
1167 | |||
1167 | def setup(self, dataIn, path, blocksPerFile, set=0, ext=None): |
|
1168 | def setup(self, dataIn, path, blocksPerFile, set=0, ext=None): | |
1168 | ''' |
|
1169 | ''' | |
1169 | In this method we should set all initial parameters. |
|
1170 | In this method we should set all initial parameters. | |
1170 |
|
1171 | |||
1171 | Input: |
|
1172 | Input: | |
1172 | dataIn : Input data will also be outputa data |
|
1173 | dataIn : Input data will also be outputa data | |
1173 |
|
1174 | |||
1174 | ''' |
|
1175 | ''' | |
1175 | self.dataOut = dataIn |
|
1176 | self.dataOut = dataIn | |
1176 |
|
1177 | |||
1177 | self.isConfig = True |
|
1178 | self.isConfig = True | |
1178 |
|
1179 | |||
1179 | return |
|
1180 | return | |
1180 |
|
1181 | |||
1181 | def run(self, dataIn, **kwargs): |
|
1182 | def run(self, dataIn, **kwargs): | |
1182 | ''' |
|
1183 | ''' | |
1183 | This method will be called many times so here you should put all your code |
|
1184 | This method will be called many times so here you should put all your code | |
1184 |
|
1185 | |||
1185 | Inputs: |
|
1186 | Inputs: | |
1186 |
|
1187 | |||
1187 | dataIn : object with the data |
|
1188 | dataIn : object with the data | |
1188 |
|
1189 | |||
1189 | ''' |
|
1190 | ''' | |
1190 |
|
1191 | |||
1191 | if not self.isConfig: |
|
1192 | if not self.isConfig: | |
1192 | self.setup(dataIn, **kwargs) |
|
1193 | self.setup(dataIn, **kwargs) | |
1193 |
|
1194 |
1 | NO CONTENT: modified file, binary diff hidden |
|
NO CONTENT: modified file, binary diff hidden |
1 | NO CONTENT: modified file, binary diff hidden |
|
NO CONTENT: modified file, binary diff hidden |
@@ -1,3994 +1,4001 | |||||
1 | import numpy |
|
1 | import numpy | |
2 | import math |
|
2 | import math | |
3 | from scipy import optimize, interpolate, signal, stats, ndimage |
|
3 | from scipy import optimize, interpolate, signal, stats, ndimage | |
4 | import scipy |
|
4 | import scipy | |
5 | import re |
|
5 | import re | |
6 | import datetime |
|
6 | import datetime | |
7 | import copy |
|
7 | import copy | |
8 | import sys |
|
8 | import sys | |
9 | import importlib |
|
9 | import importlib | |
10 | import itertools |
|
10 | import itertools | |
11 | from multiprocessing import Pool, TimeoutError |
|
11 | from multiprocessing import Pool, TimeoutError | |
12 | from multiprocessing.pool import ThreadPool |
|
12 | from multiprocessing.pool import ThreadPool | |
13 | import copy_reg |
|
13 | import copy_reg | |
14 | import cPickle |
|
14 | import cPickle | |
15 | import types |
|
15 | import types | |
16 | from functools import partial |
|
16 | from functools import partial | |
17 | import time |
|
17 | import time | |
18 | #from sklearn.cluster import KMeans |
|
18 | #from sklearn.cluster import KMeans | |
19 |
|
19 | |||
20 | import matplotlib.pyplot as plt |
|
20 | import matplotlib.pyplot as plt | |
21 |
|
21 | |||
22 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters |
|
22 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters | |
23 | from jroproc_base import ProcessingUnit, Operation |
|
23 | from jroproc_base import ProcessingUnit, Operation | |
24 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon |
|
24 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon | |
25 | from scipy import asarray as ar,exp |
|
25 | from scipy import asarray as ar,exp | |
26 | from scipy.optimize import curve_fit |
|
26 | from scipy.optimize import curve_fit | |
27 |
|
27 | |||
28 | import warnings |
|
28 | import warnings | |
29 | from numpy import NaN |
|
29 | from numpy import NaN | |
30 | from scipy.optimize.optimize import OptimizeWarning |
|
30 | from scipy.optimize.optimize import OptimizeWarning | |
31 | warnings.filterwarnings('ignore') |
|
31 | warnings.filterwarnings('ignore') | |
32 |
|
32 | |||
33 |
|
33 | |||
34 | SPEED_OF_LIGHT = 299792458 |
|
34 | SPEED_OF_LIGHT = 299792458 | |
35 |
|
35 | |||
36 |
|
36 | |||
37 | '''solving pickling issue''' |
|
37 | '''solving pickling issue''' | |
38 |
|
38 | |||
39 | def _pickle_method(method): |
|
39 | def _pickle_method(method): | |
40 | func_name = method.im_func.__name__ |
|
40 | func_name = method.im_func.__name__ | |
41 | obj = method.im_self |
|
41 | obj = method.im_self | |
42 | cls = method.im_class |
|
42 | cls = method.im_class | |
43 | return _unpickle_method, (func_name, obj, cls) |
|
43 | return _unpickle_method, (func_name, obj, cls) | |
44 |
|
44 | |||
45 | def _unpickle_method(func_name, obj, cls): |
|
45 | def _unpickle_method(func_name, obj, cls): | |
46 | for cls in cls.mro(): |
|
46 | for cls in cls.mro(): | |
47 | try: |
|
47 | try: | |
48 | func = cls.__dict__[func_name] |
|
48 | func = cls.__dict__[func_name] | |
49 | except KeyError: |
|
49 | except KeyError: | |
50 | pass |
|
50 | pass | |
51 | else: |
|
51 | else: | |
52 | break |
|
52 | break | |
53 | return func.__get__(obj, cls) |
|
53 | return func.__get__(obj, cls) | |
54 |
|
54 | |||
55 |
|
55 | |||
56 |
|
56 | |||
57 |
|
57 | |||
58 |
|
58 | |||
59 |
|
59 | |||
60 |
|
60 | |||
61 |
|
61 | |||
62 | class ParametersProc(ProcessingUnit): |
|
62 | class ParametersProc(ProcessingUnit): | |
63 |
|
63 | |||
64 | nSeconds = None |
|
64 | nSeconds = None | |
65 |
|
65 | |||
66 | def __init__(self): |
|
66 | def __init__(self): | |
67 | ProcessingUnit.__init__(self) |
|
67 | ProcessingUnit.__init__(self) | |
68 |
|
68 | |||
69 | # self.objectDict = {} |
|
69 | # self.objectDict = {} | |
70 | self.buffer = None |
|
70 | self.buffer = None | |
71 | self.firstdatatime = None |
|
71 | self.firstdatatime = None | |
72 | self.profIndex = 0 |
|
72 | self.profIndex = 0 | |
73 | self.dataOut = Parameters() |
|
73 | self.dataOut = Parameters() | |
74 |
|
74 | |||
75 | def __updateObjFromInput(self): |
|
75 | def __updateObjFromInput(self): | |
76 |
|
76 | |||
77 | self.dataOut.inputUnit = self.dataIn.type |
|
77 | self.dataOut.inputUnit = self.dataIn.type | |
78 |
|
78 | |||
79 | self.dataOut.timeZone = self.dataIn.timeZone |
|
79 | self.dataOut.timeZone = self.dataIn.timeZone | |
80 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
80 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
81 | self.dataOut.errorCount = self.dataIn.errorCount |
|
81 | self.dataOut.errorCount = self.dataIn.errorCount | |
82 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
82 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
83 |
|
83 | |||
84 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
84 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
85 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
85 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
86 | self.dataOut.channelList = self.dataIn.channelList |
|
86 | self.dataOut.channelList = self.dataIn.channelList | |
87 | self.dataOut.heightList = self.dataIn.heightList |
|
87 | self.dataOut.heightList = self.dataIn.heightList | |
88 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
88 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
89 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
89 | # self.dataOut.nHeights = self.dataIn.nHeights | |
90 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
90 | # self.dataOut.nChannels = self.dataIn.nChannels | |
91 | self.dataOut.nBaud = self.dataIn.nBaud |
|
91 | self.dataOut.nBaud = self.dataIn.nBaud | |
92 | self.dataOut.nCode = self.dataIn.nCode |
|
92 | self.dataOut.nCode = self.dataIn.nCode | |
93 | self.dataOut.code = self.dataIn.code |
|
93 | self.dataOut.code = self.dataIn.code | |
94 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
94 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
95 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
95 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
96 | # self.dataOut.utctime = self.firstdatatime |
|
96 | # self.dataOut.utctime = self.firstdatatime | |
97 | self.dataOut.utctime = self.dataIn.utctime |
|
97 | self.dataOut.utctime = self.dataIn.utctime | |
98 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
98 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
99 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
99 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
100 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
100 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
101 | # self.dataOut.nIncohInt = 1 |
|
101 | # self.dataOut.nIncohInt = 1 | |
102 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
102 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
103 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
103 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
104 | self.dataOut.timeInterval1 = self.dataIn.timeInterval |
|
104 | self.dataOut.timeInterval1 = self.dataIn.timeInterval | |
105 | self.dataOut.heightList = self.dataIn.getHeiRange() |
|
105 | self.dataOut.heightList = self.dataIn.getHeiRange() | |
106 | self.dataOut.frequency = self.dataIn.frequency |
|
106 | self.dataOut.frequency = self.dataIn.frequency | |
107 | self.dataOut.noise = self.dataIn.noise |
|
107 | self.dataOut.noise = self.dataIn.noise | |
108 |
|
108 | |||
109 |
|
109 | |||
110 |
|
110 | |||
111 | def run(self): |
|
111 | def run(self): | |
112 |
|
112 | |||
113 | #---------------------- Voltage Data --------------------------- |
|
113 | #---------------------- Voltage Data --------------------------- | |
114 |
|
114 | |||
115 | if self.dataIn.type == "Voltage": |
|
115 | if self.dataIn.type == "Voltage": | |
116 |
|
116 | |||
117 | self.__updateObjFromInput() |
|
117 | self.__updateObjFromInput() | |
118 | self.dataOut.data_pre = self.dataIn.data.copy() |
|
118 | self.dataOut.data_pre = self.dataIn.data.copy() | |
119 | self.dataOut.flagNoData = False |
|
119 | self.dataOut.flagNoData = False | |
120 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
120 | self.dataOut.utctimeInit = self.dataIn.utctime | |
121 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds |
|
121 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds | |
122 | return |
|
122 | return | |
123 |
|
123 | |||
124 | #---------------------- Spectra Data --------------------------- |
|
124 | #---------------------- Spectra Data --------------------------- | |
125 |
|
125 | |||
126 | if self.dataIn.type == "Spectra": |
|
126 | if self.dataIn.type == "Spectra": | |
127 |
|
127 | |||
128 | self.dataOut.data_pre = (self.dataIn.data_spc,self.dataIn.data_cspc) |
|
128 | self.dataOut.data_pre = (self.dataIn.data_spc,self.dataIn.data_cspc) | |
129 | print 'self.dataIn.data_spc', self.dataIn.data_spc.shape |
|
129 | print 'self.dataIn.data_spc', self.dataIn.data_spc.shape | |
130 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
130 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
131 | self.dataOut.spc_noise = self.dataIn.getNoise() |
|
131 | self.dataOut.spc_noise = self.dataIn.getNoise() | |
132 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1)/1000. , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1) ) |
|
132 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1)/1000. , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1) ) | |
133 |
|
133 | |||
134 | self.dataOut.normFactor = self.dataIn.normFactor |
|
134 | self.dataOut.normFactor = self.dataIn.normFactor | |
135 | #self.dataOut.outputInterval = self.dataIn.outputInterval |
|
135 | #self.dataOut.outputInterval = self.dataIn.outputInterval | |
136 | self.dataOut.groupList = self.dataIn.pairsList |
|
136 | self.dataOut.groupList = self.dataIn.pairsList | |
137 | self.dataOut.flagNoData = False |
|
137 | self.dataOut.flagNoData = False | |
138 | #print 'datain chandist ',self.dataIn.ChanDist |
|
138 | #print 'datain chandist ',self.dataIn.ChanDist | |
139 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels |
|
139 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels | |
140 | self.dataOut.ChanDist = self.dataIn.ChanDist |
|
140 | self.dataOut.ChanDist = self.dataIn.ChanDist | |
141 | else: self.dataOut.ChanDist = None |
|
141 | else: self.dataOut.ChanDist = None | |
142 |
|
142 | |||
143 | print 'datain chandist ',self.dataOut.ChanDist |
|
143 | print 'datain chandist ',self.dataOut.ChanDist | |
144 |
|
144 | |||
145 | if hasattr(self.dataIn, 'VelRange'): #Velocities range |
|
145 | if hasattr(self.dataIn, 'VelRange'): #Velocities range | |
146 | self.dataOut.VelRange = self.dataIn.VelRange |
|
146 | self.dataOut.VelRange = self.dataIn.VelRange | |
147 | else: self.dataOut.VelRange = None |
|
147 | else: self.dataOut.VelRange = None | |
148 |
|
148 | |||
149 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant |
|
149 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant | |
150 | self.dataOut.RadarConst = self.dataIn.RadarConst |
|
150 | self.dataOut.RadarConst = self.dataIn.RadarConst | |
151 |
|
151 | |||
152 | if hasattr(self.dataIn, 'NPW'): #NPW |
|
152 | if hasattr(self.dataIn, 'NPW'): #NPW | |
153 | self.dataOut.NPW = self.dataIn.NPW |
|
153 | self.dataOut.NPW = self.dataIn.NPW | |
154 |
|
154 | |||
155 | if hasattr(self.dataIn, 'COFA'): #COFA |
|
155 | if hasattr(self.dataIn, 'COFA'): #COFA | |
156 | self.dataOut.COFA = self.dataIn.COFA |
|
156 | self.dataOut.COFA = self.dataIn.COFA | |
157 |
|
157 | |||
158 |
|
158 | |||
159 |
|
159 | |||
160 | #---------------------- Correlation Data --------------------------- |
|
160 | #---------------------- Correlation Data --------------------------- | |
161 |
|
161 | |||
162 | if self.dataIn.type == "Correlation": |
|
162 | if self.dataIn.type == "Correlation": | |
163 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() |
|
163 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() | |
164 |
|
164 | |||
165 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) |
|
165 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) | |
166 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) |
|
166 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) | |
167 | self.dataOut.groupList = (acf_pairs, ccf_pairs) |
|
167 | self.dataOut.groupList = (acf_pairs, ccf_pairs) | |
168 |
|
168 | |||
169 | self.dataOut.abscissaList = self.dataIn.lagRange |
|
169 | self.dataOut.abscissaList = self.dataIn.lagRange | |
170 | self.dataOut.noise = self.dataIn.noise |
|
170 | self.dataOut.noise = self.dataIn.noise | |
171 | self.dataOut.data_SNR = self.dataIn.SNR |
|
171 | self.dataOut.data_SNR = self.dataIn.SNR | |
172 | self.dataOut.flagNoData = False |
|
172 | self.dataOut.flagNoData = False | |
173 | self.dataOut.nAvg = self.dataIn.nAvg |
|
173 | self.dataOut.nAvg = self.dataIn.nAvg | |
174 |
|
174 | |||
175 | #---------------------- Parameters Data --------------------------- |
|
175 | #---------------------- Parameters Data --------------------------- | |
176 |
|
176 | |||
177 | if self.dataIn.type == "Parameters": |
|
177 | if self.dataIn.type == "Parameters": | |
178 | self.dataOut.copy(self.dataIn) |
|
178 | self.dataOut.copy(self.dataIn) | |
179 | self.dataOut.flagNoData = False |
|
179 | self.dataOut.flagNoData = False | |
180 |
|
180 | |||
181 | return True |
|
181 | return True | |
182 |
|
182 | |||
183 | self.__updateObjFromInput() |
|
183 | self.__updateObjFromInput() | |
184 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
184 | self.dataOut.utctimeInit = self.dataIn.utctime | |
185 | self.dataOut.paramInterval = self.dataIn.timeInterval |
|
185 | self.dataOut.paramInterval = self.dataIn.timeInterval | |
186 |
|
186 | |||
187 | return |
|
187 | return | |
188 |
|
188 | |||
189 |
|
189 | |||
190 | def target(tups): |
|
190 | def target(tups): | |
191 |
|
191 | |||
192 | obj, args = tups |
|
192 | obj, args = tups | |
193 | #print 'TARGETTT', obj, args |
|
193 | #print 'TARGETTT', obj, args | |
194 | return obj.FitGau(args) |
|
194 | return obj.FitGau(args) | |
195 |
|
195 | |||
196 | class GaussianFit(Operation): |
|
196 | class GaussianFit(Operation): | |
197 |
|
197 | |||
198 | ''' |
|
198 | ''' | |
199 | Function that fit of one and two generalized gaussians (gg) based |
|
199 | Function that fit of one and two generalized gaussians (gg) based | |
200 | on the PSD shape across an "power band" identified from a cumsum of |
|
200 | on the PSD shape across an "power band" identified from a cumsum of | |
201 | the measured spectrum - noise. |
|
201 | the measured spectrum - noise. | |
202 |
|
202 | |||
203 | Input: |
|
203 | Input: | |
204 | self.dataOut.data_pre : SelfSpectra |
|
204 | self.dataOut.data_pre : SelfSpectra | |
205 |
|
205 | |||
206 | Output: |
|
206 | Output: | |
207 | self.dataOut.GauSPC : SPC_ch1, SPC_ch2 |
|
207 | self.dataOut.GauSPC : SPC_ch1, SPC_ch2 | |
208 |
|
208 | |||
209 | ''' |
|
209 | ''' | |
210 | def __init__(self, **kwargs): |
|
210 | def __init__(self, **kwargs): | |
211 | Operation.__init__(self, **kwargs) |
|
211 | Operation.__init__(self, **kwargs) | |
212 | self.i=0 |
|
212 | self.i=0 | |
213 |
|
213 | |||
214 |
|
214 | |||
215 | def run(self, dataOut, num_intg=7, pnoise=1., vel_arr=None, SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points |
|
215 | def run(self, dataOut, num_intg=7, pnoise=1., vel_arr=None, SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points | |
216 | """This routine will find a couple of generalized Gaussians to a power spectrum |
|
216 | """This routine will find a couple of generalized Gaussians to a power spectrum | |
217 | input: spc |
|
217 | input: spc | |
218 | output: |
|
218 | output: | |
219 | Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise |
|
219 | Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise | |
220 | """ |
|
220 | """ | |
221 |
|
221 | |||
222 | self.spc = dataOut.data_pre[0].copy() |
|
222 | self.spc = dataOut.data_pre[0].copy() | |
223 |
|
223 | |||
224 |
|
224 | |||
225 | print 'SelfSpectra Shape', numpy.asarray(self.spc).shape |
|
225 | print 'SelfSpectra Shape', numpy.asarray(self.spc).shape | |
226 |
|
226 | |||
227 |
|
227 | |||
228 | #plt.figure(50) |
|
228 | #plt.figure(50) | |
229 | #plt.subplot(121) |
|
229 | #plt.subplot(121) | |
230 | #plt.plot(self.spc,'k',label='spc(66)') |
|
230 | #plt.plot(self.spc,'k',label='spc(66)') | |
231 | #plt.plot(xFrec,ySamples[1],'g',label='Ch1') |
|
231 | #plt.plot(xFrec,ySamples[1],'g',label='Ch1') | |
232 | #plt.plot(xFrec,ySamples[2],'r',label='Ch2') |
|
232 | #plt.plot(xFrec,ySamples[2],'r',label='Ch2') | |
233 | #plt.plot(xFrec,FitGauss,'yo:',label='fit') |
|
233 | #plt.plot(xFrec,FitGauss,'yo:',label='fit') | |
234 | #plt.legend() |
|
234 | #plt.legend() | |
235 | #plt.title('DATOS A ALTURA DE 7500 METROS') |
|
235 | #plt.title('DATOS A ALTURA DE 7500 METROS') | |
236 | #plt.show() |
|
236 | #plt.show() | |
237 |
|
237 | |||
238 | self.Num_Hei = self.spc.shape[2] |
|
238 | self.Num_Hei = self.spc.shape[2] | |
239 | #self.Num_Bin = len(self.spc) |
|
239 | #self.Num_Bin = len(self.spc) | |
240 | self.Num_Bin = self.spc.shape[1] |
|
240 | self.Num_Bin = self.spc.shape[1] | |
241 | self.Num_Chn = self.spc.shape[0] |
|
241 | self.Num_Chn = self.spc.shape[0] | |
242 |
|
242 | |||
243 | Vrange = dataOut.abscissaList |
|
243 | Vrange = dataOut.abscissaList | |
244 |
|
244 | |||
245 | #print 'self.spc2', numpy.asarray(self.spc).shape |
|
245 | #print 'self.spc2', numpy.asarray(self.spc).shape | |
246 |
|
246 | |||
247 | GauSPC = numpy.empty([2,self.Num_Bin,self.Num_Hei]) |
|
247 | GauSPC = numpy.empty([2,self.Num_Bin,self.Num_Hei]) | |
248 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
248 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
249 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
249 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
250 | SPC_ch1[:] = numpy.NaN |
|
250 | SPC_ch1[:] = numpy.NaN | |
251 | SPC_ch2[:] = numpy.NaN |
|
251 | SPC_ch2[:] = numpy.NaN | |
252 |
|
252 | |||
253 |
|
253 | |||
254 | start_time = time.time() |
|
254 | start_time = time.time() | |
255 |
|
255 | |||
256 | noise_ = dataOut.spc_noise[0].copy() |
|
256 | noise_ = dataOut.spc_noise[0].copy() | |
257 |
|
257 | |||
258 |
|
258 | |||
259 |
|
259 | |||
260 | pool = Pool(processes=self.Num_Chn) |
|
260 | pool = Pool(processes=self.Num_Chn) | |
261 | args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)] |
|
261 | args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)] | |
262 | objs = [self for __ in range(self.Num_Chn)] |
|
262 | objs = [self for __ in range(self.Num_Chn)] | |
263 | attrs = zip(objs, args) |
|
263 | attrs = zip(objs, args) | |
264 | gauSPC = pool.map(target, attrs) |
|
264 | gauSPC = pool.map(target, attrs) | |
265 | dataOut.GauSPC = numpy.asarray(gauSPC) |
|
265 | dataOut.GauSPC = numpy.asarray(gauSPC) | |
266 | # ret = [] |
|
266 | # ret = [] | |
267 | # for n in range(self.Num_Chn): |
|
267 | # for n in range(self.Num_Chn): | |
268 | # self.FitGau(args[n]) |
|
268 | # self.FitGau(args[n]) | |
269 | # dataOut.GauSPC = ret |
|
269 | # dataOut.GauSPC = ret | |
270 |
|
270 | |||
271 |
|
271 | |||
272 |
|
272 | |||
273 | # for ch in range(self.Num_Chn): |
|
273 | # for ch in range(self.Num_Chn): | |
274 | # |
|
274 | # | |
275 | # for ht in range(self.Num_Hei): |
|
275 | # for ht in range(self.Num_Hei): | |
276 | # #print (numpy.asarray(self.spc).shape) |
|
276 | # #print (numpy.asarray(self.spc).shape) | |
277 | # spc = numpy.asarray(self.spc)[ch,:,ht] |
|
277 | # spc = numpy.asarray(self.spc)[ch,:,ht] | |
278 | # |
|
278 | # | |
279 | # ############################################# |
|
279 | # ############################################# | |
280 | # # normalizing spc and noise |
|
280 | # # normalizing spc and noise | |
281 | # # This part differs from gg1 |
|
281 | # # This part differs from gg1 | |
282 | # spc_norm_max = max(spc) |
|
282 | # spc_norm_max = max(spc) | |
283 | # spc = spc / spc_norm_max |
|
283 | # spc = spc / spc_norm_max | |
284 | # pnoise = pnoise / spc_norm_max |
|
284 | # pnoise = pnoise / spc_norm_max | |
285 | # ############################################# |
|
285 | # ############################################# | |
286 | # |
|
286 | # | |
287 | # if abs(vel_arr[0])<15.0: # this switch is for spectra collected with different length IPP's |
|
287 | # if abs(vel_arr[0])<15.0: # this switch is for spectra collected with different length IPP's | |
288 | # fatspectra=1.0 |
|
288 | # fatspectra=1.0 | |
289 | # else: |
|
289 | # else: | |
290 | # fatspectra=0.5 |
|
290 | # fatspectra=0.5 | |
291 | # |
|
291 | # | |
292 | # wnoise = noise_ / spc_norm_max |
|
292 | # wnoise = noise_ / spc_norm_max | |
293 | # #print 'wnoise', noise_, dataOut.spc_noise[0], wnoise |
|
293 | # #print 'wnoise', noise_, dataOut.spc_noise[0], wnoise | |
294 | # #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used |
|
294 | # #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used | |
295 | # #if wnoise>1.1*pnoise: # to be tested later |
|
295 | # #if wnoise>1.1*pnoise: # to be tested later | |
296 | # # wnoise=pnoise |
|
296 | # # wnoise=pnoise | |
297 | # noisebl=wnoise*0.9; noisebh=wnoise*1.1 |
|
297 | # noisebl=wnoise*0.9; noisebh=wnoise*1.1 | |
298 | # spc=spc-wnoise |
|
298 | # spc=spc-wnoise | |
299 | # |
|
299 | # | |
300 | # minx=numpy.argmin(spc) |
|
300 | # minx=numpy.argmin(spc) | |
301 | # spcs=numpy.roll(spc,-minx) |
|
301 | # spcs=numpy.roll(spc,-minx) | |
302 | # cum=numpy.cumsum(spcs) |
|
302 | # cum=numpy.cumsum(spcs) | |
303 | # tot_noise=wnoise * self.Num_Bin #64; |
|
303 | # tot_noise=wnoise * self.Num_Bin #64; | |
304 | # #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? ''' |
|
304 | # #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? ''' | |
305 | # #snr=tot_signal/tot_noise |
|
305 | # #snr=tot_signal/tot_noise | |
306 | # #snr=cum[-1]/tot_noise |
|
306 | # #snr=cum[-1]/tot_noise | |
307 | # |
|
307 | # | |
308 | # #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise |
|
308 | # #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise | |
309 | # |
|
309 | # | |
310 | # snr = sum(spcs)/tot_noise |
|
310 | # snr = sum(spcs)/tot_noise | |
311 | # snrdB=10.*numpy.log10(snr) |
|
311 | # snrdB=10.*numpy.log10(snr) | |
312 | # |
|
312 | # | |
313 | # #if snrdB < -9 : |
|
313 | # #if snrdB < -9 : | |
314 | # # snrdB = numpy.NaN |
|
314 | # # snrdB = numpy.NaN | |
315 | # # continue |
|
315 | # # continue | |
316 | # |
|
316 | # | |
317 | # #print 'snr',snrdB # , sum(spcs) , tot_noise |
|
317 | # #print 'snr',snrdB # , sum(spcs) , tot_noise | |
318 | # |
|
318 | # | |
319 | # |
|
319 | # | |
320 | # #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: |
|
320 | # #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: | |
321 | # # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
321 | # # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
322 | # |
|
322 | # | |
323 | # cummax=max(cum); epsi=0.08*fatspectra # cumsum to narrow down the energy region |
|
323 | # cummax=max(cum); epsi=0.08*fatspectra # cumsum to narrow down the energy region | |
324 | # cumlo=cummax*epsi; |
|
324 | # cumlo=cummax*epsi; | |
325 | # cumhi=cummax*(1-epsi) |
|
325 | # cumhi=cummax*(1-epsi) | |
326 | # powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) |
|
326 | # powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |
327 | # |
|
327 | # | |
328 | # #if len(powerindex)==1: |
|
328 | # #if len(powerindex)==1: | |
329 | # ##return [numpy.mod(powerindex[0]+minx,64),None,None,None,],[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
329 | # ##return [numpy.mod(powerindex[0]+minx,64),None,None,None,],[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
330 | # #return [numpy.mod(powerindex[0]+minx, self.Num_Bin ),None,None,None,],[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
330 | # #return [numpy.mod(powerindex[0]+minx, self.Num_Bin ),None,None,None,],[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
331 | # #elif len(powerindex)<4*fatspectra: |
|
331 | # #elif len(powerindex)<4*fatspectra: | |
332 | # #return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
332 | # #return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
333 | # |
|
333 | # | |
334 | # if len(powerindex) < 1:# case for powerindex 0 |
|
334 | # if len(powerindex) < 1:# case for powerindex 0 | |
335 | # continue |
|
335 | # continue | |
336 | # powerlo=powerindex[0] |
|
336 | # powerlo=powerindex[0] | |
337 | # powerhi=powerindex[-1] |
|
337 | # powerhi=powerindex[-1] | |
338 | # powerwidth=powerhi-powerlo |
|
338 | # powerwidth=powerhi-powerlo | |
339 | # |
|
339 | # | |
340 | # firstpeak=powerlo+powerwidth/10.# first gaussian energy location |
|
340 | # firstpeak=powerlo+powerwidth/10.# first gaussian energy location | |
341 | # secondpeak=powerhi-powerwidth/10.#second gaussian energy location |
|
341 | # secondpeak=powerhi-powerwidth/10.#second gaussian energy location | |
342 | # midpeak=(firstpeak+secondpeak)/2. |
|
342 | # midpeak=(firstpeak+secondpeak)/2. | |
343 | # firstamp=spcs[int(firstpeak)] |
|
343 | # firstamp=spcs[int(firstpeak)] | |
344 | # secondamp=spcs[int(secondpeak)] |
|
344 | # secondamp=spcs[int(secondpeak)] | |
345 | # midamp=spcs[int(midpeak)] |
|
345 | # midamp=spcs[int(midpeak)] | |
346 | # #x=numpy.spc.shape[1] |
|
346 | # #x=numpy.spc.shape[1] | |
347 | # |
|
347 | # | |
348 | # #x=numpy.arange(64) |
|
348 | # #x=numpy.arange(64) | |
349 | # x=numpy.arange( self.Num_Bin ) |
|
349 | # x=numpy.arange( self.Num_Bin ) | |
350 | # y_data=spc+wnoise |
|
350 | # y_data=spc+wnoise | |
351 | # |
|
351 | # | |
352 | # # single gaussian |
|
352 | # # single gaussian | |
353 | # #shift0=numpy.mod(midpeak+minx,64) |
|
353 | # #shift0=numpy.mod(midpeak+minx,64) | |
354 | # shift0=numpy.mod(midpeak+minx, self.Num_Bin ) |
|
354 | # shift0=numpy.mod(midpeak+minx, self.Num_Bin ) | |
355 | # width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 |
|
355 | # width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 | |
356 | # power0=2. |
|
356 | # power0=2. | |
357 | # amplitude0=midamp |
|
357 | # amplitude0=midamp | |
358 | # state0=[shift0,width0,amplitude0,power0,wnoise] |
|
358 | # state0=[shift0,width0,amplitude0,power0,wnoise] | |
359 | # #bnds=((0,63),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
359 | # #bnds=((0,63),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |
360 | # bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
360 | # bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |
361 | # #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(0.1,0.5)) |
|
361 | # #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(0.1,0.5)) | |
362 | # # bnds = range of fft, power width, amplitude, power, noise |
|
362 | # # bnds = range of fft, power width, amplitude, power, noise | |
363 | # lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
363 | # lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) | |
364 | # |
|
364 | # | |
365 | # chiSq1=lsq1[1]; |
|
365 | # chiSq1=lsq1[1]; | |
366 | # jack1= self.y_jacobian1(x,lsq1[0]) |
|
366 | # jack1= self.y_jacobian1(x,lsq1[0]) | |
367 | # |
|
367 | # | |
368 | # |
|
368 | # | |
369 | # try: |
|
369 | # try: | |
370 | # sigmas1=numpy.sqrt(chiSq1*numpy.diag(numpy.linalg.inv(numpy.dot(jack1.T,jack1)))) |
|
370 | # sigmas1=numpy.sqrt(chiSq1*numpy.diag(numpy.linalg.inv(numpy.dot(jack1.T,jack1)))) | |
371 | # except: |
|
371 | # except: | |
372 | # std1=32.; sigmas1=numpy.ones(5) |
|
372 | # std1=32.; sigmas1=numpy.ones(5) | |
373 | # else: |
|
373 | # else: | |
374 | # std1=sigmas1[0] |
|
374 | # std1=sigmas1[0] | |
375 | # |
|
375 | # | |
376 | # |
|
376 | # | |
377 | # if fatspectra<1.0 and powerwidth<4: |
|
377 | # if fatspectra<1.0 and powerwidth<4: | |
378 | # choice=0 |
|
378 | # choice=0 | |
379 | # Amplitude0=lsq1[0][2] |
|
379 | # Amplitude0=lsq1[0][2] | |
380 | # shift0=lsq1[0][0] |
|
380 | # shift0=lsq1[0][0] | |
381 | # width0=lsq1[0][1] |
|
381 | # width0=lsq1[0][1] | |
382 | # p0=lsq1[0][3] |
|
382 | # p0=lsq1[0][3] | |
383 | # Amplitude1=0. |
|
383 | # Amplitude1=0. | |
384 | # shift1=0. |
|
384 | # shift1=0. | |
385 | # width1=0. |
|
385 | # width1=0. | |
386 | # p1=0. |
|
386 | # p1=0. | |
387 | # noise=lsq1[0][4] |
|
387 | # noise=lsq1[0][4] | |
388 | # #return (numpy.array([shift0,width0,Amplitude0,p0]), |
|
388 | # #return (numpy.array([shift0,width0,Amplitude0,p0]), | |
389 | # # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) |
|
389 | # # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) | |
390 | # |
|
390 | # | |
391 | # # two gaussians |
|
391 | # # two gaussians | |
392 | # #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) |
|
392 | # #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) | |
393 | # shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); |
|
393 | # shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); | |
394 | # shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) |
|
394 | # shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) | |
395 | # width0=powerwidth/6.; |
|
395 | # width0=powerwidth/6.; | |
396 | # width1=width0 |
|
396 | # width1=width0 | |
397 | # power0=2.; |
|
397 | # power0=2.; | |
398 | # power1=power0 |
|
398 | # power1=power0 | |
399 | # amplitude0=firstamp; |
|
399 | # amplitude0=firstamp; | |
400 | # amplitude1=secondamp |
|
400 | # amplitude1=secondamp | |
401 | # state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] |
|
401 | # state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |
402 | # #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
402 | # #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
403 | # bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
403 | # bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
404 | # #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) |
|
404 | # #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) | |
405 | # |
|
405 | # | |
406 | # lsq2=fmin_l_bfgs_b(self.misfit2,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
406 | # lsq2=fmin_l_bfgs_b(self.misfit2,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) | |
407 | # |
|
407 | # | |
408 | # |
|
408 | # | |
409 | # chiSq2=lsq2[1]; jack2=self.y_jacobian2(x,lsq2[0]) |
|
409 | # chiSq2=lsq2[1]; jack2=self.y_jacobian2(x,lsq2[0]) | |
410 | # |
|
410 | # | |
411 | # |
|
411 | # | |
412 | # try: |
|
412 | # try: | |
413 | # sigmas2=numpy.sqrt(chiSq2*numpy.diag(numpy.linalg.inv(numpy.dot(jack2.T,jack2)))) |
|
413 | # sigmas2=numpy.sqrt(chiSq2*numpy.diag(numpy.linalg.inv(numpy.dot(jack2.T,jack2)))) | |
414 | # except: |
|
414 | # except: | |
415 | # std2a=32.; std2b=32.; sigmas2=numpy.ones(9) |
|
415 | # std2a=32.; std2b=32.; sigmas2=numpy.ones(9) | |
416 | # else: |
|
416 | # else: | |
417 | # std2a=sigmas2[0]; std2b=sigmas2[4] |
|
417 | # std2a=sigmas2[0]; std2b=sigmas2[4] | |
418 | # |
|
418 | # | |
419 | # |
|
419 | # | |
420 | # |
|
420 | # | |
421 | # oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) |
|
421 | # oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |
422 | # |
|
422 | # | |
423 | # if snrdB>-9: # when SNR is strong pick the peak with least shift (LOS velocity) error |
|
423 | # if snrdB>-9: # when SNR is strong pick the peak with least shift (LOS velocity) error | |
424 | # if oneG: |
|
424 | # if oneG: | |
425 | # choice=0 |
|
425 | # choice=0 | |
426 | # else: |
|
426 | # else: | |
427 | # w1=lsq2[0][1]; w2=lsq2[0][5] |
|
427 | # w1=lsq2[0][1]; w2=lsq2[0][5] | |
428 | # a1=lsq2[0][2]; a2=lsq2[0][6] |
|
428 | # a1=lsq2[0][2]; a2=lsq2[0][6] | |
429 | # p1=lsq2[0][3]; p2=lsq2[0][7] |
|
429 | # p1=lsq2[0][3]; p2=lsq2[0][7] | |
430 | # s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; |
|
430 | # s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; | |
431 | # gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling |
|
431 | # gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling | |
432 | # |
|
432 | # | |
433 | # if gp1>gp2: |
|
433 | # if gp1>gp2: | |
434 | # if a1>0.7*a2: |
|
434 | # if a1>0.7*a2: | |
435 | # choice=1 |
|
435 | # choice=1 | |
436 | # else: |
|
436 | # else: | |
437 | # choice=2 |
|
437 | # choice=2 | |
438 | # elif gp2>gp1: |
|
438 | # elif gp2>gp1: | |
439 | # if a2>0.7*a1: |
|
439 | # if a2>0.7*a1: | |
440 | # choice=2 |
|
440 | # choice=2 | |
441 | # else: |
|
441 | # else: | |
442 | # choice=1 |
|
442 | # choice=1 | |
443 | # else: |
|
443 | # else: | |
444 | # choice=numpy.argmax([a1,a2])+1 |
|
444 | # choice=numpy.argmax([a1,a2])+1 | |
445 | # #else: |
|
445 | # #else: | |
446 | # #choice=argmin([std2a,std2b])+1 |
|
446 | # #choice=argmin([std2a,std2b])+1 | |
447 | # |
|
447 | # | |
448 | # else: # with low SNR go to the most energetic peak |
|
448 | # else: # with low SNR go to the most energetic peak | |
449 | # choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) |
|
449 | # choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |
450 | # |
|
450 | # | |
451 | # #print 'choice',choice |
|
451 | # #print 'choice',choice | |
452 | # |
|
452 | # | |
453 | # if choice==0: # pick the single gaussian fit |
|
453 | # if choice==0: # pick the single gaussian fit | |
454 | # Amplitude0=lsq1[0][2] |
|
454 | # Amplitude0=lsq1[0][2] | |
455 | # shift0=lsq1[0][0] |
|
455 | # shift0=lsq1[0][0] | |
456 | # width0=lsq1[0][1] |
|
456 | # width0=lsq1[0][1] | |
457 | # p0=lsq1[0][3] |
|
457 | # p0=lsq1[0][3] | |
458 | # Amplitude1=0. |
|
458 | # Amplitude1=0. | |
459 | # shift1=0. |
|
459 | # shift1=0. | |
460 | # width1=0. |
|
460 | # width1=0. | |
461 | # p1=0. |
|
461 | # p1=0. | |
462 | # noise=lsq1[0][4] |
|
462 | # noise=lsq1[0][4] | |
463 | # elif choice==1: # take the first one of the 2 gaussians fitted |
|
463 | # elif choice==1: # take the first one of the 2 gaussians fitted | |
464 | # Amplitude0 = lsq2[0][2] |
|
464 | # Amplitude0 = lsq2[0][2] | |
465 | # shift0 = lsq2[0][0] |
|
465 | # shift0 = lsq2[0][0] | |
466 | # width0 = lsq2[0][1] |
|
466 | # width0 = lsq2[0][1] | |
467 | # p0 = lsq2[0][3] |
|
467 | # p0 = lsq2[0][3] | |
468 | # Amplitude1 = lsq2[0][6] # This is 0 in gg1 |
|
468 | # Amplitude1 = lsq2[0][6] # This is 0 in gg1 | |
469 | # shift1 = lsq2[0][4] # This is 0 in gg1 |
|
469 | # shift1 = lsq2[0][4] # This is 0 in gg1 | |
470 | # width1 = lsq2[0][5] # This is 0 in gg1 |
|
470 | # width1 = lsq2[0][5] # This is 0 in gg1 | |
471 | # p1 = lsq2[0][7] # This is 0 in gg1 |
|
471 | # p1 = lsq2[0][7] # This is 0 in gg1 | |
472 | # noise = lsq2[0][8] |
|
472 | # noise = lsq2[0][8] | |
473 | # else: # the second one |
|
473 | # else: # the second one | |
474 | # Amplitude0 = lsq2[0][6] |
|
474 | # Amplitude0 = lsq2[0][6] | |
475 | # shift0 = lsq2[0][4] |
|
475 | # shift0 = lsq2[0][4] | |
476 | # width0 = lsq2[0][5] |
|
476 | # width0 = lsq2[0][5] | |
477 | # p0 = lsq2[0][7] |
|
477 | # p0 = lsq2[0][7] | |
478 | # Amplitude1 = lsq2[0][2] # This is 0 in gg1 |
|
478 | # Amplitude1 = lsq2[0][2] # This is 0 in gg1 | |
479 | # shift1 = lsq2[0][0] # This is 0 in gg1 |
|
479 | # shift1 = lsq2[0][0] # This is 0 in gg1 | |
480 | # width1 = lsq2[0][1] # This is 0 in gg1 |
|
480 | # width1 = lsq2[0][1] # This is 0 in gg1 | |
481 | # p1 = lsq2[0][3] # This is 0 in gg1 |
|
481 | # p1 = lsq2[0][3] # This is 0 in gg1 | |
482 | # noise = lsq2[0][8] |
|
482 | # noise = lsq2[0][8] | |
483 | # |
|
483 | # | |
484 | # #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0) |
|
484 | # #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0) | |
485 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 |
|
485 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 | |
486 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 |
|
486 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 | |
487 | # #print 'SPC_ch1.shape',SPC_ch1.shape |
|
487 | # #print 'SPC_ch1.shape',SPC_ch1.shape | |
488 | # #print 'SPC_ch2.shape',SPC_ch2.shape |
|
488 | # #print 'SPC_ch2.shape',SPC_ch2.shape | |
489 | # #dataOut.data_param = SPC_ch1 |
|
489 | # #dataOut.data_param = SPC_ch1 | |
490 | # GauSPC[0] = SPC_ch1 |
|
490 | # GauSPC[0] = SPC_ch1 | |
491 | # GauSPC[1] = SPC_ch2 |
|
491 | # GauSPC[1] = SPC_ch2 | |
492 |
|
492 | |||
493 | # #plt.gcf().clear() |
|
493 | # #plt.gcf().clear() | |
494 | # plt.figure(50+self.i) |
|
494 | # plt.figure(50+self.i) | |
495 | # self.i=self.i+1 |
|
495 | # self.i=self.i+1 | |
496 | # #plt.subplot(121) |
|
496 | # #plt.subplot(121) | |
497 | # plt.plot(self.spc,'k')#,label='spc(66)') |
|
497 | # plt.plot(self.spc,'k')#,label='spc(66)') | |
498 | # plt.plot(SPC_ch1[ch,ht],'b')#,label='gg1') |
|
498 | # plt.plot(SPC_ch1[ch,ht],'b')#,label='gg1') | |
499 | # #plt.plot(SPC_ch2,'r')#,label='gg2') |
|
499 | # #plt.plot(SPC_ch2,'r')#,label='gg2') | |
500 | # #plt.plot(xFrec,ySamples[1],'g',label='Ch1') |
|
500 | # #plt.plot(xFrec,ySamples[1],'g',label='Ch1') | |
501 | # #plt.plot(xFrec,ySamples[2],'r',label='Ch2') |
|
501 | # #plt.plot(xFrec,ySamples[2],'r',label='Ch2') | |
502 | # #plt.plot(xFrec,FitGauss,'yo:',label='fit') |
|
502 | # #plt.plot(xFrec,FitGauss,'yo:',label='fit') | |
503 | # plt.legend() |
|
503 | # plt.legend() | |
504 | # plt.title('DATOS A ALTURA DE 7500 METROS') |
|
504 | # plt.title('DATOS A ALTURA DE 7500 METROS') | |
505 | # plt.show() |
|
505 | # plt.show() | |
506 | # print 'shift0', shift0 |
|
506 | # print 'shift0', shift0 | |
507 | # print 'Amplitude0', Amplitude0 |
|
507 | # print 'Amplitude0', Amplitude0 | |
508 | # print 'width0', width0 |
|
508 | # print 'width0', width0 | |
509 | # print 'p0', p0 |
|
509 | # print 'p0', p0 | |
510 | # print '========================' |
|
510 | # print '========================' | |
511 | # print 'shift1', shift1 |
|
511 | # print 'shift1', shift1 | |
512 | # print 'Amplitude1', Amplitude1 |
|
512 | # print 'Amplitude1', Amplitude1 | |
513 | # print 'width1', width1 |
|
513 | # print 'width1', width1 | |
514 | # print 'p1', p1 |
|
514 | # print 'p1', p1 | |
515 | # print 'noise', noise |
|
515 | # print 'noise', noise | |
516 | # print 's_noise', wnoise |
|
516 | # print 's_noise', wnoise | |
517 |
|
517 | |||
518 | print '========================================================' |
|
518 | print '========================================================' | |
519 | print 'total_time: ', time.time()-start_time |
|
519 | print 'total_time: ', time.time()-start_time | |
520 |
|
520 | |||
521 | # re-normalizing spc and noise |
|
521 | # re-normalizing spc and noise | |
522 | # This part differs from gg1 |
|
522 | # This part differs from gg1 | |
523 |
|
523 | |||
524 |
|
524 | |||
525 |
|
525 | |||
526 | ''' Parameters: |
|
526 | ''' Parameters: | |
527 | 1. Amplitude |
|
527 | 1. Amplitude | |
528 | 2. Shift |
|
528 | 2. Shift | |
529 | 3. Width |
|
529 | 3. Width | |
530 | 4. Power |
|
530 | 4. Power | |
531 | ''' |
|
531 | ''' | |
532 |
|
532 | |||
533 |
|
533 | |||
534 | ############################################################################### |
|
534 | ############################################################################### | |
535 | def FitGau(self, X): |
|
535 | def FitGau(self, X): | |
536 |
|
536 | |||
537 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X |
|
537 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X | |
538 | #print 'VARSSSS', ch, pnoise, noise, num_intg |
|
538 | #print 'VARSSSS', ch, pnoise, noise, num_intg | |
539 |
|
539 | |||
540 | #print 'HEIGHTS', self.Num_Hei |
|
540 | #print 'HEIGHTS', self.Num_Hei | |
541 |
|
541 | |||
542 | GauSPC = [] |
|
542 | GauSPC = [] | |
543 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
543 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
544 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
544 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
545 | SPC_ch1[:] = 0#numpy.NaN |
|
545 | SPC_ch1[:] = 0#numpy.NaN | |
546 | SPC_ch2[:] = 0#numpy.NaN |
|
546 | SPC_ch2[:] = 0#numpy.NaN | |
547 |
|
547 | |||
548 |
|
548 | |||
549 |
|
549 | |||
550 | for ht in range(self.Num_Hei): |
|
550 | for ht in range(self.Num_Hei): | |
551 | #print (numpy.asarray(self.spc).shape) |
|
551 | #print (numpy.asarray(self.spc).shape) | |
552 |
|
552 | |||
553 | #print 'TTTTT', ch , ht |
|
553 | #print 'TTTTT', ch , ht | |
554 | #print self.spc.shape |
|
554 | #print self.spc.shape | |
555 |
|
555 | |||
556 |
|
556 | |||
557 | spc = numpy.asarray(self.spc)[ch,:,ht] |
|
557 | spc = numpy.asarray(self.spc)[ch,:,ht] | |
558 |
|
558 | |||
559 | ############################################# |
|
559 | ############################################# | |
560 | # normalizing spc and noise |
|
560 | # normalizing spc and noise | |
561 | # This part differs from gg1 |
|
561 | # This part differs from gg1 | |
562 | spc_norm_max = max(spc) |
|
562 | spc_norm_max = max(spc) | |
563 | spc = spc / spc_norm_max |
|
563 | spc = spc / spc_norm_max | |
564 | pnoise = pnoise / spc_norm_max |
|
564 | pnoise = pnoise / spc_norm_max | |
565 | ############################################# |
|
565 | ############################################# | |
566 |
|
566 | |||
567 | fatspectra=1.0 |
|
567 | fatspectra=1.0 | |
568 |
|
568 | |||
569 | wnoise = noise_ / spc_norm_max |
|
569 | wnoise = noise_ / spc_norm_max | |
570 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used |
|
570 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used | |
571 | #if wnoise>1.1*pnoise: # to be tested later |
|
571 | #if wnoise>1.1*pnoise: # to be tested later | |
572 | # wnoise=pnoise |
|
572 | # wnoise=pnoise | |
573 | noisebl=wnoise*0.9; noisebh=wnoise*1.1 |
|
573 | noisebl=wnoise*0.9; noisebh=wnoise*1.1 | |
574 | spc=spc-wnoise |
|
574 | spc=spc-wnoise | |
575 | # print 'wnoise', noise_[0], spc_norm_max, wnoise |
|
575 | # print 'wnoise', noise_[0], spc_norm_max, wnoise | |
576 | minx=numpy.argmin(spc) |
|
576 | minx=numpy.argmin(spc) | |
577 | spcs=numpy.roll(spc,-minx) |
|
577 | spcs=numpy.roll(spc,-minx) | |
578 | cum=numpy.cumsum(spcs) |
|
578 | cum=numpy.cumsum(spcs) | |
579 | tot_noise=wnoise * self.Num_Bin #64; |
|
579 | tot_noise=wnoise * self.Num_Bin #64; | |
580 | #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise |
|
580 | #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise | |
581 | #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? ''' |
|
581 | #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? ''' | |
582 | #snr=tot_signal/tot_noise |
|
582 | #snr=tot_signal/tot_noise | |
583 | #snr=cum[-1]/tot_noise |
|
583 | #snr=cum[-1]/tot_noise | |
584 | snr = sum(spcs)/tot_noise |
|
584 | snr = sum(spcs)/tot_noise | |
585 | snrdB=10.*numpy.log10(snr) |
|
585 | snrdB=10.*numpy.log10(snr) | |
586 |
|
586 | |||
587 | if snrdB < SNRlimit : |
|
587 | if snrdB < SNRlimit : | |
588 | snr = numpy.NaN |
|
588 | snr = numpy.NaN | |
589 | SPC_ch1[:,ht] = 0#numpy.NaN |
|
589 | SPC_ch1[:,ht] = 0#numpy.NaN | |
590 | SPC_ch1[:,ht] = 0#numpy.NaN |
|
590 | SPC_ch1[:,ht] = 0#numpy.NaN | |
591 | GauSPC = (SPC_ch1,SPC_ch2) |
|
591 | GauSPC = (SPC_ch1,SPC_ch2) | |
592 | continue |
|
592 | continue | |
593 | #print 'snr',snrdB #, sum(spcs) , tot_noise |
|
593 | #print 'snr',snrdB #, sum(spcs) , tot_noise | |
594 |
|
594 | |||
595 |
|
595 | |||
596 |
|
596 | |||
597 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: |
|
597 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: | |
598 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
598 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
599 |
|
599 | |||
600 | cummax=max(cum); epsi=0.08*fatspectra # cumsum to narrow down the energy region |
|
600 | cummax=max(cum); epsi=0.08*fatspectra # cumsum to narrow down the energy region | |
601 | cumlo=cummax*epsi; |
|
601 | cumlo=cummax*epsi; | |
602 | cumhi=cummax*(1-epsi) |
|
602 | cumhi=cummax*(1-epsi) | |
603 | powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) |
|
603 | powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |
604 |
|
604 | |||
605 |
|
605 | |||
606 | if len(powerindex) < 1:# case for powerindex 0 |
|
606 | if len(powerindex) < 1:# case for powerindex 0 | |
607 | continue |
|
607 | continue | |
608 | powerlo=powerindex[0] |
|
608 | powerlo=powerindex[0] | |
609 | powerhi=powerindex[-1] |
|
609 | powerhi=powerindex[-1] | |
610 | powerwidth=powerhi-powerlo |
|
610 | powerwidth=powerhi-powerlo | |
611 |
|
611 | |||
612 | firstpeak=powerlo+powerwidth/10.# first gaussian energy location |
|
612 | firstpeak=powerlo+powerwidth/10.# first gaussian energy location | |
613 | secondpeak=powerhi-powerwidth/10.#second gaussian energy location |
|
613 | secondpeak=powerhi-powerwidth/10.#second gaussian energy location | |
614 | midpeak=(firstpeak+secondpeak)/2. |
|
614 | midpeak=(firstpeak+secondpeak)/2. | |
615 | firstamp=spcs[int(firstpeak)] |
|
615 | firstamp=spcs[int(firstpeak)] | |
616 | secondamp=spcs[int(secondpeak)] |
|
616 | secondamp=spcs[int(secondpeak)] | |
617 | midamp=spcs[int(midpeak)] |
|
617 | midamp=spcs[int(midpeak)] | |
618 |
|
618 | |||
619 | x=numpy.arange( self.Num_Bin ) |
|
619 | x=numpy.arange( self.Num_Bin ) | |
620 | y_data=spc+wnoise |
|
620 | y_data=spc+wnoise | |
621 |
|
621 | |||
622 | # single gaussian |
|
622 | # single gaussian | |
623 | shift0=numpy.mod(midpeak+minx, self.Num_Bin ) |
|
623 | shift0=numpy.mod(midpeak+minx, self.Num_Bin ) | |
624 | width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 |
|
624 | width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 | |
625 | power0=2. |
|
625 | power0=2. | |
626 | amplitude0=midamp |
|
626 | amplitude0=midamp | |
627 | state0=[shift0,width0,amplitude0,power0,wnoise] |
|
627 | state0=[shift0,width0,amplitude0,power0,wnoise] | |
628 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
628 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |
629 | lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
629 | lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) | |
630 |
|
630 | |||
631 | chiSq1=lsq1[1]; |
|
631 | chiSq1=lsq1[1]; | |
632 | jack1= self.y_jacobian1(x,lsq1[0]) |
|
632 | jack1= self.y_jacobian1(x,lsq1[0]) | |
633 |
|
633 | |||
634 |
|
634 | |||
635 | try: |
|
635 | try: | |
636 | sigmas1=numpy.sqrt(chiSq1*numpy.diag(numpy.linalg.inv(numpy.dot(jack1.T,jack1)))) |
|
636 | sigmas1=numpy.sqrt(chiSq1*numpy.diag(numpy.linalg.inv(numpy.dot(jack1.T,jack1)))) | |
637 | except: |
|
637 | except: | |
638 | std1=32.; sigmas1=numpy.ones(5) |
|
638 | std1=32.; sigmas1=numpy.ones(5) | |
639 | else: |
|
639 | else: | |
640 | std1=sigmas1[0] |
|
640 | std1=sigmas1[0] | |
641 |
|
641 | |||
642 |
|
642 | |||
643 | if fatspectra<1.0 and powerwidth<4: |
|
643 | if fatspectra<1.0 and powerwidth<4: | |
644 | choice=0 |
|
644 | choice=0 | |
645 | Amplitude0=lsq1[0][2] |
|
645 | Amplitude0=lsq1[0][2] | |
646 | shift0=lsq1[0][0] |
|
646 | shift0=lsq1[0][0] | |
647 | width0=lsq1[0][1] |
|
647 | width0=lsq1[0][1] | |
648 | p0=lsq1[0][3] |
|
648 | p0=lsq1[0][3] | |
649 | Amplitude1=0. |
|
649 | Amplitude1=0. | |
650 | shift1=0. |
|
650 | shift1=0. | |
651 | width1=0. |
|
651 | width1=0. | |
652 | p1=0. |
|
652 | p1=0. | |
653 | noise=lsq1[0][4] |
|
653 | noise=lsq1[0][4] | |
654 | #return (numpy.array([shift0,width0,Amplitude0,p0]), |
|
654 | #return (numpy.array([shift0,width0,Amplitude0,p0]), | |
655 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) |
|
655 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) | |
656 |
|
656 | |||
657 | # two gaussians |
|
657 | # two gaussians | |
658 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) |
|
658 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) | |
659 | shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); |
|
659 | shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); | |
660 | shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) |
|
660 | shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) | |
661 | width0=powerwidth/6.; |
|
661 | width0=powerwidth/6.; | |
662 | width1=width0 |
|
662 | width1=width0 | |
663 | power0=2.; |
|
663 | power0=2.; | |
664 | power1=power0 |
|
664 | power1=power0 | |
665 | amplitude0=firstamp; |
|
665 | amplitude0=firstamp; | |
666 | amplitude1=secondamp |
|
666 | amplitude1=secondamp | |
667 | state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] |
|
667 | state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |
668 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
668 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
669 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
669 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
670 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) |
|
670 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) | |
671 |
|
671 | |||
672 | lsq2=fmin_l_bfgs_b(self.misfit2,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
672 | lsq2=fmin_l_bfgs_b(self.misfit2,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) | |
673 |
|
673 | |||
674 |
|
674 | |||
675 | chiSq2=lsq2[1]; jack2=self.y_jacobian2(x,lsq2[0]) |
|
675 | chiSq2=lsq2[1]; jack2=self.y_jacobian2(x,lsq2[0]) | |
676 |
|
676 | |||
677 |
|
677 | |||
678 | try: |
|
678 | try: | |
679 | sigmas2=numpy.sqrt(chiSq2*numpy.diag(numpy.linalg.inv(numpy.dot(jack2.T,jack2)))) |
|
679 | sigmas2=numpy.sqrt(chiSq2*numpy.diag(numpy.linalg.inv(numpy.dot(jack2.T,jack2)))) | |
680 | except: |
|
680 | except: | |
681 | std2a=32.; std2b=32.; sigmas2=numpy.ones(9) |
|
681 | std2a=32.; std2b=32.; sigmas2=numpy.ones(9) | |
682 | else: |
|
682 | else: | |
683 | std2a=sigmas2[0]; std2b=sigmas2[4] |
|
683 | std2a=sigmas2[0]; std2b=sigmas2[4] | |
684 |
|
684 | |||
685 |
|
685 | |||
686 |
|
686 | |||
687 | oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) |
|
687 | oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |
688 |
|
688 | |||
689 | if snrdB>-6: # when SNR is strong pick the peak with least shift (LOS velocity) error |
|
689 | if snrdB>-6: # when SNR is strong pick the peak with least shift (LOS velocity) error | |
690 | if oneG: |
|
690 | if oneG: | |
691 | choice=0 |
|
691 | choice=0 | |
692 | else: |
|
692 | else: | |
693 | w1=lsq2[0][1]; w2=lsq2[0][5] |
|
693 | w1=lsq2[0][1]; w2=lsq2[0][5] | |
694 | a1=lsq2[0][2]; a2=lsq2[0][6] |
|
694 | a1=lsq2[0][2]; a2=lsq2[0][6] | |
695 | p1=lsq2[0][3]; p2=lsq2[0][7] |
|
695 | p1=lsq2[0][3]; p2=lsq2[0][7] | |
696 | s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; |
|
696 | s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; | |
697 | s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; |
|
697 | s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; | |
698 | gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling |
|
698 | gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling | |
699 |
|
699 | |||
700 | if gp1>gp2: |
|
700 | if gp1>gp2: | |
701 | if a1>0.7*a2: |
|
701 | if a1>0.7*a2: | |
702 | choice=1 |
|
702 | choice=1 | |
703 | else: |
|
703 | else: | |
704 | choice=2 |
|
704 | choice=2 | |
705 | elif gp2>gp1: |
|
705 | elif gp2>gp1: | |
706 | if a2>0.7*a1: |
|
706 | if a2>0.7*a1: | |
707 | choice=2 |
|
707 | choice=2 | |
708 | else: |
|
708 | else: | |
709 | choice=1 |
|
709 | choice=1 | |
710 | else: |
|
710 | else: | |
711 | choice=numpy.argmax([a1,a2])+1 |
|
711 | choice=numpy.argmax([a1,a2])+1 | |
712 | #else: |
|
712 | #else: | |
713 | #choice=argmin([std2a,std2b])+1 |
|
713 | #choice=argmin([std2a,std2b])+1 | |
714 |
|
714 | |||
715 | else: # with low SNR go to the most energetic peak |
|
715 | else: # with low SNR go to the most energetic peak | |
716 | choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) |
|
716 | choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |
717 |
|
717 | |||
718 |
|
718 | |||
719 | shift0=lsq2[0][0]; vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0]) |
|
719 | shift0=lsq2[0][0]; vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0]) | |
720 | shift1=lsq2[0][4]; vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0]) |
|
720 | shift1=lsq2[0][4]; vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0]) | |
721 |
|
721 | |||
722 | max_vel = 20 |
|
722 | max_vel = 20 | |
723 |
|
723 | |||
724 | #first peak will be 0, second peak will be 1 |
|
724 | #first peak will be 0, second peak will be 1 | |
725 | if vel0 > 0 and vel0 < max_vel : #first peak is in the correct range |
|
725 | if vel0 > 0 and vel0 < max_vel : #first peak is in the correct range | |
726 | shift0=lsq2[0][0] |
|
726 | shift0=lsq2[0][0] | |
727 | width0=lsq2[0][1] |
|
727 | width0=lsq2[0][1] | |
728 | Amplitude0=lsq2[0][2] |
|
728 | Amplitude0=lsq2[0][2] | |
729 | p0=lsq2[0][3] |
|
729 | p0=lsq2[0][3] | |
730 |
|
730 | |||
731 | shift1=lsq2[0][4] |
|
731 | shift1=lsq2[0][4] | |
732 | width1=lsq2[0][5] |
|
732 | width1=lsq2[0][5] | |
733 | Amplitude1=lsq2[0][6] |
|
733 | Amplitude1=lsq2[0][6] | |
734 | p1=lsq2[0][7] |
|
734 | p1=lsq2[0][7] | |
735 | noise=lsq2[0][8] |
|
735 | noise=lsq2[0][8] | |
736 | else: |
|
736 | else: | |
737 | shift1=lsq2[0][0] |
|
737 | shift1=lsq2[0][0] | |
738 | width1=lsq2[0][1] |
|
738 | width1=lsq2[0][1] | |
739 | Amplitude1=lsq2[0][2] |
|
739 | Amplitude1=lsq2[0][2] | |
740 | p1=lsq2[0][3] |
|
740 | p1=lsq2[0][3] | |
741 |
|
741 | |||
742 | shift0=lsq2[0][4] |
|
742 | shift0=lsq2[0][4] | |
743 | width0=lsq2[0][5] |
|
743 | width0=lsq2[0][5] | |
744 | Amplitude0=lsq2[0][6] |
|
744 | Amplitude0=lsq2[0][6] | |
745 | p0=lsq2[0][7] |
|
745 | p0=lsq2[0][7] | |
746 | noise=lsq2[0][8] |
|
746 | noise=lsq2[0][8] | |
747 |
|
747 | |||
748 | if Amplitude0<0.1: # in case the peak is noise |
|
748 | if Amplitude0<0.1: # in case the peak is noise | |
749 | shift0,width0,Amplitude0,p0 = 4*[numpy.NaN] |
|
749 | shift0,width0,Amplitude0,p0 = 4*[numpy.NaN] | |
750 | if Amplitude1<0.1: |
|
750 | if Amplitude1<0.1: | |
751 | shift1,width1,Amplitude1,p1 = 4*[numpy.NaN] |
|
751 | shift1,width1,Amplitude1,p1 = 4*[numpy.NaN] | |
752 |
|
752 | |||
753 |
|
753 | |||
754 | # if choice==0: # pick the single gaussian fit |
|
754 | # if choice==0: # pick the single gaussian fit | |
755 | # Amplitude0=lsq1[0][2] |
|
755 | # Amplitude0=lsq1[0][2] | |
756 | # shift0=lsq1[0][0] |
|
756 | # shift0=lsq1[0][0] | |
757 | # width0=lsq1[0][1] |
|
757 | # width0=lsq1[0][1] | |
758 | # p0=lsq1[0][3] |
|
758 | # p0=lsq1[0][3] | |
759 | # Amplitude1=0. |
|
759 | # Amplitude1=0. | |
760 | # shift1=0. |
|
760 | # shift1=0. | |
761 | # width1=0. |
|
761 | # width1=0. | |
762 | # p1=0. |
|
762 | # p1=0. | |
763 | # noise=lsq1[0][4] |
|
763 | # noise=lsq1[0][4] | |
764 | # elif choice==1: # take the first one of the 2 gaussians fitted |
|
764 | # elif choice==1: # take the first one of the 2 gaussians fitted | |
765 | # Amplitude0 = lsq2[0][2] |
|
765 | # Amplitude0 = lsq2[0][2] | |
766 | # shift0 = lsq2[0][0] |
|
766 | # shift0 = lsq2[0][0] | |
767 | # width0 = lsq2[0][1] |
|
767 | # width0 = lsq2[0][1] | |
768 | # p0 = lsq2[0][3] |
|
768 | # p0 = lsq2[0][3] | |
769 | # Amplitude1 = lsq2[0][6] # This is 0 in gg1 |
|
769 | # Amplitude1 = lsq2[0][6] # This is 0 in gg1 | |
770 | # shift1 = lsq2[0][4] # This is 0 in gg1 |
|
770 | # shift1 = lsq2[0][4] # This is 0 in gg1 | |
771 | # width1 = lsq2[0][5] # This is 0 in gg1 |
|
771 | # width1 = lsq2[0][5] # This is 0 in gg1 | |
772 | # p1 = lsq2[0][7] # This is 0 in gg1 |
|
772 | # p1 = lsq2[0][7] # This is 0 in gg1 | |
773 | # noise = lsq2[0][8] |
|
773 | # noise = lsq2[0][8] | |
774 | # else: # the second one |
|
774 | # else: # the second one | |
775 | # Amplitude0 = lsq2[0][6] |
|
775 | # Amplitude0 = lsq2[0][6] | |
776 | # shift0 = lsq2[0][4] |
|
776 | # shift0 = lsq2[0][4] | |
777 | # width0 = lsq2[0][5] |
|
777 | # width0 = lsq2[0][5] | |
778 | # p0 = lsq2[0][7] |
|
778 | # p0 = lsq2[0][7] | |
779 | # Amplitude1 = lsq2[0][2] # This is 0 in gg1 |
|
779 | # Amplitude1 = lsq2[0][2] # This is 0 in gg1 | |
780 | # shift1 = lsq2[0][0] # This is 0 in gg1 |
|
780 | # shift1 = lsq2[0][0] # This is 0 in gg1 | |
781 | # width1 = lsq2[0][1] # This is 0 in gg1 |
|
781 | # width1 = lsq2[0][1] # This is 0 in gg1 | |
782 | # p1 = lsq2[0][3] # This is 0 in gg1 |
|
782 | # p1 = lsq2[0][3] # This is 0 in gg1 | |
783 | # noise = lsq2[0][8] |
|
783 | # noise = lsq2[0][8] | |
784 |
|
784 | |||
785 | #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0) |
|
785 | #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0) | |
786 | SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 |
|
786 | SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 | |
787 | SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 |
|
787 | SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 | |
788 | #print 'SPC_ch1.shape',SPC_ch1.shape |
|
788 | #print 'SPC_ch1.shape',SPC_ch1.shape | |
789 | #print 'SPC_ch2.shape',SPC_ch2.shape |
|
789 | #print 'SPC_ch2.shape',SPC_ch2.shape | |
790 | #dataOut.data_param = SPC_ch1 |
|
790 | #dataOut.data_param = SPC_ch1 | |
791 | GauSPC = (SPC_ch1,SPC_ch2) |
|
791 | GauSPC = (SPC_ch1,SPC_ch2) | |
792 | #GauSPC[1] = SPC_ch2 |
|
792 | #GauSPC[1] = SPC_ch2 | |
793 |
|
793 | |||
794 | # print 'shift0', shift0 |
|
794 | # print 'shift0', shift0 | |
795 | # print 'Amplitude0', Amplitude0 |
|
795 | # print 'Amplitude0', Amplitude0 | |
796 | # print 'width0', width0 |
|
796 | # print 'width0', width0 | |
797 | # print 'p0', p0 |
|
797 | # print 'p0', p0 | |
798 | # print '========================' |
|
798 | # print '========================' | |
799 | # print 'shift1', shift1 |
|
799 | # print 'shift1', shift1 | |
800 | # print 'Amplitude1', Amplitude1 |
|
800 | # print 'Amplitude1', Amplitude1 | |
801 | # print 'width1', width1 |
|
801 | # print 'width1', width1 | |
802 | # print 'p1', p1 |
|
802 | # print 'p1', p1 | |
803 | # print 'noise', noise |
|
803 | # print 'noise', noise | |
804 | # print 's_noise', wnoise |
|
804 | # print 's_noise', wnoise | |
805 |
|
805 | |||
806 | return GauSPC |
|
806 | return GauSPC | |
807 |
|
807 | |||
808 |
|
808 | |||
809 | def y_jacobian1(self,x,state): # This function is for further analysis of generalized Gaussians, it is not too importan for the signal discrimination. |
|
809 | def y_jacobian1(self,x,state): # This function is for further analysis of generalized Gaussians, it is not too importan for the signal discrimination. | |
810 | y_model=self.y_model1(x,state) |
|
810 | y_model=self.y_model1(x,state) | |
811 | s0,w0,a0,p0,n=state |
|
811 | s0,w0,a0,p0,n=state | |
812 | e0=((x-s0)/w0)**2; |
|
812 | e0=((x-s0)/w0)**2; | |
813 |
|
813 | |||
814 | e0u=((x-s0-self.Num_Bin)/w0)**2; |
|
814 | e0u=((x-s0-self.Num_Bin)/w0)**2; | |
815 |
|
815 | |||
816 | e0d=((x-s0+self.Num_Bin)/w0)**2 |
|
816 | e0d=((x-s0+self.Num_Bin)/w0)**2 | |
817 | m0=numpy.exp(-0.5*e0**(p0/2.)); |
|
817 | m0=numpy.exp(-0.5*e0**(p0/2.)); | |
818 | m0u=numpy.exp(-0.5*e0u**(p0/2.)); |
|
818 | m0u=numpy.exp(-0.5*e0u**(p0/2.)); | |
819 | m0d=numpy.exp(-0.5*e0d**(p0/2.)) |
|
819 | m0d=numpy.exp(-0.5*e0d**(p0/2.)) | |
820 | JA=m0+m0u+m0d |
|
820 | JA=m0+m0u+m0d | |
821 | JP=(-1/4.)*a0*m0*e0**(p0/2.)*numpy.log(e0)+(-1/4.)*a0*m0u*e0u**(p0/2.)*numpy.log(e0u)+(-1/4.)*a0*m0d*e0d**(p0/2.)*numpy.log(e0d) |
|
821 | JP=(-1/4.)*a0*m0*e0**(p0/2.)*numpy.log(e0)+(-1/4.)*a0*m0u*e0u**(p0/2.)*numpy.log(e0u)+(-1/4.)*a0*m0d*e0d**(p0/2.)*numpy.log(e0d) | |
822 |
|
822 | |||
823 | JS=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0) |
|
823 | JS=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0) | |
824 |
|
824 | |||
825 | JW=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)**2+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)**2+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0)**2 |
|
825 | JW=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)**2+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)**2+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0)**2 | |
826 | jack1=numpy.sqrt(7)*numpy.array([JS/y_model,JW/y_model,JA/y_model,JP/y_model,1./y_model]) |
|
826 | jack1=numpy.sqrt(7)*numpy.array([JS/y_model,JW/y_model,JA/y_model,JP/y_model,1./y_model]) | |
827 | return jack1.T |
|
827 | return jack1.T | |
828 |
|
828 | |||
829 | def y_jacobian2(self,x,state): |
|
829 | def y_jacobian2(self,x,state): | |
830 | y_model=self.y_model2(x,state) |
|
830 | y_model=self.y_model2(x,state) | |
831 | s0,w0,a0,p0,s1,w1,a1,p1,n=state |
|
831 | s0,w0,a0,p0,s1,w1,a1,p1,n=state | |
832 | e0=((x-s0)/w0)**2; |
|
832 | e0=((x-s0)/w0)**2; | |
833 |
|
833 | |||
834 | e0u=((x-s0- self.Num_Bin )/w0)**2; |
|
834 | e0u=((x-s0- self.Num_Bin )/w0)**2; | |
835 |
|
835 | |||
836 | e0d=((x-s0+ self.Num_Bin )/w0)**2 |
|
836 | e0d=((x-s0+ self.Num_Bin )/w0)**2 | |
837 | e1=((x-s1)/w1)**2; |
|
837 | e1=((x-s1)/w1)**2; | |
838 |
|
838 | |||
839 | e1u=((x-s1- self.Num_Bin )/w1)**2; |
|
839 | e1u=((x-s1- self.Num_Bin )/w1)**2; | |
840 |
|
840 | |||
841 | e1d=((x-s1+ self.Num_Bin )/w1)**2 |
|
841 | e1d=((x-s1+ self.Num_Bin )/w1)**2 | |
842 | m0=numpy.exp(-0.5*e0**(p0/2.)); |
|
842 | m0=numpy.exp(-0.5*e0**(p0/2.)); | |
843 | m0u=numpy.exp(-0.5*e0u**(p0/2.)); |
|
843 | m0u=numpy.exp(-0.5*e0u**(p0/2.)); | |
844 | m0d=numpy.exp(-0.5*e0d**(p0/2.)) |
|
844 | m0d=numpy.exp(-0.5*e0d**(p0/2.)) | |
845 | m1=numpy.exp(-0.5*e1**(p1/2.)); |
|
845 | m1=numpy.exp(-0.5*e1**(p1/2.)); | |
846 | m1u=numpy.exp(-0.5*e1u**(p1/2.)); |
|
846 | m1u=numpy.exp(-0.5*e1u**(p1/2.)); | |
847 | m1d=numpy.exp(-0.5*e1d**(p1/2.)) |
|
847 | m1d=numpy.exp(-0.5*e1d**(p1/2.)) | |
848 | JA=m0+m0u+m0d |
|
848 | JA=m0+m0u+m0d | |
849 | JA1=m1+m1u+m1d |
|
849 | JA1=m1+m1u+m1d | |
850 | JP=(-1/4.)*a0*m0*e0**(p0/2.)*numpy.log(e0)+(-1/4.)*a0*m0u*e0u**(p0/2.)*numpy.log(e0u)+(-1/4.)*a0*m0d*e0d**(p0/2.)*numpy.log(e0d) |
|
850 | JP=(-1/4.)*a0*m0*e0**(p0/2.)*numpy.log(e0)+(-1/4.)*a0*m0u*e0u**(p0/2.)*numpy.log(e0u)+(-1/4.)*a0*m0d*e0d**(p0/2.)*numpy.log(e0d) | |
851 | JP1=(-1/4.)*a1*m1*e1**(p1/2.)*numpy.log(e1)+(-1/4.)*a1*m1u*e1u**(p1/2.)*numpy.log(e1u)+(-1/4.)*a1*m1d*e1d**(p1/2.)*numpy.log(e1d) |
|
851 | JP1=(-1/4.)*a1*m1*e1**(p1/2.)*numpy.log(e1)+(-1/4.)*a1*m1u*e1u**(p1/2.)*numpy.log(e1u)+(-1/4.)*a1*m1d*e1d**(p1/2.)*numpy.log(e1d) | |
852 |
|
852 | |||
853 | JS=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0) |
|
853 | JS=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0) | |
854 |
|
854 | |||
855 | JS1=(p1/w1/2.)*a1*m1*e1**(p1/2.-1)*((x-s1)/w1)+(p1/w1/2.)*a1*m1u*e1u**(p1/2.-1)*((x-s1- self.Num_Bin )/w1)+(p1/w1/2.)*a1*m1d*e1d**(p1/2.-1)*((x-s1+ self.Num_Bin )/w1) |
|
855 | JS1=(p1/w1/2.)*a1*m1*e1**(p1/2.-1)*((x-s1)/w1)+(p1/w1/2.)*a1*m1u*e1u**(p1/2.-1)*((x-s1- self.Num_Bin )/w1)+(p1/w1/2.)*a1*m1d*e1d**(p1/2.-1)*((x-s1+ self.Num_Bin )/w1) | |
856 |
|
856 | |||
857 | JW=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)**2+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)**2+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0)**2 |
|
857 | JW=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)**2+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)**2+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0)**2 | |
858 |
|
858 | |||
859 | JW1=(p1/w1/2.)*a1*m1*e1**(p1/2.-1)*((x-s1)/w1)**2+(p1/w1/2.)*a1*m1u*e1u**(p1/2.-1)*((x-s1- self.Num_Bin )/w1)**2+(p1/w1/2.)*a1*m1d*e1d**(p1/2.-1)*((x-s1+ self.Num_Bin )/w1)**2 |
|
859 | JW1=(p1/w1/2.)*a1*m1*e1**(p1/2.-1)*((x-s1)/w1)**2+(p1/w1/2.)*a1*m1u*e1u**(p1/2.-1)*((x-s1- self.Num_Bin )/w1)**2+(p1/w1/2.)*a1*m1d*e1d**(p1/2.-1)*((x-s1+ self.Num_Bin )/w1)**2 | |
860 | jack2=numpy.sqrt(7)*numpy.array([JS/y_model,JW/y_model,JA/y_model,JP/y_model,JS1/y_model,JW1/y_model,JA1/y_model,JP1/y_model,1./y_model]) |
|
860 | jack2=numpy.sqrt(7)*numpy.array([JS/y_model,JW/y_model,JA/y_model,JP/y_model,JS1/y_model,JW1/y_model,JA1/y_model,JP1/y_model,1./y_model]) | |
861 | return jack2.T |
|
861 | return jack2.T | |
862 |
|
862 | |||
863 | def y_model1(self,x,state): |
|
863 | def y_model1(self,x,state): | |
864 | shift0,width0,amplitude0,power0,noise=state |
|
864 | shift0,width0,amplitude0,power0,noise=state | |
865 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) |
|
865 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
866 |
|
866 | |||
867 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) |
|
867 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) | |
868 |
|
868 | |||
869 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) |
|
869 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) | |
870 | return model0+model0u+model0d+noise |
|
870 | return model0+model0u+model0d+noise | |
871 |
|
871 | |||
872 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist |
|
872 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist | |
873 | shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state |
|
873 | shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state | |
874 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) |
|
874 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
875 |
|
875 | |||
876 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) |
|
876 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) | |
877 |
|
877 | |||
878 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) |
|
878 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) | |
879 | model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1) |
|
879 | model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1) | |
880 |
|
880 | |||
881 | model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1) |
|
881 | model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1) | |
882 |
|
882 | |||
883 | model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1) |
|
883 | model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1) | |
884 | return model0+model0u+model0d+model1+model1u+model1d+noise |
|
884 | return model0+model0u+model0d+model1+model1u+model1d+noise | |
885 |
|
885 | |||
886 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. |
|
886 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. | |
887 |
|
887 | |||
888 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented |
|
888 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented | |
889 |
|
889 | |||
890 | def misfit2(self,state,y_data,x,num_intg): |
|
890 | def misfit2(self,state,y_data,x,num_intg): | |
891 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) |
|
891 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) | |
892 |
|
892 | |||
893 |
|
893 | |||
894 | class PrecipitationProc(Operation): |
|
894 | class PrecipitationProc(Operation): | |
895 |
|
895 | |||
896 | ''' |
|
896 | ''' | |
897 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) |
|
897 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) | |
898 |
|
898 | |||
899 | Input: |
|
899 | Input: | |
900 | self.dataOut.data_pre : SelfSpectra |
|
900 | self.dataOut.data_pre : SelfSpectra | |
901 |
|
901 | |||
902 | Output: |
|
902 | Output: | |
903 |
|
903 | |||
904 | self.dataOut.data_output : Reflectivity factor, rainfall Rate |
|
904 | self.dataOut.data_output : Reflectivity factor, rainfall Rate | |
905 |
|
905 | |||
906 |
|
906 | |||
907 | Parameters affected: |
|
907 | Parameters affected: | |
908 | ''' |
|
908 | ''' | |
909 |
|
909 | |||
910 |
|
910 | |||
911 | def run(self, dataOut, radar=None, Pt=None, Gt=None, Gr=None, Lambda=None, aL=None, |
|
911 | def run(self, dataOut, radar=None, Pt=None, Gt=None, Gr=None, Lambda=None, aL=None, | |
912 | tauW=None, ThetaT=None, ThetaR=None, Km = 0.93, Altitude=None): |
|
912 | tauW=None, ThetaT=None, ThetaR=None, Km = 0.93, Altitude=None): | |
913 |
|
913 | |||
914 | self.spc = dataOut.data_pre[0].copy() |
|
914 | self.spc = dataOut.data_pre[0].copy() | |
915 | self.Num_Hei = self.spc.shape[2] |
|
915 | self.Num_Hei = self.spc.shape[2] | |
916 | self.Num_Bin = self.spc.shape[1] |
|
916 | self.Num_Bin = self.spc.shape[1] | |
917 | self.Num_Chn = self.spc.shape[0] |
|
917 | self.Num_Chn = self.spc.shape[0] | |
918 |
|
918 | |||
919 | Velrange = dataOut.abscissaList |
|
919 | Velrange = dataOut.abscissaList | |
920 |
|
920 | |||
921 | if radar == "MIRA35C" : |
|
921 | if radar == "MIRA35C" : | |
922 |
|
922 | |||
923 | Ze = self.dBZeMODE2(dataOut) |
|
923 | Ze = self.dBZeMODE2(dataOut) | |
924 |
|
924 | |||
925 | else: |
|
925 | else: | |
926 |
|
926 | |||
927 | self.Pt = Pt |
|
927 | self.Pt = Pt | |
928 | self.Gt = Gt |
|
928 | self.Gt = Gt | |
929 | self.Gr = Gr |
|
929 | self.Gr = Gr | |
930 | self.Lambda = Lambda |
|
930 | self.Lambda = Lambda | |
931 | self.aL = aL |
|
931 | self.aL = aL | |
932 | self.tauW = tauW |
|
932 | self.tauW = tauW | |
933 | self.ThetaT = ThetaT |
|
933 | self.ThetaT = ThetaT | |
934 | self.ThetaR = ThetaR |
|
934 | self.ThetaR = ThetaR | |
935 |
|
935 | |||
936 | RadarConstant = GetRadarConstant() |
|
936 | RadarConstant = GetRadarConstant() | |
937 | SPCmean = numpy.mean(self.spc,0) |
|
937 | SPCmean = numpy.mean(self.spc,0) | |
938 | ETA = numpy.zeros(self.Num_Hei) |
|
938 | ETA = numpy.zeros(self.Num_Hei) | |
939 | Pr = numpy.sum(SPCmean,0) |
|
939 | Pr = numpy.sum(SPCmean,0) | |
940 |
|
940 | |||
941 | #for R in range(self.Num_Hei): |
|
941 | #for R in range(self.Num_Hei): | |
942 | # ETA[R] = RadarConstant * Pr[R] * R**2 #Reflectivity (ETA) |
|
942 | # ETA[R] = RadarConstant * Pr[R] * R**2 #Reflectivity (ETA) | |
943 |
|
943 | |||
944 | D_range = numpy.zeros(self.Num_Hei) |
|
944 | D_range = numpy.zeros(self.Num_Hei) | |
945 | EqSec = numpy.zeros(self.Num_Hei) |
|
945 | EqSec = numpy.zeros(self.Num_Hei) | |
946 | del_V = numpy.zeros(self.Num_Hei) |
|
946 | del_V = numpy.zeros(self.Num_Hei) | |
947 |
|
947 | |||
948 | for R in range(self.Num_Hei): |
|
948 | for R in range(self.Num_Hei): | |
949 | ETA[R] = RadarConstant * Pr[R] * R**2 #Reflectivity (ETA) |
|
949 | ETA[R] = RadarConstant * Pr[R] * R**2 #Reflectivity (ETA) | |
950 |
|
950 | |||
951 | h = R + Altitude #Range from ground to radar pulse altitude |
|
951 | h = R + Altitude #Range from ground to radar pulse altitude | |
952 | del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity |
|
952 | del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity | |
953 |
|
953 | |||
954 | D_range[R] = numpy.log( (9.65 - (Velrange[R]/del_V[R])) / 10.3 ) / -0.6 #Range of Diameter of drops related to velocity |
|
954 | D_range[R] = numpy.log( (9.65 - (Velrange[R]/del_V[R])) / 10.3 ) / -0.6 #Range of Diameter of drops related to velocity | |
955 | SIGMA[R] = numpy.pi**5 / Lambda**4 * Km * D_range[R]**6 #Equivalent Section of drops (sigma) |
|
955 | SIGMA[R] = numpy.pi**5 / Lambda**4 * Km * D_range[R]**6 #Equivalent Section of drops (sigma) | |
956 |
|
956 | |||
957 | N_dist[R] = ETA[R] / SIGMA[R] |
|
957 | N_dist[R] = ETA[R] / SIGMA[R] | |
958 |
|
958 | |||
959 | Ze = (ETA * Lambda**4) / (numpy.pi * Km) |
|
959 | Ze = (ETA * Lambda**4) / (numpy.pi * Km) | |
960 | Z = numpy.sum( N_dist * D_range**6 ) |
|
960 | Z = numpy.sum( N_dist * D_range**6 ) | |
961 | RR = 6*10**-4*numpy.pi * numpy.sum( D_range**3 * N_dist * Velrange ) #Rainfall rate |
|
961 | RR = 6*10**-4*numpy.pi * numpy.sum( D_range**3 * N_dist * Velrange ) #Rainfall rate | |
962 |
|
962 | |||
963 |
|
963 | |||
964 | RR = (Ze/200)**(1/1.6) |
|
964 | RR = (Ze/200)**(1/1.6) | |
965 | dBRR = 10*numpy.log10(RR) |
|
965 | dBRR = 10*numpy.log10(RR) | |
966 |
|
966 | |||
967 | dBZe = 10*numpy.log10(Ze) |
|
967 | dBZe = 10*numpy.log10(Ze) | |
968 | dataOut.data_output = Ze |
|
968 | dataOut.data_output = Ze | |
969 | dataOut.data_param = numpy.ones([2,self.Num_Hei]) |
|
969 | dataOut.data_param = numpy.ones([2,self.Num_Hei]) | |
970 | dataOut.channelList = [0,1] |
|
970 | dataOut.channelList = [0,1] | |
971 | print 'channelList', dataOut.channelList |
|
971 | print 'channelList', dataOut.channelList | |
972 | dataOut.data_param[0]=dBZe |
|
972 | dataOut.data_param[0]=dBZe | |
973 | dataOut.data_param[1]=dBRR |
|
973 | dataOut.data_param[1]=dBRR | |
974 | print 'RR SHAPE', dBRR.shape |
|
974 | print 'RR SHAPE', dBRR.shape | |
975 | print 'Ze SHAPE', dBZe.shape |
|
975 | print 'Ze SHAPE', dBZe.shape | |
976 | print 'dataOut.data_param SHAPE', dataOut.data_param.shape |
|
976 | print 'dataOut.data_param SHAPE', dataOut.data_param.shape | |
977 |
|
977 | |||
978 |
|
978 | |||
979 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C |
|
979 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C | |
980 |
|
980 | |||
981 | NPW = dataOut.NPW |
|
981 | NPW = dataOut.NPW | |
982 | COFA = dataOut.COFA |
|
982 | COFA = dataOut.COFA | |
983 |
|
983 | |||
984 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) |
|
984 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) | |
985 | RadarConst = dataOut.RadarConst |
|
985 | RadarConst = dataOut.RadarConst | |
986 | #frequency = 34.85*10**9 |
|
986 | #frequency = 34.85*10**9 | |
987 |
|
987 | |||
988 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) |
|
988 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) | |
989 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN |
|
989 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN | |
990 |
|
990 | |||
991 | ETA = numpy.sum(SNR,1) |
|
991 | ETA = numpy.sum(SNR,1) | |
992 | print 'ETA' , ETA |
|
992 | print 'ETA' , ETA | |
993 | ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN) |
|
993 | ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN) | |
994 |
|
994 | |||
995 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) |
|
995 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) | |
996 |
|
996 | |||
997 | for r in range(self.Num_Hei): |
|
997 | for r in range(self.Num_Hei): | |
998 |
|
998 | |||
999 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) |
|
999 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) | |
1000 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) |
|
1000 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) | |
1001 |
|
1001 | |||
1002 | return Ze |
|
1002 | return Ze | |
1003 |
|
1003 | |||
1004 | def GetRadarConstant(self): |
|
1004 | def GetRadarConstant(self): | |
1005 |
|
1005 | |||
1006 | """ |
|
1006 | """ | |
1007 | Constants: |
|
1007 | Constants: | |
1008 |
|
1008 | |||
1009 | Pt: Transmission Power dB |
|
1009 | Pt: Transmission Power dB 5kW | |
1010 | Gt: Transmission Gain dB |
|
1010 | Gt: Transmission Gain dB 24.7 dB | |
1011 | Gr: Reception Gain dB |
|
1011 | Gr: Reception Gain dB 18.5 dB | |
1012 | Lambda: Wavelenght m |
|
1012 | Lambda: Wavelenght m 0.6741 m | |
1013 |
aL: |
|
1013 | aL: Attenuation loses dB | |
1014 | tauW: Width of transmission pulse s |
|
1014 | tauW: Width of transmission pulse s | |
1015 | ThetaT: Transmission antenna bean angle rad |
|
1015 | ThetaT: Transmission antenna bean angle rad 0.1656317 rad | |
1016 | ThetaR: Reception antenna beam angle rad |
|
1016 | ThetaR: Reception antenna beam angle rad 0.36774087 rad | |
1017 |
|
1017 | |||
1018 | """ |
|
1018 | """ | |
1019 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
1019 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
1020 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) |
|
1020 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) | |
1021 | RadarConstant = Numerator / Denominator |
|
1021 | RadarConstant = Numerator / Denominator | |
1022 |
|
1022 | |||
1023 | return RadarConstant |
|
1023 | return RadarConstant | |
1024 |
|
1024 | |||
1025 |
|
1025 | |||
1026 |
|
1026 | |||
1027 | class FullSpectralAnalysis(Operation): |
|
1027 | class FullSpectralAnalysis(Operation): | |
1028 |
|
1028 | |||
1029 | """ |
|
1029 | """ | |
1030 | Function that implements Full Spectral Analisys technique. |
|
1030 | Function that implements Full Spectral Analisys technique. | |
1031 |
|
1031 | |||
1032 | Input: |
|
1032 | Input: | |
1033 | self.dataOut.data_pre : SelfSpectra and CrossSPectra data |
|
1033 | self.dataOut.data_pre : SelfSpectra and CrossSPectra data | |
1034 | self.dataOut.groupList : Pairlist of channels |
|
1034 | self.dataOut.groupList : Pairlist of channels | |
1035 | self.dataOut.ChanDist : Physical distance between receivers |
|
1035 | self.dataOut.ChanDist : Physical distance between receivers | |
1036 |
|
1036 | |||
1037 |
|
1037 | |||
1038 | Output: |
|
1038 | Output: | |
1039 |
|
1039 | |||
1040 | self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind |
|
1040 | self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind | |
1041 |
|
1041 | |||
1042 |
|
1042 | |||
1043 | Parameters affected: Winds, height range, SNR |
|
1043 | Parameters affected: Winds, height range, SNR | |
1044 |
|
1044 | |||
1045 | """ |
|
1045 | """ | |
1046 | def run(self, dataOut, E01=None, E02=None, E12=None, N01=None, N02=None, N12=None, SNRlimit=7): |
|
1046 | def run(self, dataOut, E01=None, E02=None, E12=None, N01=None, N02=None, N12=None, SNRlimit=7): | |
1047 |
|
1047 | |||
1048 | spc = dataOut.data_pre[0].copy() |
|
1048 | spc = dataOut.data_pre[0].copy() | |
1049 | cspc = dataOut.data_pre[1].copy() |
|
1049 | cspc = dataOut.data_pre[1].copy() | |
1050 |
|
1050 | |||
1051 | nChannel = spc.shape[0] |
|
1051 | nChannel = spc.shape[0] | |
1052 | nProfiles = spc.shape[1] |
|
1052 | nProfiles = spc.shape[1] | |
1053 | nHeights = spc.shape[2] |
|
1053 | nHeights = spc.shape[2] | |
1054 |
|
1054 | |||
1055 | pairsList = dataOut.groupList |
|
1055 | pairsList = dataOut.groupList | |
1056 | if dataOut.ChanDist is not None : |
|
1056 | if dataOut.ChanDist is not None : | |
1057 | ChanDist = dataOut.ChanDist |
|
1057 | ChanDist = dataOut.ChanDist | |
1058 | else: |
|
1058 | else: | |
1059 | ChanDist = numpy.array([[E01, N01],[E02,N02],[E12,N12]]) |
|
1059 | ChanDist = numpy.array([[E01, N01],[E02,N02],[E12,N12]]) | |
1060 |
|
1060 | |||
1061 | #print 'ChanDist', ChanDist |
|
1061 | #print 'ChanDist', ChanDist | |
1062 |
|
1062 | |||
1063 | if dataOut.VelRange is not None: |
|
1063 | if dataOut.VelRange is not None: | |
1064 | VelRange= dataOut.VelRange |
|
1064 | VelRange= dataOut.VelRange | |
1065 | else: |
|
1065 | else: | |
1066 | VelRange= dataOut.abscissaList |
|
1066 | VelRange= dataOut.abscissaList | |
1067 |
|
1067 | |||
1068 | ySamples=numpy.ones([nChannel,nProfiles]) |
|
1068 | ySamples=numpy.ones([nChannel,nProfiles]) | |
1069 | phase=numpy.ones([nChannel,nProfiles]) |
|
1069 | phase=numpy.ones([nChannel,nProfiles]) | |
1070 | CSPCSamples=numpy.ones([nChannel,nProfiles],dtype=numpy.complex_) |
|
1070 | CSPCSamples=numpy.ones([nChannel,nProfiles],dtype=numpy.complex_) | |
1071 | coherence=numpy.ones([nChannel,nProfiles]) |
|
1071 | coherence=numpy.ones([nChannel,nProfiles]) | |
1072 | PhaseSlope=numpy.ones(nChannel) |
|
1072 | PhaseSlope=numpy.ones(nChannel) | |
1073 | PhaseInter=numpy.ones(nChannel) |
|
1073 | PhaseInter=numpy.ones(nChannel) | |
1074 | dataSNR = dataOut.data_SNR |
|
1074 | dataSNR = dataOut.data_SNR | |
1075 |
|
1075 | |||
1076 |
|
1076 | |||
1077 |
|
1077 | |||
1078 | data = dataOut.data_pre |
|
1078 | data = dataOut.data_pre | |
1079 | noise = dataOut.noise |
|
1079 | noise = dataOut.noise | |
1080 | print 'noise',noise |
|
1080 | #print 'noise',noise | |
1081 | #SNRdB = 10*numpy.log10(dataOut.data_SNR) |
|
1081 | #SNRdB = 10*numpy.log10(dataOut.data_SNR) | |
1082 |
|
1082 | |||
1083 | FirstMoment = numpy.average(dataOut.data_param[:,1,:],0) |
|
1083 | FirstMoment = numpy.average(dataOut.data_param[:,1,:],0) | |
1084 | #SNRdBMean = [] |
|
1084 | #SNRdBMean = [] | |
1085 |
|
1085 | |||
1086 |
|
1086 | |||
1087 | #for j in range(nHeights): |
|
1087 | #for j in range(nHeights): | |
1088 | # FirstMoment = numpy.append(FirstMoment,numpy.mean([dataOut.data_param[0,1,j],dataOut.data_param[1,1,j],dataOut.data_param[2,1,j]])) |
|
1088 | # FirstMoment = numpy.append(FirstMoment,numpy.mean([dataOut.data_param[0,1,j],dataOut.data_param[1,1,j],dataOut.data_param[2,1,j]])) | |
1089 | # SNRdBMean = numpy.append(SNRdBMean,numpy.mean([SNRdB[0,j],SNRdB[1,j],SNRdB[2,j]])) |
|
1089 | # SNRdBMean = numpy.append(SNRdBMean,numpy.mean([SNRdB[0,j],SNRdB[1,j],SNRdB[2,j]])) | |
1090 |
|
1090 | |||
1091 | data_output=numpy.ones([3,spc.shape[2]])*numpy.NaN |
|
1091 | data_output=numpy.ones([3,spc.shape[2]])*numpy.NaN | |
1092 |
|
1092 | |||
1093 | velocityX=[] |
|
1093 | velocityX=[] | |
1094 | velocityY=[] |
|
1094 | velocityY=[] | |
1095 | velocityV=[] |
|
1095 | velocityV=[] | |
|
1096 | PhaseLine=[] | |||
1096 |
|
1097 | |||
1097 | dbSNR = 10*numpy.log10(dataSNR) |
|
1098 | dbSNR = 10*numpy.log10(dataSNR) | |
1098 | dbSNR = numpy.average(dbSNR,0) |
|
1099 | dbSNR = numpy.average(dbSNR,0) | |
1099 | for Height in range(nHeights): |
|
1100 | for Height in range(nHeights): | |
1100 |
|
1101 | |||
1101 | [Vzon,Vmer,Vver, GaussCenter]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, VelRange, dbSNR[Height], SNRlimit) |
|
1102 | [Vzon,Vmer,Vver, GaussCenter, PhaseSlope]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, VelRange, dbSNR[Height], SNRlimit) | |
|
1103 | ||||
|
1104 | PhaseLine = numpy.append(PhaseLine, PhaseSlope) | |||
1102 |
|
1105 | |||
1103 | if abs(Vzon)<100. and abs(Vzon)> 0.: |
|
1106 | if abs(Vzon)<100. and abs(Vzon)> 0.: | |
1104 | velocityX=numpy.append(velocityX, Vzon)#Vmag |
|
1107 | velocityX=numpy.append(velocityX, Vzon)#Vmag | |
1105 |
|
1108 | |||
1106 | else: |
|
1109 | else: | |
1107 | print 'Vzon',Vzon |
|
1110 | #print 'Vzon',Vzon | |
1108 | velocityX=numpy.append(velocityX, numpy.NaN) |
|
1111 | velocityX=numpy.append(velocityX, numpy.NaN) | |
1109 |
|
1112 | |||
1110 | if abs(Vmer)<100. and abs(Vmer) > 0.: |
|
1113 | if abs(Vmer)<100. and abs(Vmer) > 0.: | |
1111 | velocityY=numpy.append(velocityY, Vmer)#Vang |
|
1114 | velocityY=numpy.append(velocityY, Vmer)#Vang | |
1112 |
|
1115 | |||
1113 | else: |
|
1116 | else: | |
1114 | print 'Vmer',Vmer |
|
1117 | #print 'Vmer',Vmer | |
1115 | velocityY=numpy.append(velocityY, numpy.NaN) |
|
1118 | velocityY=numpy.append(velocityY, numpy.NaN) | |
1116 |
|
1119 | |||
1117 | if dbSNR[Height] > SNRlimit: |
|
1120 | if dbSNR[Height] > SNRlimit: | |
1118 | velocityV=numpy.append(velocityV, FirstMoment[Height]) |
|
1121 | velocityV=numpy.append(velocityV, FirstMoment[Height]) | |
1119 | else: |
|
1122 | else: | |
1120 | velocityV=numpy.append(velocityV, numpy.NaN) |
|
1123 | velocityV=numpy.append(velocityV, numpy.NaN) | |
1121 | #FirstMoment[Height]= numpy.NaN |
|
1124 | #FirstMoment[Height]= numpy.NaN | |
1122 | # if SNRdBMean[Height] <12: |
|
1125 | # if SNRdBMean[Height] <12: | |
1123 | # FirstMoment[Height] = numpy.NaN |
|
1126 | # FirstMoment[Height] = numpy.NaN | |
1124 | # velocityX[Height] = numpy.NaN |
|
1127 | # velocityX[Height] = numpy.NaN | |
1125 | # velocityY[Height] = numpy.NaN |
|
1128 | # velocityY[Height] = numpy.NaN | |
1126 |
|
|
1129 | ||
|
1130 | ||||
1127 |
|
1131 | |||
1128 | data_output[0]=numpy.array(velocityX) |
|
1132 | data_output[0]=numpy.array(velocityX) | |
1129 | data_output[1]=numpy.array(velocityY) |
|
1133 | data_output[1]=numpy.array(velocityY) | |
1130 | data_output[2]=-velocityV#FirstMoment |
|
1134 | data_output[2]=-velocityV#FirstMoment | |
1131 |
|
1135 | |||
1132 | print ' ' |
|
1136 | print ' ' | |
1133 | #print 'FirstMoment' |
|
1137 | #print 'FirstMoment' | |
1134 | #print FirstMoment |
|
1138 | #print FirstMoment | |
1135 | print 'velocityX',data_output[0] |
|
1139 | print 'velocityX',data_output[0] | |
1136 | print ' ' |
|
1140 | print ' ' | |
1137 | print 'velocityY',data_output[1] |
|
1141 | print 'velocityY',data_output[1] | |
|
1142 | print 'PhaseLine',PhaseLine | |||
1138 | #print numpy.array(velocityY) |
|
1143 | #print numpy.array(velocityY) | |
1139 | print ' ' |
|
1144 | print ' ' | |
1140 | #print 'SNR' |
|
1145 | #print 'SNR' | |
1141 | #print 10*numpy.log10(dataOut.data_SNR) |
|
1146 | #print 10*numpy.log10(dataOut.data_SNR) | |
1142 | #print numpy.shape(10*numpy.log10(dataOut.data_SNR)) |
|
1147 | #print numpy.shape(10*numpy.log10(dataOut.data_SNR)) | |
1143 | print ' ' |
|
1148 | print ' ' | |
1144 |
|
1149 | |||
1145 |
|
1150 | |||
1146 | dataOut.data_output=data_output |
|
1151 | dataOut.data_output=data_output | |
|
1152 | ||||
1147 | return |
|
1153 | return | |
1148 |
|
1154 | |||
1149 |
|
1155 | |||
1150 | def moving_average(self,x, N=2): |
|
1156 | def moving_average(self,x, N=2): | |
1151 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] |
|
1157 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] | |
1152 |
|
1158 | |||
1153 | def gaus(self,xSamples,a,x0,sigma): |
|
1159 | def gaus(self,xSamples,a,x0,sigma): | |
1154 | return a*numpy.exp(-(xSamples-x0)**2/(2*sigma**2)) |
|
1160 | return a*numpy.exp(-(xSamples-x0)**2/(2*sigma**2)) | |
1155 |
|
1161 | |||
1156 | def Find(self,x,value): |
|
1162 | def Find(self,x,value): | |
1157 | for index in range(len(x)): |
|
1163 | for index in range(len(x)): | |
1158 | if x[index]==value: |
|
1164 | if x[index]==value: | |
1159 | return index |
|
1165 | return index | |
1160 |
|
1166 | |||
1161 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, VelRange, dbSNR, SNRlimit): |
|
1167 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, VelRange, dbSNR, SNRlimit): | |
1162 |
|
1168 | |||
1163 | ySamples=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
1169 | ySamples=numpy.ones([spc.shape[0],spc.shape[1]]) | |
1164 | phase=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
1170 | phase=numpy.ones([spc.shape[0],spc.shape[1]]) | |
1165 | CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) |
|
1171 | CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) | |
1166 | coherence=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
1172 | coherence=numpy.ones([spc.shape[0],spc.shape[1]]) | |
1167 |
PhaseSlope=numpy.o |
|
1173 | PhaseSlope=numpy.zeros(spc.shape[0]) | |
1168 | PhaseInter=numpy.ones(spc.shape[0]) |
|
1174 | PhaseInter=numpy.ones(spc.shape[0]) | |
1169 | xFrec=VelRange |
|
1175 | xFrec=VelRange | |
1170 |
|
1176 | |||
1171 | '''Getting Eij and Nij''' |
|
1177 | '''Getting Eij and Nij''' | |
1172 |
|
1178 | |||
1173 | E01=ChanDist[0][0] |
|
1179 | E01=ChanDist[0][0] | |
1174 | N01=ChanDist[0][1] |
|
1180 | N01=ChanDist[0][1] | |
1175 |
|
1181 | |||
1176 | E02=ChanDist[1][0] |
|
1182 | E02=ChanDist[1][0] | |
1177 | N02=ChanDist[1][1] |
|
1183 | N02=ChanDist[1][1] | |
1178 |
|
1184 | |||
1179 | E12=ChanDist[2][0] |
|
1185 | E12=ChanDist[2][0] | |
1180 | N12=ChanDist[2][1] |
|
1186 | N12=ChanDist[2][1] | |
1181 |
|
1187 | |||
1182 | z = spc.copy() |
|
1188 | z = spc.copy() | |
1183 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1189 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
1184 |
|
1190 | |||
1185 | for i in range(spc.shape[0]): |
|
1191 | for i in range(spc.shape[0]): | |
1186 |
|
1192 | |||
1187 | '''****** Line of Data SPC ******''' |
|
1193 | '''****** Line of Data SPC ******''' | |
1188 | zline=z[i,:,Height] |
|
1194 | zline=z[i,:,Height] | |
1189 |
|
1195 | |||
1190 | '''****** SPC is normalized ******''' |
|
1196 | '''****** SPC is normalized ******''' | |
1191 | FactNorm= (zline.copy()-noise[i]) / numpy.sum(zline.copy()) |
|
1197 | FactNorm= (zline.copy()-noise[i]) / numpy.sum(zline.copy()) | |
1192 | FactNorm= FactNorm/numpy.sum(FactNorm) |
|
1198 | FactNorm= FactNorm/numpy.sum(FactNorm) | |
1193 |
|
1199 | |||
1194 | SmoothSPC=self.moving_average(FactNorm,N=3) |
|
1200 | SmoothSPC=self.moving_average(FactNorm,N=3) | |
1195 |
|
1201 | |||
1196 | xSamples = ar(range(len(SmoothSPC))) |
|
1202 | xSamples = ar(range(len(SmoothSPC))) | |
1197 | ySamples[i] = SmoothSPC |
|
1203 | ySamples[i] = SmoothSPC | |
1198 |
|
1204 | |||
1199 | #dbSNR=10*numpy.log10(dataSNR) |
|
1205 | #dbSNR=10*numpy.log10(dataSNR) | |
1200 | print ' ' |
|
1206 | print ' ' | |
1201 | print ' ' |
|
1207 | print ' ' | |
1202 | print ' ' |
|
1208 | print ' ' | |
1203 |
|
1209 | |||
1204 | #print 'dataSNR', dbSNR.shape, dbSNR[0,40:120] |
|
1210 | #print 'dataSNR', dbSNR.shape, dbSNR[0,40:120] | |
1205 | print 'SmoothSPC', SmoothSPC.shape, SmoothSPC[0:20] |
|
1211 | #print 'SmoothSPC', SmoothSPC.shape, SmoothSPC[0:20] | |
1206 | print 'noise',noise |
|
1212 | #print 'noise',noise | |
1207 | print 'zline',zline.shape, zline[0:20] |
|
1213 | #print 'zline',zline.shape, zline[0:20] | |
1208 | print 'FactNorm',FactNorm.shape, FactNorm[0:20] |
|
1214 | #print 'FactNorm',FactNorm.shape, FactNorm[0:20] | |
1209 | print 'FactNorm suma', numpy.sum(FactNorm) |
|
1215 | #print 'FactNorm suma', numpy.sum(FactNorm) | |
1210 |
|
1216 | |||
1211 | for i in range(spc.shape[0]): |
|
1217 | for i in range(spc.shape[0]): | |
1212 |
|
1218 | |||
1213 | '''****** Line of Data CSPC ******''' |
|
1219 | '''****** Line of Data CSPC ******''' | |
1214 | cspcLine=cspc[i,:,Height].copy() |
|
1220 | cspcLine=cspc[i,:,Height].copy() | |
1215 |
|
1221 | |||
1216 | '''****** CSPC is normalized ******''' |
|
1222 | '''****** CSPC is normalized ******''' | |
1217 | chan_index0 = pairsList[i][0] |
|
1223 | chan_index0 = pairsList[i][0] | |
1218 | chan_index1 = pairsList[i][1] |
|
1224 | chan_index1 = pairsList[i][1] | |
1219 | CSPCFactor= abs(numpy.sum(ySamples[chan_index0]) * numpy.sum(ySamples[chan_index1])) # |
|
1225 | CSPCFactor= abs(numpy.sum(ySamples[chan_index0]) * numpy.sum(ySamples[chan_index1])) # | |
1220 |
|
1226 | |||
1221 | CSPCNorm = (cspcLine.copy() -noise[i]) / numpy.sqrt(CSPCFactor) |
|
1227 | CSPCNorm = (cspcLine.copy() -noise[i]) / numpy.sqrt(CSPCFactor) | |
1222 |
|
1228 | |||
1223 | CSPCSamples[i] = CSPCNorm |
|
1229 | CSPCSamples[i] = CSPCNorm | |
1224 | coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) |
|
1230 | coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) | |
1225 |
|
1231 | |||
1226 | coherence[i]= self.moving_average(coherence[i],N=2) |
|
1232 | coherence[i]= self.moving_average(coherence[i],N=2) | |
1227 |
|
1233 | |||
1228 | phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi |
|
1234 | phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi | |
1229 |
|
1235 | |||
1230 | print 'cspcLine', cspcLine.shape, cspcLine[0:20] |
|
1236 | #print 'cspcLine', cspcLine.shape, cspcLine[0:20] | |
1231 | print 'CSPCFactor', CSPCFactor#, CSPCFactor[0:20] |
|
1237 | #print 'CSPCFactor', CSPCFactor#, CSPCFactor[0:20] | |
1232 | print numpy.sum(ySamples[chan_index0]), numpy.sum(ySamples[chan_index1]), -noise[i] |
|
1238 | #print numpy.sum(ySamples[chan_index0]), numpy.sum(ySamples[chan_index1]), -noise[i] | |
1233 | print 'CSPCNorm', CSPCNorm.shape, CSPCNorm[0:20] |
|
1239 | #print 'CSPCNorm', CSPCNorm.shape, CSPCNorm[0:20] | |
1234 | print 'CSPCNorm suma', numpy.sum(CSPCNorm) |
|
1240 | #print 'CSPCNorm suma', numpy.sum(CSPCNorm) | |
1235 | print 'CSPCSamples', CSPCSamples.shape, CSPCSamples[0,0:20] |
|
1241 | #print 'CSPCSamples', CSPCSamples.shape, CSPCSamples[0,0:20] | |
1236 |
|
1242 | |||
1237 | '''****** Getting fij width ******''' |
|
1243 | '''****** Getting fij width ******''' | |
1238 |
|
1244 | |||
1239 | yMean=[] |
|
1245 | yMean=[] | |
1240 | yMean2=[] |
|
1246 | yMean2=[] | |
1241 |
|
1247 | |||
1242 | for j in range(len(ySamples[1])): |
|
1248 | for j in range(len(ySamples[1])): | |
1243 | yMean=numpy.append(yMean,numpy.mean([ySamples[0,j],ySamples[1,j],ySamples[2,j]])) |
|
1249 | yMean=numpy.append(yMean,numpy.mean([ySamples[0,j],ySamples[1,j],ySamples[2,j]])) | |
1244 |
|
1250 | |||
1245 | '''******* Getting fitting Gaussian ******''' |
|
1251 | '''******* Getting fitting Gaussian ******''' | |
1246 | meanGauss=sum(xSamples*yMean) / len(xSamples) |
|
1252 | meanGauss=sum(xSamples*yMean) / len(xSamples) | |
1247 | sigma=sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) |
|
1253 | sigma=sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) | |
1248 |
|
1254 | |||
1249 | print '****************************' |
|
1255 | #print '****************************' | |
1250 | print 'len(xSamples): ',len(xSamples) |
|
1256 | #print 'len(xSamples): ',len(xSamples) | |
1251 | print 'yMean: ', yMean.shape, yMean[0:20] |
|
1257 | #print 'yMean: ', yMean.shape, yMean[0:20] | |
1252 | print 'ySamples', ySamples.shape, ySamples[0,0:20] |
|
1258 | #print 'ySamples', ySamples.shape, ySamples[0,0:20] | |
1253 | print 'xSamples: ',xSamples.shape, xSamples[0:20] |
|
1259 | #print 'xSamples: ',xSamples.shape, xSamples[0:20] | |
1254 |
|
1260 | |||
1255 | print 'meanGauss',meanGauss |
|
1261 | #print 'meanGauss',meanGauss | |
1256 | print 'sigma',sigma |
|
1262 | #print 'sigma',sigma | |
1257 |
|
1263 | |||
1258 | #if (abs(meanGauss/sigma**2) > 0.0001) : #0.000000001): |
|
1264 | #if (abs(meanGauss/sigma**2) > 0.0001) : #0.000000001): | |
1259 | if dbSNR > SNRlimit : |
|
1265 | if dbSNR > SNRlimit and abs(meanGauss/sigma**2) > 0.0001: | |
1260 | try: |
|
1266 | try: | |
1261 | popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=[1,meanGauss,sigma]) |
|
1267 | popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=[1,meanGauss,sigma]) | |
1262 |
|
1268 | |||
1263 | if numpy.amax(popt)>numpy.amax(yMean)*0.3: |
|
1269 | if numpy.amax(popt)>numpy.amax(yMean)*0.3: | |
1264 | FitGauss=self.gaus(xSamples,*popt) |
|
1270 | FitGauss=self.gaus(xSamples,*popt) | |
1265 |
|
1271 | |||
1266 | else: |
|
1272 | else: | |
1267 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
1273 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
1268 | print 'Verificador: Dentro', Height |
|
1274 | print 'Verificador: Dentro', Height | |
1269 | except :#RuntimeError: |
|
1275 | except :#RuntimeError: | |
1270 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
1276 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
1271 |
|
1277 | |||
1272 |
|
1278 | |||
1273 | else: |
|
1279 | else: | |
1274 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
1280 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
1275 |
|
1281 | |||
1276 | Maximun=numpy.amax(yMean) |
|
1282 | Maximun=numpy.amax(yMean) | |
1277 | eMinus1=Maximun*numpy.exp(-1)#*0.8 |
|
1283 | eMinus1=Maximun*numpy.exp(-1)#*0.8 | |
1278 |
|
1284 | |||
1279 | HWpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-eMinus1))) |
|
1285 | HWpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-eMinus1))) | |
1280 | HalfWidth= xFrec[HWpos] |
|
1286 | HalfWidth= xFrec[HWpos] | |
1281 | GCpos=self.Find(FitGauss, numpy.amax(FitGauss)) |
|
1287 | GCpos=self.Find(FitGauss, numpy.amax(FitGauss)) | |
1282 | Vpos=self.Find(FactNorm, numpy.amax(FactNorm)) |
|
1288 | Vpos=self.Find(FactNorm, numpy.amax(FactNorm)) | |
1283 |
|
1289 | |||
1284 | #Vpos=FirstMoment[] |
|
1290 | #Vpos=FirstMoment[] | |
1285 |
|
1291 | |||
1286 | '''****** Getting Fij ******''' |
|
1292 | '''****** Getting Fij ******''' | |
1287 |
|
1293 | |||
1288 | GaussCenter=xFrec[GCpos] |
|
1294 | GaussCenter=xFrec[GCpos] | |
1289 | if (GaussCenter<0 and HalfWidth>0) or (GaussCenter>0 and HalfWidth<0): |
|
1295 | if (GaussCenter<0 and HalfWidth>0) or (GaussCenter>0 and HalfWidth<0): | |
1290 | Fij=abs(GaussCenter)+abs(HalfWidth)+0.0000001 |
|
1296 | Fij=abs(GaussCenter)+abs(HalfWidth)+0.0000001 | |
1291 | else: |
|
1297 | else: | |
1292 | Fij=abs(GaussCenter-HalfWidth)+0.0000001 |
|
1298 | Fij=abs(GaussCenter-HalfWidth)+0.0000001 | |
1293 |
|
1299 | |||
1294 | '''****** Getting Frecuency range of significant data ******''' |
|
1300 | '''****** Getting Frecuency range of significant data ******''' | |
1295 |
|
1301 | |||
1296 | Rangpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.10))) |
|
1302 | Rangpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.10))) | |
1297 |
|
1303 | |||
1298 | if Rangpos<GCpos: |
|
1304 | if Rangpos<GCpos: | |
1299 | Range=numpy.array([Rangpos,2*GCpos-Rangpos]) |
|
1305 | Range=numpy.array([Rangpos,2*GCpos-Rangpos]) | |
1300 | elif Rangpos< ( len(xFrec)- len(xFrec)*0.1): |
|
1306 | elif Rangpos< ( len(xFrec)- len(xFrec)*0.1): | |
1301 | Range=numpy.array([2*GCpos-Rangpos,Rangpos]) |
|
1307 | Range=numpy.array([2*GCpos-Rangpos,Rangpos]) | |
1302 | else: |
|
1308 | else: | |
1303 | Range = numpy.array([0,0]) |
|
1309 | Range = numpy.array([0,0]) | |
1304 |
|
1310 | |||
1305 | print ' ' |
|
1311 | #print ' ' | |
1306 | print 'GCpos',GCpos, ( len(xFrec)- len(xFrec)*0.1) |
|
1312 | #print 'GCpos',GCpos, ( len(xFrec)- len(xFrec)*0.1) | |
1307 | print 'Rangpos',Rangpos |
|
1313 | #print 'Rangpos',Rangpos | |
1308 | print 'RANGE: ', Range |
|
1314 | print 'RANGE: ', Range | |
1309 | FrecRange=xFrec[Range[0]:Range[1]] |
|
1315 | FrecRange=xFrec[Range[0]:Range[1]] | |
1310 |
|
1316 | |||
1311 | '''****** Getting SCPC Slope ******''' |
|
1317 | '''****** Getting SCPC Slope ******''' | |
1312 |
|
1318 | |||
1313 | for i in range(spc.shape[0]): |
|
1319 | for i in range(spc.shape[0]): | |
1314 |
|
1320 | |||
1315 | if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0.5: |
|
1321 | if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0.5: | |
1316 | PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3) |
|
1322 | PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3) | |
1317 |
|
1323 | |||
1318 | print 'FrecRange', len(FrecRange) , FrecRange |
|
1324 | print 'FrecRange', len(FrecRange) , FrecRange | |
1319 | print 'PhaseRange', len(PhaseRange), PhaseRange |
|
1325 | print 'PhaseRange', len(PhaseRange), PhaseRange | |
1320 | print ' ' |
|
1326 | print ' ' | |
1321 | if len(FrecRange) == len(PhaseRange): |
|
1327 | if len(FrecRange) == len(PhaseRange): | |
1322 | slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange,PhaseRange) |
|
1328 | slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange,PhaseRange) | |
1323 | PhaseSlope[i]=slope |
|
1329 | PhaseSlope[i]=slope | |
1324 | PhaseInter[i]=intercept |
|
1330 | PhaseInter[i]=intercept | |
1325 | else: |
|
1331 | else: | |
1326 | PhaseSlope[i]=0 |
|
1332 | PhaseSlope[i]=0 | |
1327 | PhaseInter[i]=0 |
|
1333 | PhaseInter[i]=0 | |
1328 | else: |
|
1334 | else: | |
1329 | PhaseSlope[i]=0 |
|
1335 | PhaseSlope[i]=0 | |
1330 | PhaseInter[i]=0 |
|
1336 | PhaseInter[i]=0 | |
1331 |
|
1337 | |||
1332 | '''Getting constant C''' |
|
1338 | '''Getting constant C''' | |
1333 | cC=(Fij*numpy.pi)**2 |
|
1339 | cC=(Fij*numpy.pi)**2 | |
1334 |
|
1340 | |||
1335 | '''****** Getting constants F and G ******''' |
|
1341 | '''****** Getting constants F and G ******''' | |
1336 | MijEijNij=numpy.array([[E02,N02], [E12,N12]]) |
|
1342 | MijEijNij=numpy.array([[E02,N02], [E12,N12]]) | |
1337 | MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) |
|
1343 | MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) | |
1338 | MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) |
|
1344 | MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) | |
1339 | MijResults=numpy.array([MijResult0,MijResult1]) |
|
1345 | MijResults=numpy.array([MijResult0,MijResult1]) | |
1340 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) |
|
1346 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | |
1341 |
|
1347 | |||
1342 | '''****** Getting constants A, B and H ******''' |
|
1348 | '''****** Getting constants A, B and H ******''' | |
1343 | W01=numpy.amax(coherence[0]) |
|
1349 | W01=numpy.amax(coherence[0]) | |
1344 | W02=numpy.amax(coherence[1]) |
|
1350 | W02=numpy.amax(coherence[1]) | |
1345 | W12=numpy.amax(coherence[2]) |
|
1351 | W12=numpy.amax(coherence[2]) | |
1346 |
|
1352 | |||
1347 | WijResult0=((cF*E01+cG*N01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC)) |
|
1353 | WijResult0=((cF*E01+cG*N01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC)) | |
1348 | WijResult1=((cF*E02+cG*N02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC)) |
|
1354 | WijResult1=((cF*E02+cG*N02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC)) | |
1349 | WijResult2=((cF*E12+cG*N12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC)) |
|
1355 | WijResult2=((cF*E12+cG*N12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC)) | |
1350 |
|
1356 | |||
1351 | WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) |
|
1357 | WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) | |
1352 |
|
1358 | |||
1353 | WijEijNij=numpy.array([ [E01**2, N01**2, 2*E01*N01] , [E02**2, N02**2, 2*E02*N02] , [E12**2, N12**2, 2*E12*N12] ]) |
|
1359 | WijEijNij=numpy.array([ [E01**2, N01**2, 2*E01*N01] , [E02**2, N02**2, 2*E02*N02] , [E12**2, N12**2, 2*E12*N12] ]) | |
1354 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) |
|
1360 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) | |
1355 |
|
1361 | |||
1356 | VxVy=numpy.array([[cA,cH],[cH,cB]]) |
|
1362 | VxVy=numpy.array([[cA,cH],[cH,cB]]) | |
1357 |
|
1363 | |||
1358 | VxVyResults=numpy.array([-cF,-cG]) |
|
1364 | VxVyResults=numpy.array([-cF,-cG]) | |
1359 | (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) |
|
1365 | (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) | |
1360 |
|
1366 | |||
1361 | Vzon = Vy |
|
1367 | Vzon = Vy | |
1362 | Vmer = Vx |
|
1368 | Vmer = Vx | |
1363 | Vmag=numpy.sqrt(Vzon**2+Vmer**2) |
|
1369 | Vmag=numpy.sqrt(Vzon**2+Vmer**2) | |
1364 | Vang=numpy.arctan2(Vmer,Vzon) |
|
1370 | Vang=numpy.arctan2(Vmer,Vzon) | |
1365 | Vver=xFrec[Vpos] |
|
1371 | Vver=xFrec[Vpos] | |
|
1372 | print 'Height',Height | |||
1366 | print 'vzon y vmer', Vzon, Vmer |
|
1373 | print 'vzon y vmer', Vzon, Vmer | |
1367 | return Vzon, Vmer, Vver, GaussCenter |
|
1374 | return Vzon, Vmer, Vver, GaussCenter, PhaseSlope | |
1368 |
|
1375 | |||
1369 | class SpectralMoments(Operation): |
|
1376 | class SpectralMoments(Operation): | |
1370 |
|
1377 | |||
1371 | ''' |
|
1378 | ''' | |
1372 | Function SpectralMoments() |
|
1379 | Function SpectralMoments() | |
1373 |
|
1380 | |||
1374 | Calculates moments (power, mean, standard deviation) and SNR of the signal |
|
1381 | Calculates moments (power, mean, standard deviation) and SNR of the signal | |
1375 |
|
1382 | |||
1376 | Type of dataIn: Spectra |
|
1383 | Type of dataIn: Spectra | |
1377 |
|
1384 | |||
1378 | Configuration Parameters: |
|
1385 | Configuration Parameters: | |
1379 |
|
1386 | |||
1380 | dirCosx : Cosine director in X axis |
|
1387 | dirCosx : Cosine director in X axis | |
1381 | dirCosy : Cosine director in Y axis |
|
1388 | dirCosy : Cosine director in Y axis | |
1382 |
|
1389 | |||
1383 | elevation : |
|
1390 | elevation : | |
1384 | azimuth : |
|
1391 | azimuth : | |
1385 |
|
1392 | |||
1386 | Input: |
|
1393 | Input: | |
1387 | channelList : simple channel list to select e.g. [2,3,7] |
|
1394 | channelList : simple channel list to select e.g. [2,3,7] | |
1388 | self.dataOut.data_pre : Spectral data |
|
1395 | self.dataOut.data_pre : Spectral data | |
1389 | self.dataOut.abscissaList : List of frequencies |
|
1396 | self.dataOut.abscissaList : List of frequencies | |
1390 | self.dataOut.noise : Noise level per channel |
|
1397 | self.dataOut.noise : Noise level per channel | |
1391 |
|
1398 | |||
1392 | Affected: |
|
1399 | Affected: | |
1393 | self.dataOut.data_param : Parameters per channel |
|
1400 | self.dataOut.data_param : Parameters per channel | |
1394 | self.dataOut.data_SNR : SNR per channel |
|
1401 | self.dataOut.data_SNR : SNR per channel | |
1395 |
|
1402 | |||
1396 | ''' |
|
1403 | ''' | |
1397 |
|
1404 | |||
1398 | def run(self, dataOut): |
|
1405 | def run(self, dataOut): | |
1399 |
|
1406 | |||
1400 | #dataOut.data_pre = dataOut.data_pre[0] |
|
1407 | #dataOut.data_pre = dataOut.data_pre[0] | |
1401 | data = dataOut.data_pre[0] |
|
1408 | data = dataOut.data_pre[0] | |
1402 | absc = dataOut.abscissaList[:-1] |
|
1409 | absc = dataOut.abscissaList[:-1] | |
1403 | noise = dataOut.noise |
|
1410 | noise = dataOut.noise | |
1404 | nChannel = data.shape[0] |
|
1411 | nChannel = data.shape[0] | |
1405 | data_param = numpy.zeros((nChannel, 4, data.shape[2])) |
|
1412 | data_param = numpy.zeros((nChannel, 4, data.shape[2])) | |
1406 |
|
1413 | |||
1407 | for ind in range(nChannel): |
|
1414 | for ind in range(nChannel): | |
1408 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) |
|
1415 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) | |
1409 |
|
1416 | |||
1410 | dataOut.data_param = data_param[:,1:,:] |
|
1417 | dataOut.data_param = data_param[:,1:,:] | |
1411 | dataOut.data_SNR = data_param[:,0] |
|
1418 | dataOut.data_SNR = data_param[:,0] | |
1412 | return |
|
1419 | return | |
1413 |
|
1420 | |||
1414 | def __calculateMoments(self, oldspec, oldfreq, n0, |
|
1421 | def __calculateMoments(self, oldspec, oldfreq, n0, | |
1415 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): |
|
1422 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |
1416 |
|
1423 | |||
1417 | if (nicoh == None): nicoh = 1 |
|
1424 | if (nicoh == None): nicoh = 1 | |
1418 | if (graph == None): graph = 0 |
|
1425 | if (graph == None): graph = 0 | |
1419 | if (smooth == None): smooth = 0 |
|
1426 | if (smooth == None): smooth = 0 | |
1420 | elif (self.smooth < 3): smooth = 0 |
|
1427 | elif (self.smooth < 3): smooth = 0 | |
1421 |
|
1428 | |||
1422 | if (type1 == None): type1 = 0 |
|
1429 | if (type1 == None): type1 = 0 | |
1423 | if (fwindow == None): fwindow = numpy.zeros(oldfreq.size) + 1 |
|
1430 | if (fwindow == None): fwindow = numpy.zeros(oldfreq.size) + 1 | |
1424 | if (snrth == None): snrth = -3 |
|
1431 | if (snrth == None): snrth = -3 | |
1425 | if (dc == None): dc = 0 |
|
1432 | if (dc == None): dc = 0 | |
1426 | if (aliasing == None): aliasing = 0 |
|
1433 | if (aliasing == None): aliasing = 0 | |
1427 | if (oldfd == None): oldfd = 0 |
|
1434 | if (oldfd == None): oldfd = 0 | |
1428 | if (wwauto == None): wwauto = 0 |
|
1435 | if (wwauto == None): wwauto = 0 | |
1429 |
|
1436 | |||
1430 | if (n0 < 1.e-20): n0 = 1.e-20 |
|
1437 | if (n0 < 1.e-20): n0 = 1.e-20 | |
1431 |
|
1438 | |||
1432 | freq = oldfreq |
|
1439 | freq = oldfreq | |
1433 | vec_power = numpy.zeros(oldspec.shape[1]) |
|
1440 | vec_power = numpy.zeros(oldspec.shape[1]) | |
1434 | vec_fd = numpy.zeros(oldspec.shape[1]) |
|
1441 | vec_fd = numpy.zeros(oldspec.shape[1]) | |
1435 | vec_w = numpy.zeros(oldspec.shape[1]) |
|
1442 | vec_w = numpy.zeros(oldspec.shape[1]) | |
1436 | vec_snr = numpy.zeros(oldspec.shape[1]) |
|
1443 | vec_snr = numpy.zeros(oldspec.shape[1]) | |
1437 |
|
1444 | |||
1438 | for ind in range(oldspec.shape[1]): |
|
1445 | for ind in range(oldspec.shape[1]): | |
1439 |
|
1446 | |||
1440 | spec = oldspec[:,ind] |
|
1447 | spec = oldspec[:,ind] | |
1441 | aux = spec*fwindow |
|
1448 | aux = spec*fwindow | |
1442 | max_spec = aux.max() |
|
1449 | max_spec = aux.max() | |
1443 | m = list(aux).index(max_spec) |
|
1450 | m = list(aux).index(max_spec) | |
1444 |
|
1451 | |||
1445 | #Smooth |
|
1452 | #Smooth | |
1446 | if (smooth == 0): spec2 = spec |
|
1453 | if (smooth == 0): spec2 = spec | |
1447 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) |
|
1454 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |
1448 |
|
1455 | |||
1449 | # Calculo de Momentos |
|
1456 | # Calculo de Momentos | |
1450 | bb = spec2[range(m,spec2.size)] |
|
1457 | bb = spec2[range(m,spec2.size)] | |
1451 | bb = (bb<n0).nonzero() |
|
1458 | bb = (bb<n0).nonzero() | |
1452 | bb = bb[0] |
|
1459 | bb = bb[0] | |
1453 |
|
1460 | |||
1454 | ss = spec2[range(0,m + 1)] |
|
1461 | ss = spec2[range(0,m + 1)] | |
1455 | ss = (ss<n0).nonzero() |
|
1462 | ss = (ss<n0).nonzero() | |
1456 | ss = ss[0] |
|
1463 | ss = ss[0] | |
1457 |
|
1464 | |||
1458 | if (bb.size == 0): |
|
1465 | if (bb.size == 0): | |
1459 | bb0 = spec.size - 1 - m |
|
1466 | bb0 = spec.size - 1 - m | |
1460 | else: |
|
1467 | else: | |
1461 | bb0 = bb[0] - 1 |
|
1468 | bb0 = bb[0] - 1 | |
1462 | if (bb0 < 0): |
|
1469 | if (bb0 < 0): | |
1463 | bb0 = 0 |
|
1470 | bb0 = 0 | |
1464 |
|
1471 | |||
1465 | if (ss.size == 0): ss1 = 1 |
|
1472 | if (ss.size == 0): ss1 = 1 | |
1466 | else: ss1 = max(ss) + 1 |
|
1473 | else: ss1 = max(ss) + 1 | |
1467 |
|
1474 | |||
1468 | if (ss1 > m): ss1 = m |
|
1475 | if (ss1 > m): ss1 = m | |
1469 |
|
1476 | |||
1470 | valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1 |
|
1477 | valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1 | |
1471 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() |
|
1478 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() | |
1472 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power |
|
1479 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power | |
1473 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) |
|
1480 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |
1474 | snr = (spec2.mean()-n0)/n0 |
|
1481 | snr = (spec2.mean()-n0)/n0 | |
1475 |
|
1482 | |||
1476 | if (snr < 1.e-20) : |
|
1483 | if (snr < 1.e-20) : | |
1477 | snr = 1.e-20 |
|
1484 | snr = 1.e-20 | |
1478 |
|
1485 | |||
1479 | vec_power[ind] = power |
|
1486 | vec_power[ind] = power | |
1480 | vec_fd[ind] = fd |
|
1487 | vec_fd[ind] = fd | |
1481 | vec_w[ind] = w |
|
1488 | vec_w[ind] = w | |
1482 | vec_snr[ind] = snr |
|
1489 | vec_snr[ind] = snr | |
1483 |
|
1490 | |||
1484 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) |
|
1491 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |
1485 | return moments |
|
1492 | return moments | |
1486 |
|
1493 | |||
1487 | #------------------ Get SA Parameters -------------------------- |
|
1494 | #------------------ Get SA Parameters -------------------------- | |
1488 |
|
1495 | |||
1489 | def GetSAParameters(self): |
|
1496 | def GetSAParameters(self): | |
1490 | #SA en frecuencia |
|
1497 | #SA en frecuencia | |
1491 | pairslist = self.dataOut.groupList |
|
1498 | pairslist = self.dataOut.groupList | |
1492 | num_pairs = len(pairslist) |
|
1499 | num_pairs = len(pairslist) | |
1493 |
|
1500 | |||
1494 | vel = self.dataOut.abscissaList |
|
1501 | vel = self.dataOut.abscissaList | |
1495 | spectra = self.dataOut.data_pre |
|
1502 | spectra = self.dataOut.data_pre | |
1496 | cspectra = self.dataIn.data_cspc |
|
1503 | cspectra = self.dataIn.data_cspc | |
1497 | delta_v = vel[1] - vel[0] |
|
1504 | delta_v = vel[1] - vel[0] | |
1498 |
|
1505 | |||
1499 | #Calculating the power spectrum |
|
1506 | #Calculating the power spectrum | |
1500 | spc_pow = numpy.sum(spectra, 3)*delta_v |
|
1507 | spc_pow = numpy.sum(spectra, 3)*delta_v | |
1501 | #Normalizing Spectra |
|
1508 | #Normalizing Spectra | |
1502 | norm_spectra = spectra/spc_pow |
|
1509 | norm_spectra = spectra/spc_pow | |
1503 | #Calculating the norm_spectra at peak |
|
1510 | #Calculating the norm_spectra at peak | |
1504 | max_spectra = numpy.max(norm_spectra, 3) |
|
1511 | max_spectra = numpy.max(norm_spectra, 3) | |
1505 |
|
1512 | |||
1506 | #Normalizing Cross Spectra |
|
1513 | #Normalizing Cross Spectra | |
1507 | norm_cspectra = numpy.zeros(cspectra.shape) |
|
1514 | norm_cspectra = numpy.zeros(cspectra.shape) | |
1508 |
|
1515 | |||
1509 | for i in range(num_chan): |
|
1516 | for i in range(num_chan): | |
1510 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) |
|
1517 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) | |
1511 |
|
1518 | |||
1512 | max_cspectra = numpy.max(norm_cspectra,2) |
|
1519 | max_cspectra = numpy.max(norm_cspectra,2) | |
1513 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) |
|
1520 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) | |
1514 |
|
1521 | |||
1515 | for i in range(num_pairs): |
|
1522 | for i in range(num_pairs): | |
1516 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) |
|
1523 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) | |
1517 | #------------------- Get Lags ---------------------------------- |
|
1524 | #------------------- Get Lags ---------------------------------- | |
1518 |
|
1525 | |||
1519 | class SALags(Operation): |
|
1526 | class SALags(Operation): | |
1520 | ''' |
|
1527 | ''' | |
1521 | Function GetMoments() |
|
1528 | Function GetMoments() | |
1522 |
|
1529 | |||
1523 | Input: |
|
1530 | Input: | |
1524 | self.dataOut.data_pre |
|
1531 | self.dataOut.data_pre | |
1525 | self.dataOut.abscissaList |
|
1532 | self.dataOut.abscissaList | |
1526 | self.dataOut.noise |
|
1533 | self.dataOut.noise | |
1527 | self.dataOut.normFactor |
|
1534 | self.dataOut.normFactor | |
1528 | self.dataOut.data_SNR |
|
1535 | self.dataOut.data_SNR | |
1529 | self.dataOut.groupList |
|
1536 | self.dataOut.groupList | |
1530 | self.dataOut.nChannels |
|
1537 | self.dataOut.nChannels | |
1531 |
|
1538 | |||
1532 | Affected: |
|
1539 | Affected: | |
1533 | self.dataOut.data_param |
|
1540 | self.dataOut.data_param | |
1534 |
|
1541 | |||
1535 | ''' |
|
1542 | ''' | |
1536 | def run(self, dataOut): |
|
1543 | def run(self, dataOut): | |
1537 | data_acf = dataOut.data_pre[0] |
|
1544 | data_acf = dataOut.data_pre[0] | |
1538 | data_ccf = dataOut.data_pre[1] |
|
1545 | data_ccf = dataOut.data_pre[1] | |
1539 | normFactor_acf = dataOut.normFactor[0] |
|
1546 | normFactor_acf = dataOut.normFactor[0] | |
1540 | normFactor_ccf = dataOut.normFactor[1] |
|
1547 | normFactor_ccf = dataOut.normFactor[1] | |
1541 | pairs_acf = dataOut.groupList[0] |
|
1548 | pairs_acf = dataOut.groupList[0] | |
1542 | pairs_ccf = dataOut.groupList[1] |
|
1549 | pairs_ccf = dataOut.groupList[1] | |
1543 |
|
1550 | |||
1544 | nHeights = dataOut.nHeights |
|
1551 | nHeights = dataOut.nHeights | |
1545 | absc = dataOut.abscissaList |
|
1552 | absc = dataOut.abscissaList | |
1546 | noise = dataOut.noise |
|
1553 | noise = dataOut.noise | |
1547 | SNR = dataOut.data_SNR |
|
1554 | SNR = dataOut.data_SNR | |
1548 | nChannels = dataOut.nChannels |
|
1555 | nChannels = dataOut.nChannels | |
1549 | # pairsList = dataOut.groupList |
|
1556 | # pairsList = dataOut.groupList | |
1550 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) |
|
1557 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |
1551 |
|
1558 | |||
1552 | for l in range(len(pairs_acf)): |
|
1559 | for l in range(len(pairs_acf)): | |
1553 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] |
|
1560 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] | |
1554 |
|
1561 | |||
1555 | for l in range(len(pairs_ccf)): |
|
1562 | for l in range(len(pairs_ccf)): | |
1556 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] |
|
1563 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] | |
1557 |
|
1564 | |||
1558 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) |
|
1565 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) | |
1559 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) |
|
1566 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) | |
1560 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) |
|
1567 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) | |
1561 | return |
|
1568 | return | |
1562 |
|
1569 | |||
1563 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
1570 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
1564 | # |
|
1571 | # | |
1565 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
1572 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
1566 | # |
|
1573 | # | |
1567 | # for l in range(len(pairsList)): |
|
1574 | # for l in range(len(pairsList)): | |
1568 | # firstChannel = pairsList[l][0] |
|
1575 | # firstChannel = pairsList[l][0] | |
1569 | # secondChannel = pairsList[l][1] |
|
1576 | # secondChannel = pairsList[l][1] | |
1570 | # |
|
1577 | # | |
1571 | # #Obteniendo pares de Autocorrelacion |
|
1578 | # #Obteniendo pares de Autocorrelacion | |
1572 | # if firstChannel == secondChannel: |
|
1579 | # if firstChannel == secondChannel: | |
1573 | # pairsAutoCorr[firstChannel] = int(l) |
|
1580 | # pairsAutoCorr[firstChannel] = int(l) | |
1574 | # |
|
1581 | # | |
1575 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
1582 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
1576 | # |
|
1583 | # | |
1577 | # pairsCrossCorr = range(len(pairsList)) |
|
1584 | # pairsCrossCorr = range(len(pairsList)) | |
1578 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
1585 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
1579 | # |
|
1586 | # | |
1580 | # return pairsAutoCorr, pairsCrossCorr |
|
1587 | # return pairsAutoCorr, pairsCrossCorr | |
1581 |
|
1588 | |||
1582 | def __calculateTaus(self, data_acf, data_ccf, lagRange): |
|
1589 | def __calculateTaus(self, data_acf, data_ccf, lagRange): | |
1583 |
|
1590 | |||
1584 | lag0 = data_acf.shape[1]/2 |
|
1591 | lag0 = data_acf.shape[1]/2 | |
1585 | #Funcion de Autocorrelacion |
|
1592 | #Funcion de Autocorrelacion | |
1586 | mean_acf = stats.nanmean(data_acf, axis = 0) |
|
1593 | mean_acf = stats.nanmean(data_acf, axis = 0) | |
1587 |
|
1594 | |||
1588 | #Obtencion Indice de TauCross |
|
1595 | #Obtencion Indice de TauCross | |
1589 | ind_ccf = data_ccf.argmax(axis = 1) |
|
1596 | ind_ccf = data_ccf.argmax(axis = 1) | |
1590 | #Obtencion Indice de TauAuto |
|
1597 | #Obtencion Indice de TauAuto | |
1591 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') |
|
1598 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') | |
1592 | ccf_lag0 = data_ccf[:,lag0,:] |
|
1599 | ccf_lag0 = data_ccf[:,lag0,:] | |
1593 |
|
1600 | |||
1594 | for i in range(ccf_lag0.shape[0]): |
|
1601 | for i in range(ccf_lag0.shape[0]): | |
1595 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) |
|
1602 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) | |
1596 |
|
1603 | |||
1597 | #Obtencion de TauCross y TauAuto |
|
1604 | #Obtencion de TauCross y TauAuto | |
1598 | tau_ccf = lagRange[ind_ccf] |
|
1605 | tau_ccf = lagRange[ind_ccf] | |
1599 | tau_acf = lagRange[ind_acf] |
|
1606 | tau_acf = lagRange[ind_acf] | |
1600 |
|
1607 | |||
1601 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) |
|
1608 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) | |
1602 |
|
1609 | |||
1603 | tau_ccf[Nan1,Nan2] = numpy.nan |
|
1610 | tau_ccf[Nan1,Nan2] = numpy.nan | |
1604 | tau_acf[Nan1,Nan2] = numpy.nan |
|
1611 | tau_acf[Nan1,Nan2] = numpy.nan | |
1605 | tau = numpy.vstack((tau_ccf,tau_acf)) |
|
1612 | tau = numpy.vstack((tau_ccf,tau_acf)) | |
1606 |
|
1613 | |||
1607 | return tau |
|
1614 | return tau | |
1608 |
|
1615 | |||
1609 | def __calculateLag1Phase(self, data, lagTRange): |
|
1616 | def __calculateLag1Phase(self, data, lagTRange): | |
1610 | data1 = stats.nanmean(data, axis = 0) |
|
1617 | data1 = stats.nanmean(data, axis = 0) | |
1611 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 |
|
1618 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 | |
1612 |
|
1619 | |||
1613 | phase = numpy.angle(data1[lag1,:]) |
|
1620 | phase = numpy.angle(data1[lag1,:]) | |
1614 |
|
1621 | |||
1615 | return phase |
|
1622 | return phase | |
1616 |
|
1623 | |||
1617 | class SpectralFitting(Operation): |
|
1624 | class SpectralFitting(Operation): | |
1618 | ''' |
|
1625 | ''' | |
1619 | Function GetMoments() |
|
1626 | Function GetMoments() | |
1620 |
|
1627 | |||
1621 | Input: |
|
1628 | Input: | |
1622 | Output: |
|
1629 | Output: | |
1623 | Variables modified: |
|
1630 | Variables modified: | |
1624 | ''' |
|
1631 | ''' | |
1625 |
|
1632 | |||
1626 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): |
|
1633 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): | |
1627 |
|
1634 | |||
1628 |
|
1635 | |||
1629 | if path != None: |
|
1636 | if path != None: | |
1630 | sys.path.append(path) |
|
1637 | sys.path.append(path) | |
1631 | self.dataOut.library = importlib.import_module(file) |
|
1638 | self.dataOut.library = importlib.import_module(file) | |
1632 |
|
1639 | |||
1633 | #To be inserted as a parameter |
|
1640 | #To be inserted as a parameter | |
1634 | groupArray = numpy.array(groupList) |
|
1641 | groupArray = numpy.array(groupList) | |
1635 | # groupArray = numpy.array([[0,1],[2,3]]) |
|
1642 | # groupArray = numpy.array([[0,1],[2,3]]) | |
1636 | self.dataOut.groupList = groupArray |
|
1643 | self.dataOut.groupList = groupArray | |
1637 |
|
1644 | |||
1638 | nGroups = groupArray.shape[0] |
|
1645 | nGroups = groupArray.shape[0] | |
1639 | nChannels = self.dataIn.nChannels |
|
1646 | nChannels = self.dataIn.nChannels | |
1640 | nHeights=self.dataIn.heightList.size |
|
1647 | nHeights=self.dataIn.heightList.size | |
1641 |
|
1648 | |||
1642 | #Parameters Array |
|
1649 | #Parameters Array | |
1643 | self.dataOut.data_param = None |
|
1650 | self.dataOut.data_param = None | |
1644 |
|
1651 | |||
1645 | #Set constants |
|
1652 | #Set constants | |
1646 | constants = self.dataOut.library.setConstants(self.dataIn) |
|
1653 | constants = self.dataOut.library.setConstants(self.dataIn) | |
1647 | self.dataOut.constants = constants |
|
1654 | self.dataOut.constants = constants | |
1648 | M = self.dataIn.normFactor |
|
1655 | M = self.dataIn.normFactor | |
1649 | N = self.dataIn.nFFTPoints |
|
1656 | N = self.dataIn.nFFTPoints | |
1650 | ippSeconds = self.dataIn.ippSeconds |
|
1657 | ippSeconds = self.dataIn.ippSeconds | |
1651 | K = self.dataIn.nIncohInt |
|
1658 | K = self.dataIn.nIncohInt | |
1652 | pairsArray = numpy.array(self.dataIn.pairsList) |
|
1659 | pairsArray = numpy.array(self.dataIn.pairsList) | |
1653 |
|
1660 | |||
1654 | #List of possible combinations |
|
1661 | #List of possible combinations | |
1655 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) |
|
1662 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |
1656 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') |
|
1663 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |
1657 |
|
1664 | |||
1658 | if getSNR: |
|
1665 | if getSNR: | |
1659 | listChannels = groupArray.reshape((groupArray.size)) |
|
1666 | listChannels = groupArray.reshape((groupArray.size)) | |
1660 | listChannels.sort() |
|
1667 | listChannels.sort() | |
1661 | noise = self.dataIn.getNoise() |
|
1668 | noise = self.dataIn.getNoise() | |
1662 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) |
|
1669 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) | |
1663 |
|
1670 | |||
1664 | for i in range(nGroups): |
|
1671 | for i in range(nGroups): | |
1665 | coord = groupArray[i,:] |
|
1672 | coord = groupArray[i,:] | |
1666 |
|
1673 | |||
1667 | #Input data array |
|
1674 | #Input data array | |
1668 | data = self.dataIn.data_spc[coord,:,:]/(M*N) |
|
1675 | data = self.dataIn.data_spc[coord,:,:]/(M*N) | |
1669 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) |
|
1676 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) | |
1670 |
|
1677 | |||
1671 | #Cross Spectra data array for Covariance Matrixes |
|
1678 | #Cross Spectra data array for Covariance Matrixes | |
1672 | ind = 0 |
|
1679 | ind = 0 | |
1673 | for pairs in listComb: |
|
1680 | for pairs in listComb: | |
1674 | pairsSel = numpy.array([coord[x],coord[y]]) |
|
1681 | pairsSel = numpy.array([coord[x],coord[y]]) | |
1675 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) |
|
1682 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) | |
1676 | ind += 1 |
|
1683 | ind += 1 | |
1677 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) |
|
1684 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) | |
1678 | dataCross = dataCross**2/K |
|
1685 | dataCross = dataCross**2/K | |
1679 |
|
1686 | |||
1680 | for h in range(nHeights): |
|
1687 | for h in range(nHeights): | |
1681 | # print self.dataOut.heightList[h] |
|
1688 | # print self.dataOut.heightList[h] | |
1682 |
|
1689 | |||
1683 | #Input |
|
1690 | #Input | |
1684 | d = data[:,h] |
|
1691 | d = data[:,h] | |
1685 |
|
1692 | |||
1686 | #Covariance Matrix |
|
1693 | #Covariance Matrix | |
1687 | D = numpy.diag(d**2/K) |
|
1694 | D = numpy.diag(d**2/K) | |
1688 | ind = 0 |
|
1695 | ind = 0 | |
1689 | for pairs in listComb: |
|
1696 | for pairs in listComb: | |
1690 | #Coordinates in Covariance Matrix |
|
1697 | #Coordinates in Covariance Matrix | |
1691 | x = pairs[0] |
|
1698 | x = pairs[0] | |
1692 | y = pairs[1] |
|
1699 | y = pairs[1] | |
1693 | #Channel Index |
|
1700 | #Channel Index | |
1694 | S12 = dataCross[ind,:,h] |
|
1701 | S12 = dataCross[ind,:,h] | |
1695 | D12 = numpy.diag(S12) |
|
1702 | D12 = numpy.diag(S12) | |
1696 | #Completing Covariance Matrix with Cross Spectras |
|
1703 | #Completing Covariance Matrix with Cross Spectras | |
1697 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 |
|
1704 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 | |
1698 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 |
|
1705 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 | |
1699 | ind += 1 |
|
1706 | ind += 1 | |
1700 | Dinv=numpy.linalg.inv(D) |
|
1707 | Dinv=numpy.linalg.inv(D) | |
1701 | L=numpy.linalg.cholesky(Dinv) |
|
1708 | L=numpy.linalg.cholesky(Dinv) | |
1702 | LT=L.T |
|
1709 | LT=L.T | |
1703 |
|
1710 | |||
1704 | dp = numpy.dot(LT,d) |
|
1711 | dp = numpy.dot(LT,d) | |
1705 |
|
1712 | |||
1706 | #Initial values |
|
1713 | #Initial values | |
1707 | data_spc = self.dataIn.data_spc[coord,:,h] |
|
1714 | data_spc = self.dataIn.data_spc[coord,:,h] | |
1708 |
|
1715 | |||
1709 | if (h>0)and(error1[3]<5): |
|
1716 | if (h>0)and(error1[3]<5): | |
1710 | p0 = self.dataOut.data_param[i,:,h-1] |
|
1717 | p0 = self.dataOut.data_param[i,:,h-1] | |
1711 | else: |
|
1718 | else: | |
1712 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) |
|
1719 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) | |
1713 |
|
1720 | |||
1714 | try: |
|
1721 | try: | |
1715 | #Least Squares |
|
1722 | #Least Squares | |
1716 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) |
|
1723 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) | |
1717 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) |
|
1724 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) | |
1718 | #Chi square error |
|
1725 | #Chi square error | |
1719 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) |
|
1726 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) | |
1720 | #Error with Jacobian |
|
1727 | #Error with Jacobian | |
1721 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) |
|
1728 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) | |
1722 | except: |
|
1729 | except: | |
1723 | minp = p0*numpy.nan |
|
1730 | minp = p0*numpy.nan | |
1724 | error0 = numpy.nan |
|
1731 | error0 = numpy.nan | |
1725 | error1 = p0*numpy.nan |
|
1732 | error1 = p0*numpy.nan | |
1726 |
|
1733 | |||
1727 | #Save |
|
1734 | #Save | |
1728 | if self.dataOut.data_param == None: |
|
1735 | if self.dataOut.data_param == None: | |
1729 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan |
|
1736 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan | |
1730 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan |
|
1737 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan | |
1731 |
|
1738 | |||
1732 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) |
|
1739 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) | |
1733 | self.dataOut.data_param[i,:,h] = minp |
|
1740 | self.dataOut.data_param[i,:,h] = minp | |
1734 | return |
|
1741 | return | |
1735 |
|
1742 | |||
1736 | def __residFunction(self, p, dp, LT, constants): |
|
1743 | def __residFunction(self, p, dp, LT, constants): | |
1737 |
|
1744 | |||
1738 | fm = self.dataOut.library.modelFunction(p, constants) |
|
1745 | fm = self.dataOut.library.modelFunction(p, constants) | |
1739 | fmp=numpy.dot(LT,fm) |
|
1746 | fmp=numpy.dot(LT,fm) | |
1740 |
|
1747 | |||
1741 | return dp-fmp |
|
1748 | return dp-fmp | |
1742 |
|
1749 | |||
1743 | def __getSNR(self, z, noise): |
|
1750 | def __getSNR(self, z, noise): | |
1744 |
|
1751 | |||
1745 | avg = numpy.average(z, axis=1) |
|
1752 | avg = numpy.average(z, axis=1) | |
1746 | SNR = (avg.T-noise)/noise |
|
1753 | SNR = (avg.T-noise)/noise | |
1747 | SNR = SNR.T |
|
1754 | SNR = SNR.T | |
1748 | return SNR |
|
1755 | return SNR | |
1749 |
|
1756 | |||
1750 | def __chisq(p,chindex,hindex): |
|
1757 | def __chisq(p,chindex,hindex): | |
1751 | #similar to Resid but calculates CHI**2 |
|
1758 | #similar to Resid but calculates CHI**2 | |
1752 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) |
|
1759 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) | |
1753 | dp=numpy.dot(LT,d) |
|
1760 | dp=numpy.dot(LT,d) | |
1754 | fmp=numpy.dot(LT,fm) |
|
1761 | fmp=numpy.dot(LT,fm) | |
1755 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) |
|
1762 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) | |
1756 | return chisq |
|
1763 | return chisq | |
1757 |
|
1764 | |||
1758 | class WindProfiler(Operation): |
|
1765 | class WindProfiler(Operation): | |
1759 |
|
1766 | |||
1760 | __isConfig = False |
|
1767 | __isConfig = False | |
1761 |
|
1768 | |||
1762 | __initime = None |
|
1769 | __initime = None | |
1763 | __lastdatatime = None |
|
1770 | __lastdatatime = None | |
1764 | __integrationtime = None |
|
1771 | __integrationtime = None | |
1765 |
|
1772 | |||
1766 | __buffer = None |
|
1773 | __buffer = None | |
1767 |
|
1774 | |||
1768 | __dataReady = False |
|
1775 | __dataReady = False | |
1769 |
|
1776 | |||
1770 | __firstdata = None |
|
1777 | __firstdata = None | |
1771 |
|
1778 | |||
1772 | n = None |
|
1779 | n = None | |
1773 |
|
1780 | |||
1774 | def __init__(self): |
|
1781 | def __init__(self): | |
1775 | Operation.__init__(self) |
|
1782 | Operation.__init__(self) | |
1776 |
|
1783 | |||
1777 | def __calculateCosDir(self, elev, azim): |
|
1784 | def __calculateCosDir(self, elev, azim): | |
1778 | zen = (90 - elev)*numpy.pi/180 |
|
1785 | zen = (90 - elev)*numpy.pi/180 | |
1779 | azim = azim*numpy.pi/180 |
|
1786 | azim = azim*numpy.pi/180 | |
1780 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) |
|
1787 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) | |
1781 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) |
|
1788 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) | |
1782 |
|
1789 | |||
1783 | signX = numpy.sign(numpy.cos(azim)) |
|
1790 | signX = numpy.sign(numpy.cos(azim)) | |
1784 | signY = numpy.sign(numpy.sin(azim)) |
|
1791 | signY = numpy.sign(numpy.sin(azim)) | |
1785 |
|
1792 | |||
1786 | cosDirX = numpy.copysign(cosDirX, signX) |
|
1793 | cosDirX = numpy.copysign(cosDirX, signX) | |
1787 | cosDirY = numpy.copysign(cosDirY, signY) |
|
1794 | cosDirY = numpy.copysign(cosDirY, signY) | |
1788 | return cosDirX, cosDirY |
|
1795 | return cosDirX, cosDirY | |
1789 |
|
1796 | |||
1790 | def __calculateAngles(self, theta_x, theta_y, azimuth): |
|
1797 | def __calculateAngles(self, theta_x, theta_y, azimuth): | |
1791 |
|
1798 | |||
1792 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) |
|
1799 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) | |
1793 | zenith_arr = numpy.arccos(dir_cosw) |
|
1800 | zenith_arr = numpy.arccos(dir_cosw) | |
1794 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 |
|
1801 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 | |
1795 |
|
1802 | |||
1796 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) |
|
1803 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) | |
1797 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) |
|
1804 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) | |
1798 |
|
1805 | |||
1799 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw |
|
1806 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw | |
1800 |
|
1807 | |||
1801 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): |
|
1808 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): | |
1802 |
|
1809 | |||
1803 | # |
|
1810 | # | |
1804 | if horOnly: |
|
1811 | if horOnly: | |
1805 | A = numpy.c_[dir_cosu,dir_cosv] |
|
1812 | A = numpy.c_[dir_cosu,dir_cosv] | |
1806 | else: |
|
1813 | else: | |
1807 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] |
|
1814 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] | |
1808 | A = numpy.asmatrix(A) |
|
1815 | A = numpy.asmatrix(A) | |
1809 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() |
|
1816 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() | |
1810 |
|
1817 | |||
1811 | return A1 |
|
1818 | return A1 | |
1812 |
|
1819 | |||
1813 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
1820 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
1814 | listPhi = phi.tolist() |
|
1821 | listPhi = phi.tolist() | |
1815 | maxid = listPhi.index(max(listPhi)) |
|
1822 | maxid = listPhi.index(max(listPhi)) | |
1816 | minid = listPhi.index(min(listPhi)) |
|
1823 | minid = listPhi.index(min(listPhi)) | |
1817 |
|
1824 | |||
1818 | rango = range(len(phi)) |
|
1825 | rango = range(len(phi)) | |
1819 | # rango = numpy.delete(rango,maxid) |
|
1826 | # rango = numpy.delete(rango,maxid) | |
1820 |
|
1827 | |||
1821 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
1828 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
1822 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
1829 | heiRangAux = heiRang*math.cos(phi[minid]) | |
1823 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
1830 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
1824 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
1831 | heiRang1 = numpy.delete(heiRang1,indOut) | |
1825 |
|
1832 | |||
1826 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1833 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1827 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1834 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1828 |
|
1835 | |||
1829 | for i in rango: |
|
1836 | for i in rango: | |
1830 | x = heiRang*math.cos(phi[i]) |
|
1837 | x = heiRang*math.cos(phi[i]) | |
1831 | y1 = velRadial[i,:] |
|
1838 | y1 = velRadial[i,:] | |
1832 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
1839 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
1833 |
|
1840 | |||
1834 | x1 = heiRang1 |
|
1841 | x1 = heiRang1 | |
1835 | y11 = f1(x1) |
|
1842 | y11 = f1(x1) | |
1836 |
|
1843 | |||
1837 | y2 = SNR[i,:] |
|
1844 | y2 = SNR[i,:] | |
1838 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
1845 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
1839 | y21 = f2(x1) |
|
1846 | y21 = f2(x1) | |
1840 |
|
1847 | |||
1841 | velRadial1[i,:] = y11 |
|
1848 | velRadial1[i,:] = y11 | |
1842 | SNR1[i,:] = y21 |
|
1849 | SNR1[i,:] = y21 | |
1843 |
|
1850 | |||
1844 | return heiRang1, velRadial1, SNR1 |
|
1851 | return heiRang1, velRadial1, SNR1 | |
1845 |
|
1852 | |||
1846 | def __calculateVelUVW(self, A, velRadial): |
|
1853 | def __calculateVelUVW(self, A, velRadial): | |
1847 |
|
1854 | |||
1848 | #Operacion Matricial |
|
1855 | #Operacion Matricial | |
1849 | # velUVW = numpy.zeros((velRadial.shape[1],3)) |
|
1856 | # velUVW = numpy.zeros((velRadial.shape[1],3)) | |
1850 | # for ind in range(velRadial.shape[1]): |
|
1857 | # for ind in range(velRadial.shape[1]): | |
1851 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) |
|
1858 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) | |
1852 | # velUVW = velUVW.transpose() |
|
1859 | # velUVW = velUVW.transpose() | |
1853 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) |
|
1860 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) | |
1854 | velUVW[:,:] = numpy.dot(A,velRadial) |
|
1861 | velUVW[:,:] = numpy.dot(A,velRadial) | |
1855 |
|
1862 | |||
1856 |
|
1863 | |||
1857 | return velUVW |
|
1864 | return velUVW | |
1858 |
|
1865 | |||
1859 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): |
|
1866 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): | |
1860 |
|
1867 | |||
1861 | def techniqueDBS(self, kwargs): |
|
1868 | def techniqueDBS(self, kwargs): | |
1862 | """ |
|
1869 | """ | |
1863 | Function that implements Doppler Beam Swinging (DBS) technique. |
|
1870 | Function that implements Doppler Beam Swinging (DBS) technique. | |
1864 |
|
1871 | |||
1865 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1872 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1866 | Direction correction (if necessary), Ranges and SNR |
|
1873 | Direction correction (if necessary), Ranges and SNR | |
1867 |
|
1874 | |||
1868 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1875 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1869 |
|
1876 | |||
1870 | Parameters affected: Winds, height range, SNR |
|
1877 | Parameters affected: Winds, height range, SNR | |
1871 | """ |
|
1878 | """ | |
1872 | velRadial0 = kwargs['velRadial'] |
|
1879 | velRadial0 = kwargs['velRadial'] | |
1873 | heiRang = kwargs['heightList'] |
|
1880 | heiRang = kwargs['heightList'] | |
1874 | SNR0 = kwargs['SNR'] |
|
1881 | SNR0 = kwargs['SNR'] | |
1875 |
|
1882 | |||
1876 | if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'): |
|
1883 | if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'): | |
1877 | theta_x = numpy.array(kwargs['dirCosx']) |
|
1884 | theta_x = numpy.array(kwargs['dirCosx']) | |
1878 | theta_y = numpy.array(kwargs['dirCosy']) |
|
1885 | theta_y = numpy.array(kwargs['dirCosy']) | |
1879 | else: |
|
1886 | else: | |
1880 | elev = numpy.array(kwargs['elevation']) |
|
1887 | elev = numpy.array(kwargs['elevation']) | |
1881 | azim = numpy.array(kwargs['azimuth']) |
|
1888 | azim = numpy.array(kwargs['azimuth']) | |
1882 | theta_x, theta_y = self.__calculateCosDir(elev, azim) |
|
1889 | theta_x, theta_y = self.__calculateCosDir(elev, azim) | |
1883 | azimuth = kwargs['correctAzimuth'] |
|
1890 | azimuth = kwargs['correctAzimuth'] | |
1884 | if kwargs.has_key('horizontalOnly'): |
|
1891 | if kwargs.has_key('horizontalOnly'): | |
1885 | horizontalOnly = kwargs['horizontalOnly'] |
|
1892 | horizontalOnly = kwargs['horizontalOnly'] | |
1886 | else: horizontalOnly = False |
|
1893 | else: horizontalOnly = False | |
1887 | if kwargs.has_key('correctFactor'): |
|
1894 | if kwargs.has_key('correctFactor'): | |
1888 | correctFactor = kwargs['correctFactor'] |
|
1895 | correctFactor = kwargs['correctFactor'] | |
1889 | else: correctFactor = 1 |
|
1896 | else: correctFactor = 1 | |
1890 | if kwargs.has_key('channelList'): |
|
1897 | if kwargs.has_key('channelList'): | |
1891 | channelList = kwargs['channelList'] |
|
1898 | channelList = kwargs['channelList'] | |
1892 | if len(channelList) == 2: |
|
1899 | if len(channelList) == 2: | |
1893 | horizontalOnly = True |
|
1900 | horizontalOnly = True | |
1894 | arrayChannel = numpy.array(channelList) |
|
1901 | arrayChannel = numpy.array(channelList) | |
1895 | param = param[arrayChannel,:,:] |
|
1902 | param = param[arrayChannel,:,:] | |
1896 | theta_x = theta_x[arrayChannel] |
|
1903 | theta_x = theta_x[arrayChannel] | |
1897 | theta_y = theta_y[arrayChannel] |
|
1904 | theta_y = theta_y[arrayChannel] | |
1898 |
|
1905 | |||
1899 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) |
|
1906 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |
1900 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) |
|
1907 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) | |
1901 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) |
|
1908 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) | |
1902 |
|
1909 | |||
1903 | #Calculo de Componentes de la velocidad con DBS |
|
1910 | #Calculo de Componentes de la velocidad con DBS | |
1904 | winds = self.__calculateVelUVW(A,velRadial1) |
|
1911 | winds = self.__calculateVelUVW(A,velRadial1) | |
1905 |
|
1912 | |||
1906 | return winds, heiRang1, SNR1 |
|
1913 | return winds, heiRang1, SNR1 | |
1907 |
|
1914 | |||
1908 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): |
|
1915 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): | |
1909 |
|
1916 | |||
1910 | nPairs = len(pairs_ccf) |
|
1917 | nPairs = len(pairs_ccf) | |
1911 | posx = numpy.asarray(posx) |
|
1918 | posx = numpy.asarray(posx) | |
1912 | posy = numpy.asarray(posy) |
|
1919 | posy = numpy.asarray(posy) | |
1913 |
|
1920 | |||
1914 | #Rotacion Inversa para alinear con el azimuth |
|
1921 | #Rotacion Inversa para alinear con el azimuth | |
1915 | if azimuth!= None: |
|
1922 | if azimuth!= None: | |
1916 | azimuth = azimuth*math.pi/180 |
|
1923 | azimuth = azimuth*math.pi/180 | |
1917 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) |
|
1924 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) | |
1918 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) |
|
1925 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) | |
1919 | else: |
|
1926 | else: | |
1920 | posx1 = posx |
|
1927 | posx1 = posx | |
1921 | posy1 = posy |
|
1928 | posy1 = posy | |
1922 |
|
1929 | |||
1923 | #Calculo de Distancias |
|
1930 | #Calculo de Distancias | |
1924 | distx = numpy.zeros(nPairs) |
|
1931 | distx = numpy.zeros(nPairs) | |
1925 | disty = numpy.zeros(nPairs) |
|
1932 | disty = numpy.zeros(nPairs) | |
1926 | dist = numpy.zeros(nPairs) |
|
1933 | dist = numpy.zeros(nPairs) | |
1927 | ang = numpy.zeros(nPairs) |
|
1934 | ang = numpy.zeros(nPairs) | |
1928 |
|
1935 | |||
1929 | for i in range(nPairs): |
|
1936 | for i in range(nPairs): | |
1930 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] |
|
1937 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] | |
1931 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] |
|
1938 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] | |
1932 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) |
|
1939 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) | |
1933 | ang[i] = numpy.arctan2(disty[i],distx[i]) |
|
1940 | ang[i] = numpy.arctan2(disty[i],distx[i]) | |
1934 |
|
1941 | |||
1935 | return distx, disty, dist, ang |
|
1942 | return distx, disty, dist, ang | |
1936 | #Calculo de Matrices |
|
1943 | #Calculo de Matrices | |
1937 | # nPairs = len(pairs) |
|
1944 | # nPairs = len(pairs) | |
1938 | # ang1 = numpy.zeros((nPairs, 2, 1)) |
|
1945 | # ang1 = numpy.zeros((nPairs, 2, 1)) | |
1939 | # dist1 = numpy.zeros((nPairs, 2, 1)) |
|
1946 | # dist1 = numpy.zeros((nPairs, 2, 1)) | |
1940 | # |
|
1947 | # | |
1941 | # for j in range(nPairs): |
|
1948 | # for j in range(nPairs): | |
1942 | # dist1[j,0,0] = dist[pairs[j][0]] |
|
1949 | # dist1[j,0,0] = dist[pairs[j][0]] | |
1943 | # dist1[j,1,0] = dist[pairs[j][1]] |
|
1950 | # dist1[j,1,0] = dist[pairs[j][1]] | |
1944 | # ang1[j,0,0] = ang[pairs[j][0]] |
|
1951 | # ang1[j,0,0] = ang[pairs[j][0]] | |
1945 | # ang1[j,1,0] = ang[pairs[j][1]] |
|
1952 | # ang1[j,1,0] = ang[pairs[j][1]] | |
1946 | # |
|
1953 | # | |
1947 | # return distx,disty, dist1,ang1 |
|
1954 | # return distx,disty, dist1,ang1 | |
1948 |
|
1955 | |||
1949 |
|
1956 | |||
1950 | def __calculateVelVer(self, phase, lagTRange, _lambda): |
|
1957 | def __calculateVelVer(self, phase, lagTRange, _lambda): | |
1951 |
|
1958 | |||
1952 | Ts = lagTRange[1] - lagTRange[0] |
|
1959 | Ts = lagTRange[1] - lagTRange[0] | |
1953 | velW = -_lambda*phase/(4*math.pi*Ts) |
|
1960 | velW = -_lambda*phase/(4*math.pi*Ts) | |
1954 |
|
1961 | |||
1955 | return velW |
|
1962 | return velW | |
1956 |
|
1963 | |||
1957 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): |
|
1964 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): | |
1958 | nPairs = tau1.shape[0] |
|
1965 | nPairs = tau1.shape[0] | |
1959 | nHeights = tau1.shape[1] |
|
1966 | nHeights = tau1.shape[1] | |
1960 | vel = numpy.zeros((nPairs,3,nHeights)) |
|
1967 | vel = numpy.zeros((nPairs,3,nHeights)) | |
1961 | dist1 = numpy.reshape(dist, (dist.size,1)) |
|
1968 | dist1 = numpy.reshape(dist, (dist.size,1)) | |
1962 |
|
1969 | |||
1963 | angCos = numpy.cos(ang) |
|
1970 | angCos = numpy.cos(ang) | |
1964 | angSin = numpy.sin(ang) |
|
1971 | angSin = numpy.sin(ang) | |
1965 |
|
1972 | |||
1966 | vel0 = dist1*tau1/(2*tau2**2) |
|
1973 | vel0 = dist1*tau1/(2*tau2**2) | |
1967 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) |
|
1974 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) | |
1968 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) |
|
1975 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) | |
1969 |
|
1976 | |||
1970 | ind = numpy.where(numpy.isinf(vel)) |
|
1977 | ind = numpy.where(numpy.isinf(vel)) | |
1971 | vel[ind] = numpy.nan |
|
1978 | vel[ind] = numpy.nan | |
1972 |
|
1979 | |||
1973 | return vel |
|
1980 | return vel | |
1974 |
|
1981 | |||
1975 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
1982 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
1976 | # |
|
1983 | # | |
1977 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
1984 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
1978 | # |
|
1985 | # | |
1979 | # for l in range(len(pairsList)): |
|
1986 | # for l in range(len(pairsList)): | |
1980 | # firstChannel = pairsList[l][0] |
|
1987 | # firstChannel = pairsList[l][0] | |
1981 | # secondChannel = pairsList[l][1] |
|
1988 | # secondChannel = pairsList[l][1] | |
1982 | # |
|
1989 | # | |
1983 | # #Obteniendo pares de Autocorrelacion |
|
1990 | # #Obteniendo pares de Autocorrelacion | |
1984 | # if firstChannel == secondChannel: |
|
1991 | # if firstChannel == secondChannel: | |
1985 | # pairsAutoCorr[firstChannel] = int(l) |
|
1992 | # pairsAutoCorr[firstChannel] = int(l) | |
1986 | # |
|
1993 | # | |
1987 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
1994 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
1988 | # |
|
1995 | # | |
1989 | # pairsCrossCorr = range(len(pairsList)) |
|
1996 | # pairsCrossCorr = range(len(pairsList)) | |
1990 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
1997 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
1991 | # |
|
1998 | # | |
1992 | # return pairsAutoCorr, pairsCrossCorr |
|
1999 | # return pairsAutoCorr, pairsCrossCorr | |
1993 |
|
2000 | |||
1994 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): |
|
2001 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): | |
1995 | def techniqueSA(self, kwargs): |
|
2002 | def techniqueSA(self, kwargs): | |
1996 |
|
2003 | |||
1997 | """ |
|
2004 | """ | |
1998 | Function that implements Spaced Antenna (SA) technique. |
|
2005 | Function that implements Spaced Antenna (SA) technique. | |
1999 |
|
2006 | |||
2000 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
2007 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
2001 | Direction correction (if necessary), Ranges and SNR |
|
2008 | Direction correction (if necessary), Ranges and SNR | |
2002 |
|
2009 | |||
2003 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
2010 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
2004 |
|
2011 | |||
2005 | Parameters affected: Winds |
|
2012 | Parameters affected: Winds | |
2006 | """ |
|
2013 | """ | |
2007 | position_x = kwargs['positionX'] |
|
2014 | position_x = kwargs['positionX'] | |
2008 | position_y = kwargs['positionY'] |
|
2015 | position_y = kwargs['positionY'] | |
2009 | azimuth = kwargs['azimuth'] |
|
2016 | azimuth = kwargs['azimuth'] | |
2010 |
|
2017 | |||
2011 | if kwargs.has_key('correctFactor'): |
|
2018 | if kwargs.has_key('correctFactor'): | |
2012 | correctFactor = kwargs['correctFactor'] |
|
2019 | correctFactor = kwargs['correctFactor'] | |
2013 | else: |
|
2020 | else: | |
2014 | correctFactor = 1 |
|
2021 | correctFactor = 1 | |
2015 |
|
2022 | |||
2016 | groupList = kwargs['groupList'] |
|
2023 | groupList = kwargs['groupList'] | |
2017 | pairs_ccf = groupList[1] |
|
2024 | pairs_ccf = groupList[1] | |
2018 | tau = kwargs['tau'] |
|
2025 | tau = kwargs['tau'] | |
2019 | _lambda = kwargs['_lambda'] |
|
2026 | _lambda = kwargs['_lambda'] | |
2020 |
|
2027 | |||
2021 | #Cross Correlation pairs obtained |
|
2028 | #Cross Correlation pairs obtained | |
2022 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) |
|
2029 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) | |
2023 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] |
|
2030 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] | |
2024 | # pairsSelArray = numpy.array(pairsSelected) |
|
2031 | # pairsSelArray = numpy.array(pairsSelected) | |
2025 | # pairs = [] |
|
2032 | # pairs = [] | |
2026 | # |
|
2033 | # | |
2027 | # #Wind estimation pairs obtained |
|
2034 | # #Wind estimation pairs obtained | |
2028 | # for i in range(pairsSelArray.shape[0]/2): |
|
2035 | # for i in range(pairsSelArray.shape[0]/2): | |
2029 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] |
|
2036 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] | |
2030 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] |
|
2037 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] | |
2031 | # pairs.append((ind1,ind2)) |
|
2038 | # pairs.append((ind1,ind2)) | |
2032 |
|
2039 | |||
2033 | indtau = tau.shape[0]/2 |
|
2040 | indtau = tau.shape[0]/2 | |
2034 | tau1 = tau[:indtau,:] |
|
2041 | tau1 = tau[:indtau,:] | |
2035 | tau2 = tau[indtau:-1,:] |
|
2042 | tau2 = tau[indtau:-1,:] | |
2036 | # tau1 = tau1[pairs,:] |
|
2043 | # tau1 = tau1[pairs,:] | |
2037 | # tau2 = tau2[pairs,:] |
|
2044 | # tau2 = tau2[pairs,:] | |
2038 | phase1 = tau[-1,:] |
|
2045 | phase1 = tau[-1,:] | |
2039 |
|
2046 | |||
2040 | #--------------------------------------------------------------------- |
|
2047 | #--------------------------------------------------------------------- | |
2041 | #Metodo Directo |
|
2048 | #Metodo Directo | |
2042 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) |
|
2049 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) | |
2043 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) |
|
2050 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) | |
2044 | winds = stats.nanmean(winds, axis=0) |
|
2051 | winds = stats.nanmean(winds, axis=0) | |
2045 | #--------------------------------------------------------------------- |
|
2052 | #--------------------------------------------------------------------- | |
2046 | #Metodo General |
|
2053 | #Metodo General | |
2047 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) |
|
2054 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) | |
2048 | # #Calculo Coeficientes de Funcion de Correlacion |
|
2055 | # #Calculo Coeficientes de Funcion de Correlacion | |
2049 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) |
|
2056 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) | |
2050 | # #Calculo de Velocidades |
|
2057 | # #Calculo de Velocidades | |
2051 | # winds = self.calculateVelUV(F,G,A,B,H) |
|
2058 | # winds = self.calculateVelUV(F,G,A,B,H) | |
2052 |
|
2059 | |||
2053 | #--------------------------------------------------------------------- |
|
2060 | #--------------------------------------------------------------------- | |
2054 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) |
|
2061 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) | |
2055 | winds = correctFactor*winds |
|
2062 | winds = correctFactor*winds | |
2056 | return winds |
|
2063 | return winds | |
2057 |
|
2064 | |||
2058 | def __checkTime(self, currentTime, paramInterval, outputInterval): |
|
2065 | def __checkTime(self, currentTime, paramInterval, outputInterval): | |
2059 |
|
2066 | |||
2060 | dataTime = currentTime + paramInterval |
|
2067 | dataTime = currentTime + paramInterval | |
2061 | deltaTime = dataTime - self.__initime |
|
2068 | deltaTime = dataTime - self.__initime | |
2062 |
|
2069 | |||
2063 | if deltaTime >= outputInterval or deltaTime < 0: |
|
2070 | if deltaTime >= outputInterval or deltaTime < 0: | |
2064 | self.__dataReady = True |
|
2071 | self.__dataReady = True | |
2065 | return |
|
2072 | return | |
2066 |
|
2073 | |||
2067 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): |
|
2074 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): | |
2068 | ''' |
|
2075 | ''' | |
2069 | Function that implements winds estimation technique with detected meteors. |
|
2076 | Function that implements winds estimation technique with detected meteors. | |
2070 |
|
2077 | |||
2071 | Input: Detected meteors, Minimum meteor quantity to wind estimation |
|
2078 | Input: Detected meteors, Minimum meteor quantity to wind estimation | |
2072 |
|
2079 | |||
2073 | Output: Winds estimation (Zonal and Meridional) |
|
2080 | Output: Winds estimation (Zonal and Meridional) | |
2074 |
|
2081 | |||
2075 | Parameters affected: Winds |
|
2082 | Parameters affected: Winds | |
2076 | ''' |
|
2083 | ''' | |
2077 | # print arrayMeteor.shape |
|
2084 | # print arrayMeteor.shape | |
2078 | #Settings |
|
2085 | #Settings | |
2079 | nInt = (heightMax - heightMin)/2 |
|
2086 | nInt = (heightMax - heightMin)/2 | |
2080 | # print nInt |
|
2087 | # print nInt | |
2081 | nInt = int(nInt) |
|
2088 | nInt = int(nInt) | |
2082 | # print nInt |
|
2089 | # print nInt | |
2083 | winds = numpy.zeros((2,nInt))*numpy.nan |
|
2090 | winds = numpy.zeros((2,nInt))*numpy.nan | |
2084 |
|
2091 | |||
2085 | #Filter errors |
|
2092 | #Filter errors | |
2086 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] |
|
2093 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] | |
2087 | finalMeteor = arrayMeteor[error,:] |
|
2094 | finalMeteor = arrayMeteor[error,:] | |
2088 |
|
2095 | |||
2089 | #Meteor Histogram |
|
2096 | #Meteor Histogram | |
2090 | finalHeights = finalMeteor[:,2] |
|
2097 | finalHeights = finalMeteor[:,2] | |
2091 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) |
|
2098 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) | |
2092 | nMeteorsPerI = hist[0] |
|
2099 | nMeteorsPerI = hist[0] | |
2093 | heightPerI = hist[1] |
|
2100 | heightPerI = hist[1] | |
2094 |
|
2101 | |||
2095 | #Sort of meteors |
|
2102 | #Sort of meteors | |
2096 | indSort = finalHeights.argsort() |
|
2103 | indSort = finalHeights.argsort() | |
2097 | finalMeteor2 = finalMeteor[indSort,:] |
|
2104 | finalMeteor2 = finalMeteor[indSort,:] | |
2098 |
|
2105 | |||
2099 | # Calculating winds |
|
2106 | # Calculating winds | |
2100 | ind1 = 0 |
|
2107 | ind1 = 0 | |
2101 | ind2 = 0 |
|
2108 | ind2 = 0 | |
2102 |
|
2109 | |||
2103 | for i in range(nInt): |
|
2110 | for i in range(nInt): | |
2104 | nMet = nMeteorsPerI[i] |
|
2111 | nMet = nMeteorsPerI[i] | |
2105 | ind1 = ind2 |
|
2112 | ind1 = ind2 | |
2106 | ind2 = ind1 + nMet |
|
2113 | ind2 = ind1 + nMet | |
2107 |
|
2114 | |||
2108 | meteorAux = finalMeteor2[ind1:ind2,:] |
|
2115 | meteorAux = finalMeteor2[ind1:ind2,:] | |
2109 |
|
2116 | |||
2110 | if meteorAux.shape[0] >= meteorThresh: |
|
2117 | if meteorAux.shape[0] >= meteorThresh: | |
2111 | vel = meteorAux[:, 6] |
|
2118 | vel = meteorAux[:, 6] | |
2112 | zen = meteorAux[:, 4]*numpy.pi/180 |
|
2119 | zen = meteorAux[:, 4]*numpy.pi/180 | |
2113 | azim = meteorAux[:, 3]*numpy.pi/180 |
|
2120 | azim = meteorAux[:, 3]*numpy.pi/180 | |
2114 |
|
2121 | |||
2115 | n = numpy.cos(zen) |
|
2122 | n = numpy.cos(zen) | |
2116 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) |
|
2123 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) | |
2117 | # l = m*numpy.tan(azim) |
|
2124 | # l = m*numpy.tan(azim) | |
2118 | l = numpy.sin(zen)*numpy.sin(azim) |
|
2125 | l = numpy.sin(zen)*numpy.sin(azim) | |
2119 | m = numpy.sin(zen)*numpy.cos(azim) |
|
2126 | m = numpy.sin(zen)*numpy.cos(azim) | |
2120 |
|
2127 | |||
2121 | A = numpy.vstack((l, m)).transpose() |
|
2128 | A = numpy.vstack((l, m)).transpose() | |
2122 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) |
|
2129 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) | |
2123 | windsAux = numpy.dot(A1, vel) |
|
2130 | windsAux = numpy.dot(A1, vel) | |
2124 |
|
2131 | |||
2125 | winds[0,i] = windsAux[0] |
|
2132 | winds[0,i] = windsAux[0] | |
2126 | winds[1,i] = windsAux[1] |
|
2133 | winds[1,i] = windsAux[1] | |
2127 |
|
2134 | |||
2128 | return winds, heightPerI[:-1] |
|
2135 | return winds, heightPerI[:-1] | |
2129 |
|
2136 | |||
2130 | def techniqueNSM_SA(self, **kwargs): |
|
2137 | def techniqueNSM_SA(self, **kwargs): | |
2131 | metArray = kwargs['metArray'] |
|
2138 | metArray = kwargs['metArray'] | |
2132 | heightList = kwargs['heightList'] |
|
2139 | heightList = kwargs['heightList'] | |
2133 | timeList = kwargs['timeList'] |
|
2140 | timeList = kwargs['timeList'] | |
2134 |
|
2141 | |||
2135 | rx_location = kwargs['rx_location'] |
|
2142 | rx_location = kwargs['rx_location'] | |
2136 | groupList = kwargs['groupList'] |
|
2143 | groupList = kwargs['groupList'] | |
2137 | azimuth = kwargs['azimuth'] |
|
2144 | azimuth = kwargs['azimuth'] | |
2138 | dfactor = kwargs['dfactor'] |
|
2145 | dfactor = kwargs['dfactor'] | |
2139 | k = kwargs['k'] |
|
2146 | k = kwargs['k'] | |
2140 |
|
2147 | |||
2141 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) |
|
2148 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) | |
2142 | d = dist*dfactor |
|
2149 | d = dist*dfactor | |
2143 | #Phase calculation |
|
2150 | #Phase calculation | |
2144 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) |
|
2151 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) | |
2145 |
|
2152 | |||
2146 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities |
|
2153 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities | |
2147 |
|
2154 | |||
2148 | velEst = numpy.zeros((heightList.size,2))*numpy.nan |
|
2155 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |
2149 | azimuth1 = azimuth1*numpy.pi/180 |
|
2156 | azimuth1 = azimuth1*numpy.pi/180 | |
2150 |
|
2157 | |||
2151 | for i in range(heightList.size): |
|
2158 | for i in range(heightList.size): | |
2152 | h = heightList[i] |
|
2159 | h = heightList[i] | |
2153 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] |
|
2160 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] | |
2154 | metHeight = metArray1[indH,:] |
|
2161 | metHeight = metArray1[indH,:] | |
2155 | if metHeight.shape[0] >= 2: |
|
2162 | if metHeight.shape[0] >= 2: | |
2156 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities |
|
2163 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities | |
2157 | iazim = metHeight[:,1].astype(int) |
|
2164 | iazim = metHeight[:,1].astype(int) | |
2158 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths |
|
2165 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths | |
2159 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) |
|
2166 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) | |
2160 | A = numpy.asmatrix(A) |
|
2167 | A = numpy.asmatrix(A) | |
2161 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() |
|
2168 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() | |
2162 | velHor = numpy.dot(A1,velAux) |
|
2169 | velHor = numpy.dot(A1,velAux) | |
2163 |
|
2170 | |||
2164 | velEst[i,:] = numpy.squeeze(velHor) |
|
2171 | velEst[i,:] = numpy.squeeze(velHor) | |
2165 | return velEst |
|
2172 | return velEst | |
2166 |
|
2173 | |||
2167 | def __getPhaseSlope(self, metArray, heightList, timeList): |
|
2174 | def __getPhaseSlope(self, metArray, heightList, timeList): | |
2168 | meteorList = [] |
|
2175 | meteorList = [] | |
2169 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 |
|
2176 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 | |
2170 | #Putting back together the meteor matrix |
|
2177 | #Putting back together the meteor matrix | |
2171 | utctime = metArray[:,0] |
|
2178 | utctime = metArray[:,0] | |
2172 | uniqueTime = numpy.unique(utctime) |
|
2179 | uniqueTime = numpy.unique(utctime) | |
2173 |
|
2180 | |||
2174 | phaseDerThresh = 0.5 |
|
2181 | phaseDerThresh = 0.5 | |
2175 | ippSeconds = timeList[1] - timeList[0] |
|
2182 | ippSeconds = timeList[1] - timeList[0] | |
2176 | sec = numpy.where(timeList>1)[0][0] |
|
2183 | sec = numpy.where(timeList>1)[0][0] | |
2177 | nPairs = metArray.shape[1] - 6 |
|
2184 | nPairs = metArray.shape[1] - 6 | |
2178 | nHeights = len(heightList) |
|
2185 | nHeights = len(heightList) | |
2179 |
|
2186 | |||
2180 | for t in uniqueTime: |
|
2187 | for t in uniqueTime: | |
2181 | metArray1 = metArray[utctime==t,:] |
|
2188 | metArray1 = metArray[utctime==t,:] | |
2182 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh |
|
2189 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh | |
2183 | tmet = metArray1[:,1].astype(int) |
|
2190 | tmet = metArray1[:,1].astype(int) | |
2184 | hmet = metArray1[:,2].astype(int) |
|
2191 | hmet = metArray1[:,2].astype(int) | |
2185 |
|
2192 | |||
2186 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) |
|
2193 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) | |
2187 | metPhase[:,:] = numpy.nan |
|
2194 | metPhase[:,:] = numpy.nan | |
2188 | metPhase[:,hmet,tmet] = metArray1[:,6:].T |
|
2195 | metPhase[:,hmet,tmet] = metArray1[:,6:].T | |
2189 |
|
2196 | |||
2190 | #Delete short trails |
|
2197 | #Delete short trails | |
2191 | metBool = ~numpy.isnan(metPhase[0,:,:]) |
|
2198 | metBool = ~numpy.isnan(metPhase[0,:,:]) | |
2192 | heightVect = numpy.sum(metBool, axis = 1) |
|
2199 | heightVect = numpy.sum(metBool, axis = 1) | |
2193 | metBool[heightVect<sec,:] = False |
|
2200 | metBool[heightVect<sec,:] = False | |
2194 | metPhase[:,heightVect<sec,:] = numpy.nan |
|
2201 | metPhase[:,heightVect<sec,:] = numpy.nan | |
2195 |
|
2202 | |||
2196 | #Derivative |
|
2203 | #Derivative | |
2197 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) |
|
2204 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) | |
2198 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) |
|
2205 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) | |
2199 | metPhase[phDerAux] = numpy.nan |
|
2206 | metPhase[phDerAux] = numpy.nan | |
2200 |
|
2207 | |||
2201 | #--------------------------METEOR DETECTION ----------------------------------------- |
|
2208 | #--------------------------METEOR DETECTION ----------------------------------------- | |
2202 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] |
|
2209 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] | |
2203 |
|
2210 | |||
2204 | for p in numpy.arange(nPairs): |
|
2211 | for p in numpy.arange(nPairs): | |
2205 | phase = metPhase[p,:,:] |
|
2212 | phase = metPhase[p,:,:] | |
2206 | phDer = metDer[p,:,:] |
|
2213 | phDer = metDer[p,:,:] | |
2207 |
|
2214 | |||
2208 | for h in indMet: |
|
2215 | for h in indMet: | |
2209 | height = heightList[h] |
|
2216 | height = heightList[h] | |
2210 | phase1 = phase[h,:] #82 |
|
2217 | phase1 = phase[h,:] #82 | |
2211 | phDer1 = phDer[h,:] |
|
2218 | phDer1 = phDer[h,:] | |
2212 |
|
2219 | |||
2213 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap |
|
2220 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap | |
2214 |
|
2221 | |||
2215 | indValid = numpy.where(~numpy.isnan(phase1))[0] |
|
2222 | indValid = numpy.where(~numpy.isnan(phase1))[0] | |
2216 | initMet = indValid[0] |
|
2223 | initMet = indValid[0] | |
2217 | endMet = 0 |
|
2224 | endMet = 0 | |
2218 |
|
2225 | |||
2219 | for i in range(len(indValid)-1): |
|
2226 | for i in range(len(indValid)-1): | |
2220 |
|
2227 | |||
2221 | #Time difference |
|
2228 | #Time difference | |
2222 | inow = indValid[i] |
|
2229 | inow = indValid[i] | |
2223 | inext = indValid[i+1] |
|
2230 | inext = indValid[i+1] | |
2224 | idiff = inext - inow |
|
2231 | idiff = inext - inow | |
2225 | #Phase difference |
|
2232 | #Phase difference | |
2226 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) |
|
2233 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) | |
2227 |
|
2234 | |||
2228 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor |
|
2235 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor | |
2229 | sizeTrail = inow - initMet + 1 |
|
2236 | sizeTrail = inow - initMet + 1 | |
2230 | if sizeTrail>3*sec: #Too short meteors |
|
2237 | if sizeTrail>3*sec: #Too short meteors | |
2231 | x = numpy.arange(initMet,inow+1)*ippSeconds |
|
2238 | x = numpy.arange(initMet,inow+1)*ippSeconds | |
2232 | y = phase1[initMet:inow+1] |
|
2239 | y = phase1[initMet:inow+1] | |
2233 | ynnan = ~numpy.isnan(y) |
|
2240 | ynnan = ~numpy.isnan(y) | |
2234 | x = x[ynnan] |
|
2241 | x = x[ynnan] | |
2235 | y = y[ynnan] |
|
2242 | y = y[ynnan] | |
2236 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) |
|
2243 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) | |
2237 | ylin = x*slope + intercept |
|
2244 | ylin = x*slope + intercept | |
2238 | rsq = r_value**2 |
|
2245 | rsq = r_value**2 | |
2239 | if rsq > 0.5: |
|
2246 | if rsq > 0.5: | |
2240 | vel = slope#*height*1000/(k*d) |
|
2247 | vel = slope#*height*1000/(k*d) | |
2241 | estAux = numpy.array([utctime,p,height, vel, rsq]) |
|
2248 | estAux = numpy.array([utctime,p,height, vel, rsq]) | |
2242 | meteorList.append(estAux) |
|
2249 | meteorList.append(estAux) | |
2243 | initMet = inext |
|
2250 | initMet = inext | |
2244 | metArray2 = numpy.array(meteorList) |
|
2251 | metArray2 = numpy.array(meteorList) | |
2245 |
|
2252 | |||
2246 | return metArray2 |
|
2253 | return metArray2 | |
2247 |
|
2254 | |||
2248 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): |
|
2255 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): | |
2249 |
|
2256 | |||
2250 | azimuth1 = numpy.zeros(len(pairslist)) |
|
2257 | azimuth1 = numpy.zeros(len(pairslist)) | |
2251 | dist = numpy.zeros(len(pairslist)) |
|
2258 | dist = numpy.zeros(len(pairslist)) | |
2252 |
|
2259 | |||
2253 | for i in range(len(rx_location)): |
|
2260 | for i in range(len(rx_location)): | |
2254 | ch0 = pairslist[i][0] |
|
2261 | ch0 = pairslist[i][0] | |
2255 | ch1 = pairslist[i][1] |
|
2262 | ch1 = pairslist[i][1] | |
2256 |
|
2263 | |||
2257 | diffX = rx_location[ch0][0] - rx_location[ch1][0] |
|
2264 | diffX = rx_location[ch0][0] - rx_location[ch1][0] | |
2258 | diffY = rx_location[ch0][1] - rx_location[ch1][1] |
|
2265 | diffY = rx_location[ch0][1] - rx_location[ch1][1] | |
2259 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi |
|
2266 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi | |
2260 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) |
|
2267 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) | |
2261 |
|
2268 | |||
2262 | azimuth1 -= azimuth0 |
|
2269 | azimuth1 -= azimuth0 | |
2263 | return azimuth1, dist |
|
2270 | return azimuth1, dist | |
2264 |
|
2271 | |||
2265 | def techniqueNSM_DBS(self, **kwargs): |
|
2272 | def techniqueNSM_DBS(self, **kwargs): | |
2266 | metArray = kwargs['metArray'] |
|
2273 | metArray = kwargs['metArray'] | |
2267 | heightList = kwargs['heightList'] |
|
2274 | heightList = kwargs['heightList'] | |
2268 | timeList = kwargs['timeList'] |
|
2275 | timeList = kwargs['timeList'] | |
2269 | zenithList = kwargs['zenithList'] |
|
2276 | zenithList = kwargs['zenithList'] | |
2270 | nChan = numpy.max(cmet) + 1 |
|
2277 | nChan = numpy.max(cmet) + 1 | |
2271 | nHeights = len(heightList) |
|
2278 | nHeights = len(heightList) | |
2272 |
|
2279 | |||
2273 | utctime = metArray[:,0] |
|
2280 | utctime = metArray[:,0] | |
2274 | cmet = metArray[:,1] |
|
2281 | cmet = metArray[:,1] | |
2275 | hmet = metArray1[:,3].astype(int) |
|
2282 | hmet = metArray1[:,3].astype(int) | |
2276 | h1met = heightList[hmet]*zenithList[cmet] |
|
2283 | h1met = heightList[hmet]*zenithList[cmet] | |
2277 | vmet = metArray1[:,5] |
|
2284 | vmet = metArray1[:,5] | |
2278 |
|
2285 | |||
2279 | for i in range(nHeights - 1): |
|
2286 | for i in range(nHeights - 1): | |
2280 | hmin = heightList[i] |
|
2287 | hmin = heightList[i] | |
2281 | hmax = heightList[i + 1] |
|
2288 | hmax = heightList[i + 1] | |
2282 |
|
2289 | |||
2283 | vthisH = vmet[(h1met>=hmin) & (h1met<hmax)] |
|
2290 | vthisH = vmet[(h1met>=hmin) & (h1met<hmax)] | |
2284 |
|
2291 | |||
2285 |
|
2292 | |||
2286 |
|
2293 | |||
2287 | return data_output |
|
2294 | return data_output | |
2288 |
|
2295 | |||
2289 | def run(self, dataOut, technique, **kwargs): |
|
2296 | def run(self, dataOut, technique, **kwargs): | |
2290 |
|
2297 | |||
2291 | param = dataOut.data_param |
|
2298 | param = dataOut.data_param | |
2292 | if dataOut.abscissaList != None: |
|
2299 | if dataOut.abscissaList != None: | |
2293 | absc = dataOut.abscissaList[:-1] |
|
2300 | absc = dataOut.abscissaList[:-1] | |
2294 | noise = dataOut.noise |
|
2301 | noise = dataOut.noise | |
2295 | heightList = dataOut.heightList |
|
2302 | heightList = dataOut.heightList | |
2296 | SNR = dataOut.data_SNR |
|
2303 | SNR = dataOut.data_SNR | |
2297 |
|
2304 | |||
2298 | if technique == 'DBS': |
|
2305 | if technique == 'DBS': | |
2299 |
|
2306 | |||
2300 | kwargs['velRadial'] = param[:,1,:] #Radial velocity |
|
2307 | kwargs['velRadial'] = param[:,1,:] #Radial velocity | |
2301 | kwargs['heightList'] = heightList |
|
2308 | kwargs['heightList'] = heightList | |
2302 | kwargs['SNR'] = SNR |
|
2309 | kwargs['SNR'] = SNR | |
2303 |
|
2310 | |||
2304 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function |
|
2311 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function | |
2305 | dataOut.utctimeInit = dataOut.utctime |
|
2312 | dataOut.utctimeInit = dataOut.utctime | |
2306 | dataOut.outputInterval = dataOut.paramInterval |
|
2313 | dataOut.outputInterval = dataOut.paramInterval | |
2307 |
|
2314 | |||
2308 | elif technique == 'SA': |
|
2315 | elif technique == 'SA': | |
2309 |
|
2316 | |||
2310 | #Parameters |
|
2317 | #Parameters | |
2311 | # position_x = kwargs['positionX'] |
|
2318 | # position_x = kwargs['positionX'] | |
2312 | # position_y = kwargs['positionY'] |
|
2319 | # position_y = kwargs['positionY'] | |
2313 | # azimuth = kwargs['azimuth'] |
|
2320 | # azimuth = kwargs['azimuth'] | |
2314 | # |
|
2321 | # | |
2315 | # if kwargs.has_key('crosspairsList'): |
|
2322 | # if kwargs.has_key('crosspairsList'): | |
2316 | # pairs = kwargs['crosspairsList'] |
|
2323 | # pairs = kwargs['crosspairsList'] | |
2317 | # else: |
|
2324 | # else: | |
2318 | # pairs = None |
|
2325 | # pairs = None | |
2319 | # |
|
2326 | # | |
2320 | # if kwargs.has_key('correctFactor'): |
|
2327 | # if kwargs.has_key('correctFactor'): | |
2321 | # correctFactor = kwargs['correctFactor'] |
|
2328 | # correctFactor = kwargs['correctFactor'] | |
2322 | # else: |
|
2329 | # else: | |
2323 | # correctFactor = 1 |
|
2330 | # correctFactor = 1 | |
2324 |
|
2331 | |||
2325 | # tau = dataOut.data_param |
|
2332 | # tau = dataOut.data_param | |
2326 | # _lambda = dataOut.C/dataOut.frequency |
|
2333 | # _lambda = dataOut.C/dataOut.frequency | |
2327 | # pairsList = dataOut.groupList |
|
2334 | # pairsList = dataOut.groupList | |
2328 | # nChannels = dataOut.nChannels |
|
2335 | # nChannels = dataOut.nChannels | |
2329 |
|
2336 | |||
2330 | kwargs['groupList'] = dataOut.groupList |
|
2337 | kwargs['groupList'] = dataOut.groupList | |
2331 | kwargs['tau'] = dataOut.data_param |
|
2338 | kwargs['tau'] = dataOut.data_param | |
2332 | kwargs['_lambda'] = dataOut.C/dataOut.frequency |
|
2339 | kwargs['_lambda'] = dataOut.C/dataOut.frequency | |
2333 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) |
|
2340 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) | |
2334 | dataOut.data_output = self.techniqueSA(kwargs) |
|
2341 | dataOut.data_output = self.techniqueSA(kwargs) | |
2335 | dataOut.utctimeInit = dataOut.utctime |
|
2342 | dataOut.utctimeInit = dataOut.utctime | |
2336 | dataOut.outputInterval = dataOut.timeInterval |
|
2343 | dataOut.outputInterval = dataOut.timeInterval | |
2337 |
|
2344 | |||
2338 | elif technique == 'Meteors': |
|
2345 | elif technique == 'Meteors': | |
2339 | dataOut.flagNoData = True |
|
2346 | dataOut.flagNoData = True | |
2340 | self.__dataReady = False |
|
2347 | self.__dataReady = False | |
2341 |
|
2348 | |||
2342 | if kwargs.has_key('nHours'): |
|
2349 | if kwargs.has_key('nHours'): | |
2343 | nHours = kwargs['nHours'] |
|
2350 | nHours = kwargs['nHours'] | |
2344 | else: |
|
2351 | else: | |
2345 | nHours = 1 |
|
2352 | nHours = 1 | |
2346 |
|
2353 | |||
2347 | if kwargs.has_key('meteorsPerBin'): |
|
2354 | if kwargs.has_key('meteorsPerBin'): | |
2348 | meteorThresh = kwargs['meteorsPerBin'] |
|
2355 | meteorThresh = kwargs['meteorsPerBin'] | |
2349 | else: |
|
2356 | else: | |
2350 | meteorThresh = 6 |
|
2357 | meteorThresh = 6 | |
2351 |
|
2358 | |||
2352 | if kwargs.has_key('hmin'): |
|
2359 | if kwargs.has_key('hmin'): | |
2353 | hmin = kwargs['hmin'] |
|
2360 | hmin = kwargs['hmin'] | |
2354 | else: hmin = 70 |
|
2361 | else: hmin = 70 | |
2355 | if kwargs.has_key('hmax'): |
|
2362 | if kwargs.has_key('hmax'): | |
2356 | hmax = kwargs['hmax'] |
|
2363 | hmax = kwargs['hmax'] | |
2357 | else: hmax = 110 |
|
2364 | else: hmax = 110 | |
2358 |
|
2365 | |||
2359 | dataOut.outputInterval = nHours*3600 |
|
2366 | dataOut.outputInterval = nHours*3600 | |
2360 |
|
2367 | |||
2361 | if self.__isConfig == False: |
|
2368 | if self.__isConfig == False: | |
2362 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2369 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2363 | #Get Initial LTC time |
|
2370 | #Get Initial LTC time | |
2364 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
2371 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
2365 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2372 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2366 |
|
2373 | |||
2367 | self.__isConfig = True |
|
2374 | self.__isConfig = True | |
2368 |
|
2375 | |||
2369 | if self.__buffer == None: |
|
2376 | if self.__buffer == None: | |
2370 | self.__buffer = dataOut.data_param |
|
2377 | self.__buffer = dataOut.data_param | |
2371 | self.__firstdata = copy.copy(dataOut) |
|
2378 | self.__firstdata = copy.copy(dataOut) | |
2372 |
|
2379 | |||
2373 | else: |
|
2380 | else: | |
2374 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2381 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2375 |
|
2382 | |||
2376 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2383 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2377 |
|
2384 | |||
2378 | if self.__dataReady: |
|
2385 | if self.__dataReady: | |
2379 | dataOut.utctimeInit = self.__initime |
|
2386 | dataOut.utctimeInit = self.__initime | |
2380 |
|
2387 | |||
2381 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2388 | self.__initime += dataOut.outputInterval #to erase time offset | |
2382 |
|
2389 | |||
2383 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) |
|
2390 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) | |
2384 | dataOut.flagNoData = False |
|
2391 | dataOut.flagNoData = False | |
2385 | self.__buffer = None |
|
2392 | self.__buffer = None | |
2386 |
|
2393 | |||
2387 | elif technique == 'Meteors1': |
|
2394 | elif technique == 'Meteors1': | |
2388 | dataOut.flagNoData = True |
|
2395 | dataOut.flagNoData = True | |
2389 | self.__dataReady = False |
|
2396 | self.__dataReady = False | |
2390 |
|
2397 | |||
2391 | if kwargs.has_key('nMins'): |
|
2398 | if kwargs.has_key('nMins'): | |
2392 | nMins = kwargs['nMins'] |
|
2399 | nMins = kwargs['nMins'] | |
2393 | else: nMins = 20 |
|
2400 | else: nMins = 20 | |
2394 | if kwargs.has_key('rx_location'): |
|
2401 | if kwargs.has_key('rx_location'): | |
2395 | rx_location = kwargs['rx_location'] |
|
2402 | rx_location = kwargs['rx_location'] | |
2396 | else: rx_location = [(0,1),(1,1),(1,0)] |
|
2403 | else: rx_location = [(0,1),(1,1),(1,0)] | |
2397 | if kwargs.has_key('azimuth'): |
|
2404 | if kwargs.has_key('azimuth'): | |
2398 | azimuth = kwargs['azimuth'] |
|
2405 | azimuth = kwargs['azimuth'] | |
2399 | else: azimuth = 51 |
|
2406 | else: azimuth = 51 | |
2400 | if kwargs.has_key('dfactor'): |
|
2407 | if kwargs.has_key('dfactor'): | |
2401 | dfactor = kwargs['dfactor'] |
|
2408 | dfactor = kwargs['dfactor'] | |
2402 | if kwargs.has_key('mode'): |
|
2409 | if kwargs.has_key('mode'): | |
2403 | mode = kwargs['mode'] |
|
2410 | mode = kwargs['mode'] | |
2404 | else: mode = 'SA' |
|
2411 | else: mode = 'SA' | |
2405 |
|
2412 | |||
2406 | #Borrar luego esto |
|
2413 | #Borrar luego esto | |
2407 | if dataOut.groupList == None: |
|
2414 | if dataOut.groupList == None: | |
2408 | dataOut.groupList = [(0,1),(0,2),(1,2)] |
|
2415 | dataOut.groupList = [(0,1),(0,2),(1,2)] | |
2409 | groupList = dataOut.groupList |
|
2416 | groupList = dataOut.groupList | |
2410 | C = 3e8 |
|
2417 | C = 3e8 | |
2411 | freq = 50e6 |
|
2418 | freq = 50e6 | |
2412 | lamb = C/freq |
|
2419 | lamb = C/freq | |
2413 | k = 2*numpy.pi/lamb |
|
2420 | k = 2*numpy.pi/lamb | |
2414 |
|
2421 | |||
2415 | timeList = dataOut.abscissaList |
|
2422 | timeList = dataOut.abscissaList | |
2416 | heightList = dataOut.heightList |
|
2423 | heightList = dataOut.heightList | |
2417 |
|
2424 | |||
2418 | if self.__isConfig == False: |
|
2425 | if self.__isConfig == False: | |
2419 | dataOut.outputInterval = nMins*60 |
|
2426 | dataOut.outputInterval = nMins*60 | |
2420 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2427 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2421 | #Get Initial LTC time |
|
2428 | #Get Initial LTC time | |
2422 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
2429 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
2423 | minuteAux = initime.minute |
|
2430 | minuteAux = initime.minute | |
2424 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) |
|
2431 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) | |
2425 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2432 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2426 |
|
2433 | |||
2427 | self.__isConfig = True |
|
2434 | self.__isConfig = True | |
2428 |
|
2435 | |||
2429 | if self.__buffer == None: |
|
2436 | if self.__buffer == None: | |
2430 | self.__buffer = dataOut.data_param |
|
2437 | self.__buffer = dataOut.data_param | |
2431 | self.__firstdata = copy.copy(dataOut) |
|
2438 | self.__firstdata = copy.copy(dataOut) | |
2432 |
|
2439 | |||
2433 | else: |
|
2440 | else: | |
2434 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2441 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2435 |
|
2442 | |||
2436 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2443 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2437 |
|
2444 | |||
2438 | if self.__dataReady: |
|
2445 | if self.__dataReady: | |
2439 | dataOut.utctimeInit = self.__initime |
|
2446 | dataOut.utctimeInit = self.__initime | |
2440 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2447 | self.__initime += dataOut.outputInterval #to erase time offset | |
2441 |
|
2448 | |||
2442 | metArray = self.__buffer |
|
2449 | metArray = self.__buffer | |
2443 | if mode == 'SA': |
|
2450 | if mode == 'SA': | |
2444 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) |
|
2451 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) | |
2445 | elif mode == 'DBS': |
|
2452 | elif mode == 'DBS': | |
2446 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList) |
|
2453 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList) | |
2447 | dataOut.data_output = dataOut.data_output.T |
|
2454 | dataOut.data_output = dataOut.data_output.T | |
2448 | dataOut.flagNoData = False |
|
2455 | dataOut.flagNoData = False | |
2449 | self.__buffer = None |
|
2456 | self.__buffer = None | |
2450 |
|
2457 | |||
2451 | return |
|
2458 | return | |
2452 |
|
2459 | |||
2453 | class EWDriftsEstimation(Operation): |
|
2460 | class EWDriftsEstimation(Operation): | |
2454 |
|
2461 | |||
2455 | def __init__(self): |
|
2462 | def __init__(self): | |
2456 | Operation.__init__(self) |
|
2463 | Operation.__init__(self) | |
2457 |
|
2464 | |||
2458 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
2465 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
2459 | listPhi = phi.tolist() |
|
2466 | listPhi = phi.tolist() | |
2460 | maxid = listPhi.index(max(listPhi)) |
|
2467 | maxid = listPhi.index(max(listPhi)) | |
2461 | minid = listPhi.index(min(listPhi)) |
|
2468 | minid = listPhi.index(min(listPhi)) | |
2462 |
|
2469 | |||
2463 | rango = range(len(phi)) |
|
2470 | rango = range(len(phi)) | |
2464 | # rango = numpy.delete(rango,maxid) |
|
2471 | # rango = numpy.delete(rango,maxid) | |
2465 |
|
2472 | |||
2466 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
2473 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
2467 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
2474 | heiRangAux = heiRang*math.cos(phi[minid]) | |
2468 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
2475 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
2469 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
2476 | heiRang1 = numpy.delete(heiRang1,indOut) | |
2470 |
|
2477 | |||
2471 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2478 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
2472 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2479 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
2473 |
|
2480 | |||
2474 | for i in rango: |
|
2481 | for i in rango: | |
2475 | x = heiRang*math.cos(phi[i]) |
|
2482 | x = heiRang*math.cos(phi[i]) | |
2476 | y1 = velRadial[i,:] |
|
2483 | y1 = velRadial[i,:] | |
2477 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
2484 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
2478 |
|
2485 | |||
2479 | x1 = heiRang1 |
|
2486 | x1 = heiRang1 | |
2480 | y11 = f1(x1) |
|
2487 | y11 = f1(x1) | |
2481 |
|
2488 | |||
2482 | y2 = SNR[i,:] |
|
2489 | y2 = SNR[i,:] | |
2483 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
2490 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
2484 | y21 = f2(x1) |
|
2491 | y21 = f2(x1) | |
2485 |
|
2492 | |||
2486 | velRadial1[i,:] = y11 |
|
2493 | velRadial1[i,:] = y11 | |
2487 | SNR1[i,:] = y21 |
|
2494 | SNR1[i,:] = y21 | |
2488 |
|
2495 | |||
2489 | return heiRang1, velRadial1, SNR1 |
|
2496 | return heiRang1, velRadial1, SNR1 | |
2490 |
|
2497 | |||
2491 | def run(self, dataOut, zenith, zenithCorrection): |
|
2498 | def run(self, dataOut, zenith, zenithCorrection): | |
2492 | heiRang = dataOut.heightList |
|
2499 | heiRang = dataOut.heightList | |
2493 | velRadial = dataOut.data_param[:,3,:] |
|
2500 | velRadial = dataOut.data_param[:,3,:] | |
2494 | SNR = dataOut.data_SNR |
|
2501 | SNR = dataOut.data_SNR | |
2495 |
|
2502 | |||
2496 | zenith = numpy.array(zenith) |
|
2503 | zenith = numpy.array(zenith) | |
2497 | zenith -= zenithCorrection |
|
2504 | zenith -= zenithCorrection | |
2498 | zenith *= numpy.pi/180 |
|
2505 | zenith *= numpy.pi/180 | |
2499 |
|
2506 | |||
2500 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) |
|
2507 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) | |
2501 |
|
2508 | |||
2502 | alp = zenith[0] |
|
2509 | alp = zenith[0] | |
2503 | bet = zenith[1] |
|
2510 | bet = zenith[1] | |
2504 |
|
2511 | |||
2505 | w_w = velRadial1[0,:] |
|
2512 | w_w = velRadial1[0,:] | |
2506 | w_e = velRadial1[1,:] |
|
2513 | w_e = velRadial1[1,:] | |
2507 |
|
2514 | |||
2508 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) |
|
2515 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) | |
2509 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) |
|
2516 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) | |
2510 |
|
2517 | |||
2511 | winds = numpy.vstack((u,w)) |
|
2518 | winds = numpy.vstack((u,w)) | |
2512 |
|
2519 | |||
2513 | dataOut.heightList = heiRang1 |
|
2520 | dataOut.heightList = heiRang1 | |
2514 | dataOut.data_output = winds |
|
2521 | dataOut.data_output = winds | |
2515 | dataOut.data_SNR = SNR1 |
|
2522 | dataOut.data_SNR = SNR1 | |
2516 |
|
2523 | |||
2517 | dataOut.utctimeInit = dataOut.utctime |
|
2524 | dataOut.utctimeInit = dataOut.utctime | |
2518 | dataOut.outputInterval = dataOut.timeInterval |
|
2525 | dataOut.outputInterval = dataOut.timeInterval | |
2519 | return |
|
2526 | return | |
2520 |
|
2527 | |||
2521 | #--------------- Non Specular Meteor ---------------- |
|
2528 | #--------------- Non Specular Meteor ---------------- | |
2522 |
|
2529 | |||
2523 | class NonSpecularMeteorDetection(Operation): |
|
2530 | class NonSpecularMeteorDetection(Operation): | |
2524 |
|
2531 | |||
2525 | def run(self, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): |
|
2532 | def run(self, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): | |
2526 | data_acf = self.dataOut.data_pre[0] |
|
2533 | data_acf = self.dataOut.data_pre[0] | |
2527 | data_ccf = self.dataOut.data_pre[1] |
|
2534 | data_ccf = self.dataOut.data_pre[1] | |
2528 |
|
2535 | |||
2529 | lamb = self.dataOut.C/self.dataOut.frequency |
|
2536 | lamb = self.dataOut.C/self.dataOut.frequency | |
2530 | tSamp = self.dataOut.ippSeconds*self.dataOut.nCohInt |
|
2537 | tSamp = self.dataOut.ippSeconds*self.dataOut.nCohInt | |
2531 | paramInterval = self.dataOut.paramInterval |
|
2538 | paramInterval = self.dataOut.paramInterval | |
2532 |
|
2539 | |||
2533 | nChannels = data_acf.shape[0] |
|
2540 | nChannels = data_acf.shape[0] | |
2534 | nLags = data_acf.shape[1] |
|
2541 | nLags = data_acf.shape[1] | |
2535 | nProfiles = data_acf.shape[2] |
|
2542 | nProfiles = data_acf.shape[2] | |
2536 | nHeights = self.dataOut.nHeights |
|
2543 | nHeights = self.dataOut.nHeights | |
2537 | nCohInt = self.dataOut.nCohInt |
|
2544 | nCohInt = self.dataOut.nCohInt | |
2538 | sec = numpy.round(nProfiles/self.dataOut.paramInterval) |
|
2545 | sec = numpy.round(nProfiles/self.dataOut.paramInterval) | |
2539 | heightList = self.dataOut.heightList |
|
2546 | heightList = self.dataOut.heightList | |
2540 | ippSeconds = self.dataOut.ippSeconds*self.dataOut.nCohInt*self.dataOut.nAvg |
|
2547 | ippSeconds = self.dataOut.ippSeconds*self.dataOut.nCohInt*self.dataOut.nAvg | |
2541 | utctime = self.dataOut.utctime |
|
2548 | utctime = self.dataOut.utctime | |
2542 |
|
2549 | |||
2543 | self.dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) |
|
2550 | self.dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) | |
2544 |
|
2551 | |||
2545 | #------------------------ SNR -------------------------------------- |
|
2552 | #------------------------ SNR -------------------------------------- | |
2546 | power = data_acf[:,0,:,:].real |
|
2553 | power = data_acf[:,0,:,:].real | |
2547 | noise = numpy.zeros(nChannels) |
|
2554 | noise = numpy.zeros(nChannels) | |
2548 | SNR = numpy.zeros(power.shape) |
|
2555 | SNR = numpy.zeros(power.shape) | |
2549 | for i in range(nChannels): |
|
2556 | for i in range(nChannels): | |
2550 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) |
|
2557 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) | |
2551 | SNR[i] = (power[i]-noise[i])/noise[i] |
|
2558 | SNR[i] = (power[i]-noise[i])/noise[i] | |
2552 | SNRm = numpy.nanmean(SNR, axis = 0) |
|
2559 | SNRm = numpy.nanmean(SNR, axis = 0) | |
2553 | SNRdB = 10*numpy.log10(SNR) |
|
2560 | SNRdB = 10*numpy.log10(SNR) | |
2554 |
|
2561 | |||
2555 | if mode == 'SA': |
|
2562 | if mode == 'SA': | |
2556 | nPairs = data_ccf.shape[0] |
|
2563 | nPairs = data_ccf.shape[0] | |
2557 | #---------------------- Coherence and Phase -------------------------- |
|
2564 | #---------------------- Coherence and Phase -------------------------- | |
2558 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
2565 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) | |
2559 | # phase1 = numpy.copy(phase) |
|
2566 | # phase1 = numpy.copy(phase) | |
2560 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
2567 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) | |
2561 |
|
2568 | |||
2562 | for p in range(nPairs): |
|
2569 | for p in range(nPairs): | |
2563 | ch0 = self.dataOut.groupList[p][0] |
|
2570 | ch0 = self.dataOut.groupList[p][0] | |
2564 | ch1 = self.dataOut.groupList[p][1] |
|
2571 | ch1 = self.dataOut.groupList[p][1] | |
2565 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) |
|
2572 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) | |
2566 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter |
|
2573 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter | |
2567 | # phase1[p,:,:] = numpy.angle(ccf) #median filter |
|
2574 | # phase1[p,:,:] = numpy.angle(ccf) #median filter | |
2568 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter |
|
2575 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter | |
2569 | # coh1[p,:,:] = numpy.abs(ccf) #median filter |
|
2576 | # coh1[p,:,:] = numpy.abs(ccf) #median filter | |
2570 | coh = numpy.nanmax(coh1, axis = 0) |
|
2577 | coh = numpy.nanmax(coh1, axis = 0) | |
2571 | # struc = numpy.ones((5,1)) |
|
2578 | # struc = numpy.ones((5,1)) | |
2572 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) |
|
2579 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) | |
2573 | #---------------------- Radial Velocity ---------------------------- |
|
2580 | #---------------------- Radial Velocity ---------------------------- | |
2574 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) |
|
2581 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) | |
2575 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) |
|
2582 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) | |
2576 |
|
2583 | |||
2577 | if allData: |
|
2584 | if allData: | |
2578 | boolMetFin = ~numpy.isnan(SNRm) |
|
2585 | boolMetFin = ~numpy.isnan(SNRm) | |
2579 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
2586 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
2580 | else: |
|
2587 | else: | |
2581 | #------------------------ Meteor mask --------------------------------- |
|
2588 | #------------------------ Meteor mask --------------------------------- | |
2582 | # #SNR mask |
|
2589 | # #SNR mask | |
2583 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) |
|
2590 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) | |
2584 | # |
|
2591 | # | |
2585 | # #Erase small objects |
|
2592 | # #Erase small objects | |
2586 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) |
|
2593 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) | |
2587 | # |
|
2594 | # | |
2588 | # auxEEJ = numpy.sum(boolMet1,axis=0) |
|
2595 | # auxEEJ = numpy.sum(boolMet1,axis=0) | |
2589 | # indOver = auxEEJ>nProfiles*0.8 #Use this later |
|
2596 | # indOver = auxEEJ>nProfiles*0.8 #Use this later | |
2590 | # indEEJ = numpy.where(indOver)[0] |
|
2597 | # indEEJ = numpy.where(indOver)[0] | |
2591 | # indNEEJ = numpy.where(~indOver)[0] |
|
2598 | # indNEEJ = numpy.where(~indOver)[0] | |
2592 | # |
|
2599 | # | |
2593 | # boolMetFin = boolMet1 |
|
2600 | # boolMetFin = boolMet1 | |
2594 | # |
|
2601 | # | |
2595 | # if indEEJ.size > 0: |
|
2602 | # if indEEJ.size > 0: | |
2596 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ |
|
2603 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ | |
2597 | # |
|
2604 | # | |
2598 | # boolMet2 = coh > cohThresh |
|
2605 | # boolMet2 = coh > cohThresh | |
2599 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) |
|
2606 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) | |
2600 | # |
|
2607 | # | |
2601 | # #Final Meteor mask |
|
2608 | # #Final Meteor mask | |
2602 | # boolMetFin = boolMet1|boolMet2 |
|
2609 | # boolMetFin = boolMet1|boolMet2 | |
2603 |
|
2610 | |||
2604 | #Coherence mask |
|
2611 | #Coherence mask | |
2605 | boolMet1 = coh > 0.75 |
|
2612 | boolMet1 = coh > 0.75 | |
2606 | struc = numpy.ones((30,1)) |
|
2613 | struc = numpy.ones((30,1)) | |
2607 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) |
|
2614 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) | |
2608 |
|
2615 | |||
2609 | #Derivative mask |
|
2616 | #Derivative mask | |
2610 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
2617 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
2611 | boolMet2 = derPhase < 0.2 |
|
2618 | boolMet2 = derPhase < 0.2 | |
2612 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) |
|
2619 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) | |
2613 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) |
|
2620 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) | |
2614 | boolMet2 = ndimage.median_filter(boolMet2,size=5) |
|
2621 | boolMet2 = ndimage.median_filter(boolMet2,size=5) | |
2615 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) |
|
2622 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) | |
2616 | # #Final mask |
|
2623 | # #Final mask | |
2617 | # boolMetFin = boolMet2 |
|
2624 | # boolMetFin = boolMet2 | |
2618 | boolMetFin = boolMet1&boolMet2 |
|
2625 | boolMetFin = boolMet1&boolMet2 | |
2619 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) |
|
2626 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) | |
2620 | #Creating data_param |
|
2627 | #Creating data_param | |
2621 | coordMet = numpy.where(boolMetFin) |
|
2628 | coordMet = numpy.where(boolMetFin) | |
2622 |
|
2629 | |||
2623 | tmet = coordMet[0] |
|
2630 | tmet = coordMet[0] | |
2624 | hmet = coordMet[1] |
|
2631 | hmet = coordMet[1] | |
2625 |
|
2632 | |||
2626 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) |
|
2633 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) | |
2627 | data_param[:,0] = utctime |
|
2634 | data_param[:,0] = utctime | |
2628 | data_param[:,1] = tmet |
|
2635 | data_param[:,1] = tmet | |
2629 | data_param[:,2] = hmet |
|
2636 | data_param[:,2] = hmet | |
2630 | data_param[:,3] = SNRm[tmet,hmet] |
|
2637 | data_param[:,3] = SNRm[tmet,hmet] | |
2631 | data_param[:,4] = velRad[tmet,hmet] |
|
2638 | data_param[:,4] = velRad[tmet,hmet] | |
2632 | data_param[:,5] = coh[tmet,hmet] |
|
2639 | data_param[:,5] = coh[tmet,hmet] | |
2633 | data_param[:,6:] = phase[:,tmet,hmet].T |
|
2640 | data_param[:,6:] = phase[:,tmet,hmet].T | |
2634 |
|
2641 | |||
2635 | elif mode == 'DBS': |
|
2642 | elif mode == 'DBS': | |
2636 | self.dataOut.groupList = numpy.arange(nChannels) |
|
2643 | self.dataOut.groupList = numpy.arange(nChannels) | |
2637 |
|
2644 | |||
2638 | #Radial Velocities |
|
2645 | #Radial Velocities | |
2639 | # phase = numpy.angle(data_acf[:,1,:,:]) |
|
2646 | # phase = numpy.angle(data_acf[:,1,:,:]) | |
2640 | phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) |
|
2647 | phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) | |
2641 | velRad = phase*lamb/(4*numpy.pi*tSamp) |
|
2648 | velRad = phase*lamb/(4*numpy.pi*tSamp) | |
2642 |
|
2649 | |||
2643 | #Spectral width |
|
2650 | #Spectral width | |
2644 | acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) |
|
2651 | acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) | |
2645 | acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) |
|
2652 | acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) | |
2646 |
|
2653 | |||
2647 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) |
|
2654 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) | |
2648 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) |
|
2655 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) | |
2649 | if allData: |
|
2656 | if allData: | |
2650 | boolMetFin = ~numpy.isnan(SNRdB) |
|
2657 | boolMetFin = ~numpy.isnan(SNRdB) | |
2651 | else: |
|
2658 | else: | |
2652 | #SNR |
|
2659 | #SNR | |
2653 | boolMet1 = (SNRdB>SNRthresh) #SNR mask |
|
2660 | boolMet1 = (SNRdB>SNRthresh) #SNR mask | |
2654 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) |
|
2661 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) | |
2655 |
|
2662 | |||
2656 | #Radial velocity |
|
2663 | #Radial velocity | |
2657 | boolMet2 = numpy.abs(velRad) < 30 |
|
2664 | boolMet2 = numpy.abs(velRad) < 30 | |
2658 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) |
|
2665 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) | |
2659 |
|
2666 | |||
2660 | #Spectral Width |
|
2667 | #Spectral Width | |
2661 | boolMet3 = spcWidth < 30 |
|
2668 | boolMet3 = spcWidth < 30 | |
2662 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) |
|
2669 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) | |
2663 | # boolMetFin = self.__erase_small(boolMet1, 10,5) |
|
2670 | # boolMetFin = self.__erase_small(boolMet1, 10,5) | |
2664 | boolMetFin = boolMet1&boolMet2&boolMet3 |
|
2671 | boolMetFin = boolMet1&boolMet2&boolMet3 | |
2665 |
|
2672 | |||
2666 | #Creating data_param |
|
2673 | #Creating data_param | |
2667 | coordMet = numpy.where(boolMetFin) |
|
2674 | coordMet = numpy.where(boolMetFin) | |
2668 |
|
2675 | |||
2669 | cmet = coordMet[0] |
|
2676 | cmet = coordMet[0] | |
2670 | tmet = coordMet[1] |
|
2677 | tmet = coordMet[1] | |
2671 | hmet = coordMet[2] |
|
2678 | hmet = coordMet[2] | |
2672 |
|
2679 | |||
2673 | data_param = numpy.zeros((tmet.size, 7)) |
|
2680 | data_param = numpy.zeros((tmet.size, 7)) | |
2674 | data_param[:,0] = utctime |
|
2681 | data_param[:,0] = utctime | |
2675 | data_param[:,1] = cmet |
|
2682 | data_param[:,1] = cmet | |
2676 | data_param[:,2] = tmet |
|
2683 | data_param[:,2] = tmet | |
2677 | data_param[:,3] = hmet |
|
2684 | data_param[:,3] = hmet | |
2678 | data_param[:,4] = SNR[cmet,tmet,hmet].T |
|
2685 | data_param[:,4] = SNR[cmet,tmet,hmet].T | |
2679 | data_param[:,5] = velRad[cmet,tmet,hmet].T |
|
2686 | data_param[:,5] = velRad[cmet,tmet,hmet].T | |
2680 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T |
|
2687 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T | |
2681 |
|
2688 | |||
2682 | # self.dataOut.data_param = data_int |
|
2689 | # self.dataOut.data_param = data_int | |
2683 | if len(data_param) == 0: |
|
2690 | if len(data_param) == 0: | |
2684 | self.dataOut.flagNoData = True |
|
2691 | self.dataOut.flagNoData = True | |
2685 | else: |
|
2692 | else: | |
2686 | self.dataOut.data_param = data_param |
|
2693 | self.dataOut.data_param = data_param | |
2687 |
|
2694 | |||
2688 | def __erase_small(self, binArray, threshX, threshY): |
|
2695 | def __erase_small(self, binArray, threshX, threshY): | |
2689 | labarray, numfeat = ndimage.measurements.label(binArray) |
|
2696 | labarray, numfeat = ndimage.measurements.label(binArray) | |
2690 | binArray1 = numpy.copy(binArray) |
|
2697 | binArray1 = numpy.copy(binArray) | |
2691 |
|
2698 | |||
2692 | for i in range(1,numfeat + 1): |
|
2699 | for i in range(1,numfeat + 1): | |
2693 | auxBin = (labarray==i) |
|
2700 | auxBin = (labarray==i) | |
2694 | auxSize = auxBin.sum() |
|
2701 | auxSize = auxBin.sum() | |
2695 |
|
2702 | |||
2696 | x,y = numpy.where(auxBin) |
|
2703 | x,y = numpy.where(auxBin) | |
2697 | widthX = x.max() - x.min() |
|
2704 | widthX = x.max() - x.min() | |
2698 | widthY = y.max() - y.min() |
|
2705 | widthY = y.max() - y.min() | |
2699 |
|
2706 | |||
2700 | #width X: 3 seg -> 12.5*3 |
|
2707 | #width X: 3 seg -> 12.5*3 | |
2701 | #width Y: |
|
2708 | #width Y: | |
2702 |
|
2709 | |||
2703 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): |
|
2710 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): | |
2704 | binArray1[auxBin] = False |
|
2711 | binArray1[auxBin] = False | |
2705 |
|
2712 | |||
2706 | return binArray1 |
|
2713 | return binArray1 | |
2707 |
|
2714 | |||
2708 | #--------------- Specular Meteor ---------------- |
|
2715 | #--------------- Specular Meteor ---------------- | |
2709 |
|
2716 | |||
2710 | class SMDetection(Operation): |
|
2717 | class SMDetection(Operation): | |
2711 | ''' |
|
2718 | ''' | |
2712 | Function DetectMeteors() |
|
2719 | Function DetectMeteors() | |
2713 | Project developed with paper: |
|
2720 | Project developed with paper: | |
2714 | HOLDSWORTH ET AL. 2004 |
|
2721 | HOLDSWORTH ET AL. 2004 | |
2715 |
|
2722 | |||
2716 | Input: |
|
2723 | Input: | |
2717 | self.dataOut.data_pre |
|
2724 | self.dataOut.data_pre | |
2718 |
|
2725 | |||
2719 | centerReceiverIndex: From the channels, which is the center receiver |
|
2726 | centerReceiverIndex: From the channels, which is the center receiver | |
2720 |
|
2727 | |||
2721 | hei_ref: Height reference for the Beacon signal extraction |
|
2728 | hei_ref: Height reference for the Beacon signal extraction | |
2722 | tauindex: |
|
2729 | tauindex: | |
2723 | predefinedPhaseShifts: Predefined phase offset for the voltge signals |
|
2730 | predefinedPhaseShifts: Predefined phase offset for the voltge signals | |
2724 |
|
2731 | |||
2725 | cohDetection: Whether to user Coherent detection or not |
|
2732 | cohDetection: Whether to user Coherent detection or not | |
2726 | cohDet_timeStep: Coherent Detection calculation time step |
|
2733 | cohDet_timeStep: Coherent Detection calculation time step | |
2727 | cohDet_thresh: Coherent Detection phase threshold to correct phases |
|
2734 | cohDet_thresh: Coherent Detection phase threshold to correct phases | |
2728 |
|
2735 | |||
2729 | noise_timeStep: Noise calculation time step |
|
2736 | noise_timeStep: Noise calculation time step | |
2730 | noise_multiple: Noise multiple to define signal threshold |
|
2737 | noise_multiple: Noise multiple to define signal threshold | |
2731 |
|
2738 | |||
2732 | multDet_timeLimit: Multiple Detection Removal time limit in seconds |
|
2739 | multDet_timeLimit: Multiple Detection Removal time limit in seconds | |
2733 | multDet_rangeLimit: Multiple Detection Removal range limit in km |
|
2740 | multDet_rangeLimit: Multiple Detection Removal range limit in km | |
2734 |
|
2741 | |||
2735 | phaseThresh: Maximum phase difference between receiver to be consider a meteor |
|
2742 | phaseThresh: Maximum phase difference between receiver to be consider a meteor | |
2736 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor |
|
2743 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor | |
2737 |
|
2744 | |||
2738 | hmin: Minimum Height of the meteor to use it in the further wind estimations |
|
2745 | hmin: Minimum Height of the meteor to use it in the further wind estimations | |
2739 | hmax: Maximum Height of the meteor to use it in the further wind estimations |
|
2746 | hmax: Maximum Height of the meteor to use it in the further wind estimations | |
2740 | azimuth: Azimuth angle correction |
|
2747 | azimuth: Azimuth angle correction | |
2741 |
|
2748 | |||
2742 | Affected: |
|
2749 | Affected: | |
2743 | self.dataOut.data_param |
|
2750 | self.dataOut.data_param | |
2744 |
|
2751 | |||
2745 | Rejection Criteria (Errors): |
|
2752 | Rejection Criteria (Errors): | |
2746 | 0: No error; analysis OK |
|
2753 | 0: No error; analysis OK | |
2747 | 1: SNR < SNR threshold |
|
2754 | 1: SNR < SNR threshold | |
2748 | 2: angle of arrival (AOA) ambiguously determined |
|
2755 | 2: angle of arrival (AOA) ambiguously determined | |
2749 | 3: AOA estimate not feasible |
|
2756 | 3: AOA estimate not feasible | |
2750 | 4: Large difference in AOAs obtained from different antenna baselines |
|
2757 | 4: Large difference in AOAs obtained from different antenna baselines | |
2751 | 5: echo at start or end of time series |
|
2758 | 5: echo at start or end of time series | |
2752 | 6: echo less than 5 examples long; too short for analysis |
|
2759 | 6: echo less than 5 examples long; too short for analysis | |
2753 | 7: echo rise exceeds 0.3s |
|
2760 | 7: echo rise exceeds 0.3s | |
2754 | 8: echo decay time less than twice rise time |
|
2761 | 8: echo decay time less than twice rise time | |
2755 | 9: large power level before echo |
|
2762 | 9: large power level before echo | |
2756 | 10: large power level after echo |
|
2763 | 10: large power level after echo | |
2757 | 11: poor fit to amplitude for estimation of decay time |
|
2764 | 11: poor fit to amplitude for estimation of decay time | |
2758 | 12: poor fit to CCF phase variation for estimation of radial drift velocity |
|
2765 | 12: poor fit to CCF phase variation for estimation of radial drift velocity | |
2759 | 13: height unresolvable echo: not valid height within 70 to 110 km |
|
2766 | 13: height unresolvable echo: not valid height within 70 to 110 km | |
2760 | 14: height ambiguous echo: more then one possible height within 70 to 110 km |
|
2767 | 14: height ambiguous echo: more then one possible height within 70 to 110 km | |
2761 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s |
|
2768 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s | |
2762 | 16: oscilatory echo, indicating event most likely not an underdense echo |
|
2769 | 16: oscilatory echo, indicating event most likely not an underdense echo | |
2763 |
|
2770 | |||
2764 | 17: phase difference in meteor Reestimation |
|
2771 | 17: phase difference in meteor Reestimation | |
2765 |
|
2772 | |||
2766 | Data Storage: |
|
2773 | Data Storage: | |
2767 | Meteors for Wind Estimation (8): |
|
2774 | Meteors for Wind Estimation (8): | |
2768 | Utc Time | Range Height |
|
2775 | Utc Time | Range Height | |
2769 | Azimuth Zenith errorCosDir |
|
2776 | Azimuth Zenith errorCosDir | |
2770 | VelRad errorVelRad |
|
2777 | VelRad errorVelRad | |
2771 | Phase0 Phase1 Phase2 Phase3 |
|
2778 | Phase0 Phase1 Phase2 Phase3 | |
2772 | TypeError |
|
2779 | TypeError | |
2773 |
|
2780 | |||
2774 | ''' |
|
2781 | ''' | |
2775 |
|
2782 | |||
2776 | def run(self, dataOut, hei_ref = None, tauindex = 0, |
|
2783 | def run(self, dataOut, hei_ref = None, tauindex = 0, | |
2777 | phaseOffsets = None, |
|
2784 | phaseOffsets = None, | |
2778 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, |
|
2785 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, | |
2779 | noise_timeStep = 4, noise_multiple = 4, |
|
2786 | noise_timeStep = 4, noise_multiple = 4, | |
2780 | multDet_timeLimit = 1, multDet_rangeLimit = 3, |
|
2787 | multDet_timeLimit = 1, multDet_rangeLimit = 3, | |
2781 | phaseThresh = 20, SNRThresh = 5, |
|
2788 | phaseThresh = 20, SNRThresh = 5, | |
2782 | hmin = 50, hmax=150, azimuth = 0, |
|
2789 | hmin = 50, hmax=150, azimuth = 0, | |
2783 | channelPositions = None) : |
|
2790 | channelPositions = None) : | |
2784 |
|
2791 | |||
2785 |
|
2792 | |||
2786 | #Getting Pairslist |
|
2793 | #Getting Pairslist | |
2787 | if channelPositions == None: |
|
2794 | if channelPositions == None: | |
2788 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
2795 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
2789 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
2796 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
2790 | meteorOps = SMOperations() |
|
2797 | meteorOps = SMOperations() | |
2791 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
2798 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
2792 | heiRang = dataOut.getHeiRange() |
|
2799 | heiRang = dataOut.getHeiRange() | |
2793 | #Get Beacon signal - No Beacon signal anymore |
|
2800 | #Get Beacon signal - No Beacon signal anymore | |
2794 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
2801 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
2795 | # |
|
2802 | # | |
2796 | # if hei_ref != None: |
|
2803 | # if hei_ref != None: | |
2797 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
2804 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) | |
2798 | # |
|
2805 | # | |
2799 |
|
2806 | |||
2800 |
|
2807 | |||
2801 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** |
|
2808 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** | |
2802 | # see if the user put in pre defined phase shifts |
|
2809 | # see if the user put in pre defined phase shifts | |
2803 | voltsPShift = dataOut.data_pre.copy() |
|
2810 | voltsPShift = dataOut.data_pre.copy() | |
2804 |
|
2811 | |||
2805 | # if predefinedPhaseShifts != None: |
|
2812 | # if predefinedPhaseShifts != None: | |
2806 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 |
|
2813 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 | |
2807 | # |
|
2814 | # | |
2808 | # # elif beaconPhaseShifts: |
|
2815 | # # elif beaconPhaseShifts: | |
2809 | # # #get hardware phase shifts using beacon signal |
|
2816 | # # #get hardware phase shifts using beacon signal | |
2810 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) |
|
2817 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) | |
2811 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) |
|
2818 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) | |
2812 | # |
|
2819 | # | |
2813 | # else: |
|
2820 | # else: | |
2814 | # hardwarePhaseShifts = numpy.zeros(5) |
|
2821 | # hardwarePhaseShifts = numpy.zeros(5) | |
2815 | # |
|
2822 | # | |
2816 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') |
|
2823 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') | |
2817 | # for i in range(self.dataOut.data_pre.shape[0]): |
|
2824 | # for i in range(self.dataOut.data_pre.shape[0]): | |
2818 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) |
|
2825 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) | |
2819 |
|
2826 | |||
2820 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* |
|
2827 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* | |
2821 |
|
2828 | |||
2822 | #Remove DC |
|
2829 | #Remove DC | |
2823 | voltsDC = numpy.mean(voltsPShift,1) |
|
2830 | voltsDC = numpy.mean(voltsPShift,1) | |
2824 | voltsDC = numpy.mean(voltsDC,1) |
|
2831 | voltsDC = numpy.mean(voltsDC,1) | |
2825 | for i in range(voltsDC.shape[0]): |
|
2832 | for i in range(voltsDC.shape[0]): | |
2826 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] |
|
2833 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] | |
2827 |
|
2834 | |||
2828 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift |
|
2835 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift | |
2829 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] |
|
2836 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] | |
2830 |
|
2837 | |||
2831 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** |
|
2838 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** | |
2832 | #Coherent Detection |
|
2839 | #Coherent Detection | |
2833 | if cohDetection: |
|
2840 | if cohDetection: | |
2834 | #use coherent detection to get the net power |
|
2841 | #use coherent detection to get the net power | |
2835 | cohDet_thresh = cohDet_thresh*numpy.pi/180 |
|
2842 | cohDet_thresh = cohDet_thresh*numpy.pi/180 | |
2836 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) |
|
2843 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) | |
2837 |
|
2844 | |||
2838 | #Non-coherent detection! |
|
2845 | #Non-coherent detection! | |
2839 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) |
|
2846 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) | |
2840 | #********** END OF COH/NON-COH POWER CALCULATION********************** |
|
2847 | #********** END OF COH/NON-COH POWER CALCULATION********************** | |
2841 |
|
2848 | |||
2842 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** |
|
2849 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** | |
2843 | #Get noise |
|
2850 | #Get noise | |
2844 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) |
|
2851 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) | |
2845 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) |
|
2852 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) | |
2846 | #Get signal threshold |
|
2853 | #Get signal threshold | |
2847 | signalThresh = noise_multiple*noise |
|
2854 | signalThresh = noise_multiple*noise | |
2848 | #Meteor echoes detection |
|
2855 | #Meteor echoes detection | |
2849 | listMeteors = self.__findMeteors(powerNet, signalThresh) |
|
2856 | listMeteors = self.__findMeteors(powerNet, signalThresh) | |
2850 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** |
|
2857 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** | |
2851 |
|
2858 | |||
2852 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** |
|
2859 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** | |
2853 | #Parameters |
|
2860 | #Parameters | |
2854 | heiRange = dataOut.getHeiRange() |
|
2861 | heiRange = dataOut.getHeiRange() | |
2855 | rangeInterval = heiRange[1] - heiRange[0] |
|
2862 | rangeInterval = heiRange[1] - heiRange[0] | |
2856 | rangeLimit = multDet_rangeLimit/rangeInterval |
|
2863 | rangeLimit = multDet_rangeLimit/rangeInterval | |
2857 | timeLimit = multDet_timeLimit/dataOut.timeInterval |
|
2864 | timeLimit = multDet_timeLimit/dataOut.timeInterval | |
2858 | #Multiple detection removals |
|
2865 | #Multiple detection removals | |
2859 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) |
|
2866 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) | |
2860 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** |
|
2867 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** | |
2861 |
|
2868 | |||
2862 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** |
|
2869 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** | |
2863 | #Parameters |
|
2870 | #Parameters | |
2864 | phaseThresh = phaseThresh*numpy.pi/180 |
|
2871 | phaseThresh = phaseThresh*numpy.pi/180 | |
2865 | thresh = [phaseThresh, noise_multiple, SNRThresh] |
|
2872 | thresh = [phaseThresh, noise_multiple, SNRThresh] | |
2866 | #Meteor reestimation (Errors N 1, 6, 12, 17) |
|
2873 | #Meteor reestimation (Errors N 1, 6, 12, 17) | |
2867 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) |
|
2874 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) | |
2868 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) |
|
2875 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) | |
2869 | #Estimation of decay times (Errors N 7, 8, 11) |
|
2876 | #Estimation of decay times (Errors N 7, 8, 11) | |
2870 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) |
|
2877 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) | |
2871 | #******************* END OF METEOR REESTIMATION ******************* |
|
2878 | #******************* END OF METEOR REESTIMATION ******************* | |
2872 |
|
2879 | |||
2873 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** |
|
2880 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** | |
2874 | #Calculating Radial Velocity (Error N 15) |
|
2881 | #Calculating Radial Velocity (Error N 15) | |
2875 | radialStdThresh = 10 |
|
2882 | radialStdThresh = 10 | |
2876 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) |
|
2883 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) | |
2877 |
|
2884 | |||
2878 | if len(listMeteors4) > 0: |
|
2885 | if len(listMeteors4) > 0: | |
2879 | #Setting New Array |
|
2886 | #Setting New Array | |
2880 | date = dataOut.utctime |
|
2887 | date = dataOut.utctime | |
2881 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) |
|
2888 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) | |
2882 |
|
2889 | |||
2883 | #Correcting phase offset |
|
2890 | #Correcting phase offset | |
2884 | if phaseOffsets != None: |
|
2891 | if phaseOffsets != None: | |
2885 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
2892 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
2886 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
2893 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
2887 |
|
2894 | |||
2888 | #Second Pairslist |
|
2895 | #Second Pairslist | |
2889 | pairsList = [] |
|
2896 | pairsList = [] | |
2890 | pairx = (0,1) |
|
2897 | pairx = (0,1) | |
2891 | pairy = (2,3) |
|
2898 | pairy = (2,3) | |
2892 | pairsList.append(pairx) |
|
2899 | pairsList.append(pairx) | |
2893 | pairsList.append(pairy) |
|
2900 | pairsList.append(pairy) | |
2894 |
|
2901 | |||
2895 | jph = numpy.array([0,0,0,0]) |
|
2902 | jph = numpy.array([0,0,0,0]) | |
2896 | h = (hmin,hmax) |
|
2903 | h = (hmin,hmax) | |
2897 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
2904 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
2898 |
|
2905 | |||
2899 | # #Calculate AOA (Error N 3, 4) |
|
2906 | # #Calculate AOA (Error N 3, 4) | |
2900 | # #JONES ET AL. 1998 |
|
2907 | # #JONES ET AL. 1998 | |
2901 | # error = arrayParameters[:,-1] |
|
2908 | # error = arrayParameters[:,-1] | |
2902 | # AOAthresh = numpy.pi/8 |
|
2909 | # AOAthresh = numpy.pi/8 | |
2903 | # phases = -arrayParameters[:,9:13] |
|
2910 | # phases = -arrayParameters[:,9:13] | |
2904 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) |
|
2911 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) | |
2905 | # |
|
2912 | # | |
2906 | # #Calculate Heights (Error N 13 and 14) |
|
2913 | # #Calculate Heights (Error N 13 and 14) | |
2907 | # error = arrayParameters[:,-1] |
|
2914 | # error = arrayParameters[:,-1] | |
2908 | # Ranges = arrayParameters[:,2] |
|
2915 | # Ranges = arrayParameters[:,2] | |
2909 | # zenith = arrayParameters[:,5] |
|
2916 | # zenith = arrayParameters[:,5] | |
2910 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) |
|
2917 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) | |
2911 | # error = arrayParameters[:,-1] |
|
2918 | # error = arrayParameters[:,-1] | |
2912 | #********************* END OF PARAMETERS CALCULATION ************************** |
|
2919 | #********************* END OF PARAMETERS CALCULATION ************************** | |
2913 |
|
2920 | |||
2914 | #***************************+ PASS DATA TO NEXT STEP ********************** |
|
2921 | #***************************+ PASS DATA TO NEXT STEP ********************** | |
2915 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) |
|
2922 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) | |
2916 | dataOut.data_param = arrayParameters |
|
2923 | dataOut.data_param = arrayParameters | |
2917 |
|
2924 | |||
2918 | if arrayParameters == None: |
|
2925 | if arrayParameters == None: | |
2919 | dataOut.flagNoData = True |
|
2926 | dataOut.flagNoData = True | |
2920 | else: |
|
2927 | else: | |
2921 | dataOut.flagNoData = True |
|
2928 | dataOut.flagNoData = True | |
2922 |
|
2929 | |||
2923 | return |
|
2930 | return | |
2924 |
|
2931 | |||
2925 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): |
|
2932 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): | |
2926 |
|
2933 | |||
2927 | minIndex = min(newheis[0]) |
|
2934 | minIndex = min(newheis[0]) | |
2928 | maxIndex = max(newheis[0]) |
|
2935 | maxIndex = max(newheis[0]) | |
2929 |
|
2936 | |||
2930 | voltage = voltage0[:,:,minIndex:maxIndex+1] |
|
2937 | voltage = voltage0[:,:,minIndex:maxIndex+1] | |
2931 | nLength = voltage.shape[1]/n |
|
2938 | nLength = voltage.shape[1]/n | |
2932 | nMin = 0 |
|
2939 | nMin = 0 | |
2933 | nMax = 0 |
|
2940 | nMax = 0 | |
2934 | phaseOffset = numpy.zeros((len(pairslist),n)) |
|
2941 | phaseOffset = numpy.zeros((len(pairslist),n)) | |
2935 |
|
2942 | |||
2936 | for i in range(n): |
|
2943 | for i in range(n): | |
2937 | nMax += nLength |
|
2944 | nMax += nLength | |
2938 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) |
|
2945 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) | |
2939 | phaseCCF = numpy.mean(phaseCCF, axis = 2) |
|
2946 | phaseCCF = numpy.mean(phaseCCF, axis = 2) | |
2940 | phaseOffset[:,i] = phaseCCF.transpose() |
|
2947 | phaseOffset[:,i] = phaseCCF.transpose() | |
2941 | nMin = nMax |
|
2948 | nMin = nMax | |
2942 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) |
|
2949 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) | |
2943 |
|
2950 | |||
2944 | #Remove Outliers |
|
2951 | #Remove Outliers | |
2945 | factor = 2 |
|
2952 | factor = 2 | |
2946 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) |
|
2953 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) | |
2947 | dw = numpy.std(wt,axis = 1) |
|
2954 | dw = numpy.std(wt,axis = 1) | |
2948 | dw = dw.reshape((dw.size,1)) |
|
2955 | dw = dw.reshape((dw.size,1)) | |
2949 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) |
|
2956 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) | |
2950 | phaseOffset[ind] = numpy.nan |
|
2957 | phaseOffset[ind] = numpy.nan | |
2951 | phaseOffset = stats.nanmean(phaseOffset, axis=1) |
|
2958 | phaseOffset = stats.nanmean(phaseOffset, axis=1) | |
2952 |
|
2959 | |||
2953 | return phaseOffset |
|
2960 | return phaseOffset | |
2954 |
|
2961 | |||
2955 | def __shiftPhase(self, data, phaseShift): |
|
2962 | def __shiftPhase(self, data, phaseShift): | |
2956 | #this will shift the phase of a complex number |
|
2963 | #this will shift the phase of a complex number | |
2957 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) |
|
2964 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) | |
2958 | return dataShifted |
|
2965 | return dataShifted | |
2959 |
|
2966 | |||
2960 | def __estimatePhaseDifference(self, array, pairslist): |
|
2967 | def __estimatePhaseDifference(self, array, pairslist): | |
2961 | nChannel = array.shape[0] |
|
2968 | nChannel = array.shape[0] | |
2962 | nHeights = array.shape[2] |
|
2969 | nHeights = array.shape[2] | |
2963 | numPairs = len(pairslist) |
|
2970 | numPairs = len(pairslist) | |
2964 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) |
|
2971 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) | |
2965 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) |
|
2972 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) | |
2966 |
|
2973 | |||
2967 | #Correct phases |
|
2974 | #Correct phases | |
2968 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] |
|
2975 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] | |
2969 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
2976 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
2970 |
|
2977 | |||
2971 | if indDer[0].shape[0] > 0: |
|
2978 | if indDer[0].shape[0] > 0: | |
2972 | for i in range(indDer[0].shape[0]): |
|
2979 | for i in range(indDer[0].shape[0]): | |
2973 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) |
|
2980 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) | |
2974 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi |
|
2981 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi | |
2975 |
|
2982 | |||
2976 | # for j in range(numSides): |
|
2983 | # for j in range(numSides): | |
2977 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) |
|
2984 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) | |
2978 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) |
|
2985 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) | |
2979 | # |
|
2986 | # | |
2980 | #Linear |
|
2987 | #Linear | |
2981 | phaseInt = numpy.zeros((numPairs,1)) |
|
2988 | phaseInt = numpy.zeros((numPairs,1)) | |
2982 | angAllCCF = phaseCCF[:,[0,1,3,4],0] |
|
2989 | angAllCCF = phaseCCF[:,[0,1,3,4],0] | |
2983 | for j in range(numPairs): |
|
2990 | for j in range(numPairs): | |
2984 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) |
|
2991 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) | |
2985 | phaseInt[j] = fit[1] |
|
2992 | phaseInt[j] = fit[1] | |
2986 | #Phase Differences |
|
2993 | #Phase Differences | |
2987 | phaseDiff = phaseInt - phaseCCF[:,2,:] |
|
2994 | phaseDiff = phaseInt - phaseCCF[:,2,:] | |
2988 | phaseArrival = phaseInt.reshape(phaseInt.size) |
|
2995 | phaseArrival = phaseInt.reshape(phaseInt.size) | |
2989 |
|
2996 | |||
2990 | #Dealias |
|
2997 | #Dealias | |
2991 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) |
|
2998 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) | |
2992 | # indAlias = numpy.where(phaseArrival > numpy.pi) |
|
2999 | # indAlias = numpy.where(phaseArrival > numpy.pi) | |
2993 | # phaseArrival[indAlias] -= 2*numpy.pi |
|
3000 | # phaseArrival[indAlias] -= 2*numpy.pi | |
2994 | # indAlias = numpy.where(phaseArrival < -numpy.pi) |
|
3001 | # indAlias = numpy.where(phaseArrival < -numpy.pi) | |
2995 | # phaseArrival[indAlias] += 2*numpy.pi |
|
3002 | # phaseArrival[indAlias] += 2*numpy.pi | |
2996 |
|
3003 | |||
2997 | return phaseDiff, phaseArrival |
|
3004 | return phaseDiff, phaseArrival | |
2998 |
|
3005 | |||
2999 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): |
|
3006 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): | |
3000 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power |
|
3007 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power | |
3001 | #find the phase shifts of each channel over 1 second intervals |
|
3008 | #find the phase shifts of each channel over 1 second intervals | |
3002 | #only look at ranges below the beacon signal |
|
3009 | #only look at ranges below the beacon signal | |
3003 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
3010 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
3004 | numBlocks = int(volts.shape[1]/numProfPerBlock) |
|
3011 | numBlocks = int(volts.shape[1]/numProfPerBlock) | |
3005 | numHeights = volts.shape[2] |
|
3012 | numHeights = volts.shape[2] | |
3006 | nChannel = volts.shape[0] |
|
3013 | nChannel = volts.shape[0] | |
3007 | voltsCohDet = volts.copy() |
|
3014 | voltsCohDet = volts.copy() | |
3008 |
|
3015 | |||
3009 | pairsarray = numpy.array(pairslist) |
|
3016 | pairsarray = numpy.array(pairslist) | |
3010 | indSides = pairsarray[:,1] |
|
3017 | indSides = pairsarray[:,1] | |
3011 | # indSides = numpy.array(range(nChannel)) |
|
3018 | # indSides = numpy.array(range(nChannel)) | |
3012 | # indSides = numpy.delete(indSides, indCenter) |
|
3019 | # indSides = numpy.delete(indSides, indCenter) | |
3013 | # |
|
3020 | # | |
3014 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) |
|
3021 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) | |
3015 | listBlocks = numpy.array_split(volts, numBlocks, 1) |
|
3022 | listBlocks = numpy.array_split(volts, numBlocks, 1) | |
3016 |
|
3023 | |||
3017 | startInd = 0 |
|
3024 | startInd = 0 | |
3018 | endInd = 0 |
|
3025 | endInd = 0 | |
3019 |
|
3026 | |||
3020 | for i in range(numBlocks): |
|
3027 | for i in range(numBlocks): | |
3021 | startInd = endInd |
|
3028 | startInd = endInd | |
3022 | endInd = endInd + listBlocks[i].shape[1] |
|
3029 | endInd = endInd + listBlocks[i].shape[1] | |
3023 |
|
3030 | |||
3024 | arrayBlock = listBlocks[i] |
|
3031 | arrayBlock = listBlocks[i] | |
3025 | # arrayBlockCenter = listCenter[i] |
|
3032 | # arrayBlockCenter = listCenter[i] | |
3026 |
|
3033 | |||
3027 | #Estimate the Phase Difference |
|
3034 | #Estimate the Phase Difference | |
3028 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) |
|
3035 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) | |
3029 | #Phase Difference RMS |
|
3036 | #Phase Difference RMS | |
3030 | arrayPhaseRMS = numpy.abs(phaseDiff) |
|
3037 | arrayPhaseRMS = numpy.abs(phaseDiff) | |
3031 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) |
|
3038 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) | |
3032 | indPhase = numpy.where(phaseRMSaux==4) |
|
3039 | indPhase = numpy.where(phaseRMSaux==4) | |
3033 | #Shifting |
|
3040 | #Shifting | |
3034 | if indPhase[0].shape[0] > 0: |
|
3041 | if indPhase[0].shape[0] > 0: | |
3035 | for j in range(indSides.size): |
|
3042 | for j in range(indSides.size): | |
3036 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) |
|
3043 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) | |
3037 | voltsCohDet[:,startInd:endInd,:] = arrayBlock |
|
3044 | voltsCohDet[:,startInd:endInd,:] = arrayBlock | |
3038 |
|
3045 | |||
3039 | return voltsCohDet |
|
3046 | return voltsCohDet | |
3040 |
|
3047 | |||
3041 | def __calculateCCF(self, volts, pairslist ,laglist): |
|
3048 | def __calculateCCF(self, volts, pairslist ,laglist): | |
3042 |
|
3049 | |||
3043 | nHeights = volts.shape[2] |
|
3050 | nHeights = volts.shape[2] | |
3044 | nPoints = volts.shape[1] |
|
3051 | nPoints = volts.shape[1] | |
3045 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') |
|
3052 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') | |
3046 |
|
3053 | |||
3047 | for i in range(len(pairslist)): |
|
3054 | for i in range(len(pairslist)): | |
3048 | volts1 = volts[pairslist[i][0]] |
|
3055 | volts1 = volts[pairslist[i][0]] | |
3049 | volts2 = volts[pairslist[i][1]] |
|
3056 | volts2 = volts[pairslist[i][1]] | |
3050 |
|
3057 | |||
3051 | for t in range(len(laglist)): |
|
3058 | for t in range(len(laglist)): | |
3052 | idxT = laglist[t] |
|
3059 | idxT = laglist[t] | |
3053 | if idxT >= 0: |
|
3060 | if idxT >= 0: | |
3054 | vStacked = numpy.vstack((volts2[idxT:,:], |
|
3061 | vStacked = numpy.vstack((volts2[idxT:,:], | |
3055 | numpy.zeros((idxT, nHeights),dtype='complex'))) |
|
3062 | numpy.zeros((idxT, nHeights),dtype='complex'))) | |
3056 | else: |
|
3063 | else: | |
3057 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), |
|
3064 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), | |
3058 | volts2[:(nPoints + idxT),:])) |
|
3065 | volts2[:(nPoints + idxT),:])) | |
3059 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) |
|
3066 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) | |
3060 |
|
3067 | |||
3061 | vStacked = None |
|
3068 | vStacked = None | |
3062 | return voltsCCF |
|
3069 | return voltsCCF | |
3063 |
|
3070 | |||
3064 | def __getNoise(self, power, timeSegment, timeInterval): |
|
3071 | def __getNoise(self, power, timeSegment, timeInterval): | |
3065 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
3072 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
3066 | numBlocks = int(power.shape[0]/numProfPerBlock) |
|
3073 | numBlocks = int(power.shape[0]/numProfPerBlock) | |
3067 | numHeights = power.shape[1] |
|
3074 | numHeights = power.shape[1] | |
3068 |
|
3075 | |||
3069 | listPower = numpy.array_split(power, numBlocks, 0) |
|
3076 | listPower = numpy.array_split(power, numBlocks, 0) | |
3070 | noise = numpy.zeros((power.shape[0], power.shape[1])) |
|
3077 | noise = numpy.zeros((power.shape[0], power.shape[1])) | |
3071 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) |
|
3078 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) | |
3072 |
|
3079 | |||
3073 | startInd = 0 |
|
3080 | startInd = 0 | |
3074 | endInd = 0 |
|
3081 | endInd = 0 | |
3075 |
|
3082 | |||
3076 | for i in range(numBlocks): #split por canal |
|
3083 | for i in range(numBlocks): #split por canal | |
3077 | startInd = endInd |
|
3084 | startInd = endInd | |
3078 | endInd = endInd + listPower[i].shape[0] |
|
3085 | endInd = endInd + listPower[i].shape[0] | |
3079 |
|
3086 | |||
3080 | arrayBlock = listPower[i] |
|
3087 | arrayBlock = listPower[i] | |
3081 | noiseAux = numpy.mean(arrayBlock, 0) |
|
3088 | noiseAux = numpy.mean(arrayBlock, 0) | |
3082 | # noiseAux = numpy.median(noiseAux) |
|
3089 | # noiseAux = numpy.median(noiseAux) | |
3083 | # noiseAux = numpy.mean(arrayBlock) |
|
3090 | # noiseAux = numpy.mean(arrayBlock) | |
3084 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux |
|
3091 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux | |
3085 |
|
3092 | |||
3086 | noiseAux1 = numpy.mean(arrayBlock) |
|
3093 | noiseAux1 = numpy.mean(arrayBlock) | |
3087 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 |
|
3094 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 | |
3088 |
|
3095 | |||
3089 | return noise, noise1 |
|
3096 | return noise, noise1 | |
3090 |
|
3097 | |||
3091 | def __findMeteors(self, power, thresh): |
|
3098 | def __findMeteors(self, power, thresh): | |
3092 | nProf = power.shape[0] |
|
3099 | nProf = power.shape[0] | |
3093 | nHeights = power.shape[1] |
|
3100 | nHeights = power.shape[1] | |
3094 | listMeteors = [] |
|
3101 | listMeteors = [] | |
3095 |
|
3102 | |||
3096 | for i in range(nHeights): |
|
3103 | for i in range(nHeights): | |
3097 | powerAux = power[:,i] |
|
3104 | powerAux = power[:,i] | |
3098 | threshAux = thresh[:,i] |
|
3105 | threshAux = thresh[:,i] | |
3099 |
|
3106 | |||
3100 | indUPthresh = numpy.where(powerAux > threshAux)[0] |
|
3107 | indUPthresh = numpy.where(powerAux > threshAux)[0] | |
3101 | indDNthresh = numpy.where(powerAux <= threshAux)[0] |
|
3108 | indDNthresh = numpy.where(powerAux <= threshAux)[0] | |
3102 |
|
3109 | |||
3103 | j = 0 |
|
3110 | j = 0 | |
3104 |
|
3111 | |||
3105 | while (j < indUPthresh.size - 2): |
|
3112 | while (j < indUPthresh.size - 2): | |
3106 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): |
|
3113 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): | |
3107 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) |
|
3114 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) | |
3108 | indDNthresh = indDNthresh[indDNAux] |
|
3115 | indDNthresh = indDNthresh[indDNAux] | |
3109 |
|
3116 | |||
3110 | if (indDNthresh.size > 0): |
|
3117 | if (indDNthresh.size > 0): | |
3111 | indEnd = indDNthresh[0] - 1 |
|
3118 | indEnd = indDNthresh[0] - 1 | |
3112 | indInit = indUPthresh[j] |
|
3119 | indInit = indUPthresh[j] | |
3113 |
|
3120 | |||
3114 | meteor = powerAux[indInit:indEnd + 1] |
|
3121 | meteor = powerAux[indInit:indEnd + 1] | |
3115 | indPeak = meteor.argmax() + indInit |
|
3122 | indPeak = meteor.argmax() + indInit | |
3116 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) |
|
3123 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) | |
3117 |
|
3124 | |||
3118 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! |
|
3125 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! | |
3119 | j = numpy.where(indUPthresh == indEnd)[0] + 1 |
|
3126 | j = numpy.where(indUPthresh == indEnd)[0] + 1 | |
3120 | else: j+=1 |
|
3127 | else: j+=1 | |
3121 | else: j+=1 |
|
3128 | else: j+=1 | |
3122 |
|
3129 | |||
3123 | return listMeteors |
|
3130 | return listMeteors | |
3124 |
|
3131 | |||
3125 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): |
|
3132 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): | |
3126 |
|
3133 | |||
3127 | arrayMeteors = numpy.asarray(listMeteors) |
|
3134 | arrayMeteors = numpy.asarray(listMeteors) | |
3128 | listMeteors1 = [] |
|
3135 | listMeteors1 = [] | |
3129 |
|
3136 | |||
3130 | while arrayMeteors.shape[0] > 0: |
|
3137 | while arrayMeteors.shape[0] > 0: | |
3131 | FLAs = arrayMeteors[:,4] |
|
3138 | FLAs = arrayMeteors[:,4] | |
3132 | maxFLA = FLAs.argmax() |
|
3139 | maxFLA = FLAs.argmax() | |
3133 | listMeteors1.append(arrayMeteors[maxFLA,:]) |
|
3140 | listMeteors1.append(arrayMeteors[maxFLA,:]) | |
3134 |
|
3141 | |||
3135 | MeteorInitTime = arrayMeteors[maxFLA,1] |
|
3142 | MeteorInitTime = arrayMeteors[maxFLA,1] | |
3136 | MeteorEndTime = arrayMeteors[maxFLA,3] |
|
3143 | MeteorEndTime = arrayMeteors[maxFLA,3] | |
3137 | MeteorHeight = arrayMeteors[maxFLA,0] |
|
3144 | MeteorHeight = arrayMeteors[maxFLA,0] | |
3138 |
|
3145 | |||
3139 | #Check neighborhood |
|
3146 | #Check neighborhood | |
3140 | maxHeightIndex = MeteorHeight + rangeLimit |
|
3147 | maxHeightIndex = MeteorHeight + rangeLimit | |
3141 | minHeightIndex = MeteorHeight - rangeLimit |
|
3148 | minHeightIndex = MeteorHeight - rangeLimit | |
3142 | minTimeIndex = MeteorInitTime - timeLimit |
|
3149 | minTimeIndex = MeteorInitTime - timeLimit | |
3143 | maxTimeIndex = MeteorEndTime + timeLimit |
|
3150 | maxTimeIndex = MeteorEndTime + timeLimit | |
3144 |
|
3151 | |||
3145 | #Check Heights |
|
3152 | #Check Heights | |
3146 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) |
|
3153 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) | |
3147 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) |
|
3154 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) | |
3148 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) |
|
3155 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) | |
3149 |
|
3156 | |||
3150 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) |
|
3157 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) | |
3151 |
|
3158 | |||
3152 | return listMeteors1 |
|
3159 | return listMeteors1 | |
3153 |
|
3160 | |||
3154 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): |
|
3161 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): | |
3155 | numHeights = volts.shape[2] |
|
3162 | numHeights = volts.shape[2] | |
3156 | nChannel = volts.shape[0] |
|
3163 | nChannel = volts.shape[0] | |
3157 |
|
3164 | |||
3158 | thresholdPhase = thresh[0] |
|
3165 | thresholdPhase = thresh[0] | |
3159 | thresholdNoise = thresh[1] |
|
3166 | thresholdNoise = thresh[1] | |
3160 | thresholdDB = float(thresh[2]) |
|
3167 | thresholdDB = float(thresh[2]) | |
3161 |
|
3168 | |||
3162 | thresholdDB1 = 10**(thresholdDB/10) |
|
3169 | thresholdDB1 = 10**(thresholdDB/10) | |
3163 | pairsarray = numpy.array(pairslist) |
|
3170 | pairsarray = numpy.array(pairslist) | |
3164 | indSides = pairsarray[:,1] |
|
3171 | indSides = pairsarray[:,1] | |
3165 |
|
3172 | |||
3166 | pairslist1 = list(pairslist) |
|
3173 | pairslist1 = list(pairslist) | |
3167 | pairslist1.append((0,1)) |
|
3174 | pairslist1.append((0,1)) | |
3168 | pairslist1.append((3,4)) |
|
3175 | pairslist1.append((3,4)) | |
3169 |
|
3176 | |||
3170 | listMeteors1 = [] |
|
3177 | listMeteors1 = [] | |
3171 | listPowerSeries = [] |
|
3178 | listPowerSeries = [] | |
3172 | listVoltageSeries = [] |
|
3179 | listVoltageSeries = [] | |
3173 | #volts has the war data |
|
3180 | #volts has the war data | |
3174 |
|
3181 | |||
3175 | if frequency == 30e6: |
|
3182 | if frequency == 30e6: | |
3176 | timeLag = 45*10**-3 |
|
3183 | timeLag = 45*10**-3 | |
3177 | else: |
|
3184 | else: | |
3178 | timeLag = 15*10**-3 |
|
3185 | timeLag = 15*10**-3 | |
3179 | lag = numpy.ceil(timeLag/timeInterval) |
|
3186 | lag = numpy.ceil(timeLag/timeInterval) | |
3180 |
|
3187 | |||
3181 | for i in range(len(listMeteors)): |
|
3188 | for i in range(len(listMeteors)): | |
3182 |
|
3189 | |||
3183 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### |
|
3190 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### | |
3184 | meteorAux = numpy.zeros(16) |
|
3191 | meteorAux = numpy.zeros(16) | |
3185 |
|
3192 | |||
3186 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) |
|
3193 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) | |
3187 | mHeight = listMeteors[i][0] |
|
3194 | mHeight = listMeteors[i][0] | |
3188 | mStart = listMeteors[i][1] |
|
3195 | mStart = listMeteors[i][1] | |
3189 | mPeak = listMeteors[i][2] |
|
3196 | mPeak = listMeteors[i][2] | |
3190 | mEnd = listMeteors[i][3] |
|
3197 | mEnd = listMeteors[i][3] | |
3191 |
|
3198 | |||
3192 | #get the volt data between the start and end times of the meteor |
|
3199 | #get the volt data between the start and end times of the meteor | |
3193 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] |
|
3200 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] | |
3194 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
3201 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
3195 |
|
3202 | |||
3196 | #3.6. Phase Difference estimation |
|
3203 | #3.6. Phase Difference estimation | |
3197 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) |
|
3204 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) | |
3198 |
|
3205 | |||
3199 | #3.7. Phase difference removal & meteor start, peak and end times reestimated |
|
3206 | #3.7. Phase difference removal & meteor start, peak and end times reestimated | |
3200 | #meteorVolts0.- all Channels, all Profiles |
|
3207 | #meteorVolts0.- all Channels, all Profiles | |
3201 | meteorVolts0 = volts[:,:,mHeight] |
|
3208 | meteorVolts0 = volts[:,:,mHeight] | |
3202 | meteorThresh = noise[:,mHeight]*thresholdNoise |
|
3209 | meteorThresh = noise[:,mHeight]*thresholdNoise | |
3203 | meteorNoise = noise[:,mHeight] |
|
3210 | meteorNoise = noise[:,mHeight] | |
3204 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting |
|
3211 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting | |
3205 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power |
|
3212 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power | |
3206 |
|
3213 | |||
3207 | #Times reestimation |
|
3214 | #Times reestimation | |
3208 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] |
|
3215 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] | |
3209 | if mStart1.size > 0: |
|
3216 | if mStart1.size > 0: | |
3210 | mStart1 = mStart1[-1] + 1 |
|
3217 | mStart1 = mStart1[-1] + 1 | |
3211 |
|
3218 | |||
3212 | else: |
|
3219 | else: | |
3213 | mStart1 = mPeak |
|
3220 | mStart1 = mPeak | |
3214 |
|
3221 | |||
3215 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 |
|
3222 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 | |
3216 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] |
|
3223 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] | |
3217 | if mEndDecayTime1.size == 0: |
|
3224 | if mEndDecayTime1.size == 0: | |
3218 | mEndDecayTime1 = powerNet0.size |
|
3225 | mEndDecayTime1 = powerNet0.size | |
3219 | else: |
|
3226 | else: | |
3220 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 |
|
3227 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 | |
3221 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() |
|
3228 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() | |
3222 |
|
3229 | |||
3223 | #meteorVolts1.- all Channels, from start to end |
|
3230 | #meteorVolts1.- all Channels, from start to end | |
3224 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] |
|
3231 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] | |
3225 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] |
|
3232 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] | |
3226 | if meteorVolts2.shape[1] == 0: |
|
3233 | if meteorVolts2.shape[1] == 0: | |
3227 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] |
|
3234 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] | |
3228 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) |
|
3235 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) | |
3229 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) |
|
3236 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) | |
3230 | ##################### END PARAMETERS REESTIMATION ######################### |
|
3237 | ##################### END PARAMETERS REESTIMATION ######################### | |
3231 |
|
3238 | |||
3232 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## |
|
3239 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## | |
3233 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis |
|
3240 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis | |
3234 | if meteorVolts2.shape[1] > 0: |
|
3241 | if meteorVolts2.shape[1] > 0: | |
3235 | #Phase Difference re-estimation |
|
3242 | #Phase Difference re-estimation | |
3236 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation |
|
3243 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation | |
3237 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) |
|
3244 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) | |
3238 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) |
|
3245 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) | |
3239 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) |
|
3246 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) | |
3240 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting |
|
3247 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting | |
3241 |
|
3248 | |||
3242 | #Phase Difference RMS |
|
3249 | #Phase Difference RMS | |
3243 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) |
|
3250 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) | |
3244 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) |
|
3251 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) | |
3245 | #Data from Meteor |
|
3252 | #Data from Meteor | |
3246 | mPeak1 = powerNet1.argmax() + mStart1 |
|
3253 | mPeak1 = powerNet1.argmax() + mStart1 | |
3247 | mPeakPower1 = powerNet1.max() |
|
3254 | mPeakPower1 = powerNet1.max() | |
3248 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) |
|
3255 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) | |
3249 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux |
|
3256 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux | |
3250 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) |
|
3257 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) | |
3251 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) |
|
3258 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) | |
3252 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] |
|
3259 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] | |
3253 | #Vectorize |
|
3260 | #Vectorize | |
3254 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] |
|
3261 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] | |
3255 | meteorAux[7:11] = phaseDiffint[0:4] |
|
3262 | meteorAux[7:11] = phaseDiffint[0:4] | |
3256 |
|
3263 | |||
3257 | #Rejection Criterions |
|
3264 | #Rejection Criterions | |
3258 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation |
|
3265 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation | |
3259 | meteorAux[-1] = 17 |
|
3266 | meteorAux[-1] = 17 | |
3260 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB |
|
3267 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB | |
3261 | meteorAux[-1] = 1 |
|
3268 | meteorAux[-1] = 1 | |
3262 |
|
3269 | |||
3263 |
|
3270 | |||
3264 | else: |
|
3271 | else: | |
3265 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] |
|
3272 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] | |
3266 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis |
|
3273 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis | |
3267 | PowerSeries = 0 |
|
3274 | PowerSeries = 0 | |
3268 |
|
3275 | |||
3269 | listMeteors1.append(meteorAux) |
|
3276 | listMeteors1.append(meteorAux) | |
3270 | listPowerSeries.append(PowerSeries) |
|
3277 | listPowerSeries.append(PowerSeries) | |
3271 | listVoltageSeries.append(meteorVolts1) |
|
3278 | listVoltageSeries.append(meteorVolts1) | |
3272 |
|
3279 | |||
3273 | return listMeteors1, listPowerSeries, listVoltageSeries |
|
3280 | return listMeteors1, listPowerSeries, listVoltageSeries | |
3274 |
|
3281 | |||
3275 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): |
|
3282 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): | |
3276 |
|
3283 | |||
3277 | threshError = 10 |
|
3284 | threshError = 10 | |
3278 | #Depending if it is 30 or 50 MHz |
|
3285 | #Depending if it is 30 or 50 MHz | |
3279 | if frequency == 30e6: |
|
3286 | if frequency == 30e6: | |
3280 | timeLag = 45*10**-3 |
|
3287 | timeLag = 45*10**-3 | |
3281 | else: |
|
3288 | else: | |
3282 | timeLag = 15*10**-3 |
|
3289 | timeLag = 15*10**-3 | |
3283 | lag = numpy.ceil(timeLag/timeInterval) |
|
3290 | lag = numpy.ceil(timeLag/timeInterval) | |
3284 |
|
3291 | |||
3285 | listMeteors1 = [] |
|
3292 | listMeteors1 = [] | |
3286 |
|
3293 | |||
3287 | for i in range(len(listMeteors)): |
|
3294 | for i in range(len(listMeteors)): | |
3288 | meteorPower = listPower[i] |
|
3295 | meteorPower = listPower[i] | |
3289 | meteorAux = listMeteors[i] |
|
3296 | meteorAux = listMeteors[i] | |
3290 |
|
3297 | |||
3291 | if meteorAux[-1] == 0: |
|
3298 | if meteorAux[-1] == 0: | |
3292 |
|
3299 | |||
3293 | try: |
|
3300 | try: | |
3294 | indmax = meteorPower.argmax() |
|
3301 | indmax = meteorPower.argmax() | |
3295 | indlag = indmax + lag |
|
3302 | indlag = indmax + lag | |
3296 |
|
3303 | |||
3297 | y = meteorPower[indlag:] |
|
3304 | y = meteorPower[indlag:] | |
3298 | x = numpy.arange(0, y.size)*timeLag |
|
3305 | x = numpy.arange(0, y.size)*timeLag | |
3299 |
|
3306 | |||
3300 | #first guess |
|
3307 | #first guess | |
3301 | a = y[0] |
|
3308 | a = y[0] | |
3302 | tau = timeLag |
|
3309 | tau = timeLag | |
3303 | #exponential fit |
|
3310 | #exponential fit | |
3304 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) |
|
3311 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) | |
3305 | y1 = self.__exponential_function(x, *popt) |
|
3312 | y1 = self.__exponential_function(x, *popt) | |
3306 | #error estimation |
|
3313 | #error estimation | |
3307 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) |
|
3314 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) | |
3308 |
|
3315 | |||
3309 | decayTime = popt[1] |
|
3316 | decayTime = popt[1] | |
3310 | riseTime = indmax*timeInterval |
|
3317 | riseTime = indmax*timeInterval | |
3311 | meteorAux[11:13] = [decayTime, error] |
|
3318 | meteorAux[11:13] = [decayTime, error] | |
3312 |
|
3319 | |||
3313 | #Table items 7, 8 and 11 |
|
3320 | #Table items 7, 8 and 11 | |
3314 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s |
|
3321 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s | |
3315 | meteorAux[-1] = 7 |
|
3322 | meteorAux[-1] = 7 | |
3316 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time |
|
3323 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time | |
3317 | meteorAux[-1] = 8 |
|
3324 | meteorAux[-1] = 8 | |
3318 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time |
|
3325 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time | |
3319 | meteorAux[-1] = 11 |
|
3326 | meteorAux[-1] = 11 | |
3320 |
|
3327 | |||
3321 |
|
3328 | |||
3322 | except: |
|
3329 | except: | |
3323 | meteorAux[-1] = 11 |
|
3330 | meteorAux[-1] = 11 | |
3324 |
|
3331 | |||
3325 |
|
3332 | |||
3326 | listMeteors1.append(meteorAux) |
|
3333 | listMeteors1.append(meteorAux) | |
3327 |
|
3334 | |||
3328 | return listMeteors1 |
|
3335 | return listMeteors1 | |
3329 |
|
3336 | |||
3330 | #Exponential Function |
|
3337 | #Exponential Function | |
3331 |
|
3338 | |||
3332 | def __exponential_function(self, x, a, tau): |
|
3339 | def __exponential_function(self, x, a, tau): | |
3333 | y = a*numpy.exp(-x/tau) |
|
3340 | y = a*numpy.exp(-x/tau) | |
3334 | return y |
|
3341 | return y | |
3335 |
|
3342 | |||
3336 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): |
|
3343 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): | |
3337 |
|
3344 | |||
3338 | pairslist1 = list(pairslist) |
|
3345 | pairslist1 = list(pairslist) | |
3339 | pairslist1.append((0,1)) |
|
3346 | pairslist1.append((0,1)) | |
3340 | pairslist1.append((3,4)) |
|
3347 | pairslist1.append((3,4)) | |
3341 | numPairs = len(pairslist1) |
|
3348 | numPairs = len(pairslist1) | |
3342 | #Time Lag |
|
3349 | #Time Lag | |
3343 | timeLag = 45*10**-3 |
|
3350 | timeLag = 45*10**-3 | |
3344 | c = 3e8 |
|
3351 | c = 3e8 | |
3345 | lag = numpy.ceil(timeLag/timeInterval) |
|
3352 | lag = numpy.ceil(timeLag/timeInterval) | |
3346 | freq = 30e6 |
|
3353 | freq = 30e6 | |
3347 |
|
3354 | |||
3348 | listMeteors1 = [] |
|
3355 | listMeteors1 = [] | |
3349 |
|
3356 | |||
3350 | for i in range(len(listMeteors)): |
|
3357 | for i in range(len(listMeteors)): | |
3351 | meteorAux = listMeteors[i] |
|
3358 | meteorAux = listMeteors[i] | |
3352 | if meteorAux[-1] == 0: |
|
3359 | if meteorAux[-1] == 0: | |
3353 | mStart = listMeteors[i][1] |
|
3360 | mStart = listMeteors[i][1] | |
3354 | mPeak = listMeteors[i][2] |
|
3361 | mPeak = listMeteors[i][2] | |
3355 | mLag = mPeak - mStart + lag |
|
3362 | mLag = mPeak - mStart + lag | |
3356 |
|
3363 | |||
3357 | #get the volt data between the start and end times of the meteor |
|
3364 | #get the volt data between the start and end times of the meteor | |
3358 | meteorVolts = listVolts[i] |
|
3365 | meteorVolts = listVolts[i] | |
3359 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
3366 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
3360 |
|
3367 | |||
3361 | #Get CCF |
|
3368 | #Get CCF | |
3362 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) |
|
3369 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) | |
3363 |
|
3370 | |||
3364 | #Method 2 |
|
3371 | #Method 2 | |
3365 | slopes = numpy.zeros(numPairs) |
|
3372 | slopes = numpy.zeros(numPairs) | |
3366 | time = numpy.array([-2,-1,1,2])*timeInterval |
|
3373 | time = numpy.array([-2,-1,1,2])*timeInterval | |
3367 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) |
|
3374 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) | |
3368 |
|
3375 | |||
3369 | #Correct phases |
|
3376 | #Correct phases | |
3370 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] |
|
3377 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] | |
3371 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
3378 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
3372 |
|
3379 | |||
3373 | if indDer[0].shape[0] > 0: |
|
3380 | if indDer[0].shape[0] > 0: | |
3374 | for i in range(indDer[0].shape[0]): |
|
3381 | for i in range(indDer[0].shape[0]): | |
3375 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) |
|
3382 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) | |
3376 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi |
|
3383 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi | |
3377 |
|
3384 | |||
3378 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) |
|
3385 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) | |
3379 | for j in range(numPairs): |
|
3386 | for j in range(numPairs): | |
3380 | fit = stats.linregress(time, angAllCCF[j,:]) |
|
3387 | fit = stats.linregress(time, angAllCCF[j,:]) | |
3381 | slopes[j] = fit[0] |
|
3388 | slopes[j] = fit[0] | |
3382 |
|
3389 | |||
3383 | #Remove Outlier |
|
3390 | #Remove Outlier | |
3384 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
3391 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
3385 | # slopes = numpy.delete(slopes,indOut) |
|
3392 | # slopes = numpy.delete(slopes,indOut) | |
3386 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
3393 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
3387 | # slopes = numpy.delete(slopes,indOut) |
|
3394 | # slopes = numpy.delete(slopes,indOut) | |
3388 |
|
3395 | |||
3389 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) |
|
3396 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) | |
3390 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) |
|
3397 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) | |
3391 | meteorAux[-2] = radialError |
|
3398 | meteorAux[-2] = radialError | |
3392 | meteorAux[-3] = radialVelocity |
|
3399 | meteorAux[-3] = radialVelocity | |
3393 |
|
3400 | |||
3394 | #Setting Error |
|
3401 | #Setting Error | |
3395 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s |
|
3402 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s | |
3396 | if numpy.abs(radialVelocity) > 200: |
|
3403 | if numpy.abs(radialVelocity) > 200: | |
3397 | meteorAux[-1] = 15 |
|
3404 | meteorAux[-1] = 15 | |
3398 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity |
|
3405 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity | |
3399 | elif radialError > radialStdThresh: |
|
3406 | elif radialError > radialStdThresh: | |
3400 | meteorAux[-1] = 12 |
|
3407 | meteorAux[-1] = 12 | |
3401 |
|
3408 | |||
3402 | listMeteors1.append(meteorAux) |
|
3409 | listMeteors1.append(meteorAux) | |
3403 | return listMeteors1 |
|
3410 | return listMeteors1 | |
3404 |
|
3411 | |||
3405 | def __setNewArrays(self, listMeteors, date, heiRang): |
|
3412 | def __setNewArrays(self, listMeteors, date, heiRang): | |
3406 |
|
3413 | |||
3407 | #New arrays |
|
3414 | #New arrays | |
3408 | arrayMeteors = numpy.array(listMeteors) |
|
3415 | arrayMeteors = numpy.array(listMeteors) | |
3409 | arrayParameters = numpy.zeros((len(listMeteors), 13)) |
|
3416 | arrayParameters = numpy.zeros((len(listMeteors), 13)) | |
3410 |
|
3417 | |||
3411 | #Date inclusion |
|
3418 | #Date inclusion | |
3412 | # date = re.findall(r'\((.*?)\)', date) |
|
3419 | # date = re.findall(r'\((.*?)\)', date) | |
3413 | # date = date[0].split(',') |
|
3420 | # date = date[0].split(',') | |
3414 | # date = map(int, date) |
|
3421 | # date = map(int, date) | |
3415 | # |
|
3422 | # | |
3416 | # if len(date)<6: |
|
3423 | # if len(date)<6: | |
3417 | # date.append(0) |
|
3424 | # date.append(0) | |
3418 | # |
|
3425 | # | |
3419 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] |
|
3426 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] | |
3420 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) |
|
3427 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) | |
3421 | arrayDate = numpy.tile(date, (len(listMeteors))) |
|
3428 | arrayDate = numpy.tile(date, (len(listMeteors))) | |
3422 |
|
3429 | |||
3423 | #Meteor array |
|
3430 | #Meteor array | |
3424 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] |
|
3431 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] | |
3425 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) |
|
3432 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) | |
3426 |
|
3433 | |||
3427 | #Parameters Array |
|
3434 | #Parameters Array | |
3428 | arrayParameters[:,0] = arrayDate #Date |
|
3435 | arrayParameters[:,0] = arrayDate #Date | |
3429 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range |
|
3436 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range | |
3430 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error |
|
3437 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error | |
3431 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases |
|
3438 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases | |
3432 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error |
|
3439 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error | |
3433 |
|
3440 | |||
3434 |
|
3441 | |||
3435 | return arrayParameters |
|
3442 | return arrayParameters | |
3436 |
|
3443 | |||
3437 | class CorrectSMPhases(Operation): |
|
3444 | class CorrectSMPhases(Operation): | |
3438 |
|
3445 | |||
3439 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): |
|
3446 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): | |
3440 |
|
3447 | |||
3441 | arrayParameters = dataOut.data_param |
|
3448 | arrayParameters = dataOut.data_param | |
3442 | pairsList = [] |
|
3449 | pairsList = [] | |
3443 | pairx = (0,1) |
|
3450 | pairx = (0,1) | |
3444 | pairy = (2,3) |
|
3451 | pairy = (2,3) | |
3445 | pairsList.append(pairx) |
|
3452 | pairsList.append(pairx) | |
3446 | pairsList.append(pairy) |
|
3453 | pairsList.append(pairy) | |
3447 | jph = numpy.zeros(4) |
|
3454 | jph = numpy.zeros(4) | |
3448 |
|
3455 | |||
3449 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
3456 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
3450 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
3457 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
3451 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) |
|
3458 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) | |
3452 |
|
3459 | |||
3453 | meteorOps = SMOperations() |
|
3460 | meteorOps = SMOperations() | |
3454 | if channelPositions == None: |
|
3461 | if channelPositions == None: | |
3455 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
3462 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
3456 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
3463 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
3457 |
|
3464 | |||
3458 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
3465 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
3459 | h = (hmin,hmax) |
|
3466 | h = (hmin,hmax) | |
3460 |
|
3467 | |||
3461 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
3468 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
3462 |
|
3469 | |||
3463 | dataOut.data_param = arrayParameters |
|
3470 | dataOut.data_param = arrayParameters | |
3464 | return |
|
3471 | return | |
3465 |
|
3472 | |||
3466 | class SMPhaseCalibration(Operation): |
|
3473 | class SMPhaseCalibration(Operation): | |
3467 |
|
3474 | |||
3468 | __buffer = None |
|
3475 | __buffer = None | |
3469 |
|
3476 | |||
3470 | __initime = None |
|
3477 | __initime = None | |
3471 |
|
3478 | |||
3472 | __dataReady = False |
|
3479 | __dataReady = False | |
3473 |
|
3480 | |||
3474 | __isConfig = False |
|
3481 | __isConfig = False | |
3475 |
|
3482 | |||
3476 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): |
|
3483 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): | |
3477 |
|
3484 | |||
3478 | dataTime = currentTime + paramInterval |
|
3485 | dataTime = currentTime + paramInterval | |
3479 | deltaTime = dataTime - initTime |
|
3486 | deltaTime = dataTime - initTime | |
3480 |
|
3487 | |||
3481 | if deltaTime >= outputInterval or deltaTime < 0: |
|
3488 | if deltaTime >= outputInterval or deltaTime < 0: | |
3482 | return True |
|
3489 | return True | |
3483 |
|
3490 | |||
3484 | return False |
|
3491 | return False | |
3485 |
|
3492 | |||
3486 | def __getGammas(self, pairs, d, phases): |
|
3493 | def __getGammas(self, pairs, d, phases): | |
3487 | gammas = numpy.zeros(2) |
|
3494 | gammas = numpy.zeros(2) | |
3488 |
|
3495 | |||
3489 | for i in range(len(pairs)): |
|
3496 | for i in range(len(pairs)): | |
3490 |
|
3497 | |||
3491 | pairi = pairs[i] |
|
3498 | pairi = pairs[i] | |
3492 |
|
3499 | |||
3493 | phip3 = phases[:,pairi[1]] |
|
3500 | phip3 = phases[:,pairi[1]] | |
3494 | d3 = d[pairi[1]] |
|
3501 | d3 = d[pairi[1]] | |
3495 | phip2 = phases[:,pairi[0]] |
|
3502 | phip2 = phases[:,pairi[0]] | |
3496 | d2 = d[pairi[0]] |
|
3503 | d2 = d[pairi[0]] | |
3497 | #Calculating gamma |
|
3504 | #Calculating gamma | |
3498 | # jdcos = alp1/(k*d1) |
|
3505 | # jdcos = alp1/(k*d1) | |
3499 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) |
|
3506 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) | |
3500 | jgamma = -phip2*d3/d2 - phip3 |
|
3507 | jgamma = -phip2*d3/d2 - phip3 | |
3501 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) |
|
3508 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) | |
3502 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi |
|
3509 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi | |
3503 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi |
|
3510 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi | |
3504 |
|
3511 | |||
3505 | #Revised distribution |
|
3512 | #Revised distribution | |
3506 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) |
|
3513 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) | |
3507 |
|
3514 | |||
3508 | #Histogram |
|
3515 | #Histogram | |
3509 | nBins = 64.0 |
|
3516 | nBins = 64.0 | |
3510 | rmin = -0.5*numpy.pi |
|
3517 | rmin = -0.5*numpy.pi | |
3511 | rmax = 0.5*numpy.pi |
|
3518 | rmax = 0.5*numpy.pi | |
3512 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) |
|
3519 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) | |
3513 |
|
3520 | |||
3514 | meteorsY = phaseHisto[0] |
|
3521 | meteorsY = phaseHisto[0] | |
3515 | phasesX = phaseHisto[1][:-1] |
|
3522 | phasesX = phaseHisto[1][:-1] | |
3516 | width = phasesX[1] - phasesX[0] |
|
3523 | width = phasesX[1] - phasesX[0] | |
3517 | phasesX += width/2 |
|
3524 | phasesX += width/2 | |
3518 |
|
3525 | |||
3519 | #Gaussian aproximation |
|
3526 | #Gaussian aproximation | |
3520 | bpeak = meteorsY.argmax() |
|
3527 | bpeak = meteorsY.argmax() | |
3521 | peak = meteorsY.max() |
|
3528 | peak = meteorsY.max() | |
3522 | jmin = bpeak - 5 |
|
3529 | jmin = bpeak - 5 | |
3523 | jmax = bpeak + 5 + 1 |
|
3530 | jmax = bpeak + 5 + 1 | |
3524 |
|
3531 | |||
3525 | if jmin<0: |
|
3532 | if jmin<0: | |
3526 | jmin = 0 |
|
3533 | jmin = 0 | |
3527 | jmax = 6 |
|
3534 | jmax = 6 | |
3528 | elif jmax > meteorsY.size: |
|
3535 | elif jmax > meteorsY.size: | |
3529 | jmin = meteorsY.size - 6 |
|
3536 | jmin = meteorsY.size - 6 | |
3530 | jmax = meteorsY.size |
|
3537 | jmax = meteorsY.size | |
3531 |
|
3538 | |||
3532 | x0 = numpy.array([peak,bpeak,50]) |
|
3539 | x0 = numpy.array([peak,bpeak,50]) | |
3533 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) |
|
3540 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) | |
3534 |
|
3541 | |||
3535 | #Gammas |
|
3542 | #Gammas | |
3536 | gammas[i] = coeff[0][1] |
|
3543 | gammas[i] = coeff[0][1] | |
3537 |
|
3544 | |||
3538 | return gammas |
|
3545 | return gammas | |
3539 |
|
3546 | |||
3540 | def __residualFunction(self, coeffs, y, t): |
|
3547 | def __residualFunction(self, coeffs, y, t): | |
3541 |
|
3548 | |||
3542 | return y - self.__gauss_function(t, coeffs) |
|
3549 | return y - self.__gauss_function(t, coeffs) | |
3543 |
|
3550 | |||
3544 | def __gauss_function(self, t, coeffs): |
|
3551 | def __gauss_function(self, t, coeffs): | |
3545 |
|
3552 | |||
3546 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) |
|
3553 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) | |
3547 |
|
3554 | |||
3548 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): |
|
3555 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): | |
3549 | meteorOps = SMOperations() |
|
3556 | meteorOps = SMOperations() | |
3550 | nchan = 4 |
|
3557 | nchan = 4 | |
3551 | pairx = pairsList[0] |
|
3558 | pairx = pairsList[0] | |
3552 | pairy = pairsList[1] |
|
3559 | pairy = pairsList[1] | |
3553 | center_xangle = 0 |
|
3560 | center_xangle = 0 | |
3554 | center_yangle = 0 |
|
3561 | center_yangle = 0 | |
3555 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) |
|
3562 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) | |
3556 | ntimes = len(range_angle) |
|
3563 | ntimes = len(range_angle) | |
3557 |
|
3564 | |||
3558 | nstepsx = 20.0 |
|
3565 | nstepsx = 20.0 | |
3559 | nstepsy = 20.0 |
|
3566 | nstepsy = 20.0 | |
3560 |
|
3567 | |||
3561 | for iz in range(ntimes): |
|
3568 | for iz in range(ntimes): | |
3562 | min_xangle = -range_angle[iz]/2 + center_xangle |
|
3569 | min_xangle = -range_angle[iz]/2 + center_xangle | |
3563 | max_xangle = range_angle[iz]/2 + center_xangle |
|
3570 | max_xangle = range_angle[iz]/2 + center_xangle | |
3564 | min_yangle = -range_angle[iz]/2 + center_yangle |
|
3571 | min_yangle = -range_angle[iz]/2 + center_yangle | |
3565 | max_yangle = range_angle[iz]/2 + center_yangle |
|
3572 | max_yangle = range_angle[iz]/2 + center_yangle | |
3566 |
|
3573 | |||
3567 | inc_x = (max_xangle-min_xangle)/nstepsx |
|
3574 | inc_x = (max_xangle-min_xangle)/nstepsx | |
3568 | inc_y = (max_yangle-min_yangle)/nstepsy |
|
3575 | inc_y = (max_yangle-min_yangle)/nstepsy | |
3569 |
|
3576 | |||
3570 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle |
|
3577 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle | |
3571 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle |
|
3578 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle | |
3572 | penalty = numpy.zeros((nstepsx,nstepsy)) |
|
3579 | penalty = numpy.zeros((nstepsx,nstepsy)) | |
3573 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) |
|
3580 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) | |
3574 | jph = numpy.zeros(nchan) |
|
3581 | jph = numpy.zeros(nchan) | |
3575 |
|
3582 | |||
3576 | # Iterations looking for the offset |
|
3583 | # Iterations looking for the offset | |
3577 | for iy in range(int(nstepsy)): |
|
3584 | for iy in range(int(nstepsy)): | |
3578 | for ix in range(int(nstepsx)): |
|
3585 | for ix in range(int(nstepsx)): | |
3579 | jph[pairy[1]] = alpha_y[iy] |
|
3586 | jph[pairy[1]] = alpha_y[iy] | |
3580 | jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] |
|
3587 | jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] | |
3581 |
|
3588 | |||
3582 | jph[pairx[1]] = alpha_x[ix] |
|
3589 | jph[pairx[1]] = alpha_x[ix] | |
3583 | jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] |
|
3590 | jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] | |
3584 |
|
3591 | |||
3585 | jph_array[:,ix,iy] = jph |
|
3592 | jph_array[:,ix,iy] = jph | |
3586 |
|
3593 | |||
3587 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) |
|
3594 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) | |
3588 | error = meteorsArray1[:,-1] |
|
3595 | error = meteorsArray1[:,-1] | |
3589 | ind1 = numpy.where(error==0)[0] |
|
3596 | ind1 = numpy.where(error==0)[0] | |
3590 | penalty[ix,iy] = ind1.size |
|
3597 | penalty[ix,iy] = ind1.size | |
3591 |
|
3598 | |||
3592 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) |
|
3599 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) | |
3593 | phOffset = jph_array[:,i,j] |
|
3600 | phOffset = jph_array[:,i,j] | |
3594 |
|
3601 | |||
3595 | center_xangle = phOffset[pairx[1]] |
|
3602 | center_xangle = phOffset[pairx[1]] | |
3596 | center_yangle = phOffset[pairy[1]] |
|
3603 | center_yangle = phOffset[pairy[1]] | |
3597 |
|
3604 | |||
3598 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) |
|
3605 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) | |
3599 | phOffset = phOffset*180/numpy.pi |
|
3606 | phOffset = phOffset*180/numpy.pi | |
3600 | return phOffset |
|
3607 | return phOffset | |
3601 |
|
3608 | |||
3602 |
|
3609 | |||
3603 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): |
|
3610 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): | |
3604 |
|
3611 | |||
3605 | dataOut.flagNoData = True |
|
3612 | dataOut.flagNoData = True | |
3606 | self.__dataReady = False |
|
3613 | self.__dataReady = False | |
3607 | dataOut.outputInterval = nHours*3600 |
|
3614 | dataOut.outputInterval = nHours*3600 | |
3608 |
|
3615 | |||
3609 | if self.__isConfig == False: |
|
3616 | if self.__isConfig == False: | |
3610 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
3617 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
3611 | #Get Initial LTC time |
|
3618 | #Get Initial LTC time | |
3612 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
3619 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
3613 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
3620 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
3614 |
|
3621 | |||
3615 | self.__isConfig = True |
|
3622 | self.__isConfig = True | |
3616 |
|
3623 | |||
3617 | if self.__buffer == None: |
|
3624 | if self.__buffer == None: | |
3618 | self.__buffer = dataOut.data_param.copy() |
|
3625 | self.__buffer = dataOut.data_param.copy() | |
3619 |
|
3626 | |||
3620 | else: |
|
3627 | else: | |
3621 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
3628 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
3622 |
|
3629 | |||
3623 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
3630 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
3624 |
|
3631 | |||
3625 | if self.__dataReady: |
|
3632 | if self.__dataReady: | |
3626 | dataOut.utctimeInit = self.__initime |
|
3633 | dataOut.utctimeInit = self.__initime | |
3627 | self.__initime += dataOut.outputInterval #to erase time offset |
|
3634 | self.__initime += dataOut.outputInterval #to erase time offset | |
3628 |
|
3635 | |||
3629 | freq = dataOut.frequency |
|
3636 | freq = dataOut.frequency | |
3630 | c = dataOut.C #m/s |
|
3637 | c = dataOut.C #m/s | |
3631 | lamb = c/freq |
|
3638 | lamb = c/freq | |
3632 | k = 2*numpy.pi/lamb |
|
3639 | k = 2*numpy.pi/lamb | |
3633 | azimuth = 0 |
|
3640 | azimuth = 0 | |
3634 | h = (hmin, hmax) |
|
3641 | h = (hmin, hmax) | |
3635 | pairs = ((0,1),(2,3)) |
|
3642 | pairs = ((0,1),(2,3)) | |
3636 |
|
3643 | |||
3637 | if channelPositions == None: |
|
3644 | if channelPositions == None: | |
3638 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
3645 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
3639 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
3646 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
3640 | meteorOps = SMOperations() |
|
3647 | meteorOps = SMOperations() | |
3641 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
3648 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
3642 |
|
3649 | |||
3643 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] |
|
3650 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] | |
3644 |
|
3651 | |||
3645 | meteorsArray = self.__buffer |
|
3652 | meteorsArray = self.__buffer | |
3646 | error = meteorsArray[:,-1] |
|
3653 | error = meteorsArray[:,-1] | |
3647 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) |
|
3654 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) | |
3648 | ind1 = numpy.where(boolError)[0] |
|
3655 | ind1 = numpy.where(boolError)[0] | |
3649 | meteorsArray = meteorsArray[ind1,:] |
|
3656 | meteorsArray = meteorsArray[ind1,:] | |
3650 | meteorsArray[:,-1] = 0 |
|
3657 | meteorsArray[:,-1] = 0 | |
3651 | phases = meteorsArray[:,8:12] |
|
3658 | phases = meteorsArray[:,8:12] | |
3652 |
|
3659 | |||
3653 | #Calculate Gammas |
|
3660 | #Calculate Gammas | |
3654 | gammas = self.__getGammas(pairs, distances, phases) |
|
3661 | gammas = self.__getGammas(pairs, distances, phases) | |
3655 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 |
|
3662 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 | |
3656 | #Calculate Phases |
|
3663 | #Calculate Phases | |
3657 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) |
|
3664 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) | |
3658 | phasesOff = phasesOff.reshape((1,phasesOff.size)) |
|
3665 | phasesOff = phasesOff.reshape((1,phasesOff.size)) | |
3659 | dataOut.data_output = -phasesOff |
|
3666 | dataOut.data_output = -phasesOff | |
3660 | dataOut.flagNoData = False |
|
3667 | dataOut.flagNoData = False | |
3661 | self.__buffer = None |
|
3668 | self.__buffer = None | |
3662 |
|
3669 | |||
3663 |
|
3670 | |||
3664 | return |
|
3671 | return | |
3665 |
|
3672 | |||
3666 | class SMOperations(): |
|
3673 | class SMOperations(): | |
3667 |
|
3674 | |||
3668 | def __init__(self): |
|
3675 | def __init__(self): | |
3669 |
|
3676 | |||
3670 | return |
|
3677 | return | |
3671 |
|
3678 | |||
3672 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): |
|
3679 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): | |
3673 |
|
3680 | |||
3674 | arrayParameters = arrayParameters0.copy() |
|
3681 | arrayParameters = arrayParameters0.copy() | |
3675 | hmin = h[0] |
|
3682 | hmin = h[0] | |
3676 | hmax = h[1] |
|
3683 | hmax = h[1] | |
3677 |
|
3684 | |||
3678 | #Calculate AOA (Error N 3, 4) |
|
3685 | #Calculate AOA (Error N 3, 4) | |
3679 | #JONES ET AL. 1998 |
|
3686 | #JONES ET AL. 1998 | |
3680 | AOAthresh = numpy.pi/8 |
|
3687 | AOAthresh = numpy.pi/8 | |
3681 | error = arrayParameters[:,-1] |
|
3688 | error = arrayParameters[:,-1] | |
3682 | phases = -arrayParameters[:,8:12] + jph |
|
3689 | phases = -arrayParameters[:,8:12] + jph | |
3683 | # phases = numpy.unwrap(phases) |
|
3690 | # phases = numpy.unwrap(phases) | |
3684 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) |
|
3691 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) | |
3685 |
|
3692 | |||
3686 | #Calculate Heights (Error N 13 and 14) |
|
3693 | #Calculate Heights (Error N 13 and 14) | |
3687 | error = arrayParameters[:,-1] |
|
3694 | error = arrayParameters[:,-1] | |
3688 | Ranges = arrayParameters[:,1] |
|
3695 | Ranges = arrayParameters[:,1] | |
3689 | zenith = arrayParameters[:,4] |
|
3696 | zenith = arrayParameters[:,4] | |
3690 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) |
|
3697 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) | |
3691 |
|
3698 | |||
3692 | #----------------------- Get Final data ------------------------------------ |
|
3699 | #----------------------- Get Final data ------------------------------------ | |
3693 | # error = arrayParameters[:,-1] |
|
3700 | # error = arrayParameters[:,-1] | |
3694 | # ind1 = numpy.where(error==0)[0] |
|
3701 | # ind1 = numpy.where(error==0)[0] | |
3695 | # arrayParameters = arrayParameters[ind1,:] |
|
3702 | # arrayParameters = arrayParameters[ind1,:] | |
3696 |
|
3703 | |||
3697 | return arrayParameters |
|
3704 | return arrayParameters | |
3698 |
|
3705 | |||
3699 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): |
|
3706 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): | |
3700 |
|
3707 | |||
3701 | arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
3708 | arrayAOA = numpy.zeros((phases.shape[0],3)) | |
3702 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) |
|
3709 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) | |
3703 |
|
3710 | |||
3704 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
3711 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
3705 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
3712 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
3706 | arrayAOA[:,2] = cosDirError |
|
3713 | arrayAOA[:,2] = cosDirError | |
3707 |
|
3714 | |||
3708 | azimuthAngle = arrayAOA[:,0] |
|
3715 | azimuthAngle = arrayAOA[:,0] | |
3709 | zenithAngle = arrayAOA[:,1] |
|
3716 | zenithAngle = arrayAOA[:,1] | |
3710 |
|
3717 | |||
3711 | #Setting Error |
|
3718 | #Setting Error | |
3712 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] |
|
3719 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] | |
3713 | error[indError] = 0 |
|
3720 | error[indError] = 0 | |
3714 | #Number 3: AOA not fesible |
|
3721 | #Number 3: AOA not fesible | |
3715 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
3722 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
3716 | error[indInvalid] = 3 |
|
3723 | error[indInvalid] = 3 | |
3717 | #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
3724 | #Number 4: Large difference in AOAs obtained from different antenna baselines | |
3718 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
3725 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
3719 | error[indInvalid] = 4 |
|
3726 | error[indInvalid] = 4 | |
3720 | return arrayAOA, error |
|
3727 | return arrayAOA, error | |
3721 |
|
3728 | |||
3722 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): |
|
3729 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): | |
3723 |
|
3730 | |||
3724 | #Initializing some variables |
|
3731 | #Initializing some variables | |
3725 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
3732 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
3726 | ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
3733 | ang_aux = ang_aux.reshape(1,ang_aux.size) | |
3727 |
|
3734 | |||
3728 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
3735 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
3729 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
3736 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
3730 |
|
3737 | |||
3731 |
|
3738 | |||
3732 | for i in range(2): |
|
3739 | for i in range(2): | |
3733 | ph0 = arrayPhase[:,pairsList[i][0]] |
|
3740 | ph0 = arrayPhase[:,pairsList[i][0]] | |
3734 | ph1 = arrayPhase[:,pairsList[i][1]] |
|
3741 | ph1 = arrayPhase[:,pairsList[i][1]] | |
3735 | d0 = distances[pairsList[i][0]] |
|
3742 | d0 = distances[pairsList[i][0]] | |
3736 | d1 = distances[pairsList[i][1]] |
|
3743 | d1 = distances[pairsList[i][1]] | |
3737 |
|
3744 | |||
3738 | ph0_aux = ph0 + ph1 |
|
3745 | ph0_aux = ph0 + ph1 | |
3739 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) |
|
3746 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) | |
3740 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi |
|
3747 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi | |
3741 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi |
|
3748 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi | |
3742 | #First Estimation |
|
3749 | #First Estimation | |
3743 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) |
|
3750 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) | |
3744 |
|
3751 | |||
3745 | #Most-Accurate Second Estimation |
|
3752 | #Most-Accurate Second Estimation | |
3746 | phi1_aux = ph0 - ph1 |
|
3753 | phi1_aux = ph0 - ph1 | |
3747 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
3754 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
3748 | #Direction Cosine 1 |
|
3755 | #Direction Cosine 1 | |
3749 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) |
|
3756 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) | |
3750 |
|
3757 | |||
3751 | #Searching the correct Direction Cosine |
|
3758 | #Searching the correct Direction Cosine | |
3752 | cosdir0_aux = cosdir0[:,i] |
|
3759 | cosdir0_aux = cosdir0[:,i] | |
3753 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
3760 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
3754 | #Minimum Distance |
|
3761 | #Minimum Distance | |
3755 | cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
3762 | cosDiff = (cosdir1 - cosdir0_aux)**2 | |
3756 | indcos = cosDiff.argmin(axis = 1) |
|
3763 | indcos = cosDiff.argmin(axis = 1) | |
3757 | #Saving Value obtained |
|
3764 | #Saving Value obtained | |
3758 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
3765 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
3759 |
|
3766 | |||
3760 | return cosdir0, cosdir |
|
3767 | return cosdir0, cosdir | |
3761 |
|
3768 | |||
3762 | def __calculateAOA(self, cosdir, azimuth): |
|
3769 | def __calculateAOA(self, cosdir, azimuth): | |
3763 | cosdirX = cosdir[:,0] |
|
3770 | cosdirX = cosdir[:,0] | |
3764 | cosdirY = cosdir[:,1] |
|
3771 | cosdirY = cosdir[:,1] | |
3765 |
|
3772 | |||
3766 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
3773 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
3767 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east |
|
3774 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east | |
3768 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
3775 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
3769 |
|
3776 | |||
3770 | return angles |
|
3777 | return angles | |
3771 |
|
3778 | |||
3772 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
3779 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
3773 |
|
3780 | |||
3774 | Ramb = 375 #Ramb = c/(2*PRF) |
|
3781 | Ramb = 375 #Ramb = c/(2*PRF) | |
3775 | Re = 6371 #Earth Radius |
|
3782 | Re = 6371 #Earth Radius | |
3776 | heights = numpy.zeros(Ranges.shape) |
|
3783 | heights = numpy.zeros(Ranges.shape) | |
3777 |
|
3784 | |||
3778 | R_aux = numpy.array([0,1,2])*Ramb |
|
3785 | R_aux = numpy.array([0,1,2])*Ramb | |
3779 | R_aux = R_aux.reshape(1,R_aux.size) |
|
3786 | R_aux = R_aux.reshape(1,R_aux.size) | |
3780 |
|
3787 | |||
3781 | Ranges = Ranges.reshape(Ranges.size,1) |
|
3788 | Ranges = Ranges.reshape(Ranges.size,1) | |
3782 |
|
3789 | |||
3783 | Ri = Ranges + R_aux |
|
3790 | Ri = Ranges + R_aux | |
3784 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
3791 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
3785 |
|
3792 | |||
3786 | #Check if there is a height between 70 and 110 km |
|
3793 | #Check if there is a height between 70 and 110 km | |
3787 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
3794 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
3788 | ind_h = numpy.where(h_bool == 1)[0] |
|
3795 | ind_h = numpy.where(h_bool == 1)[0] | |
3789 |
|
3796 | |||
3790 | hCorr = hi[ind_h, :] |
|
3797 | hCorr = hi[ind_h, :] | |
3791 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
3798 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
3792 |
|
3799 | |||
3793 | hCorr = hi[ind_hCorr] |
|
3800 | hCorr = hi[ind_hCorr] | |
3794 | heights[ind_h] = hCorr |
|
3801 | heights[ind_h] = hCorr | |
3795 |
|
3802 | |||
3796 | #Setting Error |
|
3803 | #Setting Error | |
3797 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
3804 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
3798 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
3805 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
3799 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] |
|
3806 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] | |
3800 | error[indError] = 0 |
|
3807 | error[indError] = 0 | |
3801 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
3808 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
3802 | error[indInvalid2] = 14 |
|
3809 | error[indInvalid2] = 14 | |
3803 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
3810 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
3804 | error[indInvalid1] = 13 |
|
3811 | error[indInvalid1] = 13 | |
3805 |
|
3812 | |||
3806 | return heights, error |
|
3813 | return heights, error | |
3807 |
|
3814 | |||
3808 | def getPhasePairs(self, channelPositions): |
|
3815 | def getPhasePairs(self, channelPositions): | |
3809 | chanPos = numpy.array(channelPositions) |
|
3816 | chanPos = numpy.array(channelPositions) | |
3810 | listOper = list(itertools.combinations(range(5),2)) |
|
3817 | listOper = list(itertools.combinations(range(5),2)) | |
3811 |
|
3818 | |||
3812 | distances = numpy.zeros(4) |
|
3819 | distances = numpy.zeros(4) | |
3813 | axisX = [] |
|
3820 | axisX = [] | |
3814 | axisY = [] |
|
3821 | axisY = [] | |
3815 | distX = numpy.zeros(3) |
|
3822 | distX = numpy.zeros(3) | |
3816 | distY = numpy.zeros(3) |
|
3823 | distY = numpy.zeros(3) | |
3817 | ix = 0 |
|
3824 | ix = 0 | |
3818 | iy = 0 |
|
3825 | iy = 0 | |
3819 |
|
3826 | |||
3820 | pairX = numpy.zeros((2,2)) |
|
3827 | pairX = numpy.zeros((2,2)) | |
3821 | pairY = numpy.zeros((2,2)) |
|
3828 | pairY = numpy.zeros((2,2)) | |
3822 |
|
3829 | |||
3823 | for i in range(len(listOper)): |
|
3830 | for i in range(len(listOper)): | |
3824 | pairi = listOper[i] |
|
3831 | pairi = listOper[i] | |
3825 |
|
3832 | |||
3826 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) |
|
3833 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) | |
3827 |
|
3834 | |||
3828 | if posDif[0] == 0: |
|
3835 | if posDif[0] == 0: | |
3829 | axisY.append(pairi) |
|
3836 | axisY.append(pairi) | |
3830 | distY[iy] = posDif[1] |
|
3837 | distY[iy] = posDif[1] | |
3831 | iy += 1 |
|
3838 | iy += 1 | |
3832 | elif posDif[1] == 0: |
|
3839 | elif posDif[1] == 0: | |
3833 | axisX.append(pairi) |
|
3840 | axisX.append(pairi) | |
3834 | distX[ix] = posDif[0] |
|
3841 | distX[ix] = posDif[0] | |
3835 | ix += 1 |
|
3842 | ix += 1 | |
3836 |
|
3843 | |||
3837 | for i in range(2): |
|
3844 | for i in range(2): | |
3838 | if i==0: |
|
3845 | if i==0: | |
3839 | dist0 = distX |
|
3846 | dist0 = distX | |
3840 | axis0 = axisX |
|
3847 | axis0 = axisX | |
3841 | else: |
|
3848 | else: | |
3842 | dist0 = distY |
|
3849 | dist0 = distY | |
3843 | axis0 = axisY |
|
3850 | axis0 = axisY | |
3844 |
|
3851 | |||
3845 | side = numpy.argsort(dist0)[:-1] |
|
3852 | side = numpy.argsort(dist0)[:-1] | |
3846 | axis0 = numpy.array(axis0)[side,:] |
|
3853 | axis0 = numpy.array(axis0)[side,:] | |
3847 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) |
|
3854 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) | |
3848 | axis1 = numpy.unique(numpy.reshape(axis0,4)) |
|
3855 | axis1 = numpy.unique(numpy.reshape(axis0,4)) | |
3849 | side = axis1[axis1 != chanC] |
|
3856 | side = axis1[axis1 != chanC] | |
3850 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] |
|
3857 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] | |
3851 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] |
|
3858 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] | |
3852 | if diff1<0: |
|
3859 | if diff1<0: | |
3853 | chan2 = side[0] |
|
3860 | chan2 = side[0] | |
3854 | d2 = numpy.abs(diff1) |
|
3861 | d2 = numpy.abs(diff1) | |
3855 | chan1 = side[1] |
|
3862 | chan1 = side[1] | |
3856 | d1 = numpy.abs(diff2) |
|
3863 | d1 = numpy.abs(diff2) | |
3857 | else: |
|
3864 | else: | |
3858 | chan2 = side[1] |
|
3865 | chan2 = side[1] | |
3859 | d2 = numpy.abs(diff2) |
|
3866 | d2 = numpy.abs(diff2) | |
3860 | chan1 = side[0] |
|
3867 | chan1 = side[0] | |
3861 | d1 = numpy.abs(diff1) |
|
3868 | d1 = numpy.abs(diff1) | |
3862 |
|
3869 | |||
3863 | if i==0: |
|
3870 | if i==0: | |
3864 | chanCX = chanC |
|
3871 | chanCX = chanC | |
3865 | chan1X = chan1 |
|
3872 | chan1X = chan1 | |
3866 | chan2X = chan2 |
|
3873 | chan2X = chan2 | |
3867 | distances[0:2] = numpy.array([d1,d2]) |
|
3874 | distances[0:2] = numpy.array([d1,d2]) | |
3868 | else: |
|
3875 | else: | |
3869 | chanCY = chanC |
|
3876 | chanCY = chanC | |
3870 | chan1Y = chan1 |
|
3877 | chan1Y = chan1 | |
3871 | chan2Y = chan2 |
|
3878 | chan2Y = chan2 | |
3872 | distances[2:4] = numpy.array([d1,d2]) |
|
3879 | distances[2:4] = numpy.array([d1,d2]) | |
3873 | # axisXsides = numpy.reshape(axisX[ix,:],4) |
|
3880 | # axisXsides = numpy.reshape(axisX[ix,:],4) | |
3874 | # |
|
3881 | # | |
3875 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) |
|
3882 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) | |
3876 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) |
|
3883 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) | |
3877 | # |
|
3884 | # | |
3878 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] |
|
3885 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] | |
3879 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] |
|
3886 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] | |
3880 | # channel25X = int(pairX[0,ind25X]) |
|
3887 | # channel25X = int(pairX[0,ind25X]) | |
3881 | # channel20X = int(pairX[1,ind20X]) |
|
3888 | # channel20X = int(pairX[1,ind20X]) | |
3882 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] |
|
3889 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] | |
3883 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] |
|
3890 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] | |
3884 | # channel25Y = int(pairY[0,ind25Y]) |
|
3891 | # channel25Y = int(pairY[0,ind25Y]) | |
3885 | # channel20Y = int(pairY[1,ind20Y]) |
|
3892 | # channel20Y = int(pairY[1,ind20Y]) | |
3886 |
|
3893 | |||
3887 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] |
|
3894 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] | |
3888 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] |
|
3895 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] | |
3889 |
|
3896 | |||
3890 | return pairslist, distances |
|
3897 | return pairslist, distances | |
3891 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): |
|
3898 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): | |
3892 | # |
|
3899 | # | |
3893 | # arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
3900 | # arrayAOA = numpy.zeros((phases.shape[0],3)) | |
3894 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) |
|
3901 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) | |
3895 | # |
|
3902 | # | |
3896 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
3903 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
3897 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
3904 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
3898 | # arrayAOA[:,2] = cosDirError |
|
3905 | # arrayAOA[:,2] = cosDirError | |
3899 | # |
|
3906 | # | |
3900 | # azimuthAngle = arrayAOA[:,0] |
|
3907 | # azimuthAngle = arrayAOA[:,0] | |
3901 | # zenithAngle = arrayAOA[:,1] |
|
3908 | # zenithAngle = arrayAOA[:,1] | |
3902 | # |
|
3909 | # | |
3903 | # #Setting Error |
|
3910 | # #Setting Error | |
3904 | # #Number 3: AOA not fesible |
|
3911 | # #Number 3: AOA not fesible | |
3905 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
3912 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
3906 | # error[indInvalid] = 3 |
|
3913 | # error[indInvalid] = 3 | |
3907 | # #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
3914 | # #Number 4: Large difference in AOAs obtained from different antenna baselines | |
3908 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
3915 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
3909 | # error[indInvalid] = 4 |
|
3916 | # error[indInvalid] = 4 | |
3910 | # return arrayAOA, error |
|
3917 | # return arrayAOA, error | |
3911 | # |
|
3918 | # | |
3912 | # def __getDirectionCosines(self, arrayPhase, pairsList): |
|
3919 | # def __getDirectionCosines(self, arrayPhase, pairsList): | |
3913 | # |
|
3920 | # | |
3914 | # #Initializing some variables |
|
3921 | # #Initializing some variables | |
3915 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
3922 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
3916 | # ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
3923 | # ang_aux = ang_aux.reshape(1,ang_aux.size) | |
3917 | # |
|
3924 | # | |
3918 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
3925 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
3919 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
3926 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
3920 | # |
|
3927 | # | |
3921 | # |
|
3928 | # | |
3922 | # for i in range(2): |
|
3929 | # for i in range(2): | |
3923 | # #First Estimation |
|
3930 | # #First Estimation | |
3924 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] |
|
3931 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] | |
3925 | # #Dealias |
|
3932 | # #Dealias | |
3926 | # indcsi = numpy.where(phi0_aux > numpy.pi) |
|
3933 | # indcsi = numpy.where(phi0_aux > numpy.pi) | |
3927 | # phi0_aux[indcsi] -= 2*numpy.pi |
|
3934 | # phi0_aux[indcsi] -= 2*numpy.pi | |
3928 | # indcsi = numpy.where(phi0_aux < -numpy.pi) |
|
3935 | # indcsi = numpy.where(phi0_aux < -numpy.pi) | |
3929 | # phi0_aux[indcsi] += 2*numpy.pi |
|
3936 | # phi0_aux[indcsi] += 2*numpy.pi | |
3930 | # #Direction Cosine 0 |
|
3937 | # #Direction Cosine 0 | |
3931 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) |
|
3938 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) | |
3932 | # |
|
3939 | # | |
3933 | # #Most-Accurate Second Estimation |
|
3940 | # #Most-Accurate Second Estimation | |
3934 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] |
|
3941 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] | |
3935 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
3942 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
3936 | # #Direction Cosine 1 |
|
3943 | # #Direction Cosine 1 | |
3937 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) |
|
3944 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) | |
3938 | # |
|
3945 | # | |
3939 | # #Searching the correct Direction Cosine |
|
3946 | # #Searching the correct Direction Cosine | |
3940 | # cosdir0_aux = cosdir0[:,i] |
|
3947 | # cosdir0_aux = cosdir0[:,i] | |
3941 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
3948 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
3942 | # #Minimum Distance |
|
3949 | # #Minimum Distance | |
3943 | # cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
3950 | # cosDiff = (cosdir1 - cosdir0_aux)**2 | |
3944 | # indcos = cosDiff.argmin(axis = 1) |
|
3951 | # indcos = cosDiff.argmin(axis = 1) | |
3945 | # #Saving Value obtained |
|
3952 | # #Saving Value obtained | |
3946 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
3953 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
3947 | # |
|
3954 | # | |
3948 | # return cosdir0, cosdir |
|
3955 | # return cosdir0, cosdir | |
3949 | # |
|
3956 | # | |
3950 | # def __calculateAOA(self, cosdir, azimuth): |
|
3957 | # def __calculateAOA(self, cosdir, azimuth): | |
3951 | # cosdirX = cosdir[:,0] |
|
3958 | # cosdirX = cosdir[:,0] | |
3952 | # cosdirY = cosdir[:,1] |
|
3959 | # cosdirY = cosdir[:,1] | |
3953 | # |
|
3960 | # | |
3954 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
3961 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
3955 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east |
|
3962 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east | |
3956 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
3963 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
3957 | # |
|
3964 | # | |
3958 | # return angles |
|
3965 | # return angles | |
3959 | # |
|
3966 | # | |
3960 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
3967 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
3961 | # |
|
3968 | # | |
3962 | # Ramb = 375 #Ramb = c/(2*PRF) |
|
3969 | # Ramb = 375 #Ramb = c/(2*PRF) | |
3963 | # Re = 6371 #Earth Radius |
|
3970 | # Re = 6371 #Earth Radius | |
3964 | # heights = numpy.zeros(Ranges.shape) |
|
3971 | # heights = numpy.zeros(Ranges.shape) | |
3965 | # |
|
3972 | # | |
3966 | # R_aux = numpy.array([0,1,2])*Ramb |
|
3973 | # R_aux = numpy.array([0,1,2])*Ramb | |
3967 | # R_aux = R_aux.reshape(1,R_aux.size) |
|
3974 | # R_aux = R_aux.reshape(1,R_aux.size) | |
3968 | # |
|
3975 | # | |
3969 | # Ranges = Ranges.reshape(Ranges.size,1) |
|
3976 | # Ranges = Ranges.reshape(Ranges.size,1) | |
3970 | # |
|
3977 | # | |
3971 | # Ri = Ranges + R_aux |
|
3978 | # Ri = Ranges + R_aux | |
3972 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
3979 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
3973 | # |
|
3980 | # | |
3974 | # #Check if there is a height between 70 and 110 km |
|
3981 | # #Check if there is a height between 70 and 110 km | |
3975 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
3982 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
3976 | # ind_h = numpy.where(h_bool == 1)[0] |
|
3983 | # ind_h = numpy.where(h_bool == 1)[0] | |
3977 | # |
|
3984 | # | |
3978 | # hCorr = hi[ind_h, :] |
|
3985 | # hCorr = hi[ind_h, :] | |
3979 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
3986 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
3980 | # |
|
3987 | # | |
3981 | # hCorr = hi[ind_hCorr] |
|
3988 | # hCorr = hi[ind_hCorr] | |
3982 | # heights[ind_h] = hCorr |
|
3989 | # heights[ind_h] = hCorr | |
3983 | # |
|
3990 | # | |
3984 | # #Setting Error |
|
3991 | # #Setting Error | |
3985 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
3992 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
3986 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
3993 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
3987 | # |
|
3994 | # | |
3988 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
3995 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
3989 | # error[indInvalid2] = 14 |
|
3996 | # error[indInvalid2] = 14 | |
3990 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
3997 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
3991 | # error[indInvalid1] = 13 |
|
3998 | # error[indInvalid1] = 13 | |
3992 | # |
|
3999 | # | |
3993 | # return heights, error |
|
4000 | # return heights, error | |
3994 | No newline at end of file |
|
4001 |
1 | NO CONTENT: modified file, binary diff hidden |
|
NO CONTENT: modified file, binary diff hidden |
@@ -1,1 +1,1 | |||||
1 | <Project description="read bltr data sswma file" id="191" name="test1"><ReadUnit datatype="testBLTRReader" id="1911" inputId="0" name="testBLTRReader"><Operation id="19111" name="run" priority="1" type="self"><Parameter format="str" id="191111" name="datatype" value="testBLTRReader" /><Parameter format="str" id="191112" name="path" value="/media/erick/6F60F7113095A154/BLTR" /><Parameter format="date" id="191113" name="startDate" value="2017/01/17" /><Parameter format="date" id="191114" name="endDate" value="2018/01/01" /><Parameter format="time" id="191115" name="startTime" value="00:00:00" /><Parameter format="time" id="191116" name="endTime" value="23:59:59" /><Parameter format="str" id="191118" name="ext" value="sswma" /></Operation></ReadUnit><ProcUnit datatype="BLTRProcess" id="1912" inputId="1911" name="BLTRProcess"><Operation id="19121" name="run" priority="1" type="self" /><Operation id="19122" name="SnrFilter" priority="2" type="self"><Parameter format="float" id="191221" name="snr_val" value="-20" /><Parameter format="int" id="191222" name="modetofilter" value="2" /></Operation><Operation id="19123" name="OutliersFilter" priority="3" type="self"><Parameter format="str" id="191231" name="svalue" value="meridional" /><Parameter format="str" id="191232" name="svalue2" value="inTime" /><Parameter format="float" id="191233" name="method" value="0" /><Parameter format="float" id="191234" name="factor" value="2" /><Parameter format="float" id="191235" name="filter" value="0" /><Parameter format="float" id="191236" name="npoints" value="9" /><Parameter format="int" id="191237" name="modetofilter" value="2" /></Operation><Operation id="19124" name="OutliersFilter" priority="4" type="self"><Parameter format="str" id="191241" name="svalue" value="zonal" /><Parameter format="str" id="191242" name="svalue2" value="inTime" /><Parameter format="float" id="191243" name="method" value="0" /><Parameter format="float" id="191244" name="factor" value="2" /><Parameter format="float" id="191245" name="filter" value="0" /><Parameter format="float" id="191246" name="npoints" value="9" /><Parameter format="int" id="191247" name="modetofilter" value="2" /></Operation><Operation id="19125" name="OutliersFilter" priority="5" type="self"><Parameter format="str" id="191251" name="svalue" value="vertical" /><Parameter format="str" id="191252" name="svalue2" value="inHeight" /><Parameter format="float" id="191253" name="method" value="0" /><Parameter format="float" id="191254" name="factor" value="2" /><Parameter format="float" id="191255" name="filter" value="0" /><Parameter format="float" id="191256" name="npoints" value="9" /><Parameter format="int" id="191257" name="modetofilter" value="2" /></Operation><Operation id="19126" name="prePlot" priority="6" type="self"><Parameter format="int" id="191261" name="modeselect" value="1" /></Operation><Operation id="19127" name="WindProfilerPlot" priority="7" type="other"><Parameter format="int" id="191271" name="id" value="1" /><Parameter format="str" id="191272" name="wintitle" value="" /><Parameter format="intlist" id="191273" name="channelList" value="0" /><Parameter format="int" id="191274" name="SNRmin" value="-10" /><Parameter format="int" id="191275" name="SNRmax" value="50" /><Parameter format="float" id="191276" name="SNRthresh" value="0" /><Parameter format="float" id="191277" name="xmin" value="0" /><Parameter format="float" id="191278" name="xmax" value="24" /><Parameter format="float" id="191279" name="ymax" value="3" /><Parameter format="float" id="191280" name="zmin" value="-20" /><Parameter format="float" id="191281" name="zmax" value="20" /><Parameter format="float" id="191282" name="zmin_ver" value="-200" /><Parameter format="float" id="191283" name="zmax_ver" value="200" /></Operation><Operation id="19128" name="prePlot" priority="8" type="self"><Parameter format="int" id="191281" name="modeselect" value="2" /></Operation><Operation id="19129" name="WindProfilerPlot" priority="9" type="other"><Parameter format="int" id="191291" name="id" value="2" /><Parameter format="str" id="191292" name="wintitle" value="" /><Parameter format="bool" id="191293" name="save" value="1" /><Parameter format="str" id="191294" name="figpath" value="/media/erick/6F60F7113095A154/BLTR/" /><Parameter format="int" id="191295" name="SNRmin" value="-20" /><Parameter format="int" id="191296" name="SNRmax" value="40" /><Parameter format="float" id="191297" name="SNRthresh" value="0" /><Parameter format="float" id="191298" name="xmin" value="0" /><Parameter format="float" id="191299" name="xmax" value="24" /><Parameter format="float" id="191300" name="ymin" value="0" /><Parameter format="float" id="191301" name="ymax" value="10" /><Parameter format="float" id="191302" name="zmin" value="-4" /><Parameter format="float" id="191303" name="zmax" value="4" /><Parameter format="float" id="191304" name="zmin_ver" value="-200" /><Parameter format="float" id="191305" name="zmax_ver" value="200" /></Operation></ProcUnit></Project> No newline at end of file |
|
1 | <Project description="Segundo Test" id="191" name="test01"><ReadUnit datatype="VoltageReader" id="1911" inputId="0" name="VoltageReader"><Operation id="19111" name="run" priority="1" type="self"><Parameter format="str" id="191111" name="datatype" value="VoltageReader" /><Parameter format="str" id="191112" name="path" value="/home/erick/Documents/Data/Claire_Data/raw" /><Parameter format="date" id="191113" name="startDate" value="2017/07/26" /><Parameter format="date" id="191114" name="endDate" value="2017/07/26" /><Parameter format="time" id="191115" name="startTime" value="10:02:00" /><Parameter format="time" id="191116" name="endTime" value="10:11:00" /><Parameter format="int" id="191118" name="online" value="0" /><Parameter format="int" id="191119" name="walk" value="1" /></Operation><Operation id="19112" name="printNumberOfBlock" priority="2" type="self" /></ReadUnit><ProcUnit datatype="SpectraProc" id="1913" inputId="1912" name="SpectraProc"><Operation id="19131" name="run" priority="1" type="self"><Parameter format="int" id="191311" name="nFFTPoints" value="128" /><Parameter format="pairslist" id="191312" name="pairsList" value="(0,1),(0,2),(1,2)" /></Operation><Operation id="19132" name="removeDC" priority="2" type="self" /><Operation id="19133" name="IncohInt" priority="3" type="external"><Parameter format="float" id="191331" name="n" value="30" /></Operation><Operation id="19134" name="CrossSpectraPlot" priority="4" type="other"><Parameter format="str" id="191341" name="phase_cmap" value="bwr" /><Parameter format="int" id="191342" name="id" value="2005" /><Parameter format="str" id="191343" name="wintitle" value="CrossSpectraPlot_ShortPulse" /><Parameter format="str" id="191344" name="xaxis" value="Velocity" /><Parameter format="float" id="191345" name="ymin" value="1" /><Parameter format="int" id="191346" name="ymax" value="7" /><Parameter format="int" id="191347" name="zmin" value="15" /><Parameter format="int" id="191348" name="zmax" value="60" /><Parameter format="int" id="191349" name="save" value="2" /><Parameter format="str" id="191350" name="figpath" value="/media/erick/6F60F7113095A154/CLAIRE/CLAIRE_WINDS_2MHZ/Images" /></Operation></ProcUnit><ProcUnit datatype="VoltageProc" id="1912" inputId="1911" name="VoltageProc"><Operation id="19121" name="run" priority="1" type="self" /><Operation id="19122" name="setRadarFrequency" priority="2" type="self"><Parameter format="float" id="191221" name="frequency" value="445.09e6" /></Operation><Operation id="19123" name="selectHeights" priority="3" type="self"><Parameter format="float" id="191231" name="minHei" value="0" /><Parameter format="float" id="191232" name="maxHei" value="64" /></Operation></ProcUnit><ProcUnit datatype="Parameters" id="1914" inputId="1913" name="ParametersProc"><Operation id="19141" name="run" priority="1" type="self" /><Operation id="19142" name="GaussianFit" priority="2" type="other" /></ProcUnit></Project> No newline at end of file |
@@ -1,171 +1,171 | |||||
1 | ''' |
|
1 | ''' | |
2 | Created on Nov 09, 2016 |
|
2 | Created on Nov 09, 2016 | |
3 |
|
3 | |||
4 | @author: roj- LouVD |
|
4 | @author: roj- LouVD | |
5 | ''' |
|
5 | ''' | |
6 | import os, sys |
|
6 | import os, sys | |
7 |
|
7 | |||
8 |
|
8 | |||
9 | path = os.path.split(os.getcwd())[0] |
|
9 | path = os.path.split(os.getcwd())[0] | |
10 | path = os.path.split(path)[0] |
|
10 | path = os.path.split(path)[0] | |
11 |
|
11 | |||
12 | sys.path.insert(0, path) |
|
12 | sys.path.insert(0, path) | |
13 |
|
13 | |||
14 | from schainpy.controller import Project |
|
14 | from schainpy.controller import Project | |
15 |
|
15 | |||
16 | filename = 'test1.xml' |
|
16 | filename = 'test1.xml' | |
17 | # path = '/home/jespinoza/workspace/data/bltr/' |
|
17 | # path = '/home/jespinoza/workspace/data/bltr/' | |
18 | path = '/media/erick/6F60F7113095A154/BLTR/' |
|
18 | path = '/media/erick/6F60F7113095A154/BLTR/' | |
19 | desc = "read bltr data sswma file" |
|
19 | desc = "read bltr data sswma file" | |
20 | figpath = '/media/erick/6F60F7113095A154/BLTR/' |
|
20 | figpath = '/media/erick/6F60F7113095A154/BLTR/' | |
21 | pathhdf5 = '/tmp/' |
|
21 | pathhdf5 = '/tmp/' | |
22 |
|
22 | |||
23 | controllerObj = Project() |
|
23 | controllerObj = Project() | |
24 |
|
24 | |||
25 | controllerObj.setup(id = '191', name='test1', description=desc) |
|
25 | controllerObj.setup(id = '191', name='test1', description=desc) | |
26 | readUnitConfObj = controllerObj.addReadUnit(datatype='testBLTRReader', |
|
26 | readUnitConfObj = controllerObj.addReadUnit(datatype='testBLTRReader', | |
27 | path=path, |
|
27 | path=path, | |
28 | startDate='2017/01/17', |
|
28 | startDate='2017/01/17', | |
29 | endDate='2018/01/01', |
|
29 | endDate='2018/01/01', | |
30 | startTime='00:00:00', |
|
30 | startTime='00:00:00', | |
31 | endTime='23:59:59', |
|
31 | endTime='23:59:59', | |
32 | ext='sswma') |
|
32 | ext='sswma') | |
33 |
|
33 | |||
34 | procUnitConfObj1 = controllerObj.addProcUnit(datatype='BLTRProcess', |
|
34 | procUnitConfObj1 = controllerObj.addProcUnit(datatype='BLTRProcess', | |
35 | inputId=readUnitConfObj.getId()) |
|
35 | inputId=readUnitConfObj.getId()) | |
36 |
|
36 | |||
37 | '''-------------------------------------------Processing--------------------------------------------''' |
|
37 | '''-------------------------------------------Processing--------------------------------------------''' | |
38 |
|
38 | |||
39 | '''MODE 1: LOW ATMOSPHERE: 0- 3 km''' |
|
39 | '''MODE 1: LOW ATMOSPHERE: 0- 3 km''' | |
40 | # opObj10 = procUnitConfObj1.addOperation(name='SnrFilter') |
|
40 | # opObj10 = procUnitConfObj1.addOperation(name='SnrFilter') | |
41 | # opObj10.addParameter(name='snr_val', value='-10', format='float') |
|
41 | # opObj10.addParameter(name='snr_val', value='-10', format='float') | |
42 | # opObj10.addParameter(name='modetofilter', value='1', format='int') |
|
42 | # opObj10.addParameter(name='modetofilter', value='1', format='int') | |
43 | # |
|
43 | # | |
44 | # opObj10 = procUnitConfObj1.addOperation(name='OutliersFilter') |
|
44 | # opObj10 = procUnitConfObj1.addOperation(name='OutliersFilter') | |
45 | # opObj10.addParameter(name='svalue', value='meridional', format='str') |
|
45 | # opObj10.addParameter(name='svalue', value='meridional', format='str') | |
46 | # opObj10.addParameter(name='svalue2', value='inTime', format='str') |
|
46 | # opObj10.addParameter(name='svalue2', value='inTime', format='str') | |
47 | # opObj10.addParameter(name='method', value='0', format='float') |
|
47 | # opObj10.addParameter(name='method', value='0', format='float') | |
48 | # opObj10.addParameter(name='factor', value='1', format='float') |
|
48 | # opObj10.addParameter(name='factor', value='1', format='float') | |
49 | # opObj10.addParameter(name='filter', value='0', format='float') |
|
49 | # opObj10.addParameter(name='filter', value='0', format='float') | |
50 | # opObj10.addParameter(name='npoints', value='5', format='float') |
|
50 | # opObj10.addParameter(name='npoints', value='5', format='float') | |
51 | # opObj10.addParameter(name='modetofilter', value='1', format='int') |
|
51 | # opObj10.addParameter(name='modetofilter', value='1', format='int') | |
52 | # # |
|
52 | # # | |
53 | # opObj10 = procUnitConfObj1.addOperation(name='OutliersFilter') |
|
53 | # opObj10 = procUnitConfObj1.addOperation(name='OutliersFilter') | |
54 | # opObj10.addParameter(name='svalue', value='zonal', format='str') |
|
54 | # opObj10.addParameter(name='svalue', value='zonal', format='str') | |
55 | # opObj10.addParameter(name='svalue2', value='inTime', format='str') |
|
55 | # opObj10.addParameter(name='svalue2', value='inTime', format='str') | |
56 | # opObj10.addParameter(name='method', value='0', format='float') |
|
56 | # opObj10.addParameter(name='method', value='0', format='float') | |
57 | # opObj10.addParameter(name='factor', value='1', format='float') |
|
57 | # opObj10.addParameter(name='factor', value='1', format='float') | |
58 | # opObj10.addParameter(name='filter', value='0', format='float') |
|
58 | # opObj10.addParameter(name='filter', value='0', format='float') | |
59 | # opObj10.addParameter(name='npoints', value='5', format='float') |
|
59 | # opObj10.addParameter(name='npoints', value='5', format='float') | |
60 | # opObj10.addParameter(name='modetofilter', value='1', format='int') |
|
60 | # opObj10.addParameter(name='modetofilter', value='1', format='int') | |
61 | # # |
|
61 | # # | |
62 | # opObj10 = procUnitConfObj1.addOperation(name='OutliersFilter') |
|
62 | # opObj10 = procUnitConfObj1.addOperation(name='OutliersFilter') | |
63 | # opObj10.addParameter(name='svalue', value='vertical', format='str') |
|
63 | # opObj10.addParameter(name='svalue', value='vertical', format='str') | |
64 | # opObj10.addParameter(name='svalue2', value='inHeight', format='str') |
|
64 | # opObj10.addParameter(name='svalue2', value='inHeight', format='str') | |
65 | # opObj10.addParameter(name='method', value='0', format='float') |
|
65 | # opObj10.addParameter(name='method', value='0', format='float') | |
66 | # opObj10.addParameter(name='factor', value='2', format='float') |
|
66 | # opObj10.addParameter(name='factor', value='2', format='float') | |
67 | # opObj10.addParameter(name='filter', value='0', format='float') |
|
67 | # opObj10.addParameter(name='filter', value='0', format='float') | |
68 | # opObj10.addParameter(name='npoints', value='9', format='float') |
|
68 | # opObj10.addParameter(name='npoints', value='9', format='float') | |
69 | # opObj10.addParameter(name='modetofilter', value='1', format='int') |
|
69 | # opObj10.addParameter(name='modetofilter', value='1', format='int') | |
70 | # |
|
70 | # | |
71 |
|
71 | |||
72 | ''' MODE 2: 0 - 10 km ''' |
|
72 | ''' MODE 2: 0 - 10 km ''' | |
73 |
|
73 | |||
74 | opObj10 = procUnitConfObj1.addOperation(name='SnrFilter') |
|
74 | opObj10 = procUnitConfObj1.addOperation(name='SnrFilter') | |
75 | opObj10.addParameter(name='snr_val', value='-20', format='float') |
|
75 | opObj10.addParameter(name='snr_val', value='-20', format='float') | |
76 | opObj10.addParameter(name='modetofilter', value='2', format='int') |
|
76 | opObj10.addParameter(name='modetofilter', value='2', format='int') | |
77 |
|
77 | |||
78 | opObj10 = procUnitConfObj1.addOperation(name='OutliersFilter') |
|
78 | opObj10 = procUnitConfObj1.addOperation(name='OutliersFilter') | |
79 | opObj10.addParameter(name='svalue', value='meridional', format='str') |
|
79 | opObj10.addParameter(name='svalue', value='meridional', format='str') | |
80 | opObj10.addParameter(name='svalue2', value='inTime', format='str') |
|
80 | opObj10.addParameter(name='svalue2', value='inTime', format='str') | |
81 | opObj10.addParameter(name='method', value='0', format='float') |
|
81 | opObj10.addParameter(name='method', value='0', format='float') | |
82 | opObj10.addParameter(name='factor', value='2', format='float') |
|
82 | opObj10.addParameter(name='factor', value='2', format='float') | |
83 | opObj10.addParameter(name='filter', value='0', format='float') |
|
83 | opObj10.addParameter(name='filter', value='0', format='float') | |
84 | opObj10.addParameter(name='npoints', value='9', format='float') |
|
84 | opObj10.addParameter(name='npoints', value='9', format='float') | |
85 | opObj10.addParameter(name='modetofilter', value='2', format='int') |
|
85 | opObj10.addParameter(name='modetofilter', value='2', format='int') | |
86 | # # |
|
86 | # # | |
87 | opObj10 = procUnitConfObj1.addOperation(name='OutliersFilter') |
|
87 | opObj10 = procUnitConfObj1.addOperation(name='OutliersFilter') | |
88 | opObj10.addParameter(name='svalue', value='zonal', format='str') |
|
88 | opObj10.addParameter(name='svalue', value='zonal', format='str') | |
89 | opObj10.addParameter(name='svalue2', value='inTime', format='str') |
|
89 | opObj10.addParameter(name='svalue2', value='inTime', format='str') | |
90 | opObj10.addParameter(name='method', value='0', format='float') |
|
90 | opObj10.addParameter(name='method', value='0', format='float') | |
91 | opObj10.addParameter(name='factor', value='2', format='float') |
|
91 | opObj10.addParameter(name='factor', value='2', format='float') | |
92 | opObj10.addParameter(name='filter', value='0', format='float') |
|
92 | opObj10.addParameter(name='filter', value='0', format='float') | |
93 | opObj10.addParameter(name='npoints', value='9', format='float') |
|
93 | opObj10.addParameter(name='npoints', value='9', format='float') | |
94 | opObj10.addParameter(name='modetofilter', value='2', format='int') |
|
94 | opObj10.addParameter(name='modetofilter', value='2', format='int') | |
95 | # # |
|
95 | # # | |
96 | opObj10 = procUnitConfObj1.addOperation(name='OutliersFilter') |
|
96 | opObj10 = procUnitConfObj1.addOperation(name='OutliersFilter') | |
97 | opObj10.addParameter(name='svalue', value='vertical', format='str') |
|
97 | opObj10.addParameter(name='svalue', value='vertical', format='str') | |
98 | opObj10.addParameter(name='svalue2', value='inHeight', format='str') |
|
98 | opObj10.addParameter(name='svalue2', value='inHeight', format='str') | |
99 | opObj10.addParameter(name='method', value='0', format='float') |
|
99 | opObj10.addParameter(name='method', value='0', format='float') | |
100 | opObj10.addParameter(name='factor', value='2', format='float') |
|
100 | opObj10.addParameter(name='factor', value='2', format='float') | |
101 | opObj10.addParameter(name='filter', value='0', format='float') |
|
101 | opObj10.addParameter(name='filter', value='0', format='float') | |
102 | opObj10.addParameter(name='npoints', value='9', format='float') |
|
102 | opObj10.addParameter(name='npoints', value='9', format='float') | |
103 | opObj10.addParameter(name='modetofilter', value='2', format='int') |
|
103 | opObj10.addParameter(name='modetofilter', value='2', format='int') | |
104 |
|
104 | |||
105 | # '''-----------------------------------------Writing-------------------------------------------''' |
|
105 | # '''-----------------------------------------Writing-------------------------------------------''' | |
106 | # |
|
106 | # | |
107 | # # opObj10 = procUnitConfObj1.addOperation(name='testBLTRWriter',optype='other') |
|
107 | # # opObj10 = procUnitConfObj1.addOperation(name='testBLTRWriter',optype='other') | |
108 | # # opObj10.addParameter(name='path', value = pathhdf5) |
|
108 | # # opObj10.addParameter(name='path', value = pathhdf5) | |
109 | # # opObj10.addParameter(name='modetowrite', value = '2',format='int') |
|
109 | # # opObj10.addParameter(name='modetowrite', value = '2',format='int') | |
110 | # # |
|
110 | # # | |
111 | # # opObj10 = procUnitConfObj1.addOperation(name='testBLTRWriter',optype='other') |
|
111 | # # opObj10 = procUnitConfObj1.addOperation(name='testBLTRWriter',optype='other') | |
112 | # # opObj10.addParameter(name='path', value = pathhdf5) |
|
112 | # # opObj10.addParameter(name='path', value = pathhdf5) | |
113 | # # opObj10.addParameter(name='modetowrite', value = '1',format='int') |
|
113 | # # opObj10.addParameter(name='modetowrite', value = '1',format='int') | |
114 | # |
|
114 | # | |
115 | # '''----------------------------------------Plotting--------------------------------------------''' |
|
115 | # '''----------------------------------------Plotting--------------------------------------------''' | |
116 | # |
|
116 | # | |
117 | opObj10 = procUnitConfObj1.addOperation(name='prePlot') |
|
117 | opObj10 = procUnitConfObj1.addOperation(name='prePlot') | |
118 | opObj10.addParameter(name='modeselect',value='1',format='int') |
|
118 | opObj10.addParameter(name='modeselect',value='1',format='int') | |
119 | # # |
|
119 | # # | |
120 | opObj10 = procUnitConfObj1.addOperation(name='WindProfilerPlot', optype='other') |
|
120 | opObj10 = procUnitConfObj1.addOperation(name='WindProfilerPlot', optype='other') | |
121 | opObj10.addParameter(name='id', value='1', format='int') |
|
121 | opObj10.addParameter(name='id', value='1', format='int') | |
122 | opObj10.addParameter(name='wintitle', value='', format='str') |
|
122 | opObj10.addParameter(name='wintitle', value='', format='str') | |
123 | opObj10.addParameter(name='channelList', value='0', format='intlist') |
|
123 | opObj10.addParameter(name='channelList', value='0', format='intlist') | |
124 | #opObj10.addParameter(name='save', value='1', format='bool') |
|
124 | #opObj10.addParameter(name='save', value='1', format='bool') | |
125 | #opObj10.addParameter(name='figpath', value=figpath, format='str') |
|
125 | #opObj10.addParameter(name='figpath', value=figpath, format='str') | |
126 | opObj10.addParameter(name='SNRmin', value='-10', format='int') |
|
126 | opObj10.addParameter(name='SNRmin', value='-10', format='int') | |
127 | opObj10.addParameter(name='SNRmax', value='50', format='int') |
|
127 | opObj10.addParameter(name='SNRmax', value='50', format='int') | |
128 | opObj10.addParameter(name='SNRthresh', value='0', format='float') |
|
128 | opObj10.addParameter(name='SNRthresh', value='0', format='float') | |
129 | opObj10.addParameter(name='xmin', value='0', format='float') |
|
129 | opObj10.addParameter(name='xmin', value='0', format='float') | |
130 | opObj10.addParameter(name='xmax', value='24', format='float') |
|
130 | opObj10.addParameter(name='xmax', value='24', format='float') | |
131 | opObj10.addParameter(name='ymax', value='3', format='float') |
|
131 | opObj10.addParameter(name='ymax', value='3', format='float') | |
132 | opObj10.addParameter(name='zmin', value='-20', format='float') |
|
132 | opObj10.addParameter(name='zmin', value='-20', format='float') | |
133 | opObj10.addParameter(name='zmax', value='20', format='float') |
|
133 | opObj10.addParameter(name='zmax', value='20', format='float') | |
134 | opObj10.addParameter(name='zmin_ver', value='-200', format='float') |
|
134 | opObj10.addParameter(name='zmin_ver', value='-200', format='float') | |
135 | opObj10.addParameter(name='zmax_ver', value='200', format='float') |
|
135 | opObj10.addParameter(name='zmax_ver', value='200', format='float') | |
136 | #opObj10.addParameter(name='showprofile', value='1', format='bool') |
|
136 | #opObj10.addParameter(name='showprofile', value='1', format='bool') | |
137 | #opObj10.addParameter(name='show', value='1', format='bool') |
|
137 | #opObj10.addParameter(name='show', value='1', format='bool') | |
138 |
|
138 | |||
139 | opObj10 = procUnitConfObj1.addOperation(name='prePlot') |
|
139 | opObj10 = procUnitConfObj1.addOperation(name='prePlot') | |
140 | opObj10.addParameter(name='modeselect',value='2',format='int') |
|
140 | opObj10.addParameter(name='modeselect',value='2',format='int') | |
141 | # |
|
141 | # | |
142 | opObj10 = procUnitConfObj1.addOperation(name='WindProfilerPlot', optype='other') |
|
142 | opObj10 = procUnitConfObj1.addOperation(name='WindProfilerPlot', optype='other') | |
143 | opObj10.addParameter(name='id', value='2', format='int') |
|
143 | opObj10.addParameter(name='id', value='2', format='int') | |
144 | opObj10.addParameter(name='wintitle', value='', format='str') |
|
144 | opObj10.addParameter(name='wintitle', value='', format='str') | |
145 | #opObj10.addParameter(name='channelList', value='0', format='intlist') |
|
145 | #opObj10.addParameter(name='channelList', value='0', format='intlist') | |
146 | opObj10.addParameter(name='save', value='1', format='bool') |
|
146 | opObj10.addParameter(name='save', value='1', format='bool') | |
147 | opObj10.addParameter(name='figpath', value=figpath, format='str') |
|
147 | opObj10.addParameter(name='figpath', value=figpath, format='str') | |
148 | opObj10.addParameter(name='SNRmin', value='-20', format='int') |
|
148 | opObj10.addParameter(name='SNRmin', value='-20', format='int') | |
149 | opObj10.addParameter(name='SNRmax', value='40', format='int') |
|
149 | opObj10.addParameter(name='SNRmax', value='40', format='int') | |
150 | opObj10.addParameter(name='SNRthresh', value='0', format='float') |
|
150 | opObj10.addParameter(name='SNRthresh', value='0', format='float') | |
151 | opObj10.addParameter(name='xmin', value='0', format='float') |
|
151 | opObj10.addParameter(name='xmin', value='0', format='float') | |
152 | opObj10.addParameter(name='xmax', value='24', format='float') |
|
152 | opObj10.addParameter(name='xmax', value='24', format='float') | |
153 | opObj10.addParameter(name='ymin', value='0', format='float') |
|
153 | opObj10.addParameter(name='ymin', value='0', format='float') | |
154 |
opObj10.addParameter(name='ymax', value=' |
|
154 | opObj10.addParameter(name='ymax', value='7', format='float') | |
155 | opObj10.addParameter(name='zmin', value='-4', format='float') |
|
155 | opObj10.addParameter(name='zmin', value='-4', format='float') | |
156 | opObj10.addParameter(name='zmax', value='4', format='float') |
|
156 | opObj10.addParameter(name='zmax', value='4', format='float') | |
157 | opObj10.addParameter(name='zmin_ver', value='-200', format='float') |
|
157 | opObj10.addParameter(name='zmin_ver', value='-200', format='float') | |
158 | opObj10.addParameter(name='zmax_ver', value='200', format='float') |
|
158 | opObj10.addParameter(name='zmax_ver', value='200', format='float') | |
159 | #opObj10.addParameter(name='showprofile', value='1', format='bool') |
|
159 | #opObj10.addParameter(name='showprofile', value='1', format='bool') | |
160 | #opObj10.addParameter(name='show', value='1', format='bool') |
|
160 | #opObj10.addParameter(name='show', value='1', format='bool') | |
161 |
|
161 | |||
162 | # # print "Escribiendo el archivo XML" |
|
162 | # # print "Escribiendo el archivo XML" | |
163 | # controllerObj.writeXml(filename) |
|
163 | # controllerObj.writeXml(filename) | |
164 | # # print "Leyendo el archivo XML" |
|
164 | # # print "Leyendo el archivo XML" | |
165 | # controllerObj.readXml(filename) |
|
165 | # controllerObj.readXml(filename) | |
166 |
|
166 | |||
167 | # controllerObj.createObjects() |
|
167 | # controllerObj.createObjects() | |
168 | # controllerObj.connectObjects() |
|
168 | # controllerObj.connectObjects() | |
169 | # controllerObj.run() |
|
169 | # controllerObj.run() | |
170 | controllerObj.start() |
|
170 | controllerObj.start() | |
171 |
|
171 |
@@ -1,150 +1,151 | |||||
1 | #!/usr/bin/env python |
|
1 | #!/usr/bin/env python | |
2 | import os, sys |
|
2 | import os, sys | |
3 |
|
3 | |||
4 | # path = os.path.dirname(os.getcwd()) |
|
4 | # path = os.path.dirname(os.getcwd()) | |
5 | # path = os.path.join(path, 'source') |
|
5 | # path = os.path.join(path, 'source') | |
6 | # sys.path.insert(0, '../') |
|
6 | # sys.path.insert(0, '../') | |
7 |
|
7 | |||
8 | from schainpy.controller import Project |
|
8 | from schainpy.controller import Project | |
9 |
|
9 | |||
10 | xmin = '15.5' |
|
10 | xmin = '15.5' | |
11 | xmax = '24' |
|
11 | xmax = '24' | |
12 |
|
12 | |||
13 |
|
13 | |||
14 | desc = "ProcBLTR Test" |
|
14 | desc = "ProcBLTR Test" | |
15 | filename = "ProcBLTR.xml" |
|
15 | filename = "ProcBLTR.xml" | |
16 | figpath = '/media/erick/6F60F7113095A154/BLTR' |
|
16 | figpath = '/media/erick/6F60F7113095A154/BLTR' | |
17 |
|
17 | |||
18 | controllerObj = Project() |
|
18 | controllerObj = Project() | |
19 |
|
19 | |||
20 |
|
20 | |||
21 | controllerObj.setup(id='191', name='test01', description=desc) |
|
21 | controllerObj.setup(id='191', name='test01', description=desc) | |
22 |
|
22 | |||
23 | readUnitConfObj = controllerObj.addReadUnit(datatype='BLTRReader', |
|
23 | readUnitConfObj = controllerObj.addReadUnit(datatype='BLTRReader', | |
24 | path='/media/erick/6F60F7113095A154/BLTR/', |
|
24 | path='/media/erick/6F60F7113095A154/BLTR/', | |
25 |
|
25 | |||
26 | endDate='2017/10/19', |
|
26 | endDate='2017/10/19', | |
27 | startTime='13:00:00', |
|
27 | startTime='13:00:00', | |
28 | startDate='2016/11/8', |
|
28 | startDate='2016/11/8', | |
29 | endTime='23:59:59', |
|
29 | endTime='23:59:59', | |
30 |
|
30 | |||
31 |
|
31 | |||
32 | online=0, |
|
32 | online=0, | |
33 | walk=0, |
|
33 | walk=0, | |
34 | ReadMode='1') |
|
34 | ReadMode='1') | |
35 | # expLabel='') |
|
35 | # expLabel='') | |
36 |
|
36 | |||
37 | # opObj11 = readUnitConfObj.addOperation(name='printNumberOfBlock') |
|
37 | # opObj11 = readUnitConfObj.addOperation(name='printNumberOfBlock') | |
38 |
|
38 | |||
39 | procUnitConfObj1 = controllerObj.addProcUnit(datatype='Spectra', inputId=readUnitConfObj.getId()) |
|
39 | procUnitConfObj1 = controllerObj.addProcUnit(datatype='Spectra', inputId=readUnitConfObj.getId()) | |
40 |
|
40 | |||
41 |
|
41 | |||
42 |
|
42 | |||
43 | opObj11 = procUnitConfObj1.addOperation(name='IncohInt', optype='other') |
|
43 | opObj11 = procUnitConfObj1.addOperation(name='IncohInt', optype='other') | |
44 | opObj11.addParameter(name='n', value='3', format='float') |
|
44 | opObj11.addParameter(name='n', value='3', format='float') | |
45 |
|
45 | |||
46 | opObj10 = procUnitConfObj1.addOperation(name='removeDC') |
|
46 | opObj10 = procUnitConfObj1.addOperation(name='removeDC') | |
47 |
|
47 | |||
48 | # opObj10 = procUnitConfObj1.addOperation(name='calcMag') |
|
48 | # opObj10 = procUnitConfObj1.addOperation(name='calcMag') | |
49 |
|
49 | |||
50 | # opObj11 = procUnitConfObj1.addOperation(name='SpectraPlot', optype='other') |
|
50 | # opObj11 = procUnitConfObj1.addOperation(name='SpectraPlot', optype='other') | |
51 | # opObj11.addParameter(name='id', value='21', format='int') |
|
51 | # opObj11.addParameter(name='id', value='21', format='int') | |
52 | # opObj11.addParameter(name='wintitle', value='SpectraCutPlot', format='str') |
|
52 | # opObj11.addParameter(name='wintitle', value='SpectraCutPlot', format='str') | |
53 | # opObj11.addParameter(name='xaxis', value='frequency', format='str') |
|
53 | # opObj11.addParameter(name='xaxis', value='frequency', format='str') | |
54 | # opObj11.addParameter(name='colormap', value='winter', format='str') |
|
54 | # opObj11.addParameter(name='colormap', value='winter', format='str') | |
55 | # opObj11.addParameter(name='xmin', value='-0.005', format='float') |
|
55 | # opObj11.addParameter(name='xmin', value='-0.005', format='float') | |
56 | # opObj11.addParameter(name='xmax', value='0.005', format='float') |
|
56 | # opObj11.addParameter(name='xmax', value='0.005', format='float') | |
57 | # #opObj10 = procUnitConfObj1.addOperation(name='selectChannels') |
|
57 | # #opObj10 = procUnitConfObj1.addOperation(name='selectChannels') | |
58 | # #opObj10.addParameter(name='channelList', value='0,1', format='intlist') |
|
58 | # #opObj10.addParameter(name='channelList', value='0,1', format='intlist') | |
59 | # opObj11 = procUnitConfObj1.addOperation(name='SpectraPlot', optype='other') |
|
59 | # opObj11 = procUnitConfObj1.addOperation(name='SpectraPlot', optype='other') | |
60 | # opObj11.addParameter(name='id', value='21', format='int') |
|
60 | # opObj11.addParameter(name='id', value='21', format='int') | |
61 | # opObj11.addParameter(name='wintitle', value='SpectraPlot', format='str') |
|
61 | # opObj11.addParameter(name='wintitle', value='SpectraPlot', format='str') | |
62 | # #opObj11.addParameter(name='xaxis', value='Velocity', format='str') |
|
62 | # #opObj11.addParameter(name='xaxis', value='Velocity', format='str') | |
63 |
|
63 | |||
64 | # opObj11.addParameter(name='xaxis', value='velocity', format='str') |
|
64 | # opObj11.addParameter(name='xaxis', value='velocity', format='str') | |
65 | # opObj11.addParameter(name='xmin', value='-0.005', format='float') |
|
65 | # opObj11.addParameter(name='xmin', value='-0.005', format='float') | |
66 | # opObj11.addParameter(name='xmax', value='0.005', format='float') |
|
66 | # opObj11.addParameter(name='xmax', value='0.005', format='float') | |
67 |
|
67 | |||
68 | # opObj11.addParameter(name='ymin', value='225', format='float') |
|
68 | # opObj11.addParameter(name='ymin', value='225', format='float') | |
69 | # opObj11.addParameter(name='ymax', value='3000', format='float') |
|
69 | # opObj11.addParameter(name='ymax', value='3000', format='float') | |
70 | # opObj11.addParameter(name='zmin', value='-100', format='int') |
|
70 | # opObj11.addParameter(name='zmin', value='-100', format='int') | |
71 | # opObj11.addParameter(name='zmax', value='-65', format='int') |
|
71 | # opObj11.addParameter(name='zmax', value='-65', format='int') | |
72 |
|
72 | |||
73 | # opObj11 = procUnitConfObj1.addOperation(name='RTIPlot', optype='other') |
|
73 | # opObj11 = procUnitConfObj1.addOperation(name='RTIPlot', optype='other') | |
74 | # opObj11.addParameter(name='id', value='10', format='int') |
|
74 | # opObj11.addParameter(name='id', value='10', format='int') | |
75 | # opObj11.addParameter(name='wintitle', value='RTI', format='str') |
|
75 | # opObj11.addParameter(name='wintitle', value='RTI', format='str') | |
76 | # opObj11.addParameter(name='ymin', value='0', format='float') |
|
76 | # opObj11.addParameter(name='ymin', value='0', format='float') | |
77 | # opObj11.addParameter(name='ymax', value='4000', format='float') |
|
77 | # opObj11.addParameter(name='ymax', value='4000', format='float') | |
78 | # #opObj11.addParameter(name='zmin', value='-100', format='int') |
|
78 | # #opObj11.addParameter(name='zmin', value='-100', format='int') | |
79 | # #opObj11.addParameter(name='zmax', value='-70', format='int') |
|
79 | # #opObj11.addParameter(name='zmax', value='-70', format='int') | |
80 | # opObj11.addParameter(name='zmin', value='-90', format='int') |
|
80 | # opObj11.addParameter(name='zmin', value='-90', format='int') | |
81 | # opObj11.addParameter(name='zmax', value='-40', format='int') |
|
81 | # opObj11.addParameter(name='zmax', value='-40', format='int') | |
82 | # opObj11.addParameter(name='showprofile', value='1', format='int') |
|
82 | # opObj11.addParameter(name='showprofile', value='1', format='int') | |
83 | # opObj11.addParameter(name='timerange', value=str(2*60*60), format='int') |
|
83 | # opObj11.addParameter(name='timerange', value=str(2*60*60), format='int') | |
84 |
|
84 | |||
85 | opObj11 = procUnitConfObj1.addOperation(name='CrossSpectraPlot', optype='other') |
|
85 | opObj11 = procUnitConfObj1.addOperation(name='CrossSpectraPlot', optype='other') | |
86 | procUnitConfObj1.addParameter(name='pairsList', value='(0,1),(0,2),(1,2)', format='pairsList') |
|
86 | procUnitConfObj1.addParameter(name='pairsList', value='(0,1),(0,2),(1,2)', format='pairsList') | |
87 | opObj11.addParameter(name='id', value='2005', format='int') |
|
87 | opObj11.addParameter(name='id', value='2005', format='int') | |
88 | opObj11.addParameter(name='wintitle', value='CrossSpectraPlot_ShortPulse', format='str') |
|
88 | opObj11.addParameter(name='wintitle', value='CrossSpectraPlot_ShortPulse', format='str') | |
89 | # opObj11.addParameter(name='exp_code', value='13', format='int') |
|
89 | # opObj11.addParameter(name='exp_code', value='13', format='int') | |
90 | opObj11.addParameter(name='xaxis', value='Velocity', format='str') |
|
90 | opObj11.addParameter(name='xaxis', value='Velocity', format='str') | |
91 | #opObj11.addParameter(name='xmin', value='-10', format='float') |
|
91 | #opObj11.addParameter(name='xmin', value='-10', format='float') | |
92 | #opObj11.addParameter(name='xmax', value='10', format='float') |
|
92 | #opObj11.addParameter(name='xmax', value='10', format='float') | |
93 | #opObj11.addParameter(name='ymin', value='225', format='float') |
|
93 | #opObj11.addParameter(name='ymin', value='225', format='float') | |
94 | #opObj11.addParameter(name='ymax', value='3000', format='float') |
|
94 | #opObj11.addParameter(name='ymax', value='3000', format='float') | |
95 | #opObj11.addParameter(name='phase_min', value='-4', format='int') |
|
95 | #opObj11.addParameter(name='phase_min', value='-4', format='int') | |
96 | #opObj11.addParameter(name='phase_max', value='4', format='int') |
|
96 | #opObj11.addParameter(name='phase_max', value='4', format='int') | |
97 |
|
97 | |||
98 | # procUnitConfObj2 = controllerObj.addProcUnit(datatype='CorrelationProc', inputId=procUnitConfObj1.getId()) |
|
98 | # procUnitConfObj2 = controllerObj.addProcUnit(datatype='CorrelationProc', inputId=procUnitConfObj1.getId()) | |
99 | # procUnitConfObj2.addParameter(name='pairsList', value='(0,1),(0,2),(1,2)', format='pairsList') |
|
99 | # procUnitConfObj2.addParameter(name='pairsList', value='(0,1),(0,2),(1,2)', format='pairsList') | |
100 |
|
100 | |||
101 | procUnitConfObj2 = controllerObj.addProcUnit(datatype='Parameters', inputId=procUnitConfObj1.getId()) |
|
101 | procUnitConfObj2 = controllerObj.addProcUnit(datatype='Parameters', inputId=procUnitConfObj1.getId()) | |
102 | opObj11 = procUnitConfObj2.addOperation(name='SpectralMoments', optype='other') |
|
102 | opObj11 = procUnitConfObj2.addOperation(name='SpectralMoments', optype='other') | |
103 | opObj22 = procUnitConfObj2.addOperation(name='FullSpectralAnalysis', optype='other') |
|
103 | opObj22 = procUnitConfObj2.addOperation(name='FullSpectralAnalysis', optype='other') | |
|
104 | opObj22.addParameter(name='SNRlimit', value='-4', format='float') | |||
104 | # |
|
105 | # | |
105 | opObj22 = procUnitConfObj2.addOperation(name='WindProfilerPlot', optype='other') |
|
106 | opObj22 = procUnitConfObj2.addOperation(name='WindProfilerPlot', optype='other') | |
106 | opObj22.addParameter(name='id', value='4', format='int') |
|
107 | opObj22.addParameter(name='id', value='4', format='int') | |
107 | opObj22.addParameter(name='wintitle', value='Wind Profiler', format='str') |
|
108 | opObj22.addParameter(name='wintitle', value='Wind Profiler', format='str') | |
108 | opObj22.addParameter(name='save', value='1', format='bool') |
|
109 | opObj22.addParameter(name='save', value='1', format='bool') | |
109 | # opObj22.addParameter(name='figpath', value = '/home/erick/Pictures', format='str') |
|
110 | # opObj22.addParameter(name='figpath', value = '/home/erick/Pictures', format='str') | |
110 |
|
111 | |||
111 | opObj22.addParameter(name='zmin', value='-20', format='int') |
|
112 | opObj22.addParameter(name='zmin', value='-20', format='int') | |
112 | opObj22.addParameter(name='zmax', value='20', format='int') |
|
113 | opObj22.addParameter(name='zmax', value='20', format='int') | |
113 | opObj22.addParameter(name='zmin_ver', value='-250', format='float') |
|
114 | opObj22.addParameter(name='zmin_ver', value='-250', format='float') | |
114 | opObj22.addParameter(name='zmax_ver', value='250', format='float') |
|
115 | opObj22.addParameter(name='zmax_ver', value='250', format='float') | |
115 | opObj22.addParameter(name='SNRmin', value='-5', format='int') |
|
116 | opObj22.addParameter(name='SNRmin', value='-5', format='int') | |
116 | opObj22.addParameter(name='SNRmax', value='30', format='int') |
|
117 | opObj22.addParameter(name='SNRmax', value='30', format='int') | |
117 | # opObj22.addParameter(name='SNRthresh', value='-3.5', format='float') |
|
118 | # opObj22.addParameter(name='SNRthresh', value='-3.5', format='float') | |
118 | opObj22.addParameter(name='xmin', value=0, format='float') |
|
119 | opObj22.addParameter(name='xmin', value='0', format='float') | |
119 | opObj22.addParameter(name='xmax', value=24, format='float') |
|
120 | opObj22.addParameter(name='xmax', value='24', format='float') | |
120 | opObj22.addParameter(name='ymin', value='225', format='float') |
|
121 | opObj22.addParameter(name='ymin', value='225', format='float') | |
121 | #opObj22.addParameter(name='ymax', value='2000', format='float') |
|
122 | #opObj22.addParameter(name='ymax', value='2000', format='float') | |
122 | opObj22.addParameter(name='save', value='1', format='int') |
|
123 | opObj22.addParameter(name='save', value='1', format='int') | |
123 | opObj22.addParameter(name='figpath', value=figpath, format='str') |
|
124 | opObj22.addParameter(name='figpath', value=figpath, format='str') | |
124 |
|
125 | |||
125 |
|
126 | |||
126 | # opObj11.addParameter(name='pairlist', value='(1,0),(0,2),(1,2)', format='pairsList') |
|
127 | # opObj11.addParameter(name='pairlist', value='(1,0),(0,2),(1,2)', format='pairsList') | |
127 | #opObj10 = procUnitConfObj1.addOperation(name='selectHeights') |
|
128 | #opObj10 = procUnitConfObj1.addOperation(name='selectHeights') | |
128 | #opObj10.addParameter(name='minHei', value='225', format='float') |
|
129 | #opObj10.addParameter(name='minHei', value='225', format='float') | |
129 | #opObj10.addParameter(name='maxHei', value='1000', format='float') |
|
130 | #opObj10.addParameter(name='maxHei', value='1000', format='float') | |
130 |
|
131 | |||
131 | # opObj11 = procUnitConfObj1.addOperation(name='CoherenceMap', optype='other') |
|
132 | # opObj11 = procUnitConfObj1.addOperation(name='CoherenceMap', optype='other') | |
132 | # opObj11.addParameter(name='id', value='102', format='int') |
|
133 | # opObj11.addParameter(name='id', value='102', format='int') | |
133 | # opObj11.addParameter(name='wintitle', value='Coherence', format='str') |
|
134 | # opObj11.addParameter(name='wintitle', value='Coherence', format='str') | |
134 | # opObj11.addParameter(name='ymin', value='225', format='float') |
|
135 | # opObj11.addParameter(name='ymin', value='225', format='float') | |
135 | # opObj11.addParameter(name='ymax', value='4000', format='float') |
|
136 | # opObj11.addParameter(name='ymax', value='4000', format='float') | |
136 |
|
137 | |||
137 | # opObj11.addParameter(name='phase_cmap', value='jet', format='str') |
|
138 | # opObj11.addParameter(name='phase_cmap', value='jet', format='str') | |
138 | # opObj11.addParameter(name='xmin', value='8.5', format='float') |
|
139 | # opObj11.addParameter(name='xmin', value='8.5', format='float') | |
139 | # opObj11.addParameter(name='xmax', value='9.5', format='float') |
|
140 | # opObj11.addParameter(name='xmax', value='9.5', format='float') | |
140 | # opObj11.addParameter(name='figpath', value=figpath, format='str') |
|
141 | # opObj11.addParameter(name='figpath', value=figpath, format='str') | |
141 | # opObj11.addParameter(name='save', value=1, format='bool') |
|
142 | # opObj11.addParameter(name='save', value=1, format='bool') | |
142 | # opObj11.addParameter(name='pairsList', value='(1,0),(3,2)', format='pairsList') |
|
143 | # opObj11.addParameter(name='pairsList', value='(1,0),(3,2)', format='pairsList') | |
143 |
|
144 | |||
144 | # opObj12 = procUnitConfObj1.addOperation(name='PublishData', optype='other') |
|
145 | # opObj12 = procUnitConfObj1.addOperation(name='PublishData', optype='other') | |
145 | # opObj12.addParameter(name='zeromq', value=1, format='int') |
|
146 | # opObj12.addParameter(name='zeromq', value=1, format='int') | |
146 | # opObj12.addParameter(name='verbose', value=0, format='bool') |
|
147 | # opObj12.addParameter(name='verbose', value=0, format='bool') | |
147 | # opObj12.addParameter(name='server', value='erick2', format='str') |
|
148 | # opObj12.addParameter(name='server', value='erick2', format='str') | |
148 | controllerObj.start() |
|
149 | controllerObj.start() | |
149 |
|
150 | |||
150 |
|
151 |
General Comments 0
You need to be logged in to leave comments.
Login now