@@ -1,82 +1,82 | |||||
1 | #include <Python.h> |
|
1 | #include <Python.h> | |
2 | #include <numpy/arrayobject.h> |
|
2 | #include <numpy/arrayobject.h> | |
3 | #include <math.h> |
|
3 | #include <math.h> | |
4 |
|
4 | |||
5 |
|
5 | |||
6 | static PyObject *hildebrand_sekhon(PyObject *self, PyObject *args) { |
|
6 | static PyObject *hildebrand_sekhon(PyObject *self, PyObject *args) { | |
7 | double navg; |
|
7 | double navg; | |
8 | PyObject *data_obj, *data_array; |
|
8 | PyObject *data_obj, *data_array; | |
9 |
|
9 | |||
10 | if (!PyArg_ParseTuple(args, "Od", &data_obj, &navg)) { |
|
10 | if (!PyArg_ParseTuple(args, "Od", &data_obj, &navg)) { | |
11 | return NULL; |
|
11 | return NULL; | |
12 | } |
|
12 | } | |
13 |
|
13 | |||
14 | data_array = PyArray_FROM_OTF(data_obj, NPY_FLOAT64, NPY_IN_ARRAY); |
|
14 | data_array = PyArray_FROM_OTF(data_obj, NPY_FLOAT64, NPY_IN_ARRAY); | |
15 |
|
15 | |||
16 | if (data_array == NULL) { |
|
16 | if (data_array == NULL) { | |
17 | Py_XDECREF(data_array); |
|
17 | Py_XDECREF(data_array); | |
18 | Py_XDECREF(data_obj); |
|
18 | Py_XDECREF(data_obj); | |
19 | return NULL; |
|
19 | return NULL; | |
20 | } |
|
20 | } | |
21 | double *sortdata = (double*)PyArray_DATA(data_array); |
|
21 | double *sortdata = (double*)PyArray_DATA(data_array); | |
22 | int lenOfData = (int)PyArray_SIZE(data_array) ; |
|
22 | int lenOfData = (int)PyArray_SIZE(data_array) ; | |
23 | double nums_min = lenOfData*0.2; |
|
23 | double nums_min = lenOfData*0.2; | |
24 | if (nums_min <= 5) nums_min = 5; |
|
24 | if (nums_min <= 5) nums_min = 5; | |
25 | double sump = 0; |
|
25 | double sump = 0; | |
26 | double sumq = 0; |
|
26 | double sumq = 0; | |
27 |
|
|
27 | long j = 0; | |
28 | int cont = 1; |
|
28 | int cont = 1; | |
29 | double rtest = 0; |
|
29 | double rtest = 0; | |
30 | while ((cont == 1) && (j < lenOfData)) { |
|
30 | while ((cont == 1) && (j < lenOfData)) { | |
31 | sump = sump + sortdata[j]; |
|
31 | sump = sump + sortdata[j]; | |
32 | sumq = sumq + pow(sortdata[j], 2); |
|
32 | sumq = sumq + pow(sortdata[j], 2); | |
33 | if (j > nums_min) { |
|
33 | if (j > nums_min) { | |
34 | rtest = (double)j/(j-1) + 1/navg; |
|
34 | rtest = (double)j/(j-1) + 1/navg; | |
35 | if ((sumq*j) > (rtest*pow(sump, 2))) { |
|
35 | if ((sumq*j) > (rtest*pow(sump, 2))) { | |
36 | j = j - 1; |
|
36 | j = j - 1; | |
37 | sump = sump - sortdata[j]; |
|
37 | sump = sump - sortdata[j]; | |
38 | sumq = sumq - pow(sortdata[j],2); |
|
38 | sumq = sumq - pow(sortdata[j],2); | |
39 | cont = 0; |
|
39 | cont = 0; | |
40 | } |
|
40 | } | |
41 | } |
|
41 | } | |
42 | j = j + 1; |
|
42 | j = j + 1; | |
43 | } |
|
43 | } | |
44 |
|
44 | |||
45 | double lnoise = sump / j; |
|
45 | double lnoise = sump / j; | |
46 |
|
46 | |||
47 | Py_DECREF(data_array); |
|
47 | Py_DECREF(data_array); | |
48 |
|
48 | |||
49 | return PyLong_FromLong(lnoise); |
|
49 | // return PyLong_FromLong(lnoise); | |
50 |
|
|
50 | return PyFloat_FromDouble(lnoise); | |
51 | } |
|
51 | } | |
52 |
|
52 | |||
53 |
|
53 | |||
54 | static PyMethodDef noiseMethods[] = { |
|
54 | static PyMethodDef noiseMethods[] = { | |
55 | { "hildebrand_sekhon", hildebrand_sekhon, METH_VARARGS, "Get noise with hildebrand_sekhon algorithm" }, |
|
55 | { "hildebrand_sekhon", hildebrand_sekhon, METH_VARARGS, "Get noise with hildebrand_sekhon algorithm" }, | |
56 | { NULL, NULL, 0, NULL } |
|
56 | { NULL, NULL, 0, NULL } | |
57 | }; |
|
57 | }; | |
58 |
|
58 | |||
59 | #if PY_MAJOR_VERSION >= 3 |
|
59 | #if PY_MAJOR_VERSION >= 3 | |
60 |
|
60 | |||
61 | static struct PyModuleDef noisemodule = { |
|
61 | static struct PyModuleDef noisemodule = { | |
62 | PyModuleDef_HEAD_INIT, |
|
62 | PyModuleDef_HEAD_INIT, | |
63 | "_noise", |
|
63 | "_noise", | |
64 | "Get noise with hildebrand_sekhon algorithm", |
|
64 | "Get noise with hildebrand_sekhon algorithm", | |
65 | -1, |
|
65 | -1, | |
66 | noiseMethods |
|
66 | noiseMethods | |
67 | }; |
|
67 | }; | |
68 |
|
68 | |||
69 | #endif |
|
69 | #endif | |
70 |
|
70 | |||
71 | #if PY_MAJOR_VERSION >= 3 |
|
71 | #if PY_MAJOR_VERSION >= 3 | |
72 | PyMODINIT_FUNC PyInit__noise(void) { |
|
72 | PyMODINIT_FUNC PyInit__noise(void) { | |
73 | Py_Initialize(); |
|
73 | Py_Initialize(); | |
74 | import_array(); |
|
74 | import_array(); | |
75 | return PyModule_Create(&noisemodule); |
|
75 | return PyModule_Create(&noisemodule); | |
76 | } |
|
76 | } | |
77 | #else |
|
77 | #else | |
78 | PyMODINIT_FUNC init_noise() { |
|
78 | PyMODINIT_FUNC init_noise() { | |
79 | Py_InitModule("_noise", noiseMethods); |
|
79 | Py_InitModule("_noise", noiseMethods); | |
80 | import_array(); |
|
80 | import_array(); | |
81 | } |
|
81 | } | |
82 | #endif |
|
82 | #endif |
@@ -1,1066 +1,1069 | |||||
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory |
|
1 | # Copyright (c) 2012-2020 Jicamarca Radio Observatory | |
2 | # All rights reserved. |
|
2 | # All rights reserved. | |
3 | # |
|
3 | # | |
4 | # Distributed under the terms of the BSD 3-clause license. |
|
4 | # Distributed under the terms of the BSD 3-clause license. | |
5 | """Definition of diferent Data objects for different types of data |
|
5 | """Definition of diferent Data objects for different types of data | |
6 |
|
6 | |||
7 | Here you will find the diferent data objects for the different types |
|
7 | Here you will find the diferent data objects for the different types | |
8 | of data, this data objects must be used as dataIn or dataOut objects in |
|
8 | of data, this data objects must be used as dataIn or dataOut objects in | |
9 | processing units and operations. Currently the supported data objects are: |
|
9 | processing units and operations. Currently the supported data objects are: | |
10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters |
|
10 | Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters | |
11 | """ |
|
11 | """ | |
12 |
|
12 | |||
13 | import copy |
|
13 | import copy | |
14 | import numpy |
|
14 | import numpy | |
15 | import datetime |
|
15 | import datetime | |
16 | import json |
|
16 | import json | |
17 |
|
17 | |||
18 | import schainpy.admin |
|
18 | import schainpy.admin | |
19 | from schainpy.utils import log |
|
19 | from schainpy.utils import log | |
20 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
20 | from .jroheaderIO import SystemHeader, RadarControllerHeader | |
21 | from schainpy.model.data import _noise |
|
21 | from schainpy.model.data import _noise | |
22 |
|
22 | |||
23 |
|
23 | |||
24 | def getNumpyDtype(dataTypeCode): |
|
24 | def getNumpyDtype(dataTypeCode): | |
25 |
|
25 | |||
26 | if dataTypeCode == 0: |
|
26 | if dataTypeCode == 0: | |
27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
27 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) | |
28 | elif dataTypeCode == 1: |
|
28 | elif dataTypeCode == 1: | |
29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
29 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) | |
30 | elif dataTypeCode == 2: |
|
30 | elif dataTypeCode == 2: | |
31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
31 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) | |
32 | elif dataTypeCode == 3: |
|
32 | elif dataTypeCode == 3: | |
33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
33 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) | |
34 | elif dataTypeCode == 4: |
|
34 | elif dataTypeCode == 4: | |
35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
35 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
36 | elif dataTypeCode == 5: |
|
36 | elif dataTypeCode == 5: | |
37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
37 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) | |
38 | else: |
|
38 | else: | |
39 | raise ValueError('dataTypeCode was not defined') |
|
39 | raise ValueError('dataTypeCode was not defined') | |
40 |
|
40 | |||
41 | return numpyDtype |
|
41 | return numpyDtype | |
42 |
|
42 | |||
43 |
|
43 | |||
44 | def getDataTypeCode(numpyDtype): |
|
44 | def getDataTypeCode(numpyDtype): | |
45 |
|
45 | |||
46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
46 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): | |
47 | datatype = 0 |
|
47 | datatype = 0 | |
48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
48 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): | |
49 | datatype = 1 |
|
49 | datatype = 1 | |
50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
50 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): | |
51 | datatype = 2 |
|
51 | datatype = 2 | |
52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
52 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): | |
53 | datatype = 3 |
|
53 | datatype = 3 | |
54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
54 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): | |
55 | datatype = 4 |
|
55 | datatype = 4 | |
56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
56 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): | |
57 | datatype = 5 |
|
57 | datatype = 5 | |
58 | else: |
|
58 | else: | |
59 | datatype = None |
|
59 | datatype = None | |
60 |
|
60 | |||
61 | return datatype |
|
61 | return datatype | |
62 |
|
62 | |||
63 |
|
63 | |||
64 | def hildebrand_sekhon(data, navg): |
|
64 | def hildebrand_sekhon(data, navg): | |
65 | """ |
|
65 | """ | |
66 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
66 | This method is for the objective determination of the noise level in Doppler spectra. This | |
67 | implementation technique is based on the fact that the standard deviation of the spectral |
|
67 | implementation technique is based on the fact that the standard deviation of the spectral | |
68 | densities is equal to the mean spectral density for white Gaussian noise |
|
68 | densities is equal to the mean spectral density for white Gaussian noise | |
69 |
|
69 | |||
70 | Inputs: |
|
70 | Inputs: | |
71 | Data : heights |
|
71 | Data : heights | |
72 | navg : numbers of averages |
|
72 | navg : numbers of averages | |
73 |
|
73 | |||
74 | Return: |
|
74 | Return: | |
75 | mean : noise's level |
|
75 | mean : noise's level | |
76 | """ |
|
76 | """ | |
77 |
|
77 | |||
78 | sortdata = numpy.sort(data, axis=None) |
|
78 | sortdata = numpy.sort(data, axis=None) | |
79 | ''' |
|
79 | ''' | |
80 | lenOfData = len(sortdata) |
|
80 | lenOfData = len(sortdata) | |
81 | nums_min = lenOfData*0.2 |
|
81 | nums_min = lenOfData*0.2 | |
82 |
|
82 | |||
83 | if nums_min <= 5: |
|
83 | if nums_min <= 5: | |
84 |
|
84 | |||
85 | nums_min = 5 |
|
85 | nums_min = 5 | |
86 |
|
86 | |||
87 | sump = 0. |
|
87 | sump = 0. | |
88 | sumq = 0. |
|
88 | sumq = 0. | |
89 |
|
89 | |||
90 | j = 0 |
|
90 | j = 0 | |
91 | cont = 1 |
|
91 | cont = 1 | |
92 |
|
92 | |||
93 | while((cont == 1)and(j < lenOfData)): |
|
93 | while((cont == 1)and(j < lenOfData)): | |
94 |
|
94 | |||
95 | sump += sortdata[j] |
|
95 | sump += sortdata[j] | |
96 | sumq += sortdata[j]**2 |
|
96 | sumq += sortdata[j]**2 | |
97 |
|
97 | |||
98 | if j > nums_min: |
|
98 | if j > nums_min: | |
99 | rtest = float(j)/(j-1) + 1.0/navg |
|
99 | rtest = float(j)/(j-1) + 1.0/navg | |
100 | if ((sumq*j) > (rtest*sump**2)): |
|
100 | if ((sumq*j) > (rtest*sump**2)): | |
101 | j = j - 1 |
|
101 | j = j - 1 | |
102 | sump = sump - sortdata[j] |
|
102 | sump = sump - sortdata[j] | |
103 | sumq = sumq - sortdata[j]**2 |
|
103 | sumq = sumq - sortdata[j]**2 | |
104 | cont = 0 |
|
104 | cont = 0 | |
105 |
|
105 | |||
106 | j += 1 |
|
106 | j += 1 | |
107 |
|
107 | |||
108 | lnoise = sump / j |
|
108 | lnoise = sump / j | |
109 | ''' |
|
109 | ''' | |
110 | return _noise.hildebrand_sekhon(sortdata, navg) |
|
110 | return _noise.hildebrand_sekhon(sortdata, navg) | |
111 |
|
111 | |||
112 |
|
112 | |||
113 | class Beam: |
|
113 | class Beam: | |
114 |
|
114 | |||
115 | def __init__(self): |
|
115 | def __init__(self): | |
116 | self.codeList = [] |
|
116 | self.codeList = [] | |
117 | self.azimuthList = [] |
|
117 | self.azimuthList = [] | |
118 | self.zenithList = [] |
|
118 | self.zenithList = [] | |
119 |
|
119 | |||
120 |
|
120 | |||
121 | class GenericData(object): |
|
121 | class GenericData(object): | |
122 |
|
122 | |||
123 | flagNoData = True |
|
123 | flagNoData = True | |
124 |
|
124 | |||
125 | def copy(self, inputObj=None): |
|
125 | def copy(self, inputObj=None): | |
126 |
|
126 | |||
127 | if inputObj == None: |
|
127 | if inputObj == None: | |
128 | return copy.deepcopy(self) |
|
128 | return copy.deepcopy(self) | |
129 |
|
129 | |||
130 | for key in list(inputObj.__dict__.keys()): |
|
130 | for key in list(inputObj.__dict__.keys()): | |
131 |
|
131 | |||
132 | attribute = inputObj.__dict__[key] |
|
132 | attribute = inputObj.__dict__[key] | |
133 |
|
133 | |||
134 | # If this attribute is a tuple or list |
|
134 | # If this attribute is a tuple or list | |
135 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
135 | if type(inputObj.__dict__[key]) in (tuple, list): | |
136 | self.__dict__[key] = attribute[:] |
|
136 | self.__dict__[key] = attribute[:] | |
137 | continue |
|
137 | continue | |
138 |
|
138 | |||
139 | # If this attribute is another object or instance |
|
139 | # If this attribute is another object or instance | |
140 | if hasattr(attribute, '__dict__'): |
|
140 | if hasattr(attribute, '__dict__'): | |
141 | self.__dict__[key] = attribute.copy() |
|
141 | self.__dict__[key] = attribute.copy() | |
142 | continue |
|
142 | continue | |
143 |
|
143 | |||
144 | self.__dict__[key] = inputObj.__dict__[key] |
|
144 | self.__dict__[key] = inputObj.__dict__[key] | |
145 |
|
145 | |||
146 | def deepcopy(self): |
|
146 | def deepcopy(self): | |
147 |
|
147 | |||
148 | return copy.deepcopy(self) |
|
148 | return copy.deepcopy(self) | |
149 |
|
149 | |||
150 | def isEmpty(self): |
|
150 | def isEmpty(self): | |
151 |
|
151 | |||
152 | return self.flagNoData |
|
152 | return self.flagNoData | |
153 |
|
153 | |||
154 | def isReady(self): |
|
154 | def isReady(self): | |
155 |
|
155 | |||
156 | return not self.flagNoData |
|
156 | return not self.flagNoData | |
157 |
|
157 | |||
158 |
|
158 | |||
159 | class JROData(GenericData): |
|
159 | class JROData(GenericData): | |
160 |
|
160 | |||
161 | systemHeaderObj = SystemHeader() |
|
161 | systemHeaderObj = SystemHeader() | |
162 | radarControllerHeaderObj = RadarControllerHeader() |
|
162 | radarControllerHeaderObj = RadarControllerHeader() | |
163 | type = None |
|
163 | type = None | |
164 | datatype = None # dtype but in string |
|
164 | datatype = None # dtype but in string | |
165 | nProfiles = None |
|
165 | nProfiles = None | |
166 | heightList = None |
|
166 | heightList = None | |
167 | channelList = None |
|
167 | channelList = None | |
168 | flagDiscontinuousBlock = False |
|
168 | flagDiscontinuousBlock = False | |
169 | useLocalTime = False |
|
169 | useLocalTime = False | |
170 | utctime = None |
|
170 | utctime = None | |
171 | timeZone = None |
|
171 | timeZone = None | |
172 | dstFlag = None |
|
172 | dstFlag = None | |
173 | errorCount = None |
|
173 | errorCount = None | |
174 | blocksize = None |
|
174 | blocksize = None | |
175 | flagDecodeData = False # asumo q la data no esta decodificada |
|
175 | flagDecodeData = False # asumo q la data no esta decodificada | |
176 | flagDeflipData = False # asumo q la data no esta sin flip |
|
176 | flagDeflipData = False # asumo q la data no esta sin flip | |
177 | flagShiftFFT = False |
|
177 | flagShiftFFT = False | |
178 | nCohInt = None |
|
178 | nCohInt = None | |
179 | windowOfFilter = 1 |
|
179 | windowOfFilter = 1 | |
180 | C = 3e8 |
|
180 | C = 3e8 | |
181 | frequency = 49.92e6 |
|
181 | frequency = 49.92e6 | |
182 | realtime = False |
|
182 | realtime = False | |
183 | beacon_heiIndexList = None |
|
183 | beacon_heiIndexList = None | |
184 | last_block = None |
|
184 | last_block = None | |
185 | blocknow = None |
|
185 | blocknow = None | |
186 | azimuth = None |
|
186 | azimuth = None | |
187 | zenith = None |
|
187 | zenith = None | |
188 | beam = Beam() |
|
188 | beam = Beam() | |
189 | profileIndex = None |
|
189 | profileIndex = None | |
190 | error = None |
|
190 | error = None | |
191 | data = None |
|
191 | data = None | |
192 | nmodes = None |
|
192 | nmodes = None | |
193 | metadata_list = ['heightList', 'timeZone', 'type'] |
|
193 | metadata_list = ['heightList', 'timeZone', 'type'] | |
194 |
|
194 | |||
195 | def __str__(self): |
|
195 | def __str__(self): | |
196 |
|
196 | |||
197 | return '{} - {}'.format(self.type, self.datatime()) |
|
197 | return '{} - {}'.format(self.type, self.datatime()) | |
198 |
|
198 | |||
199 | def getNoise(self): |
|
199 | def getNoise(self): | |
200 |
|
200 | |||
201 | raise NotImplementedError |
|
201 | raise NotImplementedError | |
202 |
|
202 | |||
203 | @property |
|
203 | @property | |
204 | def nChannels(self): |
|
204 | def nChannels(self): | |
205 |
|
205 | |||
206 | return len(self.channelList) |
|
206 | return len(self.channelList) | |
207 |
|
207 | |||
208 | @property |
|
208 | @property | |
209 | def channelIndexList(self): |
|
209 | def channelIndexList(self): | |
210 |
|
210 | |||
211 | return list(range(self.nChannels)) |
|
211 | return list(range(self.nChannels)) | |
212 |
|
212 | |||
213 | @property |
|
213 | @property | |
214 | def nHeights(self): |
|
214 | def nHeights(self): | |
215 |
|
215 | |||
216 | return len(self.heightList) |
|
216 | return len(self.heightList) | |
217 |
|
217 | |||
218 | def getDeltaH(self): |
|
218 | def getDeltaH(self): | |
219 |
|
219 | |||
220 | return self.heightList[1] - self.heightList[0] |
|
220 | return self.heightList[1] - self.heightList[0] | |
221 |
|
221 | |||
222 | @property |
|
222 | @property | |
223 | def ltctime(self): |
|
223 | def ltctime(self): | |
224 |
|
224 | |||
225 | if self.useLocalTime: |
|
225 | if self.useLocalTime: | |
226 | return self.utctime - self.timeZone * 60 |
|
226 | return self.utctime - self.timeZone * 60 | |
227 |
|
227 | |||
228 | return self.utctime |
|
228 | return self.utctime | |
229 |
|
229 | |||
230 | @property |
|
230 | @property | |
231 | def datatime(self): |
|
231 | def datatime(self): | |
232 |
|
232 | |||
233 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
233 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) | |
234 | return datatimeValue |
|
234 | return datatimeValue | |
235 |
|
235 | |||
236 | def getTimeRange(self): |
|
236 | def getTimeRange(self): | |
237 |
|
237 | |||
238 | datatime = [] |
|
238 | datatime = [] | |
239 |
|
239 | |||
240 | datatime.append(self.ltctime) |
|
240 | datatime.append(self.ltctime) | |
241 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
241 | datatime.append(self.ltctime + self.timeInterval + 1) | |
242 |
|
242 | |||
243 | datatime = numpy.array(datatime) |
|
243 | datatime = numpy.array(datatime) | |
244 |
|
244 | |||
245 | return datatime |
|
245 | return datatime | |
246 |
|
246 | |||
247 | def getFmaxTimeResponse(self): |
|
247 | def getFmaxTimeResponse(self): | |
248 |
|
248 | |||
249 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
249 | period = (10**-6) * self.getDeltaH() / (0.15) | |
250 |
|
250 | |||
251 | PRF = 1. / (period * self.nCohInt) |
|
251 | PRF = 1. / (period * self.nCohInt) | |
252 |
|
252 | |||
253 | fmax = PRF |
|
253 | fmax = PRF | |
254 |
|
254 | |||
255 | return fmax |
|
255 | return fmax | |
256 |
|
256 | |||
257 | def getFmax(self): |
|
257 | def getFmax(self): | |
258 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
258 | PRF = 1. / (self.ippSeconds * self.nCohInt) | |
259 |
|
259 | |||
260 | fmax = PRF |
|
260 | fmax = PRF | |
261 | return fmax |
|
261 | return fmax | |
262 |
|
262 | |||
263 | def getVmax(self): |
|
263 | def getVmax(self): | |
264 |
|
264 | |||
265 | _lambda = self.C / self.frequency |
|
265 | _lambda = self.C / self.frequency | |
266 |
|
266 | |||
267 | vmax = self.getFmax() * _lambda / 2 |
|
267 | vmax = self.getFmax() * _lambda / 2 | |
268 |
|
268 | |||
269 | return vmax |
|
269 | return vmax | |
270 |
|
270 | |||
271 | @property |
|
271 | @property | |
272 | def ippSeconds(self): |
|
272 | def ippSeconds(self): | |
273 | ''' |
|
273 | ''' | |
274 | ''' |
|
274 | ''' | |
275 | return self.radarControllerHeaderObj.ippSeconds |
|
275 | return self.radarControllerHeaderObj.ippSeconds | |
276 |
|
276 | |||
277 | @ippSeconds.setter |
|
277 | @ippSeconds.setter | |
278 | def ippSeconds(self, ippSeconds): |
|
278 | def ippSeconds(self, ippSeconds): | |
279 | ''' |
|
279 | ''' | |
280 | ''' |
|
280 | ''' | |
281 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
281 | self.radarControllerHeaderObj.ippSeconds = ippSeconds | |
282 |
|
282 | |||
283 | @property |
|
283 | @property | |
284 | def code(self): |
|
284 | def code(self): | |
285 | ''' |
|
285 | ''' | |
286 | ''' |
|
286 | ''' | |
287 | return self.radarControllerHeaderObj.code |
|
287 | return self.radarControllerHeaderObj.code | |
288 |
|
288 | |||
289 | @code.setter |
|
289 | @code.setter | |
290 | def code(self, code): |
|
290 | def code(self, code): | |
291 | ''' |
|
291 | ''' | |
292 | ''' |
|
292 | ''' | |
293 | self.radarControllerHeaderObj.code = code |
|
293 | self.radarControllerHeaderObj.code = code | |
294 |
|
294 | |||
295 | @property |
|
295 | @property | |
296 | def nCode(self): |
|
296 | def nCode(self): | |
297 | ''' |
|
297 | ''' | |
298 | ''' |
|
298 | ''' | |
299 | return self.radarControllerHeaderObj.nCode |
|
299 | return self.radarControllerHeaderObj.nCode | |
300 |
|
300 | |||
301 | @nCode.setter |
|
301 | @nCode.setter | |
302 | def nCode(self, ncode): |
|
302 | def nCode(self, ncode): | |
303 | ''' |
|
303 | ''' | |
304 | ''' |
|
304 | ''' | |
305 | self.radarControllerHeaderObj.nCode = ncode |
|
305 | self.radarControllerHeaderObj.nCode = ncode | |
306 |
|
306 | |||
307 | @property |
|
307 | @property | |
308 | def nBaud(self): |
|
308 | def nBaud(self): | |
309 | ''' |
|
309 | ''' | |
310 | ''' |
|
310 | ''' | |
311 | return self.radarControllerHeaderObj.nBaud |
|
311 | return self.radarControllerHeaderObj.nBaud | |
312 |
|
312 | |||
313 | @nBaud.setter |
|
313 | @nBaud.setter | |
314 | def nBaud(self, nbaud): |
|
314 | def nBaud(self, nbaud): | |
315 | ''' |
|
315 | ''' | |
316 | ''' |
|
316 | ''' | |
317 | self.radarControllerHeaderObj.nBaud = nbaud |
|
317 | self.radarControllerHeaderObj.nBaud = nbaud | |
318 |
|
318 | |||
319 | @property |
|
319 | @property | |
320 | def ipp(self): |
|
320 | def ipp(self): | |
321 | ''' |
|
321 | ''' | |
322 | ''' |
|
322 | ''' | |
323 | return self.radarControllerHeaderObj.ipp |
|
323 | return self.radarControllerHeaderObj.ipp | |
324 |
|
324 | |||
325 | @ipp.setter |
|
325 | @ipp.setter | |
326 | def ipp(self, ipp): |
|
326 | def ipp(self, ipp): | |
327 | ''' |
|
327 | ''' | |
328 | ''' |
|
328 | ''' | |
329 | self.radarControllerHeaderObj.ipp = ipp |
|
329 | self.radarControllerHeaderObj.ipp = ipp | |
330 |
|
330 | |||
331 | @property |
|
331 | @property | |
332 | def metadata(self): |
|
332 | def metadata(self): | |
333 | ''' |
|
333 | ''' | |
334 | ''' |
|
334 | ''' | |
335 |
|
335 | |||
336 | return {attr: getattr(self, attr) for attr in self.metadata_list} |
|
336 | return {attr: getattr(self, attr) for attr in self.metadata_list} | |
337 |
|
337 | |||
338 |
|
338 | |||
339 | class Voltage(JROData): |
|
339 | class Voltage(JROData): | |
340 |
|
340 | |||
341 | dataPP_POW = None |
|
341 | dataPP_POW = None | |
342 | dataPP_DOP = None |
|
342 | dataPP_DOP = None | |
343 | dataPP_WIDTH = None |
|
343 | dataPP_WIDTH = None | |
344 | dataPP_SNR = None |
|
344 | dataPP_SNR = None | |
345 |
|
345 | |||
346 | def __init__(self): |
|
346 | def __init__(self): | |
347 | ''' |
|
347 | ''' | |
348 | Constructor |
|
348 | Constructor | |
349 | ''' |
|
349 | ''' | |
350 |
|
350 | |||
351 | self.useLocalTime = True |
|
351 | self.useLocalTime = True | |
352 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
352 | self.radarControllerHeaderObj = RadarControllerHeader() | |
353 | self.systemHeaderObj = SystemHeader() |
|
353 | self.systemHeaderObj = SystemHeader() | |
354 | self.type = "Voltage" |
|
354 | self.type = "Voltage" | |
355 | self.data = None |
|
355 | self.data = None | |
356 | self.nProfiles = None |
|
356 | self.nProfiles = None | |
357 | self.heightList = None |
|
357 | self.heightList = None | |
358 | self.channelList = None |
|
358 | self.channelList = None | |
359 | self.flagNoData = True |
|
359 | self.flagNoData = True | |
360 | self.flagDiscontinuousBlock = False |
|
360 | self.flagDiscontinuousBlock = False | |
361 | self.utctime = None |
|
361 | self.utctime = None | |
362 | self.timeZone = 0 |
|
362 | self.timeZone = 0 | |
363 | self.dstFlag = None |
|
363 | self.dstFlag = None | |
364 | self.errorCount = None |
|
364 | self.errorCount = None | |
365 | self.nCohInt = None |
|
365 | self.nCohInt = None | |
366 | self.blocksize = None |
|
366 | self.blocksize = None | |
367 | self.flagCohInt = False |
|
367 | self.flagCohInt = False | |
368 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
368 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
369 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
369 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
370 | self.flagShiftFFT = False |
|
370 | self.flagShiftFFT = False | |
371 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
371 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil | |
372 | self.profileIndex = 0 |
|
372 | self.profileIndex = 0 | |
373 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', |
|
373 | self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', | |
374 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] |
|
374 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] | |
375 |
|
375 | |||
376 | def getNoisebyHildebrand(self, channel=None): |
|
376 | def getNoisebyHildebrand(self, channel=None): | |
377 | """ |
|
377 | """ | |
378 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
378 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
379 |
|
379 | |||
380 | Return: |
|
380 | Return: | |
381 | noiselevel |
|
381 | noiselevel | |
382 | """ |
|
382 | """ | |
383 |
|
383 | |||
384 | if channel != None: |
|
384 | if channel != None: | |
385 | data = self.data[channel] |
|
385 | data = self.data[channel] | |
386 | nChannels = 1 |
|
386 | nChannels = 1 | |
387 | else: |
|
387 | else: | |
388 | data = self.data |
|
388 | data = self.data | |
389 | nChannels = self.nChannels |
|
389 | nChannels = self.nChannels | |
390 |
|
390 | |||
391 | noise = numpy.zeros(nChannels) |
|
391 | noise = numpy.zeros(nChannels) | |
392 | power = data * numpy.conjugate(data) |
|
392 | power = data * numpy.conjugate(data) | |
393 |
|
393 | |||
394 | for thisChannel in range(nChannels): |
|
394 | for thisChannel in range(nChannels): | |
395 | if nChannels == 1: |
|
395 | if nChannels == 1: | |
396 | daux = power[:].real |
|
396 | daux = power[:].real | |
397 | else: |
|
397 | else: | |
398 | daux = power[thisChannel, :].real |
|
398 | daux = power[thisChannel, :].real | |
399 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
399 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) | |
400 |
|
400 | |||
401 | return noise |
|
401 | return noise | |
402 |
|
402 | |||
403 | def getNoise(self, type=1, channel=None): |
|
403 | def getNoise(self, type=1, channel=None): | |
404 |
|
404 | |||
405 | if type == 1: |
|
405 | if type == 1: | |
406 | noise = self.getNoisebyHildebrand(channel) |
|
406 | noise = self.getNoisebyHildebrand(channel) | |
407 |
|
407 | |||
408 | return noise |
|
408 | return noise | |
409 |
|
409 | |||
410 | def getPower(self, channel=None): |
|
410 | def getPower(self, channel=None): | |
411 |
|
411 | |||
412 | if channel != None: |
|
412 | if channel != None: | |
413 | data = self.data[channel] |
|
413 | data = self.data[channel] | |
414 | else: |
|
414 | else: | |
415 | data = self.data |
|
415 | data = self.data | |
416 |
|
416 | |||
417 | power = data * numpy.conjugate(data) |
|
417 | power = data * numpy.conjugate(data) | |
418 | powerdB = 10 * numpy.log10(power.real) |
|
418 | powerdB = 10 * numpy.log10(power.real) | |
419 | powerdB = numpy.squeeze(powerdB) |
|
419 | powerdB = numpy.squeeze(powerdB) | |
420 |
|
420 | |||
421 | return powerdB |
|
421 | return powerdB | |
422 |
|
422 | |||
423 | @property |
|
423 | @property | |
424 | def timeInterval(self): |
|
424 | def timeInterval(self): | |
425 |
|
425 | |||
426 | return self.ippSeconds * self.nCohInt |
|
426 | return self.ippSeconds * self.nCohInt | |
427 |
|
427 | |||
428 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
428 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
429 |
|
429 | |||
430 |
|
430 | |||
431 | class Spectra(JROData): |
|
431 | class Spectra(JROData): | |
432 |
|
432 | |||
433 | def __init__(self): |
|
433 | def __init__(self): | |
434 | ''' |
|
434 | ''' | |
435 | Constructor |
|
435 | Constructor | |
436 | ''' |
|
436 | ''' | |
437 |
|
437 | |||
|
438 | self.data_dc = None | |||
|
439 | self.data_spc = None | |||
|
440 | self.data_cspc = None | |||
438 | self.useLocalTime = True |
|
441 | self.useLocalTime = True | |
439 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
442 | self.radarControllerHeaderObj = RadarControllerHeader() | |
440 | self.systemHeaderObj = SystemHeader() |
|
443 | self.systemHeaderObj = SystemHeader() | |
441 | self.type = "Spectra" |
|
444 | self.type = "Spectra" | |
442 | self.timeZone = 0 |
|
445 | self.timeZone = 0 | |
443 | self.nProfiles = None |
|
446 | self.nProfiles = None | |
444 | self.heightList = None |
|
447 | self.heightList = None | |
445 | self.channelList = None |
|
448 | self.channelList = None | |
446 | self.pairsList = None |
|
449 | self.pairsList = None | |
447 | self.flagNoData = True |
|
450 | self.flagNoData = True | |
448 | self.flagDiscontinuousBlock = False |
|
451 | self.flagDiscontinuousBlock = False | |
449 | self.utctime = None |
|
452 | self.utctime = None | |
450 | self.nCohInt = None |
|
453 | self.nCohInt = None | |
451 | self.nIncohInt = None |
|
454 | self.nIncohInt = None | |
452 | self.blocksize = None |
|
455 | self.blocksize = None | |
453 | self.nFFTPoints = None |
|
456 | self.nFFTPoints = None | |
454 | self.wavelength = None |
|
457 | self.wavelength = None | |
455 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
458 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
456 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
459 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
457 | self.flagShiftFFT = False |
|
460 | self.flagShiftFFT = False | |
458 | self.ippFactor = 1 |
|
461 | self.ippFactor = 1 | |
459 | self.beacon_heiIndexList = [] |
|
462 | self.beacon_heiIndexList = [] | |
460 | self.noise_estimation = None |
|
463 | self.noise_estimation = None | |
461 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', |
|
464 | self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', | |
462 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles'] |
|
465 | 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles'] | |
463 |
|
466 | |||
464 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
467 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
465 | """ |
|
468 | """ | |
466 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
469 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
467 |
|
470 | |||
468 | Return: |
|
471 | Return: | |
469 | noiselevel |
|
472 | noiselevel | |
470 | """ |
|
473 | """ | |
471 |
|
474 | |||
472 | noise = numpy.zeros(self.nChannels) |
|
475 | noise = numpy.zeros(self.nChannels) | |
473 |
|
476 | |||
474 | for channel in range(self.nChannels): |
|
477 | for channel in range(self.nChannels): | |
475 | daux = self.data_spc[channel, |
|
478 | daux = self.data_spc[channel, | |
476 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
479 | xmin_index:xmax_index, ymin_index:ymax_index] | |
477 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
480 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) | |
478 |
|
481 | |||
479 | return noise |
|
482 | return noise | |
480 |
|
483 | |||
481 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
484 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
482 |
|
485 | |||
483 | if self.noise_estimation is not None: |
|
486 | if self.noise_estimation is not None: | |
484 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
487 | # this was estimated by getNoise Operation defined in jroproc_spectra.py | |
485 | return self.noise_estimation |
|
488 | return self.noise_estimation | |
486 | else: |
|
489 | else: | |
487 | noise = self.getNoisebyHildebrand( |
|
490 | noise = self.getNoisebyHildebrand( | |
488 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
491 | xmin_index, xmax_index, ymin_index, ymax_index) | |
489 | return noise |
|
492 | return noise | |
490 |
|
493 | |||
491 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
494 | def getFreqRangeTimeResponse(self, extrapoints=0): | |
492 |
|
495 | |||
493 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
496 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) | |
494 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 |
|
497 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 | |
495 |
|
498 | |||
496 | return freqrange |
|
499 | return freqrange | |
497 |
|
500 | |||
498 | def getAcfRange(self, extrapoints=0): |
|
501 | def getAcfRange(self, extrapoints=0): | |
499 |
|
502 | |||
500 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
503 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) | |
501 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
504 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 | |
502 |
|
505 | |||
503 | return freqrange |
|
506 | return freqrange | |
504 |
|
507 | |||
505 | def getFreqRange(self, extrapoints=0): |
|
508 | def getFreqRange(self, extrapoints=0): | |
506 |
|
509 | |||
507 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
510 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) | |
508 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
511 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 | |
509 |
|
512 | |||
510 | return freqrange |
|
513 | return freqrange | |
511 |
|
514 | |||
512 | def getVelRange(self, extrapoints=0): |
|
515 | def getVelRange(self, extrapoints=0): | |
513 |
|
516 | |||
514 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
517 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) | |
515 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
518 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) | |
516 |
|
519 | |||
517 | if self.nmodes: |
|
520 | if self.nmodes: | |
518 | return velrange/self.nmodes |
|
521 | return velrange/self.nmodes | |
519 | else: |
|
522 | else: | |
520 | return velrange |
|
523 | return velrange | |
521 |
|
524 | |||
522 | @property |
|
525 | @property | |
523 | def nPairs(self): |
|
526 | def nPairs(self): | |
524 |
|
527 | |||
525 | return len(self.pairsList) |
|
528 | return len(self.pairsList) | |
526 |
|
529 | |||
527 | @property |
|
530 | @property | |
528 | def pairsIndexList(self): |
|
531 | def pairsIndexList(self): | |
529 |
|
532 | |||
530 | return list(range(self.nPairs)) |
|
533 | return list(range(self.nPairs)) | |
531 |
|
534 | |||
532 | @property |
|
535 | @property | |
533 | def normFactor(self): |
|
536 | def normFactor(self): | |
534 |
|
537 | |||
535 | pwcode = 1 |
|
538 | pwcode = 1 | |
536 |
|
539 | |||
537 | if self.flagDecodeData: |
|
540 | if self.flagDecodeData: | |
538 | pwcode = numpy.sum(self.code[0]**2) |
|
541 | pwcode = numpy.sum(self.code[0]**2) | |
539 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
542 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter | |
540 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
543 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter | |
541 |
|
544 | |||
542 | return normFactor |
|
545 | return normFactor | |
543 |
|
546 | |||
544 | @property |
|
547 | @property | |
545 | def flag_cspc(self): |
|
548 | def flag_cspc(self): | |
546 |
|
549 | |||
547 | if self.data_cspc is None: |
|
550 | if self.data_cspc is None: | |
548 | return True |
|
551 | return True | |
549 |
|
552 | |||
550 | return False |
|
553 | return False | |
551 |
|
554 | |||
552 | @property |
|
555 | @property | |
553 | def flag_dc(self): |
|
556 | def flag_dc(self): | |
554 |
|
557 | |||
555 | if self.data_dc is None: |
|
558 | if self.data_dc is None: | |
556 | return True |
|
559 | return True | |
557 |
|
560 | |||
558 | return False |
|
561 | return False | |
559 |
|
562 | |||
560 | @property |
|
563 | @property | |
561 | def timeInterval(self): |
|
564 | def timeInterval(self): | |
562 |
|
565 | |||
563 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
566 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor | |
564 | if self.nmodes: |
|
567 | if self.nmodes: | |
565 | return self.nmodes*timeInterval |
|
568 | return self.nmodes*timeInterval | |
566 | else: |
|
569 | else: | |
567 | return timeInterval |
|
570 | return timeInterval | |
568 |
|
571 | |||
569 | def getPower(self): |
|
572 | def getPower(self): | |
570 |
|
573 | |||
571 | factor = self.normFactor |
|
574 | factor = self.normFactor | |
572 | z = self.data_spc / factor |
|
575 | z = self.data_spc / factor | |
573 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
576 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
574 | avg = numpy.average(z, axis=1) |
|
577 | avg = numpy.average(z, axis=1) | |
575 |
|
578 | |||
576 | return 10 * numpy.log10(avg) |
|
579 | return 10 * numpy.log10(avg) | |
577 |
|
580 | |||
578 | def getCoherence(self, pairsList=None, phase=False): |
|
581 | def getCoherence(self, pairsList=None, phase=False): | |
579 |
|
582 | |||
580 | z = [] |
|
583 | z = [] | |
581 | if pairsList is None: |
|
584 | if pairsList is None: | |
582 | pairsIndexList = self.pairsIndexList |
|
585 | pairsIndexList = self.pairsIndexList | |
583 | else: |
|
586 | else: | |
584 | pairsIndexList = [] |
|
587 | pairsIndexList = [] | |
585 | for pair in pairsList: |
|
588 | for pair in pairsList: | |
586 | if pair not in self.pairsList: |
|
589 | if pair not in self.pairsList: | |
587 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
590 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( | |
588 | pair)) |
|
591 | pair)) | |
589 | pairsIndexList.append(self.pairsList.index(pair)) |
|
592 | pairsIndexList.append(self.pairsList.index(pair)) | |
590 | for i in range(len(pairsIndexList)): |
|
593 | for i in range(len(pairsIndexList)): | |
591 | pair = self.pairsList[pairsIndexList[i]] |
|
594 | pair = self.pairsList[pairsIndexList[i]] | |
592 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
595 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) | |
593 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
596 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) | |
594 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
597 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) | |
595 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
598 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) | |
596 | if phase: |
|
599 | if phase: | |
597 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
600 | data = numpy.arctan2(avgcoherenceComplex.imag, | |
598 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
601 | avgcoherenceComplex.real) * 180 / numpy.pi | |
599 | else: |
|
602 | else: | |
600 | data = numpy.abs(avgcoherenceComplex) |
|
603 | data = numpy.abs(avgcoherenceComplex) | |
601 |
|
604 | |||
602 | z.append(data) |
|
605 | z.append(data) | |
603 |
|
606 | |||
604 | return numpy.array(z) |
|
607 | return numpy.array(z) | |
605 |
|
608 | |||
606 | def setValue(self, value): |
|
609 | def setValue(self, value): | |
607 |
|
610 | |||
608 | print("This property should not be initialized") |
|
611 | print("This property should not be initialized") | |
609 |
|
612 | |||
610 | return |
|
613 | return | |
611 |
|
614 | |||
612 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
615 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") | |
613 |
|
616 | |||
614 |
|
617 | |||
615 | class SpectraHeis(Spectra): |
|
618 | class SpectraHeis(Spectra): | |
616 |
|
619 | |||
617 | def __init__(self): |
|
620 | def __init__(self): | |
618 |
|
621 | |||
619 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
622 | self.radarControllerHeaderObj = RadarControllerHeader() | |
620 | self.systemHeaderObj = SystemHeader() |
|
623 | self.systemHeaderObj = SystemHeader() | |
621 | self.type = "SpectraHeis" |
|
624 | self.type = "SpectraHeis" | |
622 | self.nProfiles = None |
|
625 | self.nProfiles = None | |
623 | self.heightList = None |
|
626 | self.heightList = None | |
624 | self.channelList = None |
|
627 | self.channelList = None | |
625 | self.flagNoData = True |
|
628 | self.flagNoData = True | |
626 | self.flagDiscontinuousBlock = False |
|
629 | self.flagDiscontinuousBlock = False | |
627 | self.utctime = None |
|
630 | self.utctime = None | |
628 | self.blocksize = None |
|
631 | self.blocksize = None | |
629 | self.profileIndex = 0 |
|
632 | self.profileIndex = 0 | |
630 | self.nCohInt = 1 |
|
633 | self.nCohInt = 1 | |
631 | self.nIncohInt = 1 |
|
634 | self.nIncohInt = 1 | |
632 |
|
635 | |||
633 | @property |
|
636 | @property | |
634 | def normFactor(self): |
|
637 | def normFactor(self): | |
635 | pwcode = 1 |
|
638 | pwcode = 1 | |
636 | if self.flagDecodeData: |
|
639 | if self.flagDecodeData: | |
637 | pwcode = numpy.sum(self.code[0]**2) |
|
640 | pwcode = numpy.sum(self.code[0]**2) | |
638 |
|
641 | |||
639 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
642 | normFactor = self.nIncohInt * self.nCohInt * pwcode | |
640 |
|
643 | |||
641 | return normFactor |
|
644 | return normFactor | |
642 |
|
645 | |||
643 | @property |
|
646 | @property | |
644 | def timeInterval(self): |
|
647 | def timeInterval(self): | |
645 |
|
648 | |||
646 | return self.ippSeconds * self.nCohInt * self.nIncohInt |
|
649 | return self.ippSeconds * self.nCohInt * self.nIncohInt | |
647 |
|
650 | |||
648 |
|
651 | |||
649 | class Fits(JROData): |
|
652 | class Fits(JROData): | |
650 |
|
653 | |||
651 | def __init__(self): |
|
654 | def __init__(self): | |
652 |
|
655 | |||
653 | self.type = "Fits" |
|
656 | self.type = "Fits" | |
654 | self.nProfiles = None |
|
657 | self.nProfiles = None | |
655 | self.heightList = None |
|
658 | self.heightList = None | |
656 | self.channelList = None |
|
659 | self.channelList = None | |
657 | self.flagNoData = True |
|
660 | self.flagNoData = True | |
658 | self.utctime = None |
|
661 | self.utctime = None | |
659 | self.nCohInt = 1 |
|
662 | self.nCohInt = 1 | |
660 | self.nIncohInt = 1 |
|
663 | self.nIncohInt = 1 | |
661 | self.useLocalTime = True |
|
664 | self.useLocalTime = True | |
662 | self.profileIndex = 0 |
|
665 | self.profileIndex = 0 | |
663 | self.timeZone = 0 |
|
666 | self.timeZone = 0 | |
664 |
|
667 | |||
665 | def getTimeRange(self): |
|
668 | def getTimeRange(self): | |
666 |
|
669 | |||
667 | datatime = [] |
|
670 | datatime = [] | |
668 |
|
671 | |||
669 | datatime.append(self.ltctime) |
|
672 | datatime.append(self.ltctime) | |
670 | datatime.append(self.ltctime + self.timeInterval) |
|
673 | datatime.append(self.ltctime + self.timeInterval) | |
671 |
|
674 | |||
672 | datatime = numpy.array(datatime) |
|
675 | datatime = numpy.array(datatime) | |
673 |
|
676 | |||
674 | return datatime |
|
677 | return datatime | |
675 |
|
678 | |||
676 | def getChannelIndexList(self): |
|
679 | def getChannelIndexList(self): | |
677 |
|
680 | |||
678 | return list(range(self.nChannels)) |
|
681 | return list(range(self.nChannels)) | |
679 |
|
682 | |||
680 | def getNoise(self, type=1): |
|
683 | def getNoise(self, type=1): | |
681 |
|
684 | |||
682 |
|
685 | |||
683 | if type == 1: |
|
686 | if type == 1: | |
684 | noise = self.getNoisebyHildebrand() |
|
687 | noise = self.getNoisebyHildebrand() | |
685 |
|
688 | |||
686 | if type == 2: |
|
689 | if type == 2: | |
687 | noise = self.getNoisebySort() |
|
690 | noise = self.getNoisebySort() | |
688 |
|
691 | |||
689 | if type == 3: |
|
692 | if type == 3: | |
690 | noise = self.getNoisebyWindow() |
|
693 | noise = self.getNoisebyWindow() | |
691 |
|
694 | |||
692 | return noise |
|
695 | return noise | |
693 |
|
696 | |||
694 | @property |
|
697 | @property | |
695 | def timeInterval(self): |
|
698 | def timeInterval(self): | |
696 |
|
699 | |||
697 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
700 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt | |
698 |
|
701 | |||
699 | return timeInterval |
|
702 | return timeInterval | |
700 |
|
703 | |||
701 | @property |
|
704 | @property | |
702 | def ippSeconds(self): |
|
705 | def ippSeconds(self): | |
703 | ''' |
|
706 | ''' | |
704 | ''' |
|
707 | ''' | |
705 | return self.ipp_sec |
|
708 | return self.ipp_sec | |
706 |
|
709 | |||
707 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
710 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
708 |
|
711 | |||
709 |
|
712 | |||
710 | class Correlation(JROData): |
|
713 | class Correlation(JROData): | |
711 |
|
714 | |||
712 | def __init__(self): |
|
715 | def __init__(self): | |
713 | ''' |
|
716 | ''' | |
714 | Constructor |
|
717 | Constructor | |
715 | ''' |
|
718 | ''' | |
716 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
719 | self.radarControllerHeaderObj = RadarControllerHeader() | |
717 | self.systemHeaderObj = SystemHeader() |
|
720 | self.systemHeaderObj = SystemHeader() | |
718 | self.type = "Correlation" |
|
721 | self.type = "Correlation" | |
719 | self.data = None |
|
722 | self.data = None | |
720 | self.dtype = None |
|
723 | self.dtype = None | |
721 | self.nProfiles = None |
|
724 | self.nProfiles = None | |
722 | self.heightList = None |
|
725 | self.heightList = None | |
723 | self.channelList = None |
|
726 | self.channelList = None | |
724 | self.flagNoData = True |
|
727 | self.flagNoData = True | |
725 | self.flagDiscontinuousBlock = False |
|
728 | self.flagDiscontinuousBlock = False | |
726 | self.utctime = None |
|
729 | self.utctime = None | |
727 | self.timeZone = 0 |
|
730 | self.timeZone = 0 | |
728 | self.dstFlag = None |
|
731 | self.dstFlag = None | |
729 | self.errorCount = None |
|
732 | self.errorCount = None | |
730 | self.blocksize = None |
|
733 | self.blocksize = None | |
731 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
734 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
732 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
735 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
733 | self.pairsList = None |
|
736 | self.pairsList = None | |
734 | self.nPoints = None |
|
737 | self.nPoints = None | |
735 |
|
738 | |||
736 | def getPairsList(self): |
|
739 | def getPairsList(self): | |
737 |
|
740 | |||
738 | return self.pairsList |
|
741 | return self.pairsList | |
739 |
|
742 | |||
740 | def getNoise(self, mode=2): |
|
743 | def getNoise(self, mode=2): | |
741 |
|
744 | |||
742 | indR = numpy.where(self.lagR == 0)[0][0] |
|
745 | indR = numpy.where(self.lagR == 0)[0][0] | |
743 | indT = numpy.where(self.lagT == 0)[0][0] |
|
746 | indT = numpy.where(self.lagT == 0)[0][0] | |
744 |
|
747 | |||
745 | jspectra0 = self.data_corr[:, :, indR, :] |
|
748 | jspectra0 = self.data_corr[:, :, indR, :] | |
746 | jspectra = copy.copy(jspectra0) |
|
749 | jspectra = copy.copy(jspectra0) | |
747 |
|
750 | |||
748 | num_chan = jspectra.shape[0] |
|
751 | num_chan = jspectra.shape[0] | |
749 | num_hei = jspectra.shape[2] |
|
752 | num_hei = jspectra.shape[2] | |
750 |
|
753 | |||
751 | freq_dc = jspectra.shape[1] / 2 |
|
754 | freq_dc = jspectra.shape[1] / 2 | |
752 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
755 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
753 |
|
756 | |||
754 | if ind_vel[0] < 0: |
|
757 | if ind_vel[0] < 0: | |
755 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
758 | ind_vel[list(range(0, 1))] = ind_vel[list( | |
756 | range(0, 1))] + self.num_prof |
|
759 | range(0, 1))] + self.num_prof | |
757 |
|
760 | |||
758 | if mode == 1: |
|
761 | if mode == 1: | |
759 | jspectra[:, freq_dc, :] = ( |
|
762 | jspectra[:, freq_dc, :] = ( | |
760 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
763 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |
761 |
|
764 | |||
762 | if mode == 2: |
|
765 | if mode == 2: | |
763 |
|
766 | |||
764 | vel = numpy.array([-2, -1, 1, 2]) |
|
767 | vel = numpy.array([-2, -1, 1, 2]) | |
765 | xx = numpy.zeros([4, 4]) |
|
768 | xx = numpy.zeros([4, 4]) | |
766 |
|
769 | |||
767 | for fil in range(4): |
|
770 | for fil in range(4): | |
768 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
771 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |
769 |
|
772 | |||
770 | xx_inv = numpy.linalg.inv(xx) |
|
773 | xx_inv = numpy.linalg.inv(xx) | |
771 | xx_aux = xx_inv[0, :] |
|
774 | xx_aux = xx_inv[0, :] | |
772 |
|
775 | |||
773 | for ich in range(num_chan): |
|
776 | for ich in range(num_chan): | |
774 | yy = jspectra[ich, ind_vel, :] |
|
777 | yy = jspectra[ich, ind_vel, :] | |
775 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
778 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |
776 |
|
779 | |||
777 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
780 | junkid = jspectra[ich, freq_dc, :] <= 0 | |
778 | cjunkid = sum(junkid) |
|
781 | cjunkid = sum(junkid) | |
779 |
|
782 | |||
780 | if cjunkid.any(): |
|
783 | if cjunkid.any(): | |
781 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
784 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |
782 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
785 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |
783 |
|
786 | |||
784 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
787 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] | |
785 |
|
788 | |||
786 | return noise |
|
789 | return noise | |
787 |
|
790 | |||
788 | @property |
|
791 | @property | |
789 | def timeInterval(self): |
|
792 | def timeInterval(self): | |
790 |
|
793 | |||
791 | return self.ippSeconds * self.nCohInt * self.nProfiles |
|
794 | return self.ippSeconds * self.nCohInt * self.nProfiles | |
792 |
|
795 | |||
793 | def splitFunctions(self): |
|
796 | def splitFunctions(self): | |
794 |
|
797 | |||
795 | pairsList = self.pairsList |
|
798 | pairsList = self.pairsList | |
796 | ccf_pairs = [] |
|
799 | ccf_pairs = [] | |
797 | acf_pairs = [] |
|
800 | acf_pairs = [] | |
798 | ccf_ind = [] |
|
801 | ccf_ind = [] | |
799 | acf_ind = [] |
|
802 | acf_ind = [] | |
800 | for l in range(len(pairsList)): |
|
803 | for l in range(len(pairsList)): | |
801 | chan0 = pairsList[l][0] |
|
804 | chan0 = pairsList[l][0] | |
802 | chan1 = pairsList[l][1] |
|
805 | chan1 = pairsList[l][1] | |
803 |
|
806 | |||
804 | # Obteniendo pares de Autocorrelacion |
|
807 | # Obteniendo pares de Autocorrelacion | |
805 | if chan0 == chan1: |
|
808 | if chan0 == chan1: | |
806 | acf_pairs.append(chan0) |
|
809 | acf_pairs.append(chan0) | |
807 | acf_ind.append(l) |
|
810 | acf_ind.append(l) | |
808 | else: |
|
811 | else: | |
809 | ccf_pairs.append(pairsList[l]) |
|
812 | ccf_pairs.append(pairsList[l]) | |
810 | ccf_ind.append(l) |
|
813 | ccf_ind.append(l) | |
811 |
|
814 | |||
812 | data_acf = self.data_cf[acf_ind] |
|
815 | data_acf = self.data_cf[acf_ind] | |
813 | data_ccf = self.data_cf[ccf_ind] |
|
816 | data_ccf = self.data_cf[ccf_ind] | |
814 |
|
817 | |||
815 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
818 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf | |
816 |
|
819 | |||
817 | @property |
|
820 | @property | |
818 | def normFactor(self): |
|
821 | def normFactor(self): | |
819 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
822 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() | |
820 | acf_pairs = numpy.array(acf_pairs) |
|
823 | acf_pairs = numpy.array(acf_pairs) | |
821 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
824 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) | |
822 |
|
825 | |||
823 | for p in range(self.nPairs): |
|
826 | for p in range(self.nPairs): | |
824 | pair = self.pairsList[p] |
|
827 | pair = self.pairsList[p] | |
825 |
|
828 | |||
826 | ch0 = pair[0] |
|
829 | ch0 = pair[0] | |
827 | ch1 = pair[1] |
|
830 | ch1 = pair[1] | |
828 |
|
831 | |||
829 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
832 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) | |
830 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
833 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) | |
831 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
834 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) | |
832 |
|
835 | |||
833 | return normFactor |
|
836 | return normFactor | |
834 |
|
837 | |||
835 |
|
838 | |||
836 | class Parameters(Spectra): |
|
839 | class Parameters(Spectra): | |
837 |
|
840 | |||
838 | groupList = None # List of Pairs, Groups, etc |
|
841 | groupList = None # List of Pairs, Groups, etc | |
839 | data_param = None # Parameters obtained |
|
842 | data_param = None # Parameters obtained | |
840 | data_pre = None # Data Pre Parametrization |
|
843 | data_pre = None # Data Pre Parametrization | |
841 | data_SNR = None # Signal to Noise Ratio |
|
844 | data_SNR = None # Signal to Noise Ratio | |
842 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
845 | abscissaList = None # Abscissa, can be velocities, lags or time | |
843 | utctimeInit = None # Initial UTC time |
|
846 | utctimeInit = None # Initial UTC time | |
844 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
847 | paramInterval = None # Time interval to calculate Parameters in seconds | |
845 | useLocalTime = True |
|
848 | useLocalTime = True | |
846 | # Fitting |
|
849 | # Fitting | |
847 | data_error = None # Error of the estimation |
|
850 | data_error = None # Error of the estimation | |
848 | constants = None |
|
851 | constants = None | |
849 | library = None |
|
852 | library = None | |
850 | # Output signal |
|
853 | # Output signal | |
851 | outputInterval = None # Time interval to calculate output signal in seconds |
|
854 | outputInterval = None # Time interval to calculate output signal in seconds | |
852 | data_output = None # Out signal |
|
855 | data_output = None # Out signal | |
853 | nAvg = None |
|
856 | nAvg = None | |
854 | noise_estimation = None |
|
857 | noise_estimation = None | |
855 | GauSPC = None # Fit gaussian SPC |
|
858 | GauSPC = None # Fit gaussian SPC | |
856 |
|
859 | |||
857 | def __init__(self): |
|
860 | def __init__(self): | |
858 | ''' |
|
861 | ''' | |
859 | Constructor |
|
862 | Constructor | |
860 | ''' |
|
863 | ''' | |
861 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
864 | self.radarControllerHeaderObj = RadarControllerHeader() | |
862 | self.systemHeaderObj = SystemHeader() |
|
865 | self.systemHeaderObj = SystemHeader() | |
863 | self.type = "Parameters" |
|
866 | self.type = "Parameters" | |
864 | self.timeZone = 0 |
|
867 | self.timeZone = 0 | |
865 |
|
868 | |||
866 | def getTimeRange1(self, interval): |
|
869 | def getTimeRange1(self, interval): | |
867 |
|
870 | |||
868 | datatime = [] |
|
871 | datatime = [] | |
869 |
|
872 | |||
870 | if self.useLocalTime: |
|
873 | if self.useLocalTime: | |
871 | time1 = self.utctimeInit - self.timeZone * 60 |
|
874 | time1 = self.utctimeInit - self.timeZone * 60 | |
872 | else: |
|
875 | else: | |
873 | time1 = self.utctimeInit |
|
876 | time1 = self.utctimeInit | |
874 |
|
877 | |||
875 | datatime.append(time1) |
|
878 | datatime.append(time1) | |
876 | datatime.append(time1 + interval) |
|
879 | datatime.append(time1 + interval) | |
877 | datatime = numpy.array(datatime) |
|
880 | datatime = numpy.array(datatime) | |
878 |
|
881 | |||
879 | return datatime |
|
882 | return datatime | |
880 |
|
883 | |||
881 | @property |
|
884 | @property | |
882 | def timeInterval(self): |
|
885 | def timeInterval(self): | |
883 |
|
886 | |||
884 | if hasattr(self, 'timeInterval1'): |
|
887 | if hasattr(self, 'timeInterval1'): | |
885 | return self.timeInterval1 |
|
888 | return self.timeInterval1 | |
886 | else: |
|
889 | else: | |
887 | return self.paramInterval |
|
890 | return self.paramInterval | |
888 |
|
891 | |||
889 | def setValue(self, value): |
|
892 | def setValue(self, value): | |
890 |
|
893 | |||
891 | print("This property should not be initialized") |
|
894 | print("This property should not be initialized") | |
892 |
|
895 | |||
893 | return |
|
896 | return | |
894 |
|
897 | |||
895 | def getNoise(self): |
|
898 | def getNoise(self): | |
896 |
|
899 | |||
897 | return self.spc_noise |
|
900 | return self.spc_noise | |
898 |
|
901 | |||
899 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
902 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") | |
900 |
|
903 | |||
901 |
|
904 | |||
902 | class PlotterData(object): |
|
905 | class PlotterData(object): | |
903 | ''' |
|
906 | ''' | |
904 | Object to hold data to be plotted |
|
907 | Object to hold data to be plotted | |
905 | ''' |
|
908 | ''' | |
906 |
|
909 | |||
907 | MAXNUMX = 200 |
|
910 | MAXNUMX = 200 | |
908 | MAXNUMY = 200 |
|
911 | MAXNUMY = 200 | |
909 |
|
912 | |||
910 | def __init__(self, code, exp_code, localtime=True): |
|
913 | def __init__(self, code, exp_code, localtime=True): | |
911 |
|
914 | |||
912 | self.key = code |
|
915 | self.key = code | |
913 | self.exp_code = exp_code |
|
916 | self.exp_code = exp_code | |
914 | self.ready = False |
|
917 | self.ready = False | |
915 | self.flagNoData = False |
|
918 | self.flagNoData = False | |
916 | self.localtime = localtime |
|
919 | self.localtime = localtime | |
917 | self.data = {} |
|
920 | self.data = {} | |
918 | self.meta = {} |
|
921 | self.meta = {} | |
919 | self.__heights = [] |
|
922 | self.__heights = [] | |
920 |
|
923 | |||
921 | def __str__(self): |
|
924 | def __str__(self): | |
922 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
925 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] | |
923 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) |
|
926 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.times)) | |
924 |
|
927 | |||
925 | def __len__(self): |
|
928 | def __len__(self): | |
926 | return len(self.data) |
|
929 | return len(self.data) | |
927 |
|
930 | |||
928 | def __getitem__(self, key): |
|
931 | def __getitem__(self, key): | |
929 | if isinstance(key, int): |
|
932 | if isinstance(key, int): | |
930 | return self.data[self.times[key]] |
|
933 | return self.data[self.times[key]] | |
931 | elif isinstance(key, str): |
|
934 | elif isinstance(key, str): | |
932 | ret = numpy.array([self.data[x][key] for x in self.times]) |
|
935 | ret = numpy.array([self.data[x][key] for x in self.times]) | |
933 | if ret.ndim > 1: |
|
936 | if ret.ndim > 1: | |
934 | ret = numpy.swapaxes(ret, 0, 1) |
|
937 | ret = numpy.swapaxes(ret, 0, 1) | |
935 | return ret |
|
938 | return ret | |
936 |
|
939 | |||
937 | def __contains__(self, key): |
|
940 | def __contains__(self, key): | |
938 | return key in self.data[self.min_time] |
|
941 | return key in self.data[self.min_time] | |
939 |
|
942 | |||
940 | def setup(self): |
|
943 | def setup(self): | |
941 | ''' |
|
944 | ''' | |
942 | Configure object |
|
945 | Configure object | |
943 | ''' |
|
946 | ''' | |
944 | self.type = '' |
|
947 | self.type = '' | |
945 | self.ready = False |
|
948 | self.ready = False | |
946 | del self.data |
|
949 | del self.data | |
947 | self.data = {} |
|
950 | self.data = {} | |
948 | self.__heights = [] |
|
951 | self.__heights = [] | |
949 | self.__all_heights = set() |
|
952 | self.__all_heights = set() | |
950 |
|
953 | |||
951 | def shape(self, key): |
|
954 | def shape(self, key): | |
952 | ''' |
|
955 | ''' | |
953 | Get the shape of the one-element data for the given key |
|
956 | Get the shape of the one-element data for the given key | |
954 | ''' |
|
957 | ''' | |
955 |
|
958 | |||
956 | if len(self.data[self.min_time][key]): |
|
959 | if len(self.data[self.min_time][key]): | |
957 | return self.data[self.min_time][key].shape |
|
960 | return self.data[self.min_time][key].shape | |
958 | return (0,) |
|
961 | return (0,) | |
959 |
|
962 | |||
960 | def update(self, data, tm, meta={}): |
|
963 | def update(self, data, tm, meta={}): | |
961 | ''' |
|
964 | ''' | |
962 | Update data object with new dataOut |
|
965 | Update data object with new dataOut | |
963 | ''' |
|
966 | ''' | |
964 |
|
967 | |||
965 | self.data[tm] = data |
|
968 | self.data[tm] = data | |
966 |
|
969 | |||
967 | for key, value in meta.items(): |
|
970 | for key, value in meta.items(): | |
968 | setattr(self, key, value) |
|
971 | setattr(self, key, value) | |
969 |
|
972 | |||
970 | def normalize_heights(self): |
|
973 | def normalize_heights(self): | |
971 | ''' |
|
974 | ''' | |
972 | Ensure same-dimension of the data for different heighList |
|
975 | Ensure same-dimension of the data for different heighList | |
973 | ''' |
|
976 | ''' | |
974 |
|
977 | |||
975 | H = numpy.array(list(self.__all_heights)) |
|
978 | H = numpy.array(list(self.__all_heights)) | |
976 | H.sort() |
|
979 | H.sort() | |
977 | for key in self.data: |
|
980 | for key in self.data: | |
978 | shape = self.shape(key)[:-1] + H.shape |
|
981 | shape = self.shape(key)[:-1] + H.shape | |
979 | for tm, obj in list(self.data[key].items()): |
|
982 | for tm, obj in list(self.data[key].items()): | |
980 | h = self.__heights[self.times.tolist().index(tm)] |
|
983 | h = self.__heights[self.times.tolist().index(tm)] | |
981 | if H.size == h.size: |
|
984 | if H.size == h.size: | |
982 | continue |
|
985 | continue | |
983 | index = numpy.where(numpy.in1d(H, h))[0] |
|
986 | index = numpy.where(numpy.in1d(H, h))[0] | |
984 | dummy = numpy.zeros(shape) + numpy.nan |
|
987 | dummy = numpy.zeros(shape) + numpy.nan | |
985 | if len(shape) == 2: |
|
988 | if len(shape) == 2: | |
986 | dummy[:, index] = obj |
|
989 | dummy[:, index] = obj | |
987 | else: |
|
990 | else: | |
988 | dummy[index] = obj |
|
991 | dummy[index] = obj | |
989 | self.data[key][tm] = dummy |
|
992 | self.data[key][tm] = dummy | |
990 |
|
993 | |||
991 | self.__heights = [H for tm in self.times] |
|
994 | self.__heights = [H for tm in self.times] | |
992 |
|
995 | |||
993 | def jsonify(self, tm, plot_name, plot_type, decimate=False): |
|
996 | def jsonify(self, tm, plot_name, plot_type, decimate=False): | |
994 | ''' |
|
997 | ''' | |
995 | Convert data to json |
|
998 | Convert data to json | |
996 | ''' |
|
999 | ''' | |
997 |
|
1000 | |||
998 | meta = {} |
|
1001 | meta = {} | |
999 | meta['xrange'] = [] |
|
1002 | meta['xrange'] = [] | |
1000 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 |
|
1003 | dy = int(len(self.yrange)/self.MAXNUMY) + 1 | |
1001 | tmp = self.data[tm][self.key] |
|
1004 | tmp = self.data[tm][self.key] | |
1002 | shape = tmp.shape |
|
1005 | shape = tmp.shape | |
1003 | if len(shape) == 2: |
|
1006 | if len(shape) == 2: | |
1004 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) |
|
1007 | data = self.roundFloats(self.data[tm][self.key][::, ::dy].tolist()) | |
1005 | elif len(shape) == 3: |
|
1008 | elif len(shape) == 3: | |
1006 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 |
|
1009 | dx = int(self.data[tm][self.key].shape[1]/self.MAXNUMX) + 1 | |
1007 | data = self.roundFloats( |
|
1010 | data = self.roundFloats( | |
1008 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) |
|
1011 | self.data[tm][self.key][::, ::dx, ::dy].tolist()) | |
1009 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1012 | meta['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) | |
1010 | else: |
|
1013 | else: | |
1011 | data = self.roundFloats(self.data[tm][self.key].tolist()) |
|
1014 | data = self.roundFloats(self.data[tm][self.key].tolist()) | |
1012 |
|
1015 | |||
1013 | ret = { |
|
1016 | ret = { | |
1014 | 'plot': plot_name, |
|
1017 | 'plot': plot_name, | |
1015 | 'code': self.exp_code, |
|
1018 | 'code': self.exp_code, | |
1016 | 'time': float(tm), |
|
1019 | 'time': float(tm), | |
1017 | 'data': data, |
|
1020 | 'data': data, | |
1018 | } |
|
1021 | } | |
1019 | meta['type'] = plot_type |
|
1022 | meta['type'] = plot_type | |
1020 | meta['interval'] = float(self.interval) |
|
1023 | meta['interval'] = float(self.interval) | |
1021 | meta['localtime'] = self.localtime |
|
1024 | meta['localtime'] = self.localtime | |
1022 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) |
|
1025 | meta['yrange'] = self.roundFloats(self.yrange[::dy].tolist()) | |
1023 | meta.update(self.meta) |
|
1026 | meta.update(self.meta) | |
1024 | ret['metadata'] = meta |
|
1027 | ret['metadata'] = meta | |
1025 | return json.dumps(ret) |
|
1028 | return json.dumps(ret) | |
1026 |
|
1029 | |||
1027 | @property |
|
1030 | @property | |
1028 | def times(self): |
|
1031 | def times(self): | |
1029 | ''' |
|
1032 | ''' | |
1030 | Return the list of times of the current data |
|
1033 | Return the list of times of the current data | |
1031 | ''' |
|
1034 | ''' | |
1032 |
|
1035 | |||
1033 | ret = [t for t in self.data] |
|
1036 | ret = [t for t in self.data] | |
1034 | ret.sort() |
|
1037 | ret.sort() | |
1035 | return numpy.array(ret) |
|
1038 | return numpy.array(ret) | |
1036 |
|
1039 | |||
1037 | @property |
|
1040 | @property | |
1038 | def min_time(self): |
|
1041 | def min_time(self): | |
1039 | ''' |
|
1042 | ''' | |
1040 | Return the minimun time value |
|
1043 | Return the minimun time value | |
1041 | ''' |
|
1044 | ''' | |
1042 |
|
1045 | |||
1043 | return self.times[0] |
|
1046 | return self.times[0] | |
1044 |
|
1047 | |||
1045 | @property |
|
1048 | @property | |
1046 | def max_time(self): |
|
1049 | def max_time(self): | |
1047 | ''' |
|
1050 | ''' | |
1048 | Return the maximun time value |
|
1051 | Return the maximun time value | |
1049 | ''' |
|
1052 | ''' | |
1050 |
|
1053 | |||
1051 | return self.times[-1] |
|
1054 | return self.times[-1] | |
1052 |
|
1055 | |||
1053 | # @property |
|
1056 | # @property | |
1054 | # def heights(self): |
|
1057 | # def heights(self): | |
1055 | # ''' |
|
1058 | # ''' | |
1056 | # Return the list of heights of the current data |
|
1059 | # Return the list of heights of the current data | |
1057 | # ''' |
|
1060 | # ''' | |
1058 |
|
1061 | |||
1059 | # return numpy.array(self.__heights[-1]) |
|
1062 | # return numpy.array(self.__heights[-1]) | |
1060 |
|
1063 | |||
1061 | @staticmethod |
|
1064 | @staticmethod | |
1062 | def roundFloats(obj): |
|
1065 | def roundFloats(obj): | |
1063 | if isinstance(obj, list): |
|
1066 | if isinstance(obj, list): | |
1064 | return list(map(PlotterData.roundFloats, obj)) |
|
1067 | return list(map(PlotterData.roundFloats, obj)) | |
1065 | elif isinstance(obj, float): |
|
1068 | elif isinstance(obj, float): | |
1066 | return round(obj, 2) |
|
1069 | return round(obj, 2) |
General Comments 0
You need to be logged in to leave comments.
Login now